]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/platform/x86/asus-laptop.c
23c60558bfd3da87e2e8ea14ffa92d1ddf5c5bb4
[mirror_ubuntu-bionic-kernel.git] / drivers / platform / x86 / asus-laptop.c
1 /*
2 * asus-laptop.c - Asus Laptop Support
3 *
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 *
24 * The development page for this driver is located at
25 * http://sourceforge.net/projects/acpi4asus/
26 *
27 * Credits:
28 * Pontus Fuchs - Helper functions, cleanup
29 * Johann Wiesner - Small compile fixes
30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
31 * Eric Burghard - LED display support for W1N
32 * Josh Green - Light Sens support
33 * Thomas Tuttle - His first patch for led support was very helpful
34 * Sam Lin - GPS support
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <acpi/acpi_drivers.h>
57 #include <acpi/acpi_bus.h>
58
59 #define ASUS_LAPTOP_VERSION "0.42"
60
61 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS "hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
66
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70
71 /*
72 * WAPF defines the behavior of the Fn+Fx wlan key
73 * The significance of values is yet to be found, but
74 * most of the time:
75 * Bit | Bluetooth | WLAN
76 * 0 | Hardware | Hardware
77 * 1 | Hardware | Software
78 * 4 | Software | Software
79 */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 "(unknown, led or rfkill). "
90 "default is unknown");
91
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 "(unknown, led or rfkill). "
95 "default is unknown");
96
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 "default is -1");
107
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 "default is -1");
112
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 "default is -1");
117
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 "default is -1");
122
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 "(0 = disabled, 1 = enabled). "
126 "default is 0");
127
128 /*
129 * Some events we use, same for all Asus
130 */
131 #define ATKD_BR_UP 0x10 /* (event & ~ATKD_BR_UP) = brightness level */
132 #define ATKD_BR_DOWN 0x20 /* (event & ~ATKD_BR_DOWN) = britghness level */
133 #define ATKD_BR_MIN ATKD_BR_UP
134 #define ATKD_BR_MAX (ATKD_BR_DOWN | 0xF) /* 0x2f */
135 #define ATKD_LCD_ON 0x33
136 #define ATKD_LCD_OFF 0x34
137
138 /*
139 * Known bits returned by \_SB.ATKD.HWRS
140 */
141 #define WL_HWRS 0x80
142 #define BT_HWRS 0x100
143
144 /*
145 * Flags for hotk status
146 * WL_ON and BT_ON are also used for wireless_status()
147 */
148 #define WL_RSTS 0x01 /* internal Wifi */
149 #define BT_RSTS 0x02 /* internal Bluetooth */
150 #define WM_RSTS 0x08 /* internal wimax */
151 #define WW_RSTS 0x20 /* internal wwan */
152
153 /* WLED and BLED type */
154 #define TYPE_UNKNOWN 0
155 #define TYPE_LED 1
156 #define TYPE_RFKILL 2
157
158 /* LED */
159 #define METHOD_MLED "MLED"
160 #define METHOD_TLED "TLED"
161 #define METHOD_RLED "RLED" /* W1JC */
162 #define METHOD_PLED "PLED" /* A7J */
163 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
164
165 /* LEDD */
166 #define METHOD_LEDD "SLCM"
167
168 /*
169 * Bluetooth and WLAN
170 * WLED and BLED are not handled like other XLED, because in some dsdt
171 * they also control the WLAN/Bluetooth device.
172 */
173 #define METHOD_WLAN "WLED"
174 #define METHOD_BLUETOOTH "BLED"
175
176 /* WWAN and WIMAX */
177 #define METHOD_WWAN "GSMC"
178 #define METHOD_WIMAX "WMXC"
179
180 #define METHOD_WL_STATUS "RSTS"
181
182 /* Brightness */
183 #define METHOD_BRIGHTNESS_SET "SPLV"
184 #define METHOD_BRIGHTNESS_GET "GPLV"
185
186 /* Display */
187 #define METHOD_SWITCH_DISPLAY "SDSP"
188
189 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
190 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
191
192 /* GPS */
193 /* R2H use different handle for GPS on/off */
194 #define METHOD_GPS_ON "SDON"
195 #define METHOD_GPS_OFF "SDOF"
196 #define METHOD_GPS_STATUS "GPST"
197
198 /* Keyboard light */
199 #define METHOD_KBD_LIGHT_SET "SLKB"
200 #define METHOD_KBD_LIGHT_GET "GLKB"
201
202 /* For Pegatron Lucid tablet */
203 #define DEVICE_NAME_PEGA "Lucid"
204
205 #define METHOD_PEGA_ENABLE "ENPR"
206 #define METHOD_PEGA_DISABLE "DAPR"
207 #define PEGA_WLAN 0x00
208 #define PEGA_BLUETOOTH 0x01
209 #define PEGA_WWAN 0x02
210 #define PEGA_ALS 0x04
211 #define PEGA_ALS_POWER 0x05
212
213 #define METHOD_PEGA_READ "RDLN"
214 #define PEGA_READ_ALS_H 0x02
215 #define PEGA_READ_ALS_L 0x03
216
217 #define PEGA_ACCEL_NAME "pega_accel"
218 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
219 #define METHOD_XLRX "XLRX"
220 #define METHOD_XLRY "XLRY"
221 #define METHOD_XLRZ "XLRZ"
222 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
223 #define PEGA_ACC_RETRIES 3
224
225 /*
226 * Define a specific led structure to keep the main structure clean
227 */
228 struct asus_led {
229 int wk;
230 struct work_struct work;
231 struct led_classdev led;
232 struct asus_laptop *asus;
233 const char *method;
234 };
235
236 /*
237 * Same thing for rfkill
238 */
239 struct asus_rfkill {
240 /* type of control. Maps to PEGA_* values or *_RSTS */
241 int control_id;
242 struct rfkill *rfkill;
243 struct asus_laptop *asus;
244 };
245
246 /*
247 * This is the main structure, we can use it to store anything interesting
248 * about the hotk device
249 */
250 struct asus_laptop {
251 char *name; /* laptop name */
252
253 struct acpi_table_header *dsdt_info;
254 struct platform_device *platform_device;
255 struct acpi_device *device; /* the device we are in */
256 struct backlight_device *backlight_device;
257
258 struct input_dev *inputdev;
259 struct key_entry *keymap;
260 struct input_polled_dev *pega_accel_poll;
261
262 struct asus_led wled;
263 struct asus_led bled;
264 struct asus_led mled;
265 struct asus_led tled;
266 struct asus_led rled;
267 struct asus_led pled;
268 struct asus_led gled;
269 struct asus_led kled;
270 struct workqueue_struct *led_workqueue;
271
272 int wled_type;
273 int bled_type;
274 int wireless_status;
275 bool have_rsts;
276 bool is_pega_lucid;
277 bool pega_acc_live;
278 int pega_acc_x;
279 int pega_acc_y;
280 int pega_acc_z;
281
282 struct asus_rfkill wlan;
283 struct asus_rfkill bluetooth;
284 struct asus_rfkill wwan;
285 struct asus_rfkill wimax;
286 struct asus_rfkill gps;
287
288 acpi_handle handle; /* the handle of the hotk device */
289 u32 ledd_status; /* status of the LED display */
290 u8 light_level; /* light sensor level */
291 u8 light_switch; /* light sensor switch value */
292 u16 event_count[128]; /* count for each event TODO make this better */
293 };
294
295 static const struct key_entry asus_keymap[] = {
296 /* Lenovo SL Specific keycodes */
297 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
298 {KE_KEY, 0x05, { KEY_WLAN } },
299 {KE_KEY, 0x08, { KEY_F13 } },
300 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
301 {KE_KEY, 0x17, { KEY_ZOOM } },
302 {KE_KEY, 0x1f, { KEY_BATTERY } },
303 /* End of Lenovo SL Specific keycodes */
304 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
305 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
306 {KE_KEY, 0x32, { KEY_MUTE } },
307 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
308 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
309 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
310 {KE_KEY, 0x41, { KEY_NEXTSONG } },
311 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
312 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
313 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
314 {KE_KEY, 0x50, { KEY_EMAIL } },
315 {KE_KEY, 0x51, { KEY_WWW } },
316 {KE_KEY, 0x55, { KEY_CALC } },
317 {KE_IGNORE, 0x57, }, /* Battery mode */
318 {KE_IGNORE, 0x58, }, /* AC mode */
319 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
320 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
321 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
322 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
323 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
324 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* LCD Only */
325 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* CRT Only */
326 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* LCD + CRT */
327 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
328 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
329 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
330 {KE_IGNORE, 0x6E, }, /* Low Battery notification */
331 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
332 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
333 {KE_KEY, 0x82, { KEY_CAMERA } },
334 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
335 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
336 {KE_KEY, 0x95, { KEY_MEDIA } },
337 {KE_KEY, 0x99, { KEY_PHONE } },
338 {KE_KEY, 0xB5, { KEY_CALC } },
339 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
340 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
341 {KE_END, 0},
342 };
343
344
345 /*
346 * This function evaluates an ACPI method, given an int as parameter, the
347 * method is searched within the scope of the handle, can be NULL. The output
348 * of the method is written is output, which can also be NULL
349 *
350 * returns 0 if write is successful, -1 else.
351 */
352 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
353 struct acpi_buffer *output)
354 {
355 struct acpi_object_list params; /* list of input parameters (an int) */
356 union acpi_object in_obj; /* the only param we use */
357 acpi_status status;
358
359 if (!handle)
360 return -1;
361
362 params.count = 1;
363 params.pointer = &in_obj;
364 in_obj.type = ACPI_TYPE_INTEGER;
365 in_obj.integer.value = val;
366
367 status = acpi_evaluate_object(handle, (char *)method, &params, output);
368 if (status == AE_OK)
369 return 0;
370 else
371 return -1;
372 }
373
374 static int write_acpi_int(acpi_handle handle, const char *method, int val)
375 {
376 return write_acpi_int_ret(handle, method, val, NULL);
377 }
378
379 static int acpi_check_handle(acpi_handle handle, const char *method,
380 acpi_handle *ret)
381 {
382 acpi_status status;
383
384 if (method == NULL)
385 return -ENODEV;
386
387 if (ret)
388 status = acpi_get_handle(handle, (char *)method,
389 ret);
390 else {
391 acpi_handle dummy;
392
393 status = acpi_get_handle(handle, (char *)method,
394 &dummy);
395 }
396
397 if (status != AE_OK) {
398 if (ret)
399 pr_warn("Error finding %s\n", method);
400 return -ENODEV;
401 }
402 return 0;
403 }
404
405 static bool asus_check_pega_lucid(struct asus_laptop *asus)
406 {
407 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
408 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
409 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
410 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
411 }
412
413 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
414 {
415 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
416 return write_acpi_int(asus->handle, method, unit);
417 }
418
419 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
420 {
421 int i, delta;
422 unsigned long long val;
423 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
424 acpi_evaluate_integer(asus->handle, method, NULL, &val);
425
426 /* The output is noisy. From reading the ASL
427 * dissassembly, timeout errors are returned with 1's
428 * in the high word, and the lack of locking around
429 * thei hi/lo byte reads means that a transition
430 * between (for example) -1 and 0 could be read as
431 * 0xff00 or 0x00ff. */
432 delta = abs(curr - (short)val);
433 if (delta < 128 && !(val & ~0xffff))
434 break;
435 }
436 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
437 }
438
439 static void pega_accel_poll(struct input_polled_dev *ipd)
440 {
441 struct device *parent = ipd->input->dev.parent;
442 struct asus_laptop *asus = dev_get_drvdata(parent);
443
444 /* In some cases, the very first call to poll causes a
445 * recursive fault under the polldev worker. This is
446 * apparently related to very early userspace access to the
447 * device, and perhaps a firmware bug. Fake the first report. */
448 if (!asus->pega_acc_live) {
449 asus->pega_acc_live = true;
450 input_report_abs(ipd->input, ABS_X, 0);
451 input_report_abs(ipd->input, ABS_Y, 0);
452 input_report_abs(ipd->input, ABS_Z, 0);
453 input_sync(ipd->input);
454 return;
455 }
456
457 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
458 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
459 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
460
461 /* Note transform, convert to "right/up/out" in the native
462 * landscape orientation (i.e. the vector is the direction of
463 * "real up" in the device's cartiesian coordinates). */
464 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
465 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
466 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z);
467 input_sync(ipd->input);
468 }
469
470 static void pega_accel_exit(struct asus_laptop *asus)
471 {
472 if (asus->pega_accel_poll) {
473 input_unregister_polled_device(asus->pega_accel_poll);
474 input_free_polled_device(asus->pega_accel_poll);
475 }
476 asus->pega_accel_poll = NULL;
477 }
478
479 static int pega_accel_init(struct asus_laptop *asus)
480 {
481 int err;
482 struct input_polled_dev *ipd;
483
484 if (!asus->is_pega_lucid)
485 return -ENODEV;
486
487 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
488 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
489 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
490 return -ENODEV;
491
492 ipd = input_allocate_polled_device();
493 if (!ipd)
494 return -ENOMEM;
495
496 ipd->poll = pega_accel_poll;
497 ipd->poll_interval = 125;
498 ipd->poll_interval_min = 50;
499 ipd->poll_interval_max = 2000;
500
501 ipd->input->name = PEGA_ACCEL_DESC;
502 ipd->input->phys = PEGA_ACCEL_NAME "/input0";
503 ipd->input->dev.parent = &asus->platform_device->dev;
504 ipd->input->id.bustype = BUS_HOST;
505
506 set_bit(EV_ABS, ipd->input->evbit);
507 input_set_abs_params(ipd->input, ABS_X,
508 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
509 input_set_abs_params(ipd->input, ABS_Y,
510 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
511 input_set_abs_params(ipd->input, ABS_Z,
512 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
513
514 err = input_register_polled_device(ipd);
515 if (err)
516 goto exit;
517
518 asus->pega_accel_poll = ipd;
519 return 0;
520
521 exit:
522 input_free_polled_device(ipd);
523 return err;
524 }
525
526 /* Generic LED function */
527 static int asus_led_set(struct asus_laptop *asus, const char *method,
528 int value)
529 {
530 if (!strcmp(method, METHOD_MLED))
531 value = !value;
532 else if (!strcmp(method, METHOD_GLED))
533 value = !value + 1;
534 else
535 value = !!value;
536
537 return write_acpi_int(asus->handle, method, value);
538 }
539
540 /*
541 * LEDs
542 */
543 /* /sys/class/led handlers */
544 static void asus_led_cdev_set(struct led_classdev *led_cdev,
545 enum led_brightness value)
546 {
547 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
548 struct asus_laptop *asus = led->asus;
549
550 led->wk = !!value;
551 queue_work(asus->led_workqueue, &led->work);
552 }
553
554 static void asus_led_cdev_update(struct work_struct *work)
555 {
556 struct asus_led *led = container_of(work, struct asus_led, work);
557 struct asus_laptop *asus = led->asus;
558
559 asus_led_set(asus, led->method, led->wk);
560 }
561
562 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
563 {
564 return led_cdev->brightness;
565 }
566
567 /*
568 * Keyboard backlight (also a LED)
569 */
570 static int asus_kled_lvl(struct asus_laptop *asus)
571 {
572 unsigned long long kblv;
573 struct acpi_object_list params;
574 union acpi_object in_obj;
575 acpi_status rv;
576
577 params.count = 1;
578 params.pointer = &in_obj;
579 in_obj.type = ACPI_TYPE_INTEGER;
580 in_obj.integer.value = 2;
581
582 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
583 &params, &kblv);
584 if (ACPI_FAILURE(rv)) {
585 pr_warn("Error reading kled level\n");
586 return -ENODEV;
587 }
588 return kblv;
589 }
590
591 static int asus_kled_set(struct asus_laptop *asus, int kblv)
592 {
593 if (kblv > 0)
594 kblv = (1 << 7) | (kblv & 0x7F);
595 else
596 kblv = 0;
597
598 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
599 pr_warn("Keyboard LED display write failed\n");
600 return -EINVAL;
601 }
602 return 0;
603 }
604
605 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
606 enum led_brightness value)
607 {
608 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
609 struct asus_laptop *asus = led->asus;
610
611 led->wk = value;
612 queue_work(asus->led_workqueue, &led->work);
613 }
614
615 static void asus_kled_cdev_update(struct work_struct *work)
616 {
617 struct asus_led *led = container_of(work, struct asus_led, work);
618 struct asus_laptop *asus = led->asus;
619
620 asus_kled_set(asus, led->wk);
621 }
622
623 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
624 {
625 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
626 struct asus_laptop *asus = led->asus;
627
628 return asus_kled_lvl(asus);
629 }
630
631 static void asus_led_exit(struct asus_laptop *asus)
632 {
633 if (!IS_ERR_OR_NULL(asus->wled.led.dev))
634 led_classdev_unregister(&asus->wled.led);
635 if (!IS_ERR_OR_NULL(asus->bled.led.dev))
636 led_classdev_unregister(&asus->bled.led);
637 if (!IS_ERR_OR_NULL(asus->mled.led.dev))
638 led_classdev_unregister(&asus->mled.led);
639 if (!IS_ERR_OR_NULL(asus->tled.led.dev))
640 led_classdev_unregister(&asus->tled.led);
641 if (!IS_ERR_OR_NULL(asus->pled.led.dev))
642 led_classdev_unregister(&asus->pled.led);
643 if (!IS_ERR_OR_NULL(asus->rled.led.dev))
644 led_classdev_unregister(&asus->rled.led);
645 if (!IS_ERR_OR_NULL(asus->gled.led.dev))
646 led_classdev_unregister(&asus->gled.led);
647 if (!IS_ERR_OR_NULL(asus->kled.led.dev))
648 led_classdev_unregister(&asus->kled.led);
649 if (asus->led_workqueue) {
650 destroy_workqueue(asus->led_workqueue);
651 asus->led_workqueue = NULL;
652 }
653 }
654
655 /* Ugly macro, need to fix that later */
656 static int asus_led_register(struct asus_laptop *asus,
657 struct asus_led *led,
658 const char *name, const char *method)
659 {
660 struct led_classdev *led_cdev = &led->led;
661
662 if (!method || acpi_check_handle(asus->handle, method, NULL))
663 return 0; /* Led not present */
664
665 led->asus = asus;
666 led->method = method;
667
668 INIT_WORK(&led->work, asus_led_cdev_update);
669 led_cdev->name = name;
670 led_cdev->brightness_set = asus_led_cdev_set;
671 led_cdev->brightness_get = asus_led_cdev_get;
672 led_cdev->max_brightness = 1;
673 return led_classdev_register(&asus->platform_device->dev, led_cdev);
674 }
675
676 static int asus_led_init(struct asus_laptop *asus)
677 {
678 int r = 0;
679
680 /*
681 * The Pegatron Lucid has no physical leds, but all methods are
682 * available in the DSDT...
683 */
684 if (asus->is_pega_lucid)
685 return 0;
686
687 /*
688 * Functions that actually update the LED's are called from a
689 * workqueue. By doing this as separate work rather than when the LED
690 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
691 * potentially bad time, such as a timer interrupt.
692 */
693 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
694 if (!asus->led_workqueue)
695 return -ENOMEM;
696
697 if (asus->wled_type == TYPE_LED)
698 r = asus_led_register(asus, &asus->wled, "asus::wlan",
699 METHOD_WLAN);
700 if (r)
701 goto error;
702 if (asus->bled_type == TYPE_LED)
703 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
704 METHOD_BLUETOOTH);
705 if (r)
706 goto error;
707 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
708 if (r)
709 goto error;
710 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
711 if (r)
712 goto error;
713 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
714 if (r)
715 goto error;
716 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
717 if (r)
718 goto error;
719 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
720 if (r)
721 goto error;
722 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
723 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
724 struct asus_led *led = &asus->kled;
725 struct led_classdev *cdev = &led->led;
726
727 led->asus = asus;
728
729 INIT_WORK(&led->work, asus_kled_cdev_update);
730 cdev->name = "asus::kbd_backlight";
731 cdev->brightness_set = asus_kled_cdev_set;
732 cdev->brightness_get = asus_kled_cdev_get;
733 cdev->max_brightness = 3;
734 r = led_classdev_register(&asus->platform_device->dev, cdev);
735 }
736 error:
737 if (r)
738 asus_led_exit(asus);
739 return r;
740 }
741
742 /*
743 * Backlight device
744 */
745 static int asus_read_brightness(struct backlight_device *bd)
746 {
747 struct asus_laptop *asus = bl_get_data(bd);
748 unsigned long long value;
749 acpi_status rv = AE_OK;
750
751 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
752 NULL, &value);
753 if (ACPI_FAILURE(rv))
754 pr_warn("Error reading brightness\n");
755
756 return value;
757 }
758
759 static int asus_set_brightness(struct backlight_device *bd, int value)
760 {
761 struct asus_laptop *asus = bl_get_data(bd);
762
763 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
764 pr_warn("Error changing brightness\n");
765 return -EIO;
766 }
767 return 0;
768 }
769
770 static int update_bl_status(struct backlight_device *bd)
771 {
772 int value = bd->props.brightness;
773
774 return asus_set_brightness(bd, value);
775 }
776
777 static const struct backlight_ops asusbl_ops = {
778 .get_brightness = asus_read_brightness,
779 .update_status = update_bl_status,
780 };
781
782 static int asus_backlight_notify(struct asus_laptop *asus)
783 {
784 struct backlight_device *bd = asus->backlight_device;
785 int old = bd->props.brightness;
786
787 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
788
789 return old;
790 }
791
792 static int asus_backlight_init(struct asus_laptop *asus)
793 {
794 struct backlight_device *bd;
795 struct backlight_properties props;
796
797 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
798 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
799 return 0;
800
801 memset(&props, 0, sizeof(struct backlight_properties));
802 props.max_brightness = 15;
803 props.type = BACKLIGHT_PLATFORM;
804
805 bd = backlight_device_register(ASUS_LAPTOP_FILE,
806 &asus->platform_device->dev, asus,
807 &asusbl_ops, &props);
808 if (IS_ERR(bd)) {
809 pr_err("Could not register asus backlight device\n");
810 asus->backlight_device = NULL;
811 return PTR_ERR(bd);
812 }
813
814 asus->backlight_device = bd;
815 bd->props.brightness = asus_read_brightness(bd);
816 bd->props.power = FB_BLANK_UNBLANK;
817 backlight_update_status(bd);
818 return 0;
819 }
820
821 static void asus_backlight_exit(struct asus_laptop *asus)
822 {
823 if (asus->backlight_device)
824 backlight_device_unregister(asus->backlight_device);
825 asus->backlight_device = NULL;
826 }
827
828 /*
829 * Platform device handlers
830 */
831
832 /*
833 * We write our info in page, we begin at offset off and cannot write more
834 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
835 * number of bytes written in page
836 */
837 static ssize_t show_infos(struct device *dev,
838 struct device_attribute *attr, char *page)
839 {
840 struct asus_laptop *asus = dev_get_drvdata(dev);
841 int len = 0;
842 unsigned long long temp;
843 char buf[16]; /* enough for all info */
844 acpi_status rv = AE_OK;
845
846 /*
847 * We use the easy way, we don't care of off and count,
848 * so we don't set eof to 1
849 */
850
851 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
852 len += sprintf(page + len, "Model reference : %s\n", asus->name);
853 /*
854 * The SFUN method probably allows the original driver to get the list
855 * of features supported by a given model. For now, 0x0100 or 0x0800
856 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
857 * The significance of others is yet to be found.
858 */
859 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
860 if (!ACPI_FAILURE(rv))
861 len += sprintf(page + len, "SFUN value : %#x\n",
862 (uint) temp);
863 /*
864 * The HWRS method return informations about the hardware.
865 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
866 * 0x40 for WWAN, 0x10 for WIMAX.
867 * The significance of others is yet to be found.
868 * We don't currently use this for device detection, and it
869 * takes several seconds to run on some systems.
870 */
871 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
872 if (!ACPI_FAILURE(rv))
873 len += sprintf(page + len, "HWRS value : %#x\n",
874 (uint) temp);
875 /*
876 * Another value for userspace: the ASYM method returns 0x02 for
877 * battery low and 0x04 for battery critical, its readings tend to be
878 * more accurate than those provided by _BST.
879 * Note: since not all the laptops provide this method, errors are
880 * silently ignored.
881 */
882 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
883 if (!ACPI_FAILURE(rv))
884 len += sprintf(page + len, "ASYM value : %#x\n",
885 (uint) temp);
886 if (asus->dsdt_info) {
887 snprintf(buf, 16, "%d", asus->dsdt_info->length);
888 len += sprintf(page + len, "DSDT length : %s\n", buf);
889 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
890 len += sprintf(page + len, "DSDT checksum : %s\n", buf);
891 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
892 len += sprintf(page + len, "DSDT revision : %s\n", buf);
893 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
894 len += sprintf(page + len, "OEM id : %s\n", buf);
895 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
896 len += sprintf(page + len, "OEM table id : %s\n", buf);
897 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
898 len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
899 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
900 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
901 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
902 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
903 }
904
905 return len;
906 }
907
908 static int parse_arg(const char *buf, unsigned long count, int *val)
909 {
910 if (!count)
911 return 0;
912 if (count > 31)
913 return -EINVAL;
914 if (sscanf(buf, "%i", val) != 1)
915 return -EINVAL;
916 return count;
917 }
918
919 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
920 const char *buf, size_t count,
921 const char *method)
922 {
923 int rv, value;
924 int out = 0;
925
926 rv = parse_arg(buf, count, &value);
927 if (rv > 0)
928 out = value ? 1 : 0;
929
930 if (write_acpi_int(asus->handle, method, value))
931 return -ENODEV;
932 return rv;
933 }
934
935 /*
936 * LEDD display
937 */
938 static ssize_t show_ledd(struct device *dev,
939 struct device_attribute *attr, char *buf)
940 {
941 struct asus_laptop *asus = dev_get_drvdata(dev);
942
943 return sprintf(buf, "0x%08x\n", asus->ledd_status);
944 }
945
946 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
947 const char *buf, size_t count)
948 {
949 struct asus_laptop *asus = dev_get_drvdata(dev);
950 int rv, value;
951
952 rv = parse_arg(buf, count, &value);
953 if (rv > 0) {
954 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
955 pr_warn("LED display write failed\n");
956 return -ENODEV;
957 }
958 asus->ledd_status = (u32) value;
959 }
960 return rv;
961 }
962
963 /*
964 * Wireless
965 */
966 static int asus_wireless_status(struct asus_laptop *asus, int mask)
967 {
968 unsigned long long status;
969 acpi_status rv = AE_OK;
970
971 if (!asus->have_rsts)
972 return (asus->wireless_status & mask) ? 1 : 0;
973
974 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
975 NULL, &status);
976 if (ACPI_FAILURE(rv)) {
977 pr_warn("Error reading Wireless status\n");
978 return -EINVAL;
979 }
980 return !!(status & mask);
981 }
982
983 /*
984 * WLAN
985 */
986 static int asus_wlan_set(struct asus_laptop *asus, int status)
987 {
988 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
989 pr_warn("Error setting wlan status to %d\n", status);
990 return -EIO;
991 }
992 return 0;
993 }
994
995 static ssize_t show_wlan(struct device *dev,
996 struct device_attribute *attr, char *buf)
997 {
998 struct asus_laptop *asus = dev_get_drvdata(dev);
999
1000 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1001 }
1002
1003 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
1004 const char *buf, size_t count)
1005 {
1006 struct asus_laptop *asus = dev_get_drvdata(dev);
1007
1008 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1009 }
1010
1011 /*e
1012 * Bluetooth
1013 */
1014 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1015 {
1016 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1017 pr_warn("Error setting bluetooth status to %d\n", status);
1018 return -EIO;
1019 }
1020 return 0;
1021 }
1022
1023 static ssize_t show_bluetooth(struct device *dev,
1024 struct device_attribute *attr, char *buf)
1025 {
1026 struct asus_laptop *asus = dev_get_drvdata(dev);
1027
1028 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1029 }
1030
1031 static ssize_t store_bluetooth(struct device *dev,
1032 struct device_attribute *attr, const char *buf,
1033 size_t count)
1034 {
1035 struct asus_laptop *asus = dev_get_drvdata(dev);
1036
1037 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1038 }
1039
1040 /*
1041 * Wimax
1042 */
1043 static int asus_wimax_set(struct asus_laptop *asus, int status)
1044 {
1045 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1046 pr_warn("Error setting wimax status to %d\n", status);
1047 return -EIO;
1048 }
1049 return 0;
1050 }
1051
1052 static ssize_t show_wimax(struct device *dev,
1053 struct device_attribute *attr, char *buf)
1054 {
1055 struct asus_laptop *asus = dev_get_drvdata(dev);
1056
1057 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1058 }
1059
1060 static ssize_t store_wimax(struct device *dev,
1061 struct device_attribute *attr, const char *buf,
1062 size_t count)
1063 {
1064 struct asus_laptop *asus = dev_get_drvdata(dev);
1065
1066 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1067 }
1068
1069 /*
1070 * Wwan
1071 */
1072 static int asus_wwan_set(struct asus_laptop *asus, int status)
1073 {
1074 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1075 pr_warn("Error setting wwan status to %d\n", status);
1076 return -EIO;
1077 }
1078 return 0;
1079 }
1080
1081 static ssize_t show_wwan(struct device *dev,
1082 struct device_attribute *attr, char *buf)
1083 {
1084 struct asus_laptop *asus = dev_get_drvdata(dev);
1085
1086 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1087 }
1088
1089 static ssize_t store_wwan(struct device *dev,
1090 struct device_attribute *attr, const char *buf,
1091 size_t count)
1092 {
1093 struct asus_laptop *asus = dev_get_drvdata(dev);
1094
1095 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1096 }
1097
1098 /*
1099 * Display
1100 */
1101 static void asus_set_display(struct asus_laptop *asus, int value)
1102 {
1103 /* no sanity check needed for now */
1104 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1105 pr_warn("Error setting display\n");
1106 return;
1107 }
1108
1109 /*
1110 * Experimental support for display switching. As of now: 1 should activate
1111 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1112 * Any combination (bitwise) of these will suffice. I never actually tested 4
1113 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1114 * for more info.
1115 */
1116 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1117 const char *buf, size_t count)
1118 {
1119 struct asus_laptop *asus = dev_get_drvdata(dev);
1120 int rv, value;
1121
1122 rv = parse_arg(buf, count, &value);
1123 if (rv > 0)
1124 asus_set_display(asus, value);
1125 return rv;
1126 }
1127
1128 /*
1129 * Light Sens
1130 */
1131 static void asus_als_switch(struct asus_laptop *asus, int value)
1132 {
1133 int ret;
1134
1135 if (asus->is_pega_lucid) {
1136 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1137 if (!ret)
1138 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1139 } else {
1140 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1141 }
1142 if (ret)
1143 pr_warning("Error setting light sensor switch\n");
1144
1145 asus->light_switch = value;
1146 }
1147
1148 static ssize_t show_lssw(struct device *dev,
1149 struct device_attribute *attr, char *buf)
1150 {
1151 struct asus_laptop *asus = dev_get_drvdata(dev);
1152
1153 return sprintf(buf, "%d\n", asus->light_switch);
1154 }
1155
1156 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1157 const char *buf, size_t count)
1158 {
1159 struct asus_laptop *asus = dev_get_drvdata(dev);
1160 int rv, value;
1161
1162 rv = parse_arg(buf, count, &value);
1163 if (rv > 0)
1164 asus_als_switch(asus, value ? 1 : 0);
1165
1166 return rv;
1167 }
1168
1169 static void asus_als_level(struct asus_laptop *asus, int value)
1170 {
1171 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1172 pr_warn("Error setting light sensor level\n");
1173 asus->light_level = value;
1174 }
1175
1176 static ssize_t show_lslvl(struct device *dev,
1177 struct device_attribute *attr, char *buf)
1178 {
1179 struct asus_laptop *asus = dev_get_drvdata(dev);
1180
1181 return sprintf(buf, "%d\n", asus->light_level);
1182 }
1183
1184 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1185 const char *buf, size_t count)
1186 {
1187 struct asus_laptop *asus = dev_get_drvdata(dev);
1188 int rv, value;
1189
1190 rv = parse_arg(buf, count, &value);
1191 if (rv > 0) {
1192 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1193 /* 0 <= value <= 15 */
1194 asus_als_level(asus, value);
1195 }
1196
1197 return rv;
1198 }
1199
1200 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1201 {
1202 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1203 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1204 &buffer);
1205 if (!err) {
1206 union acpi_object *obj = buffer.pointer;
1207 if (obj && obj->type == ACPI_TYPE_INTEGER)
1208 *result = obj->integer.value;
1209 else
1210 err = -EIO;
1211 }
1212 return err;
1213 }
1214
1215 static ssize_t show_lsvalue(struct device *dev,
1216 struct device_attribute *attr, char *buf)
1217 {
1218 struct asus_laptop *asus = dev_get_drvdata(dev);
1219 int err, hi, lo;
1220
1221 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1222 if (!err)
1223 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1224 if (!err)
1225 return sprintf(buf, "%d\n", 10 * hi + lo);
1226 return err;
1227 }
1228
1229 /*
1230 * GPS
1231 */
1232 static int asus_gps_status(struct asus_laptop *asus)
1233 {
1234 unsigned long long status;
1235 acpi_status rv = AE_OK;
1236
1237 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1238 NULL, &status);
1239 if (ACPI_FAILURE(rv)) {
1240 pr_warn("Error reading GPS status\n");
1241 return -ENODEV;
1242 }
1243 return !!status;
1244 }
1245
1246 static int asus_gps_switch(struct asus_laptop *asus, int status)
1247 {
1248 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1249
1250 if (write_acpi_int(asus->handle, meth, 0x02))
1251 return -ENODEV;
1252 return 0;
1253 }
1254
1255 static ssize_t show_gps(struct device *dev,
1256 struct device_attribute *attr, char *buf)
1257 {
1258 struct asus_laptop *asus = dev_get_drvdata(dev);
1259
1260 return sprintf(buf, "%d\n", asus_gps_status(asus));
1261 }
1262
1263 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1264 const char *buf, size_t count)
1265 {
1266 struct asus_laptop *asus = dev_get_drvdata(dev);
1267 int rv, value;
1268 int ret;
1269
1270 rv = parse_arg(buf, count, &value);
1271 if (rv <= 0)
1272 return -EINVAL;
1273 ret = asus_gps_switch(asus, !!value);
1274 if (ret)
1275 return ret;
1276 rfkill_set_sw_state(asus->gps.rfkill, !value);
1277 return rv;
1278 }
1279
1280 /*
1281 * rfkill
1282 */
1283 static int asus_gps_rfkill_set(void *data, bool blocked)
1284 {
1285 struct asus_laptop *asus = data;
1286
1287 return asus_gps_switch(asus, !blocked);
1288 }
1289
1290 static const struct rfkill_ops asus_gps_rfkill_ops = {
1291 .set_block = asus_gps_rfkill_set,
1292 };
1293
1294 static int asus_rfkill_set(void *data, bool blocked)
1295 {
1296 struct asus_rfkill *rfk = data;
1297 struct asus_laptop *asus = rfk->asus;
1298
1299 if (rfk->control_id == WL_RSTS)
1300 return asus_wlan_set(asus, !blocked);
1301 else if (rfk->control_id == BT_RSTS)
1302 return asus_bluetooth_set(asus, !blocked);
1303 else if (rfk->control_id == WM_RSTS)
1304 return asus_wimax_set(asus, !blocked);
1305 else if (rfk->control_id == WW_RSTS)
1306 return asus_wwan_set(asus, !blocked);
1307
1308 return -EINVAL;
1309 }
1310
1311 static const struct rfkill_ops asus_rfkill_ops = {
1312 .set_block = asus_rfkill_set,
1313 };
1314
1315 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1316 {
1317 if (!rfk->rfkill)
1318 return ;
1319
1320 rfkill_unregister(rfk->rfkill);
1321 rfkill_destroy(rfk->rfkill);
1322 rfk->rfkill = NULL;
1323 }
1324
1325 static void asus_rfkill_exit(struct asus_laptop *asus)
1326 {
1327 asus_rfkill_terminate(&asus->wwan);
1328 asus_rfkill_terminate(&asus->bluetooth);
1329 asus_rfkill_terminate(&asus->wlan);
1330 asus_rfkill_terminate(&asus->gps);
1331 }
1332
1333 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1334 const char *name, int control_id, int type,
1335 const struct rfkill_ops *ops)
1336 {
1337 int result;
1338
1339 rfk->control_id = control_id;
1340 rfk->asus = asus;
1341 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1342 type, ops, rfk);
1343 if (!rfk->rfkill)
1344 return -EINVAL;
1345
1346 result = rfkill_register(rfk->rfkill);
1347 if (result) {
1348 rfkill_destroy(rfk->rfkill);
1349 rfk->rfkill = NULL;
1350 }
1351
1352 return result;
1353 }
1354
1355 static int asus_rfkill_init(struct asus_laptop *asus)
1356 {
1357 int result = 0;
1358
1359 if (asus->is_pega_lucid)
1360 return -ENODEV;
1361
1362 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1363 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1364 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1365 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1366 -1, RFKILL_TYPE_GPS,
1367 &asus_gps_rfkill_ops);
1368 if (result)
1369 goto exit;
1370
1371
1372 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1373 asus->wled_type == TYPE_RFKILL)
1374 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1375 WL_RSTS, RFKILL_TYPE_WLAN,
1376 &asus_rfkill_ops);
1377 if (result)
1378 goto exit;
1379
1380 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1381 asus->bled_type == TYPE_RFKILL)
1382 result = asus_rfkill_setup(asus, &asus->bluetooth,
1383 "asus-bluetooth", BT_RSTS,
1384 RFKILL_TYPE_BLUETOOTH,
1385 &asus_rfkill_ops);
1386 if (result)
1387 goto exit;
1388
1389 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1390 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1391 WW_RSTS, RFKILL_TYPE_WWAN,
1392 &asus_rfkill_ops);
1393 if (result)
1394 goto exit;
1395
1396 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1397 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1398 WM_RSTS, RFKILL_TYPE_WIMAX,
1399 &asus_rfkill_ops);
1400 if (result)
1401 goto exit;
1402
1403 exit:
1404 if (result)
1405 asus_rfkill_exit(asus);
1406
1407 return result;
1408 }
1409
1410 static int pega_rfkill_set(void *data, bool blocked)
1411 {
1412 struct asus_rfkill *rfk = data;
1413
1414 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1415 return ret;
1416 }
1417
1418 static const struct rfkill_ops pega_rfkill_ops = {
1419 .set_block = pega_rfkill_set,
1420 };
1421
1422 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1423 const char *name, int controlid, int rfkill_type)
1424 {
1425 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1426 &pega_rfkill_ops);
1427 }
1428
1429 static int pega_rfkill_init(struct asus_laptop *asus)
1430 {
1431 int ret = 0;
1432
1433 if(!asus->is_pega_lucid)
1434 return -ENODEV;
1435
1436 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1437 PEGA_WLAN, RFKILL_TYPE_WLAN);
1438 if(ret)
1439 goto exit;
1440
1441 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1442 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1443 if(ret)
1444 goto exit;
1445
1446 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1447 PEGA_WWAN, RFKILL_TYPE_WWAN);
1448
1449 exit:
1450 if (ret)
1451 asus_rfkill_exit(asus);
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * Input device (i.e. hotkeys)
1458 */
1459 static void asus_input_notify(struct asus_laptop *asus, int event)
1460 {
1461 if (!asus->inputdev)
1462 return ;
1463 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1464 pr_info("Unknown key %x pressed\n", event);
1465 }
1466
1467 static int asus_input_init(struct asus_laptop *asus)
1468 {
1469 struct input_dev *input;
1470 int error;
1471
1472 input = input_allocate_device();
1473 if (!input) {
1474 pr_warn("Unable to allocate input device\n");
1475 return -ENOMEM;
1476 }
1477 input->name = "Asus Laptop extra buttons";
1478 input->phys = ASUS_LAPTOP_FILE "/input0";
1479 input->id.bustype = BUS_HOST;
1480 input->dev.parent = &asus->platform_device->dev;
1481
1482 error = sparse_keymap_setup(input, asus_keymap, NULL);
1483 if (error) {
1484 pr_err("Unable to setup input device keymap\n");
1485 goto err_free_dev;
1486 }
1487 error = input_register_device(input);
1488 if (error) {
1489 pr_warn("Unable to register input device\n");
1490 goto err_free_keymap;
1491 }
1492
1493 asus->inputdev = input;
1494 return 0;
1495
1496 err_free_keymap:
1497 sparse_keymap_free(input);
1498 err_free_dev:
1499 input_free_device(input);
1500 return error;
1501 }
1502
1503 static void asus_input_exit(struct asus_laptop *asus)
1504 {
1505 if (asus->inputdev) {
1506 sparse_keymap_free(asus->inputdev);
1507 input_unregister_device(asus->inputdev);
1508 }
1509 asus->inputdev = NULL;
1510 }
1511
1512 /*
1513 * ACPI driver
1514 */
1515 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1516 {
1517 struct asus_laptop *asus = acpi_driver_data(device);
1518 u16 count;
1519
1520 /* TODO Find a better way to handle events count. */
1521 count = asus->event_count[event % 128]++;
1522 acpi_bus_generate_proc_event(asus->device, event, count);
1523 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1524 dev_name(&asus->device->dev), event,
1525 count);
1526
1527 /* Brightness events are special */
1528 if (event >= ATKD_BR_MIN && event <= ATKD_BR_MAX) {
1529
1530 /* Ignore them completely if the acpi video driver is used */
1531 if (asus->backlight_device != NULL) {
1532 /* Update the backlight device. */
1533 asus_backlight_notify(asus);
1534 }
1535 return ;
1536 }
1537
1538 /* Accelerometer "coarse orientation change" event */
1539 if (asus->pega_accel_poll && event == 0xEA) {
1540 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1541 KOBJ_CHANGE);
1542 return ;
1543 }
1544
1545 asus_input_notify(asus, event);
1546 }
1547
1548 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1549 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1550 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1551 show_bluetooth, store_bluetooth);
1552 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1553 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1554 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1555 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1556 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1557 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1558 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1559 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1560
1561 static struct attribute *asus_attributes[] = {
1562 &dev_attr_infos.attr,
1563 &dev_attr_wlan.attr,
1564 &dev_attr_bluetooth.attr,
1565 &dev_attr_wimax.attr,
1566 &dev_attr_wwan.attr,
1567 &dev_attr_display.attr,
1568 &dev_attr_ledd.attr,
1569 &dev_attr_ls_value.attr,
1570 &dev_attr_ls_level.attr,
1571 &dev_attr_ls_switch.attr,
1572 &dev_attr_gps.attr,
1573 NULL
1574 };
1575
1576 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1577 struct attribute *attr,
1578 int idx)
1579 {
1580 struct device *dev = container_of(kobj, struct device, kobj);
1581 struct platform_device *pdev = to_platform_device(dev);
1582 struct asus_laptop *asus = platform_get_drvdata(pdev);
1583 acpi_handle handle = asus->handle;
1584 bool supported;
1585
1586 if (asus->is_pega_lucid) {
1587 /* no ls_level interface on the Lucid */
1588 if (attr == &dev_attr_ls_switch.attr)
1589 supported = true;
1590 else if (attr == &dev_attr_ls_level.attr)
1591 supported = false;
1592 else
1593 goto normal;
1594
1595 return supported;
1596 }
1597
1598 normal:
1599 if (attr == &dev_attr_wlan.attr) {
1600 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1601
1602 } else if (attr == &dev_attr_bluetooth.attr) {
1603 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1604
1605 } else if (attr == &dev_attr_display.attr) {
1606 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1607
1608 } else if (attr == &dev_attr_wimax.attr) {
1609 supported =
1610 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1611
1612 } else if (attr == &dev_attr_wwan.attr) {
1613 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1614
1615 } else if (attr == &dev_attr_ledd.attr) {
1616 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1617
1618 } else if (attr == &dev_attr_ls_switch.attr ||
1619 attr == &dev_attr_ls_level.attr) {
1620 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1621 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1622 } else if (attr == &dev_attr_ls_value.attr) {
1623 supported = asus->is_pega_lucid;
1624 } else if (attr == &dev_attr_gps.attr) {
1625 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1626 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1627 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1628 } else {
1629 supported = true;
1630 }
1631
1632 return supported ? attr->mode : 0;
1633 }
1634
1635
1636 static const struct attribute_group asus_attr_group = {
1637 .is_visible = asus_sysfs_is_visible,
1638 .attrs = asus_attributes,
1639 };
1640
1641 static int asus_platform_init(struct asus_laptop *asus)
1642 {
1643 int result;
1644
1645 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1646 if (!asus->platform_device)
1647 return -ENOMEM;
1648 platform_set_drvdata(asus->platform_device, asus);
1649
1650 result = platform_device_add(asus->platform_device);
1651 if (result)
1652 goto fail_platform_device;
1653
1654 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1655 &asus_attr_group);
1656 if (result)
1657 goto fail_sysfs;
1658
1659 return 0;
1660
1661 fail_sysfs:
1662 platform_device_del(asus->platform_device);
1663 fail_platform_device:
1664 platform_device_put(asus->platform_device);
1665 return result;
1666 }
1667
1668 static void asus_platform_exit(struct asus_laptop *asus)
1669 {
1670 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1671 platform_device_unregister(asus->platform_device);
1672 }
1673
1674 static struct platform_driver platform_driver = {
1675 .driver = {
1676 .name = ASUS_LAPTOP_FILE,
1677 .owner = THIS_MODULE,
1678 },
1679 };
1680
1681 /*
1682 * This function is used to initialize the context with right values. In this
1683 * method, we can make all the detection we want, and modify the asus_laptop
1684 * struct
1685 */
1686 static int asus_laptop_get_info(struct asus_laptop *asus)
1687 {
1688 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1689 union acpi_object *model = NULL;
1690 unsigned long long bsts_result;
1691 char *string = NULL;
1692 acpi_status status;
1693
1694 /*
1695 * Get DSDT headers early enough to allow for differentiating between
1696 * models, but late enough to allow acpi_bus_register_driver() to fail
1697 * before doing anything ACPI-specific. Should we encounter a machine,
1698 * which needs special handling (i.e. its hotkey device has a different
1699 * HID), this bit will be moved.
1700 */
1701 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1702 if (ACPI_FAILURE(status))
1703 pr_warn("Couldn't get the DSDT table header\n");
1704
1705 /* We have to write 0 on init this far for all ASUS models */
1706 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1707 pr_err("Hotkey initialization failed\n");
1708 return -ENODEV;
1709 }
1710
1711 /* This needs to be called for some laptops to init properly */
1712 status =
1713 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1714 if (ACPI_FAILURE(status))
1715 pr_warn("Error calling BSTS\n");
1716 else if (bsts_result)
1717 pr_notice("BSTS called, 0x%02x returned\n",
1718 (uint) bsts_result);
1719
1720 /* This too ... */
1721 if (write_acpi_int(asus->handle, "CWAP", wapf))
1722 pr_err("Error calling CWAP(%d)\n", wapf);
1723 /*
1724 * Try to match the object returned by INIT to the specific model.
1725 * Handle every possible object (or the lack of thereof) the DSDT
1726 * writers might throw at us. When in trouble, we pass NULL to
1727 * asus_model_match() and try something completely different.
1728 */
1729 if (buffer.pointer) {
1730 model = buffer.pointer;
1731 switch (model->type) {
1732 case ACPI_TYPE_STRING:
1733 string = model->string.pointer;
1734 break;
1735 case ACPI_TYPE_BUFFER:
1736 string = model->buffer.pointer;
1737 break;
1738 default:
1739 string = "";
1740 break;
1741 }
1742 }
1743 asus->name = kstrdup(string, GFP_KERNEL);
1744 if (!asus->name) {
1745 kfree(buffer.pointer);
1746 return -ENOMEM;
1747 }
1748
1749 if (string)
1750 pr_notice(" %s model detected\n", string);
1751
1752 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1753 asus->have_rsts = true;
1754
1755 kfree(model);
1756
1757 return AE_OK;
1758 }
1759
1760 static int asus_acpi_init(struct asus_laptop *asus)
1761 {
1762 int result = 0;
1763
1764 result = acpi_bus_get_status(asus->device);
1765 if (result)
1766 return result;
1767 if (!asus->device->status.present) {
1768 pr_err("Hotkey device not present, aborting\n");
1769 return -ENODEV;
1770 }
1771
1772 result = asus_laptop_get_info(asus);
1773 if (result)
1774 return result;
1775
1776 if (!strcmp(bled_type, "led"))
1777 asus->bled_type = TYPE_LED;
1778 else if (!strcmp(bled_type, "rfkill"))
1779 asus->bled_type = TYPE_RFKILL;
1780
1781 if (!strcmp(wled_type, "led"))
1782 asus->wled_type = TYPE_LED;
1783 else if (!strcmp(wled_type, "rfkill"))
1784 asus->wled_type = TYPE_RFKILL;
1785
1786 if (bluetooth_status >= 0)
1787 asus_bluetooth_set(asus, !!bluetooth_status);
1788
1789 if (wlan_status >= 0)
1790 asus_wlan_set(asus, !!wlan_status);
1791
1792 if (wimax_status >= 0)
1793 asus_wimax_set(asus, !!wimax_status);
1794
1795 if (wwan_status >= 0)
1796 asus_wwan_set(asus, !!wwan_status);
1797
1798 /* Keyboard Backlight is on by default */
1799 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1800 asus_kled_set(asus, 1);
1801
1802 /* LED display is off by default */
1803 asus->ledd_status = 0xFFF;
1804
1805 /* Set initial values of light sensor and level */
1806 asus->light_switch = !!als_status;
1807 asus->light_level = 5; /* level 5 for sensor sensitivity */
1808
1809 if (asus->is_pega_lucid) {
1810 asus_als_switch(asus, asus->light_switch);
1811 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1812 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1813 asus_als_switch(asus, asus->light_switch);
1814 asus_als_level(asus, asus->light_level);
1815 }
1816
1817 return result;
1818 }
1819
1820 static void asus_dmi_check(void)
1821 {
1822 const char *model;
1823
1824 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1825 if (!model)
1826 return;
1827
1828 /* On L1400B WLED control the sound card, don't mess with it ... */
1829 if (strncmp(model, "L1400B", 6) == 0) {
1830 wlan_status = -1;
1831 }
1832 }
1833
1834 static bool asus_device_present;
1835
1836 static int asus_acpi_add(struct acpi_device *device)
1837 {
1838 struct asus_laptop *asus;
1839 int result;
1840
1841 pr_notice("Asus Laptop Support version %s\n",
1842 ASUS_LAPTOP_VERSION);
1843 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1844 if (!asus)
1845 return -ENOMEM;
1846 asus->handle = device->handle;
1847 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1848 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1849 device->driver_data = asus;
1850 asus->device = device;
1851
1852 asus_dmi_check();
1853
1854 result = asus_acpi_init(asus);
1855 if (result)
1856 goto fail_platform;
1857
1858 /*
1859 * Need platform type detection first, then the platform
1860 * device. It is used as a parent for the sub-devices below.
1861 */
1862 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1863 result = asus_platform_init(asus);
1864 if (result)
1865 goto fail_platform;
1866
1867 if (!acpi_video_backlight_support()) {
1868 result = asus_backlight_init(asus);
1869 if (result)
1870 goto fail_backlight;
1871 } else
1872 pr_info("Backlight controlled by ACPI video driver\n");
1873
1874 result = asus_input_init(asus);
1875 if (result)
1876 goto fail_input;
1877
1878 result = asus_led_init(asus);
1879 if (result)
1880 goto fail_led;
1881
1882 result = asus_rfkill_init(asus);
1883 if (result && result != -ENODEV)
1884 goto fail_rfkill;
1885
1886 result = pega_accel_init(asus);
1887 if (result && result != -ENODEV)
1888 goto fail_pega_accel;
1889
1890 result = pega_rfkill_init(asus);
1891 if (result && result != -ENODEV)
1892 goto fail_pega_rfkill;
1893
1894 asus_device_present = true;
1895 return 0;
1896
1897 fail_pega_rfkill:
1898 pega_accel_exit(asus);
1899 fail_pega_accel:
1900 asus_rfkill_exit(asus);
1901 fail_rfkill:
1902 asus_led_exit(asus);
1903 fail_led:
1904 asus_input_exit(asus);
1905 fail_input:
1906 asus_backlight_exit(asus);
1907 fail_backlight:
1908 asus_platform_exit(asus);
1909 fail_platform:
1910 kfree(asus->name);
1911 kfree(asus);
1912
1913 return result;
1914 }
1915
1916 static int asus_acpi_remove(struct acpi_device *device)
1917 {
1918 struct asus_laptop *asus = acpi_driver_data(device);
1919
1920 asus_backlight_exit(asus);
1921 asus_rfkill_exit(asus);
1922 asus_led_exit(asus);
1923 asus_input_exit(asus);
1924 pega_accel_exit(asus);
1925 asus_platform_exit(asus);
1926
1927 kfree(asus->name);
1928 kfree(asus);
1929 return 0;
1930 }
1931
1932 static const struct acpi_device_id asus_device_ids[] = {
1933 {"ATK0100", 0},
1934 {"ATK0101", 0},
1935 {"", 0},
1936 };
1937 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1938
1939 static struct acpi_driver asus_acpi_driver = {
1940 .name = ASUS_LAPTOP_NAME,
1941 .class = ASUS_LAPTOP_CLASS,
1942 .owner = THIS_MODULE,
1943 .ids = asus_device_ids,
1944 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1945 .ops = {
1946 .add = asus_acpi_add,
1947 .remove = asus_acpi_remove,
1948 .notify = asus_acpi_notify,
1949 },
1950 };
1951
1952 static int __init asus_laptop_init(void)
1953 {
1954 int result;
1955
1956 result = platform_driver_register(&platform_driver);
1957 if (result < 0)
1958 return result;
1959
1960 result = acpi_bus_register_driver(&asus_acpi_driver);
1961 if (result < 0)
1962 goto fail_acpi_driver;
1963 if (!asus_device_present) {
1964 result = -ENODEV;
1965 goto fail_no_device;
1966 }
1967 return 0;
1968
1969 fail_no_device:
1970 acpi_bus_unregister_driver(&asus_acpi_driver);
1971 fail_acpi_driver:
1972 platform_driver_unregister(&platform_driver);
1973 return result;
1974 }
1975
1976 static void __exit asus_laptop_exit(void)
1977 {
1978 acpi_bus_unregister_driver(&asus_acpi_driver);
1979 platform_driver_unregister(&platform_driver);
1980 }
1981
1982 module_init(asus_laptop_init);
1983 module_exit(asus_laptop_exit);