]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
Merge tag 'perf-urgent-for-mingo-4.14-20170928' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/poison.h>
30 #include <linux/t10-pi.h>
31 #include <linux/timer.h>
32 #include <linux/types.h>
33 #include <linux/io-64-nonatomic-lo-hi.h>
34 #include <asm/unaligned.h>
35 #include <linux/sed-opal.h>
36
37 #include "nvme.h"
38
39 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
41
42 /*
43 * We handle AEN commands ourselves and don't even let the
44 * block layer know about them.
45 */
46 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62 .set = io_queue_depth_set,
63 .get = param_get_int,
64 };
65
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
91 void __iomem *bar;
92 unsigned long bar_mapped_size;
93 struct work_struct remove_work;
94 struct mutex shutdown_lock;
95 bool subsystem;
96 void __iomem *cmb;
97 dma_addr_t cmb_dma_addr;
98 u64 cmb_size;
99 u32 cmbsz;
100 u32 cmbloc;
101 struct nvme_ctrl ctrl;
102 struct completion ioq_wait;
103
104 /* shadow doorbell buffer support: */
105 u32 *dbbuf_dbs;
106 dma_addr_t dbbuf_dbs_dma_addr;
107 u32 *dbbuf_eis;
108 dma_addr_t dbbuf_eis_dma_addr;
109
110 /* host memory buffer support: */
111 u64 host_mem_size;
112 u32 nr_host_mem_descs;
113 dma_addr_t host_mem_descs_dma;
114 struct nvme_host_mem_buf_desc *host_mem_descs;
115 void **host_mem_desc_bufs;
116 };
117
118 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119 {
120 int n = 0, ret;
121
122 ret = kstrtoint(val, 10, &n);
123 if (ret != 0 || n < 2)
124 return -EINVAL;
125
126 return param_set_int(val, kp);
127 }
128
129 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130 {
131 return qid * 2 * stride;
132 }
133
134 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135 {
136 return (qid * 2 + 1) * stride;
137 }
138
139 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140 {
141 return container_of(ctrl, struct nvme_dev, ctrl);
142 }
143
144 /*
145 * An NVM Express queue. Each device has at least two (one for admin
146 * commands and one for I/O commands).
147 */
148 struct nvme_queue {
149 struct device *q_dmadev;
150 struct nvme_dev *dev;
151 spinlock_t q_lock;
152 struct nvme_command *sq_cmds;
153 struct nvme_command __iomem *sq_cmds_io;
154 volatile struct nvme_completion *cqes;
155 struct blk_mq_tags **tags;
156 dma_addr_t sq_dma_addr;
157 dma_addr_t cq_dma_addr;
158 u32 __iomem *q_db;
159 u16 q_depth;
160 s16 cq_vector;
161 u16 sq_tail;
162 u16 cq_head;
163 u16 qid;
164 u8 cq_phase;
165 u8 cqe_seen;
166 u32 *dbbuf_sq_db;
167 u32 *dbbuf_cq_db;
168 u32 *dbbuf_sq_ei;
169 u32 *dbbuf_cq_ei;
170 };
171
172 /*
173 * The nvme_iod describes the data in an I/O, including the list of PRP
174 * entries. You can't see it in this data structure because C doesn't let
175 * me express that. Use nvme_init_iod to ensure there's enough space
176 * allocated to store the PRP list.
177 */
178 struct nvme_iod {
179 struct nvme_request req;
180 struct nvme_queue *nvmeq;
181 int aborted;
182 int npages; /* In the PRP list. 0 means small pool in use */
183 int nents; /* Used in scatterlist */
184 int length; /* Of data, in bytes */
185 dma_addr_t first_dma;
186 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187 struct scatterlist *sg;
188 struct scatterlist inline_sg[0];
189 };
190
191 /*
192 * Check we didin't inadvertently grow the command struct
193 */
194 static inline void _nvme_check_size(void)
195 {
196 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213 return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220 if (dev->dbbuf_dbs)
221 return 0;
222
223 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224 &dev->dbbuf_dbs_dma_addr,
225 GFP_KERNEL);
226 if (!dev->dbbuf_dbs)
227 return -ENOMEM;
228 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229 &dev->dbbuf_eis_dma_addr,
230 GFP_KERNEL);
231 if (!dev->dbbuf_eis) {
232 dma_free_coherent(dev->dev, mem_size,
233 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234 dev->dbbuf_dbs = NULL;
235 return -ENOMEM;
236 }
237
238 return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245 if (dev->dbbuf_dbs) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 dev->dbbuf_dbs = NULL;
249 }
250 if (dev->dbbuf_eis) {
251 dma_free_coherent(dev->dev, mem_size,
252 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253 dev->dbbuf_eis = NULL;
254 }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258 struct nvme_queue *nvmeq, int qid)
259 {
260 if (!dev->dbbuf_dbs || !qid)
261 return;
262
263 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271 struct nvme_command c;
272
273 if (!dev->dbbuf_dbs)
274 return;
275
276 memset(&c, 0, sizeof(c));
277 c.dbbuf.opcode = nvme_admin_dbbuf;
278 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280
281 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283 /* Free memory and continue on */
284 nvme_dbbuf_dma_free(dev);
285 }
286 }
287
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295 volatile u32 *dbbuf_ei)
296 {
297 if (dbbuf_db) {
298 u16 old_value;
299
300 /*
301 * Ensure that the queue is written before updating
302 * the doorbell in memory
303 */
304 wmb();
305
306 old_value = *dbbuf_db;
307 *dbbuf_db = value;
308
309 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
310 return false;
311 }
312
313 return true;
314 }
315
316 /*
317 * Max size of iod being embedded in the request payload
318 */
319 #define NVME_INT_PAGES 2
320 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
321
322 /*
323 * Will slightly overestimate the number of pages needed. This is OK
324 * as it only leads to a small amount of wasted memory for the lifetime of
325 * the I/O.
326 */
327 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 {
329 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
330 dev->ctrl.page_size);
331 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
332 }
333
334 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
335 unsigned int size, unsigned int nseg)
336 {
337 return sizeof(__le64 *) * nvme_npages(size, dev) +
338 sizeof(struct scatterlist) * nseg;
339 }
340
341 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
342 {
343 return sizeof(struct nvme_iod) +
344 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
345 }
346
347 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
348 unsigned int hctx_idx)
349 {
350 struct nvme_dev *dev = data;
351 struct nvme_queue *nvmeq = dev->queues[0];
352
353 WARN_ON(hctx_idx != 0);
354 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
355 WARN_ON(nvmeq->tags);
356
357 hctx->driver_data = nvmeq;
358 nvmeq->tags = &dev->admin_tagset.tags[0];
359 return 0;
360 }
361
362 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
363 {
364 struct nvme_queue *nvmeq = hctx->driver_data;
365
366 nvmeq->tags = NULL;
367 }
368
369 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
370 unsigned int hctx_idx)
371 {
372 struct nvme_dev *dev = data;
373 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
374
375 if (!nvmeq->tags)
376 nvmeq->tags = &dev->tagset.tags[hctx_idx];
377
378 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
379 hctx->driver_data = nvmeq;
380 return 0;
381 }
382
383 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
384 unsigned int hctx_idx, unsigned int numa_node)
385 {
386 struct nvme_dev *dev = set->driver_data;
387 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
388 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
389 struct nvme_queue *nvmeq = dev->queues[queue_idx];
390
391 BUG_ON(!nvmeq);
392 iod->nvmeq = nvmeq;
393 return 0;
394 }
395
396 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
397 {
398 struct nvme_dev *dev = set->driver_data;
399
400 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
401 }
402
403 /**
404 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
405 * @nvmeq: The queue to use
406 * @cmd: The command to send
407 *
408 * Safe to use from interrupt context
409 */
410 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
411 struct nvme_command *cmd)
412 {
413 u16 tail = nvmeq->sq_tail;
414
415 if (nvmeq->sq_cmds_io)
416 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
417 else
418 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
419
420 if (++tail == nvmeq->q_depth)
421 tail = 0;
422 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
423 nvmeq->dbbuf_sq_ei))
424 writel(tail, nvmeq->q_db);
425 nvmeq->sq_tail = tail;
426 }
427
428 static __le64 **iod_list(struct request *req)
429 {
430 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
431 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
432 }
433
434 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
435 {
436 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
437 int nseg = blk_rq_nr_phys_segments(rq);
438 unsigned int size = blk_rq_payload_bytes(rq);
439
440 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
441 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
442 if (!iod->sg)
443 return BLK_STS_RESOURCE;
444 } else {
445 iod->sg = iod->inline_sg;
446 }
447
448 iod->aborted = 0;
449 iod->npages = -1;
450 iod->nents = 0;
451 iod->length = size;
452
453 return BLK_STS_OK;
454 }
455
456 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
457 {
458 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
459 const int last_prp = dev->ctrl.page_size / 8 - 1;
460 int i;
461 __le64 **list = iod_list(req);
462 dma_addr_t prp_dma = iod->first_dma;
463
464 if (iod->npages == 0)
465 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
466 for (i = 0; i < iod->npages; i++) {
467 __le64 *prp_list = list[i];
468 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
469 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
470 prp_dma = next_prp_dma;
471 }
472
473 if (iod->sg != iod->inline_sg)
474 kfree(iod->sg);
475 }
476
477 #ifdef CONFIG_BLK_DEV_INTEGRITY
478 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
479 {
480 if (be32_to_cpu(pi->ref_tag) == v)
481 pi->ref_tag = cpu_to_be32(p);
482 }
483
484 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
485 {
486 if (be32_to_cpu(pi->ref_tag) == p)
487 pi->ref_tag = cpu_to_be32(v);
488 }
489
490 /**
491 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
492 *
493 * The virtual start sector is the one that was originally submitted by the
494 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
495 * start sector may be different. Remap protection information to match the
496 * physical LBA on writes, and back to the original seed on reads.
497 *
498 * Type 0 and 3 do not have a ref tag, so no remapping required.
499 */
500 static void nvme_dif_remap(struct request *req,
501 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
502 {
503 struct nvme_ns *ns = req->rq_disk->private_data;
504 struct bio_integrity_payload *bip;
505 struct t10_pi_tuple *pi;
506 void *p, *pmap;
507 u32 i, nlb, ts, phys, virt;
508
509 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
510 return;
511
512 bip = bio_integrity(req->bio);
513 if (!bip)
514 return;
515
516 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
517
518 p = pmap;
519 virt = bip_get_seed(bip);
520 phys = nvme_block_nr(ns, blk_rq_pos(req));
521 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
522 ts = ns->disk->queue->integrity.tuple_size;
523
524 for (i = 0; i < nlb; i++, virt++, phys++) {
525 pi = (struct t10_pi_tuple *)p;
526 dif_swap(phys, virt, pi);
527 p += ts;
528 }
529 kunmap_atomic(pmap);
530 }
531 #else /* CONFIG_BLK_DEV_INTEGRITY */
532 static void nvme_dif_remap(struct request *req,
533 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
534 {
535 }
536 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
537 {
538 }
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 }
542 #endif
543
544 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
545 {
546 int i;
547 struct scatterlist *sg;
548
549 for_each_sg(sgl, sg, nents, i) {
550 dma_addr_t phys = sg_phys(sg);
551 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
552 "dma_address:%pad dma_length:%d\n",
553 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
554 sg_dma_len(sg));
555 }
556 }
557
558 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
559 {
560 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561 struct dma_pool *pool;
562 int length = blk_rq_payload_bytes(req);
563 struct scatterlist *sg = iod->sg;
564 int dma_len = sg_dma_len(sg);
565 u64 dma_addr = sg_dma_address(sg);
566 u32 page_size = dev->ctrl.page_size;
567 int offset = dma_addr & (page_size - 1);
568 __le64 *prp_list;
569 __le64 **list = iod_list(req);
570 dma_addr_t prp_dma;
571 int nprps, i;
572
573 length -= (page_size - offset);
574 if (length <= 0) {
575 iod->first_dma = 0;
576 return BLK_STS_OK;
577 }
578
579 dma_len -= (page_size - offset);
580 if (dma_len) {
581 dma_addr += (page_size - offset);
582 } else {
583 sg = sg_next(sg);
584 dma_addr = sg_dma_address(sg);
585 dma_len = sg_dma_len(sg);
586 }
587
588 if (length <= page_size) {
589 iod->first_dma = dma_addr;
590 return BLK_STS_OK;
591 }
592
593 nprps = DIV_ROUND_UP(length, page_size);
594 if (nprps <= (256 / 8)) {
595 pool = dev->prp_small_pool;
596 iod->npages = 0;
597 } else {
598 pool = dev->prp_page_pool;
599 iod->npages = 1;
600 }
601
602 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
603 if (!prp_list) {
604 iod->first_dma = dma_addr;
605 iod->npages = -1;
606 return BLK_STS_RESOURCE;
607 }
608 list[0] = prp_list;
609 iod->first_dma = prp_dma;
610 i = 0;
611 for (;;) {
612 if (i == page_size >> 3) {
613 __le64 *old_prp_list = prp_list;
614 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
615 if (!prp_list)
616 return BLK_STS_RESOURCE;
617 list[iod->npages++] = prp_list;
618 prp_list[0] = old_prp_list[i - 1];
619 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
620 i = 1;
621 }
622 prp_list[i++] = cpu_to_le64(dma_addr);
623 dma_len -= page_size;
624 dma_addr += page_size;
625 length -= page_size;
626 if (length <= 0)
627 break;
628 if (dma_len > 0)
629 continue;
630 if (unlikely(dma_len < 0))
631 goto bad_sgl;
632 sg = sg_next(sg);
633 dma_addr = sg_dma_address(sg);
634 dma_len = sg_dma_len(sg);
635 }
636
637 return BLK_STS_OK;
638
639 bad_sgl:
640 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
641 "Invalid SGL for payload:%d nents:%d\n",
642 blk_rq_payload_bytes(req), iod->nents);
643 return BLK_STS_IOERR;
644 }
645
646 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
647 struct nvme_command *cmnd)
648 {
649 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
650 struct request_queue *q = req->q;
651 enum dma_data_direction dma_dir = rq_data_dir(req) ?
652 DMA_TO_DEVICE : DMA_FROM_DEVICE;
653 blk_status_t ret = BLK_STS_IOERR;
654
655 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
656 iod->nents = blk_rq_map_sg(q, req, iod->sg);
657 if (!iod->nents)
658 goto out;
659
660 ret = BLK_STS_RESOURCE;
661 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
662 DMA_ATTR_NO_WARN))
663 goto out;
664
665 ret = nvme_setup_prps(dev, req);
666 if (ret != BLK_STS_OK)
667 goto out_unmap;
668
669 ret = BLK_STS_IOERR;
670 if (blk_integrity_rq(req)) {
671 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
672 goto out_unmap;
673
674 sg_init_table(&iod->meta_sg, 1);
675 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
676 goto out_unmap;
677
678 if (req_op(req) == REQ_OP_WRITE)
679 nvme_dif_remap(req, nvme_dif_prep);
680
681 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
682 goto out_unmap;
683 }
684
685 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
686 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
687 if (blk_integrity_rq(req))
688 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
689 return BLK_STS_OK;
690
691 out_unmap:
692 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
693 out:
694 return ret;
695 }
696
697 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
698 {
699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 enum dma_data_direction dma_dir = rq_data_dir(req) ?
701 DMA_TO_DEVICE : DMA_FROM_DEVICE;
702
703 if (iod->nents) {
704 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
705 if (blk_integrity_rq(req)) {
706 if (req_op(req) == REQ_OP_READ)
707 nvme_dif_remap(req, nvme_dif_complete);
708 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
709 }
710 }
711
712 nvme_cleanup_cmd(req);
713 nvme_free_iod(dev, req);
714 }
715
716 /*
717 * NOTE: ns is NULL when called on the admin queue.
718 */
719 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
720 const struct blk_mq_queue_data *bd)
721 {
722 struct nvme_ns *ns = hctx->queue->queuedata;
723 struct nvme_queue *nvmeq = hctx->driver_data;
724 struct nvme_dev *dev = nvmeq->dev;
725 struct request *req = bd->rq;
726 struct nvme_command cmnd;
727 blk_status_t ret;
728
729 ret = nvme_setup_cmd(ns, req, &cmnd);
730 if (ret)
731 return ret;
732
733 ret = nvme_init_iod(req, dev);
734 if (ret)
735 goto out_free_cmd;
736
737 if (blk_rq_nr_phys_segments(req)) {
738 ret = nvme_map_data(dev, req, &cmnd);
739 if (ret)
740 goto out_cleanup_iod;
741 }
742
743 blk_mq_start_request(req);
744
745 spin_lock_irq(&nvmeq->q_lock);
746 if (unlikely(nvmeq->cq_vector < 0)) {
747 ret = BLK_STS_IOERR;
748 spin_unlock_irq(&nvmeq->q_lock);
749 goto out_cleanup_iod;
750 }
751 __nvme_submit_cmd(nvmeq, &cmnd);
752 nvme_process_cq(nvmeq);
753 spin_unlock_irq(&nvmeq->q_lock);
754 return BLK_STS_OK;
755 out_cleanup_iod:
756 nvme_free_iod(dev, req);
757 out_free_cmd:
758 nvme_cleanup_cmd(req);
759 return ret;
760 }
761
762 static void nvme_pci_complete_rq(struct request *req)
763 {
764 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
765
766 nvme_unmap_data(iod->nvmeq->dev, req);
767 nvme_complete_rq(req);
768 }
769
770 /* We read the CQE phase first to check if the rest of the entry is valid */
771 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
772 u16 phase)
773 {
774 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
775 }
776
777 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
778 {
779 u16 head = nvmeq->cq_head;
780
781 if (likely(nvmeq->cq_vector >= 0)) {
782 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
783 nvmeq->dbbuf_cq_ei))
784 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
785 }
786 }
787
788 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
789 struct nvme_completion *cqe)
790 {
791 struct request *req;
792
793 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
794 dev_warn(nvmeq->dev->ctrl.device,
795 "invalid id %d completed on queue %d\n",
796 cqe->command_id, le16_to_cpu(cqe->sq_id));
797 return;
798 }
799
800 /*
801 * AEN requests are special as they don't time out and can
802 * survive any kind of queue freeze and often don't respond to
803 * aborts. We don't even bother to allocate a struct request
804 * for them but rather special case them here.
805 */
806 if (unlikely(nvmeq->qid == 0 &&
807 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
808 nvme_complete_async_event(&nvmeq->dev->ctrl,
809 cqe->status, &cqe->result);
810 return;
811 }
812
813 nvmeq->cqe_seen = 1;
814 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
815 nvme_end_request(req, cqe->status, cqe->result);
816 }
817
818 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
819 struct nvme_completion *cqe)
820 {
821 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
822 *cqe = nvmeq->cqes[nvmeq->cq_head];
823
824 if (++nvmeq->cq_head == nvmeq->q_depth) {
825 nvmeq->cq_head = 0;
826 nvmeq->cq_phase = !nvmeq->cq_phase;
827 }
828 return true;
829 }
830 return false;
831 }
832
833 static void nvme_process_cq(struct nvme_queue *nvmeq)
834 {
835 struct nvme_completion cqe;
836 int consumed = 0;
837
838 while (nvme_read_cqe(nvmeq, &cqe)) {
839 nvme_handle_cqe(nvmeq, &cqe);
840 consumed++;
841 }
842
843 if (consumed)
844 nvme_ring_cq_doorbell(nvmeq);
845 }
846
847 static irqreturn_t nvme_irq(int irq, void *data)
848 {
849 irqreturn_t result;
850 struct nvme_queue *nvmeq = data;
851 spin_lock(&nvmeq->q_lock);
852 nvme_process_cq(nvmeq);
853 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
854 nvmeq->cqe_seen = 0;
855 spin_unlock(&nvmeq->q_lock);
856 return result;
857 }
858
859 static irqreturn_t nvme_irq_check(int irq, void *data)
860 {
861 struct nvme_queue *nvmeq = data;
862 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
863 return IRQ_WAKE_THREAD;
864 return IRQ_NONE;
865 }
866
867 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
868 {
869 struct nvme_completion cqe;
870 int found = 0, consumed = 0;
871
872 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
873 return 0;
874
875 spin_lock_irq(&nvmeq->q_lock);
876 while (nvme_read_cqe(nvmeq, &cqe)) {
877 nvme_handle_cqe(nvmeq, &cqe);
878 consumed++;
879
880 if (tag == cqe.command_id) {
881 found = 1;
882 break;
883 }
884 }
885
886 if (consumed)
887 nvme_ring_cq_doorbell(nvmeq);
888 spin_unlock_irq(&nvmeq->q_lock);
889
890 return found;
891 }
892
893 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
894 {
895 struct nvme_queue *nvmeq = hctx->driver_data;
896
897 return __nvme_poll(nvmeq, tag);
898 }
899
900 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
901 {
902 struct nvme_dev *dev = to_nvme_dev(ctrl);
903 struct nvme_queue *nvmeq = dev->queues[0];
904 struct nvme_command c;
905
906 memset(&c, 0, sizeof(c));
907 c.common.opcode = nvme_admin_async_event;
908 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
909
910 spin_lock_irq(&nvmeq->q_lock);
911 __nvme_submit_cmd(nvmeq, &c);
912 spin_unlock_irq(&nvmeq->q_lock);
913 }
914
915 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
916 {
917 struct nvme_command c;
918
919 memset(&c, 0, sizeof(c));
920 c.delete_queue.opcode = opcode;
921 c.delete_queue.qid = cpu_to_le16(id);
922
923 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
924 }
925
926 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
927 struct nvme_queue *nvmeq)
928 {
929 struct nvme_command c;
930 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
931
932 /*
933 * Note: we (ab)use the fact the the prp fields survive if no data
934 * is attached to the request.
935 */
936 memset(&c, 0, sizeof(c));
937 c.create_cq.opcode = nvme_admin_create_cq;
938 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
939 c.create_cq.cqid = cpu_to_le16(qid);
940 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
941 c.create_cq.cq_flags = cpu_to_le16(flags);
942 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
943
944 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
945 }
946
947 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
948 struct nvme_queue *nvmeq)
949 {
950 struct nvme_command c;
951 int flags = NVME_QUEUE_PHYS_CONTIG;
952
953 /*
954 * Note: we (ab)use the fact the the prp fields survive if no data
955 * is attached to the request.
956 */
957 memset(&c, 0, sizeof(c));
958 c.create_sq.opcode = nvme_admin_create_sq;
959 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
960 c.create_sq.sqid = cpu_to_le16(qid);
961 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
962 c.create_sq.sq_flags = cpu_to_le16(flags);
963 c.create_sq.cqid = cpu_to_le16(qid);
964
965 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
966 }
967
968 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
969 {
970 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
971 }
972
973 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
974 {
975 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
976 }
977
978 static void abort_endio(struct request *req, blk_status_t error)
979 {
980 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 struct nvme_queue *nvmeq = iod->nvmeq;
982
983 dev_warn(nvmeq->dev->ctrl.device,
984 "Abort status: 0x%x", nvme_req(req)->status);
985 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
986 blk_mq_free_request(req);
987 }
988
989 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
990 {
991
992 /* If true, indicates loss of adapter communication, possibly by a
993 * NVMe Subsystem reset.
994 */
995 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
996
997 /* If there is a reset ongoing, we shouldn't reset again. */
998 if (dev->ctrl.state == NVME_CTRL_RESETTING)
999 return false;
1000
1001 /* We shouldn't reset unless the controller is on fatal error state
1002 * _or_ if we lost the communication with it.
1003 */
1004 if (!(csts & NVME_CSTS_CFS) && !nssro)
1005 return false;
1006
1007 /* If PCI error recovery process is happening, we cannot reset or
1008 * the recovery mechanism will surely fail.
1009 */
1010 if (pci_channel_offline(to_pci_dev(dev->dev)))
1011 return false;
1012
1013 return true;
1014 }
1015
1016 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1017 {
1018 /* Read a config register to help see what died. */
1019 u16 pci_status;
1020 int result;
1021
1022 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1023 &pci_status);
1024 if (result == PCIBIOS_SUCCESSFUL)
1025 dev_warn(dev->ctrl.device,
1026 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1027 csts, pci_status);
1028 else
1029 dev_warn(dev->ctrl.device,
1030 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1031 csts, result);
1032 }
1033
1034 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1035 {
1036 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1037 struct nvme_queue *nvmeq = iod->nvmeq;
1038 struct nvme_dev *dev = nvmeq->dev;
1039 struct request *abort_req;
1040 struct nvme_command cmd;
1041 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1042
1043 /*
1044 * Reset immediately if the controller is failed
1045 */
1046 if (nvme_should_reset(dev, csts)) {
1047 nvme_warn_reset(dev, csts);
1048 nvme_dev_disable(dev, false);
1049 nvme_reset_ctrl(&dev->ctrl);
1050 return BLK_EH_HANDLED;
1051 }
1052
1053 /*
1054 * Did we miss an interrupt?
1055 */
1056 if (__nvme_poll(nvmeq, req->tag)) {
1057 dev_warn(dev->ctrl.device,
1058 "I/O %d QID %d timeout, completion polled\n",
1059 req->tag, nvmeq->qid);
1060 return BLK_EH_HANDLED;
1061 }
1062
1063 /*
1064 * Shutdown immediately if controller times out while starting. The
1065 * reset work will see the pci device disabled when it gets the forced
1066 * cancellation error. All outstanding requests are completed on
1067 * shutdown, so we return BLK_EH_HANDLED.
1068 */
1069 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1070 dev_warn(dev->ctrl.device,
1071 "I/O %d QID %d timeout, disable controller\n",
1072 req->tag, nvmeq->qid);
1073 nvme_dev_disable(dev, false);
1074 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1075 return BLK_EH_HANDLED;
1076 }
1077
1078 /*
1079 * Shutdown the controller immediately and schedule a reset if the
1080 * command was already aborted once before and still hasn't been
1081 * returned to the driver, or if this is the admin queue.
1082 */
1083 if (!nvmeq->qid || iod->aborted) {
1084 dev_warn(dev->ctrl.device,
1085 "I/O %d QID %d timeout, reset controller\n",
1086 req->tag, nvmeq->qid);
1087 nvme_dev_disable(dev, false);
1088 nvme_reset_ctrl(&dev->ctrl);
1089
1090 /*
1091 * Mark the request as handled, since the inline shutdown
1092 * forces all outstanding requests to complete.
1093 */
1094 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1095 return BLK_EH_HANDLED;
1096 }
1097
1098 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1099 atomic_inc(&dev->ctrl.abort_limit);
1100 return BLK_EH_RESET_TIMER;
1101 }
1102 iod->aborted = 1;
1103
1104 memset(&cmd, 0, sizeof(cmd));
1105 cmd.abort.opcode = nvme_admin_abort_cmd;
1106 cmd.abort.cid = req->tag;
1107 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1108
1109 dev_warn(nvmeq->dev->ctrl.device,
1110 "I/O %d QID %d timeout, aborting\n",
1111 req->tag, nvmeq->qid);
1112
1113 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1114 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1115 if (IS_ERR(abort_req)) {
1116 atomic_inc(&dev->ctrl.abort_limit);
1117 return BLK_EH_RESET_TIMER;
1118 }
1119
1120 abort_req->timeout = ADMIN_TIMEOUT;
1121 abort_req->end_io_data = NULL;
1122 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1123
1124 /*
1125 * The aborted req will be completed on receiving the abort req.
1126 * We enable the timer again. If hit twice, it'll cause a device reset,
1127 * as the device then is in a faulty state.
1128 */
1129 return BLK_EH_RESET_TIMER;
1130 }
1131
1132 static void nvme_free_queue(struct nvme_queue *nvmeq)
1133 {
1134 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136 if (nvmeq->sq_cmds)
1137 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1138 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1139 kfree(nvmeq);
1140 }
1141
1142 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1143 {
1144 int i;
1145
1146 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1147 struct nvme_queue *nvmeq = dev->queues[i];
1148 dev->ctrl.queue_count--;
1149 dev->queues[i] = NULL;
1150 nvme_free_queue(nvmeq);
1151 }
1152 }
1153
1154 /**
1155 * nvme_suspend_queue - put queue into suspended state
1156 * @nvmeq - queue to suspend
1157 */
1158 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1159 {
1160 int vector;
1161
1162 spin_lock_irq(&nvmeq->q_lock);
1163 if (nvmeq->cq_vector == -1) {
1164 spin_unlock_irq(&nvmeq->q_lock);
1165 return 1;
1166 }
1167 vector = nvmeq->cq_vector;
1168 nvmeq->dev->online_queues--;
1169 nvmeq->cq_vector = -1;
1170 spin_unlock_irq(&nvmeq->q_lock);
1171
1172 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1173 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1174
1175 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1176
1177 return 0;
1178 }
1179
1180 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1181 {
1182 struct nvme_queue *nvmeq = dev->queues[0];
1183
1184 if (!nvmeq)
1185 return;
1186 if (nvme_suspend_queue(nvmeq))
1187 return;
1188
1189 if (shutdown)
1190 nvme_shutdown_ctrl(&dev->ctrl);
1191 else
1192 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1193
1194 spin_lock_irq(&nvmeq->q_lock);
1195 nvme_process_cq(nvmeq);
1196 spin_unlock_irq(&nvmeq->q_lock);
1197 }
1198
1199 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1200 int entry_size)
1201 {
1202 int q_depth = dev->q_depth;
1203 unsigned q_size_aligned = roundup(q_depth * entry_size,
1204 dev->ctrl.page_size);
1205
1206 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1207 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1208 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1209 q_depth = div_u64(mem_per_q, entry_size);
1210
1211 /*
1212 * Ensure the reduced q_depth is above some threshold where it
1213 * would be better to map queues in system memory with the
1214 * original depth
1215 */
1216 if (q_depth < 64)
1217 return -ENOMEM;
1218 }
1219
1220 return q_depth;
1221 }
1222
1223 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1224 int qid, int depth)
1225 {
1226 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1227 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1228 dev->ctrl.page_size);
1229 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1230 nvmeq->sq_cmds_io = dev->cmb + offset;
1231 } else {
1232 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1233 &nvmeq->sq_dma_addr, GFP_KERNEL);
1234 if (!nvmeq->sq_cmds)
1235 return -ENOMEM;
1236 }
1237
1238 return 0;
1239 }
1240
1241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1242 int depth, int node)
1243 {
1244 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1245 node);
1246 if (!nvmeq)
1247 return NULL;
1248
1249 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1250 &nvmeq->cq_dma_addr, GFP_KERNEL);
1251 if (!nvmeq->cqes)
1252 goto free_nvmeq;
1253
1254 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1255 goto free_cqdma;
1256
1257 nvmeq->q_dmadev = dev->dev;
1258 nvmeq->dev = dev;
1259 spin_lock_init(&nvmeq->q_lock);
1260 nvmeq->cq_head = 0;
1261 nvmeq->cq_phase = 1;
1262 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1263 nvmeq->q_depth = depth;
1264 nvmeq->qid = qid;
1265 nvmeq->cq_vector = -1;
1266 dev->queues[qid] = nvmeq;
1267 dev->ctrl.queue_count++;
1268
1269 return nvmeq;
1270
1271 free_cqdma:
1272 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1273 nvmeq->cq_dma_addr);
1274 free_nvmeq:
1275 kfree(nvmeq);
1276 return NULL;
1277 }
1278
1279 static int queue_request_irq(struct nvme_queue *nvmeq)
1280 {
1281 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1282 int nr = nvmeq->dev->ctrl.instance;
1283
1284 if (use_threaded_interrupts) {
1285 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1286 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1287 } else {
1288 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1289 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1290 }
1291 }
1292
1293 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1294 {
1295 struct nvme_dev *dev = nvmeq->dev;
1296
1297 spin_lock_irq(&nvmeq->q_lock);
1298 nvmeq->sq_tail = 0;
1299 nvmeq->cq_head = 0;
1300 nvmeq->cq_phase = 1;
1301 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1302 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1303 nvme_dbbuf_init(dev, nvmeq, qid);
1304 dev->online_queues++;
1305 spin_unlock_irq(&nvmeq->q_lock);
1306 }
1307
1308 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1309 {
1310 struct nvme_dev *dev = nvmeq->dev;
1311 int result;
1312
1313 nvmeq->cq_vector = qid - 1;
1314 result = adapter_alloc_cq(dev, qid, nvmeq);
1315 if (result < 0)
1316 return result;
1317
1318 result = adapter_alloc_sq(dev, qid, nvmeq);
1319 if (result < 0)
1320 goto release_cq;
1321
1322 nvme_init_queue(nvmeq, qid);
1323 result = queue_request_irq(nvmeq);
1324 if (result < 0)
1325 goto release_sq;
1326
1327 return result;
1328
1329 release_sq:
1330 adapter_delete_sq(dev, qid);
1331 release_cq:
1332 adapter_delete_cq(dev, qid);
1333 return result;
1334 }
1335
1336 static const struct blk_mq_ops nvme_mq_admin_ops = {
1337 .queue_rq = nvme_queue_rq,
1338 .complete = nvme_pci_complete_rq,
1339 .init_hctx = nvme_admin_init_hctx,
1340 .exit_hctx = nvme_admin_exit_hctx,
1341 .init_request = nvme_init_request,
1342 .timeout = nvme_timeout,
1343 };
1344
1345 static const struct blk_mq_ops nvme_mq_ops = {
1346 .queue_rq = nvme_queue_rq,
1347 .complete = nvme_pci_complete_rq,
1348 .init_hctx = nvme_init_hctx,
1349 .init_request = nvme_init_request,
1350 .map_queues = nvme_pci_map_queues,
1351 .timeout = nvme_timeout,
1352 .poll = nvme_poll,
1353 };
1354
1355 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1356 {
1357 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1358 /*
1359 * If the controller was reset during removal, it's possible
1360 * user requests may be waiting on a stopped queue. Start the
1361 * queue to flush these to completion.
1362 */
1363 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1364 blk_cleanup_queue(dev->ctrl.admin_q);
1365 blk_mq_free_tag_set(&dev->admin_tagset);
1366 }
1367 }
1368
1369 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1370 {
1371 if (!dev->ctrl.admin_q) {
1372 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1373 dev->admin_tagset.nr_hw_queues = 1;
1374
1375 /*
1376 * Subtract one to leave an empty queue entry for 'Full Queue'
1377 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1378 */
1379 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1380 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1381 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1382 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1383 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1384 dev->admin_tagset.driver_data = dev;
1385
1386 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1387 return -ENOMEM;
1388 dev->ctrl.admin_tagset = &dev->admin_tagset;
1389
1390 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1391 if (IS_ERR(dev->ctrl.admin_q)) {
1392 blk_mq_free_tag_set(&dev->admin_tagset);
1393 return -ENOMEM;
1394 }
1395 if (!blk_get_queue(dev->ctrl.admin_q)) {
1396 nvme_dev_remove_admin(dev);
1397 dev->ctrl.admin_q = NULL;
1398 return -ENODEV;
1399 }
1400 } else
1401 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1402
1403 return 0;
1404 }
1405
1406 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1407 {
1408 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1409 }
1410
1411 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1412 {
1413 struct pci_dev *pdev = to_pci_dev(dev->dev);
1414
1415 if (size <= dev->bar_mapped_size)
1416 return 0;
1417 if (size > pci_resource_len(pdev, 0))
1418 return -ENOMEM;
1419 if (dev->bar)
1420 iounmap(dev->bar);
1421 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1422 if (!dev->bar) {
1423 dev->bar_mapped_size = 0;
1424 return -ENOMEM;
1425 }
1426 dev->bar_mapped_size = size;
1427 dev->dbs = dev->bar + NVME_REG_DBS;
1428
1429 return 0;
1430 }
1431
1432 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1433 {
1434 int result;
1435 u32 aqa;
1436 struct nvme_queue *nvmeq;
1437
1438 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1439 if (result < 0)
1440 return result;
1441
1442 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1443 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1444
1445 if (dev->subsystem &&
1446 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1447 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1448
1449 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1450 if (result < 0)
1451 return result;
1452
1453 nvmeq = dev->queues[0];
1454 if (!nvmeq) {
1455 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1456 dev_to_node(dev->dev));
1457 if (!nvmeq)
1458 return -ENOMEM;
1459 }
1460
1461 aqa = nvmeq->q_depth - 1;
1462 aqa |= aqa << 16;
1463
1464 writel(aqa, dev->bar + NVME_REG_AQA);
1465 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1466 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1467
1468 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1469 if (result)
1470 return result;
1471
1472 nvmeq->cq_vector = 0;
1473 nvme_init_queue(nvmeq, 0);
1474 result = queue_request_irq(nvmeq);
1475 if (result) {
1476 nvmeq->cq_vector = -1;
1477 return result;
1478 }
1479
1480 return result;
1481 }
1482
1483 static int nvme_create_io_queues(struct nvme_dev *dev)
1484 {
1485 unsigned i, max;
1486 int ret = 0;
1487
1488 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1489 /* vector == qid - 1, match nvme_create_queue */
1490 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1491 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1492 ret = -ENOMEM;
1493 break;
1494 }
1495 }
1496
1497 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1498 for (i = dev->online_queues; i <= max; i++) {
1499 ret = nvme_create_queue(dev->queues[i], i);
1500 if (ret)
1501 break;
1502 }
1503
1504 /*
1505 * Ignore failing Create SQ/CQ commands, we can continue with less
1506 * than the desired aount of queues, and even a controller without
1507 * I/O queues an still be used to issue admin commands. This might
1508 * be useful to upgrade a buggy firmware for example.
1509 */
1510 return ret >= 0 ? 0 : ret;
1511 }
1512
1513 static ssize_t nvme_cmb_show(struct device *dev,
1514 struct device_attribute *attr,
1515 char *buf)
1516 {
1517 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1518
1519 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1520 ndev->cmbloc, ndev->cmbsz);
1521 }
1522 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1523
1524 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1525 {
1526 u64 szu, size, offset;
1527 resource_size_t bar_size;
1528 struct pci_dev *pdev = to_pci_dev(dev->dev);
1529 void __iomem *cmb;
1530 dma_addr_t dma_addr;
1531
1532 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1533 if (!(NVME_CMB_SZ(dev->cmbsz)))
1534 return NULL;
1535 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1536
1537 if (!use_cmb_sqes)
1538 return NULL;
1539
1540 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1541 size = szu * NVME_CMB_SZ(dev->cmbsz);
1542 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1543 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1544
1545 if (offset > bar_size)
1546 return NULL;
1547
1548 /*
1549 * Controllers may support a CMB size larger than their BAR,
1550 * for example, due to being behind a bridge. Reduce the CMB to
1551 * the reported size of the BAR
1552 */
1553 if (size > bar_size - offset)
1554 size = bar_size - offset;
1555
1556 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1557 cmb = ioremap_wc(dma_addr, size);
1558 if (!cmb)
1559 return NULL;
1560
1561 dev->cmb_dma_addr = dma_addr;
1562 dev->cmb_size = size;
1563 return cmb;
1564 }
1565
1566 static inline void nvme_release_cmb(struct nvme_dev *dev)
1567 {
1568 if (dev->cmb) {
1569 iounmap(dev->cmb);
1570 dev->cmb = NULL;
1571 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1572 &dev_attr_cmb.attr, NULL);
1573 dev->cmbsz = 0;
1574 }
1575 }
1576
1577 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1578 {
1579 u64 dma_addr = dev->host_mem_descs_dma;
1580 struct nvme_command c;
1581 int ret;
1582
1583 memset(&c, 0, sizeof(c));
1584 c.features.opcode = nvme_admin_set_features;
1585 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1586 c.features.dword11 = cpu_to_le32(bits);
1587 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1588 ilog2(dev->ctrl.page_size));
1589 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1590 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1591 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1592
1593 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1594 if (ret) {
1595 dev_warn(dev->ctrl.device,
1596 "failed to set host mem (err %d, flags %#x).\n",
1597 ret, bits);
1598 }
1599 return ret;
1600 }
1601
1602 static void nvme_free_host_mem(struct nvme_dev *dev)
1603 {
1604 int i;
1605
1606 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1607 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1608 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1609
1610 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1611 le64_to_cpu(desc->addr));
1612 }
1613
1614 kfree(dev->host_mem_desc_bufs);
1615 dev->host_mem_desc_bufs = NULL;
1616 dma_free_coherent(dev->dev,
1617 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1618 dev->host_mem_descs, dev->host_mem_descs_dma);
1619 dev->host_mem_descs = NULL;
1620 }
1621
1622 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1623 u32 chunk_size)
1624 {
1625 struct nvme_host_mem_buf_desc *descs;
1626 u32 max_entries, len;
1627 dma_addr_t descs_dma;
1628 int i = 0;
1629 void **bufs;
1630 u64 size = 0, tmp;
1631
1632 tmp = (preferred + chunk_size - 1);
1633 do_div(tmp, chunk_size);
1634 max_entries = tmp;
1635
1636 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1637 max_entries = dev->ctrl.hmmaxd;
1638
1639 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1640 &descs_dma, GFP_KERNEL);
1641 if (!descs)
1642 goto out;
1643
1644 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1645 if (!bufs)
1646 goto out_free_descs;
1647
1648 for (size = 0; size < preferred; size += len) {
1649 dma_addr_t dma_addr;
1650
1651 len = min_t(u64, chunk_size, preferred - size);
1652 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1653 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1654 if (!bufs[i])
1655 break;
1656
1657 descs[i].addr = cpu_to_le64(dma_addr);
1658 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1659 i++;
1660 }
1661
1662 if (!size)
1663 goto out_free_bufs;
1664
1665 dev->nr_host_mem_descs = i;
1666 dev->host_mem_size = size;
1667 dev->host_mem_descs = descs;
1668 dev->host_mem_descs_dma = descs_dma;
1669 dev->host_mem_desc_bufs = bufs;
1670 return 0;
1671
1672 out_free_bufs:
1673 while (--i >= 0) {
1674 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1675
1676 dma_free_coherent(dev->dev, size, bufs[i],
1677 le64_to_cpu(descs[i].addr));
1678 }
1679
1680 kfree(bufs);
1681 out_free_descs:
1682 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1683 descs_dma);
1684 out:
1685 dev->host_mem_descs = NULL;
1686 return -ENOMEM;
1687 }
1688
1689 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1690 {
1691 u32 chunk_size;
1692
1693 /* start big and work our way down */
1694 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1695 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1696 chunk_size /= 2) {
1697 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1698 if (!min || dev->host_mem_size >= min)
1699 return 0;
1700 nvme_free_host_mem(dev);
1701 }
1702 }
1703
1704 return -ENOMEM;
1705 }
1706
1707 static int nvme_setup_host_mem(struct nvme_dev *dev)
1708 {
1709 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1710 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1711 u64 min = (u64)dev->ctrl.hmmin * 4096;
1712 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1713 int ret = 0;
1714
1715 preferred = min(preferred, max);
1716 if (min > max) {
1717 dev_warn(dev->ctrl.device,
1718 "min host memory (%lld MiB) above limit (%d MiB).\n",
1719 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1720 nvme_free_host_mem(dev);
1721 return 0;
1722 }
1723
1724 /*
1725 * If we already have a buffer allocated check if we can reuse it.
1726 */
1727 if (dev->host_mem_descs) {
1728 if (dev->host_mem_size >= min)
1729 enable_bits |= NVME_HOST_MEM_RETURN;
1730 else
1731 nvme_free_host_mem(dev);
1732 }
1733
1734 if (!dev->host_mem_descs) {
1735 if (nvme_alloc_host_mem(dev, min, preferred)) {
1736 dev_warn(dev->ctrl.device,
1737 "failed to allocate host memory buffer.\n");
1738 return 0; /* controller must work without HMB */
1739 }
1740
1741 dev_info(dev->ctrl.device,
1742 "allocated %lld MiB host memory buffer.\n",
1743 dev->host_mem_size >> ilog2(SZ_1M));
1744 }
1745
1746 ret = nvme_set_host_mem(dev, enable_bits);
1747 if (ret)
1748 nvme_free_host_mem(dev);
1749 return ret;
1750 }
1751
1752 static int nvme_setup_io_queues(struct nvme_dev *dev)
1753 {
1754 struct nvme_queue *adminq = dev->queues[0];
1755 struct pci_dev *pdev = to_pci_dev(dev->dev);
1756 int result, nr_io_queues;
1757 unsigned long size;
1758
1759 nr_io_queues = num_present_cpus();
1760 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1761 if (result < 0)
1762 return result;
1763
1764 if (nr_io_queues == 0)
1765 return 0;
1766
1767 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1768 result = nvme_cmb_qdepth(dev, nr_io_queues,
1769 sizeof(struct nvme_command));
1770 if (result > 0)
1771 dev->q_depth = result;
1772 else
1773 nvme_release_cmb(dev);
1774 }
1775
1776 do {
1777 size = db_bar_size(dev, nr_io_queues);
1778 result = nvme_remap_bar(dev, size);
1779 if (!result)
1780 break;
1781 if (!--nr_io_queues)
1782 return -ENOMEM;
1783 } while (1);
1784 adminq->q_db = dev->dbs;
1785
1786 /* Deregister the admin queue's interrupt */
1787 pci_free_irq(pdev, 0, adminq);
1788
1789 /*
1790 * If we enable msix early due to not intx, disable it again before
1791 * setting up the full range we need.
1792 */
1793 pci_free_irq_vectors(pdev);
1794 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1795 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1796 if (nr_io_queues <= 0)
1797 return -EIO;
1798 dev->max_qid = nr_io_queues;
1799
1800 /*
1801 * Should investigate if there's a performance win from allocating
1802 * more queues than interrupt vectors; it might allow the submission
1803 * path to scale better, even if the receive path is limited by the
1804 * number of interrupts.
1805 */
1806
1807 result = queue_request_irq(adminq);
1808 if (result) {
1809 adminq->cq_vector = -1;
1810 return result;
1811 }
1812 return nvme_create_io_queues(dev);
1813 }
1814
1815 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1816 {
1817 struct nvme_queue *nvmeq = req->end_io_data;
1818
1819 blk_mq_free_request(req);
1820 complete(&nvmeq->dev->ioq_wait);
1821 }
1822
1823 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1824 {
1825 struct nvme_queue *nvmeq = req->end_io_data;
1826
1827 if (!error) {
1828 unsigned long flags;
1829
1830 /*
1831 * We might be called with the AQ q_lock held
1832 * and the I/O queue q_lock should always
1833 * nest inside the AQ one.
1834 */
1835 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1836 SINGLE_DEPTH_NESTING);
1837 nvme_process_cq(nvmeq);
1838 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1839 }
1840
1841 nvme_del_queue_end(req, error);
1842 }
1843
1844 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1845 {
1846 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1847 struct request *req;
1848 struct nvme_command cmd;
1849
1850 memset(&cmd, 0, sizeof(cmd));
1851 cmd.delete_queue.opcode = opcode;
1852 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1853
1854 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1855 if (IS_ERR(req))
1856 return PTR_ERR(req);
1857
1858 req->timeout = ADMIN_TIMEOUT;
1859 req->end_io_data = nvmeq;
1860
1861 blk_execute_rq_nowait(q, NULL, req, false,
1862 opcode == nvme_admin_delete_cq ?
1863 nvme_del_cq_end : nvme_del_queue_end);
1864 return 0;
1865 }
1866
1867 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1868 {
1869 int pass;
1870 unsigned long timeout;
1871 u8 opcode = nvme_admin_delete_sq;
1872
1873 for (pass = 0; pass < 2; pass++) {
1874 int sent = 0, i = queues;
1875
1876 reinit_completion(&dev->ioq_wait);
1877 retry:
1878 timeout = ADMIN_TIMEOUT;
1879 for (; i > 0; i--, sent++)
1880 if (nvme_delete_queue(dev->queues[i], opcode))
1881 break;
1882
1883 while (sent--) {
1884 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1885 if (timeout == 0)
1886 return;
1887 if (i)
1888 goto retry;
1889 }
1890 opcode = nvme_admin_delete_cq;
1891 }
1892 }
1893
1894 /*
1895 * Return: error value if an error occurred setting up the queues or calling
1896 * Identify Device. 0 if these succeeded, even if adding some of the
1897 * namespaces failed. At the moment, these failures are silent. TBD which
1898 * failures should be reported.
1899 */
1900 static int nvme_dev_add(struct nvme_dev *dev)
1901 {
1902 if (!dev->ctrl.tagset) {
1903 dev->tagset.ops = &nvme_mq_ops;
1904 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1905 dev->tagset.timeout = NVME_IO_TIMEOUT;
1906 dev->tagset.numa_node = dev_to_node(dev->dev);
1907 dev->tagset.queue_depth =
1908 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1909 dev->tagset.cmd_size = nvme_cmd_size(dev);
1910 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1911 dev->tagset.driver_data = dev;
1912
1913 if (blk_mq_alloc_tag_set(&dev->tagset))
1914 return 0;
1915 dev->ctrl.tagset = &dev->tagset;
1916
1917 nvme_dbbuf_set(dev);
1918 } else {
1919 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1920
1921 /* Free previously allocated queues that are no longer usable */
1922 nvme_free_queues(dev, dev->online_queues);
1923 }
1924
1925 return 0;
1926 }
1927
1928 static int nvme_pci_enable(struct nvme_dev *dev)
1929 {
1930 int result = -ENOMEM;
1931 struct pci_dev *pdev = to_pci_dev(dev->dev);
1932
1933 if (pci_enable_device_mem(pdev))
1934 return result;
1935
1936 pci_set_master(pdev);
1937
1938 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1939 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1940 goto disable;
1941
1942 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1943 result = -ENODEV;
1944 goto disable;
1945 }
1946
1947 /*
1948 * Some devices and/or platforms don't advertise or work with INTx
1949 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1950 * adjust this later.
1951 */
1952 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1953 if (result < 0)
1954 return result;
1955
1956 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1957
1958 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1959 io_queue_depth);
1960 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1961 dev->dbs = dev->bar + 4096;
1962
1963 /*
1964 * Temporary fix for the Apple controller found in the MacBook8,1 and
1965 * some MacBook7,1 to avoid controller resets and data loss.
1966 */
1967 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1968 dev->q_depth = 2;
1969 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1970 "set queue depth=%u to work around controller resets\n",
1971 dev->q_depth);
1972 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1973 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1974 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1975 dev->q_depth = 64;
1976 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1977 "set queue depth=%u\n", dev->q_depth);
1978 }
1979
1980 /*
1981 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1982 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1983 * has no name we can pass NULL as final argument to
1984 * sysfs_add_file_to_group.
1985 */
1986
1987 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1988 dev->cmb = nvme_map_cmb(dev);
1989 if (dev->cmb) {
1990 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1991 &dev_attr_cmb.attr, NULL))
1992 dev_warn(dev->ctrl.device,
1993 "failed to add sysfs attribute for CMB\n");
1994 }
1995 }
1996
1997 pci_enable_pcie_error_reporting(pdev);
1998 pci_save_state(pdev);
1999 return 0;
2000
2001 disable:
2002 pci_disable_device(pdev);
2003 return result;
2004 }
2005
2006 static void nvme_dev_unmap(struct nvme_dev *dev)
2007 {
2008 if (dev->bar)
2009 iounmap(dev->bar);
2010 pci_release_mem_regions(to_pci_dev(dev->dev));
2011 }
2012
2013 static void nvme_pci_disable(struct nvme_dev *dev)
2014 {
2015 struct pci_dev *pdev = to_pci_dev(dev->dev);
2016
2017 nvme_release_cmb(dev);
2018 pci_free_irq_vectors(pdev);
2019
2020 if (pci_is_enabled(pdev)) {
2021 pci_disable_pcie_error_reporting(pdev);
2022 pci_disable_device(pdev);
2023 }
2024 }
2025
2026 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2027 {
2028 int i, queues;
2029 bool dead = true;
2030 struct pci_dev *pdev = to_pci_dev(dev->dev);
2031
2032 mutex_lock(&dev->shutdown_lock);
2033 if (pci_is_enabled(pdev)) {
2034 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2035
2036 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2037 dev->ctrl.state == NVME_CTRL_RESETTING)
2038 nvme_start_freeze(&dev->ctrl);
2039 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2040 pdev->error_state != pci_channel_io_normal);
2041 }
2042
2043 /*
2044 * Give the controller a chance to complete all entered requests if
2045 * doing a safe shutdown.
2046 */
2047 if (!dead) {
2048 if (shutdown)
2049 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2050
2051 /*
2052 * If the controller is still alive tell it to stop using the
2053 * host memory buffer. In theory the shutdown / reset should
2054 * make sure that it doesn't access the host memoery anymore,
2055 * but I'd rather be safe than sorry..
2056 */
2057 if (dev->host_mem_descs)
2058 nvme_set_host_mem(dev, 0);
2059
2060 }
2061 nvme_stop_queues(&dev->ctrl);
2062
2063 queues = dev->online_queues - 1;
2064 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2065 nvme_suspend_queue(dev->queues[i]);
2066
2067 if (dead) {
2068 /* A device might become IO incapable very soon during
2069 * probe, before the admin queue is configured. Thus,
2070 * queue_count can be 0 here.
2071 */
2072 if (dev->ctrl.queue_count)
2073 nvme_suspend_queue(dev->queues[0]);
2074 } else {
2075 nvme_disable_io_queues(dev, queues);
2076 nvme_disable_admin_queue(dev, shutdown);
2077 }
2078 nvme_pci_disable(dev);
2079
2080 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2081 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2082
2083 /*
2084 * The driver will not be starting up queues again if shutting down so
2085 * must flush all entered requests to their failed completion to avoid
2086 * deadlocking blk-mq hot-cpu notifier.
2087 */
2088 if (shutdown)
2089 nvme_start_queues(&dev->ctrl);
2090 mutex_unlock(&dev->shutdown_lock);
2091 }
2092
2093 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094 {
2095 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2096 PAGE_SIZE, PAGE_SIZE, 0);
2097 if (!dev->prp_page_pool)
2098 return -ENOMEM;
2099
2100 /* Optimisation for I/Os between 4k and 128k */
2101 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2102 256, 256, 0);
2103 if (!dev->prp_small_pool) {
2104 dma_pool_destroy(dev->prp_page_pool);
2105 return -ENOMEM;
2106 }
2107 return 0;
2108 }
2109
2110 static void nvme_release_prp_pools(struct nvme_dev *dev)
2111 {
2112 dma_pool_destroy(dev->prp_page_pool);
2113 dma_pool_destroy(dev->prp_small_pool);
2114 }
2115
2116 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2117 {
2118 struct nvme_dev *dev = to_nvme_dev(ctrl);
2119
2120 nvme_dbbuf_dma_free(dev);
2121 put_device(dev->dev);
2122 if (dev->tagset.tags)
2123 blk_mq_free_tag_set(&dev->tagset);
2124 if (dev->ctrl.admin_q)
2125 blk_put_queue(dev->ctrl.admin_q);
2126 kfree(dev->queues);
2127 free_opal_dev(dev->ctrl.opal_dev);
2128 kfree(dev);
2129 }
2130
2131 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2132 {
2133 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2134
2135 kref_get(&dev->ctrl.kref);
2136 nvme_dev_disable(dev, false);
2137 if (!schedule_work(&dev->remove_work))
2138 nvme_put_ctrl(&dev->ctrl);
2139 }
2140
2141 static void nvme_reset_work(struct work_struct *work)
2142 {
2143 struct nvme_dev *dev =
2144 container_of(work, struct nvme_dev, ctrl.reset_work);
2145 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2146 int result = -ENODEV;
2147
2148 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2149 goto out;
2150
2151 /*
2152 * If we're called to reset a live controller first shut it down before
2153 * moving on.
2154 */
2155 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2156 nvme_dev_disable(dev, false);
2157
2158 result = nvme_pci_enable(dev);
2159 if (result)
2160 goto out;
2161
2162 result = nvme_pci_configure_admin_queue(dev);
2163 if (result)
2164 goto out;
2165
2166 result = nvme_alloc_admin_tags(dev);
2167 if (result)
2168 goto out;
2169
2170 result = nvme_init_identify(&dev->ctrl);
2171 if (result)
2172 goto out;
2173
2174 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2175 if (!dev->ctrl.opal_dev)
2176 dev->ctrl.opal_dev =
2177 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2178 else if (was_suspend)
2179 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2180 } else {
2181 free_opal_dev(dev->ctrl.opal_dev);
2182 dev->ctrl.opal_dev = NULL;
2183 }
2184
2185 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2186 result = nvme_dbbuf_dma_alloc(dev);
2187 if (result)
2188 dev_warn(dev->dev,
2189 "unable to allocate dma for dbbuf\n");
2190 }
2191
2192 if (dev->ctrl.hmpre) {
2193 result = nvme_setup_host_mem(dev);
2194 if (result < 0)
2195 goto out;
2196 }
2197
2198 result = nvme_setup_io_queues(dev);
2199 if (result)
2200 goto out;
2201
2202 /*
2203 * Keep the controller around but remove all namespaces if we don't have
2204 * any working I/O queue.
2205 */
2206 if (dev->online_queues < 2) {
2207 dev_warn(dev->ctrl.device, "IO queues not created\n");
2208 nvme_kill_queues(&dev->ctrl);
2209 nvme_remove_namespaces(&dev->ctrl);
2210 } else {
2211 nvme_start_queues(&dev->ctrl);
2212 nvme_wait_freeze(&dev->ctrl);
2213 nvme_dev_add(dev);
2214 nvme_unfreeze(&dev->ctrl);
2215 }
2216
2217 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2218 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2219 goto out;
2220 }
2221
2222 nvme_start_ctrl(&dev->ctrl);
2223 return;
2224
2225 out:
2226 nvme_remove_dead_ctrl(dev, result);
2227 }
2228
2229 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2230 {
2231 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2232 struct pci_dev *pdev = to_pci_dev(dev->dev);
2233
2234 nvme_kill_queues(&dev->ctrl);
2235 if (pci_get_drvdata(pdev))
2236 device_release_driver(&pdev->dev);
2237 nvme_put_ctrl(&dev->ctrl);
2238 }
2239
2240 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2241 {
2242 *val = readl(to_nvme_dev(ctrl)->bar + off);
2243 return 0;
2244 }
2245
2246 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2247 {
2248 writel(val, to_nvme_dev(ctrl)->bar + off);
2249 return 0;
2250 }
2251
2252 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2253 {
2254 *val = readq(to_nvme_dev(ctrl)->bar + off);
2255 return 0;
2256 }
2257
2258 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2259 .name = "pcie",
2260 .module = THIS_MODULE,
2261 .flags = NVME_F_METADATA_SUPPORTED,
2262 .reg_read32 = nvme_pci_reg_read32,
2263 .reg_write32 = nvme_pci_reg_write32,
2264 .reg_read64 = nvme_pci_reg_read64,
2265 .free_ctrl = nvme_pci_free_ctrl,
2266 .submit_async_event = nvme_pci_submit_async_event,
2267 };
2268
2269 static int nvme_dev_map(struct nvme_dev *dev)
2270 {
2271 struct pci_dev *pdev = to_pci_dev(dev->dev);
2272
2273 if (pci_request_mem_regions(pdev, "nvme"))
2274 return -ENODEV;
2275
2276 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2277 goto release;
2278
2279 return 0;
2280 release:
2281 pci_release_mem_regions(pdev);
2282 return -ENODEV;
2283 }
2284
2285 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2286 {
2287 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2288 /*
2289 * Several Samsung devices seem to drop off the PCIe bus
2290 * randomly when APST is on and uses the deepest sleep state.
2291 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2292 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2293 * 950 PRO 256GB", but it seems to be restricted to two Dell
2294 * laptops.
2295 */
2296 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2297 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2298 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2299 return NVME_QUIRK_NO_DEEPEST_PS;
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2306 {
2307 int node, result = -ENOMEM;
2308 struct nvme_dev *dev;
2309 unsigned long quirks = id->driver_data;
2310
2311 node = dev_to_node(&pdev->dev);
2312 if (node == NUMA_NO_NODE)
2313 set_dev_node(&pdev->dev, first_memory_node);
2314
2315 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2316 if (!dev)
2317 return -ENOMEM;
2318 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2319 GFP_KERNEL, node);
2320 if (!dev->queues)
2321 goto free;
2322
2323 dev->dev = get_device(&pdev->dev);
2324 pci_set_drvdata(pdev, dev);
2325
2326 result = nvme_dev_map(dev);
2327 if (result)
2328 goto put_pci;
2329
2330 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2331 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2332 mutex_init(&dev->shutdown_lock);
2333 init_completion(&dev->ioq_wait);
2334
2335 result = nvme_setup_prp_pools(dev);
2336 if (result)
2337 goto unmap;
2338
2339 quirks |= check_dell_samsung_bug(pdev);
2340
2341 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2342 quirks);
2343 if (result)
2344 goto release_pools;
2345
2346 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2347 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2348
2349 queue_work(nvme_wq, &dev->ctrl.reset_work);
2350 return 0;
2351
2352 release_pools:
2353 nvme_release_prp_pools(dev);
2354 unmap:
2355 nvme_dev_unmap(dev);
2356 put_pci:
2357 put_device(dev->dev);
2358 free:
2359 kfree(dev->queues);
2360 kfree(dev);
2361 return result;
2362 }
2363
2364 static void nvme_reset_prepare(struct pci_dev *pdev)
2365 {
2366 struct nvme_dev *dev = pci_get_drvdata(pdev);
2367 nvme_dev_disable(dev, false);
2368 }
2369
2370 static void nvme_reset_done(struct pci_dev *pdev)
2371 {
2372 struct nvme_dev *dev = pci_get_drvdata(pdev);
2373 nvme_reset_ctrl(&dev->ctrl);
2374 }
2375
2376 static void nvme_shutdown(struct pci_dev *pdev)
2377 {
2378 struct nvme_dev *dev = pci_get_drvdata(pdev);
2379 nvme_dev_disable(dev, true);
2380 }
2381
2382 /*
2383 * The driver's remove may be called on a device in a partially initialized
2384 * state. This function must not have any dependencies on the device state in
2385 * order to proceed.
2386 */
2387 static void nvme_remove(struct pci_dev *pdev)
2388 {
2389 struct nvme_dev *dev = pci_get_drvdata(pdev);
2390
2391 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2392
2393 cancel_work_sync(&dev->ctrl.reset_work);
2394 pci_set_drvdata(pdev, NULL);
2395
2396 if (!pci_device_is_present(pdev)) {
2397 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2398 nvme_dev_disable(dev, false);
2399 }
2400
2401 flush_work(&dev->ctrl.reset_work);
2402 nvme_stop_ctrl(&dev->ctrl);
2403 nvme_remove_namespaces(&dev->ctrl);
2404 nvme_dev_disable(dev, true);
2405 nvme_free_host_mem(dev);
2406 nvme_dev_remove_admin(dev);
2407 nvme_free_queues(dev, 0);
2408 nvme_uninit_ctrl(&dev->ctrl);
2409 nvme_release_prp_pools(dev);
2410 nvme_dev_unmap(dev);
2411 nvme_put_ctrl(&dev->ctrl);
2412 }
2413
2414 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2415 {
2416 int ret = 0;
2417
2418 if (numvfs == 0) {
2419 if (pci_vfs_assigned(pdev)) {
2420 dev_warn(&pdev->dev,
2421 "Cannot disable SR-IOV VFs while assigned\n");
2422 return -EPERM;
2423 }
2424 pci_disable_sriov(pdev);
2425 return 0;
2426 }
2427
2428 ret = pci_enable_sriov(pdev, numvfs);
2429 return ret ? ret : numvfs;
2430 }
2431
2432 #ifdef CONFIG_PM_SLEEP
2433 static int nvme_suspend(struct device *dev)
2434 {
2435 struct pci_dev *pdev = to_pci_dev(dev);
2436 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2437
2438 nvme_dev_disable(ndev, true);
2439 return 0;
2440 }
2441
2442 static int nvme_resume(struct device *dev)
2443 {
2444 struct pci_dev *pdev = to_pci_dev(dev);
2445 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2446
2447 nvme_reset_ctrl(&ndev->ctrl);
2448 return 0;
2449 }
2450 #endif
2451
2452 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2453
2454 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2455 pci_channel_state_t state)
2456 {
2457 struct nvme_dev *dev = pci_get_drvdata(pdev);
2458
2459 /*
2460 * A frozen channel requires a reset. When detected, this method will
2461 * shutdown the controller to quiesce. The controller will be restarted
2462 * after the slot reset through driver's slot_reset callback.
2463 */
2464 switch (state) {
2465 case pci_channel_io_normal:
2466 return PCI_ERS_RESULT_CAN_RECOVER;
2467 case pci_channel_io_frozen:
2468 dev_warn(dev->ctrl.device,
2469 "frozen state error detected, reset controller\n");
2470 nvme_dev_disable(dev, false);
2471 return PCI_ERS_RESULT_NEED_RESET;
2472 case pci_channel_io_perm_failure:
2473 dev_warn(dev->ctrl.device,
2474 "failure state error detected, request disconnect\n");
2475 return PCI_ERS_RESULT_DISCONNECT;
2476 }
2477 return PCI_ERS_RESULT_NEED_RESET;
2478 }
2479
2480 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2481 {
2482 struct nvme_dev *dev = pci_get_drvdata(pdev);
2483
2484 dev_info(dev->ctrl.device, "restart after slot reset\n");
2485 pci_restore_state(pdev);
2486 nvme_reset_ctrl(&dev->ctrl);
2487 return PCI_ERS_RESULT_RECOVERED;
2488 }
2489
2490 static void nvme_error_resume(struct pci_dev *pdev)
2491 {
2492 pci_cleanup_aer_uncorrect_error_status(pdev);
2493 }
2494
2495 static const struct pci_error_handlers nvme_err_handler = {
2496 .error_detected = nvme_error_detected,
2497 .slot_reset = nvme_slot_reset,
2498 .resume = nvme_error_resume,
2499 .reset_prepare = nvme_reset_prepare,
2500 .reset_done = nvme_reset_done,
2501 };
2502
2503 static const struct pci_device_id nvme_id_table[] = {
2504 { PCI_VDEVICE(INTEL, 0x0953),
2505 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2506 NVME_QUIRK_DEALLOCATE_ZEROES, },
2507 { PCI_VDEVICE(INTEL, 0x0a53),
2508 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2509 NVME_QUIRK_DEALLOCATE_ZEROES, },
2510 { PCI_VDEVICE(INTEL, 0x0a54),
2511 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2512 NVME_QUIRK_DEALLOCATE_ZEROES, },
2513 { PCI_VDEVICE(INTEL, 0x0a55),
2514 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2515 NVME_QUIRK_DEALLOCATE_ZEROES, },
2516 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2517 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2518 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2519 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2520 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2521 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2522 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2523 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2524 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2525 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2526 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2527 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2528 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2529 .driver_data = NVME_QUIRK_LIGHTNVM, },
2530 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2531 .driver_data = NVME_QUIRK_LIGHTNVM, },
2532 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2533 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2534 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2535 { 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2538
2539 static struct pci_driver nvme_driver = {
2540 .name = "nvme",
2541 .id_table = nvme_id_table,
2542 .probe = nvme_probe,
2543 .remove = nvme_remove,
2544 .shutdown = nvme_shutdown,
2545 .driver = {
2546 .pm = &nvme_dev_pm_ops,
2547 },
2548 .sriov_configure = nvme_pci_sriov_configure,
2549 .err_handler = &nvme_err_handler,
2550 };
2551
2552 static int __init nvme_init(void)
2553 {
2554 return pci_register_driver(&nvme_driver);
2555 }
2556
2557 static void __exit nvme_exit(void)
2558 {
2559 pci_unregister_driver(&nvme_driver);
2560 _nvme_check_size();
2561 }
2562
2563 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2564 MODULE_LICENSE("GPL");
2565 MODULE_VERSION("1.0");
2566 module_init(nvme_init);
2567 module_exit(nvme_exit);