]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
perf test: Fix vmlinux failure on s390x part 2
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
40
41 /*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
45 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
90 void __iomem *bar;
91 unsigned long bar_mapped_size;
92 struct work_struct remove_work;
93 struct mutex shutdown_lock;
94 bool subsystem;
95 void __iomem *cmb;
96 dma_addr_t cmb_dma_addr;
97 u64 cmb_size;
98 u32 cmbsz;
99 u32 cmbloc;
100 struct nvme_ctrl ctrl;
101 struct completion ioq_wait;
102
103 /* shadow doorbell buffer support: */
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 dma_addr_t host_mem_descs_dma;
113 struct nvme_host_mem_buf_desc *host_mem_descs;
114 void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119 int n = 0, ret;
120
121 ret = kstrtoint(val, 10, &n);
122 if (ret != 0 || n < 2)
123 return -EINVAL;
124
125 return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130 return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135 return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140 return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144 * An NVM Express queue. Each device has at least two (one for admin
145 * commands and one for I/O commands).
146 */
147 struct nvme_queue {
148 struct device *q_dmadev;
149 struct nvme_dev *dev;
150 spinlock_t q_lock;
151 struct nvme_command *sq_cmds;
152 struct nvme_command __iomem *sq_cmds_io;
153 volatile struct nvme_completion *cqes;
154 struct blk_mq_tags **tags;
155 dma_addr_t sq_dma_addr;
156 dma_addr_t cq_dma_addr;
157 u32 __iomem *q_db;
158 u16 q_depth;
159 s16 cq_vector;
160 u16 sq_tail;
161 u16 cq_head;
162 u16 qid;
163 u8 cq_phase;
164 u8 cqe_seen;
165 u32 *dbbuf_sq_db;
166 u32 *dbbuf_cq_db;
167 u32 *dbbuf_sq_ei;
168 u32 *dbbuf_cq_ei;
169 };
170
171 /*
172 * The nvme_iod describes the data in an I/O, including the list of PRP
173 * entries. You can't see it in this data structure because C doesn't let
174 * me express that. Use nvme_init_iod to ensure there's enough space
175 * allocated to store the PRP list.
176 */
177 struct nvme_iod {
178 struct nvme_request req;
179 struct nvme_queue *nvmeq;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
188 };
189
190 /*
191 * Check we didin't inadvertently grow the command struct
192 */
193 static inline void _nvme_check_size(void)
194 {
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219 if (dev->dbbuf_dbs)
220 return 0;
221
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
235 }
236
237 return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
248 }
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
253 }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
258 {
259 if (!dev->dbbuf_dbs || !qid)
260 return;
261
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 struct nvme_command c;
271
272 if (!dev->dbbuf_dbs)
273 return;
274
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
284 }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
295 {
296 if (dbbuf_db) {
297 u16 old_value;
298
299 /*
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
302 */
303 wmb();
304
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
307
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
310 }
311
312 return true;
313 }
314
315 /*
316 * Max size of iod being embedded in the request payload
317 */
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
325 */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334 unsigned int size, unsigned int nseg)
335 {
336 return sizeof(__le64 *) * nvme_npages(size, dev) +
337 sizeof(struct scatterlist) * nseg;
338 }
339
340 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341 {
342 return sizeof(struct nvme_iod) +
343 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
344 }
345
346 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347 unsigned int hctx_idx)
348 {
349 struct nvme_dev *dev = data;
350 struct nvme_queue *nvmeq = dev->queues[0];
351
352 WARN_ON(hctx_idx != 0);
353 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354 WARN_ON(nvmeq->tags);
355
356 hctx->driver_data = nvmeq;
357 nvmeq->tags = &dev->admin_tagset.tags[0];
358 return 0;
359 }
360
361 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362 {
363 struct nvme_queue *nvmeq = hctx->driver_data;
364
365 nvmeq->tags = NULL;
366 }
367
368 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369 unsigned int hctx_idx)
370 {
371 struct nvme_dev *dev = data;
372 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
373
374 if (!nvmeq->tags)
375 nvmeq->tags = &dev->tagset.tags[hctx_idx];
376
377 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
378 hctx->driver_data = nvmeq;
379 return 0;
380 }
381
382 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383 unsigned int hctx_idx, unsigned int numa_node)
384 {
385 struct nvme_dev *dev = set->driver_data;
386 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
387 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388 struct nvme_queue *nvmeq = dev->queues[queue_idx];
389
390 BUG_ON(!nvmeq);
391 iod->nvmeq = nvmeq;
392 return 0;
393 }
394
395 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396 {
397 struct nvme_dev *dev = set->driver_data;
398
399 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400 }
401
402 /**
403 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
404 * @nvmeq: The queue to use
405 * @cmd: The command to send
406 *
407 * Safe to use from interrupt context
408 */
409 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410 struct nvme_command *cmd)
411 {
412 u16 tail = nvmeq->sq_tail;
413
414 if (nvmeq->sq_cmds_io)
415 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416 else
417 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
419 if (++tail == nvmeq->q_depth)
420 tail = 0;
421 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422 nvmeq->dbbuf_sq_ei))
423 writel(tail, nvmeq->q_db);
424 nvmeq->sq_tail = tail;
425 }
426
427 static __le64 **iod_list(struct request *req)
428 {
429 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
431 }
432
433 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
434 {
435 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
436 int nseg = blk_rq_nr_phys_segments(rq);
437 unsigned int size = blk_rq_payload_bytes(rq);
438
439 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441 if (!iod->sg)
442 return BLK_STS_RESOURCE;
443 } else {
444 iod->sg = iod->inline_sg;
445 }
446
447 iod->aborted = 0;
448 iod->npages = -1;
449 iod->nents = 0;
450 iod->length = size;
451
452 return BLK_STS_OK;
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
456 {
457 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
458 const int last_prp = dev->ctrl.page_size / 8 - 1;
459 int i;
460 __le64 **list = iod_list(req);
461 dma_addr_t prp_dma = iod->first_dma;
462
463 if (iod->npages == 0)
464 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465 for (i = 0; i < iod->npages; i++) {
466 __le64 *prp_list = list[i];
467 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469 prp_dma = next_prp_dma;
470 }
471
472 if (iod->sg != iod->inline_sg)
473 kfree(iod->sg);
474 }
475
476 #ifdef CONFIG_BLK_DEV_INTEGRITY
477 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478 {
479 if (be32_to_cpu(pi->ref_tag) == v)
480 pi->ref_tag = cpu_to_be32(p);
481 }
482
483 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484 {
485 if (be32_to_cpu(pi->ref_tag) == p)
486 pi->ref_tag = cpu_to_be32(v);
487 }
488
489 /**
490 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491 *
492 * The virtual start sector is the one that was originally submitted by the
493 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494 * start sector may be different. Remap protection information to match the
495 * physical LBA on writes, and back to the original seed on reads.
496 *
497 * Type 0 and 3 do not have a ref tag, so no remapping required.
498 */
499 static void nvme_dif_remap(struct request *req,
500 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501 {
502 struct nvme_ns *ns = req->rq_disk->private_data;
503 struct bio_integrity_payload *bip;
504 struct t10_pi_tuple *pi;
505 void *p, *pmap;
506 u32 i, nlb, ts, phys, virt;
507
508 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509 return;
510
511 bip = bio_integrity(req->bio);
512 if (!bip)
513 return;
514
515 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
516
517 p = pmap;
518 virt = bip_get_seed(bip);
519 phys = nvme_block_nr(ns, blk_rq_pos(req));
520 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
521 ts = ns->disk->queue->integrity.tuple_size;
522
523 for (i = 0; i < nlb; i++, virt++, phys++) {
524 pi = (struct t10_pi_tuple *)p;
525 dif_swap(phys, virt, pi);
526 p += ts;
527 }
528 kunmap_atomic(pmap);
529 }
530 #else /* CONFIG_BLK_DEV_INTEGRITY */
531 static void nvme_dif_remap(struct request *req,
532 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533 {
534 }
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 #endif
542
543 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
544 {
545 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
546 struct dma_pool *pool;
547 int length = blk_rq_payload_bytes(req);
548 struct scatterlist *sg = iod->sg;
549 int dma_len = sg_dma_len(sg);
550 u64 dma_addr = sg_dma_address(sg);
551 u32 page_size = dev->ctrl.page_size;
552 int offset = dma_addr & (page_size - 1);
553 __le64 *prp_list;
554 __le64 **list = iod_list(req);
555 dma_addr_t prp_dma;
556 int nprps, i;
557
558 length -= (page_size - offset);
559 if (length <= 0) {
560 iod->first_dma = 0;
561 return BLK_STS_OK;
562 }
563
564 dma_len -= (page_size - offset);
565 if (dma_len) {
566 dma_addr += (page_size - offset);
567 } else {
568 sg = sg_next(sg);
569 dma_addr = sg_dma_address(sg);
570 dma_len = sg_dma_len(sg);
571 }
572
573 if (length <= page_size) {
574 iod->first_dma = dma_addr;
575 return BLK_STS_OK;
576 }
577
578 nprps = DIV_ROUND_UP(length, page_size);
579 if (nprps <= (256 / 8)) {
580 pool = dev->prp_small_pool;
581 iod->npages = 0;
582 } else {
583 pool = dev->prp_page_pool;
584 iod->npages = 1;
585 }
586
587 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
588 if (!prp_list) {
589 iod->first_dma = dma_addr;
590 iod->npages = -1;
591 return BLK_STS_RESOURCE;
592 }
593 list[0] = prp_list;
594 iod->first_dma = prp_dma;
595 i = 0;
596 for (;;) {
597 if (i == page_size >> 3) {
598 __le64 *old_prp_list = prp_list;
599 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
600 if (!prp_list)
601 return BLK_STS_RESOURCE;
602 list[iod->npages++] = prp_list;
603 prp_list[0] = old_prp_list[i - 1];
604 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
605 i = 1;
606 }
607 prp_list[i++] = cpu_to_le64(dma_addr);
608 dma_len -= page_size;
609 dma_addr += page_size;
610 length -= page_size;
611 if (length <= 0)
612 break;
613 if (dma_len > 0)
614 continue;
615 if (unlikely(dma_len < 0))
616 goto bad_sgl;
617 sg = sg_next(sg);
618 dma_addr = sg_dma_address(sg);
619 dma_len = sg_dma_len(sg);
620 }
621
622 return BLK_STS_OK;
623
624 bad_sgl:
625 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
626 blk_rq_payload_bytes(req), iod->nents)) {
627 for_each_sg(iod->sg, sg, iod->nents, i) {
628 dma_addr_t phys = sg_phys(sg);
629 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
630 "dma_address:%pad dma_length:%d\n", i, &phys,
631 sg->offset, sg->length,
632 &sg_dma_address(sg),
633 sg_dma_len(sg));
634 }
635 }
636 return BLK_STS_IOERR;
637
638 }
639
640 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
641 struct nvme_command *cmnd)
642 {
643 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
644 struct request_queue *q = req->q;
645 enum dma_data_direction dma_dir = rq_data_dir(req) ?
646 DMA_TO_DEVICE : DMA_FROM_DEVICE;
647 blk_status_t ret = BLK_STS_IOERR;
648
649 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
650 iod->nents = blk_rq_map_sg(q, req, iod->sg);
651 if (!iod->nents)
652 goto out;
653
654 ret = BLK_STS_RESOURCE;
655 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
656 DMA_ATTR_NO_WARN))
657 goto out;
658
659 ret = nvme_setup_prps(dev, req);
660 if (ret != BLK_STS_OK)
661 goto out_unmap;
662
663 ret = BLK_STS_IOERR;
664 if (blk_integrity_rq(req)) {
665 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
666 goto out_unmap;
667
668 sg_init_table(&iod->meta_sg, 1);
669 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
670 goto out_unmap;
671
672 if (req_op(req) == REQ_OP_WRITE)
673 nvme_dif_remap(req, nvme_dif_prep);
674
675 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
676 goto out_unmap;
677 }
678
679 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
681 if (blk_integrity_rq(req))
682 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
683 return BLK_STS_OK;
684
685 out_unmap:
686 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
687 out:
688 return ret;
689 }
690
691 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
692 {
693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 enum dma_data_direction dma_dir = rq_data_dir(req) ?
695 DMA_TO_DEVICE : DMA_FROM_DEVICE;
696
697 if (iod->nents) {
698 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
699 if (blk_integrity_rq(req)) {
700 if (req_op(req) == REQ_OP_READ)
701 nvme_dif_remap(req, nvme_dif_complete);
702 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
703 }
704 }
705
706 nvme_cleanup_cmd(req);
707 nvme_free_iod(dev, req);
708 }
709
710 /*
711 * NOTE: ns is NULL when called on the admin queue.
712 */
713 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
714 const struct blk_mq_queue_data *bd)
715 {
716 struct nvme_ns *ns = hctx->queue->queuedata;
717 struct nvme_queue *nvmeq = hctx->driver_data;
718 struct nvme_dev *dev = nvmeq->dev;
719 struct request *req = bd->rq;
720 struct nvme_command cmnd;
721 blk_status_t ret;
722
723 ret = nvme_setup_cmd(ns, req, &cmnd);
724 if (ret)
725 return ret;
726
727 ret = nvme_init_iod(req, dev);
728 if (ret)
729 goto out_free_cmd;
730
731 if (blk_rq_nr_phys_segments(req)) {
732 ret = nvme_map_data(dev, req, &cmnd);
733 if (ret)
734 goto out_cleanup_iod;
735 }
736
737 blk_mq_start_request(req);
738
739 spin_lock_irq(&nvmeq->q_lock);
740 if (unlikely(nvmeq->cq_vector < 0)) {
741 ret = BLK_STS_IOERR;
742 spin_unlock_irq(&nvmeq->q_lock);
743 goto out_cleanup_iod;
744 }
745 __nvme_submit_cmd(nvmeq, &cmnd);
746 nvme_process_cq(nvmeq);
747 spin_unlock_irq(&nvmeq->q_lock);
748 return BLK_STS_OK;
749 out_cleanup_iod:
750 nvme_free_iod(dev, req);
751 out_free_cmd:
752 nvme_cleanup_cmd(req);
753 return ret;
754 }
755
756 static void nvme_pci_complete_rq(struct request *req)
757 {
758 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
759
760 nvme_unmap_data(iod->nvmeq->dev, req);
761 nvme_complete_rq(req);
762 }
763
764 /* We read the CQE phase first to check if the rest of the entry is valid */
765 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
766 u16 phase)
767 {
768 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
769 }
770
771 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
772 {
773 u16 head = nvmeq->cq_head;
774
775 if (likely(nvmeq->cq_vector >= 0)) {
776 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
777 nvmeq->dbbuf_cq_ei))
778 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
779 }
780 }
781
782 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
783 struct nvme_completion *cqe)
784 {
785 struct request *req;
786
787 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
788 dev_warn(nvmeq->dev->ctrl.device,
789 "invalid id %d completed on queue %d\n",
790 cqe->command_id, le16_to_cpu(cqe->sq_id));
791 return;
792 }
793
794 /*
795 * AEN requests are special as they don't time out and can
796 * survive any kind of queue freeze and often don't respond to
797 * aborts. We don't even bother to allocate a struct request
798 * for them but rather special case them here.
799 */
800 if (unlikely(nvmeq->qid == 0 &&
801 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802 nvme_complete_async_event(&nvmeq->dev->ctrl,
803 cqe->status, &cqe->result);
804 return;
805 }
806
807 nvmeq->cqe_seen = 1;
808 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
809 nvme_end_request(req, cqe->status, cqe->result);
810 }
811
812 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
813 struct nvme_completion *cqe)
814 {
815 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
816 *cqe = nvmeq->cqes[nvmeq->cq_head];
817
818 if (++nvmeq->cq_head == nvmeq->q_depth) {
819 nvmeq->cq_head = 0;
820 nvmeq->cq_phase = !nvmeq->cq_phase;
821 }
822 return true;
823 }
824 return false;
825 }
826
827 static void nvme_process_cq(struct nvme_queue *nvmeq)
828 {
829 struct nvme_completion cqe;
830 int consumed = 0;
831
832 while (nvme_read_cqe(nvmeq, &cqe)) {
833 nvme_handle_cqe(nvmeq, &cqe);
834 consumed++;
835 }
836
837 if (consumed)
838 nvme_ring_cq_doorbell(nvmeq);
839 }
840
841 static irqreturn_t nvme_irq(int irq, void *data)
842 {
843 irqreturn_t result;
844 struct nvme_queue *nvmeq = data;
845 spin_lock(&nvmeq->q_lock);
846 nvme_process_cq(nvmeq);
847 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
848 nvmeq->cqe_seen = 0;
849 spin_unlock(&nvmeq->q_lock);
850 return result;
851 }
852
853 static irqreturn_t nvme_irq_check(int irq, void *data)
854 {
855 struct nvme_queue *nvmeq = data;
856 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
857 return IRQ_WAKE_THREAD;
858 return IRQ_NONE;
859 }
860
861 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
862 {
863 struct nvme_completion cqe;
864 int found = 0, consumed = 0;
865
866 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
867 return 0;
868
869 spin_lock_irq(&nvmeq->q_lock);
870 while (nvme_read_cqe(nvmeq, &cqe)) {
871 nvme_handle_cqe(nvmeq, &cqe);
872 consumed++;
873
874 if (tag == cqe.command_id) {
875 found = 1;
876 break;
877 }
878 }
879
880 if (consumed)
881 nvme_ring_cq_doorbell(nvmeq);
882 spin_unlock_irq(&nvmeq->q_lock);
883
884 return found;
885 }
886
887 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
888 {
889 struct nvme_queue *nvmeq = hctx->driver_data;
890
891 return __nvme_poll(nvmeq, tag);
892 }
893
894 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
895 {
896 struct nvme_dev *dev = to_nvme_dev(ctrl);
897 struct nvme_queue *nvmeq = dev->queues[0];
898 struct nvme_command c;
899
900 memset(&c, 0, sizeof(c));
901 c.common.opcode = nvme_admin_async_event;
902 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
903
904 spin_lock_irq(&nvmeq->q_lock);
905 __nvme_submit_cmd(nvmeq, &c);
906 spin_unlock_irq(&nvmeq->q_lock);
907 }
908
909 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
910 {
911 struct nvme_command c;
912
913 memset(&c, 0, sizeof(c));
914 c.delete_queue.opcode = opcode;
915 c.delete_queue.qid = cpu_to_le16(id);
916
917 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
918 }
919
920 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
921 struct nvme_queue *nvmeq)
922 {
923 struct nvme_command c;
924 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
925
926 /*
927 * Note: we (ab)use the fact the the prp fields survive if no data
928 * is attached to the request.
929 */
930 memset(&c, 0, sizeof(c));
931 c.create_cq.opcode = nvme_admin_create_cq;
932 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
933 c.create_cq.cqid = cpu_to_le16(qid);
934 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
935 c.create_cq.cq_flags = cpu_to_le16(flags);
936 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
937
938 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
939 }
940
941 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
942 struct nvme_queue *nvmeq)
943 {
944 struct nvme_command c;
945 int flags = NVME_QUEUE_PHYS_CONTIG;
946
947 /*
948 * Note: we (ab)use the fact the the prp fields survive if no data
949 * is attached to the request.
950 */
951 memset(&c, 0, sizeof(c));
952 c.create_sq.opcode = nvme_admin_create_sq;
953 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
954 c.create_sq.sqid = cpu_to_le16(qid);
955 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
956 c.create_sq.sq_flags = cpu_to_le16(flags);
957 c.create_sq.cqid = cpu_to_le16(qid);
958
959 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
960 }
961
962 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
963 {
964 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
965 }
966
967 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
968 {
969 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
970 }
971
972 static void abort_endio(struct request *req, blk_status_t error)
973 {
974 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
975 struct nvme_queue *nvmeq = iod->nvmeq;
976
977 dev_warn(nvmeq->dev->ctrl.device,
978 "Abort status: 0x%x", nvme_req(req)->status);
979 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
980 blk_mq_free_request(req);
981 }
982
983 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
984 {
985
986 /* If true, indicates loss of adapter communication, possibly by a
987 * NVMe Subsystem reset.
988 */
989 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
990
991 /* If there is a reset ongoing, we shouldn't reset again. */
992 if (dev->ctrl.state == NVME_CTRL_RESETTING)
993 return false;
994
995 /* We shouldn't reset unless the controller is on fatal error state
996 * _or_ if we lost the communication with it.
997 */
998 if (!(csts & NVME_CSTS_CFS) && !nssro)
999 return false;
1000
1001 /* If PCI error recovery process is happening, we cannot reset or
1002 * the recovery mechanism will surely fail.
1003 */
1004 if (pci_channel_offline(to_pci_dev(dev->dev)))
1005 return false;
1006
1007 return true;
1008 }
1009
1010 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1011 {
1012 /* Read a config register to help see what died. */
1013 u16 pci_status;
1014 int result;
1015
1016 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1017 &pci_status);
1018 if (result == PCIBIOS_SUCCESSFUL)
1019 dev_warn(dev->ctrl.device,
1020 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1021 csts, pci_status);
1022 else
1023 dev_warn(dev->ctrl.device,
1024 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1025 csts, result);
1026 }
1027
1028 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1029 {
1030 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1031 struct nvme_queue *nvmeq = iod->nvmeq;
1032 struct nvme_dev *dev = nvmeq->dev;
1033 struct request *abort_req;
1034 struct nvme_command cmd;
1035 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1036
1037 /*
1038 * Reset immediately if the controller is failed
1039 */
1040 if (nvme_should_reset(dev, csts)) {
1041 nvme_warn_reset(dev, csts);
1042 nvme_dev_disable(dev, false);
1043 nvme_reset_ctrl(&dev->ctrl);
1044 return BLK_EH_HANDLED;
1045 }
1046
1047 /*
1048 * Did we miss an interrupt?
1049 */
1050 if (__nvme_poll(nvmeq, req->tag)) {
1051 dev_warn(dev->ctrl.device,
1052 "I/O %d QID %d timeout, completion polled\n",
1053 req->tag, nvmeq->qid);
1054 return BLK_EH_HANDLED;
1055 }
1056
1057 /*
1058 * Shutdown immediately if controller times out while starting. The
1059 * reset work will see the pci device disabled when it gets the forced
1060 * cancellation error. All outstanding requests are completed on
1061 * shutdown, so we return BLK_EH_HANDLED.
1062 */
1063 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1064 dev_warn(dev->ctrl.device,
1065 "I/O %d QID %d timeout, disable controller\n",
1066 req->tag, nvmeq->qid);
1067 nvme_dev_disable(dev, false);
1068 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1069 return BLK_EH_HANDLED;
1070 }
1071
1072 /*
1073 * Shutdown the controller immediately and schedule a reset if the
1074 * command was already aborted once before and still hasn't been
1075 * returned to the driver, or if this is the admin queue.
1076 */
1077 if (!nvmeq->qid || iod->aborted) {
1078 dev_warn(dev->ctrl.device,
1079 "I/O %d QID %d timeout, reset controller\n",
1080 req->tag, nvmeq->qid);
1081 nvme_dev_disable(dev, false);
1082 nvme_reset_ctrl(&dev->ctrl);
1083
1084 /*
1085 * Mark the request as handled, since the inline shutdown
1086 * forces all outstanding requests to complete.
1087 */
1088 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1089 return BLK_EH_HANDLED;
1090 }
1091
1092 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1093 atomic_inc(&dev->ctrl.abort_limit);
1094 return BLK_EH_RESET_TIMER;
1095 }
1096 iod->aborted = 1;
1097
1098 memset(&cmd, 0, sizeof(cmd));
1099 cmd.abort.opcode = nvme_admin_abort_cmd;
1100 cmd.abort.cid = req->tag;
1101 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1102
1103 dev_warn(nvmeq->dev->ctrl.device,
1104 "I/O %d QID %d timeout, aborting\n",
1105 req->tag, nvmeq->qid);
1106
1107 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1108 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1109 if (IS_ERR(abort_req)) {
1110 atomic_inc(&dev->ctrl.abort_limit);
1111 return BLK_EH_RESET_TIMER;
1112 }
1113
1114 abort_req->timeout = ADMIN_TIMEOUT;
1115 abort_req->end_io_data = NULL;
1116 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1117
1118 /*
1119 * The aborted req will be completed on receiving the abort req.
1120 * We enable the timer again. If hit twice, it'll cause a device reset,
1121 * as the device then is in a faulty state.
1122 */
1123 return BLK_EH_RESET_TIMER;
1124 }
1125
1126 static void nvme_free_queue(struct nvme_queue *nvmeq)
1127 {
1128 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1129 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1130 if (nvmeq->sq_cmds)
1131 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1132 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1133 kfree(nvmeq);
1134 }
1135
1136 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1137 {
1138 int i;
1139
1140 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1141 struct nvme_queue *nvmeq = dev->queues[i];
1142 dev->ctrl.queue_count--;
1143 dev->queues[i] = NULL;
1144 nvme_free_queue(nvmeq);
1145 }
1146 }
1147
1148 /**
1149 * nvme_suspend_queue - put queue into suspended state
1150 * @nvmeq - queue to suspend
1151 */
1152 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1153 {
1154 int vector;
1155
1156 spin_lock_irq(&nvmeq->q_lock);
1157 if (nvmeq->cq_vector == -1) {
1158 spin_unlock_irq(&nvmeq->q_lock);
1159 return 1;
1160 }
1161 vector = nvmeq->cq_vector;
1162 nvmeq->dev->online_queues--;
1163 nvmeq->cq_vector = -1;
1164 spin_unlock_irq(&nvmeq->q_lock);
1165
1166 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1167 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1168
1169 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1170
1171 return 0;
1172 }
1173
1174 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1175 {
1176 struct nvme_queue *nvmeq = dev->queues[0];
1177
1178 if (!nvmeq)
1179 return;
1180 if (nvme_suspend_queue(nvmeq))
1181 return;
1182
1183 if (shutdown)
1184 nvme_shutdown_ctrl(&dev->ctrl);
1185 else
1186 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1187
1188 spin_lock_irq(&nvmeq->q_lock);
1189 nvme_process_cq(nvmeq);
1190 spin_unlock_irq(&nvmeq->q_lock);
1191 }
1192
1193 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1194 int entry_size)
1195 {
1196 int q_depth = dev->q_depth;
1197 unsigned q_size_aligned = roundup(q_depth * entry_size,
1198 dev->ctrl.page_size);
1199
1200 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1201 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1202 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1203 q_depth = div_u64(mem_per_q, entry_size);
1204
1205 /*
1206 * Ensure the reduced q_depth is above some threshold where it
1207 * would be better to map queues in system memory with the
1208 * original depth
1209 */
1210 if (q_depth < 64)
1211 return -ENOMEM;
1212 }
1213
1214 return q_depth;
1215 }
1216
1217 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1218 int qid, int depth)
1219 {
1220 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1221 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1222 dev->ctrl.page_size);
1223 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1224 nvmeq->sq_cmds_io = dev->cmb + offset;
1225 } else {
1226 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1227 &nvmeq->sq_dma_addr, GFP_KERNEL);
1228 if (!nvmeq->sq_cmds)
1229 return -ENOMEM;
1230 }
1231
1232 return 0;
1233 }
1234
1235 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1236 int depth, int node)
1237 {
1238 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1239 node);
1240 if (!nvmeq)
1241 return NULL;
1242
1243 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1244 &nvmeq->cq_dma_addr, GFP_KERNEL);
1245 if (!nvmeq->cqes)
1246 goto free_nvmeq;
1247
1248 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1249 goto free_cqdma;
1250
1251 nvmeq->q_dmadev = dev->dev;
1252 nvmeq->dev = dev;
1253 spin_lock_init(&nvmeq->q_lock);
1254 nvmeq->cq_head = 0;
1255 nvmeq->cq_phase = 1;
1256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1257 nvmeq->q_depth = depth;
1258 nvmeq->qid = qid;
1259 nvmeq->cq_vector = -1;
1260 dev->queues[qid] = nvmeq;
1261 dev->ctrl.queue_count++;
1262
1263 return nvmeq;
1264
1265 free_cqdma:
1266 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1267 nvmeq->cq_dma_addr);
1268 free_nvmeq:
1269 kfree(nvmeq);
1270 return NULL;
1271 }
1272
1273 static int queue_request_irq(struct nvme_queue *nvmeq)
1274 {
1275 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1276 int nr = nvmeq->dev->ctrl.instance;
1277
1278 if (use_threaded_interrupts) {
1279 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1280 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1281 } else {
1282 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1283 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1284 }
1285 }
1286
1287 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1288 {
1289 struct nvme_dev *dev = nvmeq->dev;
1290
1291 spin_lock_irq(&nvmeq->q_lock);
1292 nvmeq->sq_tail = 0;
1293 nvmeq->cq_head = 0;
1294 nvmeq->cq_phase = 1;
1295 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1296 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1297 nvme_dbbuf_init(dev, nvmeq, qid);
1298 dev->online_queues++;
1299 spin_unlock_irq(&nvmeq->q_lock);
1300 }
1301
1302 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1303 {
1304 struct nvme_dev *dev = nvmeq->dev;
1305 int result;
1306
1307 nvmeq->cq_vector = qid - 1;
1308 result = adapter_alloc_cq(dev, qid, nvmeq);
1309 if (result < 0)
1310 return result;
1311
1312 result = adapter_alloc_sq(dev, qid, nvmeq);
1313 if (result < 0)
1314 goto release_cq;
1315
1316 result = queue_request_irq(nvmeq);
1317 if (result < 0)
1318 goto release_sq;
1319
1320 nvme_init_queue(nvmeq, qid);
1321 return result;
1322
1323 release_sq:
1324 adapter_delete_sq(dev, qid);
1325 release_cq:
1326 adapter_delete_cq(dev, qid);
1327 return result;
1328 }
1329
1330 static const struct blk_mq_ops nvme_mq_admin_ops = {
1331 .queue_rq = nvme_queue_rq,
1332 .complete = nvme_pci_complete_rq,
1333 .init_hctx = nvme_admin_init_hctx,
1334 .exit_hctx = nvme_admin_exit_hctx,
1335 .init_request = nvme_init_request,
1336 .timeout = nvme_timeout,
1337 };
1338
1339 static const struct blk_mq_ops nvme_mq_ops = {
1340 .queue_rq = nvme_queue_rq,
1341 .complete = nvme_pci_complete_rq,
1342 .init_hctx = nvme_init_hctx,
1343 .init_request = nvme_init_request,
1344 .map_queues = nvme_pci_map_queues,
1345 .timeout = nvme_timeout,
1346 .poll = nvme_poll,
1347 };
1348
1349 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1350 {
1351 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1352 /*
1353 * If the controller was reset during removal, it's possible
1354 * user requests may be waiting on a stopped queue. Start the
1355 * queue to flush these to completion.
1356 */
1357 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1358 blk_cleanup_queue(dev->ctrl.admin_q);
1359 blk_mq_free_tag_set(&dev->admin_tagset);
1360 }
1361 }
1362
1363 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1364 {
1365 if (!dev->ctrl.admin_q) {
1366 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1367 dev->admin_tagset.nr_hw_queues = 1;
1368
1369 /*
1370 * Subtract one to leave an empty queue entry for 'Full Queue'
1371 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1372 */
1373 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1374 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1375 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1376 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1377 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1378 dev->admin_tagset.driver_data = dev;
1379
1380 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1381 return -ENOMEM;
1382 dev->ctrl.admin_tagset = &dev->admin_tagset;
1383
1384 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1385 if (IS_ERR(dev->ctrl.admin_q)) {
1386 blk_mq_free_tag_set(&dev->admin_tagset);
1387 return -ENOMEM;
1388 }
1389 if (!blk_get_queue(dev->ctrl.admin_q)) {
1390 nvme_dev_remove_admin(dev);
1391 dev->ctrl.admin_q = NULL;
1392 return -ENODEV;
1393 }
1394 } else
1395 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1396
1397 return 0;
1398 }
1399
1400 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401 {
1402 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403 }
1404
1405 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1406 {
1407 struct pci_dev *pdev = to_pci_dev(dev->dev);
1408
1409 if (size <= dev->bar_mapped_size)
1410 return 0;
1411 if (size > pci_resource_len(pdev, 0))
1412 return -ENOMEM;
1413 if (dev->bar)
1414 iounmap(dev->bar);
1415 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1416 if (!dev->bar) {
1417 dev->bar_mapped_size = 0;
1418 return -ENOMEM;
1419 }
1420 dev->bar_mapped_size = size;
1421 dev->dbs = dev->bar + NVME_REG_DBS;
1422
1423 return 0;
1424 }
1425
1426 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1427 {
1428 int result;
1429 u32 aqa;
1430 struct nvme_queue *nvmeq;
1431
1432 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1433 if (result < 0)
1434 return result;
1435
1436 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1437 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1438
1439 if (dev->subsystem &&
1440 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1441 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1442
1443 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1444 if (result < 0)
1445 return result;
1446
1447 nvmeq = dev->queues[0];
1448 if (!nvmeq) {
1449 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1450 dev_to_node(dev->dev));
1451 if (!nvmeq)
1452 return -ENOMEM;
1453 }
1454
1455 aqa = nvmeq->q_depth - 1;
1456 aqa |= aqa << 16;
1457
1458 writel(aqa, dev->bar + NVME_REG_AQA);
1459 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1460 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1461
1462 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1463 if (result)
1464 return result;
1465
1466 nvmeq->cq_vector = 0;
1467 result = queue_request_irq(nvmeq);
1468 if (result) {
1469 nvmeq->cq_vector = -1;
1470 return result;
1471 }
1472
1473 return result;
1474 }
1475
1476 static int nvme_create_io_queues(struct nvme_dev *dev)
1477 {
1478 unsigned i, max;
1479 int ret = 0;
1480
1481 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1482 /* vector == qid - 1, match nvme_create_queue */
1483 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1484 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1485 ret = -ENOMEM;
1486 break;
1487 }
1488 }
1489
1490 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1491 for (i = dev->online_queues; i <= max; i++) {
1492 ret = nvme_create_queue(dev->queues[i], i);
1493 if (ret)
1494 break;
1495 }
1496
1497 /*
1498 * Ignore failing Create SQ/CQ commands, we can continue with less
1499 * than the desired aount of queues, and even a controller without
1500 * I/O queues an still be used to issue admin commands. This might
1501 * be useful to upgrade a buggy firmware for example.
1502 */
1503 return ret >= 0 ? 0 : ret;
1504 }
1505
1506 static ssize_t nvme_cmb_show(struct device *dev,
1507 struct device_attribute *attr,
1508 char *buf)
1509 {
1510 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1511
1512 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1513 ndev->cmbloc, ndev->cmbsz);
1514 }
1515 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1516
1517 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1518 {
1519 u64 szu, size, offset;
1520 resource_size_t bar_size;
1521 struct pci_dev *pdev = to_pci_dev(dev->dev);
1522 void __iomem *cmb;
1523 dma_addr_t dma_addr;
1524
1525 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1526 if (!(NVME_CMB_SZ(dev->cmbsz)))
1527 return NULL;
1528 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1529
1530 if (!use_cmb_sqes)
1531 return NULL;
1532
1533 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1534 size = szu * NVME_CMB_SZ(dev->cmbsz);
1535 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1536 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1537
1538 if (offset > bar_size)
1539 return NULL;
1540
1541 /*
1542 * Controllers may support a CMB size larger than their BAR,
1543 * for example, due to being behind a bridge. Reduce the CMB to
1544 * the reported size of the BAR
1545 */
1546 if (size > bar_size - offset)
1547 size = bar_size - offset;
1548
1549 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1550 cmb = ioremap_wc(dma_addr, size);
1551 if (!cmb)
1552 return NULL;
1553
1554 dev->cmb_dma_addr = dma_addr;
1555 dev->cmb_size = size;
1556 return cmb;
1557 }
1558
1559 static inline void nvme_release_cmb(struct nvme_dev *dev)
1560 {
1561 if (dev->cmb) {
1562 iounmap(dev->cmb);
1563 dev->cmb = NULL;
1564 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1565 &dev_attr_cmb.attr, NULL);
1566 dev->cmbsz = 0;
1567 }
1568 }
1569
1570 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1571 {
1572 u64 dma_addr = dev->host_mem_descs_dma;
1573 struct nvme_command c;
1574 int ret;
1575
1576 memset(&c, 0, sizeof(c));
1577 c.features.opcode = nvme_admin_set_features;
1578 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1579 c.features.dword11 = cpu_to_le32(bits);
1580 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1581 ilog2(dev->ctrl.page_size));
1582 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1583 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1584 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1585
1586 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1587 if (ret) {
1588 dev_warn(dev->ctrl.device,
1589 "failed to set host mem (err %d, flags %#x).\n",
1590 ret, bits);
1591 }
1592 return ret;
1593 }
1594
1595 static void nvme_free_host_mem(struct nvme_dev *dev)
1596 {
1597 int i;
1598
1599 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1600 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1601 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1602
1603 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1604 le64_to_cpu(desc->addr));
1605 }
1606
1607 kfree(dev->host_mem_desc_bufs);
1608 dev->host_mem_desc_bufs = NULL;
1609 dma_free_coherent(dev->dev,
1610 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1611 dev->host_mem_descs, dev->host_mem_descs_dma);
1612 dev->host_mem_descs = NULL;
1613 }
1614
1615 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1616 {
1617 struct nvme_host_mem_buf_desc *descs;
1618 u32 chunk_size, max_entries, len;
1619 dma_addr_t descs_dma;
1620 int i = 0;
1621 void **bufs;
1622 u64 size = 0, tmp;
1623
1624 /* start big and work our way down */
1625 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1626 retry:
1627 tmp = (preferred + chunk_size - 1);
1628 do_div(tmp, chunk_size);
1629 max_entries = tmp;
1630 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1631 &descs_dma, GFP_KERNEL);
1632 if (!descs)
1633 goto out;
1634
1635 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1636 if (!bufs)
1637 goto out_free_descs;
1638
1639 for (size = 0; size < preferred; size += len) {
1640 dma_addr_t dma_addr;
1641
1642 len = min_t(u64, chunk_size, preferred - size);
1643 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1644 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1645 if (!bufs[i])
1646 break;
1647
1648 descs[i].addr = cpu_to_le64(dma_addr);
1649 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1650 i++;
1651 }
1652
1653 if (!size || (min && size < min)) {
1654 dev_warn(dev->ctrl.device,
1655 "failed to allocate host memory buffer.\n");
1656 goto out_free_bufs;
1657 }
1658
1659 dev_info(dev->ctrl.device,
1660 "allocated %lld MiB host memory buffer.\n",
1661 size >> ilog2(SZ_1M));
1662 dev->nr_host_mem_descs = i;
1663 dev->host_mem_size = size;
1664 dev->host_mem_descs = descs;
1665 dev->host_mem_descs_dma = descs_dma;
1666 dev->host_mem_desc_bufs = bufs;
1667 return 0;
1668
1669 out_free_bufs:
1670 while (--i >= 0) {
1671 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1672
1673 dma_free_coherent(dev->dev, size, bufs[i],
1674 le64_to_cpu(descs[i].addr));
1675 }
1676
1677 kfree(bufs);
1678 out_free_descs:
1679 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1680 descs_dma);
1681 out:
1682 /* try a smaller chunk size if we failed early */
1683 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1684 chunk_size /= 2;
1685 goto retry;
1686 }
1687 dev->host_mem_descs = NULL;
1688 return -ENOMEM;
1689 }
1690
1691 static void nvme_setup_host_mem(struct nvme_dev *dev)
1692 {
1693 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1694 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1695 u64 min = (u64)dev->ctrl.hmmin * 4096;
1696 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1697
1698 preferred = min(preferred, max);
1699 if (min > max) {
1700 dev_warn(dev->ctrl.device,
1701 "min host memory (%lld MiB) above limit (%d MiB).\n",
1702 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1703 nvme_free_host_mem(dev);
1704 return;
1705 }
1706
1707 /*
1708 * If we already have a buffer allocated check if we can reuse it.
1709 */
1710 if (dev->host_mem_descs) {
1711 if (dev->host_mem_size >= min)
1712 enable_bits |= NVME_HOST_MEM_RETURN;
1713 else
1714 nvme_free_host_mem(dev);
1715 }
1716
1717 if (!dev->host_mem_descs) {
1718 if (nvme_alloc_host_mem(dev, min, preferred))
1719 return;
1720 }
1721
1722 if (nvme_set_host_mem(dev, enable_bits))
1723 nvme_free_host_mem(dev);
1724 }
1725
1726 static int nvme_setup_io_queues(struct nvme_dev *dev)
1727 {
1728 struct nvme_queue *adminq = dev->queues[0];
1729 struct pci_dev *pdev = to_pci_dev(dev->dev);
1730 int result, nr_io_queues;
1731 unsigned long size;
1732
1733 nr_io_queues = num_present_cpus();
1734 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1735 if (result < 0)
1736 return result;
1737
1738 if (nr_io_queues == 0)
1739 return 0;
1740
1741 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1742 result = nvme_cmb_qdepth(dev, nr_io_queues,
1743 sizeof(struct nvme_command));
1744 if (result > 0)
1745 dev->q_depth = result;
1746 else
1747 nvme_release_cmb(dev);
1748 }
1749
1750 do {
1751 size = db_bar_size(dev, nr_io_queues);
1752 result = nvme_remap_bar(dev, size);
1753 if (!result)
1754 break;
1755 if (!--nr_io_queues)
1756 return -ENOMEM;
1757 } while (1);
1758 adminq->q_db = dev->dbs;
1759
1760 /* Deregister the admin queue's interrupt */
1761 pci_free_irq(pdev, 0, adminq);
1762
1763 /*
1764 * If we enable msix early due to not intx, disable it again before
1765 * setting up the full range we need.
1766 */
1767 pci_free_irq_vectors(pdev);
1768 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1769 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1770 if (nr_io_queues <= 0)
1771 return -EIO;
1772 dev->max_qid = nr_io_queues;
1773
1774 /*
1775 * Should investigate if there's a performance win from allocating
1776 * more queues than interrupt vectors; it might allow the submission
1777 * path to scale better, even if the receive path is limited by the
1778 * number of interrupts.
1779 */
1780
1781 result = queue_request_irq(adminq);
1782 if (result) {
1783 adminq->cq_vector = -1;
1784 return result;
1785 }
1786 return nvme_create_io_queues(dev);
1787 }
1788
1789 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1790 {
1791 struct nvme_queue *nvmeq = req->end_io_data;
1792
1793 blk_mq_free_request(req);
1794 complete(&nvmeq->dev->ioq_wait);
1795 }
1796
1797 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1798 {
1799 struct nvme_queue *nvmeq = req->end_io_data;
1800
1801 if (!error) {
1802 unsigned long flags;
1803
1804 /*
1805 * We might be called with the AQ q_lock held
1806 * and the I/O queue q_lock should always
1807 * nest inside the AQ one.
1808 */
1809 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1810 SINGLE_DEPTH_NESTING);
1811 nvme_process_cq(nvmeq);
1812 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1813 }
1814
1815 nvme_del_queue_end(req, error);
1816 }
1817
1818 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1819 {
1820 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1821 struct request *req;
1822 struct nvme_command cmd;
1823
1824 memset(&cmd, 0, sizeof(cmd));
1825 cmd.delete_queue.opcode = opcode;
1826 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1827
1828 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1829 if (IS_ERR(req))
1830 return PTR_ERR(req);
1831
1832 req->timeout = ADMIN_TIMEOUT;
1833 req->end_io_data = nvmeq;
1834
1835 blk_execute_rq_nowait(q, NULL, req, false,
1836 opcode == nvme_admin_delete_cq ?
1837 nvme_del_cq_end : nvme_del_queue_end);
1838 return 0;
1839 }
1840
1841 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1842 {
1843 int pass;
1844 unsigned long timeout;
1845 u8 opcode = nvme_admin_delete_sq;
1846
1847 for (pass = 0; pass < 2; pass++) {
1848 int sent = 0, i = queues;
1849
1850 reinit_completion(&dev->ioq_wait);
1851 retry:
1852 timeout = ADMIN_TIMEOUT;
1853 for (; i > 0; i--, sent++)
1854 if (nvme_delete_queue(dev->queues[i], opcode))
1855 break;
1856
1857 while (sent--) {
1858 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1859 if (timeout == 0)
1860 return;
1861 if (i)
1862 goto retry;
1863 }
1864 opcode = nvme_admin_delete_cq;
1865 }
1866 }
1867
1868 /*
1869 * Return: error value if an error occurred setting up the queues or calling
1870 * Identify Device. 0 if these succeeded, even if adding some of the
1871 * namespaces failed. At the moment, these failures are silent. TBD which
1872 * failures should be reported.
1873 */
1874 static int nvme_dev_add(struct nvme_dev *dev)
1875 {
1876 if (!dev->ctrl.tagset) {
1877 dev->tagset.ops = &nvme_mq_ops;
1878 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1879 dev->tagset.timeout = NVME_IO_TIMEOUT;
1880 dev->tagset.numa_node = dev_to_node(dev->dev);
1881 dev->tagset.queue_depth =
1882 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1883 dev->tagset.cmd_size = nvme_cmd_size(dev);
1884 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1885 dev->tagset.driver_data = dev;
1886
1887 if (blk_mq_alloc_tag_set(&dev->tagset))
1888 return 0;
1889 dev->ctrl.tagset = &dev->tagset;
1890
1891 nvme_dbbuf_set(dev);
1892 } else {
1893 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1894
1895 /* Free previously allocated queues that are no longer usable */
1896 nvme_free_queues(dev, dev->online_queues);
1897 }
1898
1899 return 0;
1900 }
1901
1902 static int nvme_pci_enable(struct nvme_dev *dev)
1903 {
1904 int result = -ENOMEM;
1905 struct pci_dev *pdev = to_pci_dev(dev->dev);
1906
1907 if (pci_enable_device_mem(pdev))
1908 return result;
1909
1910 pci_set_master(pdev);
1911
1912 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1913 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1914 goto disable;
1915
1916 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1917 result = -ENODEV;
1918 goto disable;
1919 }
1920
1921 /*
1922 * Some devices and/or platforms don't advertise or work with INTx
1923 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1924 * adjust this later.
1925 */
1926 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1927 if (result < 0)
1928 return result;
1929
1930 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1931
1932 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1933 io_queue_depth);
1934 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1935 dev->dbs = dev->bar + 4096;
1936
1937 /*
1938 * Temporary fix for the Apple controller found in the MacBook8,1 and
1939 * some MacBook7,1 to avoid controller resets and data loss.
1940 */
1941 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1942 dev->q_depth = 2;
1943 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1944 "set queue depth=%u to work around controller resets\n",
1945 dev->q_depth);
1946 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1947 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1948 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1949 dev->q_depth = 64;
1950 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1951 "set queue depth=%u\n", dev->q_depth);
1952 }
1953
1954 /*
1955 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1956 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1957 * has no name we can pass NULL as final argument to
1958 * sysfs_add_file_to_group.
1959 */
1960
1961 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1962 dev->cmb = nvme_map_cmb(dev);
1963 if (dev->cmb) {
1964 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1965 &dev_attr_cmb.attr, NULL))
1966 dev_warn(dev->ctrl.device,
1967 "failed to add sysfs attribute for CMB\n");
1968 }
1969 }
1970
1971 pci_enable_pcie_error_reporting(pdev);
1972 pci_save_state(pdev);
1973 return 0;
1974
1975 disable:
1976 pci_disable_device(pdev);
1977 return result;
1978 }
1979
1980 static void nvme_dev_unmap(struct nvme_dev *dev)
1981 {
1982 if (dev->bar)
1983 iounmap(dev->bar);
1984 pci_release_mem_regions(to_pci_dev(dev->dev));
1985 }
1986
1987 static void nvme_pci_disable(struct nvme_dev *dev)
1988 {
1989 struct pci_dev *pdev = to_pci_dev(dev->dev);
1990
1991 nvme_release_cmb(dev);
1992 pci_free_irq_vectors(pdev);
1993
1994 if (pci_is_enabled(pdev)) {
1995 pci_disable_pcie_error_reporting(pdev);
1996 pci_disable_device(pdev);
1997 }
1998 }
1999
2000 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2001 {
2002 int i, queues;
2003 bool dead = true;
2004 struct pci_dev *pdev = to_pci_dev(dev->dev);
2005
2006 mutex_lock(&dev->shutdown_lock);
2007 if (pci_is_enabled(pdev)) {
2008 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2009
2010 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2011 dev->ctrl.state == NVME_CTRL_RESETTING)
2012 nvme_start_freeze(&dev->ctrl);
2013 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2014 pdev->error_state != pci_channel_io_normal);
2015 }
2016
2017 /*
2018 * Give the controller a chance to complete all entered requests if
2019 * doing a safe shutdown.
2020 */
2021 if (!dead) {
2022 if (shutdown)
2023 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2024
2025 /*
2026 * If the controller is still alive tell it to stop using the
2027 * host memory buffer. In theory the shutdown / reset should
2028 * make sure that it doesn't access the host memoery anymore,
2029 * but I'd rather be safe than sorry..
2030 */
2031 if (dev->host_mem_descs)
2032 nvme_set_host_mem(dev, 0);
2033
2034 }
2035 nvme_stop_queues(&dev->ctrl);
2036
2037 queues = dev->online_queues - 1;
2038 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2039 nvme_suspend_queue(dev->queues[i]);
2040
2041 if (dead) {
2042 /* A device might become IO incapable very soon during
2043 * probe, before the admin queue is configured. Thus,
2044 * queue_count can be 0 here.
2045 */
2046 if (dev->ctrl.queue_count)
2047 nvme_suspend_queue(dev->queues[0]);
2048 } else {
2049 nvme_disable_io_queues(dev, queues);
2050 nvme_disable_admin_queue(dev, shutdown);
2051 }
2052 nvme_pci_disable(dev);
2053
2054 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2055 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2056
2057 /*
2058 * The driver will not be starting up queues again if shutting down so
2059 * must flush all entered requests to their failed completion to avoid
2060 * deadlocking blk-mq hot-cpu notifier.
2061 */
2062 if (shutdown)
2063 nvme_start_queues(&dev->ctrl);
2064 mutex_unlock(&dev->shutdown_lock);
2065 }
2066
2067 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2068 {
2069 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2070 PAGE_SIZE, PAGE_SIZE, 0);
2071 if (!dev->prp_page_pool)
2072 return -ENOMEM;
2073
2074 /* Optimisation for I/Os between 4k and 128k */
2075 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2076 256, 256, 0);
2077 if (!dev->prp_small_pool) {
2078 dma_pool_destroy(dev->prp_page_pool);
2079 return -ENOMEM;
2080 }
2081 return 0;
2082 }
2083
2084 static void nvme_release_prp_pools(struct nvme_dev *dev)
2085 {
2086 dma_pool_destroy(dev->prp_page_pool);
2087 dma_pool_destroy(dev->prp_small_pool);
2088 }
2089
2090 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2091 {
2092 struct nvme_dev *dev = to_nvme_dev(ctrl);
2093
2094 nvme_dbbuf_dma_free(dev);
2095 put_device(dev->dev);
2096 if (dev->tagset.tags)
2097 blk_mq_free_tag_set(&dev->tagset);
2098 if (dev->ctrl.admin_q)
2099 blk_put_queue(dev->ctrl.admin_q);
2100 kfree(dev->queues);
2101 free_opal_dev(dev->ctrl.opal_dev);
2102 kfree(dev);
2103 }
2104
2105 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2106 {
2107 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2108
2109 kref_get(&dev->ctrl.kref);
2110 nvme_dev_disable(dev, false);
2111 if (!schedule_work(&dev->remove_work))
2112 nvme_put_ctrl(&dev->ctrl);
2113 }
2114
2115 static void nvme_reset_work(struct work_struct *work)
2116 {
2117 struct nvme_dev *dev =
2118 container_of(work, struct nvme_dev, ctrl.reset_work);
2119 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2120 int result = -ENODEV;
2121
2122 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2123 goto out;
2124
2125 /*
2126 * If we're called to reset a live controller first shut it down before
2127 * moving on.
2128 */
2129 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2130 nvme_dev_disable(dev, false);
2131
2132 result = nvme_pci_enable(dev);
2133 if (result)
2134 goto out;
2135
2136 result = nvme_pci_configure_admin_queue(dev);
2137 if (result)
2138 goto out;
2139
2140 nvme_init_queue(dev->queues[0], 0);
2141 result = nvme_alloc_admin_tags(dev);
2142 if (result)
2143 goto out;
2144
2145 result = nvme_init_identify(&dev->ctrl);
2146 if (result)
2147 goto out;
2148
2149 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2150 if (!dev->ctrl.opal_dev)
2151 dev->ctrl.opal_dev =
2152 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2153 else if (was_suspend)
2154 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2155 } else {
2156 free_opal_dev(dev->ctrl.opal_dev);
2157 dev->ctrl.opal_dev = NULL;
2158 }
2159
2160 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2161 result = nvme_dbbuf_dma_alloc(dev);
2162 if (result)
2163 dev_warn(dev->dev,
2164 "unable to allocate dma for dbbuf\n");
2165 }
2166
2167 if (dev->ctrl.hmpre)
2168 nvme_setup_host_mem(dev);
2169
2170 result = nvme_setup_io_queues(dev);
2171 if (result)
2172 goto out;
2173
2174 /*
2175 * Keep the controller around but remove all namespaces if we don't have
2176 * any working I/O queue.
2177 */
2178 if (dev->online_queues < 2) {
2179 dev_warn(dev->ctrl.device, "IO queues not created\n");
2180 nvme_kill_queues(&dev->ctrl);
2181 nvme_remove_namespaces(&dev->ctrl);
2182 } else {
2183 nvme_start_queues(&dev->ctrl);
2184 nvme_wait_freeze(&dev->ctrl);
2185 nvme_dev_add(dev);
2186 nvme_unfreeze(&dev->ctrl);
2187 }
2188
2189 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2190 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2191 goto out;
2192 }
2193
2194 nvme_start_ctrl(&dev->ctrl);
2195 return;
2196
2197 out:
2198 nvme_remove_dead_ctrl(dev, result);
2199 }
2200
2201 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2202 {
2203 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2204 struct pci_dev *pdev = to_pci_dev(dev->dev);
2205
2206 nvme_kill_queues(&dev->ctrl);
2207 if (pci_get_drvdata(pdev))
2208 device_release_driver(&pdev->dev);
2209 nvme_put_ctrl(&dev->ctrl);
2210 }
2211
2212 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2213 {
2214 *val = readl(to_nvme_dev(ctrl)->bar + off);
2215 return 0;
2216 }
2217
2218 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2219 {
2220 writel(val, to_nvme_dev(ctrl)->bar + off);
2221 return 0;
2222 }
2223
2224 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2225 {
2226 *val = readq(to_nvme_dev(ctrl)->bar + off);
2227 return 0;
2228 }
2229
2230 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2231 .name = "pcie",
2232 .module = THIS_MODULE,
2233 .flags = NVME_F_METADATA_SUPPORTED,
2234 .reg_read32 = nvme_pci_reg_read32,
2235 .reg_write32 = nvme_pci_reg_write32,
2236 .reg_read64 = nvme_pci_reg_read64,
2237 .free_ctrl = nvme_pci_free_ctrl,
2238 .submit_async_event = nvme_pci_submit_async_event,
2239 };
2240
2241 static int nvme_dev_map(struct nvme_dev *dev)
2242 {
2243 struct pci_dev *pdev = to_pci_dev(dev->dev);
2244
2245 if (pci_request_mem_regions(pdev, "nvme"))
2246 return -ENODEV;
2247
2248 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2249 goto release;
2250
2251 return 0;
2252 release:
2253 pci_release_mem_regions(pdev);
2254 return -ENODEV;
2255 }
2256
2257 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2258 {
2259 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2260 /*
2261 * Several Samsung devices seem to drop off the PCIe bus
2262 * randomly when APST is on and uses the deepest sleep state.
2263 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2264 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2265 * 950 PRO 256GB", but it seems to be restricted to two Dell
2266 * laptops.
2267 */
2268 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2269 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2270 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2271 return NVME_QUIRK_NO_DEEPEST_PS;
2272 }
2273
2274 return 0;
2275 }
2276
2277 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2278 {
2279 int node, result = -ENOMEM;
2280 struct nvme_dev *dev;
2281 unsigned long quirks = id->driver_data;
2282
2283 node = dev_to_node(&pdev->dev);
2284 if (node == NUMA_NO_NODE)
2285 set_dev_node(&pdev->dev, first_memory_node);
2286
2287 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2288 if (!dev)
2289 return -ENOMEM;
2290 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2291 GFP_KERNEL, node);
2292 if (!dev->queues)
2293 goto free;
2294
2295 dev->dev = get_device(&pdev->dev);
2296 pci_set_drvdata(pdev, dev);
2297
2298 result = nvme_dev_map(dev);
2299 if (result)
2300 goto put_pci;
2301
2302 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2303 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2304 mutex_init(&dev->shutdown_lock);
2305 init_completion(&dev->ioq_wait);
2306
2307 result = nvme_setup_prp_pools(dev);
2308 if (result)
2309 goto unmap;
2310
2311 quirks |= check_dell_samsung_bug(pdev);
2312
2313 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2314 quirks);
2315 if (result)
2316 goto release_pools;
2317
2318 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2319 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2320
2321 queue_work(nvme_wq, &dev->ctrl.reset_work);
2322 return 0;
2323
2324 release_pools:
2325 nvme_release_prp_pools(dev);
2326 unmap:
2327 nvme_dev_unmap(dev);
2328 put_pci:
2329 put_device(dev->dev);
2330 free:
2331 kfree(dev->queues);
2332 kfree(dev);
2333 return result;
2334 }
2335
2336 static void nvme_reset_prepare(struct pci_dev *pdev)
2337 {
2338 struct nvme_dev *dev = pci_get_drvdata(pdev);
2339 nvme_dev_disable(dev, false);
2340 }
2341
2342 static void nvme_reset_done(struct pci_dev *pdev)
2343 {
2344 struct nvme_dev *dev = pci_get_drvdata(pdev);
2345 nvme_reset_ctrl(&dev->ctrl);
2346 }
2347
2348 static void nvme_shutdown(struct pci_dev *pdev)
2349 {
2350 struct nvme_dev *dev = pci_get_drvdata(pdev);
2351 nvme_dev_disable(dev, true);
2352 }
2353
2354 /*
2355 * The driver's remove may be called on a device in a partially initialized
2356 * state. This function must not have any dependencies on the device state in
2357 * order to proceed.
2358 */
2359 static void nvme_remove(struct pci_dev *pdev)
2360 {
2361 struct nvme_dev *dev = pci_get_drvdata(pdev);
2362
2363 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2364
2365 cancel_work_sync(&dev->ctrl.reset_work);
2366 pci_set_drvdata(pdev, NULL);
2367
2368 if (!pci_device_is_present(pdev)) {
2369 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2370 nvme_dev_disable(dev, false);
2371 }
2372
2373 flush_work(&dev->ctrl.reset_work);
2374 nvme_stop_ctrl(&dev->ctrl);
2375 nvme_remove_namespaces(&dev->ctrl);
2376 nvme_dev_disable(dev, true);
2377 nvme_free_host_mem(dev);
2378 nvme_dev_remove_admin(dev);
2379 nvme_free_queues(dev, 0);
2380 nvme_uninit_ctrl(&dev->ctrl);
2381 nvme_release_prp_pools(dev);
2382 nvme_dev_unmap(dev);
2383 nvme_put_ctrl(&dev->ctrl);
2384 }
2385
2386 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2387 {
2388 int ret = 0;
2389
2390 if (numvfs == 0) {
2391 if (pci_vfs_assigned(pdev)) {
2392 dev_warn(&pdev->dev,
2393 "Cannot disable SR-IOV VFs while assigned\n");
2394 return -EPERM;
2395 }
2396 pci_disable_sriov(pdev);
2397 return 0;
2398 }
2399
2400 ret = pci_enable_sriov(pdev, numvfs);
2401 return ret ? ret : numvfs;
2402 }
2403
2404 #ifdef CONFIG_PM_SLEEP
2405 static int nvme_suspend(struct device *dev)
2406 {
2407 struct pci_dev *pdev = to_pci_dev(dev);
2408 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2409
2410 nvme_dev_disable(ndev, true);
2411 return 0;
2412 }
2413
2414 static int nvme_resume(struct device *dev)
2415 {
2416 struct pci_dev *pdev = to_pci_dev(dev);
2417 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2418
2419 nvme_reset_ctrl(&ndev->ctrl);
2420 return 0;
2421 }
2422 #endif
2423
2424 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2425
2426 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2427 pci_channel_state_t state)
2428 {
2429 struct nvme_dev *dev = pci_get_drvdata(pdev);
2430
2431 /*
2432 * A frozen channel requires a reset. When detected, this method will
2433 * shutdown the controller to quiesce. The controller will be restarted
2434 * after the slot reset through driver's slot_reset callback.
2435 */
2436 switch (state) {
2437 case pci_channel_io_normal:
2438 return PCI_ERS_RESULT_CAN_RECOVER;
2439 case pci_channel_io_frozen:
2440 dev_warn(dev->ctrl.device,
2441 "frozen state error detected, reset controller\n");
2442 nvme_dev_disable(dev, false);
2443 return PCI_ERS_RESULT_NEED_RESET;
2444 case pci_channel_io_perm_failure:
2445 dev_warn(dev->ctrl.device,
2446 "failure state error detected, request disconnect\n");
2447 return PCI_ERS_RESULT_DISCONNECT;
2448 }
2449 return PCI_ERS_RESULT_NEED_RESET;
2450 }
2451
2452 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2453 {
2454 struct nvme_dev *dev = pci_get_drvdata(pdev);
2455
2456 dev_info(dev->ctrl.device, "restart after slot reset\n");
2457 pci_restore_state(pdev);
2458 nvme_reset_ctrl(&dev->ctrl);
2459 return PCI_ERS_RESULT_RECOVERED;
2460 }
2461
2462 static void nvme_error_resume(struct pci_dev *pdev)
2463 {
2464 pci_cleanup_aer_uncorrect_error_status(pdev);
2465 }
2466
2467 static const struct pci_error_handlers nvme_err_handler = {
2468 .error_detected = nvme_error_detected,
2469 .slot_reset = nvme_slot_reset,
2470 .resume = nvme_error_resume,
2471 .reset_prepare = nvme_reset_prepare,
2472 .reset_done = nvme_reset_done,
2473 };
2474
2475 static const struct pci_device_id nvme_id_table[] = {
2476 { PCI_VDEVICE(INTEL, 0x0953),
2477 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2478 NVME_QUIRK_DEALLOCATE_ZEROES, },
2479 { PCI_VDEVICE(INTEL, 0x0a53),
2480 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2481 NVME_QUIRK_DEALLOCATE_ZEROES, },
2482 { PCI_VDEVICE(INTEL, 0x0a54),
2483 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2484 NVME_QUIRK_DEALLOCATE_ZEROES, },
2485 { PCI_VDEVICE(INTEL, 0x0a55),
2486 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2487 NVME_QUIRK_DEALLOCATE_ZEROES, },
2488 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2489 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2490 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2491 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2492 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2493 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2494 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2495 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2496 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2497 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2498 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2499 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2500 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2501 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2502 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2503 { 0, }
2504 };
2505 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2506
2507 static struct pci_driver nvme_driver = {
2508 .name = "nvme",
2509 .id_table = nvme_id_table,
2510 .probe = nvme_probe,
2511 .remove = nvme_remove,
2512 .shutdown = nvme_shutdown,
2513 .driver = {
2514 .pm = &nvme_dev_pm_ops,
2515 },
2516 .sriov_configure = nvme_pci_sriov_configure,
2517 .err_handler = &nvme_err_handler,
2518 };
2519
2520 static int __init nvme_init(void)
2521 {
2522 return pci_register_driver(&nvme_driver);
2523 }
2524
2525 static void __exit nvme_exit(void)
2526 {
2527 pci_unregister_driver(&nvme_driver);
2528 _nvme_check_size();
2529 }
2530
2531 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2532 MODULE_LICENSE("GPL");
2533 MODULE_VERSION("1.0");
2534 module_init(nvme_init);
2535 module_exit(nvme_exit);