]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
[SKB]: __skb_queue_tail = __skb_insert before
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41 * Register access.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 */
51 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
52 {
53 u32 reg;
54 unsigned int i;
55
56 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
58 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
59 break;
60 udelay(REGISTER_BUSY_DELAY);
61 }
62
63 return reg;
64 }
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 /*
72 * Wait until the BBP becomes ready.
73 */
74 reg = rt61pci_bbp_check(rt2x00dev);
75 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
77 return;
78 }
79
80 /*
81 * Write the data into the BBP.
82 */
83 reg = 0;
84 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
85 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
86 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
87 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
88
89 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
90 }
91
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 const unsigned int word, u8 *value)
94 {
95 u32 reg;
96
97 /*
98 * Wait until the BBP becomes ready.
99 */
100 reg = rt61pci_bbp_check(rt2x00dev);
101 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
103 return;
104 }
105
106 /*
107 * Write the request into the BBP.
108 */
109 reg = 0;
110 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
111 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
112 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
113
114 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
115
116 /*
117 * Wait until the BBP becomes ready.
118 */
119 reg = rt61pci_bbp_check(rt2x00dev);
120 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
122 *value = 0xff;
123 return;
124 }
125
126 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
127 }
128
129 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130 const unsigned int word, const u32 value)
131 {
132 u32 reg;
133 unsigned int i;
134
135 if (!word)
136 return;
137
138 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
140 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
141 goto rf_write;
142 udelay(REGISTER_BUSY_DELAY);
143 }
144
145 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
146 return;
147
148 rf_write:
149 reg = 0;
150 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
151 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
152 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
153 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
154
155 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156 rt2x00_rf_write(rt2x00dev, word, value);
157 }
158
159 #ifdef CONFIG_RT61PCI_LEDS
160 /*
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
164 */
165 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166 const u8 command, const u8 token,
167 const u8 arg0, const u8 arg1)
168 {
169 u32 reg;
170
171 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
172
173 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174 ERROR(rt2x00dev, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
176 command, token);
177 return;
178 }
179
180 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
181 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
183 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
184 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
185
186 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
187 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
188 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
190 }
191 #endif /* CONFIG_RT61PCI_LEDS */
192
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
194 {
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg;
197
198 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
199
200 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202 eeprom->reg_data_clock =
203 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204 eeprom->reg_chip_select =
205 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
206 }
207
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
209 {
210 struct rt2x00_dev *rt2x00dev = eeprom->data;
211 u32 reg = 0;
212
213 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
216 !!eeprom->reg_data_clock);
217 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
218 !!eeprom->reg_chip_select);
219
220 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
221 }
222
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
225
226 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227 const unsigned int word, u32 *data)
228 {
229 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
230 }
231
232 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233 const unsigned int word, u32 data)
234 {
235 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
236 }
237
238 static const struct rt2x00debug rt61pci_rt2x00debug = {
239 .owner = THIS_MODULE,
240 .csr = {
241 .read = rt61pci_read_csr,
242 .write = rt61pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
245 },
246 .eeprom = {
247 .read = rt2x00_eeprom_read,
248 .write = rt2x00_eeprom_write,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
251 },
252 .bbp = {
253 .read = rt61pci_bbp_read,
254 .write = rt61pci_bbp_write,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
257 },
258 .rf = {
259 .read = rt2x00_rf_read,
260 .write = rt61pci_rf_write,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
263 },
264 };
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
266
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
269 {
270 u32 reg;
271
272 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
273 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
274 }
275 #else
276 #define rt61pci_rfkill_poll NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
278
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
281 enum led_brightness brightness)
282 {
283 struct rt2x00_led *led =
284 container_of(led_cdev, struct rt2x00_led, led_dev);
285 unsigned int enabled = brightness != LED_OFF;
286 unsigned int a_mode =
287 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288 unsigned int bg_mode =
289 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
290
291 if (led->type == LED_TYPE_RADIO) {
292 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293 MCU_LEDCS_RADIO_STATUS, enabled);
294
295 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296 (led->rt2x00dev->led_mcu_reg & 0xff),
297 ((led->rt2x00dev->led_mcu_reg >> 8)));
298 } else if (led->type == LED_TYPE_ASSOC) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302 MCU_LEDCS_LINK_A_STATUS, a_mode);
303
304 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305 (led->rt2x00dev->led_mcu_reg & 0xff),
306 ((led->rt2x00dev->led_mcu_reg >> 8)));
307 } else if (led->type == LED_TYPE_QUALITY) {
308 /*
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
312 */
313 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314 brightness / (LED_FULL / 6), 0);
315 }
316 }
317
318 static int rt61pci_blink_set(struct led_classdev *led_cdev,
319 unsigned long *delay_on,
320 unsigned long *delay_off)
321 {
322 struct rt2x00_led *led =
323 container_of(led_cdev, struct rt2x00_led, led_dev);
324 u32 reg;
325
326 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
327 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
328 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
329 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
330
331 return 0;
332 }
333 #endif /* CONFIG_RT61PCI_LEDS */
334
335 /*
336 * Configuration handlers.
337 */
338 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
339 const unsigned int filter_flags)
340 {
341 u32 reg;
342
343 /*
344 * Start configuration steps.
345 * Note that the version error will always be dropped
346 * and broadcast frames will always be accepted since
347 * there is no filter for it at this time.
348 */
349 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
350 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
351 !(filter_flags & FIF_FCSFAIL));
352 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
353 !(filter_flags & FIF_PLCPFAIL));
354 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
355 !(filter_flags & FIF_CONTROL));
356 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
357 !(filter_flags & FIF_PROMISC_IN_BSS));
358 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
359 !(filter_flags & FIF_PROMISC_IN_BSS) &&
360 !rt2x00dev->intf_ap_count);
361 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
362 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
363 !(filter_flags & FIF_ALLMULTI));
364 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
365 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
366 !(filter_flags & FIF_CONTROL));
367 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
368 }
369
370 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
371 struct rt2x00_intf *intf,
372 struct rt2x00intf_conf *conf,
373 const unsigned int flags)
374 {
375 unsigned int beacon_base;
376 u32 reg;
377
378 if (flags & CONFIG_UPDATE_TYPE) {
379 /*
380 * Clear current synchronisation setup.
381 * For the Beacon base registers we only need to clear
382 * the first byte since that byte contains the VALID and OWNER
383 * bits which (when set to 0) will invalidate the entire beacon.
384 */
385 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
386 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
387
388 /*
389 * Enable synchronisation.
390 */
391 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
392 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
393 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
394 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
395 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
396 }
397
398 if (flags & CONFIG_UPDATE_MAC) {
399 reg = le32_to_cpu(conf->mac[1]);
400 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
401 conf->mac[1] = cpu_to_le32(reg);
402
403 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
404 conf->mac, sizeof(conf->mac));
405 }
406
407 if (flags & CONFIG_UPDATE_BSSID) {
408 reg = le32_to_cpu(conf->bssid[1]);
409 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
410 conf->bssid[1] = cpu_to_le32(reg);
411
412 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
413 conf->bssid, sizeof(conf->bssid));
414 }
415 }
416
417 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
418 struct rt2x00lib_erp *erp)
419 {
420 u32 reg;
421
422 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
423 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
424 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
425
426 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
427 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
428 !!erp->short_preamble);
429 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
430 }
431
432 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
433 const int basic_rate_mask)
434 {
435 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
436 }
437
438 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
439 struct rf_channel *rf, const int txpower)
440 {
441 u8 r3;
442 u8 r94;
443 u8 smart;
444
445 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
446 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
447
448 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
449 rt2x00_rf(&rt2x00dev->chip, RF2527));
450
451 rt61pci_bbp_read(rt2x00dev, 3, &r3);
452 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
453 rt61pci_bbp_write(rt2x00dev, 3, r3);
454
455 r94 = 6;
456 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
457 r94 += txpower - MAX_TXPOWER;
458 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
459 r94 += txpower;
460 rt61pci_bbp_write(rt2x00dev, 94, r94);
461
462 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
464 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
465 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
466
467 udelay(200);
468
469 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
470 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
471 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
472 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
473
474 udelay(200);
475
476 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
477 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
478 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
479 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
480
481 msleep(1);
482 }
483
484 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
485 const int txpower)
486 {
487 struct rf_channel rf;
488
489 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
490 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
491 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
492 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
493
494 rt61pci_config_channel(rt2x00dev, &rf, txpower);
495 }
496
497 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
498 struct antenna_setup *ant)
499 {
500 u8 r3;
501 u8 r4;
502 u8 r77;
503
504 rt61pci_bbp_read(rt2x00dev, 3, &r3);
505 rt61pci_bbp_read(rt2x00dev, 4, &r4);
506 rt61pci_bbp_read(rt2x00dev, 77, &r77);
507
508 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
509 rt2x00_rf(&rt2x00dev->chip, RF5325));
510
511 /*
512 * Configure the RX antenna.
513 */
514 switch (ant->rx) {
515 case ANTENNA_HW_DIVERSITY:
516 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
517 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
518 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
519 break;
520 case ANTENNA_A:
521 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
522 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
523 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
524 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
525 else
526 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
527 break;
528 case ANTENNA_B:
529 default:
530 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
531 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
532 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
533 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
534 else
535 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
536 break;
537 }
538
539 rt61pci_bbp_write(rt2x00dev, 77, r77);
540 rt61pci_bbp_write(rt2x00dev, 3, r3);
541 rt61pci_bbp_write(rt2x00dev, 4, r4);
542 }
543
544 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
545 struct antenna_setup *ant)
546 {
547 u8 r3;
548 u8 r4;
549 u8 r77;
550
551 rt61pci_bbp_read(rt2x00dev, 3, &r3);
552 rt61pci_bbp_read(rt2x00dev, 4, &r4);
553 rt61pci_bbp_read(rt2x00dev, 77, &r77);
554
555 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
556 rt2x00_rf(&rt2x00dev->chip, RF2529));
557 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
558 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
559
560 /*
561 * Configure the RX antenna.
562 */
563 switch (ant->rx) {
564 case ANTENNA_HW_DIVERSITY:
565 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
566 break;
567 case ANTENNA_A:
568 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
569 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
570 break;
571 case ANTENNA_B:
572 default:
573 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
574 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
575 break;
576 }
577
578 rt61pci_bbp_write(rt2x00dev, 77, r77);
579 rt61pci_bbp_write(rt2x00dev, 3, r3);
580 rt61pci_bbp_write(rt2x00dev, 4, r4);
581 }
582
583 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
584 const int p1, const int p2)
585 {
586 u32 reg;
587
588 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
589
590 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
591 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
592
593 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
594 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
595
596 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
597 }
598
599 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
600 struct antenna_setup *ant)
601 {
602 u8 r3;
603 u8 r4;
604 u8 r77;
605
606 rt61pci_bbp_read(rt2x00dev, 3, &r3);
607 rt61pci_bbp_read(rt2x00dev, 4, &r4);
608 rt61pci_bbp_read(rt2x00dev, 77, &r77);
609
610 /*
611 * Configure the RX antenna.
612 */
613 switch (ant->rx) {
614 case ANTENNA_A:
615 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
616 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
617 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
618 break;
619 case ANTENNA_HW_DIVERSITY:
620 /*
621 * FIXME: Antenna selection for the rf 2529 is very confusing
622 * in the legacy driver. Just default to antenna B until the
623 * legacy code can be properly translated into rt2x00 code.
624 */
625 case ANTENNA_B:
626 default:
627 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
628 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
629 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
630 break;
631 }
632
633 rt61pci_bbp_write(rt2x00dev, 77, r77);
634 rt61pci_bbp_write(rt2x00dev, 3, r3);
635 rt61pci_bbp_write(rt2x00dev, 4, r4);
636 }
637
638 struct antenna_sel {
639 u8 word;
640 /*
641 * value[0] -> non-LNA
642 * value[1] -> LNA
643 */
644 u8 value[2];
645 };
646
647 static const struct antenna_sel antenna_sel_a[] = {
648 { 96, { 0x58, 0x78 } },
649 { 104, { 0x38, 0x48 } },
650 { 75, { 0xfe, 0x80 } },
651 { 86, { 0xfe, 0x80 } },
652 { 88, { 0xfe, 0x80 } },
653 { 35, { 0x60, 0x60 } },
654 { 97, { 0x58, 0x58 } },
655 { 98, { 0x58, 0x58 } },
656 };
657
658 static const struct antenna_sel antenna_sel_bg[] = {
659 { 96, { 0x48, 0x68 } },
660 { 104, { 0x2c, 0x3c } },
661 { 75, { 0xfe, 0x80 } },
662 { 86, { 0xfe, 0x80 } },
663 { 88, { 0xfe, 0x80 } },
664 { 35, { 0x50, 0x50 } },
665 { 97, { 0x48, 0x48 } },
666 { 98, { 0x48, 0x48 } },
667 };
668
669 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
670 struct antenna_setup *ant)
671 {
672 const struct antenna_sel *sel;
673 unsigned int lna;
674 unsigned int i;
675 u32 reg;
676
677 /*
678 * We should never come here because rt2x00lib is supposed
679 * to catch this and send us the correct antenna explicitely.
680 */
681 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
682 ant->tx == ANTENNA_SW_DIVERSITY);
683
684 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
685 sel = antenna_sel_a;
686 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
687 } else {
688 sel = antenna_sel_bg;
689 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
690 }
691
692 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
693 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
694
695 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
696
697 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
698 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
699 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
700 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
701
702 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
703
704 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
705 rt2x00_rf(&rt2x00dev->chip, RF5325))
706 rt61pci_config_antenna_5x(rt2x00dev, ant);
707 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
708 rt61pci_config_antenna_2x(rt2x00dev, ant);
709 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
710 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
711 rt61pci_config_antenna_2x(rt2x00dev, ant);
712 else
713 rt61pci_config_antenna_2529(rt2x00dev, ant);
714 }
715 }
716
717 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
718 struct rt2x00lib_conf *libconf)
719 {
720 u32 reg;
721
722 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
723 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
724 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
725
726 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
727 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
728 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
729 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
730 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
731
732 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
733 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
734 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
735
736 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
737 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
738 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
739
740 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
741 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
742 libconf->conf->beacon_int * 16);
743 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
744 }
745
746 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
747 struct rt2x00lib_conf *libconf,
748 const unsigned int flags)
749 {
750 if (flags & CONFIG_UPDATE_PHYMODE)
751 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
752 if (flags & CONFIG_UPDATE_CHANNEL)
753 rt61pci_config_channel(rt2x00dev, &libconf->rf,
754 libconf->conf->power_level);
755 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
756 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
757 if (flags & CONFIG_UPDATE_ANTENNA)
758 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
759 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
760 rt61pci_config_duration(rt2x00dev, libconf);
761 }
762
763 /*
764 * Link tuning
765 */
766 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
767 struct link_qual *qual)
768 {
769 u32 reg;
770
771 /*
772 * Update FCS error count from register.
773 */
774 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
775 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
776
777 /*
778 * Update False CCA count from register.
779 */
780 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
781 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
782 }
783
784 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
785 {
786 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
787 rt2x00dev->link.vgc_level = 0x20;
788 }
789
790 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
791 {
792 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
793 u8 r17;
794 u8 up_bound;
795 u8 low_bound;
796
797 rt61pci_bbp_read(rt2x00dev, 17, &r17);
798
799 /*
800 * Determine r17 bounds.
801 */
802 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
803 low_bound = 0x28;
804 up_bound = 0x48;
805 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
806 low_bound += 0x10;
807 up_bound += 0x10;
808 }
809 } else {
810 low_bound = 0x20;
811 up_bound = 0x40;
812 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
813 low_bound += 0x10;
814 up_bound += 0x10;
815 }
816 }
817
818 /*
819 * If we are not associated, we should go straight to the
820 * dynamic CCA tuning.
821 */
822 if (!rt2x00dev->intf_associated)
823 goto dynamic_cca_tune;
824
825 /*
826 * Special big-R17 for very short distance
827 */
828 if (rssi >= -35) {
829 if (r17 != 0x60)
830 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
831 return;
832 }
833
834 /*
835 * Special big-R17 for short distance
836 */
837 if (rssi >= -58) {
838 if (r17 != up_bound)
839 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
840 return;
841 }
842
843 /*
844 * Special big-R17 for middle-short distance
845 */
846 if (rssi >= -66) {
847 low_bound += 0x10;
848 if (r17 != low_bound)
849 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
850 return;
851 }
852
853 /*
854 * Special mid-R17 for middle distance
855 */
856 if (rssi >= -74) {
857 low_bound += 0x08;
858 if (r17 != low_bound)
859 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
860 return;
861 }
862
863 /*
864 * Special case: Change up_bound based on the rssi.
865 * Lower up_bound when rssi is weaker then -74 dBm.
866 */
867 up_bound -= 2 * (-74 - rssi);
868 if (low_bound > up_bound)
869 up_bound = low_bound;
870
871 if (r17 > up_bound) {
872 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
873 return;
874 }
875
876 dynamic_cca_tune:
877
878 /*
879 * r17 does not yet exceed upper limit, continue and base
880 * the r17 tuning on the false CCA count.
881 */
882 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
883 if (++r17 > up_bound)
884 r17 = up_bound;
885 rt61pci_bbp_write(rt2x00dev, 17, r17);
886 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
887 if (--r17 < low_bound)
888 r17 = low_bound;
889 rt61pci_bbp_write(rt2x00dev, 17, r17);
890 }
891 }
892
893 /*
894 * Firmware functions
895 */
896 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
897 {
898 char *fw_name;
899
900 switch (rt2x00dev->chip.rt) {
901 case RT2561:
902 fw_name = FIRMWARE_RT2561;
903 break;
904 case RT2561s:
905 fw_name = FIRMWARE_RT2561s;
906 break;
907 case RT2661:
908 fw_name = FIRMWARE_RT2661;
909 break;
910 default:
911 fw_name = NULL;
912 break;
913 }
914
915 return fw_name;
916 }
917
918 static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
919 {
920 u16 crc;
921
922 /*
923 * Use the crc itu-t algorithm.
924 * The last 2 bytes in the firmware array are the crc checksum itself,
925 * this means that we should never pass those 2 bytes to the crc
926 * algorithm.
927 */
928 crc = crc_itu_t(0, data, len - 2);
929 crc = crc_itu_t_byte(crc, 0);
930 crc = crc_itu_t_byte(crc, 0);
931
932 return crc;
933 }
934
935 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
936 const size_t len)
937 {
938 int i;
939 u32 reg;
940
941 /*
942 * Wait for stable hardware.
943 */
944 for (i = 0; i < 100; i++) {
945 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
946 if (reg)
947 break;
948 msleep(1);
949 }
950
951 if (!reg) {
952 ERROR(rt2x00dev, "Unstable hardware.\n");
953 return -EBUSY;
954 }
955
956 /*
957 * Prepare MCU and mailbox for firmware loading.
958 */
959 reg = 0;
960 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
961 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
962 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
963 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
964 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
965
966 /*
967 * Write firmware to device.
968 */
969 reg = 0;
970 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
971 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
972 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
973
974 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
975 data, len);
976
977 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
978 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
979
980 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
981 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
982
983 for (i = 0; i < 100; i++) {
984 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
985 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
986 break;
987 msleep(1);
988 }
989
990 if (i == 100) {
991 ERROR(rt2x00dev, "MCU Control register not ready.\n");
992 return -EBUSY;
993 }
994
995 /*
996 * Reset MAC and BBP registers.
997 */
998 reg = 0;
999 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1000 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1001 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1002
1003 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1004 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1005 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1006 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1007
1008 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1009 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1010 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1011
1012 return 0;
1013 }
1014
1015 /*
1016 * Initialization functions.
1017 */
1018 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1019 struct queue_entry *entry)
1020 {
1021 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1022 u32 word;
1023
1024 rt2x00_desc_read(priv_rx->desc, 5, &word);
1025 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1026 priv_rx->data_dma);
1027 rt2x00_desc_write(priv_rx->desc, 5, word);
1028
1029 rt2x00_desc_read(priv_rx->desc, 0, &word);
1030 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1031 rt2x00_desc_write(priv_rx->desc, 0, word);
1032 }
1033
1034 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1035 struct queue_entry *entry)
1036 {
1037 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
1038 u32 word;
1039
1040 rt2x00_desc_read(priv_tx->desc, 1, &word);
1041 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1042 rt2x00_desc_write(priv_tx->desc, 1, word);
1043
1044 rt2x00_desc_read(priv_tx->desc, 5, &word);
1045 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1046 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1047 rt2x00_desc_write(priv_tx->desc, 5, word);
1048
1049 rt2x00_desc_read(priv_tx->desc, 6, &word);
1050 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1051 priv_tx->data_dma);
1052 rt2x00_desc_write(priv_tx->desc, 6, word);
1053
1054 rt2x00_desc_read(priv_tx->desc, 0, &word);
1055 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1056 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1057 rt2x00_desc_write(priv_tx->desc, 0, word);
1058 }
1059
1060 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1061 {
1062 struct queue_entry_priv_pci_rx *priv_rx;
1063 struct queue_entry_priv_pci_tx *priv_tx;
1064 u32 reg;
1065
1066 /*
1067 * Initialize registers.
1068 */
1069 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1070 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1071 rt2x00dev->tx[0].limit);
1072 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1073 rt2x00dev->tx[1].limit);
1074 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1075 rt2x00dev->tx[2].limit);
1076 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1077 rt2x00dev->tx[3].limit);
1078 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1079
1080 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1081 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1082 rt2x00dev->tx[0].desc_size / 4);
1083 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1084
1085 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
1086 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1087 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1088 priv_tx->desc_dma);
1089 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1090
1091 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
1092 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1093 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1094 priv_tx->desc_dma);
1095 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1096
1097 priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
1098 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1099 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1100 priv_tx->desc_dma);
1101 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1102
1103 priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
1104 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1105 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1106 priv_tx->desc_dma);
1107 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1108
1109 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1110 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1111 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1112 rt2x00dev->rx->desc_size / 4);
1113 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1114 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1115
1116 priv_rx = rt2x00dev->rx->entries[0].priv_data;
1117 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1118 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1119 priv_rx->desc_dma);
1120 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1121
1122 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1123 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1124 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1125 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1126 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1127 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1128
1129 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1130 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1131 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1132 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1133 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1134 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1135
1136 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1137 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1138 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1139
1140 return 0;
1141 }
1142
1143 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1144 {
1145 u32 reg;
1146
1147 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1148 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1149 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1150 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1151 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1152
1153 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1154 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1155 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1156 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1157 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1158 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1159 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1160 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1161 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1162 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1163
1164 /*
1165 * CCK TXD BBP registers
1166 */
1167 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1168 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1169 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1170 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1171 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1172 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1173 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1174 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1175 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1176 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1177
1178 /*
1179 * OFDM TXD BBP registers
1180 */
1181 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1182 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1183 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1184 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1185 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1186 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1187 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1188 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1189
1190 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1191 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1192 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1193 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1194 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1195 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1196
1197 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1198 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1199 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1200 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1201 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1202 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1203
1204 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1205
1206 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1207
1208 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1209 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1210 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1211
1212 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1213
1214 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1215 return -EBUSY;
1216
1217 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1218
1219 /*
1220 * Invalidate all Shared Keys (SEC_CSR0),
1221 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1222 */
1223 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1224 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1225 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1226
1227 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1228 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1229 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1230 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1231
1232 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1233
1234 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1235
1236 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1237
1238 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1239 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1240 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1241 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1242
1243 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1244 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1245 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1246 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1247
1248 /*
1249 * Clear all beacons
1250 * For the Beacon base registers we only need to clear
1251 * the first byte since that byte contains the VALID and OWNER
1252 * bits which (when set to 0) will invalidate the entire beacon.
1253 */
1254 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1255 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1256 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1257 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1258
1259 /*
1260 * We must clear the error counters.
1261 * These registers are cleared on read,
1262 * so we may pass a useless variable to store the value.
1263 */
1264 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1265 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1266 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1267
1268 /*
1269 * Reset MAC and BBP registers.
1270 */
1271 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1272 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1273 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1274 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1275
1276 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1277 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1278 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1279 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1280
1281 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1282 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1283 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1284
1285 return 0;
1286 }
1287
1288 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1289 {
1290 unsigned int i;
1291 u16 eeprom;
1292 u8 reg_id;
1293 u8 value;
1294
1295 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1296 rt61pci_bbp_read(rt2x00dev, 0, &value);
1297 if ((value != 0xff) && (value != 0x00))
1298 goto continue_csr_init;
1299 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1300 udelay(REGISTER_BUSY_DELAY);
1301 }
1302
1303 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1304 return -EACCES;
1305
1306 continue_csr_init:
1307 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1308 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1309 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1310 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1311 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1312 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1313 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1314 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1315 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1316 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1317 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1318 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1319 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1320 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1321 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1322 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1323 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1324 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1325 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1326 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1327 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1328 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1329 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1330 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1331
1332 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1333 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1334
1335 if (eeprom != 0xffff && eeprom != 0x0000) {
1336 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1337 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1338 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1339 }
1340 }
1341
1342 return 0;
1343 }
1344
1345 /*
1346 * Device state switch handlers.
1347 */
1348 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1349 enum dev_state state)
1350 {
1351 u32 reg;
1352
1353 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1354 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1355 state == STATE_RADIO_RX_OFF);
1356 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1357 }
1358
1359 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1360 enum dev_state state)
1361 {
1362 int mask = (state == STATE_RADIO_IRQ_OFF);
1363 u32 reg;
1364
1365 /*
1366 * When interrupts are being enabled, the interrupt registers
1367 * should clear the register to assure a clean state.
1368 */
1369 if (state == STATE_RADIO_IRQ_ON) {
1370 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1371 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1372
1373 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1374 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1375 }
1376
1377 /*
1378 * Only toggle the interrupts bits we are going to use.
1379 * Non-checked interrupt bits are disabled by default.
1380 */
1381 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1382 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1383 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1384 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1385 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1386 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1387
1388 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1389 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1390 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1391 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1392 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1393 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1394 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1395 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1396 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1397 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1398 }
1399
1400 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1401 {
1402 u32 reg;
1403
1404 /*
1405 * Initialize all registers.
1406 */
1407 if (rt61pci_init_queues(rt2x00dev) ||
1408 rt61pci_init_registers(rt2x00dev) ||
1409 rt61pci_init_bbp(rt2x00dev)) {
1410 ERROR(rt2x00dev, "Register initialization failed.\n");
1411 return -EIO;
1412 }
1413
1414 /*
1415 * Enable interrupts.
1416 */
1417 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1418
1419 /*
1420 * Enable RX.
1421 */
1422 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1423 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1424 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1425
1426 return 0;
1427 }
1428
1429 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1430 {
1431 u32 reg;
1432
1433 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1434
1435 /*
1436 * Disable synchronisation.
1437 */
1438 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1439
1440 /*
1441 * Cancel RX and TX.
1442 */
1443 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1444 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1445 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1446 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1447 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1448 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1449
1450 /*
1451 * Disable interrupts.
1452 */
1453 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1454 }
1455
1456 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1457 {
1458 u32 reg;
1459 unsigned int i;
1460 char put_to_sleep;
1461 char current_state;
1462
1463 put_to_sleep = (state != STATE_AWAKE);
1464
1465 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1466 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1467 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1468 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1469
1470 /*
1471 * Device is not guaranteed to be in the requested state yet.
1472 * We must wait until the register indicates that the
1473 * device has entered the correct state.
1474 */
1475 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1476 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1477 current_state =
1478 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1479 if (current_state == !put_to_sleep)
1480 return 0;
1481 msleep(10);
1482 }
1483
1484 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1485 "current device state %d.\n", !put_to_sleep, current_state);
1486
1487 return -EBUSY;
1488 }
1489
1490 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1491 enum dev_state state)
1492 {
1493 int retval = 0;
1494
1495 switch (state) {
1496 case STATE_RADIO_ON:
1497 retval = rt61pci_enable_radio(rt2x00dev);
1498 break;
1499 case STATE_RADIO_OFF:
1500 rt61pci_disable_radio(rt2x00dev);
1501 break;
1502 case STATE_RADIO_RX_ON:
1503 case STATE_RADIO_RX_ON_LINK:
1504 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1505 break;
1506 case STATE_RADIO_RX_OFF:
1507 case STATE_RADIO_RX_OFF_LINK:
1508 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1509 break;
1510 case STATE_DEEP_SLEEP:
1511 case STATE_SLEEP:
1512 case STATE_STANDBY:
1513 case STATE_AWAKE:
1514 retval = rt61pci_set_state(rt2x00dev, state);
1515 break;
1516 default:
1517 retval = -ENOTSUPP;
1518 break;
1519 }
1520
1521 return retval;
1522 }
1523
1524 /*
1525 * TX descriptor initialization
1526 */
1527 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1528 struct sk_buff *skb,
1529 struct txentry_desc *txdesc,
1530 struct ieee80211_tx_control *control)
1531 {
1532 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1533 __le32 *txd = skbdesc->desc;
1534 u32 word;
1535
1536 /*
1537 * Start writing the descriptor words.
1538 */
1539 rt2x00_desc_read(txd, 1, &word);
1540 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1541 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1542 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1543 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1544 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1545 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1546 rt2x00_desc_write(txd, 1, word);
1547
1548 rt2x00_desc_read(txd, 2, &word);
1549 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1550 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1551 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1552 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1553 rt2x00_desc_write(txd, 2, word);
1554
1555 rt2x00_desc_read(txd, 5, &word);
1556 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1557 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1558 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1559 rt2x00_desc_write(txd, 5, word);
1560
1561 if (skbdesc->desc_len > TXINFO_SIZE) {
1562 rt2x00_desc_read(txd, 11, &word);
1563 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
1564 rt2x00_desc_write(txd, 11, word);
1565 }
1566
1567 rt2x00_desc_read(txd, 0, &word);
1568 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1569 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1570 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1571 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1572 rt2x00_set_field32(&word, TXD_W0_ACK,
1573 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1574 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1575 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1576 rt2x00_set_field32(&word, TXD_W0_OFDM,
1577 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1578 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1579 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1580 !!(control->flags &
1581 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1582 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1583 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1584 rt2x00_set_field32(&word, TXD_W0_BURST,
1585 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1586 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1587 rt2x00_desc_write(txd, 0, word);
1588 }
1589
1590 /*
1591 * TX data initialization
1592 */
1593 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1594 const unsigned int queue)
1595 {
1596 u32 reg;
1597
1598 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1599 /*
1600 * For Wi-Fi faily generated beacons between participating
1601 * stations. Set TBTT phase adaptive adjustment step to 8us.
1602 */
1603 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1604
1605 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1606 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1607 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1608 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1609 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1610 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1611 }
1612 return;
1613 }
1614
1615 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1616 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0,
1617 (queue == IEEE80211_TX_QUEUE_DATA0));
1618 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1,
1619 (queue == IEEE80211_TX_QUEUE_DATA1));
1620 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2,
1621 (queue == IEEE80211_TX_QUEUE_DATA2));
1622 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3,
1623 (queue == IEEE80211_TX_QUEUE_DATA3));
1624 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1625 }
1626
1627 /*
1628 * RX control handlers
1629 */
1630 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1631 {
1632 u16 eeprom;
1633 u8 offset;
1634 u8 lna;
1635
1636 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1637 switch (lna) {
1638 case 3:
1639 offset = 90;
1640 break;
1641 case 2:
1642 offset = 74;
1643 break;
1644 case 1:
1645 offset = 64;
1646 break;
1647 default:
1648 return 0;
1649 }
1650
1651 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1652 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1653 offset += 14;
1654
1655 if (lna == 3 || lna == 2)
1656 offset += 10;
1657
1658 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1659 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1660 } else {
1661 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1662 offset += 14;
1663
1664 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1665 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1666 }
1667
1668 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1669 }
1670
1671 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1672 struct rxdone_entry_desc *rxdesc)
1673 {
1674 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1675 u32 word0;
1676 u32 word1;
1677
1678 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1679 rt2x00_desc_read(priv_rx->desc, 1, &word1);
1680
1681 rxdesc->flags = 0;
1682 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1683 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1684
1685 /*
1686 * Obtain the status about this packet.
1687 * When frame was received with an OFDM bitrate,
1688 * the signal is the PLCP value. If it was received with
1689 * a CCK bitrate the signal is the rate in 100kbit/s.
1690 */
1691 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1692 rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1693 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1694
1695 rxdesc->dev_flags = 0;
1696 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1697 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1698 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1699 rxdesc->dev_flags |= RXDONE_MY_BSS;
1700 }
1701
1702 /*
1703 * Interrupt functions.
1704 */
1705 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1706 {
1707 struct data_queue *queue;
1708 struct queue_entry *entry;
1709 struct queue_entry *entry_done;
1710 struct queue_entry_priv_pci_tx *priv_tx;
1711 struct txdone_entry_desc txdesc;
1712 u32 word;
1713 u32 reg;
1714 u32 old_reg;
1715 int type;
1716 int index;
1717
1718 /*
1719 * During each loop we will compare the freshly read
1720 * STA_CSR4 register value with the value read from
1721 * the previous loop. If the 2 values are equal then
1722 * we should stop processing because the chance it
1723 * quite big that the device has been unplugged and
1724 * we risk going into an endless loop.
1725 */
1726 old_reg = 0;
1727
1728 while (1) {
1729 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1730 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1731 break;
1732
1733 if (old_reg == reg)
1734 break;
1735 old_reg = reg;
1736
1737 /*
1738 * Skip this entry when it contains an invalid
1739 * queue identication number.
1740 */
1741 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1742 queue = rt2x00queue_get_queue(rt2x00dev, type);
1743 if (unlikely(!queue))
1744 continue;
1745
1746 /*
1747 * Skip this entry when it contains an invalid
1748 * index number.
1749 */
1750 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1751 if (unlikely(index >= queue->limit))
1752 continue;
1753
1754 entry = &queue->entries[index];
1755 priv_tx = entry->priv_data;
1756 rt2x00_desc_read(priv_tx->desc, 0, &word);
1757
1758 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1759 !rt2x00_get_field32(word, TXD_W0_VALID))
1760 return;
1761
1762 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1763 while (entry != entry_done) {
1764 /* Catch up.
1765 * Just report any entries we missed as failed.
1766 */
1767 WARNING(rt2x00dev,
1768 "TX status report missed for entry %d\n",
1769 entry_done->entry_idx);
1770
1771 txdesc.status = TX_FAIL_OTHER;
1772 txdesc.retry = 0;
1773
1774 rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
1775 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1776 }
1777
1778 /*
1779 * Obtain the status about this packet.
1780 */
1781 txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1782 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1783
1784 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1785 }
1786 }
1787
1788 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1789 {
1790 struct rt2x00_dev *rt2x00dev = dev_instance;
1791 u32 reg_mcu;
1792 u32 reg;
1793
1794 /*
1795 * Get the interrupt sources & saved to local variable.
1796 * Write register value back to clear pending interrupts.
1797 */
1798 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1799 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1800
1801 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1802 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1803
1804 if (!reg && !reg_mcu)
1805 return IRQ_NONE;
1806
1807 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1808 return IRQ_HANDLED;
1809
1810 /*
1811 * Handle interrupts, walk through all bits
1812 * and run the tasks, the bits are checked in order of
1813 * priority.
1814 */
1815
1816 /*
1817 * 1 - Rx ring done interrupt.
1818 */
1819 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1820 rt2x00pci_rxdone(rt2x00dev);
1821
1822 /*
1823 * 2 - Tx ring done interrupt.
1824 */
1825 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1826 rt61pci_txdone(rt2x00dev);
1827
1828 /*
1829 * 3 - Handle MCU command done.
1830 */
1831 if (reg_mcu)
1832 rt2x00pci_register_write(rt2x00dev,
1833 M2H_CMD_DONE_CSR, 0xffffffff);
1834
1835 return IRQ_HANDLED;
1836 }
1837
1838 /*
1839 * Device probe functions.
1840 */
1841 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1842 {
1843 struct eeprom_93cx6 eeprom;
1844 u32 reg;
1845 u16 word;
1846 u8 *mac;
1847 s8 value;
1848
1849 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1850
1851 eeprom.data = rt2x00dev;
1852 eeprom.register_read = rt61pci_eepromregister_read;
1853 eeprom.register_write = rt61pci_eepromregister_write;
1854 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1855 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1856 eeprom.reg_data_in = 0;
1857 eeprom.reg_data_out = 0;
1858 eeprom.reg_data_clock = 0;
1859 eeprom.reg_chip_select = 0;
1860
1861 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1862 EEPROM_SIZE / sizeof(u16));
1863
1864 /*
1865 * Start validation of the data that has been read.
1866 */
1867 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1868 if (!is_valid_ether_addr(mac)) {
1869 DECLARE_MAC_BUF(macbuf);
1870
1871 random_ether_addr(mac);
1872 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1873 }
1874
1875 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1876 if (word == 0xffff) {
1877 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1878 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1879 ANTENNA_B);
1880 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1881 ANTENNA_B);
1882 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1883 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1884 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1885 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1886 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1887 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1888 }
1889
1890 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1891 if (word == 0xffff) {
1892 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1893 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1894 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1895 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1896 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1897 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1898 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1899 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1900 }
1901
1902 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1903 if (word == 0xffff) {
1904 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1905 LED_MODE_DEFAULT);
1906 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1907 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1908 }
1909
1910 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1911 if (word == 0xffff) {
1912 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1913 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1914 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1915 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1916 }
1917
1918 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1919 if (word == 0xffff) {
1920 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1921 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1922 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1923 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1924 } else {
1925 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1926 if (value < -10 || value > 10)
1927 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1928 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1929 if (value < -10 || value > 10)
1930 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1931 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1932 }
1933
1934 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1935 if (word == 0xffff) {
1936 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1937 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1938 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1939 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1940 } else {
1941 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1942 if (value < -10 || value > 10)
1943 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1944 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1945 if (value < -10 || value > 10)
1946 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1947 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1948 }
1949
1950 return 0;
1951 }
1952
1953 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1954 {
1955 u32 reg;
1956 u16 value;
1957 u16 eeprom;
1958 u16 device;
1959
1960 /*
1961 * Read EEPROM word for configuration.
1962 */
1963 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1964
1965 /*
1966 * Identify RF chipset.
1967 * To determine the RT chip we have to read the
1968 * PCI header of the device.
1969 */
1970 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1971 PCI_CONFIG_HEADER_DEVICE, &device);
1972 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1973 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1974 rt2x00_set_chip(rt2x00dev, device, value, reg);
1975
1976 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1977 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1978 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1979 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1980 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1981 return -ENODEV;
1982 }
1983
1984 /*
1985 * Determine number of antenna's.
1986 */
1987 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
1988 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
1989
1990 /*
1991 * Identify default antenna configuration.
1992 */
1993 rt2x00dev->default_ant.tx =
1994 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1995 rt2x00dev->default_ant.rx =
1996 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1997
1998 /*
1999 * Read the Frame type.
2000 */
2001 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2002 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2003
2004 /*
2005 * Detect if this device has an hardware controlled radio.
2006 */
2007 #ifdef CONFIG_RT61PCI_RFKILL
2008 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2009 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2010 #endif /* CONFIG_RT61PCI_RFKILL */
2011
2012 /*
2013 * Read frequency offset and RF programming sequence.
2014 */
2015 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2016 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2017 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2018
2019 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2020
2021 /*
2022 * Read external LNA informations.
2023 */
2024 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2025
2026 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2027 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2028 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2029 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2030
2031 /*
2032 * When working with a RF2529 chip without double antenna
2033 * the antenna settings should be gathered from the NIC
2034 * eeprom word.
2035 */
2036 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2037 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2038 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2039 case 0:
2040 rt2x00dev->default_ant.tx = ANTENNA_B;
2041 rt2x00dev->default_ant.rx = ANTENNA_A;
2042 break;
2043 case 1:
2044 rt2x00dev->default_ant.tx = ANTENNA_B;
2045 rt2x00dev->default_ant.rx = ANTENNA_B;
2046 break;
2047 case 2:
2048 rt2x00dev->default_ant.tx = ANTENNA_A;
2049 rt2x00dev->default_ant.rx = ANTENNA_A;
2050 break;
2051 case 3:
2052 rt2x00dev->default_ant.tx = ANTENNA_A;
2053 rt2x00dev->default_ant.rx = ANTENNA_B;
2054 break;
2055 }
2056
2057 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2058 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2059 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2060 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2061 }
2062
2063 /*
2064 * Store led settings, for correct led behaviour.
2065 * If the eeprom value is invalid,
2066 * switch to default led mode.
2067 */
2068 #ifdef CONFIG_RT61PCI_LEDS
2069 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2070 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2071
2072 rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
2073 rt2x00dev->led_radio.type = LED_TYPE_RADIO;
2074 rt2x00dev->led_radio.led_dev.brightness_set =
2075 rt61pci_brightness_set;
2076 rt2x00dev->led_radio.led_dev.blink_set =
2077 rt61pci_blink_set;
2078 rt2x00dev->led_radio.flags = LED_INITIALIZED;
2079
2080 rt2x00dev->led_assoc.rt2x00dev = rt2x00dev;
2081 rt2x00dev->led_assoc.type = LED_TYPE_ASSOC;
2082 rt2x00dev->led_assoc.led_dev.brightness_set =
2083 rt61pci_brightness_set;
2084 rt2x00dev->led_assoc.led_dev.blink_set =
2085 rt61pci_blink_set;
2086 rt2x00dev->led_assoc.flags = LED_INITIALIZED;
2087
2088 if (value == LED_MODE_SIGNAL_STRENGTH) {
2089 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
2090 rt2x00dev->led_radio.type = LED_TYPE_QUALITY;
2091 rt2x00dev->led_qual.led_dev.brightness_set =
2092 rt61pci_brightness_set;
2093 rt2x00dev->led_qual.led_dev.blink_set =
2094 rt61pci_blink_set;
2095 rt2x00dev->led_qual.flags = LED_INITIALIZED;
2096 }
2097
2098 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2099 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2100 rt2x00_get_field16(eeprom,
2101 EEPROM_LED_POLARITY_GPIO_0));
2102 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2103 rt2x00_get_field16(eeprom,
2104 EEPROM_LED_POLARITY_GPIO_1));
2105 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2106 rt2x00_get_field16(eeprom,
2107 EEPROM_LED_POLARITY_GPIO_2));
2108 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2109 rt2x00_get_field16(eeprom,
2110 EEPROM_LED_POLARITY_GPIO_3));
2111 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2112 rt2x00_get_field16(eeprom,
2113 EEPROM_LED_POLARITY_GPIO_4));
2114 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2115 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2116 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2117 rt2x00_get_field16(eeprom,
2118 EEPROM_LED_POLARITY_RDY_G));
2119 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2120 rt2x00_get_field16(eeprom,
2121 EEPROM_LED_POLARITY_RDY_A));
2122 #endif /* CONFIG_RT61PCI_LEDS */
2123
2124 return 0;
2125 }
2126
2127 /*
2128 * RF value list for RF5225 & RF5325
2129 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2130 */
2131 static const struct rf_channel rf_vals_noseq[] = {
2132 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2133 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2134 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2135 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2136 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2137 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2138 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2139 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2140 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2141 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2142 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2143 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2144 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2145 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2146
2147 /* 802.11 UNI / HyperLan 2 */
2148 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2149 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2150 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2151 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2152 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2153 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2154 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2155 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2156
2157 /* 802.11 HyperLan 2 */
2158 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2159 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2160 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2161 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2162 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2163 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2164 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2165 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2166 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2167 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2168
2169 /* 802.11 UNII */
2170 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2171 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2172 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2173 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2174 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2175 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2176
2177 /* MMAC(Japan)J52 ch 34,38,42,46 */
2178 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2179 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2180 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2181 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2182 };
2183
2184 /*
2185 * RF value list for RF5225 & RF5325
2186 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2187 */
2188 static const struct rf_channel rf_vals_seq[] = {
2189 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2190 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2191 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2192 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2193 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2194 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2195 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2196 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2197 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2198 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2199 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2200 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2201 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2202 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2203
2204 /* 802.11 UNI / HyperLan 2 */
2205 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2206 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2207 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2208 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2209 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2210 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2211 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2212 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2213
2214 /* 802.11 HyperLan 2 */
2215 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2216 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2217 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2218 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2219 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2220 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2221 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2222 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2223 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2224 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2225
2226 /* 802.11 UNII */
2227 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2228 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2229 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2230 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2231 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2232 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2233
2234 /* MMAC(Japan)J52 ch 34,38,42,46 */
2235 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2236 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2237 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2238 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2239 };
2240
2241 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2242 {
2243 struct hw_mode_spec *spec = &rt2x00dev->spec;
2244 u8 *txpower;
2245 unsigned int i;
2246
2247 /*
2248 * Initialize all hw fields.
2249 */
2250 rt2x00dev->hw->flags =
2251 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2252 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
2253 rt2x00dev->hw->extra_tx_headroom = 0;
2254 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2255 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2256 rt2x00dev->hw->queues = 4;
2257
2258 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2259 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2260 rt2x00_eeprom_addr(rt2x00dev,
2261 EEPROM_MAC_ADDR_0));
2262
2263 /*
2264 * Convert tx_power array in eeprom.
2265 */
2266 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2267 for (i = 0; i < 14; i++)
2268 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2269
2270 /*
2271 * Initialize hw_mode information.
2272 */
2273 spec->supported_bands = SUPPORT_BAND_2GHZ;
2274 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2275 spec->tx_power_a = NULL;
2276 spec->tx_power_bg = txpower;
2277 spec->tx_power_default = DEFAULT_TXPOWER;
2278
2279 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2280 spec->num_channels = 14;
2281 spec->channels = rf_vals_noseq;
2282 } else {
2283 spec->num_channels = 14;
2284 spec->channels = rf_vals_seq;
2285 }
2286
2287 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2288 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2289 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2290 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2291
2292 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2293 for (i = 0; i < 14; i++)
2294 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2295
2296 spec->tx_power_a = txpower;
2297 }
2298 }
2299
2300 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2301 {
2302 int retval;
2303
2304 /*
2305 * Allocate eeprom data.
2306 */
2307 retval = rt61pci_validate_eeprom(rt2x00dev);
2308 if (retval)
2309 return retval;
2310
2311 retval = rt61pci_init_eeprom(rt2x00dev);
2312 if (retval)
2313 return retval;
2314
2315 /*
2316 * Initialize hw specifications.
2317 */
2318 rt61pci_probe_hw_mode(rt2x00dev);
2319
2320 /*
2321 * This device requires firmware.
2322 */
2323 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2324
2325 /*
2326 * Set the rssi offset.
2327 */
2328 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2329
2330 return 0;
2331 }
2332
2333 /*
2334 * IEEE80211 stack callback functions.
2335 */
2336 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2337 u32 short_retry, u32 long_retry)
2338 {
2339 struct rt2x00_dev *rt2x00dev = hw->priv;
2340 u32 reg;
2341
2342 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2343 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2344 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2345 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2346
2347 return 0;
2348 }
2349
2350 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2351 {
2352 struct rt2x00_dev *rt2x00dev = hw->priv;
2353 u64 tsf;
2354 u32 reg;
2355
2356 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2357 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2358 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2359 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2360
2361 return tsf;
2362 }
2363
2364 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2365 struct ieee80211_tx_control *control)
2366 {
2367 struct rt2x00_dev *rt2x00dev = hw->priv;
2368 struct rt2x00_intf *intf = vif_to_intf(control->vif);
2369 struct skb_frame_desc *skbdesc;
2370 unsigned int beacon_base;
2371 u32 reg;
2372
2373 if (unlikely(!intf->beacon))
2374 return -ENOBUFS;
2375
2376 /*
2377 * We need to append the descriptor in front of the
2378 * beacon frame.
2379 */
2380 if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
2381 if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
2382 0, GFP_ATOMIC)) {
2383 dev_kfree_skb(skb);
2384 return -ENOMEM;
2385 }
2386 }
2387
2388 /*
2389 * Add the descriptor in front of the skb.
2390 */
2391 skb_push(skb, intf->beacon->queue->desc_size);
2392 memset(skb->data, 0, intf->beacon->queue->desc_size);
2393
2394 /*
2395 * Fill in skb descriptor
2396 */
2397 skbdesc = get_skb_frame_desc(skb);
2398 memset(skbdesc, 0, sizeof(*skbdesc));
2399 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
2400 skbdesc->data = skb->data + intf->beacon->queue->desc_size;
2401 skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
2402 skbdesc->desc = skb->data;
2403 skbdesc->desc_len = intf->beacon->queue->desc_size;
2404 skbdesc->entry = intf->beacon;
2405
2406 /*
2407 * Disable beaconing while we are reloading the beacon data,
2408 * otherwise we might be sending out invalid data.
2409 */
2410 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2411 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
2412 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
2413 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2414 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2415
2416 /*
2417 * mac80211 doesn't provide the control->queue variable
2418 * for beacons. Set our own queue identification so
2419 * it can be used during descriptor initialization.
2420 */
2421 control->queue = RT2X00_BCN_QUEUE_BEACON;
2422 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
2423
2424 /*
2425 * Write entire beacon with descriptor to register,
2426 * and kick the beacon generator.
2427 */
2428 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
2429 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2430 skb->data, skb->len);
2431 rt61pci_kick_tx_queue(rt2x00dev, control->queue);
2432
2433 return 0;
2434 }
2435
2436 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2437 .tx = rt2x00mac_tx,
2438 .start = rt2x00mac_start,
2439 .stop = rt2x00mac_stop,
2440 .add_interface = rt2x00mac_add_interface,
2441 .remove_interface = rt2x00mac_remove_interface,
2442 .config = rt2x00mac_config,
2443 .config_interface = rt2x00mac_config_interface,
2444 .configure_filter = rt2x00mac_configure_filter,
2445 .get_stats = rt2x00mac_get_stats,
2446 .set_retry_limit = rt61pci_set_retry_limit,
2447 .bss_info_changed = rt2x00mac_bss_info_changed,
2448 .conf_tx = rt2x00mac_conf_tx,
2449 .get_tx_stats = rt2x00mac_get_tx_stats,
2450 .get_tsf = rt61pci_get_tsf,
2451 .beacon_update = rt61pci_beacon_update,
2452 };
2453
2454 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2455 .irq_handler = rt61pci_interrupt,
2456 .probe_hw = rt61pci_probe_hw,
2457 .get_firmware_name = rt61pci_get_firmware_name,
2458 .get_firmware_crc = rt61pci_get_firmware_crc,
2459 .load_firmware = rt61pci_load_firmware,
2460 .initialize = rt2x00pci_initialize,
2461 .uninitialize = rt2x00pci_uninitialize,
2462 .init_rxentry = rt61pci_init_rxentry,
2463 .init_txentry = rt61pci_init_txentry,
2464 .set_device_state = rt61pci_set_device_state,
2465 .rfkill_poll = rt61pci_rfkill_poll,
2466 .link_stats = rt61pci_link_stats,
2467 .reset_tuner = rt61pci_reset_tuner,
2468 .link_tuner = rt61pci_link_tuner,
2469 .write_tx_desc = rt61pci_write_tx_desc,
2470 .write_tx_data = rt2x00pci_write_tx_data,
2471 .kick_tx_queue = rt61pci_kick_tx_queue,
2472 .fill_rxdone = rt61pci_fill_rxdone,
2473 .config_filter = rt61pci_config_filter,
2474 .config_intf = rt61pci_config_intf,
2475 .config_erp = rt61pci_config_erp,
2476 .config = rt61pci_config,
2477 };
2478
2479 static const struct data_queue_desc rt61pci_queue_rx = {
2480 .entry_num = RX_ENTRIES,
2481 .data_size = DATA_FRAME_SIZE,
2482 .desc_size = RXD_DESC_SIZE,
2483 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
2484 };
2485
2486 static const struct data_queue_desc rt61pci_queue_tx = {
2487 .entry_num = TX_ENTRIES,
2488 .data_size = DATA_FRAME_SIZE,
2489 .desc_size = TXD_DESC_SIZE,
2490 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
2491 };
2492
2493 static const struct data_queue_desc rt61pci_queue_bcn = {
2494 .entry_num = 4 * BEACON_ENTRIES,
2495 .data_size = MGMT_FRAME_SIZE,
2496 .desc_size = TXINFO_SIZE,
2497 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
2498 };
2499
2500 static const struct rt2x00_ops rt61pci_ops = {
2501 .name = KBUILD_MODNAME,
2502 .max_sta_intf = 1,
2503 .max_ap_intf = 4,
2504 .eeprom_size = EEPROM_SIZE,
2505 .rf_size = RF_SIZE,
2506 .rx = &rt61pci_queue_rx,
2507 .tx = &rt61pci_queue_tx,
2508 .bcn = &rt61pci_queue_bcn,
2509 .lib = &rt61pci_rt2x00_ops,
2510 .hw = &rt61pci_mac80211_ops,
2511 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2512 .debugfs = &rt61pci_rt2x00debug,
2513 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2514 };
2515
2516 /*
2517 * RT61pci module information.
2518 */
2519 static struct pci_device_id rt61pci_device_table[] = {
2520 /* RT2561s */
2521 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2522 /* RT2561 v2 */
2523 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2524 /* RT2661 */
2525 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2526 { 0, }
2527 };
2528
2529 MODULE_AUTHOR(DRV_PROJECT);
2530 MODULE_VERSION(DRV_VERSION);
2531 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2532 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2533 "PCI & PCMCIA chipset based cards");
2534 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2535 MODULE_FIRMWARE(FIRMWARE_RT2561);
2536 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2537 MODULE_FIRMWARE(FIRMWARE_RT2661);
2538 MODULE_LICENSE("GPL");
2539
2540 static struct pci_driver rt61pci_driver = {
2541 .name = KBUILD_MODNAME,
2542 .id_table = rt61pci_device_table,
2543 .probe = rt2x00pci_probe,
2544 .remove = __devexit_p(rt2x00pci_remove),
2545 .suspend = rt2x00pci_suspend,
2546 .resume = rt2x00pci_resume,
2547 };
2548
2549 static int __init rt61pci_init(void)
2550 {
2551 return pci_register_driver(&rt61pci_driver);
2552 }
2553
2554 static void __exit rt61pci_exit(void)
2555 {
2556 pci_unregister_driver(&rt61pci_driver);
2557 }
2558
2559 module_init(rt61pci_init);
2560 module_exit(rt61pci_exit);