]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/intel/ipw2x00/ipw2100.c
Merge branch '10GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = NL80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008
2009 /*
2010 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011 * an actual MAC of the AP. Seems like FW sets this
2012 * address too late. Read it later and expose through
2013 * /proc or schedule a later task to query and update
2014 */
2015
2016 essid_len = IW_ESSID_MAX_SIZE;
2017 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018 essid, &essid_len);
2019 if (ret) {
2020 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021 __LINE__);
2022 return;
2023 }
2024
2025 len = sizeof(u32);
2026 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027 if (ret) {
2028 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029 __LINE__);
2030 return;
2031 }
2032
2033 len = sizeof(u32);
2034 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035 if (ret) {
2036 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037 __LINE__);
2038 return;
2039 }
2040 len = ETH_ALEN;
2041 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042 &len);
2043 if (ret) {
2044 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045 __LINE__);
2046 return;
2047 }
2048 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050 switch (txrate) {
2051 case TX_RATE_1_MBIT:
2052 txratename = "1Mbps";
2053 break;
2054 case TX_RATE_2_MBIT:
2055 txratename = "2Mbsp";
2056 break;
2057 case TX_RATE_5_5_MBIT:
2058 txratename = "5.5Mbps";
2059 break;
2060 case TX_RATE_11_MBIT:
2061 txratename = "11Mbps";
2062 break;
2063 default:
2064 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065 txratename = "unknown rate";
2066 break;
2067 }
2068
2069 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070 priv->net_dev->name, essid_len, essid,
2071 txratename, chan, bssid);
2072
2073 /* now we copy read ssid into dev */
2074 if (!(priv->config & CFG_STATIC_ESSID)) {
2075 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076 memcpy(priv->essid, essid, priv->essid_len);
2077 }
2078 priv->channel = chan;
2079 memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081 priv->status |= STATUS_ASSOCIATING;
2082 priv->connect_start = get_seconds();
2083
2084 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088 int length, int batch_mode)
2089 {
2090 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091 struct host_command cmd = {
2092 .host_command = SSID,
2093 .host_command_sequence = 0,
2094 .host_command_length = ssid_len
2095 };
2096 int err;
2097
2098 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100 if (ssid_len)
2101 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103 if (!batch_mode) {
2104 err = ipw2100_disable_adapter(priv);
2105 if (err)
2106 return err;
2107 }
2108
2109 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110 * disable auto association -- so we cheat by setting a bogus SSID */
2111 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112 int i;
2113 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115 bogus[i] = 0x18 + i;
2116 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117 }
2118
2119 /* NOTE: We always send the SSID command even if the provided ESSID is
2120 * the same as what we currently think is set. */
2121
2122 err = ipw2100_hw_send_command(priv, &cmd);
2123 if (!err) {
2124 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125 memcpy(priv->essid, essid, ssid_len);
2126 priv->essid_len = ssid_len;
2127 }
2128
2129 if (!batch_mode) {
2130 if (ipw2100_enable_adapter(priv))
2131 err = -EIO;
2132 }
2133
2134 return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141 priv->bssid);
2142
2143 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145 if (priv->status & STATUS_STOPPING) {
2146 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147 return;
2148 }
2149
2150 eth_zero_addr(priv->bssid);
2151 eth_zero_addr(priv->ieee->bssid);
2152
2153 netif_carrier_off(priv->net_dev);
2154 netif_stop_queue(priv->net_dev);
2155
2156 if (!(priv->status & STATUS_RUNNING))
2157 return;
2158
2159 if (priv->status & STATUS_SECURITY_UPDATED)
2160 schedule_delayed_work(&priv->security_work, 0);
2161
2162 schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168 priv->net_dev->name);
2169
2170 /* RF_KILL is now enabled (else we wouldn't be here) */
2171 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172 priv->status |= STATUS_RF_KILL_HW;
2173
2174 /* Make sure the RF Kill check timer is running */
2175 priv->stop_rf_kill = 0;
2176 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182 scan_event.work);
2183 union iwreq_data wrqu;
2184
2185 wrqu.data.length = 0;
2186 wrqu.data.flags = 0;
2187 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192 IPW_DEBUG_SCAN("scan complete\n");
2193 /* Age the scan results... */
2194 priv->ieee->scans++;
2195 priv->status &= ~STATUS_SCANNING;
2196
2197 /* Only userspace-requested scan completion events go out immediately */
2198 if (!priv->user_requested_scan) {
2199 schedule_delayed_work(&priv->scan_event,
2200 round_jiffies_relative(msecs_to_jiffies(4000)));
2201 } else {
2202 priv->user_requested_scan = 0;
2203 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204 }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210 int status;
2211 void (*cb) (struct ipw2100_priv * priv, u32 status);
2212 char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217 int status;
2218 void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224 IPW_DEBUG_SCAN("Scanning...\n");
2225 priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241 IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246 int i;
2247
2248 if (status == IPW_STATE_SCANNING &&
2249 priv->status & STATUS_ASSOCIATED &&
2250 !(priv->status & STATUS_SCANNING)) {
2251 IPW_DEBUG_INFO("Scan detected while associated, with "
2252 "no scan request. Restarting firmware.\n");
2253
2254 /* Wake up any sleeping jobs */
2255 schedule_reset(priv);
2256 }
2257
2258 for (i = 0; status_handlers[i].status != -1; i++) {
2259 if (status == status_handlers[i].status) {
2260 IPW_DEBUG_NOTIF("Status change: %s\n",
2261 status_handlers[i].name);
2262 if (status_handlers[i].cb)
2263 status_handlers[i].cb(priv, status);
2264 priv->wstats.status = status;
2265 return;
2266 }
2267 }
2268
2269 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273 struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278 command_types[cmd->host_command_reg],
2279 cmd->host_command_reg);
2280 }
2281 #endif
2282 if (cmd->host_command_reg == HOST_COMPLETE)
2283 priv->status |= STATUS_ENABLED;
2284
2285 if (cmd->host_command_reg == CARD_DISABLE)
2286 priv->status &= ~STATUS_ENABLED;
2287
2288 priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290 wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295 "COMMAND_STATUS_VAL",
2296 "STATUS_CHANGE_VAL",
2297 "P80211_DATA_VAL",
2298 "P8023_DATA_VAL",
2299 "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304 struct ipw2100_rx_packet *packet)
2305 {
2306 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307 if (!packet->skb)
2308 return -ENOMEM;
2309
2310 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312 sizeof(struct ipw2100_rx),
2313 PCI_DMA_FROMDEVICE);
2314 if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315 dev_kfree_skb(packet->skb);
2316 return -ENOMEM;
2317 }
2318
2319 return 0;
2320 }
2321
2322 #define SEARCH_ERROR 0xffffffff
2323 #define SEARCH_FAIL 0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331 int i;
2332 if (!priv->snapshot[0])
2333 return;
2334 for (i = 0; i < 0x30; i++)
2335 kfree(priv->snapshot[i]);
2336 priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342 int i;
2343 if (priv->snapshot[0])
2344 return 1;
2345 for (i = 0; i < 0x30; i++) {
2346 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347 if (!priv->snapshot[i]) {
2348 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349 "buffer %d\n", priv->net_dev->name, i);
2350 while (i > 0)
2351 kfree(priv->snapshot[--i]);
2352 priv->snapshot[0] = NULL;
2353 return 0;
2354 }
2355 }
2356
2357 return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361 size_t len, int mode)
2362 {
2363 u32 i, j;
2364 u32 tmp;
2365 u8 *s, *d;
2366 u32 ret;
2367
2368 s = in_buf;
2369 if (mode == SEARCH_SNAPSHOT) {
2370 if (!ipw2100_snapshot_alloc(priv))
2371 mode = SEARCH_DISCARD;
2372 }
2373
2374 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375 read_nic_dword(priv->net_dev, i, &tmp);
2376 if (mode == SEARCH_SNAPSHOT)
2377 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378 if (ret == SEARCH_FAIL) {
2379 d = (u8 *) & tmp;
2380 for (j = 0; j < 4; j++) {
2381 if (*s != *d) {
2382 s = in_buf;
2383 continue;
2384 }
2385
2386 s++;
2387 d++;
2388
2389 if ((s - in_buf) == len)
2390 ret = (i + j) - len + 1;
2391 }
2392 } else if (mode == SEARCH_DISCARD)
2393 return ret;
2394 }
2395
2396 return ret;
2397 }
2398 #endif
2399
2400 /*
2401 *
2402 * 0) Disconnect the SKB from the firmware (just unmap)
2403 * 1) Pack the ETH header into the SKB
2404 * 2) Pass the SKB to the network stack
2405 *
2406 * When packet is provided by the firmware, it contains the following:
2407 *
2408 * . libipw_hdr
2409 * . libipw_snap_hdr
2410 *
2411 * The size of the constructed ethernet
2412 *
2413 */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421 struct ipw2100_status *status = &priv->status_queue.drv[i];
2422 u32 match, reg;
2423 int j;
2424 #endif
2425
2426 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427 i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430 /* Halt the firmware so we can get a good image */
2431 write_register(priv->net_dev, IPW_REG_RESET_REG,
2432 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433 j = 5;
2434 do {
2435 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439 break;
2440 } while (j--);
2441
2442 match = ipw2100_match_buf(priv, (u8 *) status,
2443 sizeof(struct ipw2100_status),
2444 SEARCH_SNAPSHOT);
2445 if (match < SEARCH_SUCCESS)
2446 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447 "offset 0x%06X, length %d:\n",
2448 priv->net_dev->name, match,
2449 sizeof(struct ipw2100_status));
2450 else
2451 IPW_DEBUG_INFO("%s: No DMA status match in "
2452 "Firmware.\n", priv->net_dev->name);
2453
2454 printk_buf((u8 *) priv->status_queue.drv,
2455 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459 priv->net_dev->stats.rx_errors++;
2460 schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464 struct libipw_rx_stats *stats)
2465 {
2466 struct net_device *dev = priv->net_dev;
2467 struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470 IPW_DEBUG_RX("Handler...\n");
2471
2472 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474 " Dropping.\n",
2475 dev->name,
2476 status->frame_size, skb_tailroom(packet->skb));
2477 dev->stats.rx_errors++;
2478 return;
2479 }
2480
2481 if (unlikely(!netif_running(dev))) {
2482 dev->stats.rx_errors++;
2483 priv->wstats.discard.misc++;
2484 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485 return;
2486 }
2487
2488 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489 !(priv->status & STATUS_ASSOCIATED))) {
2490 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491 priv->wstats.discard.misc++;
2492 return;
2493 }
2494
2495 pci_unmap_single(priv->pci_dev,
2496 packet->dma_addr,
2497 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499 skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502 /* Make a copy of the frame so we can dump it to the logs if
2503 * libipw_rx fails */
2504 skb_copy_from_linear_data(packet->skb, packet_data,
2505 min_t(u32, status->frame_size,
2506 IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512 dev->name);
2513 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515 dev->stats.rx_errors++;
2516
2517 /* libipw_rx failed, so it didn't free the SKB */
2518 dev_kfree_skb_any(packet->skb);
2519 packet->skb = NULL;
2520 }
2521
2522 /* We need to allocate a new SKB and attach it to the RDB. */
2523 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524 printk(KERN_WARNING DRV_NAME ": "
2525 "%s: Unable to allocate SKB onto RBD ring - disabling "
2526 "adapter.\n", dev->name);
2527 /* TODO: schedule adapter shutdown */
2528 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529 }
2530
2531 /* Update the RDB entry */
2532 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538 struct libipw_rx_stats *stats)
2539 {
2540 struct net_device *dev = priv->net_dev;
2541 struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544 /* Magic struct that slots into the radiotap header -- no reason
2545 * to build this manually element by element, we can write it much
2546 * more efficiently than we can parse it. ORDER MATTERS HERE */
2547 struct ipw_rt_hdr {
2548 struct ieee80211_radiotap_header rt_hdr;
2549 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550 } *ipw_rt;
2551
2552 IPW_DEBUG_RX("Handler...\n");
2553
2554 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555 sizeof(struct ipw_rt_hdr))) {
2556 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557 " Dropping.\n",
2558 dev->name,
2559 status->frame_size,
2560 skb_tailroom(packet->skb));
2561 dev->stats.rx_errors++;
2562 return;
2563 }
2564
2565 if (unlikely(!netif_running(dev))) {
2566 dev->stats.rx_errors++;
2567 priv->wstats.discard.misc++;
2568 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569 return;
2570 }
2571
2572 if (unlikely(priv->config & CFG_CRC_CHECK &&
2573 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2575 dev->stats.rx_errors++;
2576 return;
2577 }
2578
2579 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582 packet->skb->data, status->frame_size);
2583
2584 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597 dev->stats.rx_errors++;
2598
2599 /* libipw_rx failed, so it didn't free the SKB */
2600 dev_kfree_skb_any(packet->skb);
2601 packet->skb = NULL;
2602 }
2603
2604 /* We need to allocate a new SKB and attach it to the RDB. */
2605 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606 IPW_DEBUG_WARNING(
2607 "%s: Unable to allocate SKB onto RBD ring - disabling "
2608 "adapter.\n", dev->name);
2609 /* TODO: schedule adapter shutdown */
2610 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611 }
2612
2613 /* Update the RDB entry */
2614 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621 struct ipw2100_status *status = &priv->status_queue.drv[i];
2622 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625 switch (frame_type) {
2626 case COMMAND_STATUS_VAL:
2627 return (status->frame_size != sizeof(u->rx_data.command));
2628 case STATUS_CHANGE_VAL:
2629 return (status->frame_size != sizeof(u->rx_data.status));
2630 case HOST_NOTIFICATION_VAL:
2631 return (status->frame_size < sizeof(u->rx_data.notification));
2632 case P80211_DATA_VAL:
2633 case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 return 0;
2636 #else
2637 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638 case IEEE80211_FTYPE_MGMT:
2639 case IEEE80211_FTYPE_CTL:
2640 return 0;
2641 case IEEE80211_FTYPE_DATA:
2642 return (status->frame_size >
2643 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644 }
2645 #endif
2646 }
2647
2648 return 1;
2649 }
2650
2651 /*
2652 * ipw2100 interrupts are disabled at this point, and the ISR
2653 * is the only code that calls this method. So, we do not need
2654 * to play with any locks.
2655 *
2656 * RX Queue works as follows:
2657 *
2658 * Read index - firmware places packet in entry identified by the
2659 * Read index and advances Read index. In this manner,
2660 * Read index will always point to the next packet to
2661 * be filled--but not yet valid.
2662 *
2663 * Write index - driver fills this entry with an unused RBD entry.
2664 * This entry has not filled by the firmware yet.
2665 *
2666 * In between the W and R indexes are the RBDs that have been received
2667 * but not yet processed.
2668 *
2669 * The process of handling packets will start at WRITE + 1 and advance
2670 * until it reaches the READ index.
2671 *
2672 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673 *
2674 */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678 struct ipw2100_status_queue *sq = &priv->status_queue;
2679 struct ipw2100_rx_packet *packet;
2680 u16 frame_type;
2681 u32 r, w, i, s;
2682 struct ipw2100_rx *u;
2683 struct libipw_rx_stats stats = {
2684 .mac_time = jiffies,
2685 };
2686
2687 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690 if (r >= rxq->entries) {
2691 IPW_DEBUG_RX("exit - bad read index\n");
2692 return;
2693 }
2694
2695 i = (rxq->next + 1) % rxq->entries;
2696 s = i;
2697 while (i != r) {
2698 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699 r, rxq->next, i); */
2700
2701 packet = &priv->rx_buffers[i];
2702
2703 /* Sync the DMA for the RX buffer so CPU is sure to get
2704 * the correct values */
2705 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706 sizeof(struct ipw2100_rx),
2707 PCI_DMA_FROMDEVICE);
2708
2709 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710 ipw2100_corruption_detected(priv, i);
2711 goto increment;
2712 }
2713
2714 u = packet->rxp;
2715 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717 stats.len = sq->drv[i].frame_size;
2718
2719 stats.mask = 0;
2720 if (stats.rssi != 0)
2721 stats.mask |= LIBIPW_STATMASK_RSSI;
2722 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725 priv->net_dev->name, frame_types[frame_type],
2726 stats.len);
2727
2728 switch (frame_type) {
2729 case COMMAND_STATUS_VAL:
2730 /* Reset Rx watchdog */
2731 isr_rx_complete_command(priv, &u->rx_data.command);
2732 break;
2733
2734 case STATUS_CHANGE_VAL:
2735 isr_status_change(priv, u->rx_data.status);
2736 break;
2737
2738 case P80211_DATA_VAL:
2739 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742 isr_rx_monitor(priv, i, &stats);
2743 break;
2744 }
2745 #endif
2746 if (stats.len < sizeof(struct libipw_hdr_3addr))
2747 break;
2748 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749 case IEEE80211_FTYPE_MGMT:
2750 libipw_rx_mgt(priv->ieee,
2751 &u->rx_data.header, &stats);
2752 break;
2753
2754 case IEEE80211_FTYPE_CTL:
2755 break;
2756
2757 case IEEE80211_FTYPE_DATA:
2758 isr_rx(priv, i, &stats);
2759 break;
2760
2761 }
2762 break;
2763 }
2764
2765 increment:
2766 /* clear status field associated with this RBD */
2767 rxq->drv[i].status.info.field = 0;
2768
2769 i = (i + 1) % rxq->entries;
2770 }
2771
2772 if (i != s) {
2773 /* backtrack one entry, wrapping to end if at 0 */
2774 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776 write_register(priv->net_dev,
2777 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778 }
2779 }
2780
2781 /*
2782 * __ipw2100_tx_process
2783 *
2784 * This routine will determine whether the next packet on
2785 * the fw_pend_list has been processed by the firmware yet.
2786 *
2787 * If not, then it does nothing and returns.
2788 *
2789 * If so, then it removes the item from the fw_pend_list, frees
2790 * any associated storage, and places the item back on the
2791 * free list of its source (either msg_free_list or tx_free_list)
2792 *
2793 * TX Queue works as follows:
2794 *
2795 * Read index - points to the next TBD that the firmware will
2796 * process. The firmware will read the data, and once
2797 * done processing, it will advance the Read index.
2798 *
2799 * Write index - driver fills this entry with an constructed TBD
2800 * entry. The Write index is not advanced until the
2801 * packet has been configured.
2802 *
2803 * In between the W and R indexes are the TBDs that have NOT been
2804 * processed. Lagging behind the R index are packets that have
2805 * been processed but have not been freed by the driver.
2806 *
2807 * In order to free old storage, an internal index will be maintained
2808 * that points to the next packet to be freed. When all used
2809 * packets have been freed, the oldest index will be the same as the
2810 * firmware's read index.
2811 *
2812 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813 *
2814 * Because the TBD structure can not contain arbitrary data, the
2815 * driver must keep an internal queue of cached allocations such that
2816 * it can put that data back into the tx_free_list and msg_free_list
2817 * for use by future command and data packets.
2818 *
2819 */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823 struct ipw2100_bd *tbd;
2824 struct list_head *element;
2825 struct ipw2100_tx_packet *packet;
2826 int descriptors_used;
2827 int e, i;
2828 u32 r, w, frag_num = 0;
2829
2830 if (list_empty(&priv->fw_pend_list))
2831 return 0;
2832
2833 element = priv->fw_pend_list.next;
2834
2835 packet = list_entry(element, struct ipw2100_tx_packet, list);
2836 tbd = &txq->drv[packet->index];
2837
2838 /* Determine how many TBD entries must be finished... */
2839 switch (packet->type) {
2840 case COMMAND:
2841 /* COMMAND uses only one slot; don't advance */
2842 descriptors_used = 1;
2843 e = txq->oldest;
2844 break;
2845
2846 case DATA:
2847 /* DATA uses two slots; advance and loop position. */
2848 descriptors_used = tbd->num_fragments;
2849 frag_num = tbd->num_fragments - 1;
2850 e = txq->oldest + frag_num;
2851 e %= txq->entries;
2852 break;
2853
2854 default:
2855 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856 priv->net_dev->name);
2857 return 0;
2858 }
2859
2860 /* if the last TBD is not done by NIC yet, then packet is
2861 * not ready to be released.
2862 *
2863 */
2864 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865 &r);
2866 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867 &w);
2868 if (w != txq->next)
2869 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870 priv->net_dev->name);
2871
2872 /*
2873 * txq->next is the index of the last packet written txq->oldest is
2874 * the index of the r is the index of the next packet to be read by
2875 * firmware
2876 */
2877
2878 /*
2879 * Quick graphic to help you visualize the following
2880 * if / else statement
2881 *
2882 * ===>| s---->|===============
2883 * e>|
2884 * | a | b | c | d | e | f | g | h | i | j | k | l
2885 * r---->|
2886 * w
2887 *
2888 * w - updated by driver
2889 * r - updated by firmware
2890 * s - start of oldest BD entry (txq->oldest)
2891 * e - end of oldest BD entry
2892 *
2893 */
2894 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896 return 0;
2897 }
2898
2899 list_del(element);
2900 DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903 {
2904 i = txq->oldest;
2905 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906 &txq->drv[i],
2907 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908 txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910 if (packet->type == DATA) {
2911 i = (i + 1) % txq->entries;
2912
2913 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914 &txq->drv[i],
2915 (u32) (txq->nic + i *
2916 sizeof(struct ipw2100_bd)),
2917 (u32) txq->drv[i].host_addr,
2918 txq->drv[i].buf_length);
2919 }
2920 }
2921 #endif
2922
2923 switch (packet->type) {
2924 case DATA:
2925 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2927 "Expecting DATA TBD but pulled "
2928 "something else: ids %d=%d.\n",
2929 priv->net_dev->name, txq->oldest, packet->index);
2930
2931 /* DATA packet; we have to unmap and free the SKB */
2932 for (i = 0; i < frag_num; i++) {
2933 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936 (packet->index + 1 + i) % txq->entries,
2937 tbd->host_addr, tbd->buf_length);
2938
2939 pci_unmap_single(priv->pci_dev,
2940 tbd->host_addr,
2941 tbd->buf_length, PCI_DMA_TODEVICE);
2942 }
2943
2944 libipw_txb_free(packet->info.d_struct.txb);
2945 packet->info.d_struct.txb = NULL;
2946
2947 list_add_tail(element, &priv->tx_free_list);
2948 INC_STAT(&priv->tx_free_stat);
2949
2950 /* We have a free slot in the Tx queue, so wake up the
2951 * transmit layer if it is stopped. */
2952 if (priv->status & STATUS_ASSOCIATED)
2953 netif_wake_queue(priv->net_dev);
2954
2955 /* A packet was processed by the hardware, so update the
2956 * watchdog */
2957 netif_trans_update(priv->net_dev);
2958
2959 break;
2960
2961 case COMMAND:
2962 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2964 "Expecting COMMAND TBD but pulled "
2965 "something else: ids %d=%d.\n",
2966 priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969 if (packet->info.c_struct.cmd->host_command_reg <
2970 ARRAY_SIZE(command_types))
2971 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972 command_types[packet->info.c_struct.cmd->
2973 host_command_reg],
2974 packet->info.c_struct.cmd->
2975 host_command_reg,
2976 packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979 list_add_tail(element, &priv->msg_free_list);
2980 INC_STAT(&priv->msg_free_stat);
2981 break;
2982 }
2983
2984 /* advance oldest used TBD pointer to start of next entry */
2985 txq->oldest = (e + 1) % txq->entries;
2986 /* increase available TBDs number */
2987 txq->available += descriptors_used;
2988 SET_STAT(&priv->txq_stat, txq->available);
2989
2990 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2991 jiffies - packet->jiffy_start);
2992
2993 return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998 int i = 0;
2999
3000 while (__ipw2100_tx_process(priv) && i < 200)
3001 i++;
3002
3003 if (i == 200) {
3004 printk(KERN_WARNING DRV_NAME ": "
3005 "%s: Driver is running slow (%d iters).\n",
3006 priv->net_dev->name, i);
3007 }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012 struct list_head *element;
3013 struct ipw2100_tx_packet *packet;
3014 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015 struct ipw2100_bd *tbd;
3016 int next = txq->next;
3017
3018 while (!list_empty(&priv->msg_pend_list)) {
3019 /* if there isn't enough space in TBD queue, then
3020 * don't stuff a new one in.
3021 * NOTE: 3 are needed as a command will take one,
3022 * and there is a minimum of 2 that must be
3023 * maintained between the r and w indexes
3024 */
3025 if (txq->available <= 3) {
3026 IPW_DEBUG_TX("no room in tx_queue\n");
3027 break;
3028 }
3029
3030 element = priv->msg_pend_list.next;
3031 list_del(element);
3032 DEC_STAT(&priv->msg_pend_stat);
3033
3034 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037 &txq->drv[txq->next],
3038 (u32) (txq->nic + txq->next *
3039 sizeof(struct ipw2100_bd)));
3040
3041 packet->index = txq->next;
3042
3043 tbd = &txq->drv[txq->next];
3044
3045 /* initialize TBD */
3046 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048 /* not marking number of fragments causes problems
3049 * with f/w debug version */
3050 tbd->num_fragments = 1;
3051 tbd->status.info.field =
3052 IPW_BD_STATUS_TX_FRAME_COMMAND |
3053 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055 /* update TBD queue counters */
3056 txq->next++;
3057 txq->next %= txq->entries;
3058 txq->available--;
3059 DEC_STAT(&priv->txq_stat);
3060
3061 list_add_tail(element, &priv->fw_pend_list);
3062 INC_STAT(&priv->fw_pend_stat);
3063 }
3064
3065 if (txq->next != next) {
3066 /* kick off the DMA by notifying firmware the
3067 * write index has moved; make sure TBD stores are sync'd */
3068 wmb();
3069 write_register(priv->net_dev,
3070 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071 txq->next);
3072 }
3073 }
3074
3075 /*
3076 * ipw2100_tx_send_data
3077 *
3078 */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081 struct list_head *element;
3082 struct ipw2100_tx_packet *packet;
3083 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084 struct ipw2100_bd *tbd;
3085 int next = txq->next;
3086 int i = 0;
3087 struct ipw2100_data_header *ipw_hdr;
3088 struct libipw_hdr_3addr *hdr;
3089
3090 while (!list_empty(&priv->tx_pend_list)) {
3091 /* if there isn't enough space in TBD queue, then
3092 * don't stuff a new one in.
3093 * NOTE: 4 are needed as a data will take two,
3094 * and there is a minimum of 2 that must be
3095 * maintained between the r and w indexes
3096 */
3097 element = priv->tx_pend_list.next;
3098 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101 IPW_MAX_BDS)) {
3102 /* TODO: Support merging buffers if more than
3103 * IPW_MAX_BDS are used */
3104 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3105 "Increase fragmentation level.\n",
3106 priv->net_dev->name);
3107 }
3108
3109 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110 IPW_DEBUG_TX("no room in tx_queue\n");
3111 break;
3112 }
3113
3114 list_del(element);
3115 DEC_STAT(&priv->tx_pend_stat);
3116
3117 tbd = &txq->drv[txq->next];
3118
3119 packet->index = txq->next;
3120
3121 ipw_hdr = packet->info.d_struct.data;
3122 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123 fragments[0]->data;
3124
3125 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126 /* To DS: Addr1 = BSSID, Addr2 = SA,
3127 Addr3 = DA */
3128 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132 Addr3 = BSSID */
3133 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135 }
3136
3137 ipw_hdr->host_command_reg = SEND;
3138 ipw_hdr->host_command_reg1 = 0;
3139
3140 /* For now we only support host based encryption */
3141 ipw_hdr->needs_encryption = 0;
3142 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143 if (packet->info.d_struct.txb->nr_frags > 1)
3144 ipw_hdr->fragment_size =
3145 packet->info.d_struct.txb->frag_size -
3146 LIBIPW_3ADDR_LEN;
3147 else
3148 ipw_hdr->fragment_size = 0;
3149
3150 tbd->host_addr = packet->info.d_struct.data_phys;
3151 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153 tbd->status.info.field =
3154 IPW_BD_STATUS_TX_FRAME_802_3 |
3155 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156 txq->next++;
3157 txq->next %= txq->entries;
3158
3159 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160 packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162 if (packet->info.d_struct.txb->nr_frags > 1)
3163 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164 packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168 tbd = &txq->drv[txq->next];
3169 if (i == packet->info.d_struct.txb->nr_frags - 1)
3170 tbd->status.info.field =
3171 IPW_BD_STATUS_TX_FRAME_802_3 |
3172 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173 else
3174 tbd->status.info.field =
3175 IPW_BD_STATUS_TX_FRAME_802_3 |
3176 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178 tbd->buf_length = packet->info.d_struct.txb->
3179 fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181 tbd->host_addr = pci_map_single(priv->pci_dev,
3182 packet->info.d_struct.
3183 txb->fragments[i]->
3184 data +
3185 LIBIPW_3ADDR_LEN,
3186 tbd->buf_length,
3187 PCI_DMA_TODEVICE);
3188 if (pci_dma_mapping_error(priv->pci_dev,
3189 tbd->host_addr)) {
3190 IPW_DEBUG_TX("dma mapping error\n");
3191 break;
3192 }
3193
3194 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195 txq->next, tbd->host_addr,
3196 tbd->buf_length);
3197
3198 pci_dma_sync_single_for_device(priv->pci_dev,
3199 tbd->host_addr,
3200 tbd->buf_length,
3201 PCI_DMA_TODEVICE);
3202
3203 txq->next++;
3204 txq->next %= txq->entries;
3205 }
3206
3207 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208 SET_STAT(&priv->txq_stat, txq->available);
3209
3210 list_add_tail(element, &priv->fw_pend_list);
3211 INC_STAT(&priv->fw_pend_stat);
3212 }
3213
3214 if (txq->next != next) {
3215 /* kick off the DMA by notifying firmware the
3216 * write index has moved; make sure TBD stores are sync'd */
3217 write_register(priv->net_dev,
3218 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219 txq->next);
3220 }
3221 }
3222
3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225 struct net_device *dev = priv->net_dev;
3226 unsigned long flags;
3227 u32 inta, tmp;
3228
3229 spin_lock_irqsave(&priv->low_lock, flags);
3230 ipw2100_disable_interrupts(priv);
3231
3232 read_register(dev, IPW_REG_INTA, &inta);
3233
3234 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235 (unsigned long)inta & IPW_INTERRUPT_MASK);
3236
3237 priv->in_isr++;
3238 priv->interrupts++;
3239
3240 /* We do not loop and keep polling for more interrupts as this
3241 * is frowned upon and doesn't play nicely with other potentially
3242 * chained IRQs */
3243 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244 (unsigned long)inta & IPW_INTERRUPT_MASK);
3245
3246 if (inta & IPW2100_INTA_FATAL_ERROR) {
3247 printk(KERN_WARNING DRV_NAME
3248 ": Fatal interrupt. Scheduling firmware restart.\n");
3249 priv->inta_other++;
3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251
3252 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254 priv->net_dev->name, priv->fatal_error);
3255
3256 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258 priv->net_dev->name, tmp);
3259
3260 /* Wake up any sleeping jobs */
3261 schedule_reset(priv);
3262 }
3263
3264 if (inta & IPW2100_INTA_PARITY_ERROR) {
3265 printk(KERN_ERR DRV_NAME
3266 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267 priv->inta_other++;
3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 }
3270
3271 if (inta & IPW2100_INTA_RX_TRANSFER) {
3272 IPW_DEBUG_ISR("RX interrupt\n");
3273
3274 priv->rx_interrupts++;
3275
3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277
3278 __ipw2100_rx_process(priv);
3279 __ipw2100_tx_complete(priv);
3280 }
3281
3282 if (inta & IPW2100_INTA_TX_TRANSFER) {
3283 IPW_DEBUG_ISR("TX interrupt\n");
3284
3285 priv->tx_interrupts++;
3286
3287 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288
3289 __ipw2100_tx_complete(priv);
3290 ipw2100_tx_send_commands(priv);
3291 ipw2100_tx_send_data(priv);
3292 }
3293
3294 if (inta & IPW2100_INTA_TX_COMPLETE) {
3295 IPW_DEBUG_ISR("TX complete\n");
3296 priv->inta_other++;
3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298
3299 __ipw2100_tx_complete(priv);
3300 }
3301
3302 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303 /* ipw2100_handle_event(dev); */
3304 priv->inta_other++;
3305 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 }
3307
3308 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309 IPW_DEBUG_ISR("FW init done interrupt\n");
3310 priv->inta_other++;
3311
3312 read_register(dev, IPW_REG_INTA, &tmp);
3313 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314 IPW2100_INTA_PARITY_ERROR)) {
3315 write_register(dev, IPW_REG_INTA,
3316 IPW2100_INTA_FATAL_ERROR |
3317 IPW2100_INTA_PARITY_ERROR);
3318 }
3319
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 }
3322
3323 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324 IPW_DEBUG_ISR("Status change interrupt\n");
3325 priv->inta_other++;
3326 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 }
3328
3329 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330 IPW_DEBUG_ISR("slave host mode interrupt\n");
3331 priv->inta_other++;
3332 write_register(dev, IPW_REG_INTA,
3333 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 }
3335
3336 priv->in_isr--;
3337 ipw2100_enable_interrupts(priv);
3338
3339 spin_unlock_irqrestore(&priv->low_lock, flags);
3340
3341 IPW_DEBUG_ISR("exit\n");
3342 }
3343
3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346 struct ipw2100_priv *priv = data;
3347 u32 inta, inta_mask;
3348
3349 if (!data)
3350 return IRQ_NONE;
3351
3352 spin_lock(&priv->low_lock);
3353
3354 /* We check to see if we should be ignoring interrupts before
3355 * we touch the hardware. During ucode load if we try and handle
3356 * an interrupt we can cause keyboard problems as well as cause
3357 * the ucode to fail to initialize */
3358 if (!(priv->status & STATUS_INT_ENABLED)) {
3359 /* Shared IRQ */
3360 goto none;
3361 }
3362
3363 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365
3366 if (inta == 0xFFFFFFFF) {
3367 /* Hardware disappeared */
3368 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369 goto none;
3370 }
3371
3372 inta &= IPW_INTERRUPT_MASK;
3373
3374 if (!(inta & inta_mask)) {
3375 /* Shared interrupt */
3376 goto none;
3377 }
3378
3379 /* We disable the hardware interrupt here just to prevent unneeded
3380 * calls to be made. We disable this again within the actual
3381 * work tasklet, so if another part of the code re-enables the
3382 * interrupt, that is fine */
3383 ipw2100_disable_interrupts(priv);
3384
3385 tasklet_schedule(&priv->irq_tasklet);
3386 spin_unlock(&priv->low_lock);
3387
3388 return IRQ_HANDLED;
3389 none:
3390 spin_unlock(&priv->low_lock);
3391 return IRQ_NONE;
3392 }
3393
3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395 struct net_device *dev, int pri)
3396 {
3397 struct ipw2100_priv *priv = libipw_priv(dev);
3398 struct list_head *element;
3399 struct ipw2100_tx_packet *packet;
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&priv->low_lock, flags);
3403
3404 if (!(priv->status & STATUS_ASSOCIATED)) {
3405 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406 priv->net_dev->stats.tx_carrier_errors++;
3407 netif_stop_queue(dev);
3408 goto fail_unlock;
3409 }
3410
3411 if (list_empty(&priv->tx_free_list))
3412 goto fail_unlock;
3413
3414 element = priv->tx_free_list.next;
3415 packet = list_entry(element, struct ipw2100_tx_packet, list);
3416
3417 packet->info.d_struct.txb = txb;
3418
3419 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421
3422 packet->jiffy_start = jiffies;
3423
3424 list_del(element);
3425 DEC_STAT(&priv->tx_free_stat);
3426
3427 list_add_tail(element, &priv->tx_pend_list);
3428 INC_STAT(&priv->tx_pend_stat);
3429
3430 ipw2100_tx_send_data(priv);
3431
3432 spin_unlock_irqrestore(&priv->low_lock, flags);
3433 return NETDEV_TX_OK;
3434
3435 fail_unlock:
3436 netif_stop_queue(dev);
3437 spin_unlock_irqrestore(&priv->low_lock, flags);
3438 return NETDEV_TX_BUSY;
3439 }
3440
3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443 int i, j, err = -EINVAL;
3444 void *v;
3445 dma_addr_t p;
3446
3447 priv->msg_buffers =
3448 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3449 GFP_KERNEL);
3450 if (!priv->msg_buffers)
3451 return -ENOMEM;
3452
3453 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3454 v = pci_zalloc_consistent(priv->pci_dev,
3455 sizeof(struct ipw2100_cmd_header),
3456 &p);
3457 if (!v) {
3458 printk(KERN_ERR DRV_NAME ": "
3459 "%s: PCI alloc failed for msg "
3460 "buffers.\n", priv->net_dev->name);
3461 err = -ENOMEM;
3462 break;
3463 }
3464
3465 priv->msg_buffers[i].type = COMMAND;
3466 priv->msg_buffers[i].info.c_struct.cmd =
3467 (struct ipw2100_cmd_header *)v;
3468 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3469 }
3470
3471 if (i == IPW_COMMAND_POOL_SIZE)
3472 return 0;
3473
3474 for (j = 0; j < i; j++) {
3475 pci_free_consistent(priv->pci_dev,
3476 sizeof(struct ipw2100_cmd_header),
3477 priv->msg_buffers[j].info.c_struct.cmd,
3478 priv->msg_buffers[j].info.c_struct.
3479 cmd_phys);
3480 }
3481
3482 kfree(priv->msg_buffers);
3483 priv->msg_buffers = NULL;
3484
3485 return err;
3486 }
3487
3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3489 {
3490 int i;
3491
3492 INIT_LIST_HEAD(&priv->msg_free_list);
3493 INIT_LIST_HEAD(&priv->msg_pend_list);
3494
3495 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3496 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3497 SET_STAT(&priv->msg_free_stat, i);
3498
3499 return 0;
3500 }
3501
3502 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3503 {
3504 int i;
3505
3506 if (!priv->msg_buffers)
3507 return;
3508
3509 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3510 pci_free_consistent(priv->pci_dev,
3511 sizeof(struct ipw2100_cmd_header),
3512 priv->msg_buffers[i].info.c_struct.cmd,
3513 priv->msg_buffers[i].info.c_struct.
3514 cmd_phys);
3515 }
3516
3517 kfree(priv->msg_buffers);
3518 priv->msg_buffers = NULL;
3519 }
3520
3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3522 char *buf)
3523 {
3524 struct pci_dev *pci_dev = to_pci_dev(d);
3525 char *out = buf;
3526 int i, j;
3527 u32 val;
3528
3529 for (i = 0; i < 16; i++) {
3530 out += sprintf(out, "[%08X] ", i * 16);
3531 for (j = 0; j < 16; j += 4) {
3532 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3533 out += sprintf(out, "%08X ", val);
3534 }
3535 out += sprintf(out, "\n");
3536 }
3537
3538 return out - buf;
3539 }
3540
3541 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3542
3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3544 char *buf)
3545 {
3546 struct ipw2100_priv *p = dev_get_drvdata(d);
3547 return sprintf(buf, "0x%08x\n", (int)p->config);
3548 }
3549
3550 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3551
3552 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3553 char *buf)
3554 {
3555 struct ipw2100_priv *p = dev_get_drvdata(d);
3556 return sprintf(buf, "0x%08x\n", (int)p->status);
3557 }
3558
3559 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3560
3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3562 char *buf)
3563 {
3564 struct ipw2100_priv *p = dev_get_drvdata(d);
3565 return sprintf(buf, "0x%08x\n", (int)p->capability);
3566 }
3567
3568 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3569
3570 #define IPW2100_REG(x) { IPW_ ##x, #x }
3571 static const struct {
3572 u32 addr;
3573 const char *name;
3574 } hw_data[] = {
3575 IPW2100_REG(REG_GP_CNTRL),
3576 IPW2100_REG(REG_GPIO),
3577 IPW2100_REG(REG_INTA),
3578 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3579 #define IPW2100_NIC(x, s) { x, #x, s }
3580 static const struct {
3581 u32 addr;
3582 const char *name;
3583 size_t size;
3584 } nic_data[] = {
3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3586 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3588 static const struct {
3589 u8 index;
3590 const char *name;
3591 const char *desc;
3592 } ord_data[] = {
3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3594 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3595 "successful Host Tx's (MSDU)"),
3596 IPW2100_ORD(STAT_TX_DIR_DATA,
3597 "successful Directed Tx's (MSDU)"),
3598 IPW2100_ORD(STAT_TX_DIR_DATA1,
3599 "successful Directed Tx's (MSDU) @ 1MB"),
3600 IPW2100_ORD(STAT_TX_DIR_DATA2,
3601 "successful Directed Tx's (MSDU) @ 2MB"),
3602 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3603 "successful Directed Tx's (MSDU) @ 5_5MB"),
3604 IPW2100_ORD(STAT_TX_DIR_DATA11,
3605 "successful Directed Tx's (MSDU) @ 11MB"),
3606 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3607 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3608 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3609 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3610 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3611 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3612 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3613 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3614 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3615 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3616 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3617 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3618 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3619 IPW2100_ORD(STAT_TX_ASSN_RESP,
3620 "successful Association response Tx's"),
3621 IPW2100_ORD(STAT_TX_REASSN,
3622 "successful Reassociation Tx's"),
3623 IPW2100_ORD(STAT_TX_REASSN_RESP,
3624 "successful Reassociation response Tx's"),
3625 IPW2100_ORD(STAT_TX_PROBE,
3626 "probes successfully transmitted"),
3627 IPW2100_ORD(STAT_TX_PROBE_RESP,
3628 "probe responses successfully transmitted"),
3629 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3630 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3631 IPW2100_ORD(STAT_TX_DISASSN,
3632 "successful Disassociation TX"),
3633 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3634 IPW2100_ORD(STAT_TX_DEAUTH,
3635 "successful Deauthentication TX"),
3636 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3637 "Total successful Tx data bytes"),
3638 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3639 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3640 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3641 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3642 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3643 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3644 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3645 "times max tries in a hop failed"),
3646 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3647 "times disassociation failed"),
3648 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3649 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3650 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3651 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3653 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3654 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3655 "directed packets at 5.5MB"),
3656 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3657 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3658 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3659 "nondirected packets at 1MB"),
3660 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3661 "nondirected packets at 2MB"),
3662 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3663 "nondirected packets at 5.5MB"),
3664 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3665 "nondirected packets at 11MB"),
3666 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3667 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3668 "Rx CTS"),
3669 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3670 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3671 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3672 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3673 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3674 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3675 IPW2100_ORD(STAT_RX_REASSN_RESP,
3676 "Reassociation response Rx's"),
3677 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3678 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3679 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3680 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3681 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3682 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3683 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3684 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3685 "Total rx data bytes received"),
3686 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3689 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3690 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3691 IPW2100_ORD(STAT_RX_DUPLICATE1,
3692 "duplicate rx packets at 1MB"),
3693 IPW2100_ORD(STAT_RX_DUPLICATE2,
3694 "duplicate rx packets at 2MB"),
3695 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3696 "duplicate rx packets at 5.5MB"),
3697 IPW2100_ORD(STAT_RX_DUPLICATE11,
3698 "duplicate rx packets at 11MB"),
3699 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3700 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3701 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3702 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3703 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3704 "rx frames with invalid protocol"),
3705 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3706 IPW2100_ORD(STAT_RX_NO_BUFFER,
3707 "rx frames rejected due to no buffer"),
3708 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3709 "rx frames dropped due to missing fragment"),
3710 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3711 "rx frames dropped due to non-sequential fragment"),
3712 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3713 "rx frames dropped due to unmatched 1st frame"),
3714 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3715 "rx frames dropped due to uncompleted frame"),
3716 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3717 "ICV errors during decryption"),
3718 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3719 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3720 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3721 "poll response timeouts"),
3722 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3723 "timeouts waiting for last {broad,multi}cast pkt"),
3724 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3725 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3726 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3727 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3728 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3729 "current calculation of % missed beacons"),
3730 IPW2100_ORD(STAT_PERCENT_RETRIES,
3731 "current calculation of % missed tx retries"),
3732 IPW2100_ORD(ASSOCIATED_AP_PTR,
3733 "0 if not associated, else pointer to AP table entry"),
3734 IPW2100_ORD(AVAILABLE_AP_CNT,
3735 "AP's decsribed in the AP table"),
3736 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3737 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3738 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3739 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3740 "failures due to response fail"),
3741 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3742 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3743 IPW2100_ORD(STAT_ROAM_INHIBIT,
3744 "times roaming was inhibited due to activity"),
3745 IPW2100_ORD(RSSI_AT_ASSN,
3746 "RSSI of associated AP at time of association"),
3747 IPW2100_ORD(STAT_ASSN_CAUSE1,
3748 "reassociation: no probe response or TX on hop"),
3749 IPW2100_ORD(STAT_ASSN_CAUSE2,
3750 "reassociation: poor tx/rx quality"),
3751 IPW2100_ORD(STAT_ASSN_CAUSE3,
3752 "reassociation: tx/rx quality (excessive AP load"),
3753 IPW2100_ORD(STAT_ASSN_CAUSE4,
3754 "reassociation: AP RSSI level"),
3755 IPW2100_ORD(STAT_ASSN_CAUSE5,
3756 "reassociations due to load leveling"),
3757 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3758 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3759 "times authentication response failed"),
3760 IPW2100_ORD(STATION_TABLE_CNT,
3761 "entries in association table"),
3762 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3763 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3764 IPW2100_ORD(COUNTRY_CODE,
3765 "IEEE country code as recv'd from beacon"),
3766 IPW2100_ORD(COUNTRY_CHANNELS,
3767 "channels supported by country"),
3768 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3769 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3770 IPW2100_ORD(ANTENNA_DIVERSITY,
3771 "TRUE if antenna diversity is disabled"),
3772 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3773 IPW2100_ORD(OUR_FREQ,
3774 "current radio freq lower digits - channel ID"),
3775 IPW2100_ORD(RTC_TIME, "current RTC time"),
3776 IPW2100_ORD(PORT_TYPE, "operating mode"),
3777 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3778 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3779 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3780 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3781 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3782 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3783 IPW2100_ORD(CAPABILITIES,
3784 "Management frame capability field"),
3785 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3786 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3787 IPW2100_ORD(RTS_THRESHOLD,
3788 "Min packet length for RTS handshaking"),
3789 IPW2100_ORD(INT_MODE, "International mode"),
3790 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3791 "protocol frag threshold"),
3792 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3793 "EEPROM offset in SRAM"),
3794 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3795 "EEPROM size in SRAM"),
3796 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3797 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3798 "EEPROM IBSS 11b channel set"),
3799 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3800 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3801 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3802 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3803 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3804
3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3806 char *buf)
3807 {
3808 int i;
3809 struct ipw2100_priv *priv = dev_get_drvdata(d);
3810 struct net_device *dev = priv->net_dev;
3811 char *out = buf;
3812 u32 val = 0;
3813
3814 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3815
3816 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3817 read_register(dev, hw_data[i].addr, &val);
3818 out += sprintf(out, "%30s [%08X] : %08X\n",
3819 hw_data[i].name, hw_data[i].addr, val);
3820 }
3821
3822 return out - buf;
3823 }
3824
3825 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3826
3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3828 char *buf)
3829 {
3830 struct ipw2100_priv *priv = dev_get_drvdata(d);
3831 struct net_device *dev = priv->net_dev;
3832 char *out = buf;
3833 int i;
3834
3835 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3836
3837 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3838 u8 tmp8;
3839 u16 tmp16;
3840 u32 tmp32;
3841
3842 switch (nic_data[i].size) {
3843 case 1:
3844 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3845 out += sprintf(out, "%30s [%08X] : %02X\n",
3846 nic_data[i].name, nic_data[i].addr,
3847 tmp8);
3848 break;
3849 case 2:
3850 read_nic_word(dev, nic_data[i].addr, &tmp16);
3851 out += sprintf(out, "%30s [%08X] : %04X\n",
3852 nic_data[i].name, nic_data[i].addr,
3853 tmp16);
3854 break;
3855 case 4:
3856 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3857 out += sprintf(out, "%30s [%08X] : %08X\n",
3858 nic_data[i].name, nic_data[i].addr,
3859 tmp32);
3860 break;
3861 }
3862 }
3863 return out - buf;
3864 }
3865
3866 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3867
3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3869 char *buf)
3870 {
3871 struct ipw2100_priv *priv = dev_get_drvdata(d);
3872 struct net_device *dev = priv->net_dev;
3873 static unsigned long loop = 0;
3874 int len = 0;
3875 u32 buffer[4];
3876 int i;
3877 char line[81];
3878
3879 if (loop >= 0x30000)
3880 loop = 0;
3881
3882 /* sysfs provides us PAGE_SIZE buffer */
3883 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3884
3885 if (priv->snapshot[0])
3886 for (i = 0; i < 4; i++)
3887 buffer[i] =
3888 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3889 else
3890 for (i = 0; i < 4; i++)
3891 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3892
3893 if (priv->dump_raw)
3894 len += sprintf(buf + len,
3895 "%c%c%c%c"
3896 "%c%c%c%c"
3897 "%c%c%c%c"
3898 "%c%c%c%c",
3899 ((u8 *) buffer)[0x0],
3900 ((u8 *) buffer)[0x1],
3901 ((u8 *) buffer)[0x2],
3902 ((u8 *) buffer)[0x3],
3903 ((u8 *) buffer)[0x4],
3904 ((u8 *) buffer)[0x5],
3905 ((u8 *) buffer)[0x6],
3906 ((u8 *) buffer)[0x7],
3907 ((u8 *) buffer)[0x8],
3908 ((u8 *) buffer)[0x9],
3909 ((u8 *) buffer)[0xa],
3910 ((u8 *) buffer)[0xb],
3911 ((u8 *) buffer)[0xc],
3912 ((u8 *) buffer)[0xd],
3913 ((u8 *) buffer)[0xe],
3914 ((u8 *) buffer)[0xf]);
3915 else
3916 len += sprintf(buf + len, "%s\n",
3917 snprint_line(line, sizeof(line),
3918 (u8 *) buffer, 16, loop));
3919 loop += 16;
3920 }
3921
3922 return len;
3923 }
3924
3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3926 const char *buf, size_t count)
3927 {
3928 struct ipw2100_priv *priv = dev_get_drvdata(d);
3929 struct net_device *dev = priv->net_dev;
3930 const char *p = buf;
3931
3932 (void)dev; /* kill unused-var warning for debug-only code */
3933
3934 if (count < 1)
3935 return count;
3936
3937 if (p[0] == '1' ||
3938 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3939 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3940 dev->name);
3941 priv->dump_raw = 1;
3942
3943 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3944 tolower(p[1]) == 'f')) {
3945 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3946 dev->name);
3947 priv->dump_raw = 0;
3948
3949 } else if (tolower(p[0]) == 'r') {
3950 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3951 ipw2100_snapshot_free(priv);
3952
3953 } else
3954 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3955 "reset = clear memory snapshot\n", dev->name);
3956
3957 return count;
3958 }
3959
3960 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3961
3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3963 char *buf)
3964 {
3965 struct ipw2100_priv *priv = dev_get_drvdata(d);
3966 u32 val = 0;
3967 int len = 0;
3968 u32 val_len;
3969 static int loop = 0;
3970
3971 if (priv->status & STATUS_RF_KILL_MASK)
3972 return 0;
3973
3974 if (loop >= ARRAY_SIZE(ord_data))
3975 loop = 0;
3976
3977 /* sysfs provides us PAGE_SIZE buffer */
3978 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3979 val_len = sizeof(u32);
3980
3981 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3982 &val_len))
3983 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3984 ord_data[loop].index,
3985 ord_data[loop].desc);
3986 else
3987 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3988 ord_data[loop].index, val,
3989 ord_data[loop].desc);
3990 loop++;
3991 }
3992
3993 return len;
3994 }
3995
3996 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3997
3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3999 char *buf)
4000 {
4001 struct ipw2100_priv *priv = dev_get_drvdata(d);
4002 char *out = buf;
4003
4004 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4005 priv->interrupts, priv->tx_interrupts,
4006 priv->rx_interrupts, priv->inta_other);
4007 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4008 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4009 #ifdef CONFIG_IPW2100_DEBUG
4010 out += sprintf(out, "packet mismatch image: %s\n",
4011 priv->snapshot[0] ? "YES" : "NO");
4012 #endif
4013
4014 return out - buf;
4015 }
4016
4017 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4018
4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4020 {
4021 int err;
4022
4023 if (mode == priv->ieee->iw_mode)
4024 return 0;
4025
4026 err = ipw2100_disable_adapter(priv);
4027 if (err) {
4028 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4029 priv->net_dev->name, err);
4030 return err;
4031 }
4032
4033 switch (mode) {
4034 case IW_MODE_INFRA:
4035 priv->net_dev->type = ARPHRD_ETHER;
4036 break;
4037 case IW_MODE_ADHOC:
4038 priv->net_dev->type = ARPHRD_ETHER;
4039 break;
4040 #ifdef CONFIG_IPW2100_MONITOR
4041 case IW_MODE_MONITOR:
4042 priv->last_mode = priv->ieee->iw_mode;
4043 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4044 break;
4045 #endif /* CONFIG_IPW2100_MONITOR */
4046 }
4047
4048 priv->ieee->iw_mode = mode;
4049
4050 #ifdef CONFIG_PM
4051 /* Indicate ipw2100_download_firmware download firmware
4052 * from disk instead of memory. */
4053 ipw2100_firmware.version = 0;
4054 #endif
4055
4056 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4057 priv->reset_backoff = 0;
4058 schedule_reset(priv);
4059
4060 return 0;
4061 }
4062
4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4064 char *buf)
4065 {
4066 struct ipw2100_priv *priv = dev_get_drvdata(d);
4067 int len = 0;
4068
4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4070
4071 if (priv->status & STATUS_ASSOCIATED)
4072 len += sprintf(buf + len, "connected: %lu\n",
4073 get_seconds() - priv->connect_start);
4074 else
4075 len += sprintf(buf + len, "not connected\n");
4076
4077 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4078 DUMP_VAR(status, "08lx");
4079 DUMP_VAR(config, "08lx");
4080 DUMP_VAR(capability, "08lx");
4081
4082 len +=
4083 sprintf(buf + len, "last_rtc: %lu\n",
4084 (unsigned long)priv->last_rtc);
4085
4086 DUMP_VAR(fatal_error, "d");
4087 DUMP_VAR(stop_hang_check, "d");
4088 DUMP_VAR(stop_rf_kill, "d");
4089 DUMP_VAR(messages_sent, "d");
4090
4091 DUMP_VAR(tx_pend_stat.value, "d");
4092 DUMP_VAR(tx_pend_stat.hi, "d");
4093
4094 DUMP_VAR(tx_free_stat.value, "d");
4095 DUMP_VAR(tx_free_stat.lo, "d");
4096
4097 DUMP_VAR(msg_free_stat.value, "d");
4098 DUMP_VAR(msg_free_stat.lo, "d");
4099
4100 DUMP_VAR(msg_pend_stat.value, "d");
4101 DUMP_VAR(msg_pend_stat.hi, "d");
4102
4103 DUMP_VAR(fw_pend_stat.value, "d");
4104 DUMP_VAR(fw_pend_stat.hi, "d");
4105
4106 DUMP_VAR(txq_stat.value, "d");
4107 DUMP_VAR(txq_stat.lo, "d");
4108
4109 DUMP_VAR(ieee->scans, "d");
4110 DUMP_VAR(reset_backoff, "d");
4111
4112 return len;
4113 }
4114
4115 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4116
4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4118 char *buf)
4119 {
4120 struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 char essid[IW_ESSID_MAX_SIZE + 1];
4122 u8 bssid[ETH_ALEN];
4123 u32 chan = 0;
4124 char *out = buf;
4125 unsigned int length;
4126 int ret;
4127
4128 if (priv->status & STATUS_RF_KILL_MASK)
4129 return 0;
4130
4131 memset(essid, 0, sizeof(essid));
4132 memset(bssid, 0, sizeof(bssid));
4133
4134 length = IW_ESSID_MAX_SIZE;
4135 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4136 if (ret)
4137 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138 __LINE__);
4139
4140 length = sizeof(bssid);
4141 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4142 bssid, &length);
4143 if (ret)
4144 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145 __LINE__);
4146
4147 length = sizeof(u32);
4148 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4149 if (ret)
4150 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4151 __LINE__);
4152
4153 out += sprintf(out, "ESSID: %s\n", essid);
4154 out += sprintf(out, "BSSID: %pM\n", bssid);
4155 out += sprintf(out, "Channel: %d\n", chan);
4156
4157 return out - buf;
4158 }
4159
4160 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4161
4162 #ifdef CONFIG_IPW2100_DEBUG
4163 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4164 {
4165 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4166 }
4167
4168 static ssize_t store_debug_level(struct device_driver *d,
4169 const char *buf, size_t count)
4170 {
4171 u32 val;
4172 int ret;
4173
4174 ret = kstrtou32(buf, 0, &val);
4175 if (ret)
4176 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4177 else
4178 ipw2100_debug_level = val;
4179
4180 return strnlen(buf, count);
4181 }
4182
4183 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4184 store_debug_level);
4185 #endif /* CONFIG_IPW2100_DEBUG */
4186
4187 static ssize_t show_fatal_error(struct device *d,
4188 struct device_attribute *attr, char *buf)
4189 {
4190 struct ipw2100_priv *priv = dev_get_drvdata(d);
4191 char *out = buf;
4192 int i;
4193
4194 if (priv->fatal_error)
4195 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4196 else
4197 out += sprintf(out, "0\n");
4198
4199 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4200 if (!priv->fatal_errors[(priv->fatal_index - i) %
4201 IPW2100_ERROR_QUEUE])
4202 continue;
4203
4204 out += sprintf(out, "%d. 0x%08X\n", i,
4205 priv->fatal_errors[(priv->fatal_index - i) %
4206 IPW2100_ERROR_QUEUE]);
4207 }
4208
4209 return out - buf;
4210 }
4211
4212 static ssize_t store_fatal_error(struct device *d,
4213 struct device_attribute *attr, const char *buf,
4214 size_t count)
4215 {
4216 struct ipw2100_priv *priv = dev_get_drvdata(d);
4217 schedule_reset(priv);
4218 return count;
4219 }
4220
4221 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4222 store_fatal_error);
4223
4224 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4225 char *buf)
4226 {
4227 struct ipw2100_priv *priv = dev_get_drvdata(d);
4228 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4229 }
4230
4231 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4232 const char *buf, size_t count)
4233 {
4234 struct ipw2100_priv *priv = dev_get_drvdata(d);
4235 struct net_device *dev = priv->net_dev;
4236 unsigned long val;
4237 int ret;
4238
4239 (void)dev; /* kill unused-var warning for debug-only code */
4240
4241 IPW_DEBUG_INFO("enter\n");
4242
4243 ret = kstrtoul(buf, 0, &val);
4244 if (ret) {
4245 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4246 } else {
4247 priv->ieee->scan_age = val;
4248 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4249 }
4250
4251 IPW_DEBUG_INFO("exit\n");
4252 return strnlen(buf, count);
4253 }
4254
4255 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4256
4257 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4258 char *buf)
4259 {
4260 /* 0 - RF kill not enabled
4261 1 - SW based RF kill active (sysfs)
4262 2 - HW based RF kill active
4263 3 - Both HW and SW baed RF kill active */
4264 struct ipw2100_priv *priv = dev_get_drvdata(d);
4265 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4266 (rf_kill_active(priv) ? 0x2 : 0x0);
4267 return sprintf(buf, "%i\n", val);
4268 }
4269
4270 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4271 {
4272 if ((disable_radio ? 1 : 0) ==
4273 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4274 return 0;
4275
4276 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4277 disable_radio ? "OFF" : "ON");
4278
4279 mutex_lock(&priv->action_mutex);
4280
4281 if (disable_radio) {
4282 priv->status |= STATUS_RF_KILL_SW;
4283 ipw2100_down(priv);
4284 } else {
4285 priv->status &= ~STATUS_RF_KILL_SW;
4286 if (rf_kill_active(priv)) {
4287 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4288 "disabled by HW switch\n");
4289 /* Make sure the RF_KILL check timer is running */
4290 priv->stop_rf_kill = 0;
4291 mod_delayed_work(system_wq, &priv->rf_kill,
4292 round_jiffies_relative(HZ));
4293 } else
4294 schedule_reset(priv);
4295 }
4296
4297 mutex_unlock(&priv->action_mutex);
4298 return 1;
4299 }
4300
4301 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4302 const char *buf, size_t count)
4303 {
4304 struct ipw2100_priv *priv = dev_get_drvdata(d);
4305 ipw_radio_kill_sw(priv, buf[0] == '1');
4306 return count;
4307 }
4308
4309 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4310
4311 static struct attribute *ipw2100_sysfs_entries[] = {
4312 &dev_attr_hardware.attr,
4313 &dev_attr_registers.attr,
4314 &dev_attr_ordinals.attr,
4315 &dev_attr_pci.attr,
4316 &dev_attr_stats.attr,
4317 &dev_attr_internals.attr,
4318 &dev_attr_bssinfo.attr,
4319 &dev_attr_memory.attr,
4320 &dev_attr_scan_age.attr,
4321 &dev_attr_fatal_error.attr,
4322 &dev_attr_rf_kill.attr,
4323 &dev_attr_cfg.attr,
4324 &dev_attr_status.attr,
4325 &dev_attr_capability.attr,
4326 NULL,
4327 };
4328
4329 static struct attribute_group ipw2100_attribute_group = {
4330 .attrs = ipw2100_sysfs_entries,
4331 };
4332
4333 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4334 {
4335 struct ipw2100_status_queue *q = &priv->status_queue;
4336
4337 IPW_DEBUG_INFO("enter\n");
4338
4339 q->size = entries * sizeof(struct ipw2100_status);
4340 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4341 if (!q->drv) {
4342 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4343 return -ENOMEM;
4344 }
4345
4346 IPW_DEBUG_INFO("exit\n");
4347
4348 return 0;
4349 }
4350
4351 static void status_queue_free(struct ipw2100_priv *priv)
4352 {
4353 IPW_DEBUG_INFO("enter\n");
4354
4355 if (priv->status_queue.drv) {
4356 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4357 priv->status_queue.drv,
4358 priv->status_queue.nic);
4359 priv->status_queue.drv = NULL;
4360 }
4361
4362 IPW_DEBUG_INFO("exit\n");
4363 }
4364
4365 static int bd_queue_allocate(struct ipw2100_priv *priv,
4366 struct ipw2100_bd_queue *q, int entries)
4367 {
4368 IPW_DEBUG_INFO("enter\n");
4369
4370 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4371
4372 q->entries = entries;
4373 q->size = entries * sizeof(struct ipw2100_bd);
4374 q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4375 if (!q->drv) {
4376 IPW_DEBUG_INFO
4377 ("can't allocate shared memory for buffer descriptors\n");
4378 return -ENOMEM;
4379 }
4380
4381 IPW_DEBUG_INFO("exit\n");
4382
4383 return 0;
4384 }
4385
4386 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4387 {
4388 IPW_DEBUG_INFO("enter\n");
4389
4390 if (!q)
4391 return;
4392
4393 if (q->drv) {
4394 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4395 q->drv = NULL;
4396 }
4397
4398 IPW_DEBUG_INFO("exit\n");
4399 }
4400
4401 static void bd_queue_initialize(struct ipw2100_priv *priv,
4402 struct ipw2100_bd_queue *q, u32 base, u32 size,
4403 u32 r, u32 w)
4404 {
4405 IPW_DEBUG_INFO("enter\n");
4406
4407 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4408 (u32) q->nic);
4409
4410 write_register(priv->net_dev, base, q->nic);
4411 write_register(priv->net_dev, size, q->entries);
4412 write_register(priv->net_dev, r, q->oldest);
4413 write_register(priv->net_dev, w, q->next);
4414
4415 IPW_DEBUG_INFO("exit\n");
4416 }
4417
4418 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4419 {
4420 priv->stop_rf_kill = 1;
4421 priv->stop_hang_check = 1;
4422 cancel_delayed_work_sync(&priv->reset_work);
4423 cancel_delayed_work_sync(&priv->security_work);
4424 cancel_delayed_work_sync(&priv->wx_event_work);
4425 cancel_delayed_work_sync(&priv->hang_check);
4426 cancel_delayed_work_sync(&priv->rf_kill);
4427 cancel_delayed_work_sync(&priv->scan_event);
4428 }
4429
4430 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4431 {
4432 int i, j, err = -EINVAL;
4433 void *v;
4434 dma_addr_t p;
4435
4436 IPW_DEBUG_INFO("enter\n");
4437
4438 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4439 if (err) {
4440 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4441 priv->net_dev->name);
4442 return err;
4443 }
4444
4445 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4446 sizeof(struct ipw2100_tx_packet),
4447 GFP_ATOMIC);
4448 if (!priv->tx_buffers) {
4449 bd_queue_free(priv, &priv->tx_queue);
4450 return -ENOMEM;
4451 }
4452
4453 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4454 v = pci_alloc_consistent(priv->pci_dev,
4455 sizeof(struct ipw2100_data_header),
4456 &p);
4457 if (!v) {
4458 printk(KERN_ERR DRV_NAME
4459 ": %s: PCI alloc failed for tx " "buffers.\n",
4460 priv->net_dev->name);
4461 err = -ENOMEM;
4462 break;
4463 }
4464
4465 priv->tx_buffers[i].type = DATA;
4466 priv->tx_buffers[i].info.d_struct.data =
4467 (struct ipw2100_data_header *)v;
4468 priv->tx_buffers[i].info.d_struct.data_phys = p;
4469 priv->tx_buffers[i].info.d_struct.txb = NULL;
4470 }
4471
4472 if (i == TX_PENDED_QUEUE_LENGTH)
4473 return 0;
4474
4475 for (j = 0; j < i; j++) {
4476 pci_free_consistent(priv->pci_dev,
4477 sizeof(struct ipw2100_data_header),
4478 priv->tx_buffers[j].info.d_struct.data,
4479 priv->tx_buffers[j].info.d_struct.
4480 data_phys);
4481 }
4482
4483 kfree(priv->tx_buffers);
4484 priv->tx_buffers = NULL;
4485
4486 return err;
4487 }
4488
4489 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4490 {
4491 int i;
4492
4493 IPW_DEBUG_INFO("enter\n");
4494
4495 /*
4496 * reinitialize packet info lists
4497 */
4498 INIT_LIST_HEAD(&priv->fw_pend_list);
4499 INIT_STAT(&priv->fw_pend_stat);
4500
4501 /*
4502 * reinitialize lists
4503 */
4504 INIT_LIST_HEAD(&priv->tx_pend_list);
4505 INIT_LIST_HEAD(&priv->tx_free_list);
4506 INIT_STAT(&priv->tx_pend_stat);
4507 INIT_STAT(&priv->tx_free_stat);
4508
4509 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510 /* We simply drop any SKBs that have been queued for
4511 * transmit */
4512 if (priv->tx_buffers[i].info.d_struct.txb) {
4513 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4514 txb);
4515 priv->tx_buffers[i].info.d_struct.txb = NULL;
4516 }
4517
4518 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4519 }
4520
4521 SET_STAT(&priv->tx_free_stat, i);
4522
4523 priv->tx_queue.oldest = 0;
4524 priv->tx_queue.available = priv->tx_queue.entries;
4525 priv->tx_queue.next = 0;
4526 INIT_STAT(&priv->txq_stat);
4527 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4528
4529 bd_queue_initialize(priv, &priv->tx_queue,
4530 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4531 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4532 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4533 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4534
4535 IPW_DEBUG_INFO("exit\n");
4536
4537 }
4538
4539 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4540 {
4541 int i;
4542
4543 IPW_DEBUG_INFO("enter\n");
4544
4545 bd_queue_free(priv, &priv->tx_queue);
4546
4547 if (!priv->tx_buffers)
4548 return;
4549
4550 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4551 if (priv->tx_buffers[i].info.d_struct.txb) {
4552 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4553 txb);
4554 priv->tx_buffers[i].info.d_struct.txb = NULL;
4555 }
4556 if (priv->tx_buffers[i].info.d_struct.data)
4557 pci_free_consistent(priv->pci_dev,
4558 sizeof(struct ipw2100_data_header),
4559 priv->tx_buffers[i].info.d_struct.
4560 data,
4561 priv->tx_buffers[i].info.d_struct.
4562 data_phys);
4563 }
4564
4565 kfree(priv->tx_buffers);
4566 priv->tx_buffers = NULL;
4567
4568 IPW_DEBUG_INFO("exit\n");
4569 }
4570
4571 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4572 {
4573 int i, j, err = -EINVAL;
4574
4575 IPW_DEBUG_INFO("enter\n");
4576
4577 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4578 if (err) {
4579 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4580 return err;
4581 }
4582
4583 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4584 if (err) {
4585 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4586 bd_queue_free(priv, &priv->rx_queue);
4587 return err;
4588 }
4589
4590 /*
4591 * allocate packets
4592 */
4593 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4594 sizeof(struct ipw2100_rx_packet),
4595 GFP_KERNEL);
4596 if (!priv->rx_buffers) {
4597 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4598
4599 bd_queue_free(priv, &priv->rx_queue);
4600
4601 status_queue_free(priv);
4602
4603 return -ENOMEM;
4604 }
4605
4606 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4607 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4608
4609 err = ipw2100_alloc_skb(priv, packet);
4610 if (unlikely(err)) {
4611 err = -ENOMEM;
4612 break;
4613 }
4614
4615 /* The BD holds the cache aligned address */
4616 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4617 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4618 priv->status_queue.drv[i].status_fields = 0;
4619 }
4620
4621 if (i == RX_QUEUE_LENGTH)
4622 return 0;
4623
4624 for (j = 0; j < i; j++) {
4625 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4626 sizeof(struct ipw2100_rx_packet),
4627 PCI_DMA_FROMDEVICE);
4628 dev_kfree_skb(priv->rx_buffers[j].skb);
4629 }
4630
4631 kfree(priv->rx_buffers);
4632 priv->rx_buffers = NULL;
4633
4634 bd_queue_free(priv, &priv->rx_queue);
4635
4636 status_queue_free(priv);
4637
4638 return err;
4639 }
4640
4641 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4642 {
4643 IPW_DEBUG_INFO("enter\n");
4644
4645 priv->rx_queue.oldest = 0;
4646 priv->rx_queue.available = priv->rx_queue.entries - 1;
4647 priv->rx_queue.next = priv->rx_queue.entries - 1;
4648
4649 INIT_STAT(&priv->rxq_stat);
4650 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4651
4652 bd_queue_initialize(priv, &priv->rx_queue,
4653 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4654 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4655 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4656 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4657
4658 /* set up the status queue */
4659 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4660 priv->status_queue.nic);
4661
4662 IPW_DEBUG_INFO("exit\n");
4663 }
4664
4665 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4666 {
4667 int i;
4668
4669 IPW_DEBUG_INFO("enter\n");
4670
4671 bd_queue_free(priv, &priv->rx_queue);
4672 status_queue_free(priv);
4673
4674 if (!priv->rx_buffers)
4675 return;
4676
4677 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4678 if (priv->rx_buffers[i].rxp) {
4679 pci_unmap_single(priv->pci_dev,
4680 priv->rx_buffers[i].dma_addr,
4681 sizeof(struct ipw2100_rx),
4682 PCI_DMA_FROMDEVICE);
4683 dev_kfree_skb(priv->rx_buffers[i].skb);
4684 }
4685 }
4686
4687 kfree(priv->rx_buffers);
4688 priv->rx_buffers = NULL;
4689
4690 IPW_DEBUG_INFO("exit\n");
4691 }
4692
4693 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4694 {
4695 u32 length = ETH_ALEN;
4696 u8 addr[ETH_ALEN];
4697
4698 int err;
4699
4700 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4701 if (err) {
4702 IPW_DEBUG_INFO("MAC address read failed\n");
4703 return -EIO;
4704 }
4705
4706 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4707 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4708
4709 return 0;
4710 }
4711
4712 /********************************************************************
4713 *
4714 * Firmware Commands
4715 *
4716 ********************************************************************/
4717
4718 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4719 {
4720 struct host_command cmd = {
4721 .host_command = ADAPTER_ADDRESS,
4722 .host_command_sequence = 0,
4723 .host_command_length = ETH_ALEN
4724 };
4725 int err;
4726
4727 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4728
4729 IPW_DEBUG_INFO("enter\n");
4730
4731 if (priv->config & CFG_CUSTOM_MAC) {
4732 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4733 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4734 } else
4735 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4736 ETH_ALEN);
4737
4738 err = ipw2100_hw_send_command(priv, &cmd);
4739
4740 IPW_DEBUG_INFO("exit\n");
4741 return err;
4742 }
4743
4744 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4745 int batch_mode)
4746 {
4747 struct host_command cmd = {
4748 .host_command = PORT_TYPE,
4749 .host_command_sequence = 0,
4750 .host_command_length = sizeof(u32)
4751 };
4752 int err;
4753
4754 switch (port_type) {
4755 case IW_MODE_INFRA:
4756 cmd.host_command_parameters[0] = IPW_BSS;
4757 break;
4758 case IW_MODE_ADHOC:
4759 cmd.host_command_parameters[0] = IPW_IBSS;
4760 break;
4761 }
4762
4763 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4764 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4765
4766 if (!batch_mode) {
4767 err = ipw2100_disable_adapter(priv);
4768 if (err) {
4769 printk(KERN_ERR DRV_NAME
4770 ": %s: Could not disable adapter %d\n",
4771 priv->net_dev->name, err);
4772 return err;
4773 }
4774 }
4775
4776 /* send cmd to firmware */
4777 err = ipw2100_hw_send_command(priv, &cmd);
4778
4779 if (!batch_mode)
4780 ipw2100_enable_adapter(priv);
4781
4782 return err;
4783 }
4784
4785 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4786 int batch_mode)
4787 {
4788 struct host_command cmd = {
4789 .host_command = CHANNEL,
4790 .host_command_sequence = 0,
4791 .host_command_length = sizeof(u32)
4792 };
4793 int err;
4794
4795 cmd.host_command_parameters[0] = channel;
4796
4797 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4798
4799 /* If BSS then we don't support channel selection */
4800 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4801 return 0;
4802
4803 if ((channel != 0) &&
4804 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4805 return -EINVAL;
4806
4807 if (!batch_mode) {
4808 err = ipw2100_disable_adapter(priv);
4809 if (err)
4810 return err;
4811 }
4812
4813 err = ipw2100_hw_send_command(priv, &cmd);
4814 if (err) {
4815 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4816 return err;
4817 }
4818
4819 if (channel)
4820 priv->config |= CFG_STATIC_CHANNEL;
4821 else
4822 priv->config &= ~CFG_STATIC_CHANNEL;
4823
4824 priv->channel = channel;
4825
4826 if (!batch_mode) {
4827 err = ipw2100_enable_adapter(priv);
4828 if (err)
4829 return err;
4830 }
4831
4832 return 0;
4833 }
4834
4835 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4836 {
4837 struct host_command cmd = {
4838 .host_command = SYSTEM_CONFIG,
4839 .host_command_sequence = 0,
4840 .host_command_length = 12,
4841 };
4842 u32 ibss_mask, len = sizeof(u32);
4843 int err;
4844
4845 /* Set system configuration */
4846
4847 if (!batch_mode) {
4848 err = ipw2100_disable_adapter(priv);
4849 if (err)
4850 return err;
4851 }
4852
4853 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4854 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4855
4856 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4857 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4858
4859 if (!(priv->config & CFG_LONG_PREAMBLE))
4860 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4861
4862 err = ipw2100_get_ordinal(priv,
4863 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4864 &ibss_mask, &len);
4865 if (err)
4866 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4867
4868 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4869 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4870
4871 /* 11b only */
4872 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4873
4874 err = ipw2100_hw_send_command(priv, &cmd);
4875 if (err)
4876 return err;
4877
4878 /* If IPv6 is configured in the kernel then we don't want to filter out all
4879 * of the multicast packets as IPv6 needs some. */
4880 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4881 cmd.host_command = ADD_MULTICAST;
4882 cmd.host_command_sequence = 0;
4883 cmd.host_command_length = 0;
4884
4885 ipw2100_hw_send_command(priv, &cmd);
4886 #endif
4887 if (!batch_mode) {
4888 err = ipw2100_enable_adapter(priv);
4889 if (err)
4890 return err;
4891 }
4892
4893 return 0;
4894 }
4895
4896 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4897 int batch_mode)
4898 {
4899 struct host_command cmd = {
4900 .host_command = BASIC_TX_RATES,
4901 .host_command_sequence = 0,
4902 .host_command_length = 4
4903 };
4904 int err;
4905
4906 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4907
4908 if (!batch_mode) {
4909 err = ipw2100_disable_adapter(priv);
4910 if (err)
4911 return err;
4912 }
4913
4914 /* Set BASIC TX Rate first */
4915 ipw2100_hw_send_command(priv, &cmd);
4916
4917 /* Set TX Rate */
4918 cmd.host_command = TX_RATES;
4919 ipw2100_hw_send_command(priv, &cmd);
4920
4921 /* Set MSDU TX Rate */
4922 cmd.host_command = MSDU_TX_RATES;
4923 ipw2100_hw_send_command(priv, &cmd);
4924
4925 if (!batch_mode) {
4926 err = ipw2100_enable_adapter(priv);
4927 if (err)
4928 return err;
4929 }
4930
4931 priv->tx_rates = rate;
4932
4933 return 0;
4934 }
4935
4936 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4937 {
4938 struct host_command cmd = {
4939 .host_command = POWER_MODE,
4940 .host_command_sequence = 0,
4941 .host_command_length = 4
4942 };
4943 int err;
4944
4945 cmd.host_command_parameters[0] = power_level;
4946
4947 err = ipw2100_hw_send_command(priv, &cmd);
4948 if (err)
4949 return err;
4950
4951 if (power_level == IPW_POWER_MODE_CAM)
4952 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4953 else
4954 priv->power_mode = IPW_POWER_ENABLED | power_level;
4955
4956 #ifdef IPW2100_TX_POWER
4957 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4958 /* Set beacon interval */
4959 cmd.host_command = TX_POWER_INDEX;
4960 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4961
4962 err = ipw2100_hw_send_command(priv, &cmd);
4963 if (err)
4964 return err;
4965 }
4966 #endif
4967
4968 return 0;
4969 }
4970
4971 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4972 {
4973 struct host_command cmd = {
4974 .host_command = RTS_THRESHOLD,
4975 .host_command_sequence = 0,
4976 .host_command_length = 4
4977 };
4978 int err;
4979
4980 if (threshold & RTS_DISABLED)
4981 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4982 else
4983 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4984
4985 err = ipw2100_hw_send_command(priv, &cmd);
4986 if (err)
4987 return err;
4988
4989 priv->rts_threshold = threshold;
4990
4991 return 0;
4992 }
4993
4994 #if 0
4995 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4996 u32 threshold, int batch_mode)
4997 {
4998 struct host_command cmd = {
4999 .host_command = FRAG_THRESHOLD,
5000 .host_command_sequence = 0,
5001 .host_command_length = 4,
5002 .host_command_parameters[0] = 0,
5003 };
5004 int err;
5005
5006 if (!batch_mode) {
5007 err = ipw2100_disable_adapter(priv);
5008 if (err)
5009 return err;
5010 }
5011
5012 if (threshold == 0)
5013 threshold = DEFAULT_FRAG_THRESHOLD;
5014 else {
5015 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5016 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5017 }
5018
5019 cmd.host_command_parameters[0] = threshold;
5020
5021 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5022
5023 err = ipw2100_hw_send_command(priv, &cmd);
5024
5025 if (!batch_mode)
5026 ipw2100_enable_adapter(priv);
5027
5028 if (!err)
5029 priv->frag_threshold = threshold;
5030
5031 return err;
5032 }
5033 #endif
5034
5035 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5036 {
5037 struct host_command cmd = {
5038 .host_command = SHORT_RETRY_LIMIT,
5039 .host_command_sequence = 0,
5040 .host_command_length = 4
5041 };
5042 int err;
5043
5044 cmd.host_command_parameters[0] = retry;
5045
5046 err = ipw2100_hw_send_command(priv, &cmd);
5047 if (err)
5048 return err;
5049
5050 priv->short_retry_limit = retry;
5051
5052 return 0;
5053 }
5054
5055 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5056 {
5057 struct host_command cmd = {
5058 .host_command = LONG_RETRY_LIMIT,
5059 .host_command_sequence = 0,
5060 .host_command_length = 4
5061 };
5062 int err;
5063
5064 cmd.host_command_parameters[0] = retry;
5065
5066 err = ipw2100_hw_send_command(priv, &cmd);
5067 if (err)
5068 return err;
5069
5070 priv->long_retry_limit = retry;
5071
5072 return 0;
5073 }
5074
5075 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5076 int batch_mode)
5077 {
5078 struct host_command cmd = {
5079 .host_command = MANDATORY_BSSID,
5080 .host_command_sequence = 0,
5081 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5082 };
5083 int err;
5084
5085 #ifdef CONFIG_IPW2100_DEBUG
5086 if (bssid != NULL)
5087 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5088 else
5089 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5090 #endif
5091 /* if BSSID is empty then we disable mandatory bssid mode */
5092 if (bssid != NULL)
5093 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5094
5095 if (!batch_mode) {
5096 err = ipw2100_disable_adapter(priv);
5097 if (err)
5098 return err;
5099 }
5100
5101 err = ipw2100_hw_send_command(priv, &cmd);
5102
5103 if (!batch_mode)
5104 ipw2100_enable_adapter(priv);
5105
5106 return err;
5107 }
5108
5109 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5110 {
5111 struct host_command cmd = {
5112 .host_command = DISASSOCIATION_BSSID,
5113 .host_command_sequence = 0,
5114 .host_command_length = ETH_ALEN
5115 };
5116 int err;
5117 int len;
5118
5119 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5120
5121 len = ETH_ALEN;
5122 /* The Firmware currently ignores the BSSID and just disassociates from
5123 * the currently associated AP -- but in the off chance that a future
5124 * firmware does use the BSSID provided here, we go ahead and try and
5125 * set it to the currently associated AP's BSSID */
5126 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5127
5128 err = ipw2100_hw_send_command(priv, &cmd);
5129
5130 return err;
5131 }
5132
5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5134 struct ipw2100_wpa_assoc_frame *, int)
5135 __attribute__ ((unused));
5136
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5138 struct ipw2100_wpa_assoc_frame *wpa_frame,
5139 int batch_mode)
5140 {
5141 struct host_command cmd = {
5142 .host_command = SET_WPA_IE,
5143 .host_command_sequence = 0,
5144 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5145 };
5146 int err;
5147
5148 IPW_DEBUG_HC("SET_WPA_IE\n");
5149
5150 if (!batch_mode) {
5151 err = ipw2100_disable_adapter(priv);
5152 if (err)
5153 return err;
5154 }
5155
5156 memcpy(cmd.host_command_parameters, wpa_frame,
5157 sizeof(struct ipw2100_wpa_assoc_frame));
5158
5159 err = ipw2100_hw_send_command(priv, &cmd);
5160
5161 if (!batch_mode) {
5162 if (ipw2100_enable_adapter(priv))
5163 err = -EIO;
5164 }
5165
5166 return err;
5167 }
5168
5169 struct security_info_params {
5170 u32 allowed_ciphers;
5171 u16 version;
5172 u8 auth_mode;
5173 u8 replay_counters_number;
5174 u8 unicast_using_group;
5175 } __packed;
5176
5177 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5178 int auth_mode,
5179 int security_level,
5180 int unicast_using_group,
5181 int batch_mode)
5182 {
5183 struct host_command cmd = {
5184 .host_command = SET_SECURITY_INFORMATION,
5185 .host_command_sequence = 0,
5186 .host_command_length = sizeof(struct security_info_params)
5187 };
5188 struct security_info_params *security =
5189 (struct security_info_params *)&cmd.host_command_parameters;
5190 int err;
5191 memset(security, 0, sizeof(*security));
5192
5193 /* If shared key AP authentication is turned on, then we need to
5194 * configure the firmware to try and use it.
5195 *
5196 * Actual data encryption/decryption is handled by the host. */
5197 security->auth_mode = auth_mode;
5198 security->unicast_using_group = unicast_using_group;
5199
5200 switch (security_level) {
5201 default:
5202 case SEC_LEVEL_0:
5203 security->allowed_ciphers = IPW_NONE_CIPHER;
5204 break;
5205 case SEC_LEVEL_1:
5206 security->allowed_ciphers = IPW_WEP40_CIPHER |
5207 IPW_WEP104_CIPHER;
5208 break;
5209 case SEC_LEVEL_2:
5210 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5212 break;
5213 case SEC_LEVEL_2_CKIP:
5214 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5216 break;
5217 case SEC_LEVEL_3:
5218 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5220 break;
5221 }
5222
5223 IPW_DEBUG_HC
5224 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5225 security->auth_mode, security->allowed_ciphers, security_level);
5226
5227 security->replay_counters_number = 0;
5228
5229 if (!batch_mode) {
5230 err = ipw2100_disable_adapter(priv);
5231 if (err)
5232 return err;
5233 }
5234
5235 err = ipw2100_hw_send_command(priv, &cmd);
5236
5237 if (!batch_mode)
5238 ipw2100_enable_adapter(priv);
5239
5240 return err;
5241 }
5242
5243 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5244 {
5245 struct host_command cmd = {
5246 .host_command = TX_POWER_INDEX,
5247 .host_command_sequence = 0,
5248 .host_command_length = 4
5249 };
5250 int err = 0;
5251 u32 tmp = tx_power;
5252
5253 if (tx_power != IPW_TX_POWER_DEFAULT)
5254 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5255 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5256
5257 cmd.host_command_parameters[0] = tmp;
5258
5259 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5260 err = ipw2100_hw_send_command(priv, &cmd);
5261 if (!err)
5262 priv->tx_power = tx_power;
5263
5264 return 0;
5265 }
5266
5267 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5268 u32 interval, int batch_mode)
5269 {
5270 struct host_command cmd = {
5271 .host_command = BEACON_INTERVAL,
5272 .host_command_sequence = 0,
5273 .host_command_length = 4
5274 };
5275 int err;
5276
5277 cmd.host_command_parameters[0] = interval;
5278
5279 IPW_DEBUG_INFO("enter\n");
5280
5281 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5282 if (!batch_mode) {
5283 err = ipw2100_disable_adapter(priv);
5284 if (err)
5285 return err;
5286 }
5287
5288 ipw2100_hw_send_command(priv, &cmd);
5289
5290 if (!batch_mode) {
5291 err = ipw2100_enable_adapter(priv);
5292 if (err)
5293 return err;
5294 }
5295 }
5296
5297 IPW_DEBUG_INFO("exit\n");
5298
5299 return 0;
5300 }
5301
5302 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5303 {
5304 ipw2100_tx_initialize(priv);
5305 ipw2100_rx_initialize(priv);
5306 ipw2100_msg_initialize(priv);
5307 }
5308
5309 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5310 {
5311 ipw2100_tx_free(priv);
5312 ipw2100_rx_free(priv);
5313 ipw2100_msg_free(priv);
5314 }
5315
5316 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5317 {
5318 if (ipw2100_tx_allocate(priv) ||
5319 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5320 goto fail;
5321
5322 return 0;
5323
5324 fail:
5325 ipw2100_tx_free(priv);
5326 ipw2100_rx_free(priv);
5327 ipw2100_msg_free(priv);
5328 return -ENOMEM;
5329 }
5330
5331 #define IPW_PRIVACY_CAPABLE 0x0008
5332
5333 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5334 int batch_mode)
5335 {
5336 struct host_command cmd = {
5337 .host_command = WEP_FLAGS,
5338 .host_command_sequence = 0,
5339 .host_command_length = 4
5340 };
5341 int err;
5342
5343 cmd.host_command_parameters[0] = flags;
5344
5345 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5346
5347 if (!batch_mode) {
5348 err = ipw2100_disable_adapter(priv);
5349 if (err) {
5350 printk(KERN_ERR DRV_NAME
5351 ": %s: Could not disable adapter %d\n",
5352 priv->net_dev->name, err);
5353 return err;
5354 }
5355 }
5356
5357 /* send cmd to firmware */
5358 err = ipw2100_hw_send_command(priv, &cmd);
5359
5360 if (!batch_mode)
5361 ipw2100_enable_adapter(priv);
5362
5363 return err;
5364 }
5365
5366 struct ipw2100_wep_key {
5367 u8 idx;
5368 u8 len;
5369 u8 key[13];
5370 };
5371
5372 /* Macros to ease up priting WEP keys */
5373 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5374 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5375 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5376 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5377
5378 /**
5379 * Set a the wep key
5380 *
5381 * @priv: struct to work on
5382 * @idx: index of the key we want to set
5383 * @key: ptr to the key data to set
5384 * @len: length of the buffer at @key
5385 * @batch_mode: FIXME perform the operation in batch mode, not
5386 * disabling the device.
5387 *
5388 * @returns 0 if OK, < 0 errno code on error.
5389 *
5390 * Fill out a command structure with the new wep key, length an
5391 * index and send it down the wire.
5392 */
5393 static int ipw2100_set_key(struct ipw2100_priv *priv,
5394 int idx, char *key, int len, int batch_mode)
5395 {
5396 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5397 struct host_command cmd = {
5398 .host_command = WEP_KEY_INFO,
5399 .host_command_sequence = 0,
5400 .host_command_length = sizeof(struct ipw2100_wep_key),
5401 };
5402 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5403 int err;
5404
5405 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5406 idx, keylen, len);
5407
5408 /* NOTE: We don't check cached values in case the firmware was reset
5409 * or some other problem is occurring. If the user is setting the key,
5410 * then we push the change */
5411
5412 wep_key->idx = idx;
5413 wep_key->len = keylen;
5414
5415 if (keylen) {
5416 memcpy(wep_key->key, key, len);
5417 memset(wep_key->key + len, 0, keylen - len);
5418 }
5419
5420 /* Will be optimized out on debug not being configured in */
5421 if (keylen == 0)
5422 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5423 priv->net_dev->name, wep_key->idx);
5424 else if (keylen == 5)
5425 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5426 priv->net_dev->name, wep_key->idx, wep_key->len,
5427 WEP_STR_64(wep_key->key));
5428 else
5429 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5430 "\n",
5431 priv->net_dev->name, wep_key->idx, wep_key->len,
5432 WEP_STR_128(wep_key->key));
5433
5434 if (!batch_mode) {
5435 err = ipw2100_disable_adapter(priv);
5436 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5437 if (err) {
5438 printk(KERN_ERR DRV_NAME
5439 ": %s: Could not disable adapter %d\n",
5440 priv->net_dev->name, err);
5441 return err;
5442 }
5443 }
5444
5445 /* send cmd to firmware */
5446 err = ipw2100_hw_send_command(priv, &cmd);
5447
5448 if (!batch_mode) {
5449 int err2 = ipw2100_enable_adapter(priv);
5450 if (err == 0)
5451 err = err2;
5452 }
5453 return err;
5454 }
5455
5456 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5457 int idx, int batch_mode)
5458 {
5459 struct host_command cmd = {
5460 .host_command = WEP_KEY_INDEX,
5461 .host_command_sequence = 0,
5462 .host_command_length = 4,
5463 .host_command_parameters = {idx},
5464 };
5465 int err;
5466
5467 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5468
5469 if (idx < 0 || idx > 3)
5470 return -EINVAL;
5471
5472 if (!batch_mode) {
5473 err = ipw2100_disable_adapter(priv);
5474 if (err) {
5475 printk(KERN_ERR DRV_NAME
5476 ": %s: Could not disable adapter %d\n",
5477 priv->net_dev->name, err);
5478 return err;
5479 }
5480 }
5481
5482 /* send cmd to firmware */
5483 err = ipw2100_hw_send_command(priv, &cmd);
5484
5485 if (!batch_mode)
5486 ipw2100_enable_adapter(priv);
5487
5488 return err;
5489 }
5490
5491 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5492 {
5493 int i, err, auth_mode, sec_level, use_group;
5494
5495 if (!(priv->status & STATUS_RUNNING))
5496 return 0;
5497
5498 if (!batch_mode) {
5499 err = ipw2100_disable_adapter(priv);
5500 if (err)
5501 return err;
5502 }
5503
5504 if (!priv->ieee->sec.enabled) {
5505 err =
5506 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5507 SEC_LEVEL_0, 0, 1);
5508 } else {
5509 auth_mode = IPW_AUTH_OPEN;
5510 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5511 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5512 auth_mode = IPW_AUTH_SHARED;
5513 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5514 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5515 }
5516
5517 sec_level = SEC_LEVEL_0;
5518 if (priv->ieee->sec.flags & SEC_LEVEL)
5519 sec_level = priv->ieee->sec.level;
5520
5521 use_group = 0;
5522 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5523 use_group = priv->ieee->sec.unicast_uses_group;
5524
5525 err =
5526 ipw2100_set_security_information(priv, auth_mode, sec_level,
5527 use_group, 1);
5528 }
5529
5530 if (err)
5531 goto exit;
5532
5533 if (priv->ieee->sec.enabled) {
5534 for (i = 0; i < 4; i++) {
5535 if (!(priv->ieee->sec.flags & (1 << i))) {
5536 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5537 priv->ieee->sec.key_sizes[i] = 0;
5538 } else {
5539 err = ipw2100_set_key(priv, i,
5540 priv->ieee->sec.keys[i],
5541 priv->ieee->sec.
5542 key_sizes[i], 1);
5543 if (err)
5544 goto exit;
5545 }
5546 }
5547
5548 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5549 }
5550
5551 /* Always enable privacy so the Host can filter WEP packets if
5552 * encrypted data is sent up */
5553 err =
5554 ipw2100_set_wep_flags(priv,
5555 priv->ieee->sec.
5556 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5557 if (err)
5558 goto exit;
5559
5560 priv->status &= ~STATUS_SECURITY_UPDATED;
5561
5562 exit:
5563 if (!batch_mode)
5564 ipw2100_enable_adapter(priv);
5565
5566 return err;
5567 }
5568
5569 static void ipw2100_security_work(struct work_struct *work)
5570 {
5571 struct ipw2100_priv *priv =
5572 container_of(work, struct ipw2100_priv, security_work.work);
5573
5574 /* If we happen to have reconnected before we get a chance to
5575 * process this, then update the security settings--which causes
5576 * a disassociation to occur */
5577 if (!(priv->status & STATUS_ASSOCIATED) &&
5578 priv->status & STATUS_SECURITY_UPDATED)
5579 ipw2100_configure_security(priv, 0);
5580 }
5581
5582 static void shim__set_security(struct net_device *dev,
5583 struct libipw_security *sec)
5584 {
5585 struct ipw2100_priv *priv = libipw_priv(dev);
5586 int i, force_update = 0;
5587
5588 mutex_lock(&priv->action_mutex);
5589 if (!(priv->status & STATUS_INITIALIZED))
5590 goto done;
5591
5592 for (i = 0; i < 4; i++) {
5593 if (sec->flags & (1 << i)) {
5594 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5595 if (sec->key_sizes[i] == 0)
5596 priv->ieee->sec.flags &= ~(1 << i);
5597 else
5598 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5599 sec->key_sizes[i]);
5600 if (sec->level == SEC_LEVEL_1) {
5601 priv->ieee->sec.flags |= (1 << i);
5602 priv->status |= STATUS_SECURITY_UPDATED;
5603 } else
5604 priv->ieee->sec.flags &= ~(1 << i);
5605 }
5606 }
5607
5608 if ((sec->flags & SEC_ACTIVE_KEY) &&
5609 priv->ieee->sec.active_key != sec->active_key) {
5610 if (sec->active_key <= 3) {
5611 priv->ieee->sec.active_key = sec->active_key;
5612 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5613 } else
5614 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5615
5616 priv->status |= STATUS_SECURITY_UPDATED;
5617 }
5618
5619 if ((sec->flags & SEC_AUTH_MODE) &&
5620 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5621 priv->ieee->sec.auth_mode = sec->auth_mode;
5622 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5623 priv->status |= STATUS_SECURITY_UPDATED;
5624 }
5625
5626 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5627 priv->ieee->sec.flags |= SEC_ENABLED;
5628 priv->ieee->sec.enabled = sec->enabled;
5629 priv->status |= STATUS_SECURITY_UPDATED;
5630 force_update = 1;
5631 }
5632
5633 if (sec->flags & SEC_ENCRYPT)
5634 priv->ieee->sec.encrypt = sec->encrypt;
5635
5636 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5637 priv->ieee->sec.level = sec->level;
5638 priv->ieee->sec.flags |= SEC_LEVEL;
5639 priv->status |= STATUS_SECURITY_UPDATED;
5640 }
5641
5642 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5643 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5644 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5645 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5646 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5647 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5648 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5649 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5650 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5651 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5652
5653 /* As a temporary work around to enable WPA until we figure out why
5654 * wpa_supplicant toggles the security capability of the driver, which
5655 * forces a disassocation with force_update...
5656 *
5657 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5658 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5659 ipw2100_configure_security(priv, 0);
5660 done:
5661 mutex_unlock(&priv->action_mutex);
5662 }
5663
5664 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5665 {
5666 int err;
5667 int batch_mode = 1;
5668 u8 *bssid;
5669
5670 IPW_DEBUG_INFO("enter\n");
5671
5672 err = ipw2100_disable_adapter(priv);
5673 if (err)
5674 return err;
5675 #ifdef CONFIG_IPW2100_MONITOR
5676 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5677 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5678 if (err)
5679 return err;
5680
5681 IPW_DEBUG_INFO("exit\n");
5682
5683 return 0;
5684 }
5685 #endif /* CONFIG_IPW2100_MONITOR */
5686
5687 err = ipw2100_read_mac_address(priv);
5688 if (err)
5689 return -EIO;
5690
5691 err = ipw2100_set_mac_address(priv, batch_mode);
5692 if (err)
5693 return err;
5694
5695 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5696 if (err)
5697 return err;
5698
5699 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5700 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5701 if (err)
5702 return err;
5703 }
5704
5705 err = ipw2100_system_config(priv, batch_mode);
5706 if (err)
5707 return err;
5708
5709 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5710 if (err)
5711 return err;
5712
5713 /* Default to power mode OFF */
5714 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5715 if (err)
5716 return err;
5717
5718 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5719 if (err)
5720 return err;
5721
5722 if (priv->config & CFG_STATIC_BSSID)
5723 bssid = priv->bssid;
5724 else
5725 bssid = NULL;
5726 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5727 if (err)
5728 return err;
5729
5730 if (priv->config & CFG_STATIC_ESSID)
5731 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5732 batch_mode);
5733 else
5734 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5735 if (err)
5736 return err;
5737
5738 err = ipw2100_configure_security(priv, batch_mode);
5739 if (err)
5740 return err;
5741
5742 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5743 err =
5744 ipw2100_set_ibss_beacon_interval(priv,
5745 priv->beacon_interval,
5746 batch_mode);
5747 if (err)
5748 return err;
5749
5750 err = ipw2100_set_tx_power(priv, priv->tx_power);
5751 if (err)
5752 return err;
5753 }
5754
5755 /*
5756 err = ipw2100_set_fragmentation_threshold(
5757 priv, priv->frag_threshold, batch_mode);
5758 if (err)
5759 return err;
5760 */
5761
5762 IPW_DEBUG_INFO("exit\n");
5763
5764 return 0;
5765 }
5766
5767 /*************************************************************************
5768 *
5769 * EXTERNALLY CALLED METHODS
5770 *
5771 *************************************************************************/
5772
5773 /* This method is called by the network layer -- not to be confused with
5774 * ipw2100_set_mac_address() declared above called by this driver (and this
5775 * method as well) to talk to the firmware */
5776 static int ipw2100_set_address(struct net_device *dev, void *p)
5777 {
5778 struct ipw2100_priv *priv = libipw_priv(dev);
5779 struct sockaddr *addr = p;
5780 int err = 0;
5781
5782 if (!is_valid_ether_addr(addr->sa_data))
5783 return -EADDRNOTAVAIL;
5784
5785 mutex_lock(&priv->action_mutex);
5786
5787 priv->config |= CFG_CUSTOM_MAC;
5788 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5789
5790 err = ipw2100_set_mac_address(priv, 0);
5791 if (err)
5792 goto done;
5793
5794 priv->reset_backoff = 0;
5795 mutex_unlock(&priv->action_mutex);
5796 ipw2100_reset_adapter(&priv->reset_work.work);
5797 return 0;
5798
5799 done:
5800 mutex_unlock(&priv->action_mutex);
5801 return err;
5802 }
5803
5804 static int ipw2100_open(struct net_device *dev)
5805 {
5806 struct ipw2100_priv *priv = libipw_priv(dev);
5807 unsigned long flags;
5808 IPW_DEBUG_INFO("dev->open\n");
5809
5810 spin_lock_irqsave(&priv->low_lock, flags);
5811 if (priv->status & STATUS_ASSOCIATED) {
5812 netif_carrier_on(dev);
5813 netif_start_queue(dev);
5814 }
5815 spin_unlock_irqrestore(&priv->low_lock, flags);
5816
5817 return 0;
5818 }
5819
5820 static int ipw2100_close(struct net_device *dev)
5821 {
5822 struct ipw2100_priv *priv = libipw_priv(dev);
5823 unsigned long flags;
5824 struct list_head *element;
5825 struct ipw2100_tx_packet *packet;
5826
5827 IPW_DEBUG_INFO("enter\n");
5828
5829 spin_lock_irqsave(&priv->low_lock, flags);
5830
5831 if (priv->status & STATUS_ASSOCIATED)
5832 netif_carrier_off(dev);
5833 netif_stop_queue(dev);
5834
5835 /* Flush the TX queue ... */
5836 while (!list_empty(&priv->tx_pend_list)) {
5837 element = priv->tx_pend_list.next;
5838 packet = list_entry(element, struct ipw2100_tx_packet, list);
5839
5840 list_del(element);
5841 DEC_STAT(&priv->tx_pend_stat);
5842
5843 libipw_txb_free(packet->info.d_struct.txb);
5844 packet->info.d_struct.txb = NULL;
5845
5846 list_add_tail(element, &priv->tx_free_list);
5847 INC_STAT(&priv->tx_free_stat);
5848 }
5849 spin_unlock_irqrestore(&priv->low_lock, flags);
5850
5851 IPW_DEBUG_INFO("exit\n");
5852
5853 return 0;
5854 }
5855
5856 /*
5857 * TODO: Fix this function... its just wrong
5858 */
5859 static void ipw2100_tx_timeout(struct net_device *dev)
5860 {
5861 struct ipw2100_priv *priv = libipw_priv(dev);
5862
5863 dev->stats.tx_errors++;
5864
5865 #ifdef CONFIG_IPW2100_MONITOR
5866 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5867 return;
5868 #endif
5869
5870 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5871 dev->name);
5872 schedule_reset(priv);
5873 }
5874
5875 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5876 {
5877 /* This is called when wpa_supplicant loads and closes the driver
5878 * interface. */
5879 priv->ieee->wpa_enabled = value;
5880 return 0;
5881 }
5882
5883 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5884 {
5885
5886 struct libipw_device *ieee = priv->ieee;
5887 struct libipw_security sec = {
5888 .flags = SEC_AUTH_MODE,
5889 };
5890 int ret = 0;
5891
5892 if (value & IW_AUTH_ALG_SHARED_KEY) {
5893 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5894 ieee->open_wep = 0;
5895 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5896 sec.auth_mode = WLAN_AUTH_OPEN;
5897 ieee->open_wep = 1;
5898 } else if (value & IW_AUTH_ALG_LEAP) {
5899 sec.auth_mode = WLAN_AUTH_LEAP;
5900 ieee->open_wep = 1;
5901 } else
5902 return -EINVAL;
5903
5904 if (ieee->set_security)
5905 ieee->set_security(ieee->dev, &sec);
5906 else
5907 ret = -EOPNOTSUPP;
5908
5909 return ret;
5910 }
5911
5912 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5913 char *wpa_ie, int wpa_ie_len)
5914 {
5915
5916 struct ipw2100_wpa_assoc_frame frame;
5917
5918 frame.fixed_ie_mask = 0;
5919
5920 /* copy WPA IE */
5921 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5922 frame.var_ie_len = wpa_ie_len;
5923
5924 /* make sure WPA is enabled */
5925 ipw2100_wpa_enable(priv, 1);
5926 ipw2100_set_wpa_ie(priv, &frame, 0);
5927 }
5928
5929 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5930 struct ethtool_drvinfo *info)
5931 {
5932 struct ipw2100_priv *priv = libipw_priv(dev);
5933 char fw_ver[64], ucode_ver[64];
5934
5935 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5936 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5937
5938 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5939 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5940
5941 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5942 fw_ver, priv->eeprom_version, ucode_ver);
5943
5944 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5945 sizeof(info->bus_info));
5946 }
5947
5948 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5949 {
5950 struct ipw2100_priv *priv = libipw_priv(dev);
5951 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5952 }
5953
5954 static const struct ethtool_ops ipw2100_ethtool_ops = {
5955 .get_link = ipw2100_ethtool_get_link,
5956 .get_drvinfo = ipw_ethtool_get_drvinfo,
5957 };
5958
5959 static void ipw2100_hang_check(struct work_struct *work)
5960 {
5961 struct ipw2100_priv *priv =
5962 container_of(work, struct ipw2100_priv, hang_check.work);
5963 unsigned long flags;
5964 u32 rtc = 0xa5a5a5a5;
5965 u32 len = sizeof(rtc);
5966 int restart = 0;
5967
5968 spin_lock_irqsave(&priv->low_lock, flags);
5969
5970 if (priv->fatal_error != 0) {
5971 /* If fatal_error is set then we need to restart */
5972 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5973 priv->net_dev->name);
5974
5975 restart = 1;
5976 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5977 (rtc == priv->last_rtc)) {
5978 /* Check if firmware is hung */
5979 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5980 priv->net_dev->name);
5981
5982 restart = 1;
5983 }
5984
5985 if (restart) {
5986 /* Kill timer */
5987 priv->stop_hang_check = 1;
5988 priv->hangs++;
5989
5990 /* Restart the NIC */
5991 schedule_reset(priv);
5992 }
5993
5994 priv->last_rtc = rtc;
5995
5996 if (!priv->stop_hang_check)
5997 schedule_delayed_work(&priv->hang_check, HZ / 2);
5998
5999 spin_unlock_irqrestore(&priv->low_lock, flags);
6000 }
6001
6002 static void ipw2100_rf_kill(struct work_struct *work)
6003 {
6004 struct ipw2100_priv *priv =
6005 container_of(work, struct ipw2100_priv, rf_kill.work);
6006 unsigned long flags;
6007
6008 spin_lock_irqsave(&priv->low_lock, flags);
6009
6010 if (rf_kill_active(priv)) {
6011 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6012 if (!priv->stop_rf_kill)
6013 schedule_delayed_work(&priv->rf_kill,
6014 round_jiffies_relative(HZ));
6015 goto exit_unlock;
6016 }
6017
6018 /* RF Kill is now disabled, so bring the device back up */
6019
6020 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6021 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6022 "device\n");
6023 schedule_reset(priv);
6024 } else
6025 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6026 "enabled\n");
6027
6028 exit_unlock:
6029 spin_unlock_irqrestore(&priv->low_lock, flags);
6030 }
6031
6032 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6033
6034 static const struct net_device_ops ipw2100_netdev_ops = {
6035 .ndo_open = ipw2100_open,
6036 .ndo_stop = ipw2100_close,
6037 .ndo_start_xmit = libipw_xmit,
6038 .ndo_change_mtu = libipw_change_mtu,
6039 .ndo_tx_timeout = ipw2100_tx_timeout,
6040 .ndo_set_mac_address = ipw2100_set_address,
6041 .ndo_validate_addr = eth_validate_addr,
6042 };
6043
6044 /* Look into using netdev destructor to shutdown libipw? */
6045
6046 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6047 void __iomem * ioaddr)
6048 {
6049 struct ipw2100_priv *priv;
6050 struct net_device *dev;
6051
6052 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6053 if (!dev)
6054 return NULL;
6055 priv = libipw_priv(dev);
6056 priv->ieee = netdev_priv(dev);
6057 priv->pci_dev = pci_dev;
6058 priv->net_dev = dev;
6059 priv->ioaddr = ioaddr;
6060
6061 priv->ieee->hard_start_xmit = ipw2100_tx;
6062 priv->ieee->set_security = shim__set_security;
6063
6064 priv->ieee->perfect_rssi = -20;
6065 priv->ieee->worst_rssi = -85;
6066
6067 dev->netdev_ops = &ipw2100_netdev_ops;
6068 dev->ethtool_ops = &ipw2100_ethtool_ops;
6069 dev->wireless_handlers = &ipw2100_wx_handler_def;
6070 priv->wireless_data.libipw = priv->ieee;
6071 dev->wireless_data = &priv->wireless_data;
6072 dev->watchdog_timeo = 3 * HZ;
6073 dev->irq = 0;
6074
6075 /* NOTE: We don't use the wireless_handlers hook
6076 * in dev as the system will start throwing WX requests
6077 * to us before we're actually initialized and it just
6078 * ends up causing problems. So, we just handle
6079 * the WX extensions through the ipw2100_ioctl interface */
6080
6081 /* memset() puts everything to 0, so we only have explicitly set
6082 * those values that need to be something else */
6083
6084 /* If power management is turned on, default to AUTO mode */
6085 priv->power_mode = IPW_POWER_AUTO;
6086
6087 #ifdef CONFIG_IPW2100_MONITOR
6088 priv->config |= CFG_CRC_CHECK;
6089 #endif
6090 priv->ieee->wpa_enabled = 0;
6091 priv->ieee->drop_unencrypted = 0;
6092 priv->ieee->privacy_invoked = 0;
6093 priv->ieee->ieee802_1x = 1;
6094
6095 /* Set module parameters */
6096 switch (network_mode) {
6097 case 1:
6098 priv->ieee->iw_mode = IW_MODE_ADHOC;
6099 break;
6100 #ifdef CONFIG_IPW2100_MONITOR
6101 case 2:
6102 priv->ieee->iw_mode = IW_MODE_MONITOR;
6103 break;
6104 #endif
6105 default:
6106 case 0:
6107 priv->ieee->iw_mode = IW_MODE_INFRA;
6108 break;
6109 }
6110
6111 if (disable == 1)
6112 priv->status |= STATUS_RF_KILL_SW;
6113
6114 if (channel != 0 &&
6115 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6116 priv->config |= CFG_STATIC_CHANNEL;
6117 priv->channel = channel;
6118 }
6119
6120 if (associate)
6121 priv->config |= CFG_ASSOCIATE;
6122
6123 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6124 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6125 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6126 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6127 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6128 priv->tx_power = IPW_TX_POWER_DEFAULT;
6129 priv->tx_rates = DEFAULT_TX_RATES;
6130
6131 strcpy(priv->nick, "ipw2100");
6132
6133 spin_lock_init(&priv->low_lock);
6134 mutex_init(&priv->action_mutex);
6135 mutex_init(&priv->adapter_mutex);
6136
6137 init_waitqueue_head(&priv->wait_command_queue);
6138
6139 netif_carrier_off(dev);
6140
6141 INIT_LIST_HEAD(&priv->msg_free_list);
6142 INIT_LIST_HEAD(&priv->msg_pend_list);
6143 INIT_STAT(&priv->msg_free_stat);
6144 INIT_STAT(&priv->msg_pend_stat);
6145
6146 INIT_LIST_HEAD(&priv->tx_free_list);
6147 INIT_LIST_HEAD(&priv->tx_pend_list);
6148 INIT_STAT(&priv->tx_free_stat);
6149 INIT_STAT(&priv->tx_pend_stat);
6150
6151 INIT_LIST_HEAD(&priv->fw_pend_list);
6152 INIT_STAT(&priv->fw_pend_stat);
6153
6154 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6155 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6156 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6157 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6158 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6159 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6160
6161 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6162 ipw2100_irq_tasklet, (unsigned long)priv);
6163
6164 /* NOTE: We do not start the deferred work for status checks yet */
6165 priv->stop_rf_kill = 1;
6166 priv->stop_hang_check = 1;
6167
6168 return dev;
6169 }
6170
6171 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6172 const struct pci_device_id *ent)
6173 {
6174 void __iomem *ioaddr;
6175 struct net_device *dev = NULL;
6176 struct ipw2100_priv *priv = NULL;
6177 int err = 0;
6178 int registered = 0;
6179 u32 val;
6180
6181 IPW_DEBUG_INFO("enter\n");
6182
6183 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6184 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6185 err = -ENODEV;
6186 goto out;
6187 }
6188
6189 ioaddr = pci_iomap(pci_dev, 0, 0);
6190 if (!ioaddr) {
6191 printk(KERN_WARNING DRV_NAME
6192 "Error calling ioremap_nocache.\n");
6193 err = -EIO;
6194 goto fail;
6195 }
6196
6197 /* allocate and initialize our net_device */
6198 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6199 if (!dev) {
6200 printk(KERN_WARNING DRV_NAME
6201 "Error calling ipw2100_alloc_device.\n");
6202 err = -ENOMEM;
6203 goto fail;
6204 }
6205
6206 /* set up PCI mappings for device */
6207 err = pci_enable_device(pci_dev);
6208 if (err) {
6209 printk(KERN_WARNING DRV_NAME
6210 "Error calling pci_enable_device.\n");
6211 return err;
6212 }
6213
6214 priv = libipw_priv(dev);
6215
6216 pci_set_master(pci_dev);
6217 pci_set_drvdata(pci_dev, priv);
6218
6219 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6220 if (err) {
6221 printk(KERN_WARNING DRV_NAME
6222 "Error calling pci_set_dma_mask.\n");
6223 pci_disable_device(pci_dev);
6224 return err;
6225 }
6226
6227 err = pci_request_regions(pci_dev, DRV_NAME);
6228 if (err) {
6229 printk(KERN_WARNING DRV_NAME
6230 "Error calling pci_request_regions.\n");
6231 pci_disable_device(pci_dev);
6232 return err;
6233 }
6234
6235 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6236 * PCI Tx retries from interfering with C3 CPU state */
6237 pci_read_config_dword(pci_dev, 0x40, &val);
6238 if ((val & 0x0000ff00) != 0)
6239 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6240
6241 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6242 printk(KERN_WARNING DRV_NAME
6243 "Device not found via register read.\n");
6244 err = -ENODEV;
6245 goto fail;
6246 }
6247
6248 SET_NETDEV_DEV(dev, &pci_dev->dev);
6249
6250 /* Force interrupts to be shut off on the device */
6251 priv->status |= STATUS_INT_ENABLED;
6252 ipw2100_disable_interrupts(priv);
6253
6254 /* Allocate and initialize the Tx/Rx queues and lists */
6255 if (ipw2100_queues_allocate(priv)) {
6256 printk(KERN_WARNING DRV_NAME
6257 "Error calling ipw2100_queues_allocate.\n");
6258 err = -ENOMEM;
6259 goto fail;
6260 }
6261 ipw2100_queues_initialize(priv);
6262
6263 err = request_irq(pci_dev->irq,
6264 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6265 if (err) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling request_irq: %d.\n", pci_dev->irq);
6268 goto fail;
6269 }
6270 dev->irq = pci_dev->irq;
6271
6272 IPW_DEBUG_INFO("Attempting to register device...\n");
6273
6274 printk(KERN_INFO DRV_NAME
6275 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6276
6277 err = ipw2100_up(priv, 1);
6278 if (err)
6279 goto fail;
6280
6281 err = ipw2100_wdev_init(dev);
6282 if (err)
6283 goto fail;
6284 registered = 1;
6285
6286 /* Bring up the interface. Pre 0.46, after we registered the
6287 * network device we would call ipw2100_up. This introduced a race
6288 * condition with newer hotplug configurations (network was coming
6289 * up and making calls before the device was initialized).
6290 */
6291 err = register_netdev(dev);
6292 if (err) {
6293 printk(KERN_WARNING DRV_NAME
6294 "Error calling register_netdev.\n");
6295 goto fail;
6296 }
6297 registered = 2;
6298
6299 mutex_lock(&priv->action_mutex);
6300
6301 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6302
6303 /* perform this after register_netdev so that dev->name is set */
6304 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6305 if (err)
6306 goto fail_unlock;
6307
6308 /* If the RF Kill switch is disabled, go ahead and complete the
6309 * startup sequence */
6310 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6311 /* Enable the adapter - sends HOST_COMPLETE */
6312 if (ipw2100_enable_adapter(priv)) {
6313 printk(KERN_WARNING DRV_NAME
6314 ": %s: failed in call to enable adapter.\n",
6315 priv->net_dev->name);
6316 ipw2100_hw_stop_adapter(priv);
6317 err = -EIO;
6318 goto fail_unlock;
6319 }
6320
6321 /* Start a scan . . . */
6322 ipw2100_set_scan_options(priv);
6323 ipw2100_start_scan(priv);
6324 }
6325
6326 IPW_DEBUG_INFO("exit\n");
6327
6328 priv->status |= STATUS_INITIALIZED;
6329
6330 mutex_unlock(&priv->action_mutex);
6331 out:
6332 return err;
6333
6334 fail_unlock:
6335 mutex_unlock(&priv->action_mutex);
6336 fail:
6337 if (dev) {
6338 if (registered >= 2)
6339 unregister_netdev(dev);
6340
6341 if (registered) {
6342 wiphy_unregister(priv->ieee->wdev.wiphy);
6343 kfree(priv->ieee->bg_band.channels);
6344 }
6345
6346 ipw2100_hw_stop_adapter(priv);
6347
6348 ipw2100_disable_interrupts(priv);
6349
6350 if (dev->irq)
6351 free_irq(dev->irq, priv);
6352
6353 ipw2100_kill_works(priv);
6354
6355 /* These are safe to call even if they weren't allocated */
6356 ipw2100_queues_free(priv);
6357 sysfs_remove_group(&pci_dev->dev.kobj,
6358 &ipw2100_attribute_group);
6359
6360 free_libipw(dev, 0);
6361 }
6362
6363 pci_iounmap(pci_dev, ioaddr);
6364
6365 pci_release_regions(pci_dev);
6366 pci_disable_device(pci_dev);
6367 goto out;
6368 }
6369
6370 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6371 {
6372 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6373 struct net_device *dev = priv->net_dev;
6374
6375 mutex_lock(&priv->action_mutex);
6376
6377 priv->status &= ~STATUS_INITIALIZED;
6378
6379 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6380
6381 #ifdef CONFIG_PM
6382 if (ipw2100_firmware.version)
6383 ipw2100_release_firmware(priv, &ipw2100_firmware);
6384 #endif
6385 /* Take down the hardware */
6386 ipw2100_down(priv);
6387
6388 /* Release the mutex so that the network subsystem can
6389 * complete any needed calls into the driver... */
6390 mutex_unlock(&priv->action_mutex);
6391
6392 /* Unregister the device first - this results in close()
6393 * being called if the device is open. If we free storage
6394 * first, then close() will crash.
6395 * FIXME: remove the comment above. */
6396 unregister_netdev(dev);
6397
6398 ipw2100_kill_works(priv);
6399
6400 ipw2100_queues_free(priv);
6401
6402 /* Free potential debugging firmware snapshot */
6403 ipw2100_snapshot_free(priv);
6404
6405 free_irq(dev->irq, priv);
6406
6407 pci_iounmap(pci_dev, priv->ioaddr);
6408
6409 /* wiphy_unregister needs to be here, before free_libipw */
6410 wiphy_unregister(priv->ieee->wdev.wiphy);
6411 kfree(priv->ieee->bg_band.channels);
6412 free_libipw(dev, 0);
6413
6414 pci_release_regions(pci_dev);
6415 pci_disable_device(pci_dev);
6416
6417 IPW_DEBUG_INFO("exit\n");
6418 }
6419
6420 #ifdef CONFIG_PM
6421 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6422 {
6423 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424 struct net_device *dev = priv->net_dev;
6425
6426 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6427
6428 mutex_lock(&priv->action_mutex);
6429 if (priv->status & STATUS_INITIALIZED) {
6430 /* Take down the device; powers it off, etc. */
6431 ipw2100_down(priv);
6432 }
6433
6434 /* Remove the PRESENT state of the device */
6435 netif_device_detach(dev);
6436
6437 pci_save_state(pci_dev);
6438 pci_disable_device(pci_dev);
6439 pci_set_power_state(pci_dev, PCI_D3hot);
6440
6441 priv->suspend_at = get_seconds();
6442
6443 mutex_unlock(&priv->action_mutex);
6444
6445 return 0;
6446 }
6447
6448 static int ipw2100_resume(struct pci_dev *pci_dev)
6449 {
6450 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6451 struct net_device *dev = priv->net_dev;
6452 int err;
6453 u32 val;
6454
6455 if (IPW2100_PM_DISABLED)
6456 return 0;
6457
6458 mutex_lock(&priv->action_mutex);
6459
6460 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6461
6462 pci_set_power_state(pci_dev, PCI_D0);
6463 err = pci_enable_device(pci_dev);
6464 if (err) {
6465 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6466 dev->name);
6467 mutex_unlock(&priv->action_mutex);
6468 return err;
6469 }
6470 pci_restore_state(pci_dev);
6471
6472 /*
6473 * Suspend/Resume resets the PCI configuration space, so we have to
6474 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6475 * from interfering with C3 CPU state. pci_restore_state won't help
6476 * here since it only restores the first 64 bytes pci config header.
6477 */
6478 pci_read_config_dword(pci_dev, 0x40, &val);
6479 if ((val & 0x0000ff00) != 0)
6480 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6481
6482 /* Set the device back into the PRESENT state; this will also wake
6483 * the queue of needed */
6484 netif_device_attach(dev);
6485
6486 priv->suspend_time = get_seconds() - priv->suspend_at;
6487
6488 /* Bring the device back up */
6489 if (!(priv->status & STATUS_RF_KILL_SW))
6490 ipw2100_up(priv, 0);
6491
6492 mutex_unlock(&priv->action_mutex);
6493
6494 return 0;
6495 }
6496 #endif
6497
6498 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6499 {
6500 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6501
6502 /* Take down the device; powers it off, etc. */
6503 ipw2100_down(priv);
6504
6505 pci_disable_device(pci_dev);
6506 }
6507
6508 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6509
6510 static const struct pci_device_id ipw2100_pci_id_table[] = {
6511 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6512 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6513 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6514 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6515 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6516 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6518 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6519 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6520 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6521 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6522 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6523 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6524
6525 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6526 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6527 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6528 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6529 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6530
6531 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6532 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6533 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6534 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6535 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6536 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6537 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6538
6539 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6540
6541 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6542 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6543 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6544 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6545 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6546 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6547 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6548
6549 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6550 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6551 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6552 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6553 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6554 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6555
6556 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6557 {0,},
6558 };
6559
6560 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6561
6562 static struct pci_driver ipw2100_pci_driver = {
6563 .name = DRV_NAME,
6564 .id_table = ipw2100_pci_id_table,
6565 .probe = ipw2100_pci_init_one,
6566 .remove = ipw2100_pci_remove_one,
6567 #ifdef CONFIG_PM
6568 .suspend = ipw2100_suspend,
6569 .resume = ipw2100_resume,
6570 #endif
6571 .shutdown = ipw2100_shutdown,
6572 };
6573
6574 /**
6575 * Initialize the ipw2100 driver/module
6576 *
6577 * @returns 0 if ok, < 0 errno node con error.
6578 *
6579 * Note: we cannot init the /proc stuff until the PCI driver is there,
6580 * or we risk an unlikely race condition on someone accessing
6581 * uninitialized data in the PCI dev struct through /proc.
6582 */
6583 static int __init ipw2100_init(void)
6584 {
6585 int ret;
6586
6587 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6588 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6589
6590 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6591 PM_QOS_DEFAULT_VALUE);
6592
6593 ret = pci_register_driver(&ipw2100_pci_driver);
6594 if (ret)
6595 goto out;
6596
6597 #ifdef CONFIG_IPW2100_DEBUG
6598 ipw2100_debug_level = debug;
6599 ret = driver_create_file(&ipw2100_pci_driver.driver,
6600 &driver_attr_debug_level);
6601 #endif
6602
6603 out:
6604 return ret;
6605 }
6606
6607 /**
6608 * Cleanup ipw2100 driver registration
6609 */
6610 static void __exit ipw2100_exit(void)
6611 {
6612 /* FIXME: IPG: check that we have no instances of the devices open */
6613 #ifdef CONFIG_IPW2100_DEBUG
6614 driver_remove_file(&ipw2100_pci_driver.driver,
6615 &driver_attr_debug_level);
6616 #endif
6617 pci_unregister_driver(&ipw2100_pci_driver);
6618 pm_qos_remove_request(&ipw2100_pm_qos_req);
6619 }
6620
6621 module_init(ipw2100_init);
6622 module_exit(ipw2100_exit);
6623
6624 static int ipw2100_wx_get_name(struct net_device *dev,
6625 struct iw_request_info *info,
6626 union iwreq_data *wrqu, char *extra)
6627 {
6628 /*
6629 * This can be called at any time. No action lock required
6630 */
6631
6632 struct ipw2100_priv *priv = libipw_priv(dev);
6633 if (!(priv->status & STATUS_ASSOCIATED))
6634 strcpy(wrqu->name, "unassociated");
6635 else
6636 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6637
6638 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6639 return 0;
6640 }
6641
6642 static int ipw2100_wx_set_freq(struct net_device *dev,
6643 struct iw_request_info *info,
6644 union iwreq_data *wrqu, char *extra)
6645 {
6646 struct ipw2100_priv *priv = libipw_priv(dev);
6647 struct iw_freq *fwrq = &wrqu->freq;
6648 int err = 0;
6649
6650 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6651 return -EOPNOTSUPP;
6652
6653 mutex_lock(&priv->action_mutex);
6654 if (!(priv->status & STATUS_INITIALIZED)) {
6655 err = -EIO;
6656 goto done;
6657 }
6658
6659 /* if setting by freq convert to channel */
6660 if (fwrq->e == 1) {
6661 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6662 int f = fwrq->m / 100000;
6663 int c = 0;
6664
6665 while ((c < REG_MAX_CHANNEL) &&
6666 (f != ipw2100_frequencies[c]))
6667 c++;
6668
6669 /* hack to fall through */
6670 fwrq->e = 0;
6671 fwrq->m = c + 1;
6672 }
6673 }
6674
6675 if (fwrq->e > 0 || fwrq->m > 1000) {
6676 err = -EOPNOTSUPP;
6677 goto done;
6678 } else { /* Set the channel */
6679 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6680 err = ipw2100_set_channel(priv, fwrq->m, 0);
6681 }
6682
6683 done:
6684 mutex_unlock(&priv->action_mutex);
6685 return err;
6686 }
6687
6688 static int ipw2100_wx_get_freq(struct net_device *dev,
6689 struct iw_request_info *info,
6690 union iwreq_data *wrqu, char *extra)
6691 {
6692 /*
6693 * This can be called at any time. No action lock required
6694 */
6695
6696 struct ipw2100_priv *priv = libipw_priv(dev);
6697
6698 wrqu->freq.e = 0;
6699
6700 /* If we are associated, trying to associate, or have a statically
6701 * configured CHANNEL then return that; otherwise return ANY */
6702 if (priv->config & CFG_STATIC_CHANNEL ||
6703 priv->status & STATUS_ASSOCIATED)
6704 wrqu->freq.m = priv->channel;
6705 else
6706 wrqu->freq.m = 0;
6707
6708 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6709 return 0;
6710
6711 }
6712
6713 static int ipw2100_wx_set_mode(struct net_device *dev,
6714 struct iw_request_info *info,
6715 union iwreq_data *wrqu, char *extra)
6716 {
6717 struct ipw2100_priv *priv = libipw_priv(dev);
6718 int err = 0;
6719
6720 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6721
6722 if (wrqu->mode == priv->ieee->iw_mode)
6723 return 0;
6724
6725 mutex_lock(&priv->action_mutex);
6726 if (!(priv->status & STATUS_INITIALIZED)) {
6727 err = -EIO;
6728 goto done;
6729 }
6730
6731 switch (wrqu->mode) {
6732 #ifdef CONFIG_IPW2100_MONITOR
6733 case IW_MODE_MONITOR:
6734 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6735 break;
6736 #endif /* CONFIG_IPW2100_MONITOR */
6737 case IW_MODE_ADHOC:
6738 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6739 break;
6740 case IW_MODE_INFRA:
6741 case IW_MODE_AUTO:
6742 default:
6743 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6744 break;
6745 }
6746
6747 done:
6748 mutex_unlock(&priv->action_mutex);
6749 return err;
6750 }
6751
6752 static int ipw2100_wx_get_mode(struct net_device *dev,
6753 struct iw_request_info *info,
6754 union iwreq_data *wrqu, char *extra)
6755 {
6756 /*
6757 * This can be called at any time. No action lock required
6758 */
6759
6760 struct ipw2100_priv *priv = libipw_priv(dev);
6761
6762 wrqu->mode = priv->ieee->iw_mode;
6763 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6764
6765 return 0;
6766 }
6767
6768 #define POWER_MODES 5
6769
6770 /* Values are in microsecond */
6771 static const s32 timeout_duration[POWER_MODES] = {
6772 350000,
6773 250000,
6774 75000,
6775 37000,
6776 25000,
6777 };
6778
6779 static const s32 period_duration[POWER_MODES] = {
6780 400000,
6781 700000,
6782 1000000,
6783 1000000,
6784 1000000
6785 };
6786
6787 static int ipw2100_wx_get_range(struct net_device *dev,
6788 struct iw_request_info *info,
6789 union iwreq_data *wrqu, char *extra)
6790 {
6791 /*
6792 * This can be called at any time. No action lock required
6793 */
6794
6795 struct ipw2100_priv *priv = libipw_priv(dev);
6796 struct iw_range *range = (struct iw_range *)extra;
6797 u16 val;
6798 int i, level;
6799
6800 wrqu->data.length = sizeof(*range);
6801 memset(range, 0, sizeof(*range));
6802
6803 /* Let's try to keep this struct in the same order as in
6804 * linux/include/wireless.h
6805 */
6806
6807 /* TODO: See what values we can set, and remove the ones we can't
6808 * set, or fill them with some default data.
6809 */
6810
6811 /* ~5 Mb/s real (802.11b) */
6812 range->throughput = 5 * 1000 * 1000;
6813
6814 // range->sensitivity; /* signal level threshold range */
6815
6816 range->max_qual.qual = 100;
6817 /* TODO: Find real max RSSI and stick here */
6818 range->max_qual.level = 0;
6819 range->max_qual.noise = 0;
6820 range->max_qual.updated = 7; /* Updated all three */
6821
6822 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6823 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6824 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6825 range->avg_qual.noise = 0;
6826 range->avg_qual.updated = 7; /* Updated all three */
6827
6828 range->num_bitrates = RATE_COUNT;
6829
6830 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6831 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6832 }
6833
6834 range->min_rts = MIN_RTS_THRESHOLD;
6835 range->max_rts = MAX_RTS_THRESHOLD;
6836 range->min_frag = MIN_FRAG_THRESHOLD;
6837 range->max_frag = MAX_FRAG_THRESHOLD;
6838
6839 range->min_pmp = period_duration[0]; /* Minimal PM period */
6840 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6841 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6842 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6843
6844 /* How to decode max/min PM period */
6845 range->pmp_flags = IW_POWER_PERIOD;
6846 /* How to decode max/min PM period */
6847 range->pmt_flags = IW_POWER_TIMEOUT;
6848 /* What PM options are supported */
6849 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6850
6851 range->encoding_size[0] = 5;
6852 range->encoding_size[1] = 13; /* Different token sizes */
6853 range->num_encoding_sizes = 2; /* Number of entry in the list */
6854 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6855 // range->encoding_login_index; /* token index for login token */
6856
6857 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6858 range->txpower_capa = IW_TXPOW_DBM;
6859 range->num_txpower = IW_MAX_TXPOWER;
6860 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6861 i < IW_MAX_TXPOWER;
6862 i++, level -=
6863 ((IPW_TX_POWER_MAX_DBM -
6864 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6865 range->txpower[i] = level / 16;
6866 } else {
6867 range->txpower_capa = 0;
6868 range->num_txpower = 0;
6869 }
6870
6871 /* Set the Wireless Extension versions */
6872 range->we_version_compiled = WIRELESS_EXT;
6873 range->we_version_source = 18;
6874
6875 // range->retry_capa; /* What retry options are supported */
6876 // range->retry_flags; /* How to decode max/min retry limit */
6877 // range->r_time_flags; /* How to decode max/min retry life */
6878 // range->min_retry; /* Minimal number of retries */
6879 // range->max_retry; /* Maximal number of retries */
6880 // range->min_r_time; /* Minimal retry lifetime */
6881 // range->max_r_time; /* Maximal retry lifetime */
6882
6883 range->num_channels = FREQ_COUNT;
6884
6885 val = 0;
6886 for (i = 0; i < FREQ_COUNT; i++) {
6887 // TODO: Include only legal frequencies for some countries
6888 // if (local->channel_mask & (1 << i)) {
6889 range->freq[val].i = i + 1;
6890 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6891 range->freq[val].e = 1;
6892 val++;
6893 // }
6894 if (val == IW_MAX_FREQUENCIES)
6895 break;
6896 }
6897 range->num_frequency = val;
6898
6899 /* Event capability (kernel + driver) */
6900 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6901 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6902 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6903
6904 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6905 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6906
6907 IPW_DEBUG_WX("GET Range\n");
6908
6909 return 0;
6910 }
6911
6912 static int ipw2100_wx_set_wap(struct net_device *dev,
6913 struct iw_request_info *info,
6914 union iwreq_data *wrqu, char *extra)
6915 {
6916 struct ipw2100_priv *priv = libipw_priv(dev);
6917 int err = 0;
6918
6919 // sanity checks
6920 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6921 return -EINVAL;
6922
6923 mutex_lock(&priv->action_mutex);
6924 if (!(priv->status & STATUS_INITIALIZED)) {
6925 err = -EIO;
6926 goto done;
6927 }
6928
6929 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6930 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6931 /* we disable mandatory BSSID association */
6932 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6933 priv->config &= ~CFG_STATIC_BSSID;
6934 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6935 goto done;
6936 }
6937
6938 priv->config |= CFG_STATIC_BSSID;
6939 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6940
6941 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6942
6943 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6944
6945 done:
6946 mutex_unlock(&priv->action_mutex);
6947 return err;
6948 }
6949
6950 static int ipw2100_wx_get_wap(struct net_device *dev,
6951 struct iw_request_info *info,
6952 union iwreq_data *wrqu, char *extra)
6953 {
6954 /*
6955 * This can be called at any time. No action lock required
6956 */
6957
6958 struct ipw2100_priv *priv = libipw_priv(dev);
6959
6960 /* If we are associated, trying to associate, or have a statically
6961 * configured BSSID then return that; otherwise return ANY */
6962 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6963 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6964 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6965 } else
6966 eth_zero_addr(wrqu->ap_addr.sa_data);
6967
6968 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6969 return 0;
6970 }
6971
6972 static int ipw2100_wx_set_essid(struct net_device *dev,
6973 struct iw_request_info *info,
6974 union iwreq_data *wrqu, char *extra)
6975 {
6976 struct ipw2100_priv *priv = libipw_priv(dev);
6977 char *essid = ""; /* ANY */
6978 int length = 0;
6979 int err = 0;
6980
6981 mutex_lock(&priv->action_mutex);
6982 if (!(priv->status & STATUS_INITIALIZED)) {
6983 err = -EIO;
6984 goto done;
6985 }
6986
6987 if (wrqu->essid.flags && wrqu->essid.length) {
6988 length = wrqu->essid.length;
6989 essid = extra;
6990 }
6991
6992 if (length == 0) {
6993 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6994 priv->config &= ~CFG_STATIC_ESSID;
6995 err = ipw2100_set_essid(priv, NULL, 0, 0);
6996 goto done;
6997 }
6998
6999 length = min(length, IW_ESSID_MAX_SIZE);
7000
7001 priv->config |= CFG_STATIC_ESSID;
7002
7003 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7004 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7005 err = 0;
7006 goto done;
7007 }
7008
7009 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7010
7011 priv->essid_len = length;
7012 memcpy(priv->essid, essid, priv->essid_len);
7013
7014 err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016 done:
7017 mutex_unlock(&priv->action_mutex);
7018 return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022 struct iw_request_info *info,
7023 union iwreq_data *wrqu, char *extra)
7024 {
7025 /*
7026 * This can be called at any time. No action lock required
7027 */
7028
7029 struct ipw2100_priv *priv = libipw_priv(dev);
7030
7031 /* If we are associated, trying to associate, or have a statically
7032 * configured ESSID then return that; otherwise return ANY */
7033 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7034 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7035 priv->essid_len, priv->essid);
7036 memcpy(extra, priv->essid, priv->essid_len);
7037 wrqu->essid.length = priv->essid_len;
7038 wrqu->essid.flags = 1; /* active */
7039 } else {
7040 IPW_DEBUG_WX("Getting essid: ANY\n");
7041 wrqu->essid.length = 0;
7042 wrqu->essid.flags = 0; /* active */
7043 }
7044
7045 return 0;
7046 }
7047
7048 static int ipw2100_wx_set_nick(struct net_device *dev,
7049 struct iw_request_info *info,
7050 union iwreq_data *wrqu, char *extra)
7051 {
7052 /*
7053 * This can be called at any time. No action lock required
7054 */
7055
7056 struct ipw2100_priv *priv = libipw_priv(dev);
7057
7058 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7059 return -E2BIG;
7060
7061 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7062 memset(priv->nick, 0, sizeof(priv->nick));
7063 memcpy(priv->nick, extra, wrqu->data.length);
7064
7065 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7066
7067 return 0;
7068 }
7069
7070 static int ipw2100_wx_get_nick(struct net_device *dev,
7071 struct iw_request_info *info,
7072 union iwreq_data *wrqu, char *extra)
7073 {
7074 /*
7075 * This can be called at any time. No action lock required
7076 */
7077
7078 struct ipw2100_priv *priv = libipw_priv(dev);
7079
7080 wrqu->data.length = strlen(priv->nick);
7081 memcpy(extra, priv->nick, wrqu->data.length);
7082 wrqu->data.flags = 1; /* active */
7083
7084 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7085
7086 return 0;
7087 }
7088
7089 static int ipw2100_wx_set_rate(struct net_device *dev,
7090 struct iw_request_info *info,
7091 union iwreq_data *wrqu, char *extra)
7092 {
7093 struct ipw2100_priv *priv = libipw_priv(dev);
7094 u32 target_rate = wrqu->bitrate.value;
7095 u32 rate;
7096 int err = 0;
7097
7098 mutex_lock(&priv->action_mutex);
7099 if (!(priv->status & STATUS_INITIALIZED)) {
7100 err = -EIO;
7101 goto done;
7102 }
7103
7104 rate = 0;
7105
7106 if (target_rate == 1000000 ||
7107 (!wrqu->bitrate.fixed && target_rate > 1000000))
7108 rate |= TX_RATE_1_MBIT;
7109 if (target_rate == 2000000 ||
7110 (!wrqu->bitrate.fixed && target_rate > 2000000))
7111 rate |= TX_RATE_2_MBIT;
7112 if (target_rate == 5500000 ||
7113 (!wrqu->bitrate.fixed && target_rate > 5500000))
7114 rate |= TX_RATE_5_5_MBIT;
7115 if (target_rate == 11000000 ||
7116 (!wrqu->bitrate.fixed && target_rate > 11000000))
7117 rate |= TX_RATE_11_MBIT;
7118 if (rate == 0)
7119 rate = DEFAULT_TX_RATES;
7120
7121 err = ipw2100_set_tx_rates(priv, rate, 0);
7122
7123 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7124 done:
7125 mutex_unlock(&priv->action_mutex);
7126 return err;
7127 }
7128
7129 static int ipw2100_wx_get_rate(struct net_device *dev,
7130 struct iw_request_info *info,
7131 union iwreq_data *wrqu, char *extra)
7132 {
7133 struct ipw2100_priv *priv = libipw_priv(dev);
7134 int val;
7135 unsigned int len = sizeof(val);
7136 int err = 0;
7137
7138 if (!(priv->status & STATUS_ENABLED) ||
7139 priv->status & STATUS_RF_KILL_MASK ||
7140 !(priv->status & STATUS_ASSOCIATED)) {
7141 wrqu->bitrate.value = 0;
7142 return 0;
7143 }
7144
7145 mutex_lock(&priv->action_mutex);
7146 if (!(priv->status & STATUS_INITIALIZED)) {
7147 err = -EIO;
7148 goto done;
7149 }
7150
7151 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7152 if (err) {
7153 IPW_DEBUG_WX("failed querying ordinals.\n");
7154 goto done;
7155 }
7156
7157 switch (val & TX_RATE_MASK) {
7158 case TX_RATE_1_MBIT:
7159 wrqu->bitrate.value = 1000000;
7160 break;
7161 case TX_RATE_2_MBIT:
7162 wrqu->bitrate.value = 2000000;
7163 break;
7164 case TX_RATE_5_5_MBIT:
7165 wrqu->bitrate.value = 5500000;
7166 break;
7167 case TX_RATE_11_MBIT:
7168 wrqu->bitrate.value = 11000000;
7169 break;
7170 default:
7171 wrqu->bitrate.value = 0;
7172 }
7173
7174 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7175
7176 done:
7177 mutex_unlock(&priv->action_mutex);
7178 return err;
7179 }
7180
7181 static int ipw2100_wx_set_rts(struct net_device *dev,
7182 struct iw_request_info *info,
7183 union iwreq_data *wrqu, char *extra)
7184 {
7185 struct ipw2100_priv *priv = libipw_priv(dev);
7186 int value, err;
7187
7188 /* Auto RTS not yet supported */
7189 if (wrqu->rts.fixed == 0)
7190 return -EINVAL;
7191
7192 mutex_lock(&priv->action_mutex);
7193 if (!(priv->status & STATUS_INITIALIZED)) {
7194 err = -EIO;
7195 goto done;
7196 }
7197
7198 if (wrqu->rts.disabled)
7199 value = priv->rts_threshold | RTS_DISABLED;
7200 else {
7201 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7202 err = -EINVAL;
7203 goto done;
7204 }
7205 value = wrqu->rts.value;
7206 }
7207
7208 err = ipw2100_set_rts_threshold(priv, value);
7209
7210 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7211 done:
7212 mutex_unlock(&priv->action_mutex);
7213 return err;
7214 }
7215
7216 static int ipw2100_wx_get_rts(struct net_device *dev,
7217 struct iw_request_info *info,
7218 union iwreq_data *wrqu, char *extra)
7219 {
7220 /*
7221 * This can be called at any time. No action lock required
7222 */
7223
7224 struct ipw2100_priv *priv = libipw_priv(dev);
7225
7226 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7227 wrqu->rts.fixed = 1; /* no auto select */
7228
7229 /* If RTS is set to the default value, then it is disabled */
7230 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7231
7232 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7233
7234 return 0;
7235 }
7236
7237 static int ipw2100_wx_set_txpow(struct net_device *dev,
7238 struct iw_request_info *info,
7239 union iwreq_data *wrqu, char *extra)
7240 {
7241 struct ipw2100_priv *priv = libipw_priv(dev);
7242 int err = 0, value;
7243
7244 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7245 return -EINPROGRESS;
7246
7247 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7248 return 0;
7249
7250 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7251 return -EINVAL;
7252
7253 if (wrqu->txpower.fixed == 0)
7254 value = IPW_TX_POWER_DEFAULT;
7255 else {
7256 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7257 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7258 return -EINVAL;
7259
7260 value = wrqu->txpower.value;
7261 }
7262
7263 mutex_lock(&priv->action_mutex);
7264 if (!(priv->status & STATUS_INITIALIZED)) {
7265 err = -EIO;
7266 goto done;
7267 }
7268
7269 err = ipw2100_set_tx_power(priv, value);
7270
7271 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7272
7273 done:
7274 mutex_unlock(&priv->action_mutex);
7275 return err;
7276 }
7277
7278 static int ipw2100_wx_get_txpow(struct net_device *dev,
7279 struct iw_request_info *info,
7280 union iwreq_data *wrqu, char *extra)
7281 {
7282 /*
7283 * This can be called at any time. No action lock required
7284 */
7285
7286 struct ipw2100_priv *priv = libipw_priv(dev);
7287
7288 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7289
7290 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7291 wrqu->txpower.fixed = 0;
7292 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7293 } else {
7294 wrqu->txpower.fixed = 1;
7295 wrqu->txpower.value = priv->tx_power;
7296 }
7297
7298 wrqu->txpower.flags = IW_TXPOW_DBM;
7299
7300 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7301
7302 return 0;
7303 }
7304
7305 static int ipw2100_wx_set_frag(struct net_device *dev,
7306 struct iw_request_info *info,
7307 union iwreq_data *wrqu, char *extra)
7308 {
7309 /*
7310 * This can be called at any time. No action lock required
7311 */
7312
7313 struct ipw2100_priv *priv = libipw_priv(dev);
7314
7315 if (!wrqu->frag.fixed)
7316 return -EINVAL;
7317
7318 if (wrqu->frag.disabled) {
7319 priv->frag_threshold |= FRAG_DISABLED;
7320 priv->ieee->fts = DEFAULT_FTS;
7321 } else {
7322 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7323 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7324 return -EINVAL;
7325
7326 priv->ieee->fts = wrqu->frag.value & ~0x1;
7327 priv->frag_threshold = priv->ieee->fts;
7328 }
7329
7330 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7331
7332 return 0;
7333 }
7334
7335 static int ipw2100_wx_get_frag(struct net_device *dev,
7336 struct iw_request_info *info,
7337 union iwreq_data *wrqu, char *extra)
7338 {
7339 /*
7340 * This can be called at any time. No action lock required
7341 */
7342
7343 struct ipw2100_priv *priv = libipw_priv(dev);
7344 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7345 wrqu->frag.fixed = 0; /* no auto select */
7346 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7347
7348 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7349
7350 return 0;
7351 }
7352
7353 static int ipw2100_wx_set_retry(struct net_device *dev,
7354 struct iw_request_info *info,
7355 union iwreq_data *wrqu, char *extra)
7356 {
7357 struct ipw2100_priv *priv = libipw_priv(dev);
7358 int err = 0;
7359
7360 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7361 return -EINVAL;
7362
7363 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7364 return 0;
7365
7366 mutex_lock(&priv->action_mutex);
7367 if (!(priv->status & STATUS_INITIALIZED)) {
7368 err = -EIO;
7369 goto done;
7370 }
7371
7372 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7373 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7375 wrqu->retry.value);
7376 goto done;
7377 }
7378
7379 if (wrqu->retry.flags & IW_RETRY_LONG) {
7380 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7381 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7382 wrqu->retry.value);
7383 goto done;
7384 }
7385
7386 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7387 if (!err)
7388 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7389
7390 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7391
7392 done:
7393 mutex_unlock(&priv->action_mutex);
7394 return err;
7395 }
7396
7397 static int ipw2100_wx_get_retry(struct net_device *dev,
7398 struct iw_request_info *info,
7399 union iwreq_data *wrqu, char *extra)
7400 {
7401 /*
7402 * This can be called at any time. No action lock required
7403 */
7404
7405 struct ipw2100_priv *priv = libipw_priv(dev);
7406
7407 wrqu->retry.disabled = 0; /* can't be disabled */
7408
7409 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7410 return -EINVAL;
7411
7412 if (wrqu->retry.flags & IW_RETRY_LONG) {
7413 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7414 wrqu->retry.value = priv->long_retry_limit;
7415 } else {
7416 wrqu->retry.flags =
7417 (priv->short_retry_limit !=
7418 priv->long_retry_limit) ?
7419 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7420
7421 wrqu->retry.value = priv->short_retry_limit;
7422 }
7423
7424 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7425
7426 return 0;
7427 }
7428
7429 static int ipw2100_wx_set_scan(struct net_device *dev,
7430 struct iw_request_info *info,
7431 union iwreq_data *wrqu, char *extra)
7432 {
7433 struct ipw2100_priv *priv = libipw_priv(dev);
7434 int err = 0;
7435
7436 mutex_lock(&priv->action_mutex);
7437 if (!(priv->status & STATUS_INITIALIZED)) {
7438 err = -EIO;
7439 goto done;
7440 }
7441
7442 IPW_DEBUG_WX("Initiating scan...\n");
7443
7444 priv->user_requested_scan = 1;
7445 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7446 IPW_DEBUG_WX("Start scan failed.\n");
7447
7448 /* TODO: Mark a scan as pending so when hardware initialized
7449 * a scan starts */
7450 }
7451
7452 done:
7453 mutex_unlock(&priv->action_mutex);
7454 return err;
7455 }
7456
7457 static int ipw2100_wx_get_scan(struct net_device *dev,
7458 struct iw_request_info *info,
7459 union iwreq_data *wrqu, char *extra)
7460 {
7461 /*
7462 * This can be called at any time. No action lock required
7463 */
7464
7465 struct ipw2100_priv *priv = libipw_priv(dev);
7466 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7467 }
7468
7469 /*
7470 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7471 */
7472 static int ipw2100_wx_set_encode(struct net_device *dev,
7473 struct iw_request_info *info,
7474 union iwreq_data *wrqu, char *key)
7475 {
7476 /*
7477 * No check of STATUS_INITIALIZED required
7478 */
7479
7480 struct ipw2100_priv *priv = libipw_priv(dev);
7481 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7482 }
7483
7484 static int ipw2100_wx_get_encode(struct net_device *dev,
7485 struct iw_request_info *info,
7486 union iwreq_data *wrqu, char *key)
7487 {
7488 /*
7489 * This can be called at any time. No action lock required
7490 */
7491
7492 struct ipw2100_priv *priv = libipw_priv(dev);
7493 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7494 }
7495
7496 static int ipw2100_wx_set_power(struct net_device *dev,
7497 struct iw_request_info *info,
7498 union iwreq_data *wrqu, char *extra)
7499 {
7500 struct ipw2100_priv *priv = libipw_priv(dev);
7501 int err = 0;
7502
7503 mutex_lock(&priv->action_mutex);
7504 if (!(priv->status & STATUS_INITIALIZED)) {
7505 err = -EIO;
7506 goto done;
7507 }
7508
7509 if (wrqu->power.disabled) {
7510 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7511 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7512 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7513 goto done;
7514 }
7515
7516 switch (wrqu->power.flags & IW_POWER_MODE) {
7517 case IW_POWER_ON: /* If not specified */
7518 case IW_POWER_MODE: /* If set all mask */
7519 case IW_POWER_ALL_R: /* If explicitly state all */
7520 break;
7521 default: /* Otherwise we don't support it */
7522 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7523 wrqu->power.flags);
7524 err = -EOPNOTSUPP;
7525 goto done;
7526 }
7527
7528 /* If the user hasn't specified a power management mode yet, default
7529 * to BATTERY */
7530 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7531 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7532
7533 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7534
7535 done:
7536 mutex_unlock(&priv->action_mutex);
7537 return err;
7538
7539 }
7540
7541 static int ipw2100_wx_get_power(struct net_device *dev,
7542 struct iw_request_info *info,
7543 union iwreq_data *wrqu, char *extra)
7544 {
7545 /*
7546 * This can be called at any time. No action lock required
7547 */
7548
7549 struct ipw2100_priv *priv = libipw_priv(dev);
7550
7551 if (!(priv->power_mode & IPW_POWER_ENABLED))
7552 wrqu->power.disabled = 1;
7553 else {
7554 wrqu->power.disabled = 0;
7555 wrqu->power.flags = 0;
7556 }
7557
7558 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7559
7560 return 0;
7561 }
7562
7563 /*
7564 * WE-18 WPA support
7565 */
7566
7567 /* SIOCSIWGENIE */
7568 static int ipw2100_wx_set_genie(struct net_device *dev,
7569 struct iw_request_info *info,
7570 union iwreq_data *wrqu, char *extra)
7571 {
7572
7573 struct ipw2100_priv *priv = libipw_priv(dev);
7574 struct libipw_device *ieee = priv->ieee;
7575 u8 *buf;
7576
7577 if (!ieee->wpa_enabled)
7578 return -EOPNOTSUPP;
7579
7580 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7581 (wrqu->data.length && extra == NULL))
7582 return -EINVAL;
7583
7584 if (wrqu->data.length) {
7585 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7586 if (buf == NULL)
7587 return -ENOMEM;
7588
7589 kfree(ieee->wpa_ie);
7590 ieee->wpa_ie = buf;
7591 ieee->wpa_ie_len = wrqu->data.length;
7592 } else {
7593 kfree(ieee->wpa_ie);
7594 ieee->wpa_ie = NULL;
7595 ieee->wpa_ie_len = 0;
7596 }
7597
7598 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7599
7600 return 0;
7601 }
7602
7603 /* SIOCGIWGENIE */
7604 static int ipw2100_wx_get_genie(struct net_device *dev,
7605 struct iw_request_info *info,
7606 union iwreq_data *wrqu, char *extra)
7607 {
7608 struct ipw2100_priv *priv = libipw_priv(dev);
7609 struct libipw_device *ieee = priv->ieee;
7610
7611 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7612 wrqu->data.length = 0;
7613 return 0;
7614 }
7615
7616 if (wrqu->data.length < ieee->wpa_ie_len)
7617 return -E2BIG;
7618
7619 wrqu->data.length = ieee->wpa_ie_len;
7620 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7621
7622 return 0;
7623 }
7624
7625 /* SIOCSIWAUTH */
7626 static int ipw2100_wx_set_auth(struct net_device *dev,
7627 struct iw_request_info *info,
7628 union iwreq_data *wrqu, char *extra)
7629 {
7630 struct ipw2100_priv *priv = libipw_priv(dev);
7631 struct libipw_device *ieee = priv->ieee;
7632 struct iw_param *param = &wrqu->param;
7633 struct lib80211_crypt_data *crypt;
7634 unsigned long flags;
7635 int ret = 0;
7636
7637 switch (param->flags & IW_AUTH_INDEX) {
7638 case IW_AUTH_WPA_VERSION:
7639 case IW_AUTH_CIPHER_PAIRWISE:
7640 case IW_AUTH_CIPHER_GROUP:
7641 case IW_AUTH_KEY_MGMT:
7642 /*
7643 * ipw2200 does not use these parameters
7644 */
7645 break;
7646
7647 case IW_AUTH_TKIP_COUNTERMEASURES:
7648 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7649 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7650 break;
7651
7652 flags = crypt->ops->get_flags(crypt->priv);
7653
7654 if (param->value)
7655 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656 else
7657 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7658
7659 crypt->ops->set_flags(flags, crypt->priv);
7660
7661 break;
7662
7663 case IW_AUTH_DROP_UNENCRYPTED:{
7664 /* HACK:
7665 *
7666 * wpa_supplicant calls set_wpa_enabled when the driver
7667 * is loaded and unloaded, regardless of if WPA is being
7668 * used. No other calls are made which can be used to
7669 * determine if encryption will be used or not prior to
7670 * association being expected. If encryption is not being
7671 * used, drop_unencrypted is set to false, else true -- we
7672 * can use this to determine if the CAP_PRIVACY_ON bit should
7673 * be set.
7674 */
7675 struct libipw_security sec = {
7676 .flags = SEC_ENABLED,
7677 .enabled = param->value,
7678 };
7679 priv->ieee->drop_unencrypted = param->value;
7680 /* We only change SEC_LEVEL for open mode. Others
7681 * are set by ipw_wpa_set_encryption.
7682 */
7683 if (!param->value) {
7684 sec.flags |= SEC_LEVEL;
7685 sec.level = SEC_LEVEL_0;
7686 } else {
7687 sec.flags |= SEC_LEVEL;
7688 sec.level = SEC_LEVEL_1;
7689 }
7690 if (priv->ieee->set_security)
7691 priv->ieee->set_security(priv->ieee->dev, &sec);
7692 break;
7693 }
7694
7695 case IW_AUTH_80211_AUTH_ALG:
7696 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7697 break;
7698
7699 case IW_AUTH_WPA_ENABLED:
7700 ret = ipw2100_wpa_enable(priv, param->value);
7701 break;
7702
7703 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7704 ieee->ieee802_1x = param->value;
7705 break;
7706
7707 //case IW_AUTH_ROAMING_CONTROL:
7708 case IW_AUTH_PRIVACY_INVOKED:
7709 ieee->privacy_invoked = param->value;
7710 break;
7711
7712 default:
7713 return -EOPNOTSUPP;
7714 }
7715 return ret;
7716 }
7717
7718 /* SIOCGIWAUTH */
7719 static int ipw2100_wx_get_auth(struct net_device *dev,
7720 struct iw_request_info *info,
7721 union iwreq_data *wrqu, char *extra)
7722 {
7723 struct ipw2100_priv *priv = libipw_priv(dev);
7724 struct libipw_device *ieee = priv->ieee;
7725 struct lib80211_crypt_data *crypt;
7726 struct iw_param *param = &wrqu->param;
7727 int ret = 0;
7728
7729 switch (param->flags & IW_AUTH_INDEX) {
7730 case IW_AUTH_WPA_VERSION:
7731 case IW_AUTH_CIPHER_PAIRWISE:
7732 case IW_AUTH_CIPHER_GROUP:
7733 case IW_AUTH_KEY_MGMT:
7734 /*
7735 * wpa_supplicant will control these internally
7736 */
7737 ret = -EOPNOTSUPP;
7738 break;
7739
7740 case IW_AUTH_TKIP_COUNTERMEASURES:
7741 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7742 if (!crypt || !crypt->ops->get_flags) {
7743 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7744 "crypt not set!\n");
7745 break;
7746 }
7747
7748 param->value = (crypt->ops->get_flags(crypt->priv) &
7749 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7750
7751 break;
7752
7753 case IW_AUTH_DROP_UNENCRYPTED:
7754 param->value = ieee->drop_unencrypted;
7755 break;
7756
7757 case IW_AUTH_80211_AUTH_ALG:
7758 param->value = priv->ieee->sec.auth_mode;
7759 break;
7760
7761 case IW_AUTH_WPA_ENABLED:
7762 param->value = ieee->wpa_enabled;
7763 break;
7764
7765 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7766 param->value = ieee->ieee802_1x;
7767 break;
7768
7769 case IW_AUTH_ROAMING_CONTROL:
7770 case IW_AUTH_PRIVACY_INVOKED:
7771 param->value = ieee->privacy_invoked;
7772 break;
7773
7774 default:
7775 return -EOPNOTSUPP;
7776 }
7777 return 0;
7778 }
7779
7780 /* SIOCSIWENCODEEXT */
7781 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7782 struct iw_request_info *info,
7783 union iwreq_data *wrqu, char *extra)
7784 {
7785 struct ipw2100_priv *priv = libipw_priv(dev);
7786 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7787 }
7788
7789 /* SIOCGIWENCODEEXT */
7790 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7791 struct iw_request_info *info,
7792 union iwreq_data *wrqu, char *extra)
7793 {
7794 struct ipw2100_priv *priv = libipw_priv(dev);
7795 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7796 }
7797
7798 /* SIOCSIWMLME */
7799 static int ipw2100_wx_set_mlme(struct net_device *dev,
7800 struct iw_request_info *info,
7801 union iwreq_data *wrqu, char *extra)
7802 {
7803 struct ipw2100_priv *priv = libipw_priv(dev);
7804 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7805 __le16 reason;
7806
7807 reason = cpu_to_le16(mlme->reason_code);
7808
7809 switch (mlme->cmd) {
7810 case IW_MLME_DEAUTH:
7811 // silently ignore
7812 break;
7813
7814 case IW_MLME_DISASSOC:
7815 ipw2100_disassociate_bssid(priv);
7816 break;
7817
7818 default:
7819 return -EOPNOTSUPP;
7820 }
7821 return 0;
7822 }
7823
7824 /*
7825 *
7826 * IWPRIV handlers
7827 *
7828 */
7829 #ifdef CONFIG_IPW2100_MONITOR
7830 static int ipw2100_wx_set_promisc(struct net_device *dev,
7831 struct iw_request_info *info,
7832 union iwreq_data *wrqu, char *extra)
7833 {
7834 struct ipw2100_priv *priv = libipw_priv(dev);
7835 int *parms = (int *)extra;
7836 int enable = (parms[0] > 0);
7837 int err = 0;
7838
7839 mutex_lock(&priv->action_mutex);
7840 if (!(priv->status & STATUS_INITIALIZED)) {
7841 err = -EIO;
7842 goto done;
7843 }
7844
7845 if (enable) {
7846 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7847 err = ipw2100_set_channel(priv, parms[1], 0);
7848 goto done;
7849 }
7850 priv->channel = parms[1];
7851 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7852 } else {
7853 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7854 err = ipw2100_switch_mode(priv, priv->last_mode);
7855 }
7856 done:
7857 mutex_unlock(&priv->action_mutex);
7858 return err;
7859 }
7860
7861 static int ipw2100_wx_reset(struct net_device *dev,
7862 struct iw_request_info *info,
7863 union iwreq_data *wrqu, char *extra)
7864 {
7865 struct ipw2100_priv *priv = libipw_priv(dev);
7866 if (priv->status & STATUS_INITIALIZED)
7867 schedule_reset(priv);
7868 return 0;
7869 }
7870
7871 #endif
7872
7873 static int ipw2100_wx_set_powermode(struct net_device *dev,
7874 struct iw_request_info *info,
7875 union iwreq_data *wrqu, char *extra)
7876 {
7877 struct ipw2100_priv *priv = libipw_priv(dev);
7878 int err = 0, mode = *(int *)extra;
7879
7880 mutex_lock(&priv->action_mutex);
7881 if (!(priv->status & STATUS_INITIALIZED)) {
7882 err = -EIO;
7883 goto done;
7884 }
7885
7886 if ((mode < 0) || (mode > POWER_MODES))
7887 mode = IPW_POWER_AUTO;
7888
7889 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7890 err = ipw2100_set_power_mode(priv, mode);
7891 done:
7892 mutex_unlock(&priv->action_mutex);
7893 return err;
7894 }
7895
7896 #define MAX_POWER_STRING 80
7897 static int ipw2100_wx_get_powermode(struct net_device *dev,
7898 struct iw_request_info *info,
7899 union iwreq_data *wrqu, char *extra)
7900 {
7901 /*
7902 * This can be called at any time. No action lock required
7903 */
7904
7905 struct ipw2100_priv *priv = libipw_priv(dev);
7906 int level = IPW_POWER_LEVEL(priv->power_mode);
7907 s32 timeout, period;
7908
7909 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d (Off)", level);
7912 } else {
7913 switch (level) {
7914 case IPW_POWER_MODE_CAM:
7915 snprintf(extra, MAX_POWER_STRING,
7916 "Power save level: %d (None)", level);
7917 break;
7918 case IPW_POWER_AUTO:
7919 snprintf(extra, MAX_POWER_STRING,
7920 "Power save level: %d (Auto)", level);
7921 break;
7922 default:
7923 timeout = timeout_duration[level - 1] / 1000;
7924 period = period_duration[level - 1] / 1000;
7925 snprintf(extra, MAX_POWER_STRING,
7926 "Power save level: %d "
7927 "(Timeout %dms, Period %dms)",
7928 level, timeout, period);
7929 }
7930 }
7931
7932 wrqu->data.length = strlen(extra) + 1;
7933
7934 return 0;
7935 }
7936
7937 static int ipw2100_wx_set_preamble(struct net_device *dev,
7938 struct iw_request_info *info,
7939 union iwreq_data *wrqu, char *extra)
7940 {
7941 struct ipw2100_priv *priv = libipw_priv(dev);
7942 int err, mode = *(int *)extra;
7943
7944 mutex_lock(&priv->action_mutex);
7945 if (!(priv->status & STATUS_INITIALIZED)) {
7946 err = -EIO;
7947 goto done;
7948 }
7949
7950 if (mode == 1)
7951 priv->config |= CFG_LONG_PREAMBLE;
7952 else if (mode == 0)
7953 priv->config &= ~CFG_LONG_PREAMBLE;
7954 else {
7955 err = -EINVAL;
7956 goto done;
7957 }
7958
7959 err = ipw2100_system_config(priv, 0);
7960
7961 done:
7962 mutex_unlock(&priv->action_mutex);
7963 return err;
7964 }
7965
7966 static int ipw2100_wx_get_preamble(struct net_device *dev,
7967 struct iw_request_info *info,
7968 union iwreq_data *wrqu, char *extra)
7969 {
7970 /*
7971 * This can be called at any time. No action lock required
7972 */
7973
7974 struct ipw2100_priv *priv = libipw_priv(dev);
7975
7976 if (priv->config & CFG_LONG_PREAMBLE)
7977 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7978 else
7979 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7980
7981 return 0;
7982 }
7983
7984 #ifdef CONFIG_IPW2100_MONITOR
7985 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7986 struct iw_request_info *info,
7987 union iwreq_data *wrqu, char *extra)
7988 {
7989 struct ipw2100_priv *priv = libipw_priv(dev);
7990 int err, mode = *(int *)extra;
7991
7992 mutex_lock(&priv->action_mutex);
7993 if (!(priv->status & STATUS_INITIALIZED)) {
7994 err = -EIO;
7995 goto done;
7996 }
7997
7998 if (mode == 1)
7999 priv->config |= CFG_CRC_CHECK;
8000 else if (mode == 0)
8001 priv->config &= ~CFG_CRC_CHECK;
8002 else {
8003 err = -EINVAL;
8004 goto done;
8005 }
8006 err = 0;
8007
8008 done:
8009 mutex_unlock(&priv->action_mutex);
8010 return err;
8011 }
8012
8013 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8014 struct iw_request_info *info,
8015 union iwreq_data *wrqu, char *extra)
8016 {
8017 /*
8018 * This can be called at any time. No action lock required
8019 */
8020
8021 struct ipw2100_priv *priv = libipw_priv(dev);
8022
8023 if (priv->config & CFG_CRC_CHECK)
8024 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8025 else
8026 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8027
8028 return 0;
8029 }
8030 #endif /* CONFIG_IPW2100_MONITOR */
8031
8032 static iw_handler ipw2100_wx_handlers[] = {
8033 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8034 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8035 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8036 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8037 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8038 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8039 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8040 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8041 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8042 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8043 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8044 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8045 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8046 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8047 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8048 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8049 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8050 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8051 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8052 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8053 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8054 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8055 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8056 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8057 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8058 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8059 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8060 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8061 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8062 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8063 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8064 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8065 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8066 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8067 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8068 };
8069
8070 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8071 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8072 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8073 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8074 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8075 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8076 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8077 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8078
8079 static const struct iw_priv_args ipw2100_private_args[] = {
8080
8081 #ifdef CONFIG_IPW2100_MONITOR
8082 {
8083 IPW2100_PRIV_SET_MONITOR,
8084 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8085 {
8086 IPW2100_PRIV_RESET,
8087 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8088 #endif /* CONFIG_IPW2100_MONITOR */
8089
8090 {
8091 IPW2100_PRIV_SET_POWER,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8093 {
8094 IPW2100_PRIV_GET_POWER,
8095 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8096 "get_power"},
8097 {
8098 IPW2100_PRIV_SET_LONGPREAMBLE,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8100 {
8101 IPW2100_PRIV_GET_LONGPREAMBLE,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8103 #ifdef CONFIG_IPW2100_MONITOR
8104 {
8105 IPW2100_PRIV_SET_CRC_CHECK,
8106 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8107 {
8108 IPW2100_PRIV_GET_CRC_CHECK,
8109 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8110 #endif /* CONFIG_IPW2100_MONITOR */
8111 };
8112
8113 static iw_handler ipw2100_private_handler[] = {
8114 #ifdef CONFIG_IPW2100_MONITOR
8115 ipw2100_wx_set_promisc,
8116 ipw2100_wx_reset,
8117 #else /* CONFIG_IPW2100_MONITOR */
8118 NULL,
8119 NULL,
8120 #endif /* CONFIG_IPW2100_MONITOR */
8121 ipw2100_wx_set_powermode,
8122 ipw2100_wx_get_powermode,
8123 ipw2100_wx_set_preamble,
8124 ipw2100_wx_get_preamble,
8125 #ifdef CONFIG_IPW2100_MONITOR
8126 ipw2100_wx_set_crc_check,
8127 ipw2100_wx_get_crc_check,
8128 #else /* CONFIG_IPW2100_MONITOR */
8129 NULL,
8130 NULL,
8131 #endif /* CONFIG_IPW2100_MONITOR */
8132 };
8133
8134 /*
8135 * Get wireless statistics.
8136 * Called by /proc/net/wireless
8137 * Also called by SIOCGIWSTATS
8138 */
8139 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8140 {
8141 enum {
8142 POOR = 30,
8143 FAIR = 60,
8144 GOOD = 80,
8145 VERY_GOOD = 90,
8146 EXCELLENT = 95,
8147 PERFECT = 100
8148 };
8149 int rssi_qual;
8150 int tx_qual;
8151 int beacon_qual;
8152 int quality;
8153
8154 struct ipw2100_priv *priv = libipw_priv(dev);
8155 struct iw_statistics *wstats;
8156 u32 rssi, tx_retries, missed_beacons, tx_failures;
8157 u32 ord_len = sizeof(u32);
8158
8159 if (!priv)
8160 return (struct iw_statistics *)NULL;
8161
8162 wstats = &priv->wstats;
8163
8164 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8165 * ipw2100_wx_wireless_stats seems to be called before fw is
8166 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8167 * and associated; if not associcated, the values are all meaningless
8168 * anyway, so set them all to NULL and INVALID */
8169 if (!(priv->status & STATUS_ASSOCIATED)) {
8170 wstats->miss.beacon = 0;
8171 wstats->discard.retries = 0;
8172 wstats->qual.qual = 0;
8173 wstats->qual.level = 0;
8174 wstats->qual.noise = 0;
8175 wstats->qual.updated = 7;
8176 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8177 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8178 return wstats;
8179 }
8180
8181 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8182 &missed_beacons, &ord_len))
8183 goto fail_get_ordinal;
8184
8185 /* If we don't have a connection the quality and level is 0 */
8186 if (!(priv->status & STATUS_ASSOCIATED)) {
8187 wstats->qual.qual = 0;
8188 wstats->qual.level = 0;
8189 } else {
8190 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8191 &rssi, &ord_len))
8192 goto fail_get_ordinal;
8193 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8194 if (rssi < 10)
8195 rssi_qual = rssi * POOR / 10;
8196 else if (rssi < 15)
8197 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8198 else if (rssi < 20)
8199 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8200 else if (rssi < 30)
8201 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8202 10 + GOOD;
8203 else
8204 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8205 10 + VERY_GOOD;
8206
8207 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8208 &tx_retries, &ord_len))
8209 goto fail_get_ordinal;
8210
8211 if (tx_retries > 75)
8212 tx_qual = (90 - tx_retries) * POOR / 15;
8213 else if (tx_retries > 70)
8214 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8215 else if (tx_retries > 65)
8216 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8217 else if (tx_retries > 50)
8218 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8219 15 + GOOD;
8220 else
8221 tx_qual = (50 - tx_retries) *
8222 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8223
8224 if (missed_beacons > 50)
8225 beacon_qual = (60 - missed_beacons) * POOR / 10;
8226 else if (missed_beacons > 40)
8227 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8228 10 + POOR;
8229 else if (missed_beacons > 32)
8230 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8231 18 + FAIR;
8232 else if (missed_beacons > 20)
8233 beacon_qual = (32 - missed_beacons) *
8234 (VERY_GOOD - GOOD) / 20 + GOOD;
8235 else
8236 beacon_qual = (20 - missed_beacons) *
8237 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8238
8239 quality = min(tx_qual, rssi_qual);
8240 quality = min(beacon_qual, quality);
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243 if (beacon_qual == quality)
8244 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245 else if (tx_qual == quality)
8246 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247 else if (quality != 100)
8248 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249 else
8250 IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253 wstats->qual.qual = quality;
8254 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255 }
8256
8257 wstats->qual.noise = 0;
8258 wstats->qual.updated = 7;
8259 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261 /* FIXME: this is percent and not a # */
8262 wstats->miss.beacon = missed_beacons;
8263
8264 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265 &tx_failures, &ord_len))
8266 goto fail_get_ordinal;
8267 wstats->discard.retries = tx_failures;
8268
8269 return wstats;
8270
8271 fail_get_ordinal:
8272 IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274 return (struct iw_statistics *)NULL;
8275 }
8276
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278 .standard = ipw2100_wx_handlers,
8279 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8280 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8281 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8282 .private = (iw_handler *) ipw2100_private_handler,
8283 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284 .get_wireless_stats = ipw2100_wx_wireless_stats,
8285 };
8286
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8288 {
8289 struct ipw2100_priv *priv =
8290 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291 union iwreq_data wrqu;
8292 unsigned int len = ETH_ALEN;
8293
8294 if (priv->status & STATUS_STOPPING)
8295 return;
8296
8297 mutex_lock(&priv->action_mutex);
8298
8299 IPW_DEBUG_WX("enter\n");
8300
8301 mutex_unlock(&priv->action_mutex);
8302
8303 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305 /* Fetch BSSID from the hardware */
8306 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307 priv->status & STATUS_RF_KILL_MASK ||
8308 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309 &priv->bssid, &len)) {
8310 eth_zero_addr(wrqu.ap_addr.sa_data);
8311 } else {
8312 /* We now have the BSSID, so can finish setting to the full
8313 * associated state */
8314 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316 priv->status &= ~STATUS_ASSOCIATING;
8317 priv->status |= STATUS_ASSOCIATED;
8318 netif_carrier_on(priv->net_dev);
8319 netif_wake_queue(priv->net_dev);
8320 }
8321
8322 if (!(priv->status & STATUS_ASSOCIATED)) {
8323 IPW_DEBUG_WX("Configuring ESSID\n");
8324 mutex_lock(&priv->action_mutex);
8325 /* This is a disassociation event, so kick the firmware to
8326 * look for another AP */
8327 if (priv->config & CFG_STATIC_ESSID)
8328 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329 0);
8330 else
8331 ipw2100_set_essid(priv, NULL, 0, 0);
8332 mutex_unlock(&priv->action_mutex);
8333 }
8334
8335 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8340
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8343
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345 IPW2100_FW_MAJOR_VERSION)
8346
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8349
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8351
8352 /*
8353
8354 BINARY FIRMWARE HEADER FORMAT
8355
8356 offset length desc
8357 0 2 version
8358 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8359 4 4 fw_len
8360 8 4 uc_len
8361 C fw_len firmware data
8362 12 + fw_len uc_len microcode data
8363
8364 */
8365
8366 struct ipw2100_fw_header {
8367 short version;
8368 short mode;
8369 unsigned int fw_size;
8370 unsigned int uc_size;
8371 } __packed;
8372
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8374 {
8375 struct ipw2100_fw_header *h =
8376 (struct ipw2100_fw_header *)fw->fw_entry->data;
8377
8378 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380 "(detected version id of %u). "
8381 "See Documentation/networking/README.ipw2100\n",
8382 h->version);
8383 return 1;
8384 }
8385
8386 fw->version = h->version;
8387 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388 fw->fw.size = h->fw_size;
8389 fw->uc.data = fw->fw.data + h->fw_size;
8390 fw->uc.size = h->uc_size;
8391
8392 return 0;
8393 }
8394
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396 struct ipw2100_fw *fw)
8397 {
8398 char *fw_name;
8399 int rc;
8400
8401 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402 priv->net_dev->name);
8403
8404 switch (priv->ieee->iw_mode) {
8405 case IW_MODE_ADHOC:
8406 fw_name = IPW2100_FW_NAME("-i");
8407 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409 case IW_MODE_MONITOR:
8410 fw_name = IPW2100_FW_NAME("-p");
8411 break;
8412 #endif
8413 case IW_MODE_INFRA:
8414 default:
8415 fw_name = IPW2100_FW_NAME("");
8416 break;
8417 }
8418
8419 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8420
8421 if (rc < 0) {
8422 printk(KERN_ERR DRV_NAME ": "
8423 "%s: Firmware '%s' not available or load failed.\n",
8424 priv->net_dev->name, fw_name);
8425 return rc;
8426 }
8427 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428 fw->fw_entry->size);
8429
8430 ipw2100_mod_firmware_load(fw);
8431
8432 return 0;
8433 }
8434
8435 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8436 #ifdef CONFIG_IPW2100_MONITOR
8437 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8438 #endif
8439 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8440
8441 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8442 struct ipw2100_fw *fw)
8443 {
8444 fw->version = 0;
8445 release_firmware(fw->fw_entry);
8446 fw->fw_entry = NULL;
8447 }
8448
8449 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8450 size_t max)
8451 {
8452 char ver[MAX_FW_VERSION_LEN];
8453 u32 len = MAX_FW_VERSION_LEN;
8454 u32 tmp;
8455 int i;
8456 /* firmware version is an ascii string (max len of 14) */
8457 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8458 return -EIO;
8459 tmp = max;
8460 if (len >= max)
8461 len = max - 1;
8462 for (i = 0; i < len; i++)
8463 buf[i] = ver[i];
8464 buf[i] = '\0';
8465 return tmp;
8466 }
8467
8468 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8469 size_t max)
8470 {
8471 u32 ver;
8472 u32 len = sizeof(ver);
8473 /* microcode version is a 32 bit integer */
8474 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8475 return -EIO;
8476 return snprintf(buf, max, "%08X", ver);
8477 }
8478
8479 /*
8480 * On exit, the firmware will have been freed from the fw list
8481 */
8482 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8483 {
8484 /* firmware is constructed of N contiguous entries, each entry is
8485 * structured as:
8486 *
8487 * offset sie desc
8488 * 0 4 address to write to
8489 * 4 2 length of data run
8490 * 6 length data
8491 */
8492 unsigned int addr;
8493 unsigned short len;
8494
8495 const unsigned char *firmware_data = fw->fw.data;
8496 unsigned int firmware_data_left = fw->fw.size;
8497
8498 while (firmware_data_left > 0) {
8499 addr = *(u32 *) (firmware_data);
8500 firmware_data += 4;
8501 firmware_data_left -= 4;
8502
8503 len = *(u16 *) (firmware_data);
8504 firmware_data += 2;
8505 firmware_data_left -= 2;
8506
8507 if (len > 32) {
8508 printk(KERN_ERR DRV_NAME ": "
8509 "Invalid firmware run-length of %d bytes\n",
8510 len);
8511 return -EINVAL;
8512 }
8513
8514 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8515 firmware_data += len;
8516 firmware_data_left -= len;
8517 }
8518
8519 return 0;
8520 }
8521
8522 struct symbol_alive_response {
8523 u8 cmd_id;
8524 u8 seq_num;
8525 u8 ucode_rev;
8526 u8 eeprom_valid;
8527 u16 valid_flags;
8528 u8 IEEE_addr[6];
8529 u16 flags;
8530 u16 pcb_rev;
8531 u16 clock_settle_time; // 1us LSB
8532 u16 powerup_settle_time; // 1us LSB
8533 u16 hop_settle_time; // 1us LSB
8534 u8 date[3]; // month, day, year
8535 u8 time[2]; // hours, minutes
8536 u8 ucode_valid;
8537 };
8538
8539 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8540 struct ipw2100_fw *fw)
8541 {
8542 struct net_device *dev = priv->net_dev;
8543 const unsigned char *microcode_data = fw->uc.data;
8544 unsigned int microcode_data_left = fw->uc.size;
8545 void __iomem *reg = priv->ioaddr;
8546
8547 struct symbol_alive_response response;
8548 int i, j;
8549 u8 data;
8550
8551 /* Symbol control */
8552 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8553 readl(reg);
8554 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8555 readl(reg);
8556
8557 /* HW config */
8558 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8559 readl(reg);
8560 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8561 readl(reg);
8562
8563 /* EN_CS_ACCESS bit to reset control store pointer */
8564 write_nic_byte(dev, 0x210000, 0x40);
8565 readl(reg);
8566 write_nic_byte(dev, 0x210000, 0x0);
8567 readl(reg);
8568 write_nic_byte(dev, 0x210000, 0x40);
8569 readl(reg);
8570
8571 /* copy microcode from buffer into Symbol */
8572
8573 while (microcode_data_left > 0) {
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 write_nic_byte(dev, 0x210010, *microcode_data++);
8576 microcode_data_left -= 2;
8577 }
8578
8579 /* EN_CS_ACCESS bit to reset the control store pointer */
8580 write_nic_byte(dev, 0x210000, 0x0);
8581 readl(reg);
8582
8583 /* Enable System (Reg 0)
8584 * first enable causes garbage in RX FIFO */
8585 write_nic_byte(dev, 0x210000, 0x0);
8586 readl(reg);
8587 write_nic_byte(dev, 0x210000, 0x80);
8588 readl(reg);
8589
8590 /* Reset External Baseband Reg */
8591 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8592 readl(reg);
8593 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8594 readl(reg);
8595
8596 /* HW Config (Reg 5) */
8597 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8598 readl(reg);
8599 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8600 readl(reg);
8601
8602 /* Enable System (Reg 0)
8603 * second enable should be OK */
8604 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8605 readl(reg);
8606 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8607
8608 /* check Symbol is enabled - upped this from 5 as it wasn't always
8609 * catching the update */
8610 for (i = 0; i < 10; i++) {
8611 udelay(10);
8612
8613 /* check Dino is enabled bit */
8614 read_nic_byte(dev, 0x210000, &data);
8615 if (data & 0x1)
8616 break;
8617 }
8618
8619 if (i == 10) {
8620 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8621 dev->name);
8622 return -EIO;
8623 }
8624
8625 /* Get Symbol alive response */
8626 for (i = 0; i < 30; i++) {
8627 /* Read alive response structure */
8628 for (j = 0;
8629 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8630 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8631
8632 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8633 break;
8634 udelay(10);
8635 }
8636
8637 if (i == 30) {
8638 printk(KERN_ERR DRV_NAME
8639 ": %s: No response from Symbol - hw not alive\n",
8640 dev->name);
8641 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8642 return -EIO;
8643 }
8644
8645 return 0;
8646 }