]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
Merge tag 'regulator-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
140 }
141
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
144
145 return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
152
153 return NULL;
154 }
155
156 /**
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
159 */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 int i;
163
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
171 */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 struct regulator *supply;
175
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
179
180 if (!rdev->supply)
181 return;
182
183 rdev = supply->rdev;
184 }
185 }
186
187 /**
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
191 *
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
195 */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
200
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 prop_name, dev->of_node->full_name);
209 return NULL;
210 }
211 return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
217 {
218 BUG_ON(*min_uV > *max_uV);
219
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
223 }
224
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
229
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
241 */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
244 {
245 struct regulator *regulator;
246
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 /*
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
251 */
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
254
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
259 }
260
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
273 {
274 BUG_ON(*min_uA > *max_uA);
275
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
279 }
280
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
285
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 unsigned int *mode)
298 {
299 switch (*mode) {
300 case REGULATOR_MODE_FAST:
301 case REGULATOR_MODE_NORMAL:
302 case REGULATOR_MODE_IDLE:
303 case REGULATOR_MODE_STANDBY:
304 break;
305 default:
306 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 return -EINVAL;
308 }
309
310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 rdev_err(rdev, "mode operation not allowed\n");
312 return -EPERM;
313 }
314
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
318 while (*mode) {
319 if (rdev->constraints->valid_modes_mask & *mode)
320 return 0;
321 *mode /= 2;
322 }
323
324 return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 ssize_t ret;
332
333 mutex_lock(&rdev->mutex);
334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 mutex_unlock(&rdev->mutex);
336
337 return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 switch (mode) {
362 case REGULATOR_MODE_FAST:
363 return sprintf(buf, "fast\n");
364 case REGULATOR_MODE_NORMAL:
365 return sprintf(buf, "normal\n");
366 case REGULATOR_MODE_IDLE:
367 return sprintf(buf, "idle\n");
368 case REGULATOR_MODE_STANDBY:
369 return sprintf(buf, "standby\n");
370 }
371 return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 if (state > 0)
386 return sprintf(buf, "enabled\n");
387 else if (state == 0)
388 return sprintf(buf, "disabled\n");
389 else
390 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 struct regulator_dev *rdev = dev_get_drvdata(dev);
397 ssize_t ret;
398
399 mutex_lock(&rdev->mutex);
400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 mutex_unlock(&rdev->mutex);
402
403 return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
409 {
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
411 int status;
412 char *label;
413
414 status = rdev->desc->ops->get_status(rdev);
415 if (status < 0)
416 return status;
417
418 switch (status) {
419 case REGULATOR_STATUS_OFF:
420 label = "off";
421 break;
422 case REGULATOR_STATUS_ON:
423 label = "on";
424 break;
425 case REGULATOR_STATUS_ERROR:
426 label = "error";
427 break;
428 case REGULATOR_STATUS_FAST:
429 label = "fast";
430 break;
431 case REGULATOR_STATUS_NORMAL:
432 label = "normal";
433 break;
434 case REGULATOR_STATUS_IDLE:
435 label = "idle";
436 break;
437 case REGULATOR_STATUS_STANDBY:
438 label = "standby";
439 break;
440 case REGULATOR_STATUS_BYPASS:
441 label = "bypass";
442 break;
443 case REGULATOR_STATUS_UNDEFINED:
444 label = "undefined";
445 break;
446 default:
447 return -ERANGE;
448 }
449
450 return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 if (!rdev->constraints)
484 return sprintf(buf, "constraint not defined\n");
485
486 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
492 {
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495 if (!rdev->constraints)
496 return sprintf(buf, "constraint not defined\n");
497
498 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 struct regulator *regulator;
507 int uA = 0;
508
509 mutex_lock(&rdev->mutex);
510 list_for_each_entry(regulator, &rdev->consumer_list, list)
511 uA += regulator->uA_load;
512 mutex_unlock(&rdev->mutex);
513 return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530 switch (rdev->desc->type) {
531 case REGULATOR_VOLTAGE:
532 return sprintf(buf, "voltage\n");
533 case REGULATOR_CURRENT:
534 return sprintf(buf, "current\n");
535 }
536 return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
552 {
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
562 {
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_opmode(buf,
576 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586 return regulator_print_opmode(buf,
587 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return regulator_print_opmode(buf,
598 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
605 {
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608 return regulator_print_state(buf,
609 rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
616 {
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619 return regulator_print_state(buf,
620 rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627 {
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_state(buf,
631 rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
638 {
639 struct regulator_dev *rdev = dev_get_drvdata(dev);
640 const char *report;
641 bool bypass;
642 int ret;
643
644 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646 if (ret != 0)
647 report = "unknown";
648 else if (bypass)
649 report = "enabled";
650 else
651 report = "disabled";
652
653 return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 lockdep_assert_held_once(&rdev->mutex);
667
668 /*
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
671 */
672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 return 0;
674
675 if (!rdev->desc->ops->get_optimum_mode &&
676 !rdev->desc->ops->set_load)
677 return 0;
678
679 if (!rdev->desc->ops->set_mode &&
680 !rdev->desc->ops->set_load)
681 return -EINVAL;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 current_uA += rdev->constraints->system_load;
688
689 if (rdev->desc->ops->set_load) {
690 /* set the optimum mode for our new total regulator load */
691 err = rdev->desc->ops->set_load(rdev, current_uA);
692 if (err < 0)
693 rdev_err(rdev, "failed to set load %d\n", current_uA);
694 } else {
695 /* get output voltage */
696 output_uV = _regulator_get_voltage(rdev);
697 if (output_uV <= 0) {
698 rdev_err(rdev, "invalid output voltage found\n");
699 return -EINVAL;
700 }
701
702 /* get input voltage */
703 input_uV = 0;
704 if (rdev->supply)
705 input_uV = regulator_get_voltage(rdev->supply);
706 if (input_uV <= 0)
707 input_uV = rdev->constraints->input_uV;
708 if (input_uV <= 0) {
709 rdev_err(rdev, "invalid input voltage found\n");
710 return -EINVAL;
711 }
712
713 /* now get the optimum mode for our new total regulator load */
714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 output_uV, current_uA);
716
717 /* check the new mode is allowed */
718 err = regulator_mode_constrain(rdev, &mode);
719 if (err < 0) {
720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA, input_uV, output_uV);
722 return err;
723 }
724
725 err = rdev->desc->ops->set_mode(rdev, mode);
726 if (err < 0)
727 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 }
729
730 return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734 struct regulator_state *rstate)
735 {
736 int ret = 0;
737
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
741 */
742 if (!rstate->enabled && !rstate->disabled) {
743 if (rdev->desc->ops->set_suspend_voltage ||
744 rdev->desc->ops->set_suspend_mode)
745 rdev_warn(rdev, "No configuration\n");
746 return 0;
747 }
748
749 if (rstate->enabled && rstate->disabled) {
750 rdev_err(rdev, "invalid configuration\n");
751 return -EINVAL;
752 }
753
754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 ret = rdev->desc->ops->set_suspend_enable(rdev);
756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 ret = rdev->desc->ops->set_suspend_disable(rdev);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 ret = 0;
760
761 if (ret < 0) {
762 rdev_err(rdev, "failed to enabled/disable\n");
763 return ret;
764 }
765
766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 if (ret < 0) {
769 rdev_err(rdev, "failed to set voltage\n");
770 return ret;
771 }
772 }
773
774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 if (ret < 0) {
777 rdev_err(rdev, "failed to set mode\n");
778 return ret;
779 }
780 }
781 return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 if (!rdev->constraints)
788 return -EINVAL;
789
790 switch (state) {
791 case PM_SUSPEND_STANDBY:
792 return suspend_set_state(rdev,
793 &rdev->constraints->state_standby);
794 case PM_SUSPEND_MEM:
795 return suspend_set_state(rdev,
796 &rdev->constraints->state_mem);
797 case PM_SUSPEND_MAX:
798 return suspend_set_state(rdev,
799 &rdev->constraints->state_disk);
800 default:
801 return -EINVAL;
802 }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 struct regulation_constraints *constraints = rdev->constraints;
808 char buf[160] = "";
809 size_t len = sizeof(buf) - 1;
810 int count = 0;
811 int ret;
812
813 if (constraints->min_uV && constraints->max_uV) {
814 if (constraints->min_uV == constraints->max_uV)
815 count += scnprintf(buf + count, len - count, "%d mV ",
816 constraints->min_uV / 1000);
817 else
818 count += scnprintf(buf + count, len - count,
819 "%d <--> %d mV ",
820 constraints->min_uV / 1000,
821 constraints->max_uV / 1000);
822 }
823
824 if (!constraints->min_uV ||
825 constraints->min_uV != constraints->max_uV) {
826 ret = _regulator_get_voltage(rdev);
827 if (ret > 0)
828 count += scnprintf(buf + count, len - count,
829 "at %d mV ", ret / 1000);
830 }
831
832 if (constraints->uV_offset)
833 count += scnprintf(buf + count, len - count, "%dmV offset ",
834 constraints->uV_offset / 1000);
835
836 if (constraints->min_uA && constraints->max_uA) {
837 if (constraints->min_uA == constraints->max_uA)
838 count += scnprintf(buf + count, len - count, "%d mA ",
839 constraints->min_uA / 1000);
840 else
841 count += scnprintf(buf + count, len - count,
842 "%d <--> %d mA ",
843 constraints->min_uA / 1000,
844 constraints->max_uA / 1000);
845 }
846
847 if (!constraints->min_uA ||
848 constraints->min_uA != constraints->max_uA) {
849 ret = _regulator_get_current_limit(rdev);
850 if (ret > 0)
851 count += scnprintf(buf + count, len - count,
852 "at %d mA ", ret / 1000);
853 }
854
855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 count += scnprintf(buf + count, len - count, "fast ");
857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 count += scnprintf(buf + count, len - count, "normal ");
859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 count += scnprintf(buf + count, len - count, "idle ");
861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 count += scnprintf(buf + count, len - count, "standby");
863
864 if (!count)
865 scnprintf(buf, len, "no parameters");
866
867 rdev_dbg(rdev, "%s\n", buf);
868
869 if ((constraints->min_uV != constraints->max_uV) &&
870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 rdev_warn(rdev,
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 struct regulation_constraints *constraints)
877 {
878 const struct regulator_ops *ops = rdev->desc->ops;
879 int ret;
880
881 /* do we need to apply the constraint voltage */
882 if (rdev->constraints->apply_uV &&
883 rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 int target_min, target_max;
885 int current_uV = _regulator_get_voltage(rdev);
886 if (current_uV < 0) {
887 rdev_err(rdev,
888 "failed to get the current voltage(%d)\n",
889 current_uV);
890 return current_uV;
891 }
892
893 /*
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
897 */
898 target_min = current_uV;
899 target_max = current_uV;
900
901 if (current_uV < rdev->constraints->min_uV) {
902 target_min = rdev->constraints->min_uV;
903 target_max = rdev->constraints->min_uV;
904 }
905
906 if (current_uV > rdev->constraints->max_uV) {
907 target_min = rdev->constraints->max_uV;
908 target_max = rdev->constraints->max_uV;
909 }
910
911 if (target_min != current_uV || target_max != current_uV) {
912 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 current_uV, target_min, target_max);
914 ret = _regulator_do_set_voltage(
915 rdev, target_min, target_max);
916 if (ret < 0) {
917 rdev_err(rdev,
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min, target_max, ret);
920 return ret;
921 }
922 }
923 }
924
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
927 */
928 if (ops->list_voltage && rdev->desc->n_voltages) {
929 int count = rdev->desc->n_voltages;
930 int i;
931 int min_uV = INT_MAX;
932 int max_uV = INT_MIN;
933 int cmin = constraints->min_uV;
934 int cmax = constraints->max_uV;
935
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count == 1 && !cmin) {
939 cmin = 1;
940 cmax = INT_MAX;
941 constraints->min_uV = cmin;
942 constraints->max_uV = cmax;
943 }
944
945 /* voltage constraints are optional */
946 if ((cmin == 0) && (cmax == 0))
947 return 0;
948
949 /* else require explicit machine-level constraints */
950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 rdev_err(rdev, "invalid voltage constraints\n");
952 return -EINVAL;
953 }
954
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i = 0; i < count; i++) {
957 int value;
958
959 value = ops->list_voltage(rdev, i);
960 if (value <= 0)
961 continue;
962
963 /* maybe adjust [min_uV..max_uV] */
964 if (value >= cmin && value < min_uV)
965 min_uV = value;
966 if (value <= cmax && value > max_uV)
967 max_uV = value;
968 }
969
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV < min_uV) {
972 rdev_err(rdev,
973 "unsupportable voltage constraints %u-%uuV\n",
974 min_uV, max_uV);
975 return -EINVAL;
976 }
977
978 /* use regulator's subset of machine constraints */
979 if (constraints->min_uV < min_uV) {
980 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 constraints->min_uV, min_uV);
982 constraints->min_uV = min_uV;
983 }
984 if (constraints->max_uV > max_uV) {
985 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 constraints->max_uV, max_uV);
987 constraints->max_uV = max_uV;
988 }
989 }
990
991 return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 struct regulation_constraints *constraints)
996 {
997 const struct regulator_ops *ops = rdev->desc->ops;
998 int ret;
999
1000 if (!constraints->min_uA && !constraints->max_uA)
1001 return 0;
1002
1003 if (constraints->min_uA > constraints->max_uA) {
1004 rdev_err(rdev, "Invalid current constraints\n");
1005 return -EINVAL;
1006 }
1007
1008 if (!ops->set_current_limit || !ops->get_current_limit) {
1009 rdev_warn(rdev, "Operation of current configuration missing\n");
1010 return 0;
1011 }
1012
1013 /* Set regulator current in constraints range */
1014 ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 constraints->max_uA);
1016 if (ret < 0) {
1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 return ret;
1019 }
1020
1021 return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 const struct regulation_constraints *constraints)
1039 {
1040 int ret = 0;
1041 const struct regulator_ops *ops = rdev->desc->ops;
1042
1043 if (constraints)
1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 GFP_KERNEL);
1046 else
1047 rdev->constraints = kzalloc(sizeof(*constraints),
1048 GFP_KERNEL);
1049 if (!rdev->constraints)
1050 return -ENOMEM;
1051
1052 ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 if (ret != 0)
1054 return ret;
1055
1056 ret = machine_constraints_current(rdev, rdev->constraints);
1057 if (ret != 0)
1058 return ret;
1059
1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 ret = ops->set_input_current_limit(rdev,
1062 rdev->constraints->ilim_uA);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set input limit\n");
1065 return ret;
1066 }
1067 }
1068
1069 /* do we need to setup our suspend state */
1070 if (rdev->constraints->initial_state) {
1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 if (ret < 0) {
1073 rdev_err(rdev, "failed to set suspend state\n");
1074 return ret;
1075 }
1076 }
1077
1078 if (rdev->constraints->initial_mode) {
1079 if (!ops->set_mode) {
1080 rdev_err(rdev, "no set_mode operation\n");
1081 return -EINVAL;
1082 }
1083
1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 if (ret < 0) {
1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 return ret;
1088 }
1089 }
1090
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1093 */
1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 ret = _regulator_do_enable(rdev);
1096 if (ret < 0 && ret != -EINVAL) {
1097 rdev_err(rdev, "failed to enable\n");
1098 return ret;
1099 }
1100 }
1101
1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 && ops->set_ramp_delay) {
1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 if (ret < 0) {
1106 rdev_err(rdev, "failed to set ramp_delay\n");
1107 return ret;
1108 }
1109 }
1110
1111 if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 ret = ops->set_pull_down(rdev);
1113 if (ret < 0) {
1114 rdev_err(rdev, "failed to set pull down\n");
1115 return ret;
1116 }
1117 }
1118
1119 if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 ret = ops->set_soft_start(rdev);
1121 if (ret < 0) {
1122 rdev_err(rdev, "failed to set soft start\n");
1123 return ret;
1124 }
1125 }
1126
1127 if (rdev->constraints->over_current_protection
1128 && ops->set_over_current_protection) {
1129 ret = ops->set_over_current_protection(rdev);
1130 if (ret < 0) {
1131 rdev_err(rdev, "failed to set over current protection\n");
1132 return ret;
1133 }
1134 }
1135
1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 bool ad_state = (rdev->constraints->active_discharge ==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140 ret = ops->set_active_discharge(rdev, ad_state);
1141 if (ret < 0) {
1142 rdev_err(rdev, "failed to set active discharge\n");
1143 return ret;
1144 }
1145 }
1146
1147 print_constraints(rdev);
1148 return 0;
1149 }
1150
1151 /**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1162 {
1163 int err;
1164
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167 if (!try_module_get(supply_rdev->owner))
1168 return -ENODEV;
1169
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1172 err = -ENOMEM;
1173 return err;
1174 }
1175 supply_rdev->open_count++;
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1193 const char *supply)
1194 {
1195 struct regulator_map *node;
1196 int has_dev;
1197
1198 if (supply == NULL)
1199 return -EINVAL;
1200
1201 if (consumer_dev_name != NULL)
1202 has_dev = 1;
1203 else
1204 has_dev = 0;
1205
1206 list_for_each_entry(node, &regulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 continue;
1210 } else if (node->dev_name || consumer_dev_name) {
1211 continue;
1212 }
1213
1214 if (strcmp(node->supply, supply) != 0)
1215 continue;
1216
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 consumer_dev_name,
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1221 supply,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 return -EBUSY;
1224 }
1225
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 if (node == NULL)
1228 return -ENOMEM;
1229
1230 node->regulator = rdev;
1231 node->supply = supply;
1232
1233 if (has_dev) {
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1236 kfree(node);
1237 return -ENOMEM;
1238 }
1239 }
1240
1241 list_add(&node->list, &regulator_map_list);
1242 return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 struct regulator_map *node, *n;
1248
1249 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1253 kfree(node);
1254 }
1255 }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 char __user *user_buf,
1261 size_t count, loff_t *ppos)
1262 {
1263 const struct regulator *regulator = file->private_data;
1264 const struct regulation_constraints *c = regulator->rdev->constraints;
1265 char *buf;
1266 ssize_t ret;
1267
1268 if (!c)
1269 return 0;
1270
1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 if (!buf)
1273 return -ENOMEM;
1274
1275 ret = snprintf(buf, PAGE_SIZE,
1276 "always_on: %u\n"
1277 "boot_on: %u\n"
1278 "apply_uV: %u\n"
1279 "ramp_disable: %u\n"
1280 "soft_start: %u\n"
1281 "pull_down: %u\n"
1282 "over_current_protection: %u\n",
1283 c->always_on,
1284 c->boot_on,
1285 c->apply_uV,
1286 c->ramp_disable,
1287 c->soft_start,
1288 c->pull_down,
1289 c->over_current_protection);
1290
1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 kfree(buf);
1293
1294 return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open = simple_open,
1302 .read = constraint_flags_read_file,
1303 .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE 64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 struct device *dev,
1311 const char *supply_name)
1312 {
1313 struct regulator *regulator;
1314 char buf[REG_STR_SIZE];
1315 int err, size;
1316
1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 if (regulator == NULL)
1319 return NULL;
1320
1321 mutex_lock(&rdev->mutex);
1322 regulator->rdev = rdev;
1323 list_add(&regulator->list, &rdev->consumer_list);
1324
1325 if (dev) {
1326 regulator->dev = dev;
1327
1328 /* Add a link to the device sysfs entry */
1329 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330 dev->kobj.name, supply_name);
1331 if (size >= REG_STR_SIZE)
1332 goto overflow_err;
1333
1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 if (regulator->supply_name == NULL)
1336 goto overflow_err;
1337
1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 buf);
1340 if (err) {
1341 rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 dev->kobj.name, err);
1343 /* non-fatal */
1344 }
1345 } else {
1346 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347 if (regulator->supply_name == NULL)
1348 goto overflow_err;
1349 }
1350
1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 rdev->debugfs);
1353 if (!regulator->debugfs) {
1354 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 } else {
1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 &regulator->uA_load);
1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 &regulator->min_uV);
1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 &regulator->max_uV);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator->debugfs, regulator,
1364 &constraint_flags_fops);
1365 }
1366
1367 /*
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1371 */
1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 _regulator_is_enabled(rdev))
1374 regulator->always_on = true;
1375
1376 mutex_unlock(&rdev->mutex);
1377 return regulator;
1378 overflow_err:
1379 list_del(&regulator->list);
1380 kfree(regulator);
1381 mutex_unlock(&rdev->mutex);
1382 return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 if (rdev->constraints && rdev->constraints->enable_time)
1388 return rdev->constraints->enable_time;
1389 if (!rdev->desc->ops->enable_time)
1390 return rdev->desc->enable_time;
1391 return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 struct device *dev, const char *supply)
1396 {
1397 struct regulator_supply_alias *map;
1398
1399 list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 return map;
1402
1403 return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 struct regulator_supply_alias *map;
1409
1410 map = regulator_find_supply_alias(*dev, *supply);
1411 if (map) {
1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 *supply, map->alias_supply,
1414 dev_name(map->alias_dev));
1415 *dev = map->alias_dev;
1416 *supply = map->alias_supply;
1417 }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 struct device *dev;
1428
1429 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431 return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 struct regulator_dev *r = dev_to_rdev(dev);
1437
1438 return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 struct device *dev;
1444
1445 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447 return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1456 *
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one.
1459 * The refcount must be dropped by calling put_device().
1460 * On failure one of the following ERR-PTR-encoded values is returned:
1461 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462 * in the future.
1463 */
1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1465 const char *supply)
1466 {
1467 struct regulator_dev *r;
1468 struct device_node *node;
1469 struct regulator_map *map;
1470 const char *devname = NULL;
1471
1472 regulator_supply_alias(&dev, &supply);
1473
1474 /* first do a dt based lookup */
1475 if (dev && dev->of_node) {
1476 node = of_get_regulator(dev, supply);
1477 if (node) {
1478 r = of_find_regulator_by_node(node);
1479 if (r)
1480 return r;
1481
1482 /*
1483 * We have a node, but there is no device.
1484 * assume it has not registered yet.
1485 */
1486 return ERR_PTR(-EPROBE_DEFER);
1487 }
1488 }
1489
1490 /* if not found, try doing it non-dt way */
1491 if (dev)
1492 devname = dev_name(dev);
1493
1494 r = regulator_lookup_by_name(supply);
1495 if (r)
1496 return r;
1497
1498 mutex_lock(&regulator_list_mutex);
1499 list_for_each_entry(map, &regulator_map_list, list) {
1500 /* If the mapping has a device set up it must match */
1501 if (map->dev_name &&
1502 (!devname || strcmp(map->dev_name, devname)))
1503 continue;
1504
1505 if (strcmp(map->supply, supply) == 0 &&
1506 get_device(&map->regulator->dev)) {
1507 r = map->regulator;
1508 break;
1509 }
1510 }
1511 mutex_unlock(&regulator_list_mutex);
1512
1513 if (r)
1514 return r;
1515
1516 return ERR_PTR(-ENODEV);
1517 }
1518
1519 static int regulator_resolve_supply(struct regulator_dev *rdev)
1520 {
1521 struct regulator_dev *r;
1522 struct device *dev = rdev->dev.parent;
1523 int ret;
1524
1525 /* No supply to resovle? */
1526 if (!rdev->supply_name)
1527 return 0;
1528
1529 /* Supply already resolved? */
1530 if (rdev->supply)
1531 return 0;
1532
1533 r = regulator_dev_lookup(dev, rdev->supply_name);
1534 if (IS_ERR(r)) {
1535 ret = PTR_ERR(r);
1536
1537 if (ret == -ENODEV) {
1538 /*
1539 * No supply was specified for this regulator and
1540 * there will never be one.
1541 */
1542 return 0;
1543 }
1544
1545 /* Did the lookup explicitly defer for us? */
1546 if (ret == -EPROBE_DEFER)
1547 return ret;
1548
1549 if (have_full_constraints()) {
1550 r = dummy_regulator_rdev;
1551 get_device(&r->dev);
1552 } else {
1553 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1554 rdev->supply_name, rdev->desc->name);
1555 return -EPROBE_DEFER;
1556 }
1557 }
1558
1559 /*
1560 * If the supply's parent device is not the same as the
1561 * regulator's parent device, then ensure the parent device
1562 * is bound before we resolve the supply, in case the parent
1563 * device get probe deferred and unregisters the supply.
1564 */
1565 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1566 if (!device_is_bound(r->dev.parent)) {
1567 put_device(&r->dev);
1568 return -EPROBE_DEFER;
1569 }
1570 }
1571
1572 /* Recursively resolve the supply of the supply */
1573 ret = regulator_resolve_supply(r);
1574 if (ret < 0) {
1575 put_device(&r->dev);
1576 return ret;
1577 }
1578
1579 ret = set_supply(rdev, r);
1580 if (ret < 0) {
1581 put_device(&r->dev);
1582 return ret;
1583 }
1584
1585 /* Cascade always-on state to supply */
1586 if (_regulator_is_enabled(rdev)) {
1587 ret = regulator_enable(rdev->supply);
1588 if (ret < 0) {
1589 _regulator_put(rdev->supply);
1590 rdev->supply = NULL;
1591 return ret;
1592 }
1593 }
1594
1595 return 0;
1596 }
1597
1598 /* Internal regulator request function */
1599 struct regulator *_regulator_get(struct device *dev, const char *id,
1600 enum regulator_get_type get_type)
1601 {
1602 struct regulator_dev *rdev;
1603 struct regulator *regulator;
1604 const char *devname = dev ? dev_name(dev) : "deviceless";
1605 int ret;
1606
1607 if (get_type >= MAX_GET_TYPE) {
1608 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1609 return ERR_PTR(-EINVAL);
1610 }
1611
1612 if (id == NULL) {
1613 pr_err("get() with no identifier\n");
1614 return ERR_PTR(-EINVAL);
1615 }
1616
1617 rdev = regulator_dev_lookup(dev, id);
1618 if (IS_ERR(rdev)) {
1619 ret = PTR_ERR(rdev);
1620
1621 /*
1622 * If regulator_dev_lookup() fails with error other
1623 * than -ENODEV our job here is done, we simply return it.
1624 */
1625 if (ret != -ENODEV)
1626 return ERR_PTR(ret);
1627
1628 if (!have_full_constraints()) {
1629 dev_warn(dev,
1630 "incomplete constraints, dummy supplies not allowed\n");
1631 return ERR_PTR(-ENODEV);
1632 }
1633
1634 switch (get_type) {
1635 case NORMAL_GET:
1636 /*
1637 * Assume that a regulator is physically present and
1638 * enabled, even if it isn't hooked up, and just
1639 * provide a dummy.
1640 */
1641 dev_warn(dev,
1642 "%s supply %s not found, using dummy regulator\n",
1643 devname, id);
1644 rdev = dummy_regulator_rdev;
1645 get_device(&rdev->dev);
1646 break;
1647
1648 case EXCLUSIVE_GET:
1649 dev_warn(dev,
1650 "dummy supplies not allowed for exclusive requests\n");
1651 /* fall through */
1652
1653 default:
1654 return ERR_PTR(-ENODEV);
1655 }
1656 }
1657
1658 if (rdev->exclusive) {
1659 regulator = ERR_PTR(-EPERM);
1660 put_device(&rdev->dev);
1661 return regulator;
1662 }
1663
1664 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1665 regulator = ERR_PTR(-EBUSY);
1666 put_device(&rdev->dev);
1667 return regulator;
1668 }
1669
1670 ret = regulator_resolve_supply(rdev);
1671 if (ret < 0) {
1672 regulator = ERR_PTR(ret);
1673 put_device(&rdev->dev);
1674 return regulator;
1675 }
1676
1677 if (!try_module_get(rdev->owner)) {
1678 regulator = ERR_PTR(-EPROBE_DEFER);
1679 put_device(&rdev->dev);
1680 return regulator;
1681 }
1682
1683 regulator = create_regulator(rdev, dev, id);
1684 if (regulator == NULL) {
1685 regulator = ERR_PTR(-ENOMEM);
1686 put_device(&rdev->dev);
1687 module_put(rdev->owner);
1688 return regulator;
1689 }
1690
1691 rdev->open_count++;
1692 if (get_type == EXCLUSIVE_GET) {
1693 rdev->exclusive = 1;
1694
1695 ret = _regulator_is_enabled(rdev);
1696 if (ret > 0)
1697 rdev->use_count = 1;
1698 else
1699 rdev->use_count = 0;
1700 }
1701
1702 return regulator;
1703 }
1704
1705 /**
1706 * regulator_get - lookup and obtain a reference to a regulator.
1707 * @dev: device for regulator "consumer"
1708 * @id: Supply name or regulator ID.
1709 *
1710 * Returns a struct regulator corresponding to the regulator producer,
1711 * or IS_ERR() condition containing errno.
1712 *
1713 * Use of supply names configured via regulator_set_device_supply() is
1714 * strongly encouraged. It is recommended that the supply name used
1715 * should match the name used for the supply and/or the relevant
1716 * device pins in the datasheet.
1717 */
1718 struct regulator *regulator_get(struct device *dev, const char *id)
1719 {
1720 return _regulator_get(dev, id, NORMAL_GET);
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_get);
1723
1724 /**
1725 * regulator_get_exclusive - obtain exclusive access to a regulator.
1726 * @dev: device for regulator "consumer"
1727 * @id: Supply name or regulator ID.
1728 *
1729 * Returns a struct regulator corresponding to the regulator producer,
1730 * or IS_ERR() condition containing errno. Other consumers will be
1731 * unable to obtain this regulator while this reference is held and the
1732 * use count for the regulator will be initialised to reflect the current
1733 * state of the regulator.
1734 *
1735 * This is intended for use by consumers which cannot tolerate shared
1736 * use of the regulator such as those which need to force the
1737 * regulator off for correct operation of the hardware they are
1738 * controlling.
1739 *
1740 * Use of supply names configured via regulator_set_device_supply() is
1741 * strongly encouraged. It is recommended that the supply name used
1742 * should match the name used for the supply and/or the relevant
1743 * device pins in the datasheet.
1744 */
1745 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1746 {
1747 return _regulator_get(dev, id, EXCLUSIVE_GET);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1750
1751 /**
1752 * regulator_get_optional - obtain optional access to a regulator.
1753 * @dev: device for regulator "consumer"
1754 * @id: Supply name or regulator ID.
1755 *
1756 * Returns a struct regulator corresponding to the regulator producer,
1757 * or IS_ERR() condition containing errno.
1758 *
1759 * This is intended for use by consumers for devices which can have
1760 * some supplies unconnected in normal use, such as some MMC devices.
1761 * It can allow the regulator core to provide stub supplies for other
1762 * supplies requested using normal regulator_get() calls without
1763 * disrupting the operation of drivers that can handle absent
1764 * supplies.
1765 *
1766 * Use of supply names configured via regulator_set_device_supply() is
1767 * strongly encouraged. It is recommended that the supply name used
1768 * should match the name used for the supply and/or the relevant
1769 * device pins in the datasheet.
1770 */
1771 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1772 {
1773 return _regulator_get(dev, id, OPTIONAL_GET);
1774 }
1775 EXPORT_SYMBOL_GPL(regulator_get_optional);
1776
1777 /* regulator_list_mutex lock held by regulator_put() */
1778 static void _regulator_put(struct regulator *regulator)
1779 {
1780 struct regulator_dev *rdev;
1781
1782 if (IS_ERR_OR_NULL(regulator))
1783 return;
1784
1785 lockdep_assert_held_once(&regulator_list_mutex);
1786
1787 rdev = regulator->rdev;
1788
1789 debugfs_remove_recursive(regulator->debugfs);
1790
1791 /* remove any sysfs entries */
1792 if (regulator->dev)
1793 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1794 mutex_lock(&rdev->mutex);
1795 list_del(&regulator->list);
1796
1797 rdev->open_count--;
1798 rdev->exclusive = 0;
1799 put_device(&rdev->dev);
1800 mutex_unlock(&rdev->mutex);
1801
1802 kfree(regulator->supply_name);
1803 kfree(regulator);
1804
1805 module_put(rdev->owner);
1806 }
1807
1808 /**
1809 * regulator_put - "free" the regulator source
1810 * @regulator: regulator source
1811 *
1812 * Note: drivers must ensure that all regulator_enable calls made on this
1813 * regulator source are balanced by regulator_disable calls prior to calling
1814 * this function.
1815 */
1816 void regulator_put(struct regulator *regulator)
1817 {
1818 mutex_lock(&regulator_list_mutex);
1819 _regulator_put(regulator);
1820 mutex_unlock(&regulator_list_mutex);
1821 }
1822 EXPORT_SYMBOL_GPL(regulator_put);
1823
1824 /**
1825 * regulator_register_supply_alias - Provide device alias for supply lookup
1826 *
1827 * @dev: device that will be given as the regulator "consumer"
1828 * @id: Supply name or regulator ID
1829 * @alias_dev: device that should be used to lookup the supply
1830 * @alias_id: Supply name or regulator ID that should be used to lookup the
1831 * supply
1832 *
1833 * All lookups for id on dev will instead be conducted for alias_id on
1834 * alias_dev.
1835 */
1836 int regulator_register_supply_alias(struct device *dev, const char *id,
1837 struct device *alias_dev,
1838 const char *alias_id)
1839 {
1840 struct regulator_supply_alias *map;
1841
1842 map = regulator_find_supply_alias(dev, id);
1843 if (map)
1844 return -EEXIST;
1845
1846 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1847 if (!map)
1848 return -ENOMEM;
1849
1850 map->src_dev = dev;
1851 map->src_supply = id;
1852 map->alias_dev = alias_dev;
1853 map->alias_supply = alias_id;
1854
1855 list_add(&map->list, &regulator_supply_alias_list);
1856
1857 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1858 id, dev_name(dev), alias_id, dev_name(alias_dev));
1859
1860 return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1863
1864 /**
1865 * regulator_unregister_supply_alias - Remove device alias
1866 *
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: Supply name or regulator ID
1869 *
1870 * Remove a lookup alias if one exists for id on dev.
1871 */
1872 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1873 {
1874 struct regulator_supply_alias *map;
1875
1876 map = regulator_find_supply_alias(dev, id);
1877 if (map) {
1878 list_del(&map->list);
1879 kfree(map);
1880 }
1881 }
1882 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1883
1884 /**
1885 * regulator_bulk_register_supply_alias - register multiple aliases
1886 *
1887 * @dev: device that will be given as the regulator "consumer"
1888 * @id: List of supply names or regulator IDs
1889 * @alias_dev: device that should be used to lookup the supply
1890 * @alias_id: List of supply names or regulator IDs that should be used to
1891 * lookup the supply
1892 * @num_id: Number of aliases to register
1893 *
1894 * @return 0 on success, an errno on failure.
1895 *
1896 * This helper function allows drivers to register several supply
1897 * aliases in one operation. If any of the aliases cannot be
1898 * registered any aliases that were registered will be removed
1899 * before returning to the caller.
1900 */
1901 int regulator_bulk_register_supply_alias(struct device *dev,
1902 const char *const *id,
1903 struct device *alias_dev,
1904 const char *const *alias_id,
1905 int num_id)
1906 {
1907 int i;
1908 int ret;
1909
1910 for (i = 0; i < num_id; ++i) {
1911 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1912 alias_id[i]);
1913 if (ret < 0)
1914 goto err;
1915 }
1916
1917 return 0;
1918
1919 err:
1920 dev_err(dev,
1921 "Failed to create supply alias %s,%s -> %s,%s\n",
1922 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1923
1924 while (--i >= 0)
1925 regulator_unregister_supply_alias(dev, id[i]);
1926
1927 return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1930
1931 /**
1932 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1933 *
1934 * @dev: device that will be given as the regulator "consumer"
1935 * @id: List of supply names or regulator IDs
1936 * @num_id: Number of aliases to unregister
1937 *
1938 * This helper function allows drivers to unregister several supply
1939 * aliases in one operation.
1940 */
1941 void regulator_bulk_unregister_supply_alias(struct device *dev,
1942 const char *const *id,
1943 int num_id)
1944 {
1945 int i;
1946
1947 for (i = 0; i < num_id; ++i)
1948 regulator_unregister_supply_alias(dev, id[i]);
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1951
1952
1953 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1954 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1955 const struct regulator_config *config)
1956 {
1957 struct regulator_enable_gpio *pin;
1958 struct gpio_desc *gpiod;
1959 int ret;
1960
1961 gpiod = gpio_to_desc(config->ena_gpio);
1962
1963 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1964 if (pin->gpiod == gpiod) {
1965 rdev_dbg(rdev, "GPIO %d is already used\n",
1966 config->ena_gpio);
1967 goto update_ena_gpio_to_rdev;
1968 }
1969 }
1970
1971 ret = gpio_request_one(config->ena_gpio,
1972 GPIOF_DIR_OUT | config->ena_gpio_flags,
1973 rdev_get_name(rdev));
1974 if (ret)
1975 return ret;
1976
1977 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1978 if (pin == NULL) {
1979 gpio_free(config->ena_gpio);
1980 return -ENOMEM;
1981 }
1982
1983 pin->gpiod = gpiod;
1984 pin->ena_gpio_invert = config->ena_gpio_invert;
1985 list_add(&pin->list, &regulator_ena_gpio_list);
1986
1987 update_ena_gpio_to_rdev:
1988 pin->request_count++;
1989 rdev->ena_pin = pin;
1990 return 0;
1991 }
1992
1993 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1994 {
1995 struct regulator_enable_gpio *pin, *n;
1996
1997 if (!rdev->ena_pin)
1998 return;
1999
2000 /* Free the GPIO only in case of no use */
2001 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2002 if (pin->gpiod == rdev->ena_pin->gpiod) {
2003 if (pin->request_count <= 1) {
2004 pin->request_count = 0;
2005 gpiod_put(pin->gpiod);
2006 list_del(&pin->list);
2007 kfree(pin);
2008 rdev->ena_pin = NULL;
2009 return;
2010 } else {
2011 pin->request_count--;
2012 }
2013 }
2014 }
2015 }
2016
2017 /**
2018 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2019 * @rdev: regulator_dev structure
2020 * @enable: enable GPIO at initial use?
2021 *
2022 * GPIO is enabled in case of initial use. (enable_count is 0)
2023 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2024 */
2025 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2026 {
2027 struct regulator_enable_gpio *pin = rdev->ena_pin;
2028
2029 if (!pin)
2030 return -EINVAL;
2031
2032 if (enable) {
2033 /* Enable GPIO at initial use */
2034 if (pin->enable_count == 0)
2035 gpiod_set_value_cansleep(pin->gpiod,
2036 !pin->ena_gpio_invert);
2037
2038 pin->enable_count++;
2039 } else {
2040 if (pin->enable_count > 1) {
2041 pin->enable_count--;
2042 return 0;
2043 }
2044
2045 /* Disable GPIO if not used */
2046 if (pin->enable_count <= 1) {
2047 gpiod_set_value_cansleep(pin->gpiod,
2048 pin->ena_gpio_invert);
2049 pin->enable_count = 0;
2050 }
2051 }
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * _regulator_enable_delay - a delay helper function
2058 * @delay: time to delay in microseconds
2059 *
2060 * Delay for the requested amount of time as per the guidelines in:
2061 *
2062 * Documentation/timers/timers-howto.txt
2063 *
2064 * The assumption here is that regulators will never be enabled in
2065 * atomic context and therefore sleeping functions can be used.
2066 */
2067 static void _regulator_enable_delay(unsigned int delay)
2068 {
2069 unsigned int ms = delay / 1000;
2070 unsigned int us = delay % 1000;
2071
2072 if (ms > 0) {
2073 /*
2074 * For small enough values, handle super-millisecond
2075 * delays in the usleep_range() call below.
2076 */
2077 if (ms < 20)
2078 us += ms * 1000;
2079 else
2080 msleep(ms);
2081 }
2082
2083 /*
2084 * Give the scheduler some room to coalesce with any other
2085 * wakeup sources. For delays shorter than 10 us, don't even
2086 * bother setting up high-resolution timers and just busy-
2087 * loop.
2088 */
2089 if (us >= 10)
2090 usleep_range(us, us + 100);
2091 else
2092 udelay(us);
2093 }
2094
2095 static int _regulator_do_enable(struct regulator_dev *rdev)
2096 {
2097 int ret, delay;
2098
2099 /* Query before enabling in case configuration dependent. */
2100 ret = _regulator_get_enable_time(rdev);
2101 if (ret >= 0) {
2102 delay = ret;
2103 } else {
2104 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2105 delay = 0;
2106 }
2107
2108 trace_regulator_enable(rdev_get_name(rdev));
2109
2110 if (rdev->desc->off_on_delay) {
2111 /* if needed, keep a distance of off_on_delay from last time
2112 * this regulator was disabled.
2113 */
2114 unsigned long start_jiffy = jiffies;
2115 unsigned long intended, max_delay, remaining;
2116
2117 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2118 intended = rdev->last_off_jiffy + max_delay;
2119
2120 if (time_before(start_jiffy, intended)) {
2121 /* calc remaining jiffies to deal with one-time
2122 * timer wrapping.
2123 * in case of multiple timer wrapping, either it can be
2124 * detected by out-of-range remaining, or it cannot be
2125 * detected and we gets a panelty of
2126 * _regulator_enable_delay().
2127 */
2128 remaining = intended - start_jiffy;
2129 if (remaining <= max_delay)
2130 _regulator_enable_delay(
2131 jiffies_to_usecs(remaining));
2132 }
2133 }
2134
2135 if (rdev->ena_pin) {
2136 if (!rdev->ena_gpio_state) {
2137 ret = regulator_ena_gpio_ctrl(rdev, true);
2138 if (ret < 0)
2139 return ret;
2140 rdev->ena_gpio_state = 1;
2141 }
2142 } else if (rdev->desc->ops->enable) {
2143 ret = rdev->desc->ops->enable(rdev);
2144 if (ret < 0)
2145 return ret;
2146 } else {
2147 return -EINVAL;
2148 }
2149
2150 /* Allow the regulator to ramp; it would be useful to extend
2151 * this for bulk operations so that the regulators can ramp
2152 * together. */
2153 trace_regulator_enable_delay(rdev_get_name(rdev));
2154
2155 _regulator_enable_delay(delay);
2156
2157 trace_regulator_enable_complete(rdev_get_name(rdev));
2158
2159 return 0;
2160 }
2161
2162 /* locks held by regulator_enable() */
2163 static int _regulator_enable(struct regulator_dev *rdev)
2164 {
2165 int ret;
2166
2167 lockdep_assert_held_once(&rdev->mutex);
2168
2169 /* check voltage and requested load before enabling */
2170 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2171 drms_uA_update(rdev);
2172
2173 if (rdev->use_count == 0) {
2174 /* The regulator may on if it's not switchable or left on */
2175 ret = _regulator_is_enabled(rdev);
2176 if (ret == -EINVAL || ret == 0) {
2177 if (!regulator_ops_is_valid(rdev,
2178 REGULATOR_CHANGE_STATUS))
2179 return -EPERM;
2180
2181 ret = _regulator_do_enable(rdev);
2182 if (ret < 0)
2183 return ret;
2184
2185 } else if (ret < 0) {
2186 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2187 return ret;
2188 }
2189 /* Fallthrough on positive return values - already enabled */
2190 }
2191
2192 rdev->use_count++;
2193
2194 return 0;
2195 }
2196
2197 /**
2198 * regulator_enable - enable regulator output
2199 * @regulator: regulator source
2200 *
2201 * Request that the regulator be enabled with the regulator output at
2202 * the predefined voltage or current value. Calls to regulator_enable()
2203 * must be balanced with calls to regulator_disable().
2204 *
2205 * NOTE: the output value can be set by other drivers, boot loader or may be
2206 * hardwired in the regulator.
2207 */
2208 int regulator_enable(struct regulator *regulator)
2209 {
2210 struct regulator_dev *rdev = regulator->rdev;
2211 int ret = 0;
2212
2213 if (regulator->always_on)
2214 return 0;
2215
2216 if (rdev->supply) {
2217 ret = regulator_enable(rdev->supply);
2218 if (ret != 0)
2219 return ret;
2220 }
2221
2222 mutex_lock(&rdev->mutex);
2223 ret = _regulator_enable(rdev);
2224 mutex_unlock(&rdev->mutex);
2225
2226 if (ret != 0 && rdev->supply)
2227 regulator_disable(rdev->supply);
2228
2229 return ret;
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_enable);
2232
2233 static int _regulator_do_disable(struct regulator_dev *rdev)
2234 {
2235 int ret;
2236
2237 trace_regulator_disable(rdev_get_name(rdev));
2238
2239 if (rdev->ena_pin) {
2240 if (rdev->ena_gpio_state) {
2241 ret = regulator_ena_gpio_ctrl(rdev, false);
2242 if (ret < 0)
2243 return ret;
2244 rdev->ena_gpio_state = 0;
2245 }
2246
2247 } else if (rdev->desc->ops->disable) {
2248 ret = rdev->desc->ops->disable(rdev);
2249 if (ret != 0)
2250 return ret;
2251 }
2252
2253 /* cares about last_off_jiffy only if off_on_delay is required by
2254 * device.
2255 */
2256 if (rdev->desc->off_on_delay)
2257 rdev->last_off_jiffy = jiffies;
2258
2259 trace_regulator_disable_complete(rdev_get_name(rdev));
2260
2261 return 0;
2262 }
2263
2264 /* locks held by regulator_disable() */
2265 static int _regulator_disable(struct regulator_dev *rdev)
2266 {
2267 int ret = 0;
2268
2269 lockdep_assert_held_once(&rdev->mutex);
2270
2271 if (WARN(rdev->use_count <= 0,
2272 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2273 return -EIO;
2274
2275 /* are we the last user and permitted to disable ? */
2276 if (rdev->use_count == 1 &&
2277 (rdev->constraints && !rdev->constraints->always_on)) {
2278
2279 /* we are last user */
2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2281 ret = _notifier_call_chain(rdev,
2282 REGULATOR_EVENT_PRE_DISABLE,
2283 NULL);
2284 if (ret & NOTIFY_STOP_MASK)
2285 return -EINVAL;
2286
2287 ret = _regulator_do_disable(rdev);
2288 if (ret < 0) {
2289 rdev_err(rdev, "failed to disable\n");
2290 _notifier_call_chain(rdev,
2291 REGULATOR_EVENT_ABORT_DISABLE,
2292 NULL);
2293 return ret;
2294 }
2295 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2296 NULL);
2297 }
2298
2299 rdev->use_count = 0;
2300 } else if (rdev->use_count > 1) {
2301 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2302 drms_uA_update(rdev);
2303
2304 rdev->use_count--;
2305 }
2306
2307 return ret;
2308 }
2309
2310 /**
2311 * regulator_disable - disable regulator output
2312 * @regulator: regulator source
2313 *
2314 * Disable the regulator output voltage or current. Calls to
2315 * regulator_enable() must be balanced with calls to
2316 * regulator_disable().
2317 *
2318 * NOTE: this will only disable the regulator output if no other consumer
2319 * devices have it enabled, the regulator device supports disabling and
2320 * machine constraints permit this operation.
2321 */
2322 int regulator_disable(struct regulator *regulator)
2323 {
2324 struct regulator_dev *rdev = regulator->rdev;
2325 int ret = 0;
2326
2327 if (regulator->always_on)
2328 return 0;
2329
2330 mutex_lock(&rdev->mutex);
2331 ret = _regulator_disable(rdev);
2332 mutex_unlock(&rdev->mutex);
2333
2334 if (ret == 0 && rdev->supply)
2335 regulator_disable(rdev->supply);
2336
2337 return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_disable);
2340
2341 /* locks held by regulator_force_disable() */
2342 static int _regulator_force_disable(struct regulator_dev *rdev)
2343 {
2344 int ret = 0;
2345
2346 lockdep_assert_held_once(&rdev->mutex);
2347
2348 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 REGULATOR_EVENT_PRE_DISABLE, NULL);
2350 if (ret & NOTIFY_STOP_MASK)
2351 return -EINVAL;
2352
2353 ret = _regulator_do_disable(rdev);
2354 if (ret < 0) {
2355 rdev_err(rdev, "failed to force disable\n");
2356 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2357 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2358 return ret;
2359 }
2360
2361 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2362 REGULATOR_EVENT_DISABLE, NULL);
2363
2364 return 0;
2365 }
2366
2367 /**
2368 * regulator_force_disable - force disable regulator output
2369 * @regulator: regulator source
2370 *
2371 * Forcibly disable the regulator output voltage or current.
2372 * NOTE: this *will* disable the regulator output even if other consumer
2373 * devices have it enabled. This should be used for situations when device
2374 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2375 */
2376 int regulator_force_disable(struct regulator *regulator)
2377 {
2378 struct regulator_dev *rdev = regulator->rdev;
2379 int ret;
2380
2381 mutex_lock(&rdev->mutex);
2382 regulator->uA_load = 0;
2383 ret = _regulator_force_disable(regulator->rdev);
2384 mutex_unlock(&rdev->mutex);
2385
2386 if (rdev->supply)
2387 while (rdev->open_count--)
2388 regulator_disable(rdev->supply);
2389
2390 return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_force_disable);
2393
2394 static void regulator_disable_work(struct work_struct *work)
2395 {
2396 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2397 disable_work.work);
2398 int count, i, ret;
2399
2400 mutex_lock(&rdev->mutex);
2401
2402 BUG_ON(!rdev->deferred_disables);
2403
2404 count = rdev->deferred_disables;
2405 rdev->deferred_disables = 0;
2406
2407 for (i = 0; i < count; i++) {
2408 ret = _regulator_disable(rdev);
2409 if (ret != 0)
2410 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2411 }
2412
2413 mutex_unlock(&rdev->mutex);
2414
2415 if (rdev->supply) {
2416 for (i = 0; i < count; i++) {
2417 ret = regulator_disable(rdev->supply);
2418 if (ret != 0) {
2419 rdev_err(rdev,
2420 "Supply disable failed: %d\n", ret);
2421 }
2422 }
2423 }
2424 }
2425
2426 /**
2427 * regulator_disable_deferred - disable regulator output with delay
2428 * @regulator: regulator source
2429 * @ms: miliseconds until the regulator is disabled
2430 *
2431 * Execute regulator_disable() on the regulator after a delay. This
2432 * is intended for use with devices that require some time to quiesce.
2433 *
2434 * NOTE: this will only disable the regulator output if no other consumer
2435 * devices have it enabled, the regulator device supports disabling and
2436 * machine constraints permit this operation.
2437 */
2438 int regulator_disable_deferred(struct regulator *regulator, int ms)
2439 {
2440 struct regulator_dev *rdev = regulator->rdev;
2441
2442 if (regulator->always_on)
2443 return 0;
2444
2445 if (!ms)
2446 return regulator_disable(regulator);
2447
2448 mutex_lock(&rdev->mutex);
2449 rdev->deferred_disables++;
2450 mutex_unlock(&rdev->mutex);
2451
2452 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2453 msecs_to_jiffies(ms));
2454 return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2457
2458 static int _regulator_is_enabled(struct regulator_dev *rdev)
2459 {
2460 /* A GPIO control always takes precedence */
2461 if (rdev->ena_pin)
2462 return rdev->ena_gpio_state;
2463
2464 /* If we don't know then assume that the regulator is always on */
2465 if (!rdev->desc->ops->is_enabled)
2466 return 1;
2467
2468 return rdev->desc->ops->is_enabled(rdev);
2469 }
2470
2471 static int _regulator_list_voltage(struct regulator *regulator,
2472 unsigned selector, int lock)
2473 {
2474 struct regulator_dev *rdev = regulator->rdev;
2475 const struct regulator_ops *ops = rdev->desc->ops;
2476 int ret;
2477
2478 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2479 return rdev->desc->fixed_uV;
2480
2481 if (ops->list_voltage) {
2482 if (selector >= rdev->desc->n_voltages)
2483 return -EINVAL;
2484 if (lock)
2485 mutex_lock(&rdev->mutex);
2486 ret = ops->list_voltage(rdev, selector);
2487 if (lock)
2488 mutex_unlock(&rdev->mutex);
2489 } else if (rdev->supply) {
2490 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2491 } else {
2492 return -EINVAL;
2493 }
2494
2495 if (ret > 0) {
2496 if (ret < rdev->constraints->min_uV)
2497 ret = 0;
2498 else if (ret > rdev->constraints->max_uV)
2499 ret = 0;
2500 }
2501
2502 return ret;
2503 }
2504
2505 /**
2506 * regulator_is_enabled - is the regulator output enabled
2507 * @regulator: regulator source
2508 *
2509 * Returns positive if the regulator driver backing the source/client
2510 * has requested that the device be enabled, zero if it hasn't, else a
2511 * negative errno code.
2512 *
2513 * Note that the device backing this regulator handle can have multiple
2514 * users, so it might be enabled even if regulator_enable() was never
2515 * called for this particular source.
2516 */
2517 int regulator_is_enabled(struct regulator *regulator)
2518 {
2519 int ret;
2520
2521 if (regulator->always_on)
2522 return 1;
2523
2524 mutex_lock(&regulator->rdev->mutex);
2525 ret = _regulator_is_enabled(regulator->rdev);
2526 mutex_unlock(&regulator->rdev->mutex);
2527
2528 return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2531
2532 /**
2533 * regulator_count_voltages - count regulator_list_voltage() selectors
2534 * @regulator: regulator source
2535 *
2536 * Returns number of selectors, or negative errno. Selectors are
2537 * numbered starting at zero, and typically correspond to bitfields
2538 * in hardware registers.
2539 */
2540 int regulator_count_voltages(struct regulator *regulator)
2541 {
2542 struct regulator_dev *rdev = regulator->rdev;
2543
2544 if (rdev->desc->n_voltages)
2545 return rdev->desc->n_voltages;
2546
2547 if (!rdev->supply)
2548 return -EINVAL;
2549
2550 return regulator_count_voltages(rdev->supply);
2551 }
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2553
2554 /**
2555 * regulator_list_voltage - enumerate supported voltages
2556 * @regulator: regulator source
2557 * @selector: identify voltage to list
2558 * Context: can sleep
2559 *
2560 * Returns a voltage that can be passed to @regulator_set_voltage(),
2561 * zero if this selector code can't be used on this system, or a
2562 * negative errno.
2563 */
2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2565 {
2566 return _regulator_list_voltage(regulator, selector, 1);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2569
2570 /**
2571 * regulator_get_regmap - get the regulator's register map
2572 * @regulator: regulator source
2573 *
2574 * Returns the register map for the given regulator, or an ERR_PTR value
2575 * if the regulator doesn't use regmap.
2576 */
2577 struct regmap *regulator_get_regmap(struct regulator *regulator)
2578 {
2579 struct regmap *map = regulator->rdev->regmap;
2580
2581 return map ? map : ERR_PTR(-EOPNOTSUPP);
2582 }
2583
2584 /**
2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586 * @regulator: regulator source
2587 * @vsel_reg: voltage selector register, output parameter
2588 * @vsel_mask: mask for voltage selector bitfield, output parameter
2589 *
2590 * Returns the hardware register offset and bitmask used for setting the
2591 * regulator voltage. This might be useful when configuring voltage-scaling
2592 * hardware or firmware that can make I2C requests behind the kernel's back,
2593 * for example.
2594 *
2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596 * and 0 is returned, otherwise a negative errno is returned.
2597 */
2598 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2599 unsigned *vsel_reg,
2600 unsigned *vsel_mask)
2601 {
2602 struct regulator_dev *rdev = regulator->rdev;
2603 const struct regulator_ops *ops = rdev->desc->ops;
2604
2605 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2606 return -EOPNOTSUPP;
2607
2608 *vsel_reg = rdev->desc->vsel_reg;
2609 *vsel_mask = rdev->desc->vsel_mask;
2610
2611 return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2614
2615 /**
2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617 * @regulator: regulator source
2618 * @selector: identify voltage to list
2619 *
2620 * Converts the selector to a hardware-specific voltage selector that can be
2621 * directly written to the regulator registers. The address of the voltage
2622 * register can be determined by calling @regulator_get_hardware_vsel_register.
2623 *
2624 * On error a negative errno is returned.
2625 */
2626 int regulator_list_hardware_vsel(struct regulator *regulator,
2627 unsigned selector)
2628 {
2629 struct regulator_dev *rdev = regulator->rdev;
2630 const struct regulator_ops *ops = rdev->desc->ops;
2631
2632 if (selector >= rdev->desc->n_voltages)
2633 return -EINVAL;
2634 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2635 return -EOPNOTSUPP;
2636
2637 return selector;
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2640
2641 /**
2642 * regulator_get_linear_step - return the voltage step size between VSEL values
2643 * @regulator: regulator source
2644 *
2645 * Returns the voltage step size between VSEL values for linear
2646 * regulators, or return 0 if the regulator isn't a linear regulator.
2647 */
2648 unsigned int regulator_get_linear_step(struct regulator *regulator)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651
2652 return rdev->desc->uV_step;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2655
2656 /**
2657 * regulator_is_supported_voltage - check if a voltage range can be supported
2658 *
2659 * @regulator: Regulator to check.
2660 * @min_uV: Minimum required voltage in uV.
2661 * @max_uV: Maximum required voltage in uV.
2662 *
2663 * Returns a boolean or a negative error code.
2664 */
2665 int regulator_is_supported_voltage(struct regulator *regulator,
2666 int min_uV, int max_uV)
2667 {
2668 struct regulator_dev *rdev = regulator->rdev;
2669 int i, voltages, ret;
2670
2671 /* If we can't change voltage check the current voltage */
2672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2673 ret = regulator_get_voltage(regulator);
2674 if (ret >= 0)
2675 return min_uV <= ret && ret <= max_uV;
2676 else
2677 return ret;
2678 }
2679
2680 /* Any voltage within constrains range is fine? */
2681 if (rdev->desc->continuous_voltage_range)
2682 return min_uV >= rdev->constraints->min_uV &&
2683 max_uV <= rdev->constraints->max_uV;
2684
2685 ret = regulator_count_voltages(regulator);
2686 if (ret < 0)
2687 return ret;
2688 voltages = ret;
2689
2690 for (i = 0; i < voltages; i++) {
2691 ret = regulator_list_voltage(regulator, i);
2692
2693 if (ret >= min_uV && ret <= max_uV)
2694 return 1;
2695 }
2696
2697 return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2700
2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2702 int max_uV)
2703 {
2704 const struct regulator_desc *desc = rdev->desc;
2705
2706 if (desc->ops->map_voltage)
2707 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2708
2709 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2710 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2711
2712 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2713 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2714
2715 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2716 }
2717
2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2719 int min_uV, int max_uV,
2720 unsigned *selector)
2721 {
2722 struct pre_voltage_change_data data;
2723 int ret;
2724
2725 data.old_uV = _regulator_get_voltage(rdev);
2726 data.min_uV = min_uV;
2727 data.max_uV = max_uV;
2728 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2729 &data);
2730 if (ret & NOTIFY_STOP_MASK)
2731 return -EINVAL;
2732
2733 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2734 if (ret >= 0)
2735 return ret;
2736
2737 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738 (void *)data.old_uV);
2739
2740 return ret;
2741 }
2742
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2744 int uV, unsigned selector)
2745 {
2746 struct pre_voltage_change_data data;
2747 int ret;
2748
2749 data.old_uV = _regulator_get_voltage(rdev);
2750 data.min_uV = uV;
2751 data.max_uV = uV;
2752 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2753 &data);
2754 if (ret & NOTIFY_STOP_MASK)
2755 return -EINVAL;
2756
2757 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2758 if (ret >= 0)
2759 return ret;
2760
2761 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2762 (void *)data.old_uV);
2763
2764 return ret;
2765 }
2766
2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2768 int old_uV, int new_uV)
2769 {
2770 unsigned int ramp_delay = 0;
2771
2772 if (rdev->constraints->ramp_delay)
2773 ramp_delay = rdev->constraints->ramp_delay;
2774 else if (rdev->desc->ramp_delay)
2775 ramp_delay = rdev->desc->ramp_delay;
2776
2777 if (ramp_delay == 0) {
2778 rdev_dbg(rdev, "ramp_delay not set\n");
2779 return 0;
2780 }
2781
2782 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2783 }
2784
2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2786 int min_uV, int max_uV)
2787 {
2788 int ret;
2789 int delay = 0;
2790 int best_val = 0;
2791 unsigned int selector;
2792 int old_selector = -1;
2793 const struct regulator_ops *ops = rdev->desc->ops;
2794 int old_uV = _regulator_get_voltage(rdev);
2795
2796 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2797
2798 min_uV += rdev->constraints->uV_offset;
2799 max_uV += rdev->constraints->uV_offset;
2800
2801 /*
2802 * If we can't obtain the old selector there is not enough
2803 * info to call set_voltage_time_sel().
2804 */
2805 if (_regulator_is_enabled(rdev) &&
2806 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2807 old_selector = ops->get_voltage_sel(rdev);
2808 if (old_selector < 0)
2809 return old_selector;
2810 }
2811
2812 if (ops->set_voltage) {
2813 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2814 &selector);
2815
2816 if (ret >= 0) {
2817 if (ops->list_voltage)
2818 best_val = ops->list_voltage(rdev,
2819 selector);
2820 else
2821 best_val = _regulator_get_voltage(rdev);
2822 }
2823
2824 } else if (ops->set_voltage_sel) {
2825 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2826 if (ret >= 0) {
2827 best_val = ops->list_voltage(rdev, ret);
2828 if (min_uV <= best_val && max_uV >= best_val) {
2829 selector = ret;
2830 if (old_selector == selector)
2831 ret = 0;
2832 else
2833 ret = _regulator_call_set_voltage_sel(
2834 rdev, best_val, selector);
2835 } else {
2836 ret = -EINVAL;
2837 }
2838 }
2839 } else {
2840 ret = -EINVAL;
2841 }
2842
2843 if (ret)
2844 goto out;
2845
2846 if (ops->set_voltage_time_sel) {
2847 /*
2848 * Call set_voltage_time_sel if successfully obtained
2849 * old_selector
2850 */
2851 if (old_selector >= 0 && old_selector != selector)
2852 delay = ops->set_voltage_time_sel(rdev, old_selector,
2853 selector);
2854 } else {
2855 if (old_uV != best_val) {
2856 if (ops->set_voltage_time)
2857 delay = ops->set_voltage_time(rdev, old_uV,
2858 best_val);
2859 else
2860 delay = _regulator_set_voltage_time(rdev,
2861 old_uV,
2862 best_val);
2863 }
2864 }
2865
2866 if (delay < 0) {
2867 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2868 delay = 0;
2869 }
2870
2871 /* Insert any necessary delays */
2872 if (delay >= 1000) {
2873 mdelay(delay / 1000);
2874 udelay(delay % 1000);
2875 } else if (delay) {
2876 udelay(delay);
2877 }
2878
2879 if (best_val >= 0) {
2880 unsigned long data = best_val;
2881
2882 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2883 (void *)data);
2884 }
2885
2886 out:
2887 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2888
2889 return ret;
2890 }
2891
2892 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2893 int min_uV, int max_uV)
2894 {
2895 struct regulator_dev *rdev = regulator->rdev;
2896 int ret = 0;
2897 int old_min_uV, old_max_uV;
2898 int current_uV;
2899 int best_supply_uV = 0;
2900 int supply_change_uV = 0;
2901
2902 /* If we're setting the same range as last time the change
2903 * should be a noop (some cpufreq implementations use the same
2904 * voltage for multiple frequencies, for example).
2905 */
2906 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2907 goto out;
2908
2909 /* If we're trying to set a range that overlaps the current voltage,
2910 * return successfully even though the regulator does not support
2911 * changing the voltage.
2912 */
2913 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2914 current_uV = _regulator_get_voltage(rdev);
2915 if (min_uV <= current_uV && current_uV <= max_uV) {
2916 regulator->min_uV = min_uV;
2917 regulator->max_uV = max_uV;
2918 goto out;
2919 }
2920 }
2921
2922 /* sanity check */
2923 if (!rdev->desc->ops->set_voltage &&
2924 !rdev->desc->ops->set_voltage_sel) {
2925 ret = -EINVAL;
2926 goto out;
2927 }
2928
2929 /* constraints check */
2930 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2931 if (ret < 0)
2932 goto out;
2933
2934 /* restore original values in case of error */
2935 old_min_uV = regulator->min_uV;
2936 old_max_uV = regulator->max_uV;
2937 regulator->min_uV = min_uV;
2938 regulator->max_uV = max_uV;
2939
2940 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2941 if (ret < 0)
2942 goto out2;
2943
2944 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2945 !rdev->desc->ops->get_voltage)) {
2946 int current_supply_uV;
2947 int selector;
2948
2949 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2950 if (selector < 0) {
2951 ret = selector;
2952 goto out2;
2953 }
2954
2955 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2956 if (best_supply_uV < 0) {
2957 ret = best_supply_uV;
2958 goto out2;
2959 }
2960
2961 best_supply_uV += rdev->desc->min_dropout_uV;
2962
2963 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2964 if (current_supply_uV < 0) {
2965 ret = current_supply_uV;
2966 goto out2;
2967 }
2968
2969 supply_change_uV = best_supply_uV - current_supply_uV;
2970 }
2971
2972 if (supply_change_uV > 0) {
2973 ret = regulator_set_voltage_unlocked(rdev->supply,
2974 best_supply_uV, INT_MAX);
2975 if (ret) {
2976 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2977 ret);
2978 goto out2;
2979 }
2980 }
2981
2982 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2983 if (ret < 0)
2984 goto out2;
2985
2986 if (supply_change_uV < 0) {
2987 ret = regulator_set_voltage_unlocked(rdev->supply,
2988 best_supply_uV, INT_MAX);
2989 if (ret)
2990 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2991 ret);
2992 /* No need to fail here */
2993 ret = 0;
2994 }
2995
2996 out:
2997 return ret;
2998 out2:
2999 regulator->min_uV = old_min_uV;
3000 regulator->max_uV = old_max_uV;
3001
3002 return ret;
3003 }
3004
3005 /**
3006 * regulator_set_voltage - set regulator output voltage
3007 * @regulator: regulator source
3008 * @min_uV: Minimum required voltage in uV
3009 * @max_uV: Maximum acceptable voltage in uV
3010 *
3011 * Sets a voltage regulator to the desired output voltage. This can be set
3012 * during any regulator state. IOW, regulator can be disabled or enabled.
3013 *
3014 * If the regulator is enabled then the voltage will change to the new value
3015 * immediately otherwise if the regulator is disabled the regulator will
3016 * output at the new voltage when enabled.
3017 *
3018 * NOTE: If the regulator is shared between several devices then the lowest
3019 * request voltage that meets the system constraints will be used.
3020 * Regulator system constraints must be set for this regulator before
3021 * calling this function otherwise this call will fail.
3022 */
3023 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3024 {
3025 int ret = 0;
3026
3027 regulator_lock_supply(regulator->rdev);
3028
3029 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3030
3031 regulator_unlock_supply(regulator->rdev);
3032
3033 return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3036
3037 /**
3038 * regulator_set_voltage_time - get raise/fall time
3039 * @regulator: regulator source
3040 * @old_uV: starting voltage in microvolts
3041 * @new_uV: target voltage in microvolts
3042 *
3043 * Provided with the starting and ending voltage, this function attempts to
3044 * calculate the time in microseconds required to rise or fall to this new
3045 * voltage.
3046 */
3047 int regulator_set_voltage_time(struct regulator *regulator,
3048 int old_uV, int new_uV)
3049 {
3050 struct regulator_dev *rdev = regulator->rdev;
3051 const struct regulator_ops *ops = rdev->desc->ops;
3052 int old_sel = -1;
3053 int new_sel = -1;
3054 int voltage;
3055 int i;
3056
3057 if (ops->set_voltage_time)
3058 return ops->set_voltage_time(rdev, old_uV, new_uV);
3059 else if (!ops->set_voltage_time_sel)
3060 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3061
3062 /* Currently requires operations to do this */
3063 if (!ops->list_voltage || !rdev->desc->n_voltages)
3064 return -EINVAL;
3065
3066 for (i = 0; i < rdev->desc->n_voltages; i++) {
3067 /* We only look for exact voltage matches here */
3068 voltage = regulator_list_voltage(regulator, i);
3069 if (voltage < 0)
3070 return -EINVAL;
3071 if (voltage == 0)
3072 continue;
3073 if (voltage == old_uV)
3074 old_sel = i;
3075 if (voltage == new_uV)
3076 new_sel = i;
3077 }
3078
3079 if (old_sel < 0 || new_sel < 0)
3080 return -EINVAL;
3081
3082 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3085
3086 /**
3087 * regulator_set_voltage_time_sel - get raise/fall time
3088 * @rdev: regulator source device
3089 * @old_selector: selector for starting voltage
3090 * @new_selector: selector for target voltage
3091 *
3092 * Provided with the starting and target voltage selectors, this function
3093 * returns time in microseconds required to rise or fall to this new voltage
3094 *
3095 * Drivers providing ramp_delay in regulation_constraints can use this as their
3096 * set_voltage_time_sel() operation.
3097 */
3098 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3099 unsigned int old_selector,
3100 unsigned int new_selector)
3101 {
3102 int old_volt, new_volt;
3103
3104 /* sanity check */
3105 if (!rdev->desc->ops->list_voltage)
3106 return -EINVAL;
3107
3108 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3109 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3110
3111 if (rdev->desc->ops->set_voltage_time)
3112 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3113 new_volt);
3114 else
3115 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3118
3119 /**
3120 * regulator_sync_voltage - re-apply last regulator output voltage
3121 * @regulator: regulator source
3122 *
3123 * Re-apply the last configured voltage. This is intended to be used
3124 * where some external control source the consumer is cooperating with
3125 * has caused the configured voltage to change.
3126 */
3127 int regulator_sync_voltage(struct regulator *regulator)
3128 {
3129 struct regulator_dev *rdev = regulator->rdev;
3130 int ret, min_uV, max_uV;
3131
3132 mutex_lock(&rdev->mutex);
3133
3134 if (!rdev->desc->ops->set_voltage &&
3135 !rdev->desc->ops->set_voltage_sel) {
3136 ret = -EINVAL;
3137 goto out;
3138 }
3139
3140 /* This is only going to work if we've had a voltage configured. */
3141 if (!regulator->min_uV && !regulator->max_uV) {
3142 ret = -EINVAL;
3143 goto out;
3144 }
3145
3146 min_uV = regulator->min_uV;
3147 max_uV = regulator->max_uV;
3148
3149 /* This should be a paranoia check... */
3150 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3151 if (ret < 0)
3152 goto out;
3153
3154 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3155 if (ret < 0)
3156 goto out;
3157
3158 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3159
3160 out:
3161 mutex_unlock(&rdev->mutex);
3162 return ret;
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3165
3166 static int _regulator_get_voltage(struct regulator_dev *rdev)
3167 {
3168 int sel, ret;
3169 bool bypassed;
3170
3171 if (rdev->desc->ops->get_bypass) {
3172 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3173 if (ret < 0)
3174 return ret;
3175 if (bypassed) {
3176 /* if bypassed the regulator must have a supply */
3177 if (!rdev->supply) {
3178 rdev_err(rdev,
3179 "bypassed regulator has no supply!\n");
3180 return -EPROBE_DEFER;
3181 }
3182
3183 return _regulator_get_voltage(rdev->supply->rdev);
3184 }
3185 }
3186
3187 if (rdev->desc->ops->get_voltage_sel) {
3188 sel = rdev->desc->ops->get_voltage_sel(rdev);
3189 if (sel < 0)
3190 return sel;
3191 ret = rdev->desc->ops->list_voltage(rdev, sel);
3192 } else if (rdev->desc->ops->get_voltage) {
3193 ret = rdev->desc->ops->get_voltage(rdev);
3194 } else if (rdev->desc->ops->list_voltage) {
3195 ret = rdev->desc->ops->list_voltage(rdev, 0);
3196 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3197 ret = rdev->desc->fixed_uV;
3198 } else if (rdev->supply) {
3199 ret = _regulator_get_voltage(rdev->supply->rdev);
3200 } else {
3201 return -EINVAL;
3202 }
3203
3204 if (ret < 0)
3205 return ret;
3206 return ret - rdev->constraints->uV_offset;
3207 }
3208
3209 /**
3210 * regulator_get_voltage - get regulator output voltage
3211 * @regulator: regulator source
3212 *
3213 * This returns the current regulator voltage in uV.
3214 *
3215 * NOTE: If the regulator is disabled it will return the voltage value. This
3216 * function should not be used to determine regulator state.
3217 */
3218 int regulator_get_voltage(struct regulator *regulator)
3219 {
3220 int ret;
3221
3222 regulator_lock_supply(regulator->rdev);
3223
3224 ret = _regulator_get_voltage(regulator->rdev);
3225
3226 regulator_unlock_supply(regulator->rdev);
3227
3228 return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3231
3232 /**
3233 * regulator_set_current_limit - set regulator output current limit
3234 * @regulator: regulator source
3235 * @min_uA: Minimum supported current in uA
3236 * @max_uA: Maximum supported current in uA
3237 *
3238 * Sets current sink to the desired output current. This can be set during
3239 * any regulator state. IOW, regulator can be disabled or enabled.
3240 *
3241 * If the regulator is enabled then the current will change to the new value
3242 * immediately otherwise if the regulator is disabled the regulator will
3243 * output at the new current when enabled.
3244 *
3245 * NOTE: Regulator system constraints must be set for this regulator before
3246 * calling this function otherwise this call will fail.
3247 */
3248 int regulator_set_current_limit(struct regulator *regulator,
3249 int min_uA, int max_uA)
3250 {
3251 struct regulator_dev *rdev = regulator->rdev;
3252 int ret;
3253
3254 mutex_lock(&rdev->mutex);
3255
3256 /* sanity check */
3257 if (!rdev->desc->ops->set_current_limit) {
3258 ret = -EINVAL;
3259 goto out;
3260 }
3261
3262 /* constraints check */
3263 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3264 if (ret < 0)
3265 goto out;
3266
3267 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3268 out:
3269 mutex_unlock(&rdev->mutex);
3270 return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3273
3274 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3275 {
3276 int ret;
3277
3278 mutex_lock(&rdev->mutex);
3279
3280 /* sanity check */
3281 if (!rdev->desc->ops->get_current_limit) {
3282 ret = -EINVAL;
3283 goto out;
3284 }
3285
3286 ret = rdev->desc->ops->get_current_limit(rdev);
3287 out:
3288 mutex_unlock(&rdev->mutex);
3289 return ret;
3290 }
3291
3292 /**
3293 * regulator_get_current_limit - get regulator output current
3294 * @regulator: regulator source
3295 *
3296 * This returns the current supplied by the specified current sink in uA.
3297 *
3298 * NOTE: If the regulator is disabled it will return the current value. This
3299 * function should not be used to determine regulator state.
3300 */
3301 int regulator_get_current_limit(struct regulator *regulator)
3302 {
3303 return _regulator_get_current_limit(regulator->rdev);
3304 }
3305 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3306
3307 /**
3308 * regulator_set_mode - set regulator operating mode
3309 * @regulator: regulator source
3310 * @mode: operating mode - one of the REGULATOR_MODE constants
3311 *
3312 * Set regulator operating mode to increase regulator efficiency or improve
3313 * regulation performance.
3314 *
3315 * NOTE: Regulator system constraints must be set for this regulator before
3316 * calling this function otherwise this call will fail.
3317 */
3318 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3319 {
3320 struct regulator_dev *rdev = regulator->rdev;
3321 int ret;
3322 int regulator_curr_mode;
3323
3324 mutex_lock(&rdev->mutex);
3325
3326 /* sanity check */
3327 if (!rdev->desc->ops->set_mode) {
3328 ret = -EINVAL;
3329 goto out;
3330 }
3331
3332 /* return if the same mode is requested */
3333 if (rdev->desc->ops->get_mode) {
3334 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3335 if (regulator_curr_mode == mode) {
3336 ret = 0;
3337 goto out;
3338 }
3339 }
3340
3341 /* constraints check */
3342 ret = regulator_mode_constrain(rdev, &mode);
3343 if (ret < 0)
3344 goto out;
3345
3346 ret = rdev->desc->ops->set_mode(rdev, mode);
3347 out:
3348 mutex_unlock(&rdev->mutex);
3349 return ret;
3350 }
3351 EXPORT_SYMBOL_GPL(regulator_set_mode);
3352
3353 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3354 {
3355 int ret;
3356
3357 mutex_lock(&rdev->mutex);
3358
3359 /* sanity check */
3360 if (!rdev->desc->ops->get_mode) {
3361 ret = -EINVAL;
3362 goto out;
3363 }
3364
3365 ret = rdev->desc->ops->get_mode(rdev);
3366 out:
3367 mutex_unlock(&rdev->mutex);
3368 return ret;
3369 }
3370
3371 /**
3372 * regulator_get_mode - get regulator operating mode
3373 * @regulator: regulator source
3374 *
3375 * Get the current regulator operating mode.
3376 */
3377 unsigned int regulator_get_mode(struct regulator *regulator)
3378 {
3379 return _regulator_get_mode(regulator->rdev);
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_get_mode);
3382
3383 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3384 unsigned int *flags)
3385 {
3386 int ret;
3387
3388 mutex_lock(&rdev->mutex);
3389
3390 /* sanity check */
3391 if (!rdev->desc->ops->get_error_flags) {
3392 ret = -EINVAL;
3393 goto out;
3394 }
3395
3396 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3397 out:
3398 mutex_unlock(&rdev->mutex);
3399 return ret;
3400 }
3401
3402 /**
3403 * regulator_get_error_flags - get regulator error information
3404 * @regulator: regulator source
3405 * @flags: pointer to store error flags
3406 *
3407 * Get the current regulator error information.
3408 */
3409 int regulator_get_error_flags(struct regulator *regulator,
3410 unsigned int *flags)
3411 {
3412 return _regulator_get_error_flags(regulator->rdev, flags);
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3415
3416 /**
3417 * regulator_set_load - set regulator load
3418 * @regulator: regulator source
3419 * @uA_load: load current
3420 *
3421 * Notifies the regulator core of a new device load. This is then used by
3422 * DRMS (if enabled by constraints) to set the most efficient regulator
3423 * operating mode for the new regulator loading.
3424 *
3425 * Consumer devices notify their supply regulator of the maximum power
3426 * they will require (can be taken from device datasheet in the power
3427 * consumption tables) when they change operational status and hence power
3428 * state. Examples of operational state changes that can affect power
3429 * consumption are :-
3430 *
3431 * o Device is opened / closed.
3432 * o Device I/O is about to begin or has just finished.
3433 * o Device is idling in between work.
3434 *
3435 * This information is also exported via sysfs to userspace.
3436 *
3437 * DRMS will sum the total requested load on the regulator and change
3438 * to the most efficient operating mode if platform constraints allow.
3439 *
3440 * On error a negative errno is returned.
3441 */
3442 int regulator_set_load(struct regulator *regulator, int uA_load)
3443 {
3444 struct regulator_dev *rdev = regulator->rdev;
3445 int ret;
3446
3447 mutex_lock(&rdev->mutex);
3448 regulator->uA_load = uA_load;
3449 ret = drms_uA_update(rdev);
3450 mutex_unlock(&rdev->mutex);
3451
3452 return ret;
3453 }
3454 EXPORT_SYMBOL_GPL(regulator_set_load);
3455
3456 /**
3457 * regulator_allow_bypass - allow the regulator to go into bypass mode
3458 *
3459 * @regulator: Regulator to configure
3460 * @enable: enable or disable bypass mode
3461 *
3462 * Allow the regulator to go into bypass mode if all other consumers
3463 * for the regulator also enable bypass mode and the machine
3464 * constraints allow this. Bypass mode means that the regulator is
3465 * simply passing the input directly to the output with no regulation.
3466 */
3467 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3468 {
3469 struct regulator_dev *rdev = regulator->rdev;
3470 int ret = 0;
3471
3472 if (!rdev->desc->ops->set_bypass)
3473 return 0;
3474
3475 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3476 return 0;
3477
3478 mutex_lock(&rdev->mutex);
3479
3480 if (enable && !regulator->bypass) {
3481 rdev->bypass_count++;
3482
3483 if (rdev->bypass_count == rdev->open_count) {
3484 ret = rdev->desc->ops->set_bypass(rdev, enable);
3485 if (ret != 0)
3486 rdev->bypass_count--;
3487 }
3488
3489 } else if (!enable && regulator->bypass) {
3490 rdev->bypass_count--;
3491
3492 if (rdev->bypass_count != rdev->open_count) {
3493 ret = rdev->desc->ops->set_bypass(rdev, enable);
3494 if (ret != 0)
3495 rdev->bypass_count++;
3496 }
3497 }
3498
3499 if (ret == 0)
3500 regulator->bypass = enable;
3501
3502 mutex_unlock(&rdev->mutex);
3503
3504 return ret;
3505 }
3506 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3507
3508 /**
3509 * regulator_register_notifier - register regulator event notifier
3510 * @regulator: regulator source
3511 * @nb: notifier block
3512 *
3513 * Register notifier block to receive regulator events.
3514 */
3515 int regulator_register_notifier(struct regulator *regulator,
3516 struct notifier_block *nb)
3517 {
3518 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3519 nb);
3520 }
3521 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3522
3523 /**
3524 * regulator_unregister_notifier - unregister regulator event notifier
3525 * @regulator: regulator source
3526 * @nb: notifier block
3527 *
3528 * Unregister regulator event notifier block.
3529 */
3530 int regulator_unregister_notifier(struct regulator *regulator,
3531 struct notifier_block *nb)
3532 {
3533 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3534 nb);
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3537
3538 /* notify regulator consumers and downstream regulator consumers.
3539 * Note mutex must be held by caller.
3540 */
3541 static int _notifier_call_chain(struct regulator_dev *rdev,
3542 unsigned long event, void *data)
3543 {
3544 /* call rdev chain first */
3545 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3546 }
3547
3548 /**
3549 * regulator_bulk_get - get multiple regulator consumers
3550 *
3551 * @dev: Device to supply
3552 * @num_consumers: Number of consumers to register
3553 * @consumers: Configuration of consumers; clients are stored here.
3554 *
3555 * @return 0 on success, an errno on failure.
3556 *
3557 * This helper function allows drivers to get several regulator
3558 * consumers in one operation. If any of the regulators cannot be
3559 * acquired then any regulators that were allocated will be freed
3560 * before returning to the caller.
3561 */
3562 int regulator_bulk_get(struct device *dev, int num_consumers,
3563 struct regulator_bulk_data *consumers)
3564 {
3565 int i;
3566 int ret;
3567
3568 for (i = 0; i < num_consumers; i++)
3569 consumers[i].consumer = NULL;
3570
3571 for (i = 0; i < num_consumers; i++) {
3572 consumers[i].consumer = regulator_get(dev,
3573 consumers[i].supply);
3574 if (IS_ERR(consumers[i].consumer)) {
3575 ret = PTR_ERR(consumers[i].consumer);
3576 dev_err(dev, "Failed to get supply '%s': %d\n",
3577 consumers[i].supply, ret);
3578 consumers[i].consumer = NULL;
3579 goto err;
3580 }
3581 }
3582
3583 return 0;
3584
3585 err:
3586 while (--i >= 0)
3587 regulator_put(consumers[i].consumer);
3588
3589 return ret;
3590 }
3591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3592
3593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3594 {
3595 struct regulator_bulk_data *bulk = data;
3596
3597 bulk->ret = regulator_enable(bulk->consumer);
3598 }
3599
3600 /**
3601 * regulator_bulk_enable - enable multiple regulator consumers
3602 *
3603 * @num_consumers: Number of consumers
3604 * @consumers: Consumer data; clients are stored here.
3605 * @return 0 on success, an errno on failure
3606 *
3607 * This convenience API allows consumers to enable multiple regulator
3608 * clients in a single API call. If any consumers cannot be enabled
3609 * then any others that were enabled will be disabled again prior to
3610 * return.
3611 */
3612 int regulator_bulk_enable(int num_consumers,
3613 struct regulator_bulk_data *consumers)
3614 {
3615 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3616 int i;
3617 int ret = 0;
3618
3619 for (i = 0; i < num_consumers; i++) {
3620 if (consumers[i].consumer->always_on)
3621 consumers[i].ret = 0;
3622 else
3623 async_schedule_domain(regulator_bulk_enable_async,
3624 &consumers[i], &async_domain);
3625 }
3626
3627 async_synchronize_full_domain(&async_domain);
3628
3629 /* If any consumer failed we need to unwind any that succeeded */
3630 for (i = 0; i < num_consumers; i++) {
3631 if (consumers[i].ret != 0) {
3632 ret = consumers[i].ret;
3633 goto err;
3634 }
3635 }
3636
3637 return 0;
3638
3639 err:
3640 for (i = 0; i < num_consumers; i++) {
3641 if (consumers[i].ret < 0)
3642 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3643 consumers[i].ret);
3644 else
3645 regulator_disable(consumers[i].consumer);
3646 }
3647
3648 return ret;
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3651
3652 /**
3653 * regulator_bulk_disable - disable multiple regulator consumers
3654 *
3655 * @num_consumers: Number of consumers
3656 * @consumers: Consumer data; clients are stored here.
3657 * @return 0 on success, an errno on failure
3658 *
3659 * This convenience API allows consumers to disable multiple regulator
3660 * clients in a single API call. If any consumers cannot be disabled
3661 * then any others that were disabled will be enabled again prior to
3662 * return.
3663 */
3664 int regulator_bulk_disable(int num_consumers,
3665 struct regulator_bulk_data *consumers)
3666 {
3667 int i;
3668 int ret, r;
3669
3670 for (i = num_consumers - 1; i >= 0; --i) {
3671 ret = regulator_disable(consumers[i].consumer);
3672 if (ret != 0)
3673 goto err;
3674 }
3675
3676 return 0;
3677
3678 err:
3679 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3680 for (++i; i < num_consumers; ++i) {
3681 r = regulator_enable(consumers[i].consumer);
3682 if (r != 0)
3683 pr_err("Failed to re-enable %s: %d\n",
3684 consumers[i].supply, r);
3685 }
3686
3687 return ret;
3688 }
3689 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3690
3691 /**
3692 * regulator_bulk_force_disable - force disable multiple regulator consumers
3693 *
3694 * @num_consumers: Number of consumers
3695 * @consumers: Consumer data; clients are stored here.
3696 * @return 0 on success, an errno on failure
3697 *
3698 * This convenience API allows consumers to forcibly disable multiple regulator
3699 * clients in a single API call.
3700 * NOTE: This should be used for situations when device damage will
3701 * likely occur if the regulators are not disabled (e.g. over temp).
3702 * Although regulator_force_disable function call for some consumers can
3703 * return error numbers, the function is called for all consumers.
3704 */
3705 int regulator_bulk_force_disable(int num_consumers,
3706 struct regulator_bulk_data *consumers)
3707 {
3708 int i;
3709 int ret = 0;
3710
3711 for (i = 0; i < num_consumers; i++) {
3712 consumers[i].ret =
3713 regulator_force_disable(consumers[i].consumer);
3714
3715 /* Store first error for reporting */
3716 if (consumers[i].ret && !ret)
3717 ret = consumers[i].ret;
3718 }
3719
3720 return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3723
3724 /**
3725 * regulator_bulk_free - free multiple regulator consumers
3726 *
3727 * @num_consumers: Number of consumers
3728 * @consumers: Consumer data; clients are stored here.
3729 *
3730 * This convenience API allows consumers to free multiple regulator
3731 * clients in a single API call.
3732 */
3733 void regulator_bulk_free(int num_consumers,
3734 struct regulator_bulk_data *consumers)
3735 {
3736 int i;
3737
3738 for (i = 0; i < num_consumers; i++) {
3739 regulator_put(consumers[i].consumer);
3740 consumers[i].consumer = NULL;
3741 }
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3744
3745 /**
3746 * regulator_notifier_call_chain - call regulator event notifier
3747 * @rdev: regulator source
3748 * @event: notifier block
3749 * @data: callback-specific data.
3750 *
3751 * Called by regulator drivers to notify clients a regulator event has
3752 * occurred. We also notify regulator clients downstream.
3753 * Note lock must be held by caller.
3754 */
3755 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3756 unsigned long event, void *data)
3757 {
3758 lockdep_assert_held_once(&rdev->mutex);
3759
3760 _notifier_call_chain(rdev, event, data);
3761 return NOTIFY_DONE;
3762
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3765
3766 /**
3767 * regulator_mode_to_status - convert a regulator mode into a status
3768 *
3769 * @mode: Mode to convert
3770 *
3771 * Convert a regulator mode into a status.
3772 */
3773 int regulator_mode_to_status(unsigned int mode)
3774 {
3775 switch (mode) {
3776 case REGULATOR_MODE_FAST:
3777 return REGULATOR_STATUS_FAST;
3778 case REGULATOR_MODE_NORMAL:
3779 return REGULATOR_STATUS_NORMAL;
3780 case REGULATOR_MODE_IDLE:
3781 return REGULATOR_STATUS_IDLE;
3782 case REGULATOR_MODE_STANDBY:
3783 return REGULATOR_STATUS_STANDBY;
3784 default:
3785 return REGULATOR_STATUS_UNDEFINED;
3786 }
3787 }
3788 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3789
3790 static struct attribute *regulator_dev_attrs[] = {
3791 &dev_attr_name.attr,
3792 &dev_attr_num_users.attr,
3793 &dev_attr_type.attr,
3794 &dev_attr_microvolts.attr,
3795 &dev_attr_microamps.attr,
3796 &dev_attr_opmode.attr,
3797 &dev_attr_state.attr,
3798 &dev_attr_status.attr,
3799 &dev_attr_bypass.attr,
3800 &dev_attr_requested_microamps.attr,
3801 &dev_attr_min_microvolts.attr,
3802 &dev_attr_max_microvolts.attr,
3803 &dev_attr_min_microamps.attr,
3804 &dev_attr_max_microamps.attr,
3805 &dev_attr_suspend_standby_state.attr,
3806 &dev_attr_suspend_mem_state.attr,
3807 &dev_attr_suspend_disk_state.attr,
3808 &dev_attr_suspend_standby_microvolts.attr,
3809 &dev_attr_suspend_mem_microvolts.attr,
3810 &dev_attr_suspend_disk_microvolts.attr,
3811 &dev_attr_suspend_standby_mode.attr,
3812 &dev_attr_suspend_mem_mode.attr,
3813 &dev_attr_suspend_disk_mode.attr,
3814 NULL
3815 };
3816
3817 /*
3818 * To avoid cluttering sysfs (and memory) with useless state, only
3819 * create attributes that can be meaningfully displayed.
3820 */
3821 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3822 struct attribute *attr, int idx)
3823 {
3824 struct device *dev = kobj_to_dev(kobj);
3825 struct regulator_dev *rdev = dev_to_rdev(dev);
3826 const struct regulator_ops *ops = rdev->desc->ops;
3827 umode_t mode = attr->mode;
3828
3829 /* these three are always present */
3830 if (attr == &dev_attr_name.attr ||
3831 attr == &dev_attr_num_users.attr ||
3832 attr == &dev_attr_type.attr)
3833 return mode;
3834
3835 /* some attributes need specific methods to be displayed */
3836 if (attr == &dev_attr_microvolts.attr) {
3837 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3838 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3839 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3840 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3841 return mode;
3842 return 0;
3843 }
3844
3845 if (attr == &dev_attr_microamps.attr)
3846 return ops->get_current_limit ? mode : 0;
3847
3848 if (attr == &dev_attr_opmode.attr)
3849 return ops->get_mode ? mode : 0;
3850
3851 if (attr == &dev_attr_state.attr)
3852 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3853
3854 if (attr == &dev_attr_status.attr)
3855 return ops->get_status ? mode : 0;
3856
3857 if (attr == &dev_attr_bypass.attr)
3858 return ops->get_bypass ? mode : 0;
3859
3860 /* some attributes are type-specific */
3861 if (attr == &dev_attr_requested_microamps.attr)
3862 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3863
3864 /* constraints need specific supporting methods */
3865 if (attr == &dev_attr_min_microvolts.attr ||
3866 attr == &dev_attr_max_microvolts.attr)
3867 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3868
3869 if (attr == &dev_attr_min_microamps.attr ||
3870 attr == &dev_attr_max_microamps.attr)
3871 return ops->set_current_limit ? mode : 0;
3872
3873 if (attr == &dev_attr_suspend_standby_state.attr ||
3874 attr == &dev_attr_suspend_mem_state.attr ||
3875 attr == &dev_attr_suspend_disk_state.attr)
3876 return mode;
3877
3878 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3879 attr == &dev_attr_suspend_mem_microvolts.attr ||
3880 attr == &dev_attr_suspend_disk_microvolts.attr)
3881 return ops->set_suspend_voltage ? mode : 0;
3882
3883 if (attr == &dev_attr_suspend_standby_mode.attr ||
3884 attr == &dev_attr_suspend_mem_mode.attr ||
3885 attr == &dev_attr_suspend_disk_mode.attr)
3886 return ops->set_suspend_mode ? mode : 0;
3887
3888 return mode;
3889 }
3890
3891 static const struct attribute_group regulator_dev_group = {
3892 .attrs = regulator_dev_attrs,
3893 .is_visible = regulator_attr_is_visible,
3894 };
3895
3896 static const struct attribute_group *regulator_dev_groups[] = {
3897 &regulator_dev_group,
3898 NULL
3899 };
3900
3901 static void regulator_dev_release(struct device *dev)
3902 {
3903 struct regulator_dev *rdev = dev_get_drvdata(dev);
3904
3905 kfree(rdev->constraints);
3906 of_node_put(rdev->dev.of_node);
3907 kfree(rdev);
3908 }
3909
3910 static struct class regulator_class = {
3911 .name = "regulator",
3912 .dev_release = regulator_dev_release,
3913 .dev_groups = regulator_dev_groups,
3914 };
3915
3916 static void rdev_init_debugfs(struct regulator_dev *rdev)
3917 {
3918 struct device *parent = rdev->dev.parent;
3919 const char *rname = rdev_get_name(rdev);
3920 char name[NAME_MAX];
3921
3922 /* Avoid duplicate debugfs directory names */
3923 if (parent && rname == rdev->desc->name) {
3924 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3925 rname);
3926 rname = name;
3927 }
3928
3929 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3930 if (!rdev->debugfs) {
3931 rdev_warn(rdev, "Failed to create debugfs directory\n");
3932 return;
3933 }
3934
3935 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3936 &rdev->use_count);
3937 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3938 &rdev->open_count);
3939 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3940 &rdev->bypass_count);
3941 }
3942
3943 static int regulator_register_resolve_supply(struct device *dev, void *data)
3944 {
3945 struct regulator_dev *rdev = dev_to_rdev(dev);
3946
3947 if (regulator_resolve_supply(rdev))
3948 rdev_dbg(rdev, "unable to resolve supply\n");
3949
3950 return 0;
3951 }
3952
3953 /**
3954 * regulator_register - register regulator
3955 * @regulator_desc: regulator to register
3956 * @cfg: runtime configuration for regulator
3957 *
3958 * Called by regulator drivers to register a regulator.
3959 * Returns a valid pointer to struct regulator_dev on success
3960 * or an ERR_PTR() on error.
3961 */
3962 struct regulator_dev *
3963 regulator_register(const struct regulator_desc *regulator_desc,
3964 const struct regulator_config *cfg)
3965 {
3966 const struct regulation_constraints *constraints = NULL;
3967 const struct regulator_init_data *init_data;
3968 struct regulator_config *config = NULL;
3969 static atomic_t regulator_no = ATOMIC_INIT(-1);
3970 struct regulator_dev *rdev;
3971 struct device *dev;
3972 int ret, i;
3973
3974 if (regulator_desc == NULL || cfg == NULL)
3975 return ERR_PTR(-EINVAL);
3976
3977 dev = cfg->dev;
3978 WARN_ON(!dev);
3979
3980 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3981 return ERR_PTR(-EINVAL);
3982
3983 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3984 regulator_desc->type != REGULATOR_CURRENT)
3985 return ERR_PTR(-EINVAL);
3986
3987 /* Only one of each should be implemented */
3988 WARN_ON(regulator_desc->ops->get_voltage &&
3989 regulator_desc->ops->get_voltage_sel);
3990 WARN_ON(regulator_desc->ops->set_voltage &&
3991 regulator_desc->ops->set_voltage_sel);
3992
3993 /* If we're using selectors we must implement list_voltage. */
3994 if (regulator_desc->ops->get_voltage_sel &&
3995 !regulator_desc->ops->list_voltage) {
3996 return ERR_PTR(-EINVAL);
3997 }
3998 if (regulator_desc->ops->set_voltage_sel &&
3999 !regulator_desc->ops->list_voltage) {
4000 return ERR_PTR(-EINVAL);
4001 }
4002
4003 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4004 if (rdev == NULL)
4005 return ERR_PTR(-ENOMEM);
4006
4007 /*
4008 * Duplicate the config so the driver could override it after
4009 * parsing init data.
4010 */
4011 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4012 if (config == NULL) {
4013 kfree(rdev);
4014 return ERR_PTR(-ENOMEM);
4015 }
4016
4017 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4018 &rdev->dev.of_node);
4019 if (!init_data) {
4020 init_data = config->init_data;
4021 rdev->dev.of_node = of_node_get(config->of_node);
4022 }
4023
4024 mutex_init(&rdev->mutex);
4025 rdev->reg_data = config->driver_data;
4026 rdev->owner = regulator_desc->owner;
4027 rdev->desc = regulator_desc;
4028 if (config->regmap)
4029 rdev->regmap = config->regmap;
4030 else if (dev_get_regmap(dev, NULL))
4031 rdev->regmap = dev_get_regmap(dev, NULL);
4032 else if (dev->parent)
4033 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4034 INIT_LIST_HEAD(&rdev->consumer_list);
4035 INIT_LIST_HEAD(&rdev->list);
4036 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4037 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4038
4039 /* preform any regulator specific init */
4040 if (init_data && init_data->regulator_init) {
4041 ret = init_data->regulator_init(rdev->reg_data);
4042 if (ret < 0)
4043 goto clean;
4044 }
4045
4046 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4047 gpio_is_valid(config->ena_gpio)) {
4048 mutex_lock(&regulator_list_mutex);
4049 ret = regulator_ena_gpio_request(rdev, config);
4050 mutex_unlock(&regulator_list_mutex);
4051 if (ret != 0) {
4052 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4053 config->ena_gpio, ret);
4054 goto clean;
4055 }
4056 }
4057
4058 /* register with sysfs */
4059 rdev->dev.class = &regulator_class;
4060 rdev->dev.parent = dev;
4061 dev_set_name(&rdev->dev, "regulator.%lu",
4062 (unsigned long) atomic_inc_return(&regulator_no));
4063
4064 /* set regulator constraints */
4065 if (init_data)
4066 constraints = &init_data->constraints;
4067
4068 if (init_data && init_data->supply_regulator)
4069 rdev->supply_name = init_data->supply_regulator;
4070 else if (regulator_desc->supply_name)
4071 rdev->supply_name = regulator_desc->supply_name;
4072
4073 /*
4074 * Attempt to resolve the regulator supply, if specified,
4075 * but don't return an error if we fail because we will try
4076 * to resolve it again later as more regulators are added.
4077 */
4078 if (regulator_resolve_supply(rdev))
4079 rdev_dbg(rdev, "unable to resolve supply\n");
4080
4081 ret = set_machine_constraints(rdev, constraints);
4082 if (ret < 0)
4083 goto wash;
4084
4085 /* add consumers devices */
4086 if (init_data) {
4087 mutex_lock(&regulator_list_mutex);
4088 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4089 ret = set_consumer_device_supply(rdev,
4090 init_data->consumer_supplies[i].dev_name,
4091 init_data->consumer_supplies[i].supply);
4092 if (ret < 0) {
4093 mutex_unlock(&regulator_list_mutex);
4094 dev_err(dev, "Failed to set supply %s\n",
4095 init_data->consumer_supplies[i].supply);
4096 goto unset_supplies;
4097 }
4098 }
4099 mutex_unlock(&regulator_list_mutex);
4100 }
4101
4102 ret = device_register(&rdev->dev);
4103 if (ret != 0) {
4104 put_device(&rdev->dev);
4105 goto unset_supplies;
4106 }
4107
4108 dev_set_drvdata(&rdev->dev, rdev);
4109 rdev_init_debugfs(rdev);
4110
4111 /* try to resolve regulators supply since a new one was registered */
4112 class_for_each_device(&regulator_class, NULL, NULL,
4113 regulator_register_resolve_supply);
4114 kfree(config);
4115 return rdev;
4116
4117 unset_supplies:
4118 mutex_lock(&regulator_list_mutex);
4119 unset_regulator_supplies(rdev);
4120 mutex_unlock(&regulator_list_mutex);
4121 wash:
4122 kfree(rdev->constraints);
4123 mutex_lock(&regulator_list_mutex);
4124 regulator_ena_gpio_free(rdev);
4125 mutex_unlock(&regulator_list_mutex);
4126 clean:
4127 kfree(rdev);
4128 kfree(config);
4129 return ERR_PTR(ret);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_register);
4132
4133 /**
4134 * regulator_unregister - unregister regulator
4135 * @rdev: regulator to unregister
4136 *
4137 * Called by regulator drivers to unregister a regulator.
4138 */
4139 void regulator_unregister(struct regulator_dev *rdev)
4140 {
4141 if (rdev == NULL)
4142 return;
4143
4144 if (rdev->supply) {
4145 while (rdev->use_count--)
4146 regulator_disable(rdev->supply);
4147 regulator_put(rdev->supply);
4148 }
4149 mutex_lock(&regulator_list_mutex);
4150 debugfs_remove_recursive(rdev->debugfs);
4151 flush_work(&rdev->disable_work.work);
4152 WARN_ON(rdev->open_count);
4153 unset_regulator_supplies(rdev);
4154 list_del(&rdev->list);
4155 regulator_ena_gpio_free(rdev);
4156 mutex_unlock(&regulator_list_mutex);
4157 device_unregister(&rdev->dev);
4158 }
4159 EXPORT_SYMBOL_GPL(regulator_unregister);
4160
4161 static int _regulator_suspend_prepare(struct device *dev, void *data)
4162 {
4163 struct regulator_dev *rdev = dev_to_rdev(dev);
4164 const suspend_state_t *state = data;
4165 int ret;
4166
4167 mutex_lock(&rdev->mutex);
4168 ret = suspend_prepare(rdev, *state);
4169 mutex_unlock(&rdev->mutex);
4170
4171 return ret;
4172 }
4173
4174 /**
4175 * regulator_suspend_prepare - prepare regulators for system wide suspend
4176 * @state: system suspend state
4177 *
4178 * Configure each regulator with it's suspend operating parameters for state.
4179 * This will usually be called by machine suspend code prior to supending.
4180 */
4181 int regulator_suspend_prepare(suspend_state_t state)
4182 {
4183 /* ON is handled by regulator active state */
4184 if (state == PM_SUSPEND_ON)
4185 return -EINVAL;
4186
4187 return class_for_each_device(&regulator_class, NULL, &state,
4188 _regulator_suspend_prepare);
4189 }
4190 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4191
4192 static int _regulator_suspend_finish(struct device *dev, void *data)
4193 {
4194 struct regulator_dev *rdev = dev_to_rdev(dev);
4195 int ret;
4196
4197 mutex_lock(&rdev->mutex);
4198 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4199 if (!_regulator_is_enabled(rdev)) {
4200 ret = _regulator_do_enable(rdev);
4201 if (ret)
4202 dev_err(dev,
4203 "Failed to resume regulator %d\n",
4204 ret);
4205 }
4206 } else {
4207 if (!have_full_constraints())
4208 goto unlock;
4209 if (!_regulator_is_enabled(rdev))
4210 goto unlock;
4211
4212 ret = _regulator_do_disable(rdev);
4213 if (ret)
4214 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4215 }
4216 unlock:
4217 mutex_unlock(&rdev->mutex);
4218
4219 /* Keep processing regulators in spite of any errors */
4220 return 0;
4221 }
4222
4223 /**
4224 * regulator_suspend_finish - resume regulators from system wide suspend
4225 *
4226 * Turn on regulators that might be turned off by regulator_suspend_prepare
4227 * and that should be turned on according to the regulators properties.
4228 */
4229 int regulator_suspend_finish(void)
4230 {
4231 return class_for_each_device(&regulator_class, NULL, NULL,
4232 _regulator_suspend_finish);
4233 }
4234 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4235
4236 /**
4237 * regulator_has_full_constraints - the system has fully specified constraints
4238 *
4239 * Calling this function will cause the regulator API to disable all
4240 * regulators which have a zero use count and don't have an always_on
4241 * constraint in a late_initcall.
4242 *
4243 * The intention is that this will become the default behaviour in a
4244 * future kernel release so users are encouraged to use this facility
4245 * now.
4246 */
4247 void regulator_has_full_constraints(void)
4248 {
4249 has_full_constraints = 1;
4250 }
4251 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4252
4253 /**
4254 * rdev_get_drvdata - get rdev regulator driver data
4255 * @rdev: regulator
4256 *
4257 * Get rdev regulator driver private data. This call can be used in the
4258 * regulator driver context.
4259 */
4260 void *rdev_get_drvdata(struct regulator_dev *rdev)
4261 {
4262 return rdev->reg_data;
4263 }
4264 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4265
4266 /**
4267 * regulator_get_drvdata - get regulator driver data
4268 * @regulator: regulator
4269 *
4270 * Get regulator driver private data. This call can be used in the consumer
4271 * driver context when non API regulator specific functions need to be called.
4272 */
4273 void *regulator_get_drvdata(struct regulator *regulator)
4274 {
4275 return regulator->rdev->reg_data;
4276 }
4277 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4278
4279 /**
4280 * regulator_set_drvdata - set regulator driver data
4281 * @regulator: regulator
4282 * @data: data
4283 */
4284 void regulator_set_drvdata(struct regulator *regulator, void *data)
4285 {
4286 regulator->rdev->reg_data = data;
4287 }
4288 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4289
4290 /**
4291 * regulator_get_id - get regulator ID
4292 * @rdev: regulator
4293 */
4294 int rdev_get_id(struct regulator_dev *rdev)
4295 {
4296 return rdev->desc->id;
4297 }
4298 EXPORT_SYMBOL_GPL(rdev_get_id);
4299
4300 struct device *rdev_get_dev(struct regulator_dev *rdev)
4301 {
4302 return &rdev->dev;
4303 }
4304 EXPORT_SYMBOL_GPL(rdev_get_dev);
4305
4306 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4307 {
4308 return reg_init_data->driver_data;
4309 }
4310 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4311
4312 #ifdef CONFIG_DEBUG_FS
4313 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4314 size_t count, loff_t *ppos)
4315 {
4316 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4317 ssize_t len, ret = 0;
4318 struct regulator_map *map;
4319
4320 if (!buf)
4321 return -ENOMEM;
4322
4323 list_for_each_entry(map, &regulator_map_list, list) {
4324 len = snprintf(buf + ret, PAGE_SIZE - ret,
4325 "%s -> %s.%s\n",
4326 rdev_get_name(map->regulator), map->dev_name,
4327 map->supply);
4328 if (len >= 0)
4329 ret += len;
4330 if (ret > PAGE_SIZE) {
4331 ret = PAGE_SIZE;
4332 break;
4333 }
4334 }
4335
4336 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4337
4338 kfree(buf);
4339
4340 return ret;
4341 }
4342 #endif
4343
4344 static const struct file_operations supply_map_fops = {
4345 #ifdef CONFIG_DEBUG_FS
4346 .read = supply_map_read_file,
4347 .llseek = default_llseek,
4348 #endif
4349 };
4350
4351 #ifdef CONFIG_DEBUG_FS
4352 struct summary_data {
4353 struct seq_file *s;
4354 struct regulator_dev *parent;
4355 int level;
4356 };
4357
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359 struct regulator_dev *rdev,
4360 int level);
4361
4362 static int regulator_summary_show_children(struct device *dev, void *data)
4363 {
4364 struct regulator_dev *rdev = dev_to_rdev(dev);
4365 struct summary_data *summary_data = data;
4366
4367 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4368 regulator_summary_show_subtree(summary_data->s, rdev,
4369 summary_data->level + 1);
4370
4371 return 0;
4372 }
4373
4374 static void regulator_summary_show_subtree(struct seq_file *s,
4375 struct regulator_dev *rdev,
4376 int level)
4377 {
4378 struct regulation_constraints *c;
4379 struct regulator *consumer;
4380 struct summary_data summary_data;
4381
4382 if (!rdev)
4383 return;
4384
4385 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4386 level * 3 + 1, "",
4387 30 - level * 3, rdev_get_name(rdev),
4388 rdev->use_count, rdev->open_count, rdev->bypass_count);
4389
4390 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4391 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4392
4393 c = rdev->constraints;
4394 if (c) {
4395 switch (rdev->desc->type) {
4396 case REGULATOR_VOLTAGE:
4397 seq_printf(s, "%5dmV %5dmV ",
4398 c->min_uV / 1000, c->max_uV / 1000);
4399 break;
4400 case REGULATOR_CURRENT:
4401 seq_printf(s, "%5dmA %5dmA ",
4402 c->min_uA / 1000, c->max_uA / 1000);
4403 break;
4404 }
4405 }
4406
4407 seq_puts(s, "\n");
4408
4409 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4410 if (consumer->dev && consumer->dev->class == &regulator_class)
4411 continue;
4412
4413 seq_printf(s, "%*s%-*s ",
4414 (level + 1) * 3 + 1, "",
4415 30 - (level + 1) * 3,
4416 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4417
4418 switch (rdev->desc->type) {
4419 case REGULATOR_VOLTAGE:
4420 seq_printf(s, "%37dmV %5dmV",
4421 consumer->min_uV / 1000,
4422 consumer->max_uV / 1000);
4423 break;
4424 case REGULATOR_CURRENT:
4425 break;
4426 }
4427
4428 seq_puts(s, "\n");
4429 }
4430
4431 summary_data.s = s;
4432 summary_data.level = level;
4433 summary_data.parent = rdev;
4434
4435 class_for_each_device(&regulator_class, NULL, &summary_data,
4436 regulator_summary_show_children);
4437 }
4438
4439 static int regulator_summary_show_roots(struct device *dev, void *data)
4440 {
4441 struct regulator_dev *rdev = dev_to_rdev(dev);
4442 struct seq_file *s = data;
4443
4444 if (!rdev->supply)
4445 regulator_summary_show_subtree(s, rdev, 0);
4446
4447 return 0;
4448 }
4449
4450 static int regulator_summary_show(struct seq_file *s, void *data)
4451 {
4452 seq_puts(s, " regulator use open bypass voltage current min max\n");
4453 seq_puts(s, "-------------------------------------------------------------------------------\n");
4454
4455 class_for_each_device(&regulator_class, NULL, s,
4456 regulator_summary_show_roots);
4457
4458 return 0;
4459 }
4460
4461 static int regulator_summary_open(struct inode *inode, struct file *file)
4462 {
4463 return single_open(file, regulator_summary_show, inode->i_private);
4464 }
4465 #endif
4466
4467 static const struct file_operations regulator_summary_fops = {
4468 #ifdef CONFIG_DEBUG_FS
4469 .open = regulator_summary_open,
4470 .read = seq_read,
4471 .llseek = seq_lseek,
4472 .release = single_release,
4473 #endif
4474 };
4475
4476 static int __init regulator_init(void)
4477 {
4478 int ret;
4479
4480 ret = class_register(&regulator_class);
4481
4482 debugfs_root = debugfs_create_dir("regulator", NULL);
4483 if (!debugfs_root)
4484 pr_warn("regulator: Failed to create debugfs directory\n");
4485
4486 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4487 &supply_map_fops);
4488
4489 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4490 NULL, &regulator_summary_fops);
4491
4492 regulator_dummy_init();
4493
4494 return ret;
4495 }
4496
4497 /* init early to allow our consumers to complete system booting */
4498 core_initcall(regulator_init);
4499
4500 static int __init regulator_late_cleanup(struct device *dev, void *data)
4501 {
4502 struct regulator_dev *rdev = dev_to_rdev(dev);
4503 const struct regulator_ops *ops = rdev->desc->ops;
4504 struct regulation_constraints *c = rdev->constraints;
4505 int enabled, ret;
4506
4507 if (c && c->always_on)
4508 return 0;
4509
4510 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4511 return 0;
4512
4513 mutex_lock(&rdev->mutex);
4514
4515 if (rdev->use_count)
4516 goto unlock;
4517
4518 /* If we can't read the status assume it's on. */
4519 if (ops->is_enabled)
4520 enabled = ops->is_enabled(rdev);
4521 else
4522 enabled = 1;
4523
4524 if (!enabled)
4525 goto unlock;
4526
4527 if (have_full_constraints()) {
4528 /* We log since this may kill the system if it goes
4529 * wrong. */
4530 rdev_info(rdev, "disabling\n");
4531 ret = _regulator_do_disable(rdev);
4532 if (ret != 0)
4533 rdev_err(rdev, "couldn't disable: %d\n", ret);
4534 } else {
4535 /* The intention is that in future we will
4536 * assume that full constraints are provided
4537 * so warn even if we aren't going to do
4538 * anything here.
4539 */
4540 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4541 }
4542
4543 unlock:
4544 mutex_unlock(&rdev->mutex);
4545
4546 return 0;
4547 }
4548
4549 static int __init regulator_init_complete(void)
4550 {
4551 /*
4552 * Since DT doesn't provide an idiomatic mechanism for
4553 * enabling full constraints and since it's much more natural
4554 * with DT to provide them just assume that a DT enabled
4555 * system has full constraints.
4556 */
4557 if (of_have_populated_dt())
4558 has_full_constraints = true;
4559
4560 /*
4561 * Regulators may had failed to resolve their input supplies
4562 * when were registered, either because the input supply was
4563 * not registered yet or because its parent device was not
4564 * bound yet. So attempt to resolve the input supplies for
4565 * pending regulators before trying to disable unused ones.
4566 */
4567 class_for_each_device(&regulator_class, NULL, NULL,
4568 regulator_register_resolve_supply);
4569
4570 /* If we have a full configuration then disable any regulators
4571 * we have permission to change the status for and which are
4572 * not in use or always_on. This is effectively the default
4573 * for DT and ACPI as they have full constraints.
4574 */
4575 class_for_each_device(&regulator_class, NULL, NULL,
4576 regulator_late_cleanup);
4577
4578 return 0;
4579 }
4580 late_initcall_sync(regulator_init_complete);