]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/realtek/rtlwifi/efuse.c
Merge tag 'for-linus-4.8' of git://git.code.sf.net/p/openipmi/linux-ipmi
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2012 Realtek Corporation.
4 *
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * Tme full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
16 *
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
21 *
22 * Larry Finger <Larry.Finger@lwfinger.net>
23 *
24 *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
35 {0, 0, 0, 2},
36 {0, 1, 0, 2},
37 {0, 2, 0, 2},
38 {1, 0, 0, 1},
39 {1, 0, 1, 1},
40 {1, 1, 0, 1},
41 {1, 1, 1, 3},
42 {1, 3, 0, 17},
43 {3, 3, 1, 48},
44 {10, 0, 0, 6},
45 {10, 3, 0, 1},
46 {10, 3, 1, 1},
47 {11, 0, 0, 28}
48 };
49
50 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
51 u8 *value);
52 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
53 u16 *value);
54 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
55 u32 *value);
56 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
57 u8 value);
58 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
59 u16 value);
60 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
61 u32 value);
62 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
63 u8 data);
64 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
65 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
66 u8 *data);
67 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
68 u8 word_en, u8 *data);
69 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
70 u8 *targetdata);
71 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
72 u16 efuse_addr, u8 word_en, u8 *data);
73 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
74 u8 pwrstate);
75 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
76 static u8 efuse_calculate_word_cnts(u8 word_en);
77
78 void efuse_initialize(struct ieee80211_hw *hw)
79 {
80 struct rtl_priv *rtlpriv = rtl_priv(hw);
81 u8 bytetemp;
82 u8 temp;
83
84 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
85 temp = bytetemp | 0x20;
86 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
87
88 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
89 temp = bytetemp & 0xFE;
90 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
91
92 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
93 temp = bytetemp | 0x80;
94 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
95
96 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
97
98 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
99
100 }
101
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
103 {
104 struct rtl_priv *rtlpriv = rtl_priv(hw);
105 u8 data;
106 u8 bytetemp;
107 u8 temp;
108 u32 k = 0;
109 const u32 efuse_len =
110 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
111
112 if (address < efuse_len) {
113 temp = address & 0xFF;
114 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115 temp);
116 bytetemp = rtl_read_byte(rtlpriv,
117 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120 temp);
121
122 bytetemp = rtl_read_byte(rtlpriv,
123 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124 temp = bytetemp & 0x7F;
125 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126 temp);
127
128 bytetemp = rtl_read_byte(rtlpriv,
129 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130 while (!(bytetemp & 0x80)) {
131 bytetemp = rtl_read_byte(rtlpriv,
132 rtlpriv->cfg->
133 maps[EFUSE_CTRL] + 3);
134 k++;
135 if (k == 1000) {
136 k = 0;
137 break;
138 }
139 }
140 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141 return data;
142 } else
143 return 0xFF;
144
145 }
146 EXPORT_SYMBOL(efuse_read_1byte);
147
148 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
149 {
150 struct rtl_priv *rtlpriv = rtl_priv(hw);
151 u8 bytetemp;
152 u8 temp;
153 u32 k = 0;
154 const u32 efuse_len =
155 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
156
157 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
158 address, value);
159
160 if (address < efuse_len) {
161 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
162
163 temp = address & 0xFF;
164 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
165 temp);
166 bytetemp = rtl_read_byte(rtlpriv,
167 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
168
169 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
170 rtl_write_byte(rtlpriv,
171 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
172
173 bytetemp = rtl_read_byte(rtlpriv,
174 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
175 temp = bytetemp | 0x80;
176 rtl_write_byte(rtlpriv,
177 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
178
179 bytetemp = rtl_read_byte(rtlpriv,
180 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181
182 while (bytetemp & 0x80) {
183 bytetemp = rtl_read_byte(rtlpriv,
184 rtlpriv->cfg->
185 maps[EFUSE_CTRL] + 3);
186 k++;
187 if (k == 100) {
188 k = 0;
189 break;
190 }
191 }
192 }
193
194 }
195
196 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
197 {
198 struct rtl_priv *rtlpriv = rtl_priv(hw);
199 u32 value32;
200 u8 readbyte;
201 u16 retry;
202
203 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
204 (_offset & 0xff));
205 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
206 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
207 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
208
209 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
210 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
211 (readbyte & 0x7f));
212
213 retry = 0;
214 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
215 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
216 value32 = rtl_read_dword(rtlpriv,
217 rtlpriv->cfg->maps[EFUSE_CTRL]);
218 retry++;
219 }
220
221 udelay(50);
222 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223
224 *pbuf = (u8) (value32 & 0xff);
225 }
226 EXPORT_SYMBOL_GPL(read_efuse_byte);
227
228 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
229 {
230 struct rtl_priv *rtlpriv = rtl_priv(hw);
231 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
232 u8 *efuse_tbl;
233 u8 rtemp8[1];
234 u16 efuse_addr = 0;
235 u8 offset, wren;
236 u8 u1temp = 0;
237 u16 i;
238 u16 j;
239 const u16 efuse_max_section =
240 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
241 const u32 efuse_len =
242 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
243 u16 **efuse_word;
244 u16 efuse_utilized = 0;
245 u8 efuse_usage;
246
247 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
248 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
249 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
250 _offset, _size_byte);
251 return;
252 }
253
254 /* allocate memory for efuse_tbl and efuse_word */
255 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
256 sizeof(u8), GFP_ATOMIC);
257 if (!efuse_tbl)
258 return;
259 efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
260 if (!efuse_word)
261 goto out;
262 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
263 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
264 GFP_ATOMIC);
265 if (!efuse_word[i])
266 goto done;
267 }
268
269 for (i = 0; i < efuse_max_section; i++)
270 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
271 efuse_word[j][i] = 0xFFFF;
272
273 read_efuse_byte(hw, efuse_addr, rtemp8);
274 if (*rtemp8 != 0xFF) {
275 efuse_utilized++;
276 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
277 "Addr=%d\n", efuse_addr);
278 efuse_addr++;
279 }
280
281 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
282 /* Check PG header for section num. */
283 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
284 u1temp = ((*rtemp8 & 0xE0) >> 5);
285 read_efuse_byte(hw, efuse_addr, rtemp8);
286
287 if ((*rtemp8 & 0x0F) == 0x0F) {
288 efuse_addr++;
289 read_efuse_byte(hw, efuse_addr, rtemp8);
290
291 if (*rtemp8 != 0xFF &&
292 (efuse_addr < efuse_len)) {
293 efuse_addr++;
294 }
295 continue;
296 } else {
297 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
298 wren = (*rtemp8 & 0x0F);
299 efuse_addr++;
300 }
301 } else {
302 offset = ((*rtemp8 >> 4) & 0x0f);
303 wren = (*rtemp8 & 0x0f);
304 }
305
306 if (offset < efuse_max_section) {
307 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
308 "offset-%d Worden=%x\n", offset, wren);
309
310 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
311 if (!(wren & 0x01)) {
312 RTPRINT(rtlpriv, FEEPROM,
313 EFUSE_READ_ALL,
314 "Addr=%d\n", efuse_addr);
315
316 read_efuse_byte(hw, efuse_addr, rtemp8);
317 efuse_addr++;
318 efuse_utilized++;
319 efuse_word[i][offset] =
320 (*rtemp8 & 0xff);
321
322 if (efuse_addr >= efuse_len)
323 break;
324
325 RTPRINT(rtlpriv, FEEPROM,
326 EFUSE_READ_ALL,
327 "Addr=%d\n", efuse_addr);
328
329 read_efuse_byte(hw, efuse_addr, rtemp8);
330 efuse_addr++;
331 efuse_utilized++;
332 efuse_word[i][offset] |=
333 (((u16)*rtemp8 << 8) & 0xff00);
334
335 if (efuse_addr >= efuse_len)
336 break;
337 }
338
339 wren >>= 1;
340 }
341 }
342
343 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
344 "Addr=%d\n", efuse_addr);
345 read_efuse_byte(hw, efuse_addr, rtemp8);
346 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
347 efuse_utilized++;
348 efuse_addr++;
349 }
350 }
351
352 for (i = 0; i < efuse_max_section; i++) {
353 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
354 efuse_tbl[(i * 8) + (j * 2)] =
355 (efuse_word[j][i] & 0xff);
356 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
357 ((efuse_word[j][i] >> 8) & 0xff);
358 }
359 }
360
361 for (i = 0; i < _size_byte; i++)
362 pbuf[i] = efuse_tbl[_offset + i];
363
364 rtlefuse->efuse_usedbytes = efuse_utilized;
365 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
366 rtlefuse->efuse_usedpercentage = efuse_usage;
367 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
368 (u8 *)&efuse_utilized);
369 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
370 &efuse_usage);
371 done:
372 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
373 kfree(efuse_word[i]);
374 kfree(efuse_word);
375 out:
376 kfree(efuse_tbl);
377 }
378
379 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
380 {
381 struct rtl_priv *rtlpriv = rtl_priv(hw);
382 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
383 u8 section_idx, i, Base;
384 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
385 bool wordchanged, result = true;
386
387 for (section_idx = 0; section_idx < 16; section_idx++) {
388 Base = section_idx * 8;
389 wordchanged = false;
390
391 for (i = 0; i < 8; i = i + 2) {
392 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
393 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
394 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
395 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
396 1])) {
397 words_need++;
398 wordchanged = true;
399 }
400 }
401
402 if (wordchanged)
403 hdr_num++;
404 }
405
406 totalbytes = hdr_num + words_need * 2;
407 efuse_used = rtlefuse->efuse_usedbytes;
408
409 if ((totalbytes + efuse_used) >=
410 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
411 result = false;
412
413 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
414 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
415 totalbytes, hdr_num, words_need, efuse_used);
416
417 return result;
418 }
419
420 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
421 u16 offset, u32 *value)
422 {
423 if (type == 1)
424 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
425 else if (type == 2)
426 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
427 else if (type == 4)
428 efuse_shadow_read_4byte(hw, offset, value);
429
430 }
431 EXPORT_SYMBOL(efuse_shadow_read);
432
433 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
434 u32 value)
435 {
436 if (type == 1)
437 efuse_shadow_write_1byte(hw, offset, (u8) value);
438 else if (type == 2)
439 efuse_shadow_write_2byte(hw, offset, (u16) value);
440 else if (type == 4)
441 efuse_shadow_write_4byte(hw, offset, value);
442
443 }
444
445 bool efuse_shadow_update(struct ieee80211_hw *hw)
446 {
447 struct rtl_priv *rtlpriv = rtl_priv(hw);
448 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
449 u16 i, offset, base;
450 u8 word_en = 0x0F;
451 u8 first_pg = false;
452
453 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
454
455 if (!efuse_shadow_update_chk(hw)) {
456 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
457 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
458 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
459 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
460
461 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
462 "efuse out of capacity!!\n");
463 return false;
464 }
465 efuse_power_switch(hw, true, true);
466
467 for (offset = 0; offset < 16; offset++) {
468
469 word_en = 0x0F;
470 base = offset * 8;
471
472 for (i = 0; i < 8; i++) {
473 if (first_pg) {
474 word_en &= ~(BIT(i / 2));
475
476 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
477 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
478 } else {
479
480 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
481 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
482 word_en &= ~(BIT(i / 2));
483
484 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
485 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
486 }
487 }
488 }
489
490 if (word_en != 0x0F) {
491 u8 tmpdata[8];
492 memcpy(tmpdata,
493 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
494 8);
495 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
496 "U-efuse\n", tmpdata, 8);
497
498 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
499 tmpdata)) {
500 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
501 "PG section(%#x) fail!!\n", offset);
502 break;
503 }
504 }
505
506 }
507
508 efuse_power_switch(hw, true, false);
509 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
510
511 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
512 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
513 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
514
515 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
516 return true;
517 }
518
519 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
520 {
521 struct rtl_priv *rtlpriv = rtl_priv(hw);
522 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
523
524 if (rtlefuse->autoload_failflag)
525 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
526 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
527 else
528 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
529
530 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
531 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
532 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
533
534 }
535 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
536
537 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
538 {
539 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
540
541 efuse_power_switch(hw, true, true);
542
543 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
544
545 efuse_power_switch(hw, true, false);
546
547 }
548
549 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
550 {
551 }
552
553 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
554 u16 offset, u8 *value)
555 {
556 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
557 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
558 }
559
560 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
561 u16 offset, u16 *value)
562 {
563 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
564
565 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
566 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
567
568 }
569
570 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
571 u16 offset, u32 *value)
572 {
573 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
574
575 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
576 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
577 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
578 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
579 }
580
581 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
582 u16 offset, u8 value)
583 {
584 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
585
586 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
587 }
588
589 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
590 u16 offset, u16 value)
591 {
592 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
593
594 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
595 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
596
597 }
598
599 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
600 u16 offset, u32 value)
601 {
602 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
603
604 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
605 (u8) (value & 0x000000FF);
606 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
607 (u8) ((value >> 8) & 0x0000FF);
608 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
609 (u8) ((value >> 16) & 0x00FF);
610 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
611 (u8) ((value >> 24) & 0xFF);
612
613 }
614
615 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
616 {
617 struct rtl_priv *rtlpriv = rtl_priv(hw);
618 u8 tmpidx = 0;
619 int result;
620
621 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
622 (u8) (addr & 0xff));
623 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
624 ((u8) ((addr >> 8) & 0x03)) |
625 (rtl_read_byte(rtlpriv,
626 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
627 0xFC));
628
629 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
630
631 while (!(0x80 & rtl_read_byte(rtlpriv,
632 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
633 && (tmpidx < 100)) {
634 tmpidx++;
635 }
636
637 if (tmpidx < 100) {
638 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
639 result = true;
640 } else {
641 *data = 0xff;
642 result = false;
643 }
644 return result;
645 }
646 EXPORT_SYMBOL(efuse_one_byte_read);
647
648 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
649 {
650 struct rtl_priv *rtlpriv = rtl_priv(hw);
651 u8 tmpidx = 0;
652
653 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
654 "Addr = %x Data=%x\n", addr, data);
655
656 rtl_write_byte(rtlpriv,
657 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
658 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
659 (rtl_read_byte(rtlpriv,
660 rtlpriv->cfg->maps[EFUSE_CTRL] +
661 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
662
663 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
664 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
665
666 while ((0x80 & rtl_read_byte(rtlpriv,
667 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
668 && (tmpidx < 100)) {
669 tmpidx++;
670 }
671
672 if (tmpidx < 100)
673 return true;
674 return false;
675 }
676
677 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
678 {
679 struct rtl_priv *rtlpriv = rtl_priv(hw);
680 efuse_power_switch(hw, false, true);
681 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
682 efuse_power_switch(hw, false, false);
683 }
684
685 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
686 u8 efuse_data, u8 offset, u8 *tmpdata,
687 u8 *readstate)
688 {
689 bool dataempty = true;
690 u8 hoffset;
691 u8 tmpidx;
692 u8 hworden;
693 u8 word_cnts;
694
695 hoffset = (efuse_data >> 4) & 0x0F;
696 hworden = efuse_data & 0x0F;
697 word_cnts = efuse_calculate_word_cnts(hworden);
698
699 if (hoffset == offset) {
700 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
701 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
702 &efuse_data)) {
703 tmpdata[tmpidx] = efuse_data;
704 if (efuse_data != 0xff)
705 dataempty = false;
706 }
707 }
708
709 if (!dataempty) {
710 *readstate = PG_STATE_DATA;
711 } else {
712 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
713 *readstate = PG_STATE_HEADER;
714 }
715
716 } else {
717 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
718 *readstate = PG_STATE_HEADER;
719 }
720 }
721
722 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
723 {
724 u8 readstate = PG_STATE_HEADER;
725
726 bool continual = true;
727
728 u8 efuse_data, word_cnts = 0;
729 u16 efuse_addr = 0;
730 u8 tmpdata[8];
731
732 if (data == NULL)
733 return false;
734 if (offset > 15)
735 return false;
736
737 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
738 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
739
740 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
741 if (readstate & PG_STATE_HEADER) {
742 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
743 && (efuse_data != 0xFF))
744 efuse_read_data_case1(hw, &efuse_addr,
745 efuse_data, offset,
746 tmpdata, &readstate);
747 else
748 continual = false;
749 } else if (readstate & PG_STATE_DATA) {
750 efuse_word_enable_data_read(0, tmpdata, data);
751 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
752 readstate = PG_STATE_HEADER;
753 }
754
755 }
756
757 if ((data[0] == 0xff) && (data[1] == 0xff) &&
758 (data[2] == 0xff) && (data[3] == 0xff) &&
759 (data[4] == 0xff) && (data[5] == 0xff) &&
760 (data[6] == 0xff) && (data[7] == 0xff))
761 return false;
762 else
763 return true;
764
765 }
766
767 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
768 u8 efuse_data, u8 offset,
769 int *continual, u8 *write_state,
770 struct pgpkt_struct *target_pkt,
771 int *repeat_times, int *result, u8 word_en)
772 {
773 struct rtl_priv *rtlpriv = rtl_priv(hw);
774 struct pgpkt_struct tmp_pkt;
775 int dataempty = true;
776 u8 originaldata[8 * sizeof(u8)];
777 u8 badworden = 0x0F;
778 u8 match_word_en, tmp_word_en;
779 u8 tmpindex;
780 u8 tmp_header = efuse_data;
781 u8 tmp_word_cnts;
782
783 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
784 tmp_pkt.word_en = tmp_header & 0x0F;
785 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
786
787 if (tmp_pkt.offset != target_pkt->offset) {
788 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
789 *write_state = PG_STATE_HEADER;
790 } else {
791 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
792 if (efuse_one_byte_read(hw,
793 (*efuse_addr + 1 + tmpindex),
794 &efuse_data) &&
795 (efuse_data != 0xFF))
796 dataempty = false;
797 }
798
799 if (!dataempty) {
800 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
801 *write_state = PG_STATE_HEADER;
802 } else {
803 match_word_en = 0x0F;
804 if (!((target_pkt->word_en & BIT(0)) |
805 (tmp_pkt.word_en & BIT(0))))
806 match_word_en &= (~BIT(0));
807
808 if (!((target_pkt->word_en & BIT(1)) |
809 (tmp_pkt.word_en & BIT(1))))
810 match_word_en &= (~BIT(1));
811
812 if (!((target_pkt->word_en & BIT(2)) |
813 (tmp_pkt.word_en & BIT(2))))
814 match_word_en &= (~BIT(2));
815
816 if (!((target_pkt->word_en & BIT(3)) |
817 (tmp_pkt.word_en & BIT(3))))
818 match_word_en &= (~BIT(3));
819
820 if ((match_word_en & 0x0F) != 0x0F) {
821 badworden =
822 enable_efuse_data_write(hw,
823 *efuse_addr + 1,
824 tmp_pkt.word_en,
825 target_pkt->data);
826
827 if (0x0F != (badworden & 0x0F)) {
828 u8 reorg_offset = offset;
829 u8 reorg_worden = badworden;
830 efuse_pg_packet_write(hw, reorg_offset,
831 reorg_worden,
832 originaldata);
833 }
834
835 tmp_word_en = 0x0F;
836 if ((target_pkt->word_en & BIT(0)) ^
837 (match_word_en & BIT(0)))
838 tmp_word_en &= (~BIT(0));
839
840 if ((target_pkt->word_en & BIT(1)) ^
841 (match_word_en & BIT(1)))
842 tmp_word_en &= (~BIT(1));
843
844 if ((target_pkt->word_en & BIT(2)) ^
845 (match_word_en & BIT(2)))
846 tmp_word_en &= (~BIT(2));
847
848 if ((target_pkt->word_en & BIT(3)) ^
849 (match_word_en & BIT(3)))
850 tmp_word_en &= (~BIT(3));
851
852 if ((tmp_word_en & 0x0F) != 0x0F) {
853 *efuse_addr = efuse_get_current_size(hw);
854 target_pkt->offset = offset;
855 target_pkt->word_en = tmp_word_en;
856 } else {
857 *continual = false;
858 }
859 *write_state = PG_STATE_HEADER;
860 *repeat_times += 1;
861 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
862 *continual = false;
863 *result = false;
864 }
865 } else {
866 *efuse_addr += (2 * tmp_word_cnts) + 1;
867 target_pkt->offset = offset;
868 target_pkt->word_en = word_en;
869 *write_state = PG_STATE_HEADER;
870 }
871 }
872 }
873 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
874 }
875
876 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
877 int *continual, u8 *write_state,
878 struct pgpkt_struct target_pkt,
879 int *repeat_times, int *result)
880 {
881 struct rtl_priv *rtlpriv = rtl_priv(hw);
882 struct pgpkt_struct tmp_pkt;
883 u8 pg_header;
884 u8 tmp_header;
885 u8 originaldata[8 * sizeof(u8)];
886 u8 tmp_word_cnts;
887 u8 badworden = 0x0F;
888
889 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
890 efuse_one_byte_write(hw, *efuse_addr, pg_header);
891 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
892
893 if (tmp_header == pg_header) {
894 *write_state = PG_STATE_DATA;
895 } else if (tmp_header == 0xFF) {
896 *write_state = PG_STATE_HEADER;
897 *repeat_times += 1;
898 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
899 *continual = false;
900 *result = false;
901 }
902 } else {
903 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
904 tmp_pkt.word_en = tmp_header & 0x0F;
905
906 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
907
908 memset(originaldata, 0xff, 8 * sizeof(u8));
909
910 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
911 badworden = enable_efuse_data_write(hw,
912 *efuse_addr + 1,
913 tmp_pkt.word_en,
914 originaldata);
915
916 if (0x0F != (badworden & 0x0F)) {
917 u8 reorg_offset = tmp_pkt.offset;
918 u8 reorg_worden = badworden;
919 efuse_pg_packet_write(hw, reorg_offset,
920 reorg_worden,
921 originaldata);
922 *efuse_addr = efuse_get_current_size(hw);
923 } else {
924 *efuse_addr = *efuse_addr +
925 (tmp_word_cnts * 2) + 1;
926 }
927 } else {
928 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
929 }
930
931 *write_state = PG_STATE_HEADER;
932 *repeat_times += 1;
933 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
934 *continual = false;
935 *result = false;
936 }
937
938 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939 "efuse PG_STATE_HEADER-2\n");
940 }
941 }
942
943 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
944 u8 offset, u8 word_en, u8 *data)
945 {
946 struct rtl_priv *rtlpriv = rtl_priv(hw);
947 struct pgpkt_struct target_pkt;
948 u8 write_state = PG_STATE_HEADER;
949 int continual = true, dataempty = true, result = true;
950 u16 efuse_addr = 0;
951 u8 efuse_data;
952 u8 target_word_cnts = 0;
953 u8 badworden = 0x0F;
954 static int repeat_times;
955
956 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
957 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
958 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959 "efuse_pg_packet_write error\n");
960 return false;
961 }
962
963 target_pkt.offset = offset;
964 target_pkt.word_en = word_en;
965
966 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
967
968 efuse_word_enable_data_read(word_en, data, target_pkt.data);
969 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
970
971 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
972
973 while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
974 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
975
976 if (write_state == PG_STATE_HEADER) {
977 dataempty = true;
978 badworden = 0x0F;
979 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
980 "efuse PG_STATE_HEADER\n");
981
982 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
983 (efuse_data != 0xFF))
984 efuse_write_data_case1(hw, &efuse_addr,
985 efuse_data, offset,
986 &continual,
987 &write_state,
988 &target_pkt,
989 &repeat_times, &result,
990 word_en);
991 else
992 efuse_write_data_case2(hw, &efuse_addr,
993 &continual,
994 &write_state,
995 target_pkt,
996 &repeat_times,
997 &result);
998
999 } else if (write_state == PG_STATE_DATA) {
1000 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001 "efuse PG_STATE_DATA\n");
1002 badworden = 0x0f;
1003 badworden =
1004 enable_efuse_data_write(hw, efuse_addr + 1,
1005 target_pkt.word_en,
1006 target_pkt.data);
1007
1008 if ((badworden & 0x0F) == 0x0F) {
1009 continual = false;
1010 } else {
1011 efuse_addr =
1012 efuse_addr + (2 * target_word_cnts) + 1;
1013
1014 target_pkt.offset = offset;
1015 target_pkt.word_en = badworden;
1016 target_word_cnts =
1017 efuse_calculate_word_cnts(target_pkt.
1018 word_en);
1019 write_state = PG_STATE_HEADER;
1020 repeat_times++;
1021 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1022 continual = false;
1023 result = false;
1024 }
1025 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1026 "efuse PG_STATE_HEADER-3\n");
1027 }
1028 }
1029 }
1030
1031 if (efuse_addr >= (EFUSE_MAX_SIZE -
1032 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1033 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1034 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1035 }
1036
1037 return true;
1038 }
1039
1040 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1041 u8 *targetdata)
1042 {
1043 if (!(word_en & BIT(0))) {
1044 targetdata[0] = sourdata[0];
1045 targetdata[1] = sourdata[1];
1046 }
1047
1048 if (!(word_en & BIT(1))) {
1049 targetdata[2] = sourdata[2];
1050 targetdata[3] = sourdata[3];
1051 }
1052
1053 if (!(word_en & BIT(2))) {
1054 targetdata[4] = sourdata[4];
1055 targetdata[5] = sourdata[5];
1056 }
1057
1058 if (!(word_en & BIT(3))) {
1059 targetdata[6] = sourdata[6];
1060 targetdata[7] = sourdata[7];
1061 }
1062 }
1063
1064 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1065 u16 efuse_addr, u8 word_en, u8 *data)
1066 {
1067 struct rtl_priv *rtlpriv = rtl_priv(hw);
1068 u16 tmpaddr;
1069 u16 start_addr = efuse_addr;
1070 u8 badworden = 0x0F;
1071 u8 tmpdata[8];
1072
1073 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1074 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1075 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1076
1077 if (!(word_en & BIT(0))) {
1078 tmpaddr = start_addr;
1079 efuse_one_byte_write(hw, start_addr++, data[0]);
1080 efuse_one_byte_write(hw, start_addr++, data[1]);
1081
1082 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1083 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1084 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1085 badworden &= (~BIT(0));
1086 }
1087
1088 if (!(word_en & BIT(1))) {
1089 tmpaddr = start_addr;
1090 efuse_one_byte_write(hw, start_addr++, data[2]);
1091 efuse_one_byte_write(hw, start_addr++, data[3]);
1092
1093 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1094 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1095 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1096 badworden &= (~BIT(1));
1097 }
1098
1099 if (!(word_en & BIT(2))) {
1100 tmpaddr = start_addr;
1101 efuse_one_byte_write(hw, start_addr++, data[4]);
1102 efuse_one_byte_write(hw, start_addr++, data[5]);
1103
1104 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1105 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1106 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1107 badworden &= (~BIT(2));
1108 }
1109
1110 if (!(word_en & BIT(3))) {
1111 tmpaddr = start_addr;
1112 efuse_one_byte_write(hw, start_addr++, data[6]);
1113 efuse_one_byte_write(hw, start_addr++, data[7]);
1114
1115 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1116 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1117 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1118 badworden &= (~BIT(3));
1119 }
1120
1121 return badworden;
1122 }
1123
1124 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1125 {
1126 struct rtl_priv *rtlpriv = rtl_priv(hw);
1127 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1128 u8 tempval;
1129 u16 tmpV16;
1130
1131 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1132
1133 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1134 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1135 rtl_write_byte(rtlpriv,
1136 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1137 } else {
1138 tmpV16 =
1139 rtl_read_word(rtlpriv,
1140 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1141 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1142 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1143 rtl_write_word(rtlpriv,
1144 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1145 tmpV16);
1146 }
1147 }
1148 tmpV16 = rtl_read_word(rtlpriv,
1149 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1150 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1151 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1152 rtl_write_word(rtlpriv,
1153 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1154 }
1155
1156 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1157 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1158 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1159 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1160 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1161 rtl_write_word(rtlpriv,
1162 rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1163 }
1164 }
1165
1166 if (pwrstate) {
1167 if (write) {
1168 tempval = rtl_read_byte(rtlpriv,
1169 rtlpriv->cfg->maps[EFUSE_TEST] +
1170 3);
1171
1172 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1173 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1174 tempval |= (VOLTAGE_V25 << 3);
1175 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1176 tempval &= 0x0F;
1177 tempval |= (VOLTAGE_V25 << 4);
1178 }
1179
1180 rtl_write_byte(rtlpriv,
1181 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1182 (tempval | 0x80));
1183 }
1184
1185 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1186 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1187 0x03);
1188 }
1189 } else {
1190 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1191 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1192 rtl_write_byte(rtlpriv,
1193 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1194
1195 if (write) {
1196 tempval = rtl_read_byte(rtlpriv,
1197 rtlpriv->cfg->maps[EFUSE_TEST] +
1198 3);
1199 rtl_write_byte(rtlpriv,
1200 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1201 (tempval & 0x7F));
1202 }
1203
1204 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1205 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1206 0x02);
1207 }
1208 }
1209 }
1210
1211 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1212 {
1213 int continual = true;
1214 u16 efuse_addr = 0;
1215 u8 hoffset, hworden;
1216 u8 efuse_data, word_cnts;
1217
1218 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1219 (efuse_addr < EFUSE_MAX_SIZE)) {
1220 if (efuse_data != 0xFF) {
1221 hoffset = (efuse_data >> 4) & 0x0F;
1222 hworden = efuse_data & 0x0F;
1223 word_cnts = efuse_calculate_word_cnts(hworden);
1224 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1225 } else {
1226 continual = false;
1227 }
1228 }
1229
1230 return efuse_addr;
1231 }
1232
1233 static u8 efuse_calculate_word_cnts(u8 word_en)
1234 {
1235 u8 word_cnts = 0;
1236 if (!(word_en & BIT(0)))
1237 word_cnts++;
1238 if (!(word_en & BIT(1)))
1239 word_cnts++;
1240 if (!(word_en & BIT(2)))
1241 word_cnts++;
1242 if (!(word_en & BIT(3)))
1243 word_cnts++;
1244 return word_cnts;
1245 }
1246
1247 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1248 int max_size, u8 *hwinfo, int *params)
1249 {
1250 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1251 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1252 struct device *dev = &rtlpcipriv->dev.pdev->dev;
1253 u16 eeprom_id;
1254 u16 i, usvalue;
1255
1256 switch (rtlefuse->epromtype) {
1257 case EEPROM_BOOT_EFUSE:
1258 rtl_efuse_shadow_map_update(hw);
1259 break;
1260
1261 case EEPROM_93C46:
1262 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1263 "RTL8XXX did not boot from eeprom, check it !!\n");
1264 return 1;
1265
1266 default:
1267 dev_warn(dev, "no efuse data\n");
1268 return 1;
1269 }
1270
1271 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1272
1273 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1274 hwinfo, max_size);
1275
1276 eeprom_id = *((u16 *)&hwinfo[0]);
1277 if (eeprom_id != params[0]) {
1278 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1279 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1280 rtlefuse->autoload_failflag = true;
1281 } else {
1282 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1283 rtlefuse->autoload_failflag = false;
1284 }
1285
1286 if (rtlefuse->autoload_failflag)
1287 return 1;
1288
1289 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1290 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1291 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1292 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1293 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1294 "EEPROMId = 0x%4x\n", eeprom_id);
1295 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1296 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1297 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1298 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1299 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1300 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1301 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1302 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1303
1304 for (i = 0; i < 6; i += 2) {
1305 usvalue = *(u16 *)&hwinfo[params[5] + i];
1306 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1307 }
1308 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1309
1310 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1311 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1312 rtlefuse->txpwr_fromeprom = true;
1313 rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1314
1315 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1316 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1317
1318 /* set channel plan to world wide 13 */
1319 rtlefuse->channel_plan = params[9];
1320
1321 return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);