]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvmem/core.c
Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / nvmem / core.c
1 /*
2 * nvmem framework core.
3 *
4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27
28 struct nvmem_device {
29 const char *name;
30 struct module *owner;
31 struct device dev;
32 int stride;
33 int word_size;
34 int ncells;
35 int id;
36 int users;
37 size_t size;
38 bool read_only;
39 int flags;
40 struct bin_attribute eeprom;
41 struct device *base_dev;
42 nvmem_reg_read_t reg_read;
43 nvmem_reg_write_t reg_write;
44 void *priv;
45 };
46
47 #define FLAG_COMPAT BIT(0)
48
49 struct nvmem_cell {
50 const char *name;
51 int offset;
52 int bytes;
53 int bit_offset;
54 int nbits;
55 struct nvmem_device *nvmem;
56 struct list_head node;
57 };
58
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 void *val, size_t bytes)
72 {
73 if (nvmem->reg_read)
74 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75
76 return -EINVAL;
77 }
78
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 void *val, size_t bytes)
81 {
82 if (nvmem->reg_write)
83 return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84
85 return -EINVAL;
86 }
87
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 struct bin_attribute *attr,
90 char *buf, loff_t pos, size_t count)
91 {
92 struct device *dev;
93 struct nvmem_device *nvmem;
94 int rc;
95
96 if (attr->private)
97 dev = attr->private;
98 else
99 dev = container_of(kobj, struct device, kobj);
100 nvmem = to_nvmem_device(dev);
101
102 /* Stop the user from reading */
103 if (pos >= nvmem->size)
104 return 0;
105
106 if (count < nvmem->word_size)
107 return -EINVAL;
108
109 if (pos + count > nvmem->size)
110 count = nvmem->size - pos;
111
112 count = round_down(count, nvmem->word_size);
113
114 rc = nvmem_reg_read(nvmem, pos, buf, count);
115
116 if (rc)
117 return rc;
118
119 return count;
120 }
121
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 struct bin_attribute *attr,
124 char *buf, loff_t pos, size_t count)
125 {
126 struct device *dev;
127 struct nvmem_device *nvmem;
128 int rc;
129
130 if (attr->private)
131 dev = attr->private;
132 else
133 dev = container_of(kobj, struct device, kobj);
134 nvmem = to_nvmem_device(dev);
135
136 /* Stop the user from writing */
137 if (pos >= nvmem->size)
138 return 0;
139
140 if (count < nvmem->word_size)
141 return -EINVAL;
142
143 if (pos + count > nvmem->size)
144 count = nvmem->size - pos;
145
146 count = round_down(count, nvmem->word_size);
147
148 rc = nvmem_reg_write(nvmem, pos, buf, count);
149
150 if (rc)
151 return rc;
152
153 return count;
154 }
155
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 .attr = {
159 .name = "nvmem",
160 .mode = S_IWUSR | S_IRUGO,
161 },
162 .read = bin_attr_nvmem_read,
163 .write = bin_attr_nvmem_write,
164 };
165
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 &bin_attr_rw_nvmem,
168 NULL,
169 };
170
171 static const struct attribute_group nvmem_bin_rw_group = {
172 .bin_attrs = nvmem_bin_rw_attributes,
173 };
174
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 &nvmem_bin_rw_group,
177 NULL,
178 };
179
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 .attr = {
183 .name = "nvmem",
184 .mode = S_IRUGO,
185 },
186 .read = bin_attr_nvmem_read,
187 };
188
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 &bin_attr_ro_nvmem,
191 NULL,
192 };
193
194 static const struct attribute_group nvmem_bin_ro_group = {
195 .bin_attrs = nvmem_bin_ro_attributes,
196 };
197
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 &nvmem_bin_ro_group,
200 NULL,
201 };
202
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 .attr = {
206 .name = "nvmem",
207 .mode = S_IWUSR | S_IRUSR,
208 },
209 .read = bin_attr_nvmem_read,
210 .write = bin_attr_nvmem_write,
211 };
212
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 &bin_attr_rw_root_nvmem,
215 NULL,
216 };
217
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 .bin_attrs = nvmem_bin_rw_root_attributes,
220 };
221
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 &nvmem_bin_rw_root_group,
224 NULL,
225 };
226
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 .attr = {
230 .name = "nvmem",
231 .mode = S_IRUSR,
232 },
233 .read = bin_attr_nvmem_read,
234 };
235
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 &bin_attr_ro_root_nvmem,
238 NULL,
239 };
240
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 .bin_attrs = nvmem_bin_ro_root_attributes,
243 };
244
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 &nvmem_bin_ro_root_group,
247 NULL,
248 };
249
250 static void nvmem_release(struct device *dev)
251 {
252 struct nvmem_device *nvmem = to_nvmem_device(dev);
253
254 ida_simple_remove(&nvmem_ida, nvmem->id);
255 kfree(nvmem);
256 }
257
258 static const struct device_type nvmem_provider_type = {
259 .release = nvmem_release,
260 };
261
262 static struct bus_type nvmem_bus_type = {
263 .name = "nvmem",
264 };
265
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 return dev->of_node == nvmem_np;
269 }
270
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 struct device *d;
274
275 if (!nvmem_np)
276 return NULL;
277
278 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279
280 if (!d)
281 return NULL;
282
283 return to_nvmem_device(d);
284 }
285
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 struct nvmem_cell *p;
289
290 list_for_each_entry(p, &nvmem_cells, node)
291 if (p && !strcmp(p->name, cell_id))
292 return p;
293
294 return NULL;
295 }
296
297 static void nvmem_cell_drop(struct nvmem_cell *cell)
298 {
299 mutex_lock(&nvmem_cells_mutex);
300 list_del(&cell->node);
301 mutex_unlock(&nvmem_cells_mutex);
302 kfree(cell);
303 }
304
305 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
306 {
307 struct nvmem_cell *cell;
308 struct list_head *p, *n;
309
310 list_for_each_safe(p, n, &nvmem_cells) {
311 cell = list_entry(p, struct nvmem_cell, node);
312 if (cell->nvmem == nvmem)
313 nvmem_cell_drop(cell);
314 }
315 }
316
317 static void nvmem_cell_add(struct nvmem_cell *cell)
318 {
319 mutex_lock(&nvmem_cells_mutex);
320 list_add_tail(&cell->node, &nvmem_cells);
321 mutex_unlock(&nvmem_cells_mutex);
322 }
323
324 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
325 const struct nvmem_cell_info *info,
326 struct nvmem_cell *cell)
327 {
328 cell->nvmem = nvmem;
329 cell->offset = info->offset;
330 cell->bytes = info->bytes;
331 cell->name = info->name;
332
333 cell->bit_offset = info->bit_offset;
334 cell->nbits = info->nbits;
335
336 if (cell->nbits)
337 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
338 BITS_PER_BYTE);
339
340 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
341 dev_err(&nvmem->dev,
342 "cell %s unaligned to nvmem stride %d\n",
343 cell->name, nvmem->stride);
344 return -EINVAL;
345 }
346
347 return 0;
348 }
349
350 static int nvmem_add_cells(struct nvmem_device *nvmem,
351 const struct nvmem_config *cfg)
352 {
353 struct nvmem_cell **cells;
354 const struct nvmem_cell_info *info = cfg->cells;
355 int i, rval;
356
357 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
358 if (!cells)
359 return -ENOMEM;
360
361 for (i = 0; i < cfg->ncells; i++) {
362 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
363 if (!cells[i]) {
364 rval = -ENOMEM;
365 goto err;
366 }
367
368 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
369 if (rval) {
370 kfree(cells[i]);
371 goto err;
372 }
373
374 nvmem_cell_add(cells[i]);
375 }
376
377 nvmem->ncells = cfg->ncells;
378 /* remove tmp array */
379 kfree(cells);
380
381 return 0;
382 err:
383 while (i--)
384 nvmem_cell_drop(cells[i]);
385
386 kfree(cells);
387
388 return rval;
389 }
390
391 /*
392 * nvmem_setup_compat() - Create an additional binary entry in
393 * drivers sys directory, to be backwards compatible with the older
394 * drivers/misc/eeprom drivers.
395 */
396 static int nvmem_setup_compat(struct nvmem_device *nvmem,
397 const struct nvmem_config *config)
398 {
399 int rval;
400
401 if (!config->base_dev)
402 return -EINVAL;
403
404 if (nvmem->read_only)
405 nvmem->eeprom = bin_attr_ro_root_nvmem;
406 else
407 nvmem->eeprom = bin_attr_rw_root_nvmem;
408 nvmem->eeprom.attr.name = "eeprom";
409 nvmem->eeprom.size = nvmem->size;
410 #ifdef CONFIG_DEBUG_LOCK_ALLOC
411 nvmem->eeprom.attr.key = &eeprom_lock_key;
412 #endif
413 nvmem->eeprom.private = &nvmem->dev;
414 nvmem->base_dev = config->base_dev;
415
416 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
417 if (rval) {
418 dev_err(&nvmem->dev,
419 "Failed to create eeprom binary file %d\n", rval);
420 return rval;
421 }
422
423 nvmem->flags |= FLAG_COMPAT;
424
425 return 0;
426 }
427
428 /**
429 * nvmem_register() - Register a nvmem device for given nvmem_config.
430 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
431 *
432 * @config: nvmem device configuration with which nvmem device is created.
433 *
434 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
435 * on success.
436 */
437
438 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
439 {
440 struct nvmem_device *nvmem;
441 struct device_node *np;
442 int rval;
443
444 if (!config->dev)
445 return ERR_PTR(-EINVAL);
446
447 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
448 if (!nvmem)
449 return ERR_PTR(-ENOMEM);
450
451 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
452 if (rval < 0) {
453 kfree(nvmem);
454 return ERR_PTR(rval);
455 }
456
457 nvmem->id = rval;
458 nvmem->owner = config->owner;
459 nvmem->stride = config->stride;
460 nvmem->word_size = config->word_size;
461 nvmem->size = config->size;
462 nvmem->dev.type = &nvmem_provider_type;
463 nvmem->dev.bus = &nvmem_bus_type;
464 nvmem->dev.parent = config->dev;
465 nvmem->priv = config->priv;
466 nvmem->reg_read = config->reg_read;
467 nvmem->reg_write = config->reg_write;
468 np = config->dev->of_node;
469 nvmem->dev.of_node = np;
470 dev_set_name(&nvmem->dev, "%s%d",
471 config->name ? : "nvmem", config->id);
472
473 nvmem->read_only = of_property_read_bool(np, "read-only") |
474 config->read_only;
475
476 if (config->root_only)
477 nvmem->dev.groups = nvmem->read_only ?
478 nvmem_ro_root_dev_groups :
479 nvmem_rw_root_dev_groups;
480 else
481 nvmem->dev.groups = nvmem->read_only ?
482 nvmem_ro_dev_groups :
483 nvmem_rw_dev_groups;
484
485 device_initialize(&nvmem->dev);
486
487 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
488
489 rval = device_add(&nvmem->dev);
490 if (rval)
491 goto out;
492
493 if (config->compat) {
494 rval = nvmem_setup_compat(nvmem, config);
495 if (rval)
496 goto out;
497 }
498
499 if (config->cells)
500 nvmem_add_cells(nvmem, config);
501
502 return nvmem;
503 out:
504 ida_simple_remove(&nvmem_ida, nvmem->id);
505 kfree(nvmem);
506 return ERR_PTR(rval);
507 }
508 EXPORT_SYMBOL_GPL(nvmem_register);
509
510 /**
511 * nvmem_unregister() - Unregister previously registered nvmem device
512 *
513 * @nvmem: Pointer to previously registered nvmem device.
514 *
515 * Return: Will be an negative on error or a zero on success.
516 */
517 int nvmem_unregister(struct nvmem_device *nvmem)
518 {
519 mutex_lock(&nvmem_mutex);
520 if (nvmem->users) {
521 mutex_unlock(&nvmem_mutex);
522 return -EBUSY;
523 }
524 mutex_unlock(&nvmem_mutex);
525
526 if (nvmem->flags & FLAG_COMPAT)
527 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
528
529 nvmem_device_remove_all_cells(nvmem);
530 device_del(&nvmem->dev);
531
532 return 0;
533 }
534 EXPORT_SYMBOL_GPL(nvmem_unregister);
535
536 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
537 struct nvmem_cell **cellp,
538 const char *cell_id)
539 {
540 struct nvmem_device *nvmem = NULL;
541
542 mutex_lock(&nvmem_mutex);
543
544 if (np) {
545 nvmem = of_nvmem_find(np);
546 if (!nvmem) {
547 mutex_unlock(&nvmem_mutex);
548 return ERR_PTR(-EPROBE_DEFER);
549 }
550 } else {
551 struct nvmem_cell *cell = nvmem_find_cell(cell_id);
552
553 if (cell) {
554 nvmem = cell->nvmem;
555 *cellp = cell;
556 }
557
558 if (!nvmem) {
559 mutex_unlock(&nvmem_mutex);
560 return ERR_PTR(-ENOENT);
561 }
562 }
563
564 nvmem->users++;
565 mutex_unlock(&nvmem_mutex);
566
567 if (!try_module_get(nvmem->owner)) {
568 dev_err(&nvmem->dev,
569 "could not increase module refcount for cell %s\n",
570 nvmem->name);
571
572 mutex_lock(&nvmem_mutex);
573 nvmem->users--;
574 mutex_unlock(&nvmem_mutex);
575
576 return ERR_PTR(-EINVAL);
577 }
578
579 return nvmem;
580 }
581
582 static void __nvmem_device_put(struct nvmem_device *nvmem)
583 {
584 module_put(nvmem->owner);
585 mutex_lock(&nvmem_mutex);
586 nvmem->users--;
587 mutex_unlock(&nvmem_mutex);
588 }
589
590 static int nvmem_match(struct device *dev, void *data)
591 {
592 return !strcmp(dev_name(dev), data);
593 }
594
595 static struct nvmem_device *nvmem_find(const char *name)
596 {
597 struct device *d;
598
599 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
600
601 if (!d)
602 return NULL;
603
604 return to_nvmem_device(d);
605 }
606
607 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
608 /**
609 * of_nvmem_device_get() - Get nvmem device from a given id
610 *
611 * @np: Device tree node that uses the nvmem device.
612 * @id: nvmem name from nvmem-names property.
613 *
614 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
615 * on success.
616 */
617 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
618 {
619
620 struct device_node *nvmem_np;
621 int index;
622
623 index = of_property_match_string(np, "nvmem-names", id);
624
625 nvmem_np = of_parse_phandle(np, "nvmem", index);
626 if (!nvmem_np)
627 return ERR_PTR(-EINVAL);
628
629 return __nvmem_device_get(nvmem_np, NULL, NULL);
630 }
631 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
632 #endif
633
634 /**
635 * nvmem_device_get() - Get nvmem device from a given id
636 *
637 * @dev: Device that uses the nvmem device.
638 * @dev_name: name of the requested nvmem device.
639 *
640 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
641 * on success.
642 */
643 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
644 {
645 if (dev->of_node) { /* try dt first */
646 struct nvmem_device *nvmem;
647
648 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
649
650 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
651 return nvmem;
652
653 }
654
655 return nvmem_find(dev_name);
656 }
657 EXPORT_SYMBOL_GPL(nvmem_device_get);
658
659 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
660 {
661 struct nvmem_device **nvmem = res;
662
663 if (WARN_ON(!nvmem || !*nvmem))
664 return 0;
665
666 return *nvmem == data;
667 }
668
669 static void devm_nvmem_device_release(struct device *dev, void *res)
670 {
671 nvmem_device_put(*(struct nvmem_device **)res);
672 }
673
674 /**
675 * devm_nvmem_device_put() - put alredy got nvmem device
676 *
677 * @dev: Device that uses the nvmem device.
678 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
679 * that needs to be released.
680 */
681 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
682 {
683 int ret;
684
685 ret = devres_release(dev, devm_nvmem_device_release,
686 devm_nvmem_device_match, nvmem);
687
688 WARN_ON(ret);
689 }
690 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
691
692 /**
693 * nvmem_device_put() - put alredy got nvmem device
694 *
695 * @nvmem: pointer to nvmem device that needs to be released.
696 */
697 void nvmem_device_put(struct nvmem_device *nvmem)
698 {
699 __nvmem_device_put(nvmem);
700 }
701 EXPORT_SYMBOL_GPL(nvmem_device_put);
702
703 /**
704 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
705 *
706 * @dev: Device that requests the nvmem device.
707 * @id: name id for the requested nvmem device.
708 *
709 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
710 * on success. The nvmem_cell will be freed by the automatically once the
711 * device is freed.
712 */
713 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
714 {
715 struct nvmem_device **ptr, *nvmem;
716
717 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
718 if (!ptr)
719 return ERR_PTR(-ENOMEM);
720
721 nvmem = nvmem_device_get(dev, id);
722 if (!IS_ERR(nvmem)) {
723 *ptr = nvmem;
724 devres_add(dev, ptr);
725 } else {
726 devres_free(ptr);
727 }
728
729 return nvmem;
730 }
731 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
732
733 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
734 {
735 struct nvmem_cell *cell = NULL;
736 struct nvmem_device *nvmem;
737
738 nvmem = __nvmem_device_get(NULL, &cell, cell_id);
739 if (IS_ERR(nvmem))
740 return ERR_CAST(nvmem);
741
742 return cell;
743 }
744
745 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
746 /**
747 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
748 *
749 * @np: Device tree node that uses the nvmem cell.
750 * @name: nvmem cell name from nvmem-cell-names property, or NULL
751 * for the cell at index 0 (the lone cell with no accompanying
752 * nvmem-cell-names property).
753 *
754 * Return: Will be an ERR_PTR() on error or a valid pointer
755 * to a struct nvmem_cell. The nvmem_cell will be freed by the
756 * nvmem_cell_put().
757 */
758 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
759 const char *name)
760 {
761 struct device_node *cell_np, *nvmem_np;
762 struct nvmem_cell *cell;
763 struct nvmem_device *nvmem;
764 const __be32 *addr;
765 int rval, len;
766 int index = 0;
767
768 /* if cell name exists, find index to the name */
769 if (name)
770 index = of_property_match_string(np, "nvmem-cell-names", name);
771
772 cell_np = of_parse_phandle(np, "nvmem-cells", index);
773 if (!cell_np)
774 return ERR_PTR(-EINVAL);
775
776 nvmem_np = of_get_next_parent(cell_np);
777 if (!nvmem_np)
778 return ERR_PTR(-EINVAL);
779
780 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
781 if (IS_ERR(nvmem))
782 return ERR_CAST(nvmem);
783
784 addr = of_get_property(cell_np, "reg", &len);
785 if (!addr || (len < 2 * sizeof(u32))) {
786 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
787 cell_np->full_name);
788 rval = -EINVAL;
789 goto err_mem;
790 }
791
792 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
793 if (!cell) {
794 rval = -ENOMEM;
795 goto err_mem;
796 }
797
798 cell->nvmem = nvmem;
799 cell->offset = be32_to_cpup(addr++);
800 cell->bytes = be32_to_cpup(addr);
801 cell->name = cell_np->name;
802
803 addr = of_get_property(cell_np, "bits", &len);
804 if (addr && len == (2 * sizeof(u32))) {
805 cell->bit_offset = be32_to_cpup(addr++);
806 cell->nbits = be32_to_cpup(addr);
807 }
808
809 if (cell->nbits)
810 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
811 BITS_PER_BYTE);
812
813 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
814 dev_err(&nvmem->dev,
815 "cell %s unaligned to nvmem stride %d\n",
816 cell->name, nvmem->stride);
817 rval = -EINVAL;
818 goto err_sanity;
819 }
820
821 nvmem_cell_add(cell);
822
823 return cell;
824
825 err_sanity:
826 kfree(cell);
827
828 err_mem:
829 __nvmem_device_put(nvmem);
830
831 return ERR_PTR(rval);
832 }
833 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
834 #endif
835
836 /**
837 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
838 *
839 * @dev: Device that requests the nvmem cell.
840 * @cell_id: nvmem cell name to get.
841 *
842 * Return: Will be an ERR_PTR() on error or a valid pointer
843 * to a struct nvmem_cell. The nvmem_cell will be freed by the
844 * nvmem_cell_put().
845 */
846 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
847 {
848 struct nvmem_cell *cell;
849
850 if (dev->of_node) { /* try dt first */
851 cell = of_nvmem_cell_get(dev->of_node, cell_id);
852 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
853 return cell;
854 }
855
856 return nvmem_cell_get_from_list(cell_id);
857 }
858 EXPORT_SYMBOL_GPL(nvmem_cell_get);
859
860 static void devm_nvmem_cell_release(struct device *dev, void *res)
861 {
862 nvmem_cell_put(*(struct nvmem_cell **)res);
863 }
864
865 /**
866 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
867 *
868 * @dev: Device that requests the nvmem cell.
869 * @id: nvmem cell name id to get.
870 *
871 * Return: Will be an ERR_PTR() on error or a valid pointer
872 * to a struct nvmem_cell. The nvmem_cell will be freed by the
873 * automatically once the device is freed.
874 */
875 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
876 {
877 struct nvmem_cell **ptr, *cell;
878
879 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
880 if (!ptr)
881 return ERR_PTR(-ENOMEM);
882
883 cell = nvmem_cell_get(dev, id);
884 if (!IS_ERR(cell)) {
885 *ptr = cell;
886 devres_add(dev, ptr);
887 } else {
888 devres_free(ptr);
889 }
890
891 return cell;
892 }
893 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
894
895 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
896 {
897 struct nvmem_cell **c = res;
898
899 if (WARN_ON(!c || !*c))
900 return 0;
901
902 return *c == data;
903 }
904
905 /**
906 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
907 * from devm_nvmem_cell_get.
908 *
909 * @dev: Device that requests the nvmem cell.
910 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
911 */
912 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
913 {
914 int ret;
915
916 ret = devres_release(dev, devm_nvmem_cell_release,
917 devm_nvmem_cell_match, cell);
918
919 WARN_ON(ret);
920 }
921 EXPORT_SYMBOL(devm_nvmem_cell_put);
922
923 /**
924 * nvmem_cell_put() - Release previously allocated nvmem cell.
925 *
926 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
927 */
928 void nvmem_cell_put(struct nvmem_cell *cell)
929 {
930 struct nvmem_device *nvmem = cell->nvmem;
931
932 __nvmem_device_put(nvmem);
933 nvmem_cell_drop(cell);
934 }
935 EXPORT_SYMBOL_GPL(nvmem_cell_put);
936
937 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
938 void *buf)
939 {
940 u8 *p, *b;
941 int i, bit_offset = cell->bit_offset;
942
943 p = b = buf;
944 if (bit_offset) {
945 /* First shift */
946 *b++ >>= bit_offset;
947
948 /* setup rest of the bytes if any */
949 for (i = 1; i < cell->bytes; i++) {
950 /* Get bits from next byte and shift them towards msb */
951 *p |= *b << (BITS_PER_BYTE - bit_offset);
952
953 p = b;
954 *b++ >>= bit_offset;
955 }
956
957 /* result fits in less bytes */
958 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
959 *p-- = 0;
960 }
961 /* clear msb bits if any leftover in the last byte */
962 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
963 }
964
965 static int __nvmem_cell_read(struct nvmem_device *nvmem,
966 struct nvmem_cell *cell,
967 void *buf, size_t *len)
968 {
969 int rc;
970
971 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
972
973 if (rc)
974 return rc;
975
976 /* shift bits in-place */
977 if (cell->bit_offset || cell->nbits)
978 nvmem_shift_read_buffer_in_place(cell, buf);
979
980 if (len)
981 *len = cell->bytes;
982
983 return 0;
984 }
985
986 /**
987 * nvmem_cell_read() - Read a given nvmem cell
988 *
989 * @cell: nvmem cell to be read.
990 * @len: pointer to length of cell which will be populated on successful read;
991 * can be NULL.
992 *
993 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
994 * buffer should be freed by the consumer with a kfree().
995 */
996 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
997 {
998 struct nvmem_device *nvmem = cell->nvmem;
999 u8 *buf;
1000 int rc;
1001
1002 if (!nvmem)
1003 return ERR_PTR(-EINVAL);
1004
1005 buf = kzalloc(cell->bytes, GFP_KERNEL);
1006 if (!buf)
1007 return ERR_PTR(-ENOMEM);
1008
1009 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1010 if (rc) {
1011 kfree(buf);
1012 return ERR_PTR(rc);
1013 }
1014
1015 return buf;
1016 }
1017 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1018
1019 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1020 u8 *_buf, int len)
1021 {
1022 struct nvmem_device *nvmem = cell->nvmem;
1023 int i, rc, nbits, bit_offset = cell->bit_offset;
1024 u8 v, *p, *buf, *b, pbyte, pbits;
1025
1026 nbits = cell->nbits;
1027 buf = kzalloc(cell->bytes, GFP_KERNEL);
1028 if (!buf)
1029 return ERR_PTR(-ENOMEM);
1030
1031 memcpy(buf, _buf, len);
1032 p = b = buf;
1033
1034 if (bit_offset) {
1035 pbyte = *b;
1036 *b <<= bit_offset;
1037
1038 /* setup the first byte with lsb bits from nvmem */
1039 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1040 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1041
1042 /* setup rest of the byte if any */
1043 for (i = 1; i < cell->bytes; i++) {
1044 /* Get last byte bits and shift them towards lsb */
1045 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1046 pbyte = *b;
1047 p = b;
1048 *b <<= bit_offset;
1049 *b++ |= pbits;
1050 }
1051 }
1052
1053 /* if it's not end on byte boundary */
1054 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1055 /* setup the last byte with msb bits from nvmem */
1056 rc = nvmem_reg_read(nvmem,
1057 cell->offset + cell->bytes - 1, &v, 1);
1058 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1059
1060 }
1061
1062 return buf;
1063 }
1064
1065 /**
1066 * nvmem_cell_write() - Write to a given nvmem cell
1067 *
1068 * @cell: nvmem cell to be written.
1069 * @buf: Buffer to be written.
1070 * @len: length of buffer to be written to nvmem cell.
1071 *
1072 * Return: length of bytes written or negative on failure.
1073 */
1074 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1075 {
1076 struct nvmem_device *nvmem = cell->nvmem;
1077 int rc;
1078
1079 if (!nvmem || nvmem->read_only ||
1080 (cell->bit_offset == 0 && len != cell->bytes))
1081 return -EINVAL;
1082
1083 if (cell->bit_offset || cell->nbits) {
1084 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1085 if (IS_ERR(buf))
1086 return PTR_ERR(buf);
1087 }
1088
1089 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1090
1091 /* free the tmp buffer */
1092 if (cell->bit_offset || cell->nbits)
1093 kfree(buf);
1094
1095 if (rc)
1096 return rc;
1097
1098 return len;
1099 }
1100 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1101
1102 /**
1103 * nvmem_device_cell_read() - Read a given nvmem device and cell
1104 *
1105 * @nvmem: nvmem device to read from.
1106 * @info: nvmem cell info to be read.
1107 * @buf: buffer pointer which will be populated on successful read.
1108 *
1109 * Return: length of successful bytes read on success and negative
1110 * error code on error.
1111 */
1112 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1113 struct nvmem_cell_info *info, void *buf)
1114 {
1115 struct nvmem_cell cell;
1116 int rc;
1117 ssize_t len;
1118
1119 if (!nvmem)
1120 return -EINVAL;
1121
1122 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1123 if (rc)
1124 return rc;
1125
1126 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1127 if (rc)
1128 return rc;
1129
1130 return len;
1131 }
1132 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1133
1134 /**
1135 * nvmem_device_cell_write() - Write cell to a given nvmem device
1136 *
1137 * @nvmem: nvmem device to be written to.
1138 * @info: nvmem cell info to be written.
1139 * @buf: buffer to be written to cell.
1140 *
1141 * Return: length of bytes written or negative error code on failure.
1142 * */
1143 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1144 struct nvmem_cell_info *info, void *buf)
1145 {
1146 struct nvmem_cell cell;
1147 int rc;
1148
1149 if (!nvmem)
1150 return -EINVAL;
1151
1152 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1153 if (rc)
1154 return rc;
1155
1156 return nvmem_cell_write(&cell, buf, cell.bytes);
1157 }
1158 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1159
1160 /**
1161 * nvmem_device_read() - Read from a given nvmem device
1162 *
1163 * @nvmem: nvmem device to read from.
1164 * @offset: offset in nvmem device.
1165 * @bytes: number of bytes to read.
1166 * @buf: buffer pointer which will be populated on successful read.
1167 *
1168 * Return: length of successful bytes read on success and negative
1169 * error code on error.
1170 */
1171 int nvmem_device_read(struct nvmem_device *nvmem,
1172 unsigned int offset,
1173 size_t bytes, void *buf)
1174 {
1175 int rc;
1176
1177 if (!nvmem)
1178 return -EINVAL;
1179
1180 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1181
1182 if (rc)
1183 return rc;
1184
1185 return bytes;
1186 }
1187 EXPORT_SYMBOL_GPL(nvmem_device_read);
1188
1189 /**
1190 * nvmem_device_write() - Write cell to a given nvmem device
1191 *
1192 * @nvmem: nvmem device to be written to.
1193 * @offset: offset in nvmem device.
1194 * @bytes: number of bytes to write.
1195 * @buf: buffer to be written.
1196 *
1197 * Return: length of bytes written or negative error code on failure.
1198 * */
1199 int nvmem_device_write(struct nvmem_device *nvmem,
1200 unsigned int offset,
1201 size_t bytes, void *buf)
1202 {
1203 int rc;
1204
1205 if (!nvmem)
1206 return -EINVAL;
1207
1208 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1209
1210 if (rc)
1211 return rc;
1212
1213
1214 return bytes;
1215 }
1216 EXPORT_SYMBOL_GPL(nvmem_device_write);
1217
1218 static int __init nvmem_init(void)
1219 {
1220 return bus_register(&nvmem_bus_type);
1221 }
1222
1223 static void __exit nvmem_exit(void)
1224 {
1225 bus_unregister(&nvmem_bus_type);
1226 }
1227
1228 subsys_initcall(nvmem_init);
1229 module_exit(nvmem_exit);
1230
1231 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1232 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1233 MODULE_DESCRIPTION("nvmem Driver Core");
1234 MODULE_LICENSE("GPL v2");