]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/of/base.c
Merge tag 'drm-fixes-for-v4.12-rc1' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#address-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #address-cells property for the root node */
73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_addr_cells);
76
77 int of_n_size_cells(struct device_node *np)
78 {
79 const __be32 *ip;
80
81 do {
82 if (np->parent)
83 np = np->parent;
84 ip = of_get_property(np, "#size-cells", NULL);
85 if (ip)
86 return be32_to_cpup(ip);
87 } while (np->parent);
88 /* No #size-cells property for the root node */
89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 }
91 EXPORT_SYMBOL(of_n_size_cells);
92
93 #ifdef CONFIG_NUMA
94 int __weak of_node_to_nid(struct device_node *np)
95 {
96 return NUMA_NO_NODE;
97 }
98 #endif
99
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
102 {
103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 }
105 #endif /* CONFIG_OF_DYNAMIC */
106
107 struct kobj_type of_node_ktype = {
108 .release = of_node_release,
109 };
110
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr, char *buf,
113 loff_t offset, size_t count)
114 {
115 struct property *pp = container_of(bin_attr, struct property, attr);
116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
117 }
118
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 {
122 const char *name = orig_name;
123 struct kernfs_node *kn;
124 int i = 0;
125
126 /* don't be a hero. After 16 tries give up */
127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
128 sysfs_put(kn);
129 if (name != orig_name)
130 kfree(name);
131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
132 }
133
134 if (name == orig_name) {
135 name = kstrdup(orig_name, GFP_KERNEL);
136 } else {
137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 kobject_name(kobj), name);
139 }
140 return name;
141 }
142
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 {
145 int rc;
146
147 /* Important: Don't leak passwords */
148 bool secure = strncmp(pp->name, "security-", 9) == 0;
149
150 if (!IS_ENABLED(CONFIG_SYSFS))
151 return 0;
152
153 if (!of_kset || !of_node_is_attached(np))
154 return 0;
155
156 sysfs_bin_attr_init(&pp->attr);
157 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
159 pp->attr.size = secure ? 0 : pp->length;
160 pp->attr.read = of_node_property_read;
161
162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
164 return rc;
165 }
166
167 int __of_attach_node_sysfs(struct device_node *np)
168 {
169 const char *name;
170 struct kobject *parent;
171 struct property *pp;
172 int rc;
173
174 if (!IS_ENABLED(CONFIG_SYSFS))
175 return 0;
176
177 if (!of_kset)
178 return 0;
179
180 np->kobj.kset = of_kset;
181 if (!np->parent) {
182 /* Nodes without parents are new top level trees */
183 name = safe_name(&of_kset->kobj, "base");
184 parent = NULL;
185 } else {
186 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 parent = &np->parent->kobj;
188 }
189 if (!name)
190 return -ENOMEM;
191 rc = kobject_add(&np->kobj, parent, "%s", name);
192 kfree(name);
193 if (rc)
194 return rc;
195
196 for_each_property_of_node(np, pp)
197 __of_add_property_sysfs(np, pp);
198
199 return 0;
200 }
201
202 void __init of_core_init(void)
203 {
204 struct device_node *np;
205
206 /* Create the kset, and register existing nodes */
207 mutex_lock(&of_mutex);
208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
209 if (!of_kset) {
210 mutex_unlock(&of_mutex);
211 pr_err("failed to register existing nodes\n");
212 return;
213 }
214 for_each_of_allnodes(np)
215 __of_attach_node_sysfs(np);
216 mutex_unlock(&of_mutex);
217
218 /* Symlink in /proc as required by userspace ABI */
219 if (of_root)
220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
221 }
222
223 static struct property *__of_find_property(const struct device_node *np,
224 const char *name, int *lenp)
225 {
226 struct property *pp;
227
228 if (!np)
229 return NULL;
230
231 for (pp = np->properties; pp; pp = pp->next) {
232 if (of_prop_cmp(pp->name, name) == 0) {
233 if (lenp)
234 *lenp = pp->length;
235 break;
236 }
237 }
238
239 return pp;
240 }
241
242 struct property *of_find_property(const struct device_node *np,
243 const char *name,
244 int *lenp)
245 {
246 struct property *pp;
247 unsigned long flags;
248
249 raw_spin_lock_irqsave(&devtree_lock, flags);
250 pp = __of_find_property(np, name, lenp);
251 raw_spin_unlock_irqrestore(&devtree_lock, flags);
252
253 return pp;
254 }
255 EXPORT_SYMBOL(of_find_property);
256
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
258 {
259 struct device_node *np;
260 if (!prev) {
261 np = of_root;
262 } else if (prev->child) {
263 np = prev->child;
264 } else {
265 /* Walk back up looking for a sibling, or the end of the structure */
266 np = prev;
267 while (np->parent && !np->sibling)
268 np = np->parent;
269 np = np->sibling; /* Might be null at the end of the tree */
270 }
271 return np;
272 }
273
274 /**
275 * of_find_all_nodes - Get next node in global list
276 * @prev: Previous node or NULL to start iteration
277 * of_node_put() will be called on it
278 *
279 * Returns a node pointer with refcount incremented, use
280 * of_node_put() on it when done.
281 */
282 struct device_node *of_find_all_nodes(struct device_node *prev)
283 {
284 struct device_node *np;
285 unsigned long flags;
286
287 raw_spin_lock_irqsave(&devtree_lock, flags);
288 np = __of_find_all_nodes(prev);
289 of_node_get(np);
290 of_node_put(prev);
291 raw_spin_unlock_irqrestore(&devtree_lock, flags);
292 return np;
293 }
294 EXPORT_SYMBOL(of_find_all_nodes);
295
296 /*
297 * Find a property with a given name for a given node
298 * and return the value.
299 */
300 const void *__of_get_property(const struct device_node *np,
301 const char *name, int *lenp)
302 {
303 struct property *pp = __of_find_property(np, name, lenp);
304
305 return pp ? pp->value : NULL;
306 }
307
308 /*
309 * Find a property with a given name for a given node
310 * and return the value.
311 */
312 const void *of_get_property(const struct device_node *np, const char *name,
313 int *lenp)
314 {
315 struct property *pp = of_find_property(np, name, lenp);
316
317 return pp ? pp->value : NULL;
318 }
319 EXPORT_SYMBOL(of_get_property);
320
321 /*
322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
323 *
324 * @cpu: logical cpu index of a core/thread
325 * @phys_id: physical identifier of a core/thread
326 *
327 * CPU logical to physical index mapping is architecture specific.
328 * However this __weak function provides a default match of physical
329 * id to logical cpu index. phys_id provided here is usually values read
330 * from the device tree which must match the hardware internal registers.
331 *
332 * Returns true if the physical identifier and the logical cpu index
333 * correspond to the same core/thread, false otherwise.
334 */
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
336 {
337 return (u32)phys_id == cpu;
338 }
339
340 /**
341 * Checks if the given "prop_name" property holds the physical id of the
342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343 * NULL, local thread number within the core is returned in it.
344 */
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 const char *prop_name, int cpu, unsigned int *thread)
347 {
348 const __be32 *cell;
349 int ac, prop_len, tid;
350 u64 hwid;
351
352 ac = of_n_addr_cells(cpun);
353 cell = of_get_property(cpun, prop_name, &prop_len);
354 if (!cell || !ac)
355 return false;
356 prop_len /= sizeof(*cell) * ac;
357 for (tid = 0; tid < prop_len; tid++) {
358 hwid = of_read_number(cell, ac);
359 if (arch_match_cpu_phys_id(cpu, hwid)) {
360 if (thread)
361 *thread = tid;
362 return true;
363 }
364 cell += ac;
365 }
366 return false;
367 }
368
369 /*
370 * arch_find_n_match_cpu_physical_id - See if the given device node is
371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
372 * else false. If 'thread' is non-NULL, the local thread number within the
373 * core is returned in it.
374 */
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 int cpu, unsigned int *thread)
377 {
378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 * for thread ids on PowerPC. If it doesn't exist fallback to
380 * standard "reg" property.
381 */
382 if (IS_ENABLED(CONFIG_PPC) &&
383 __of_find_n_match_cpu_property(cpun,
384 "ibm,ppc-interrupt-server#s",
385 cpu, thread))
386 return true;
387
388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
389 }
390
391 /**
392 * of_get_cpu_node - Get device node associated with the given logical CPU
393 *
394 * @cpu: CPU number(logical index) for which device node is required
395 * @thread: if not NULL, local thread number within the physical core is
396 * returned
397 *
398 * The main purpose of this function is to retrieve the device node for the
399 * given logical CPU index. It should be used to initialize the of_node in
400 * cpu device. Once of_node in cpu device is populated, all the further
401 * references can use that instead.
402 *
403 * CPU logical to physical index mapping is architecture specific and is built
404 * before booting secondary cores. This function uses arch_match_cpu_phys_id
405 * which can be overridden by architecture specific implementation.
406 *
407 * Returns a node pointer for the logical cpu with refcount incremented, use
408 * of_node_put() on it when done. Returns NULL if not found.
409 */
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
411 {
412 struct device_node *cpun;
413
414 for_each_node_by_type(cpun, "cpu") {
415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
416 return cpun;
417 }
418 return NULL;
419 }
420 EXPORT_SYMBOL(of_get_cpu_node);
421
422 /**
423 * __of_device_is_compatible() - Check if the node matches given constraints
424 * @device: pointer to node
425 * @compat: required compatible string, NULL or "" for any match
426 * @type: required device_type value, NULL or "" for any match
427 * @name: required node name, NULL or "" for any match
428 *
429 * Checks if the given @compat, @type and @name strings match the
430 * properties of the given @device. A constraints can be skipped by
431 * passing NULL or an empty string as the constraint.
432 *
433 * Returns 0 for no match, and a positive integer on match. The return
434 * value is a relative score with larger values indicating better
435 * matches. The score is weighted for the most specific compatible value
436 * to get the highest score. Matching type is next, followed by matching
437 * name. Practically speaking, this results in the following priority
438 * order for matches:
439 *
440 * 1. specific compatible && type && name
441 * 2. specific compatible && type
442 * 3. specific compatible && name
443 * 4. specific compatible
444 * 5. general compatible && type && name
445 * 6. general compatible && type
446 * 7. general compatible && name
447 * 8. general compatible
448 * 9. type && name
449 * 10. type
450 * 11. name
451 */
452 static int __of_device_is_compatible(const struct device_node *device,
453 const char *compat, const char *type, const char *name)
454 {
455 struct property *prop;
456 const char *cp;
457 int index = 0, score = 0;
458
459 /* Compatible match has highest priority */
460 if (compat && compat[0]) {
461 prop = __of_find_property(device, "compatible", NULL);
462 for (cp = of_prop_next_string(prop, NULL); cp;
463 cp = of_prop_next_string(prop, cp), index++) {
464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 score = INT_MAX/2 - (index << 2);
466 break;
467 }
468 }
469 if (!score)
470 return 0;
471 }
472
473 /* Matching type is better than matching name */
474 if (type && type[0]) {
475 if (!device->type || of_node_cmp(type, device->type))
476 return 0;
477 score += 2;
478 }
479
480 /* Matching name is a bit better than not */
481 if (name && name[0]) {
482 if (!device->name || of_node_cmp(name, device->name))
483 return 0;
484 score++;
485 }
486
487 return score;
488 }
489
490 /** Checks if the given "compat" string matches one of the strings in
491 * the device's "compatible" property
492 */
493 int of_device_is_compatible(const struct device_node *device,
494 const char *compat)
495 {
496 unsigned long flags;
497 int res;
498
499 raw_spin_lock_irqsave(&devtree_lock, flags);
500 res = __of_device_is_compatible(device, compat, NULL, NULL);
501 raw_spin_unlock_irqrestore(&devtree_lock, flags);
502 return res;
503 }
504 EXPORT_SYMBOL(of_device_is_compatible);
505
506 /** Checks if the device is compatible with any of the entries in
507 * a NULL terminated array of strings. Returns the best match
508 * score or 0.
509 */
510 int of_device_compatible_match(struct device_node *device,
511 const char *const *compat)
512 {
513 unsigned int tmp, score = 0;
514
515 if (!compat)
516 return 0;
517
518 while (*compat) {
519 tmp = of_device_is_compatible(device, *compat);
520 if (tmp > score)
521 score = tmp;
522 compat++;
523 }
524
525 return score;
526 }
527
528 /**
529 * of_machine_is_compatible - Test root of device tree for a given compatible value
530 * @compat: compatible string to look for in root node's compatible property.
531 *
532 * Returns a positive integer if the root node has the given value in its
533 * compatible property.
534 */
535 int of_machine_is_compatible(const char *compat)
536 {
537 struct device_node *root;
538 int rc = 0;
539
540 root = of_find_node_by_path("/");
541 if (root) {
542 rc = of_device_is_compatible(root, compat);
543 of_node_put(root);
544 }
545 return rc;
546 }
547 EXPORT_SYMBOL(of_machine_is_compatible);
548
549 /**
550 * __of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability, with locks already held
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 static bool __of_device_is_available(const struct device_node *device)
558 {
559 const char *status;
560 int statlen;
561
562 if (!device)
563 return false;
564
565 status = __of_get_property(device, "status", &statlen);
566 if (status == NULL)
567 return true;
568
569 if (statlen > 0) {
570 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
571 return true;
572 }
573
574 return false;
575 }
576
577 /**
578 * of_device_is_available - check if a device is available for use
579 *
580 * @device: Node to check for availability
581 *
582 * Returns true if the status property is absent or set to "okay" or "ok",
583 * false otherwise
584 */
585 bool of_device_is_available(const struct device_node *device)
586 {
587 unsigned long flags;
588 bool res;
589
590 raw_spin_lock_irqsave(&devtree_lock, flags);
591 res = __of_device_is_available(device);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 return res;
594
595 }
596 EXPORT_SYMBOL(of_device_is_available);
597
598 /**
599 * of_device_is_big_endian - check if a device has BE registers
600 *
601 * @device: Node to check for endianness
602 *
603 * Returns true if the device has a "big-endian" property, or if the kernel
604 * was compiled for BE *and* the device has a "native-endian" property.
605 * Returns false otherwise.
606 *
607 * Callers would nominally use ioread32be/iowrite32be if
608 * of_device_is_big_endian() == true, or readl/writel otherwise.
609 */
610 bool of_device_is_big_endian(const struct device_node *device)
611 {
612 if (of_property_read_bool(device, "big-endian"))
613 return true;
614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 of_property_read_bool(device, "native-endian"))
616 return true;
617 return false;
618 }
619 EXPORT_SYMBOL(of_device_is_big_endian);
620
621 /**
622 * of_get_parent - Get a node's parent if any
623 * @node: Node to get parent
624 *
625 * Returns a node pointer with refcount incremented, use
626 * of_node_put() on it when done.
627 */
628 struct device_node *of_get_parent(const struct device_node *node)
629 {
630 struct device_node *np;
631 unsigned long flags;
632
633 if (!node)
634 return NULL;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 np = of_node_get(node->parent);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 return np;
640 }
641 EXPORT_SYMBOL(of_get_parent);
642
643 /**
644 * of_get_next_parent - Iterate to a node's parent
645 * @node: Node to get parent of
646 *
647 * This is like of_get_parent() except that it drops the
648 * refcount on the passed node, making it suitable for iterating
649 * through a node's parents.
650 *
651 * Returns a node pointer with refcount incremented, use
652 * of_node_put() on it when done.
653 */
654 struct device_node *of_get_next_parent(struct device_node *node)
655 {
656 struct device_node *parent;
657 unsigned long flags;
658
659 if (!node)
660 return NULL;
661
662 raw_spin_lock_irqsave(&devtree_lock, flags);
663 parent = of_node_get(node->parent);
664 of_node_put(node);
665 raw_spin_unlock_irqrestore(&devtree_lock, flags);
666 return parent;
667 }
668 EXPORT_SYMBOL(of_get_next_parent);
669
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
672 {
673 struct device_node *next;
674
675 if (!node)
676 return NULL;
677
678 next = prev ? prev->sibling : node->child;
679 for (; next; next = next->sibling)
680 if (of_node_get(next))
681 break;
682 of_node_put(prev);
683 return next;
684 }
685 #define __for_each_child_of_node(parent, child) \
686 for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 child = __of_get_next_child(parent, child))
688
689 /**
690 * of_get_next_child - Iterate a node childs
691 * @node: parent node
692 * @prev: previous child of the parent node, or NULL to get first
693 *
694 * Returns a node pointer with refcount incremented, use of_node_put() on
695 * it when done. Returns NULL when prev is the last child. Decrements the
696 * refcount of prev.
697 */
698 struct device_node *of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
700 {
701 struct device_node *next;
702 unsigned long flags;
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 next = __of_get_next_child(node, prev);
706 raw_spin_unlock_irqrestore(&devtree_lock, flags);
707 return next;
708 }
709 EXPORT_SYMBOL(of_get_next_child);
710
711 /**
712 * of_get_next_available_child - Find the next available child node
713 * @node: parent node
714 * @prev: previous child of the parent node, or NULL to get first
715 *
716 * This function is like of_get_next_child(), except that it
717 * automatically skips any disabled nodes (i.e. status = "disabled").
718 */
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 struct device_node *prev)
721 {
722 struct device_node *next;
723 unsigned long flags;
724
725 if (!node)
726 return NULL;
727
728 raw_spin_lock_irqsave(&devtree_lock, flags);
729 next = prev ? prev->sibling : node->child;
730 for (; next; next = next->sibling) {
731 if (!__of_device_is_available(next))
732 continue;
733 if (of_node_get(next))
734 break;
735 }
736 of_node_put(prev);
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 return next;
739 }
740 EXPORT_SYMBOL(of_get_next_available_child);
741
742 /**
743 * of_get_child_by_name - Find the child node by name for a given parent
744 * @node: parent node
745 * @name: child name to look for.
746 *
747 * This function looks for child node for given matching name
748 *
749 * Returns a node pointer if found, with refcount incremented, use
750 * of_node_put() on it when done.
751 * Returns NULL if node is not found.
752 */
753 struct device_node *of_get_child_by_name(const struct device_node *node,
754 const char *name)
755 {
756 struct device_node *child;
757
758 for_each_child_of_node(node, child)
759 if (child->name && (of_node_cmp(child->name, name) == 0))
760 break;
761 return child;
762 }
763 EXPORT_SYMBOL(of_get_child_by_name);
764
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
766 const char *path)
767 {
768 struct device_node *child;
769 int len;
770
771 len = strcspn(path, "/:");
772 if (!len)
773 return NULL;
774
775 __for_each_child_of_node(parent, child) {
776 const char *name = strrchr(child->full_name, '/');
777 if (WARN(!name, "malformed device_node %s\n", child->full_name))
778 continue;
779 name++;
780 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
781 return child;
782 }
783 return NULL;
784 }
785
786 /**
787 * of_find_node_opts_by_path - Find a node matching a full OF path
788 * @path: Either the full path to match, or if the path does not
789 * start with '/', the name of a property of the /aliases
790 * node (an alias). In the case of an alias, the node
791 * matching the alias' value will be returned.
792 * @opts: Address of a pointer into which to store the start of
793 * an options string appended to the end of the path with
794 * a ':' separator.
795 *
796 * Valid paths:
797 * /foo/bar Full path
798 * foo Valid alias
799 * foo/bar Valid alias + relative path
800 *
801 * Returns a node pointer with refcount incremented, use
802 * of_node_put() on it when done.
803 */
804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
805 {
806 struct device_node *np = NULL;
807 struct property *pp;
808 unsigned long flags;
809 const char *separator = strchr(path, ':');
810
811 if (opts)
812 *opts = separator ? separator + 1 : NULL;
813
814 if (strcmp(path, "/") == 0)
815 return of_node_get(of_root);
816
817 /* The path could begin with an alias */
818 if (*path != '/') {
819 int len;
820 const char *p = separator;
821
822 if (!p)
823 p = strchrnul(path, '/');
824 len = p - path;
825
826 /* of_aliases must not be NULL */
827 if (!of_aliases)
828 return NULL;
829
830 for_each_property_of_node(of_aliases, pp) {
831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
832 np = of_find_node_by_path(pp->value);
833 break;
834 }
835 }
836 if (!np)
837 return NULL;
838 path = p;
839 }
840
841 /* Step down the tree matching path components */
842 raw_spin_lock_irqsave(&devtree_lock, flags);
843 if (!np)
844 np = of_node_get(of_root);
845 while (np && *path == '/') {
846 struct device_node *tmp = np;
847
848 path++; /* Increment past '/' delimiter */
849 np = __of_find_node_by_path(np, path);
850 of_node_put(tmp);
851 path = strchrnul(path, '/');
852 if (separator && separator < path)
853 break;
854 }
855 raw_spin_unlock_irqrestore(&devtree_lock, flags);
856 return np;
857 }
858 EXPORT_SYMBOL(of_find_node_opts_by_path);
859
860 /**
861 * of_find_node_by_name - Find a node by its "name" property
862 * @from: The node to start searching from or NULL, the node
863 * you pass will not be searched, only the next one
864 * will; typically, you pass what the previous call
865 * returned. of_node_put() will be called on it
866 * @name: The name string to match against
867 *
868 * Returns a node pointer with refcount incremented, use
869 * of_node_put() on it when done.
870 */
871 struct device_node *of_find_node_by_name(struct device_node *from,
872 const char *name)
873 {
874 struct device_node *np;
875 unsigned long flags;
876
877 raw_spin_lock_irqsave(&devtree_lock, flags);
878 for_each_of_allnodes_from(from, np)
879 if (np->name && (of_node_cmp(np->name, name) == 0)
880 && of_node_get(np))
881 break;
882 of_node_put(from);
883 raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 return np;
885 }
886 EXPORT_SYMBOL(of_find_node_by_name);
887
888 /**
889 * of_find_node_by_type - Find a node by its "device_type" property
890 * @from: The node to start searching from, or NULL to start searching
891 * the entire device tree. The node you pass will not be
892 * searched, only the next one will; typically, you pass
893 * what the previous call returned. of_node_put() will be
894 * called on from for you.
895 * @type: The type string to match against
896 *
897 * Returns a node pointer with refcount incremented, use
898 * of_node_put() on it when done.
899 */
900 struct device_node *of_find_node_by_type(struct device_node *from,
901 const char *type)
902 {
903 struct device_node *np;
904 unsigned long flags;
905
906 raw_spin_lock_irqsave(&devtree_lock, flags);
907 for_each_of_allnodes_from(from, np)
908 if (np->type && (of_node_cmp(np->type, type) == 0)
909 && of_node_get(np))
910 break;
911 of_node_put(from);
912 raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 return np;
914 }
915 EXPORT_SYMBOL(of_find_node_by_type);
916
917 /**
918 * of_find_compatible_node - Find a node based on type and one of the
919 * tokens in its "compatible" property
920 * @from: The node to start searching from or NULL, the node
921 * you pass will not be searched, only the next one
922 * will; typically, you pass what the previous call
923 * returned. of_node_put() will be called on it
924 * @type: The type string to match "device_type" or NULL to ignore
925 * @compatible: The string to match to one of the tokens in the device
926 * "compatible" list.
927 *
928 * Returns a node pointer with refcount incremented, use
929 * of_node_put() on it when done.
930 */
931 struct device_node *of_find_compatible_node(struct device_node *from,
932 const char *type, const char *compatible)
933 {
934 struct device_node *np;
935 unsigned long flags;
936
937 raw_spin_lock_irqsave(&devtree_lock, flags);
938 for_each_of_allnodes_from(from, np)
939 if (__of_device_is_compatible(np, compatible, type, NULL) &&
940 of_node_get(np))
941 break;
942 of_node_put(from);
943 raw_spin_unlock_irqrestore(&devtree_lock, flags);
944 return np;
945 }
946 EXPORT_SYMBOL(of_find_compatible_node);
947
948 /**
949 * of_find_node_with_property - Find a node which has a property with
950 * the given name.
951 * @from: The node to start searching from or NULL, the node
952 * you pass will not be searched, only the next one
953 * will; typically, you pass what the previous call
954 * returned. of_node_put() will be called on it
955 * @prop_name: The name of the property to look for.
956 *
957 * Returns a node pointer with refcount incremented, use
958 * of_node_put() on it when done.
959 */
960 struct device_node *of_find_node_with_property(struct device_node *from,
961 const char *prop_name)
962 {
963 struct device_node *np;
964 struct property *pp;
965 unsigned long flags;
966
967 raw_spin_lock_irqsave(&devtree_lock, flags);
968 for_each_of_allnodes_from(from, np) {
969 for (pp = np->properties; pp; pp = pp->next) {
970 if (of_prop_cmp(pp->name, prop_name) == 0) {
971 of_node_get(np);
972 goto out;
973 }
974 }
975 }
976 out:
977 of_node_put(from);
978 raw_spin_unlock_irqrestore(&devtree_lock, flags);
979 return np;
980 }
981 EXPORT_SYMBOL(of_find_node_with_property);
982
983 static
984 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
985 const struct device_node *node)
986 {
987 const struct of_device_id *best_match = NULL;
988 int score, best_score = 0;
989
990 if (!matches)
991 return NULL;
992
993 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
994 score = __of_device_is_compatible(node, matches->compatible,
995 matches->type, matches->name);
996 if (score > best_score) {
997 best_match = matches;
998 best_score = score;
999 }
1000 }
1001
1002 return best_match;
1003 }
1004
1005 /**
1006 * of_match_node - Tell if a device_node has a matching of_match structure
1007 * @matches: array of of device match structures to search in
1008 * @node: the of device structure to match against
1009 *
1010 * Low level utility function used by device matching.
1011 */
1012 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1013 const struct device_node *node)
1014 {
1015 const struct of_device_id *match;
1016 unsigned long flags;
1017
1018 raw_spin_lock_irqsave(&devtree_lock, flags);
1019 match = __of_match_node(matches, node);
1020 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 return match;
1022 }
1023 EXPORT_SYMBOL(of_match_node);
1024
1025 /**
1026 * of_find_matching_node_and_match - Find a node based on an of_device_id
1027 * match table.
1028 * @from: The node to start searching from or NULL, the node
1029 * you pass will not be searched, only the next one
1030 * will; typically, you pass what the previous call
1031 * returned. of_node_put() will be called on it
1032 * @matches: array of of device match structures to search in
1033 * @match Updated to point at the matches entry which matched
1034 *
1035 * Returns a node pointer with refcount incremented, use
1036 * of_node_put() on it when done.
1037 */
1038 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1039 const struct of_device_id *matches,
1040 const struct of_device_id **match)
1041 {
1042 struct device_node *np;
1043 const struct of_device_id *m;
1044 unsigned long flags;
1045
1046 if (match)
1047 *match = NULL;
1048
1049 raw_spin_lock_irqsave(&devtree_lock, flags);
1050 for_each_of_allnodes_from(from, np) {
1051 m = __of_match_node(matches, np);
1052 if (m && of_node_get(np)) {
1053 if (match)
1054 *match = m;
1055 break;
1056 }
1057 }
1058 of_node_put(from);
1059 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1060 return np;
1061 }
1062 EXPORT_SYMBOL(of_find_matching_node_and_match);
1063
1064 /**
1065 * of_modalias_node - Lookup appropriate modalias for a device node
1066 * @node: pointer to a device tree node
1067 * @modalias: Pointer to buffer that modalias value will be copied into
1068 * @len: Length of modalias value
1069 *
1070 * Based on the value of the compatible property, this routine will attempt
1071 * to choose an appropriate modalias value for a particular device tree node.
1072 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1073 * from the first entry in the compatible list property.
1074 *
1075 * This routine returns 0 on success, <0 on failure.
1076 */
1077 int of_modalias_node(struct device_node *node, char *modalias, int len)
1078 {
1079 const char *compatible, *p;
1080 int cplen;
1081
1082 compatible = of_get_property(node, "compatible", &cplen);
1083 if (!compatible || strlen(compatible) > cplen)
1084 return -ENODEV;
1085 p = strchr(compatible, ',');
1086 strlcpy(modalias, p ? p + 1 : compatible, len);
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(of_modalias_node);
1090
1091 /**
1092 * of_find_node_by_phandle - Find a node given a phandle
1093 * @handle: phandle of the node to find
1094 *
1095 * Returns a node pointer with refcount incremented, use
1096 * of_node_put() on it when done.
1097 */
1098 struct device_node *of_find_node_by_phandle(phandle handle)
1099 {
1100 struct device_node *np;
1101 unsigned long flags;
1102
1103 if (!handle)
1104 return NULL;
1105
1106 raw_spin_lock_irqsave(&devtree_lock, flags);
1107 for_each_of_allnodes(np)
1108 if (np->phandle == handle)
1109 break;
1110 of_node_get(np);
1111 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1112 return np;
1113 }
1114 EXPORT_SYMBOL(of_find_node_by_phandle);
1115
1116 /**
1117 * of_property_count_elems_of_size - Count the number of elements in a property
1118 *
1119 * @np: device node from which the property value is to be read.
1120 * @propname: name of the property to be searched.
1121 * @elem_size: size of the individual element
1122 *
1123 * Search for a property in a device node and count the number of elements of
1124 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1125 * property does not exist or its length does not match a multiple of elem_size
1126 * and -ENODATA if the property does not have a value.
1127 */
1128 int of_property_count_elems_of_size(const struct device_node *np,
1129 const char *propname, int elem_size)
1130 {
1131 struct property *prop = of_find_property(np, propname, NULL);
1132
1133 if (!prop)
1134 return -EINVAL;
1135 if (!prop->value)
1136 return -ENODATA;
1137
1138 if (prop->length % elem_size != 0) {
1139 pr_err("size of %s in node %s is not a multiple of %d\n",
1140 propname, np->full_name, elem_size);
1141 return -EINVAL;
1142 }
1143
1144 return prop->length / elem_size;
1145 }
1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1147
1148 /**
1149 * of_find_property_value_of_size
1150 *
1151 * @np: device node from which the property value is to be read.
1152 * @propname: name of the property to be searched.
1153 * @min: minimum allowed length of property value
1154 * @max: maximum allowed length of property value (0 means unlimited)
1155 * @len: if !=NULL, actual length is written to here
1156 *
1157 * Search for a property in a device node and valid the requested size.
1158 * Returns the property value on success, -EINVAL if the property does not
1159 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1160 * property data is too small or too large.
1161 *
1162 */
1163 static void *of_find_property_value_of_size(const struct device_node *np,
1164 const char *propname, u32 min, u32 max, size_t *len)
1165 {
1166 struct property *prop = of_find_property(np, propname, NULL);
1167
1168 if (!prop)
1169 return ERR_PTR(-EINVAL);
1170 if (!prop->value)
1171 return ERR_PTR(-ENODATA);
1172 if (prop->length < min)
1173 return ERR_PTR(-EOVERFLOW);
1174 if (max && prop->length > max)
1175 return ERR_PTR(-EOVERFLOW);
1176
1177 if (len)
1178 *len = prop->length;
1179
1180 return prop->value;
1181 }
1182
1183 /**
1184 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1185 *
1186 * @np: device node from which the property value is to be read.
1187 * @propname: name of the property to be searched.
1188 * @index: index of the u32 in the list of values
1189 * @out_value: pointer to return value, modified only if no error.
1190 *
1191 * Search for a property in a device node and read nth 32-bit value from
1192 * it. Returns 0 on success, -EINVAL if the property does not exist,
1193 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1194 * property data isn't large enough.
1195 *
1196 * The out_value is modified only if a valid u32 value can be decoded.
1197 */
1198 int of_property_read_u32_index(const struct device_node *np,
1199 const char *propname,
1200 u32 index, u32 *out_value)
1201 {
1202 const u32 *val = of_find_property_value_of_size(np, propname,
1203 ((index + 1) * sizeof(*out_value)),
1204 0,
1205 NULL);
1206
1207 if (IS_ERR(val))
1208 return PTR_ERR(val);
1209
1210 *out_value = be32_to_cpup(((__be32 *)val) + index);
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1214
1215 /**
1216 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
1217 *
1218 * @np: device node from which the property value is to be read.
1219 * @propname: name of the property to be searched.
1220 * @index: index of the u64 in the list of values
1221 * @out_value: pointer to return value, modified only if no error.
1222 *
1223 * Search for a property in a device node and read nth 64-bit value from
1224 * it. Returns 0 on success, -EINVAL if the property does not exist,
1225 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1226 * property data isn't large enough.
1227 *
1228 * The out_value is modified only if a valid u64 value can be decoded.
1229 */
1230 int of_property_read_u64_index(const struct device_node *np,
1231 const char *propname,
1232 u32 index, u64 *out_value)
1233 {
1234 const u64 *val = of_find_property_value_of_size(np, propname,
1235 ((index + 1) * sizeof(*out_value)),
1236 0, NULL);
1237
1238 if (IS_ERR(val))
1239 return PTR_ERR(val);
1240
1241 *out_value = be64_to_cpup(((__be64 *)val) + index);
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
1245
1246 /**
1247 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1248 * property, with bounds on the minimum and maximum array size.
1249 *
1250 * @np: device node from which the property value is to be read.
1251 * @propname: name of the property to be searched.
1252 * @out_values: pointer to return value, modified only if return value is 0.
1253 * @sz_min: minimum number of array elements to read
1254 * @sz_max: maximum number of array elements to read, if zero there is no
1255 * upper limit on the number of elements in the dts entry but only
1256 * sz_min will be read.
1257 *
1258 * Search for a property in a device node and read 8-bit value(s) from
1259 * it. Returns number of elements read on success, -EINVAL if the property
1260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1261 * if the property data is smaller than sz_min or longer than sz_max.
1262 *
1263 * dts entry of array should be like:
1264 * property = /bits/ 8 <0x50 0x60 0x70>;
1265 *
1266 * The out_values is modified only if a valid u8 value can be decoded.
1267 */
1268 int of_property_read_variable_u8_array(const struct device_node *np,
1269 const char *propname, u8 *out_values,
1270 size_t sz_min, size_t sz_max)
1271 {
1272 size_t sz, count;
1273 const u8 *val = of_find_property_value_of_size(np, propname,
1274 (sz_min * sizeof(*out_values)),
1275 (sz_max * sizeof(*out_values)),
1276 &sz);
1277
1278 if (IS_ERR(val))
1279 return PTR_ERR(val);
1280
1281 if (!sz_max)
1282 sz = sz_min;
1283 else
1284 sz /= sizeof(*out_values);
1285
1286 count = sz;
1287 while (count--)
1288 *out_values++ = *val++;
1289
1290 return sz;
1291 }
1292 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1293
1294 /**
1295 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1296 * property, with bounds on the minimum and maximum array size.
1297 *
1298 * @np: device node from which the property value is to be read.
1299 * @propname: name of the property to be searched.
1300 * @out_values: pointer to return value, modified only if return value is 0.
1301 * @sz_min: minimum number of array elements to read
1302 * @sz_max: maximum number of array elements to read, if zero there is no
1303 * upper limit on the number of elements in the dts entry but only
1304 * sz_min will be read.
1305 *
1306 * Search for a property in a device node and read 16-bit value(s) from
1307 * it. Returns number of elements read on success, -EINVAL if the property
1308 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1309 * if the property data is smaller than sz_min or longer than sz_max.
1310 *
1311 * dts entry of array should be like:
1312 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1313 *
1314 * The out_values is modified only if a valid u16 value can be decoded.
1315 */
1316 int of_property_read_variable_u16_array(const struct device_node *np,
1317 const char *propname, u16 *out_values,
1318 size_t sz_min, size_t sz_max)
1319 {
1320 size_t sz, count;
1321 const __be16 *val = of_find_property_value_of_size(np, propname,
1322 (sz_min * sizeof(*out_values)),
1323 (sz_max * sizeof(*out_values)),
1324 &sz);
1325
1326 if (IS_ERR(val))
1327 return PTR_ERR(val);
1328
1329 if (!sz_max)
1330 sz = sz_min;
1331 else
1332 sz /= sizeof(*out_values);
1333
1334 count = sz;
1335 while (count--)
1336 *out_values++ = be16_to_cpup(val++);
1337
1338 return sz;
1339 }
1340 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1341
1342 /**
1343 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1344 * integers from a property, with bounds on the minimum and maximum array size.
1345 *
1346 * @np: device node from which the property value is to be read.
1347 * @propname: name of the property to be searched.
1348 * @out_values: pointer to return value, modified only if return value is 0.
1349 * @sz_min: minimum number of array elements to read
1350 * @sz_max: maximum number of array elements to read, if zero there is no
1351 * upper limit on the number of elements in the dts entry but only
1352 * sz_min will be read.
1353 *
1354 * Search for a property in a device node and read 32-bit value(s) from
1355 * it. Returns number of elements read on success, -EINVAL if the property
1356 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1357 * if the property data is smaller than sz_min or longer than sz_max.
1358 *
1359 * The out_values is modified only if a valid u32 value can be decoded.
1360 */
1361 int of_property_read_variable_u32_array(const struct device_node *np,
1362 const char *propname, u32 *out_values,
1363 size_t sz_min, size_t sz_max)
1364 {
1365 size_t sz, count;
1366 const __be32 *val = of_find_property_value_of_size(np, propname,
1367 (sz_min * sizeof(*out_values)),
1368 (sz_max * sizeof(*out_values)),
1369 &sz);
1370
1371 if (IS_ERR(val))
1372 return PTR_ERR(val);
1373
1374 if (!sz_max)
1375 sz = sz_min;
1376 else
1377 sz /= sizeof(*out_values);
1378
1379 count = sz;
1380 while (count--)
1381 *out_values++ = be32_to_cpup(val++);
1382
1383 return sz;
1384 }
1385 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1386
1387 /**
1388 * of_property_read_u64 - Find and read a 64 bit integer from a property
1389 * @np: device node from which the property value is to be read.
1390 * @propname: name of the property to be searched.
1391 * @out_value: pointer to return value, modified only if return value is 0.
1392 *
1393 * Search for a property in a device node and read a 64-bit value from
1394 * it. Returns 0 on success, -EINVAL if the property does not exist,
1395 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1396 * property data isn't large enough.
1397 *
1398 * The out_value is modified only if a valid u64 value can be decoded.
1399 */
1400 int of_property_read_u64(const struct device_node *np, const char *propname,
1401 u64 *out_value)
1402 {
1403 const __be32 *val = of_find_property_value_of_size(np, propname,
1404 sizeof(*out_value),
1405 0,
1406 NULL);
1407
1408 if (IS_ERR(val))
1409 return PTR_ERR(val);
1410
1411 *out_value = of_read_number(val, 2);
1412 return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(of_property_read_u64);
1415
1416 /**
1417 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1418 * integers from a property, with bounds on the minimum and maximum array size.
1419 *
1420 * @np: device node from which the property value is to be read.
1421 * @propname: name of the property to be searched.
1422 * @out_values: pointer to return value, modified only if return value is 0.
1423 * @sz_min: minimum number of array elements to read
1424 * @sz_max: maximum number of array elements to read, if zero there is no
1425 * upper limit on the number of elements in the dts entry but only
1426 * sz_min will be read.
1427 *
1428 * Search for a property in a device node and read 64-bit value(s) from
1429 * it. Returns number of elements read on success, -EINVAL if the property
1430 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1431 * if the property data is smaller than sz_min or longer than sz_max.
1432 *
1433 * The out_values is modified only if a valid u64 value can be decoded.
1434 */
1435 int of_property_read_variable_u64_array(const struct device_node *np,
1436 const char *propname, u64 *out_values,
1437 size_t sz_min, size_t sz_max)
1438 {
1439 size_t sz, count;
1440 const __be32 *val = of_find_property_value_of_size(np, propname,
1441 (sz_min * sizeof(*out_values)),
1442 (sz_max * sizeof(*out_values)),
1443 &sz);
1444
1445 if (IS_ERR(val))
1446 return PTR_ERR(val);
1447
1448 if (!sz_max)
1449 sz = sz_min;
1450 else
1451 sz /= sizeof(*out_values);
1452
1453 count = sz;
1454 while (count--) {
1455 *out_values++ = of_read_number(val, 2);
1456 val += 2;
1457 }
1458
1459 return sz;
1460 }
1461 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1462
1463 /**
1464 * of_property_read_string - Find and read a string from a property
1465 * @np: device node from which the property value is to be read.
1466 * @propname: name of the property to be searched.
1467 * @out_string: pointer to null terminated return string, modified only if
1468 * return value is 0.
1469 *
1470 * Search for a property in a device tree node and retrieve a null
1471 * terminated string value (pointer to data, not a copy). Returns 0 on
1472 * success, -EINVAL if the property does not exist, -ENODATA if property
1473 * does not have a value, and -EILSEQ if the string is not null-terminated
1474 * within the length of the property data.
1475 *
1476 * The out_string pointer is modified only if a valid string can be decoded.
1477 */
1478 int of_property_read_string(const struct device_node *np, const char *propname,
1479 const char **out_string)
1480 {
1481 const struct property *prop = of_find_property(np, propname, NULL);
1482 if (!prop)
1483 return -EINVAL;
1484 if (!prop->value)
1485 return -ENODATA;
1486 if (strnlen(prop->value, prop->length) >= prop->length)
1487 return -EILSEQ;
1488 *out_string = prop->value;
1489 return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(of_property_read_string);
1492
1493 /**
1494 * of_property_match_string() - Find string in a list and return index
1495 * @np: pointer to node containing string list property
1496 * @propname: string list property name
1497 * @string: pointer to string to search for in string list
1498 *
1499 * This function searches a string list property and returns the index
1500 * of a specific string value.
1501 */
1502 int of_property_match_string(const struct device_node *np, const char *propname,
1503 const char *string)
1504 {
1505 const struct property *prop = of_find_property(np, propname, NULL);
1506 size_t l;
1507 int i;
1508 const char *p, *end;
1509
1510 if (!prop)
1511 return -EINVAL;
1512 if (!prop->value)
1513 return -ENODATA;
1514
1515 p = prop->value;
1516 end = p + prop->length;
1517
1518 for (i = 0; p < end; i++, p += l) {
1519 l = strnlen(p, end - p) + 1;
1520 if (p + l > end)
1521 return -EILSEQ;
1522 pr_debug("comparing %s with %s\n", string, p);
1523 if (strcmp(string, p) == 0)
1524 return i; /* Found it; return index */
1525 }
1526 return -ENODATA;
1527 }
1528 EXPORT_SYMBOL_GPL(of_property_match_string);
1529
1530 /**
1531 * of_property_read_string_helper() - Utility helper for parsing string properties
1532 * @np: device node from which the property value is to be read.
1533 * @propname: name of the property to be searched.
1534 * @out_strs: output array of string pointers.
1535 * @sz: number of array elements to read.
1536 * @skip: Number of strings to skip over at beginning of list.
1537 *
1538 * Don't call this function directly. It is a utility helper for the
1539 * of_property_read_string*() family of functions.
1540 */
1541 int of_property_read_string_helper(const struct device_node *np,
1542 const char *propname, const char **out_strs,
1543 size_t sz, int skip)
1544 {
1545 const struct property *prop = of_find_property(np, propname, NULL);
1546 int l = 0, i = 0;
1547 const char *p, *end;
1548
1549 if (!prop)
1550 return -EINVAL;
1551 if (!prop->value)
1552 return -ENODATA;
1553 p = prop->value;
1554 end = p + prop->length;
1555
1556 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1557 l = strnlen(p, end - p) + 1;
1558 if (p + l > end)
1559 return -EILSEQ;
1560 if (out_strs && i >= skip)
1561 *out_strs++ = p;
1562 }
1563 i -= skip;
1564 return i <= 0 ? -ENODATA : i;
1565 }
1566 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1567
1568 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1569 {
1570 int i;
1571 printk("%s %s", msg, of_node_full_name(args->np));
1572 for (i = 0; i < args->args_count; i++) {
1573 const char delim = i ? ',' : ':';
1574
1575 pr_cont("%c%08x", delim, args->args[i]);
1576 }
1577 pr_cont("\n");
1578 }
1579
1580 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1581 const struct device_node *np,
1582 const char *list_name,
1583 const char *cells_name,
1584 int cell_count)
1585 {
1586 const __be32 *list;
1587 int size;
1588
1589 memset(it, 0, sizeof(*it));
1590
1591 list = of_get_property(np, list_name, &size);
1592 if (!list)
1593 return -ENOENT;
1594
1595 it->cells_name = cells_name;
1596 it->cell_count = cell_count;
1597 it->parent = np;
1598 it->list_end = list + size / sizeof(*list);
1599 it->phandle_end = list;
1600 it->cur = list;
1601
1602 return 0;
1603 }
1604
1605 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1606 {
1607 uint32_t count = 0;
1608
1609 if (it->node) {
1610 of_node_put(it->node);
1611 it->node = NULL;
1612 }
1613
1614 if (!it->cur || it->phandle_end >= it->list_end)
1615 return -ENOENT;
1616
1617 it->cur = it->phandle_end;
1618
1619 /* If phandle is 0, then it is an empty entry with no arguments. */
1620 it->phandle = be32_to_cpup(it->cur++);
1621
1622 if (it->phandle) {
1623
1624 /*
1625 * Find the provider node and parse the #*-cells property to
1626 * determine the argument length.
1627 */
1628 it->node = of_find_node_by_phandle(it->phandle);
1629
1630 if (it->cells_name) {
1631 if (!it->node) {
1632 pr_err("%s: could not find phandle\n",
1633 it->parent->full_name);
1634 goto err;
1635 }
1636
1637 if (of_property_read_u32(it->node, it->cells_name,
1638 &count)) {
1639 pr_err("%s: could not get %s for %s\n",
1640 it->parent->full_name,
1641 it->cells_name,
1642 it->node->full_name);
1643 goto err;
1644 }
1645 } else {
1646 count = it->cell_count;
1647 }
1648
1649 /*
1650 * Make sure that the arguments actually fit in the remaining
1651 * property data length
1652 */
1653 if (it->cur + count > it->list_end) {
1654 pr_err("%s: arguments longer than property\n",
1655 it->parent->full_name);
1656 goto err;
1657 }
1658 }
1659
1660 it->phandle_end = it->cur + count;
1661 it->cur_count = count;
1662
1663 return 0;
1664
1665 err:
1666 if (it->node) {
1667 of_node_put(it->node);
1668 it->node = NULL;
1669 }
1670
1671 return -EINVAL;
1672 }
1673
1674 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1675 uint32_t *args,
1676 int size)
1677 {
1678 int i, count;
1679
1680 count = it->cur_count;
1681
1682 if (WARN_ON(size < count))
1683 count = size;
1684
1685 for (i = 0; i < count; i++)
1686 args[i] = be32_to_cpup(it->cur++);
1687
1688 return count;
1689 }
1690
1691 static int __of_parse_phandle_with_args(const struct device_node *np,
1692 const char *list_name,
1693 const char *cells_name,
1694 int cell_count, int index,
1695 struct of_phandle_args *out_args)
1696 {
1697 struct of_phandle_iterator it;
1698 int rc, cur_index = 0;
1699
1700 /* Loop over the phandles until all the requested entry is found */
1701 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1702 /*
1703 * All of the error cases bail out of the loop, so at
1704 * this point, the parsing is successful. If the requested
1705 * index matches, then fill the out_args structure and return,
1706 * or return -ENOENT for an empty entry.
1707 */
1708 rc = -ENOENT;
1709 if (cur_index == index) {
1710 if (!it.phandle)
1711 goto err;
1712
1713 if (out_args) {
1714 int c;
1715
1716 c = of_phandle_iterator_args(&it,
1717 out_args->args,
1718 MAX_PHANDLE_ARGS);
1719 out_args->np = it.node;
1720 out_args->args_count = c;
1721 } else {
1722 of_node_put(it.node);
1723 }
1724
1725 /* Found it! return success */
1726 return 0;
1727 }
1728
1729 cur_index++;
1730 }
1731
1732 /*
1733 * Unlock node before returning result; will be one of:
1734 * -ENOENT : index is for empty phandle
1735 * -EINVAL : parsing error on data
1736 */
1737
1738 err:
1739 of_node_put(it.node);
1740 return rc;
1741 }
1742
1743 /**
1744 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1745 * @np: Pointer to device node holding phandle property
1746 * @phandle_name: Name of property holding a phandle value
1747 * @index: For properties holding a table of phandles, this is the index into
1748 * the table
1749 *
1750 * Returns the device_node pointer with refcount incremented. Use
1751 * of_node_put() on it when done.
1752 */
1753 struct device_node *of_parse_phandle(const struct device_node *np,
1754 const char *phandle_name, int index)
1755 {
1756 struct of_phandle_args args;
1757
1758 if (index < 0)
1759 return NULL;
1760
1761 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1762 index, &args))
1763 return NULL;
1764
1765 return args.np;
1766 }
1767 EXPORT_SYMBOL(of_parse_phandle);
1768
1769 /**
1770 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1771 * @np: pointer to a device tree node containing a list
1772 * @list_name: property name that contains a list
1773 * @cells_name: property name that specifies phandles' arguments count
1774 * @index: index of a phandle to parse out
1775 * @out_args: optional pointer to output arguments structure (will be filled)
1776 *
1777 * This function is useful to parse lists of phandles and their arguments.
1778 * Returns 0 on success and fills out_args, on error returns appropriate
1779 * errno value.
1780 *
1781 * Caller is responsible to call of_node_put() on the returned out_args->np
1782 * pointer.
1783 *
1784 * Example:
1785 *
1786 * phandle1: node1 {
1787 * #list-cells = <2>;
1788 * }
1789 *
1790 * phandle2: node2 {
1791 * #list-cells = <1>;
1792 * }
1793 *
1794 * node3 {
1795 * list = <&phandle1 1 2 &phandle2 3>;
1796 * }
1797 *
1798 * To get a device_node of the `node2' node you may call this:
1799 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1800 */
1801 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1802 const char *cells_name, int index,
1803 struct of_phandle_args *out_args)
1804 {
1805 if (index < 0)
1806 return -EINVAL;
1807 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1808 index, out_args);
1809 }
1810 EXPORT_SYMBOL(of_parse_phandle_with_args);
1811
1812 /**
1813 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1814 * @np: pointer to a device tree node containing a list
1815 * @list_name: property name that contains a list
1816 * @cell_count: number of argument cells following the phandle
1817 * @index: index of a phandle to parse out
1818 * @out_args: optional pointer to output arguments structure (will be filled)
1819 *
1820 * This function is useful to parse lists of phandles and their arguments.
1821 * Returns 0 on success and fills out_args, on error returns appropriate
1822 * errno value.
1823 *
1824 * Caller is responsible to call of_node_put() on the returned out_args->np
1825 * pointer.
1826 *
1827 * Example:
1828 *
1829 * phandle1: node1 {
1830 * }
1831 *
1832 * phandle2: node2 {
1833 * }
1834 *
1835 * node3 {
1836 * list = <&phandle1 0 2 &phandle2 2 3>;
1837 * }
1838 *
1839 * To get a device_node of the `node2' node you may call this:
1840 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1841 */
1842 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1843 const char *list_name, int cell_count,
1844 int index, struct of_phandle_args *out_args)
1845 {
1846 if (index < 0)
1847 return -EINVAL;
1848 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1849 index, out_args);
1850 }
1851 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1852
1853 /**
1854 * of_count_phandle_with_args() - Find the number of phandles references in a property
1855 * @np: pointer to a device tree node containing a list
1856 * @list_name: property name that contains a list
1857 * @cells_name: property name that specifies phandles' arguments count
1858 *
1859 * Returns the number of phandle + argument tuples within a property. It
1860 * is a typical pattern to encode a list of phandle and variable
1861 * arguments into a single property. The number of arguments is encoded
1862 * by a property in the phandle-target node. For example, a gpios
1863 * property would contain a list of GPIO specifies consisting of a
1864 * phandle and 1 or more arguments. The number of arguments are
1865 * determined by the #gpio-cells property in the node pointed to by the
1866 * phandle.
1867 */
1868 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1869 const char *cells_name)
1870 {
1871 struct of_phandle_iterator it;
1872 int rc, cur_index = 0;
1873
1874 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1875 if (rc)
1876 return rc;
1877
1878 while ((rc = of_phandle_iterator_next(&it)) == 0)
1879 cur_index += 1;
1880
1881 if (rc != -ENOENT)
1882 return rc;
1883
1884 return cur_index;
1885 }
1886 EXPORT_SYMBOL(of_count_phandle_with_args);
1887
1888 /**
1889 * __of_add_property - Add a property to a node without lock operations
1890 */
1891 int __of_add_property(struct device_node *np, struct property *prop)
1892 {
1893 struct property **next;
1894
1895 prop->next = NULL;
1896 next = &np->properties;
1897 while (*next) {
1898 if (strcmp(prop->name, (*next)->name) == 0)
1899 /* duplicate ! don't insert it */
1900 return -EEXIST;
1901
1902 next = &(*next)->next;
1903 }
1904 *next = prop;
1905
1906 return 0;
1907 }
1908
1909 /**
1910 * of_add_property - Add a property to a node
1911 */
1912 int of_add_property(struct device_node *np, struct property *prop)
1913 {
1914 unsigned long flags;
1915 int rc;
1916
1917 mutex_lock(&of_mutex);
1918
1919 raw_spin_lock_irqsave(&devtree_lock, flags);
1920 rc = __of_add_property(np, prop);
1921 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1922
1923 if (!rc)
1924 __of_add_property_sysfs(np, prop);
1925
1926 mutex_unlock(&of_mutex);
1927
1928 if (!rc)
1929 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1930
1931 return rc;
1932 }
1933
1934 int __of_remove_property(struct device_node *np, struct property *prop)
1935 {
1936 struct property **next;
1937
1938 for (next = &np->properties; *next; next = &(*next)->next) {
1939 if (*next == prop)
1940 break;
1941 }
1942 if (*next == NULL)
1943 return -ENODEV;
1944
1945 /* found the node */
1946 *next = prop->next;
1947 prop->next = np->deadprops;
1948 np->deadprops = prop;
1949
1950 return 0;
1951 }
1952
1953 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1954 {
1955 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1956 kfree(prop->attr.attr.name);
1957 }
1958
1959 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1960 {
1961 if (!IS_ENABLED(CONFIG_SYSFS))
1962 return;
1963
1964 /* at early boot, bail here and defer setup to of_init() */
1965 if (of_kset && of_node_is_attached(np))
1966 __of_sysfs_remove_bin_file(np, prop);
1967 }
1968
1969 /**
1970 * of_remove_property - Remove a property from a node.
1971 *
1972 * Note that we don't actually remove it, since we have given out
1973 * who-knows-how-many pointers to the data using get-property.
1974 * Instead we just move the property to the "dead properties"
1975 * list, so it won't be found any more.
1976 */
1977 int of_remove_property(struct device_node *np, struct property *prop)
1978 {
1979 unsigned long flags;
1980 int rc;
1981
1982 if (!prop)
1983 return -ENODEV;
1984
1985 mutex_lock(&of_mutex);
1986
1987 raw_spin_lock_irqsave(&devtree_lock, flags);
1988 rc = __of_remove_property(np, prop);
1989 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1990
1991 if (!rc)
1992 __of_remove_property_sysfs(np, prop);
1993
1994 mutex_unlock(&of_mutex);
1995
1996 if (!rc)
1997 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1998
1999 return rc;
2000 }
2001
2002 int __of_update_property(struct device_node *np, struct property *newprop,
2003 struct property **oldpropp)
2004 {
2005 struct property **next, *oldprop;
2006
2007 for (next = &np->properties; *next; next = &(*next)->next) {
2008 if (of_prop_cmp((*next)->name, newprop->name) == 0)
2009 break;
2010 }
2011 *oldpropp = oldprop = *next;
2012
2013 if (oldprop) {
2014 /* replace the node */
2015 newprop->next = oldprop->next;
2016 *next = newprop;
2017 oldprop->next = np->deadprops;
2018 np->deadprops = oldprop;
2019 } else {
2020 /* new node */
2021 newprop->next = NULL;
2022 *next = newprop;
2023 }
2024
2025 return 0;
2026 }
2027
2028 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
2029 struct property *oldprop)
2030 {
2031 if (!IS_ENABLED(CONFIG_SYSFS))
2032 return;
2033
2034 /* At early boot, bail out and defer setup to of_init() */
2035 if (!of_kset)
2036 return;
2037
2038 if (oldprop)
2039 __of_sysfs_remove_bin_file(np, oldprop);
2040 __of_add_property_sysfs(np, newprop);
2041 }
2042
2043 /*
2044 * of_update_property - Update a property in a node, if the property does
2045 * not exist, add it.
2046 *
2047 * Note that we don't actually remove it, since we have given out
2048 * who-knows-how-many pointers to the data using get-property.
2049 * Instead we just move the property to the "dead properties" list,
2050 * and add the new property to the property list
2051 */
2052 int of_update_property(struct device_node *np, struct property *newprop)
2053 {
2054 struct property *oldprop;
2055 unsigned long flags;
2056 int rc;
2057
2058 if (!newprop->name)
2059 return -EINVAL;
2060
2061 mutex_lock(&of_mutex);
2062
2063 raw_spin_lock_irqsave(&devtree_lock, flags);
2064 rc = __of_update_property(np, newprop, &oldprop);
2065 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2066
2067 if (!rc)
2068 __of_update_property_sysfs(np, newprop, oldprop);
2069
2070 mutex_unlock(&of_mutex);
2071
2072 if (!rc)
2073 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2074
2075 return rc;
2076 }
2077
2078 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2079 int id, const char *stem, int stem_len)
2080 {
2081 ap->np = np;
2082 ap->id = id;
2083 strncpy(ap->stem, stem, stem_len);
2084 ap->stem[stem_len] = 0;
2085 list_add_tail(&ap->link, &aliases_lookup);
2086 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2087 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2088 }
2089
2090 /**
2091 * of_alias_scan - Scan all properties of the 'aliases' node
2092 *
2093 * The function scans all the properties of the 'aliases' node and populates
2094 * the global lookup table with the properties. It returns the
2095 * number of alias properties found, or an error code in case of failure.
2096 *
2097 * @dt_alloc: An allocator that provides a virtual address to memory
2098 * for storing the resulting tree
2099 */
2100 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2101 {
2102 struct property *pp;
2103
2104 of_aliases = of_find_node_by_path("/aliases");
2105 of_chosen = of_find_node_by_path("/chosen");
2106 if (of_chosen == NULL)
2107 of_chosen = of_find_node_by_path("/chosen@0");
2108
2109 if (of_chosen) {
2110 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2111 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2112 if (!name)
2113 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2114 if (IS_ENABLED(CONFIG_PPC) && !name)
2115 name = of_get_property(of_aliases, "stdout", NULL);
2116 if (name)
2117 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2118 }
2119
2120 if (!of_aliases)
2121 return;
2122
2123 for_each_property_of_node(of_aliases, pp) {
2124 const char *start = pp->name;
2125 const char *end = start + strlen(start);
2126 struct device_node *np;
2127 struct alias_prop *ap;
2128 int id, len;
2129
2130 /* Skip those we do not want to proceed */
2131 if (!strcmp(pp->name, "name") ||
2132 !strcmp(pp->name, "phandle") ||
2133 !strcmp(pp->name, "linux,phandle"))
2134 continue;
2135
2136 np = of_find_node_by_path(pp->value);
2137 if (!np)
2138 continue;
2139
2140 /* walk the alias backwards to extract the id and work out
2141 * the 'stem' string */
2142 while (isdigit(*(end-1)) && end > start)
2143 end--;
2144 len = end - start;
2145
2146 if (kstrtoint(end, 10, &id) < 0)
2147 continue;
2148
2149 /* Allocate an alias_prop with enough space for the stem */
2150 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2151 if (!ap)
2152 continue;
2153 memset(ap, 0, sizeof(*ap) + len + 1);
2154 ap->alias = start;
2155 of_alias_add(ap, np, id, start, len);
2156 }
2157 }
2158
2159 /**
2160 * of_alias_get_id - Get alias id for the given device_node
2161 * @np: Pointer to the given device_node
2162 * @stem: Alias stem of the given device_node
2163 *
2164 * The function travels the lookup table to get the alias id for the given
2165 * device_node and alias stem. It returns the alias id if found.
2166 */
2167 int of_alias_get_id(struct device_node *np, const char *stem)
2168 {
2169 struct alias_prop *app;
2170 int id = -ENODEV;
2171
2172 mutex_lock(&of_mutex);
2173 list_for_each_entry(app, &aliases_lookup, link) {
2174 if (strcmp(app->stem, stem) != 0)
2175 continue;
2176
2177 if (np == app->np) {
2178 id = app->id;
2179 break;
2180 }
2181 }
2182 mutex_unlock(&of_mutex);
2183
2184 return id;
2185 }
2186 EXPORT_SYMBOL_GPL(of_alias_get_id);
2187
2188 /**
2189 * of_alias_get_highest_id - Get highest alias id for the given stem
2190 * @stem: Alias stem to be examined
2191 *
2192 * The function travels the lookup table to get the highest alias id for the
2193 * given alias stem. It returns the alias id if found.
2194 */
2195 int of_alias_get_highest_id(const char *stem)
2196 {
2197 struct alias_prop *app;
2198 int id = -ENODEV;
2199
2200 mutex_lock(&of_mutex);
2201 list_for_each_entry(app, &aliases_lookup, link) {
2202 if (strcmp(app->stem, stem) != 0)
2203 continue;
2204
2205 if (app->id > id)
2206 id = app->id;
2207 }
2208 mutex_unlock(&of_mutex);
2209
2210 return id;
2211 }
2212 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2213
2214 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2215 u32 *pu)
2216 {
2217 const void *curv = cur;
2218
2219 if (!prop)
2220 return NULL;
2221
2222 if (!cur) {
2223 curv = prop->value;
2224 goto out_val;
2225 }
2226
2227 curv += sizeof(*cur);
2228 if (curv >= prop->value + prop->length)
2229 return NULL;
2230
2231 out_val:
2232 *pu = be32_to_cpup(curv);
2233 return curv;
2234 }
2235 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2236
2237 const char *of_prop_next_string(struct property *prop, const char *cur)
2238 {
2239 const void *curv = cur;
2240
2241 if (!prop)
2242 return NULL;
2243
2244 if (!cur)
2245 return prop->value;
2246
2247 curv += strlen(cur) + 1;
2248 if (curv >= prop->value + prop->length)
2249 return NULL;
2250
2251 return curv;
2252 }
2253 EXPORT_SYMBOL_GPL(of_prop_next_string);
2254
2255 /**
2256 * of_console_check() - Test and setup console for DT setup
2257 * @dn - Pointer to device node
2258 * @name - Name to use for preferred console without index. ex. "ttyS"
2259 * @index - Index to use for preferred console.
2260 *
2261 * Check if the given device node matches the stdout-path property in the
2262 * /chosen node. If it does then register it as the preferred console and return
2263 * TRUE. Otherwise return FALSE.
2264 */
2265 bool of_console_check(struct device_node *dn, char *name, int index)
2266 {
2267 if (!dn || dn != of_stdout || console_set_on_cmdline)
2268 return false;
2269 return !add_preferred_console(name, index,
2270 kstrdup(of_stdout_options, GFP_KERNEL));
2271 }
2272 EXPORT_SYMBOL_GPL(of_console_check);
2273
2274 /**
2275 * of_find_next_cache_node - Find a node's subsidiary cache
2276 * @np: node of type "cpu" or "cache"
2277 *
2278 * Returns a node pointer with refcount incremented, use
2279 * of_node_put() on it when done. Caller should hold a reference
2280 * to np.
2281 */
2282 struct device_node *of_find_next_cache_node(const struct device_node *np)
2283 {
2284 struct device_node *child, *cache_node;
2285
2286 cache_node = of_parse_phandle(np, "l2-cache", 0);
2287 if (!cache_node)
2288 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2289
2290 if (cache_node)
2291 return cache_node;
2292
2293 /* OF on pmac has nodes instead of properties named "l2-cache"
2294 * beneath CPU nodes.
2295 */
2296 if (!strcmp(np->type, "cpu"))
2297 for_each_child_of_node(np, child)
2298 if (!strcmp(child->type, "cache"))
2299 return child;
2300
2301 return NULL;
2302 }
2303
2304 /**
2305 * of_find_last_cache_level - Find the level at which the last cache is
2306 * present for the given logical cpu
2307 *
2308 * @cpu: cpu number(logical index) for which the last cache level is needed
2309 *
2310 * Returns the the level at which the last cache is present. It is exactly
2311 * same as the total number of cache levels for the given logical cpu.
2312 */
2313 int of_find_last_cache_level(unsigned int cpu)
2314 {
2315 u32 cache_level = 0;
2316 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2317
2318 while (np) {
2319 prev = np;
2320 of_node_put(np);
2321 np = of_find_next_cache_node(np);
2322 }
2323
2324 of_property_read_u32(prev, "cache-level", &cache_level);
2325
2326 return cache_level;
2327 }
2328
2329 /**
2330 * of_graph_parse_endpoint() - parse common endpoint node properties
2331 * @node: pointer to endpoint device_node
2332 * @endpoint: pointer to the OF endpoint data structure
2333 *
2334 * The caller should hold a reference to @node.
2335 */
2336 int of_graph_parse_endpoint(const struct device_node *node,
2337 struct of_endpoint *endpoint)
2338 {
2339 struct device_node *port_node = of_get_parent(node);
2340
2341 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2342 __func__, node->full_name);
2343
2344 memset(endpoint, 0, sizeof(*endpoint));
2345
2346 endpoint->local_node = node;
2347 /*
2348 * It doesn't matter whether the two calls below succeed.
2349 * If they don't then the default value 0 is used.
2350 */
2351 of_property_read_u32(port_node, "reg", &endpoint->port);
2352 of_property_read_u32(node, "reg", &endpoint->id);
2353
2354 of_node_put(port_node);
2355
2356 return 0;
2357 }
2358 EXPORT_SYMBOL(of_graph_parse_endpoint);
2359
2360 /**
2361 * of_graph_get_port_by_id() - get the port matching a given id
2362 * @parent: pointer to the parent device node
2363 * @id: id of the port
2364 *
2365 * Return: A 'port' node pointer with refcount incremented. The caller
2366 * has to use of_node_put() on it when done.
2367 */
2368 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2369 {
2370 struct device_node *node, *port;
2371
2372 node = of_get_child_by_name(parent, "ports");
2373 if (node)
2374 parent = node;
2375
2376 for_each_child_of_node(parent, port) {
2377 u32 port_id = 0;
2378
2379 if (of_node_cmp(port->name, "port") != 0)
2380 continue;
2381 of_property_read_u32(port, "reg", &port_id);
2382 if (id == port_id)
2383 break;
2384 }
2385
2386 of_node_put(node);
2387
2388 return port;
2389 }
2390 EXPORT_SYMBOL(of_graph_get_port_by_id);
2391
2392 /**
2393 * of_graph_get_next_endpoint() - get next endpoint node
2394 * @parent: pointer to the parent device node
2395 * @prev: previous endpoint node, or NULL to get first
2396 *
2397 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2398 * of the passed @prev node is decremented.
2399 */
2400 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2401 struct device_node *prev)
2402 {
2403 struct device_node *endpoint;
2404 struct device_node *port;
2405
2406 if (!parent)
2407 return NULL;
2408
2409 /*
2410 * Start by locating the port node. If no previous endpoint is specified
2411 * search for the first port node, otherwise get the previous endpoint
2412 * parent port node.
2413 */
2414 if (!prev) {
2415 struct device_node *node;
2416
2417 node = of_get_child_by_name(parent, "ports");
2418 if (node)
2419 parent = node;
2420
2421 port = of_get_child_by_name(parent, "port");
2422 of_node_put(node);
2423
2424 if (!port) {
2425 pr_err("graph: no port node found in %s\n",
2426 parent->full_name);
2427 return NULL;
2428 }
2429 } else {
2430 port = of_get_parent(prev);
2431 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2432 __func__, prev->full_name))
2433 return NULL;
2434 }
2435
2436 while (1) {
2437 /*
2438 * Now that we have a port node, get the next endpoint by
2439 * getting the next child. If the previous endpoint is NULL this
2440 * will return the first child.
2441 */
2442 endpoint = of_get_next_child(port, prev);
2443 if (endpoint) {
2444 of_node_put(port);
2445 return endpoint;
2446 }
2447
2448 /* No more endpoints under this port, try the next one. */
2449 prev = NULL;
2450
2451 do {
2452 port = of_get_next_child(parent, port);
2453 if (!port)
2454 return NULL;
2455 } while (of_node_cmp(port->name, "port"));
2456 }
2457 }
2458 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2459
2460 /**
2461 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2462 * @parent: pointer to the parent device node
2463 * @port_reg: identifier (value of reg property) of the parent port node
2464 * @reg: identifier (value of reg property) of the endpoint node
2465 *
2466 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2467 * is the child of a port node identified by port_reg. reg and port_reg are
2468 * ignored when they are -1.
2469 */
2470 struct device_node *of_graph_get_endpoint_by_regs(
2471 const struct device_node *parent, int port_reg, int reg)
2472 {
2473 struct of_endpoint endpoint;
2474 struct device_node *node = NULL;
2475
2476 for_each_endpoint_of_node(parent, node) {
2477 of_graph_parse_endpoint(node, &endpoint);
2478 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2479 ((reg == -1) || (endpoint.id == reg)))
2480 return node;
2481 }
2482
2483 return NULL;
2484 }
2485 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2486
2487 /**
2488 * of_graph_get_remote_port_parent() - get remote port's parent node
2489 * @node: pointer to a local endpoint device_node
2490 *
2491 * Return: Remote device node associated with remote endpoint node linked
2492 * to @node. Use of_node_put() on it when done.
2493 */
2494 struct device_node *of_graph_get_remote_port_parent(
2495 const struct device_node *node)
2496 {
2497 struct device_node *np;
2498 unsigned int depth;
2499
2500 /* Get remote endpoint node. */
2501 np = of_parse_phandle(node, "remote-endpoint", 0);
2502
2503 /* Walk 3 levels up only if there is 'ports' node. */
2504 for (depth = 3; depth && np; depth--) {
2505 np = of_get_next_parent(np);
2506 if (depth == 2 && of_node_cmp(np->name, "ports"))
2507 break;
2508 }
2509 return np;
2510 }
2511 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2512
2513 /**
2514 * of_graph_get_remote_port() - get remote port node
2515 * @node: pointer to a local endpoint device_node
2516 *
2517 * Return: Remote port node associated with remote endpoint node linked
2518 * to @node. Use of_node_put() on it when done.
2519 */
2520 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2521 {
2522 struct device_node *np;
2523
2524 /* Get remote endpoint node. */
2525 np = of_parse_phandle(node, "remote-endpoint", 0);
2526 if (!np)
2527 return NULL;
2528 return of_get_next_parent(np);
2529 }
2530 EXPORT_SYMBOL(of_graph_get_remote_port);
2531
2532 /**
2533 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
2534 * @node: pointer to parent device_node containing graph port/endpoint
2535 * @port: identifier (value of reg property) of the parent port node
2536 * @endpoint: identifier (value of reg property) of the endpoint node
2537 *
2538 * Return: Remote device node associated with remote endpoint node linked
2539 * to @node. Use of_node_put() on it when done.
2540 */
2541 struct device_node *of_graph_get_remote_node(const struct device_node *node,
2542 u32 port, u32 endpoint)
2543 {
2544 struct device_node *endpoint_node, *remote;
2545
2546 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
2547 if (!endpoint_node) {
2548 pr_debug("no valid endpoint (%d, %d) for node %s\n",
2549 port, endpoint, node->full_name);
2550 return NULL;
2551 }
2552
2553 remote = of_graph_get_remote_port_parent(endpoint_node);
2554 of_node_put(endpoint_node);
2555 if (!remote) {
2556 pr_debug("no valid remote node\n");
2557 return NULL;
2558 }
2559
2560 if (!of_device_is_available(remote)) {
2561 pr_debug("not available for remote node\n");
2562 return NULL;
2563 }
2564
2565 return remote;
2566 }
2567 EXPORT_SYMBOL(of_graph_get_remote_node);