]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/hpsa.c
hpsa: refactor hpsa_figure_bus_target_lun
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75 HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87 "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
131 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
143 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144 {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /* board_id = Subsystem Device ID & Vendor ID
150 * product = Marketing Name for the board
151 * access = Address of the struct of function pointers
152 */
153 static struct board_type products[] = {
154 {0x3241103C, "Smart Array P212", &SA5_access},
155 {0x3243103C, "Smart Array P410", &SA5_access},
156 {0x3245103C, "Smart Array P410i", &SA5_access},
157 {0x3247103C, "Smart Array P411", &SA5_access},
158 {0x3249103C, "Smart Array P812", &SA5_access},
159 {0x324A103C, "Smart Array P712m", &SA5_access},
160 {0x324B103C, "Smart Array P711m", &SA5_access},
161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162 {0x3350103C, "Smart Array P222", &SA5_access},
163 {0x3351103C, "Smart Array P420", &SA5_access},
164 {0x3352103C, "Smart Array P421", &SA5_access},
165 {0x3353103C, "Smart Array P822", &SA5_access},
166 {0x3354103C, "Smart Array P420i", &SA5_access},
167 {0x3355103C, "Smart Array P220i", &SA5_access},
168 {0x3356103C, "Smart Array P721m", &SA5_access},
169 {0x1921103C, "Smart Array P830i", &SA5_access},
170 {0x1922103C, "Smart Array P430", &SA5_access},
171 {0x1923103C, "Smart Array P431", &SA5_access},
172 {0x1924103C, "Smart Array P830", &SA5_access},
173 {0x1926103C, "Smart Array P731m", &SA5_access},
174 {0x1928103C, "Smart Array P230i", &SA5_access},
175 {0x1929103C, "Smart Array P530", &SA5_access},
176 {0x21BD103C, "Smart Array P244br", &SA5_access},
177 {0x21BE103C, "Smart Array P741m", &SA5_access},
178 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179 {0x21C0103C, "Smart Array P440ar", &SA5_access},
180 {0x21C1103C, "Smart Array P840ar", &SA5_access},
181 {0x21C2103C, "Smart Array P440", &SA5_access},
182 {0x21C3103C, "Smart Array P441", &SA5_access},
183 {0x21C4103C, "Smart Array", &SA5_access},
184 {0x21C5103C, "Smart Array P841", &SA5_access},
185 {0x21C6103C, "Smart HBA H244br", &SA5_access},
186 {0x21C7103C, "Smart HBA H240", &SA5_access},
187 {0x21C8103C, "Smart HBA H241", &SA5_access},
188 {0x21C9103C, "Smart Array", &SA5_access},
189 {0x21CA103C, "Smart Array P246br", &SA5_access},
190 {0x21CB103C, "Smart Array P840", &SA5_access},
191 {0x21CC103C, "Smart Array", &SA5_access},
192 {0x21CD103C, "Smart Array", &SA5_access},
193 {0x21CE103C, "Smart HBA", &SA5_access},
194 {0x05809005, "SmartHBA-SA", &SA5_access},
195 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220 void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227 struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230 int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
234
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238 unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
240
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
246
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249 struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251 struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254 int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260 u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262 unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265 int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
279
280 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
281 {
282 unsigned long *priv = shost_priv(sdev->host);
283 return (struct ctlr_info *) *priv;
284 }
285
286 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
287 {
288 unsigned long *priv = shost_priv(sh);
289 return (struct ctlr_info *) *priv;
290 }
291
292 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
293 {
294 return c->scsi_cmd == SCSI_CMD_IDLE;
295 }
296
297 static inline bool hpsa_is_pending_event(struct CommandList *c)
298 {
299 return c->abort_pending || c->reset_pending;
300 }
301
302 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
303 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
304 u8 *sense_key, u8 *asc, u8 *ascq)
305 {
306 struct scsi_sense_hdr sshdr;
307 bool rc;
308
309 *sense_key = -1;
310 *asc = -1;
311 *ascq = -1;
312
313 if (sense_data_len < 1)
314 return;
315
316 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
317 if (rc) {
318 *sense_key = sshdr.sense_key;
319 *asc = sshdr.asc;
320 *ascq = sshdr.ascq;
321 }
322 }
323
324 static int check_for_unit_attention(struct ctlr_info *h,
325 struct CommandList *c)
326 {
327 u8 sense_key, asc, ascq;
328 int sense_len;
329
330 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
331 sense_len = sizeof(c->err_info->SenseInfo);
332 else
333 sense_len = c->err_info->SenseLen;
334
335 decode_sense_data(c->err_info->SenseInfo, sense_len,
336 &sense_key, &asc, &ascq);
337 if (sense_key != UNIT_ATTENTION || asc == 0xff)
338 return 0;
339
340 switch (asc) {
341 case STATE_CHANGED:
342 dev_warn(&h->pdev->dev,
343 "%s: a state change detected, command retried\n",
344 h->devname);
345 break;
346 case LUN_FAILED:
347 dev_warn(&h->pdev->dev,
348 "%s: LUN failure detected\n", h->devname);
349 break;
350 case REPORT_LUNS_CHANGED:
351 dev_warn(&h->pdev->dev,
352 "%s: report LUN data changed\n", h->devname);
353 /*
354 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355 * target (array) devices.
356 */
357 break;
358 case POWER_OR_RESET:
359 dev_warn(&h->pdev->dev,
360 "%s: a power on or device reset detected\n",
361 h->devname);
362 break;
363 case UNIT_ATTENTION_CLEARED:
364 dev_warn(&h->pdev->dev,
365 "%s: unit attention cleared by another initiator\n",
366 h->devname);
367 break;
368 default:
369 dev_warn(&h->pdev->dev,
370 "%s: unknown unit attention detected\n",
371 h->devname);
372 break;
373 }
374 return 1;
375 }
376
377 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
378 {
379 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
380 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
381 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
382 return 0;
383 dev_warn(&h->pdev->dev, HPSA "device busy");
384 return 1;
385 }
386
387 static u32 lockup_detected(struct ctlr_info *h);
388 static ssize_t host_show_lockup_detected(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 int ld;
392 struct ctlr_info *h;
393 struct Scsi_Host *shost = class_to_shost(dev);
394
395 h = shost_to_hba(shost);
396 ld = lockup_detected(h);
397
398 return sprintf(buf, "ld=%d\n", ld);
399 }
400
401 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
402 struct device_attribute *attr,
403 const char *buf, size_t count)
404 {
405 int status, len;
406 struct ctlr_info *h;
407 struct Scsi_Host *shost = class_to_shost(dev);
408 char tmpbuf[10];
409
410 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
411 return -EACCES;
412 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
413 strncpy(tmpbuf, buf, len);
414 tmpbuf[len] = '\0';
415 if (sscanf(tmpbuf, "%d", &status) != 1)
416 return -EINVAL;
417 h = shost_to_hba(shost);
418 h->acciopath_status = !!status;
419 dev_warn(&h->pdev->dev,
420 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421 h->acciopath_status ? "enabled" : "disabled");
422 return count;
423 }
424
425 static ssize_t host_store_raid_offload_debug(struct device *dev,
426 struct device_attribute *attr,
427 const char *buf, size_t count)
428 {
429 int debug_level, len;
430 struct ctlr_info *h;
431 struct Scsi_Host *shost = class_to_shost(dev);
432 char tmpbuf[10];
433
434 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
435 return -EACCES;
436 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
437 strncpy(tmpbuf, buf, len);
438 tmpbuf[len] = '\0';
439 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
440 return -EINVAL;
441 if (debug_level < 0)
442 debug_level = 0;
443 h = shost_to_hba(shost);
444 h->raid_offload_debug = debug_level;
445 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
446 h->raid_offload_debug);
447 return count;
448 }
449
450 static ssize_t host_store_rescan(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453 {
454 struct ctlr_info *h;
455 struct Scsi_Host *shost = class_to_shost(dev);
456 h = shost_to_hba(shost);
457 hpsa_scan_start(h->scsi_host);
458 return count;
459 }
460
461 static ssize_t host_show_firmware_revision(struct device *dev,
462 struct device_attribute *attr, char *buf)
463 {
464 struct ctlr_info *h;
465 struct Scsi_Host *shost = class_to_shost(dev);
466 unsigned char *fwrev;
467
468 h = shost_to_hba(shost);
469 if (!h->hba_inquiry_data)
470 return 0;
471 fwrev = &h->hba_inquiry_data[32];
472 return snprintf(buf, 20, "%c%c%c%c\n",
473 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
474 }
475
476 static ssize_t host_show_commands_outstanding(struct device *dev,
477 struct device_attribute *attr, char *buf)
478 {
479 struct Scsi_Host *shost = class_to_shost(dev);
480 struct ctlr_info *h = shost_to_hba(shost);
481
482 return snprintf(buf, 20, "%d\n",
483 atomic_read(&h->commands_outstanding));
484 }
485
486 static ssize_t host_show_transport_mode(struct device *dev,
487 struct device_attribute *attr, char *buf)
488 {
489 struct ctlr_info *h;
490 struct Scsi_Host *shost = class_to_shost(dev);
491
492 h = shost_to_hba(shost);
493 return snprintf(buf, 20, "%s\n",
494 h->transMethod & CFGTBL_Trans_Performant ?
495 "performant" : "simple");
496 }
497
498 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
499 struct device_attribute *attr, char *buf)
500 {
501 struct ctlr_info *h;
502 struct Scsi_Host *shost = class_to_shost(dev);
503
504 h = shost_to_hba(shost);
505 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
506 (h->acciopath_status == 1) ? "enabled" : "disabled");
507 }
508
509 /* List of controllers which cannot be hard reset on kexec with reset_devices */
510 static u32 unresettable_controller[] = {
511 0x324a103C, /* Smart Array P712m */
512 0x324b103C, /* Smart Array P711m */
513 0x3223103C, /* Smart Array P800 */
514 0x3234103C, /* Smart Array P400 */
515 0x3235103C, /* Smart Array P400i */
516 0x3211103C, /* Smart Array E200i */
517 0x3212103C, /* Smart Array E200 */
518 0x3213103C, /* Smart Array E200i */
519 0x3214103C, /* Smart Array E200i */
520 0x3215103C, /* Smart Array E200i */
521 0x3237103C, /* Smart Array E500 */
522 0x323D103C, /* Smart Array P700m */
523 0x40800E11, /* Smart Array 5i */
524 0x409C0E11, /* Smart Array 6400 */
525 0x409D0E11, /* Smart Array 6400 EM */
526 0x40700E11, /* Smart Array 5300 */
527 0x40820E11, /* Smart Array 532 */
528 0x40830E11, /* Smart Array 5312 */
529 0x409A0E11, /* Smart Array 641 */
530 0x409B0E11, /* Smart Array 642 */
531 0x40910E11, /* Smart Array 6i */
532 };
533
534 /* List of controllers which cannot even be soft reset */
535 static u32 soft_unresettable_controller[] = {
536 0x40800E11, /* Smart Array 5i */
537 0x40700E11, /* Smart Array 5300 */
538 0x40820E11, /* Smart Array 532 */
539 0x40830E11, /* Smart Array 5312 */
540 0x409A0E11, /* Smart Array 641 */
541 0x409B0E11, /* Smart Array 642 */
542 0x40910E11, /* Smart Array 6i */
543 /* Exclude 640x boards. These are two pci devices in one slot
544 * which share a battery backed cache module. One controls the
545 * cache, the other accesses the cache through the one that controls
546 * it. If we reset the one controlling the cache, the other will
547 * likely not be happy. Just forbid resetting this conjoined mess.
548 * The 640x isn't really supported by hpsa anyway.
549 */
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
552 };
553
554 static u32 needs_abort_tags_swizzled[] = {
555 0x323D103C, /* Smart Array P700m */
556 0x324a103C, /* Smart Array P712m */
557 0x324b103C, /* SmartArray P711m */
558 };
559
560 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
561 {
562 int i;
563
564 for (i = 0; i < nelems; i++)
565 if (a[i] == board_id)
566 return 1;
567 return 0;
568 }
569
570 static int ctlr_is_hard_resettable(u32 board_id)
571 {
572 return !board_id_in_array(unresettable_controller,
573 ARRAY_SIZE(unresettable_controller), board_id);
574 }
575
576 static int ctlr_is_soft_resettable(u32 board_id)
577 {
578 return !board_id_in_array(soft_unresettable_controller,
579 ARRAY_SIZE(soft_unresettable_controller), board_id);
580 }
581
582 static int ctlr_is_resettable(u32 board_id)
583 {
584 return ctlr_is_hard_resettable(board_id) ||
585 ctlr_is_soft_resettable(board_id);
586 }
587
588 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
589 {
590 return board_id_in_array(needs_abort_tags_swizzled,
591 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
592 }
593
594 static ssize_t host_show_resettable(struct device *dev,
595 struct device_attribute *attr, char *buf)
596 {
597 struct ctlr_info *h;
598 struct Scsi_Host *shost = class_to_shost(dev);
599
600 h = shost_to_hba(shost);
601 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
602 }
603
604 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
605 {
606 return (scsi3addr[3] & 0xC0) == 0x40;
607 }
608
609 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610 "1(+0)ADM", "UNKNOWN"
611 };
612 #define HPSA_RAID_0 0
613 #define HPSA_RAID_4 1
614 #define HPSA_RAID_1 2 /* also used for RAID 10 */
615 #define HPSA_RAID_5 3 /* also used for RAID 50 */
616 #define HPSA_RAID_51 4
617 #define HPSA_RAID_6 5 /* also used for RAID 60 */
618 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
619 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
620
621 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
622 {
623 return !device->physical_device;
624 }
625
626 static ssize_t raid_level_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628 {
629 ssize_t l = 0;
630 unsigned char rlevel;
631 struct ctlr_info *h;
632 struct scsi_device *sdev;
633 struct hpsa_scsi_dev_t *hdev;
634 unsigned long flags;
635
636 sdev = to_scsi_device(dev);
637 h = sdev_to_hba(sdev);
638 spin_lock_irqsave(&h->lock, flags);
639 hdev = sdev->hostdata;
640 if (!hdev) {
641 spin_unlock_irqrestore(&h->lock, flags);
642 return -ENODEV;
643 }
644
645 /* Is this even a logical drive? */
646 if (!is_logical_device(hdev)) {
647 spin_unlock_irqrestore(&h->lock, flags);
648 l = snprintf(buf, PAGE_SIZE, "N/A\n");
649 return l;
650 }
651
652 rlevel = hdev->raid_level;
653 spin_unlock_irqrestore(&h->lock, flags);
654 if (rlevel > RAID_UNKNOWN)
655 rlevel = RAID_UNKNOWN;
656 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
657 return l;
658 }
659
660 static ssize_t lunid_show(struct device *dev,
661 struct device_attribute *attr, char *buf)
662 {
663 struct ctlr_info *h;
664 struct scsi_device *sdev;
665 struct hpsa_scsi_dev_t *hdev;
666 unsigned long flags;
667 unsigned char lunid[8];
668
669 sdev = to_scsi_device(dev);
670 h = sdev_to_hba(sdev);
671 spin_lock_irqsave(&h->lock, flags);
672 hdev = sdev->hostdata;
673 if (!hdev) {
674 spin_unlock_irqrestore(&h->lock, flags);
675 return -ENODEV;
676 }
677 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
678 spin_unlock_irqrestore(&h->lock, flags);
679 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680 lunid[0], lunid[1], lunid[2], lunid[3],
681 lunid[4], lunid[5], lunid[6], lunid[7]);
682 }
683
684 static ssize_t unique_id_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
686 {
687 struct ctlr_info *h;
688 struct scsi_device *sdev;
689 struct hpsa_scsi_dev_t *hdev;
690 unsigned long flags;
691 unsigned char sn[16];
692
693 sdev = to_scsi_device(dev);
694 h = sdev_to_hba(sdev);
695 spin_lock_irqsave(&h->lock, flags);
696 hdev = sdev->hostdata;
697 if (!hdev) {
698 spin_unlock_irqrestore(&h->lock, flags);
699 return -ENODEV;
700 }
701 memcpy(sn, hdev->device_id, sizeof(sn));
702 spin_unlock_irqrestore(&h->lock, flags);
703 return snprintf(buf, 16 * 2 + 2,
704 "%02X%02X%02X%02X%02X%02X%02X%02X"
705 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
706 sn[0], sn[1], sn[2], sn[3],
707 sn[4], sn[5], sn[6], sn[7],
708 sn[8], sn[9], sn[10], sn[11],
709 sn[12], sn[13], sn[14], sn[15]);
710 }
711
712 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
713 struct device_attribute *attr, char *buf)
714 {
715 struct ctlr_info *h;
716 struct scsi_device *sdev;
717 struct hpsa_scsi_dev_t *hdev;
718 unsigned long flags;
719 int offload_enabled;
720
721 sdev = to_scsi_device(dev);
722 h = sdev_to_hba(sdev);
723 spin_lock_irqsave(&h->lock, flags);
724 hdev = sdev->hostdata;
725 if (!hdev) {
726 spin_unlock_irqrestore(&h->lock, flags);
727 return -ENODEV;
728 }
729 offload_enabled = hdev->offload_enabled;
730 spin_unlock_irqrestore(&h->lock, flags);
731 return snprintf(buf, 20, "%d\n", offload_enabled);
732 }
733
734 #define MAX_PATHS 8
735 #define PATH_STRING_LEN 50
736
737 static ssize_t path_info_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739 {
740 struct ctlr_info *h;
741 struct scsi_device *sdev;
742 struct hpsa_scsi_dev_t *hdev;
743 unsigned long flags;
744 int i;
745 int output_len = 0;
746 u8 box;
747 u8 bay;
748 u8 path_map_index = 0;
749 char *active;
750 unsigned char phys_connector[2];
751 unsigned char path[MAX_PATHS][PATH_STRING_LEN];
752
753 memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
754 sdev = to_scsi_device(dev);
755 h = sdev_to_hba(sdev);
756 spin_lock_irqsave(&h->devlock, flags);
757 hdev = sdev->hostdata;
758 if (!hdev) {
759 spin_unlock_irqrestore(&h->devlock, flags);
760 return -ENODEV;
761 }
762
763 bay = hdev->bay;
764 for (i = 0; i < MAX_PATHS; i++) {
765 path_map_index = 1<<i;
766 if (i == hdev->active_path_index)
767 active = "Active";
768 else if (hdev->path_map & path_map_index)
769 active = "Inactive";
770 else
771 continue;
772
773 output_len = snprintf(path[i],
774 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
775 h->scsi_host->host_no,
776 hdev->bus, hdev->target, hdev->lun,
777 scsi_device_type(hdev->devtype));
778
779 if (is_ext_target(h, hdev) ||
780 hdev->devtype == TYPE_RAID ||
781 is_logical_device(hdev)) {
782 output_len += snprintf(path[i] + output_len,
783 PATH_STRING_LEN, "%s\n",
784 active);
785 continue;
786 }
787
788 box = hdev->box[i];
789 memcpy(&phys_connector, &hdev->phys_connector[i],
790 sizeof(phys_connector));
791 if (phys_connector[0] < '0')
792 phys_connector[0] = '0';
793 if (phys_connector[1] < '0')
794 phys_connector[1] = '0';
795 if (hdev->phys_connector[i] > 0)
796 output_len += snprintf(path[i] + output_len,
797 PATH_STRING_LEN,
798 "PORT: %.2s ",
799 phys_connector);
800 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
801 if (box == 0 || box == 0xFF) {
802 output_len += snprintf(path[i] + output_len,
803 PATH_STRING_LEN,
804 "BAY: %hhu %s\n",
805 bay, active);
806 } else {
807 output_len += snprintf(path[i] + output_len,
808 PATH_STRING_LEN,
809 "BOX: %hhu BAY: %hhu %s\n",
810 box, bay, active);
811 }
812 } else if (box != 0 && box != 0xFF) {
813 output_len += snprintf(path[i] + output_len,
814 PATH_STRING_LEN, "BOX: %hhu %s\n",
815 box, active);
816 } else
817 output_len += snprintf(path[i] + output_len,
818 PATH_STRING_LEN, "%s\n", active);
819 }
820
821 spin_unlock_irqrestore(&h->devlock, flags);
822 return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
823 path[0], path[1], path[2], path[3],
824 path[4], path[5], path[6], path[7]);
825 }
826
827 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
828 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
829 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
830 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
831 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
832 host_show_hp_ssd_smart_path_enabled, NULL);
833 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
834 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
835 host_show_hp_ssd_smart_path_status,
836 host_store_hp_ssd_smart_path_status);
837 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
838 host_store_raid_offload_debug);
839 static DEVICE_ATTR(firmware_revision, S_IRUGO,
840 host_show_firmware_revision, NULL);
841 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
842 host_show_commands_outstanding, NULL);
843 static DEVICE_ATTR(transport_mode, S_IRUGO,
844 host_show_transport_mode, NULL);
845 static DEVICE_ATTR(resettable, S_IRUGO,
846 host_show_resettable, NULL);
847 static DEVICE_ATTR(lockup_detected, S_IRUGO,
848 host_show_lockup_detected, NULL);
849
850 static struct device_attribute *hpsa_sdev_attrs[] = {
851 &dev_attr_raid_level,
852 &dev_attr_lunid,
853 &dev_attr_unique_id,
854 &dev_attr_hp_ssd_smart_path_enabled,
855 &dev_attr_path_info,
856 &dev_attr_lockup_detected,
857 NULL,
858 };
859
860 static struct device_attribute *hpsa_shost_attrs[] = {
861 &dev_attr_rescan,
862 &dev_attr_firmware_revision,
863 &dev_attr_commands_outstanding,
864 &dev_attr_transport_mode,
865 &dev_attr_resettable,
866 &dev_attr_hp_ssd_smart_path_status,
867 &dev_attr_raid_offload_debug,
868 NULL,
869 };
870
871 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
872 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
873
874 static struct scsi_host_template hpsa_driver_template = {
875 .module = THIS_MODULE,
876 .name = HPSA,
877 .proc_name = HPSA,
878 .queuecommand = hpsa_scsi_queue_command,
879 .scan_start = hpsa_scan_start,
880 .scan_finished = hpsa_scan_finished,
881 .change_queue_depth = hpsa_change_queue_depth,
882 .this_id = -1,
883 .use_clustering = ENABLE_CLUSTERING,
884 .eh_abort_handler = hpsa_eh_abort_handler,
885 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
886 .ioctl = hpsa_ioctl,
887 .slave_alloc = hpsa_slave_alloc,
888 .slave_configure = hpsa_slave_configure,
889 .slave_destroy = hpsa_slave_destroy,
890 #ifdef CONFIG_COMPAT
891 .compat_ioctl = hpsa_compat_ioctl,
892 #endif
893 .sdev_attrs = hpsa_sdev_attrs,
894 .shost_attrs = hpsa_shost_attrs,
895 .max_sectors = 8192,
896 .no_write_same = 1,
897 };
898
899 static inline u32 next_command(struct ctlr_info *h, u8 q)
900 {
901 u32 a;
902 struct reply_queue_buffer *rq = &h->reply_queue[q];
903
904 if (h->transMethod & CFGTBL_Trans_io_accel1)
905 return h->access.command_completed(h, q);
906
907 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
908 return h->access.command_completed(h, q);
909
910 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
911 a = rq->head[rq->current_entry];
912 rq->current_entry++;
913 atomic_dec(&h->commands_outstanding);
914 } else {
915 a = FIFO_EMPTY;
916 }
917 /* Check for wraparound */
918 if (rq->current_entry == h->max_commands) {
919 rq->current_entry = 0;
920 rq->wraparound ^= 1;
921 }
922 return a;
923 }
924
925 /*
926 * There are some special bits in the bus address of the
927 * command that we have to set for the controller to know
928 * how to process the command:
929 *
930 * Normal performant mode:
931 * bit 0: 1 means performant mode, 0 means simple mode.
932 * bits 1-3 = block fetch table entry
933 * bits 4-6 = command type (== 0)
934 *
935 * ioaccel1 mode:
936 * bit 0 = "performant mode" bit.
937 * bits 1-3 = block fetch table entry
938 * bits 4-6 = command type (== 110)
939 * (command type is needed because ioaccel1 mode
940 * commands are submitted through the same register as normal
941 * mode commands, so this is how the controller knows whether
942 * the command is normal mode or ioaccel1 mode.)
943 *
944 * ioaccel2 mode:
945 * bit 0 = "performant mode" bit.
946 * bits 1-4 = block fetch table entry (note extra bit)
947 * bits 4-6 = not needed, because ioaccel2 mode has
948 * a separate special register for submitting commands.
949 */
950
951 /*
952 * set_performant_mode: Modify the tag for cciss performant
953 * set bit 0 for pull model, bits 3-1 for block fetch
954 * register number
955 */
956 #define DEFAULT_REPLY_QUEUE (-1)
957 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
958 int reply_queue)
959 {
960 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
961 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
962 if (unlikely(!h->msix_vector))
963 return;
964 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
965 c->Header.ReplyQueue =
966 raw_smp_processor_id() % h->nreply_queues;
967 else
968 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
969 }
970 }
971
972 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
973 struct CommandList *c,
974 int reply_queue)
975 {
976 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
977
978 /*
979 * Tell the controller to post the reply to the queue for this
980 * processor. This seems to give the best I/O throughput.
981 */
982 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
983 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
984 else
985 cp->ReplyQueue = reply_queue % h->nreply_queues;
986 /*
987 * Set the bits in the address sent down to include:
988 * - performant mode bit (bit 0)
989 * - pull count (bits 1-3)
990 * - command type (bits 4-6)
991 */
992 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
993 IOACCEL1_BUSADDR_CMDTYPE;
994 }
995
996 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
997 struct CommandList *c,
998 int reply_queue)
999 {
1000 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1001 &h->ioaccel2_cmd_pool[c->cmdindex];
1002
1003 /* Tell the controller to post the reply to the queue for this
1004 * processor. This seems to give the best I/O throughput.
1005 */
1006 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1008 else
1009 cp->reply_queue = reply_queue % h->nreply_queues;
1010 /* Set the bits in the address sent down to include:
1011 * - performant mode bit not used in ioaccel mode 2
1012 * - pull count (bits 0-3)
1013 * - command type isn't needed for ioaccel2
1014 */
1015 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1016 }
1017
1018 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1019 struct CommandList *c,
1020 int reply_queue)
1021 {
1022 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1023
1024 /*
1025 * Tell the controller to post the reply to the queue for this
1026 * processor. This seems to give the best I/O throughput.
1027 */
1028 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1029 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1030 else
1031 cp->reply_queue = reply_queue % h->nreply_queues;
1032 /*
1033 * Set the bits in the address sent down to include:
1034 * - performant mode bit not used in ioaccel mode 2
1035 * - pull count (bits 0-3)
1036 * - command type isn't needed for ioaccel2
1037 */
1038 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1039 }
1040
1041 static int is_firmware_flash_cmd(u8 *cdb)
1042 {
1043 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1044 }
1045
1046 /*
1047 * During firmware flash, the heartbeat register may not update as frequently
1048 * as it should. So we dial down lockup detection during firmware flash. and
1049 * dial it back up when firmware flash completes.
1050 */
1051 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1052 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1053 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1054 struct CommandList *c)
1055 {
1056 if (!is_firmware_flash_cmd(c->Request.CDB))
1057 return;
1058 atomic_inc(&h->firmware_flash_in_progress);
1059 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1060 }
1061
1062 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1063 struct CommandList *c)
1064 {
1065 if (is_firmware_flash_cmd(c->Request.CDB) &&
1066 atomic_dec_and_test(&h->firmware_flash_in_progress))
1067 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1068 }
1069
1070 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1071 struct CommandList *c, int reply_queue)
1072 {
1073 dial_down_lockup_detection_during_fw_flash(h, c);
1074 atomic_inc(&h->commands_outstanding);
1075 switch (c->cmd_type) {
1076 case CMD_IOACCEL1:
1077 set_ioaccel1_performant_mode(h, c, reply_queue);
1078 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1079 break;
1080 case CMD_IOACCEL2:
1081 set_ioaccel2_performant_mode(h, c, reply_queue);
1082 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1083 break;
1084 case IOACCEL2_TMF:
1085 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1086 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1087 break;
1088 default:
1089 set_performant_mode(h, c, reply_queue);
1090 h->access.submit_command(h, c);
1091 }
1092 }
1093
1094 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1095 {
1096 if (unlikely(hpsa_is_pending_event(c)))
1097 return finish_cmd(c);
1098
1099 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1100 }
1101
1102 static inline int is_hba_lunid(unsigned char scsi3addr[])
1103 {
1104 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1105 }
1106
1107 static inline int is_scsi_rev_5(struct ctlr_info *h)
1108 {
1109 if (!h->hba_inquiry_data)
1110 return 0;
1111 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1112 return 1;
1113 return 0;
1114 }
1115
1116 static int hpsa_find_target_lun(struct ctlr_info *h,
1117 unsigned char scsi3addr[], int bus, int *target, int *lun)
1118 {
1119 /* finds an unused bus, target, lun for a new physical device
1120 * assumes h->devlock is held
1121 */
1122 int i, found = 0;
1123 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1124
1125 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1126
1127 for (i = 0; i < h->ndevices; i++) {
1128 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1129 __set_bit(h->dev[i]->target, lun_taken);
1130 }
1131
1132 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1133 if (i < HPSA_MAX_DEVICES) {
1134 /* *bus = 1; */
1135 *target = i;
1136 *lun = 0;
1137 found = 1;
1138 }
1139 return !found;
1140 }
1141
1142 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1143 struct hpsa_scsi_dev_t *dev, char *description)
1144 {
1145 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1146 return;
1147
1148 dev_printk(level, &h->pdev->dev,
1149 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1150 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1151 description,
1152 scsi_device_type(dev->devtype),
1153 dev->vendor,
1154 dev->model,
1155 dev->raid_level > RAID_UNKNOWN ?
1156 "RAID-?" : raid_label[dev->raid_level],
1157 dev->offload_config ? '+' : '-',
1158 dev->offload_enabled ? '+' : '-',
1159 dev->expose_device);
1160 }
1161
1162 /* Add an entry into h->dev[] array. */
1163 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1164 struct hpsa_scsi_dev_t *device,
1165 struct hpsa_scsi_dev_t *added[], int *nadded)
1166 {
1167 /* assumes h->devlock is held */
1168 int n = h->ndevices;
1169 int i;
1170 unsigned char addr1[8], addr2[8];
1171 struct hpsa_scsi_dev_t *sd;
1172
1173 if (n >= HPSA_MAX_DEVICES) {
1174 dev_err(&h->pdev->dev, "too many devices, some will be "
1175 "inaccessible.\n");
1176 return -1;
1177 }
1178
1179 /* physical devices do not have lun or target assigned until now. */
1180 if (device->lun != -1)
1181 /* Logical device, lun is already assigned. */
1182 goto lun_assigned;
1183
1184 /* If this device a non-zero lun of a multi-lun device
1185 * byte 4 of the 8-byte LUN addr will contain the logical
1186 * unit no, zero otherwise.
1187 */
1188 if (device->scsi3addr[4] == 0) {
1189 /* This is not a non-zero lun of a multi-lun device */
1190 if (hpsa_find_target_lun(h, device->scsi3addr,
1191 device->bus, &device->target, &device->lun) != 0)
1192 return -1;
1193 goto lun_assigned;
1194 }
1195
1196 /* This is a non-zero lun of a multi-lun device.
1197 * Search through our list and find the device which
1198 * has the same 8 byte LUN address, excepting byte 4 and 5.
1199 * Assign the same bus and target for this new LUN.
1200 * Use the logical unit number from the firmware.
1201 */
1202 memcpy(addr1, device->scsi3addr, 8);
1203 addr1[4] = 0;
1204 addr1[5] = 0;
1205 for (i = 0; i < n; i++) {
1206 sd = h->dev[i];
1207 memcpy(addr2, sd->scsi3addr, 8);
1208 addr2[4] = 0;
1209 addr2[5] = 0;
1210 /* differ only in byte 4 and 5? */
1211 if (memcmp(addr1, addr2, 8) == 0) {
1212 device->bus = sd->bus;
1213 device->target = sd->target;
1214 device->lun = device->scsi3addr[4];
1215 break;
1216 }
1217 }
1218 if (device->lun == -1) {
1219 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1220 " suspect firmware bug or unsupported hardware "
1221 "configuration.\n");
1222 return -1;
1223 }
1224
1225 lun_assigned:
1226
1227 h->dev[n] = device;
1228 h->ndevices++;
1229 added[*nadded] = device;
1230 (*nadded)++;
1231 hpsa_show_dev_msg(KERN_INFO, h, device,
1232 device->expose_device ? "added" : "masked");
1233 device->offload_to_be_enabled = device->offload_enabled;
1234 device->offload_enabled = 0;
1235 return 0;
1236 }
1237
1238 /* Update an entry in h->dev[] array. */
1239 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1240 int entry, struct hpsa_scsi_dev_t *new_entry)
1241 {
1242 int offload_enabled;
1243 /* assumes h->devlock is held */
1244 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1245
1246 /* Raid level changed. */
1247 h->dev[entry]->raid_level = new_entry->raid_level;
1248
1249 /* Raid offload parameters changed. Careful about the ordering. */
1250 if (new_entry->offload_config && new_entry->offload_enabled) {
1251 /*
1252 * if drive is newly offload_enabled, we want to copy the
1253 * raid map data first. If previously offload_enabled and
1254 * offload_config were set, raid map data had better be
1255 * the same as it was before. if raid map data is changed
1256 * then it had better be the case that
1257 * h->dev[entry]->offload_enabled is currently 0.
1258 */
1259 h->dev[entry]->raid_map = new_entry->raid_map;
1260 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1261 }
1262 if (new_entry->hba_ioaccel_enabled) {
1263 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1264 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1265 }
1266 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1267 h->dev[entry]->offload_config = new_entry->offload_config;
1268 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1269 h->dev[entry]->queue_depth = new_entry->queue_depth;
1270
1271 /*
1272 * We can turn off ioaccel offload now, but need to delay turning
1273 * it on until we can update h->dev[entry]->phys_disk[], but we
1274 * can't do that until all the devices are updated.
1275 */
1276 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1277 if (!new_entry->offload_enabled)
1278 h->dev[entry]->offload_enabled = 0;
1279
1280 offload_enabled = h->dev[entry]->offload_enabled;
1281 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1282 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1283 h->dev[entry]->offload_enabled = offload_enabled;
1284 }
1285
1286 /* Replace an entry from h->dev[] array. */
1287 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1288 int entry, struct hpsa_scsi_dev_t *new_entry,
1289 struct hpsa_scsi_dev_t *added[], int *nadded,
1290 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1291 {
1292 /* assumes h->devlock is held */
1293 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1294 removed[*nremoved] = h->dev[entry];
1295 (*nremoved)++;
1296
1297 /*
1298 * New physical devices won't have target/lun assigned yet
1299 * so we need to preserve the values in the slot we are replacing.
1300 */
1301 if (new_entry->target == -1) {
1302 new_entry->target = h->dev[entry]->target;
1303 new_entry->lun = h->dev[entry]->lun;
1304 }
1305
1306 h->dev[entry] = new_entry;
1307 added[*nadded] = new_entry;
1308 (*nadded)++;
1309 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1310 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1311 new_entry->offload_enabled = 0;
1312 }
1313
1314 /* Remove an entry from h->dev[] array. */
1315 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1316 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1317 {
1318 /* assumes h->devlock is held */
1319 int i;
1320 struct hpsa_scsi_dev_t *sd;
1321
1322 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1323
1324 sd = h->dev[entry];
1325 removed[*nremoved] = h->dev[entry];
1326 (*nremoved)++;
1327
1328 for (i = entry; i < h->ndevices-1; i++)
1329 h->dev[i] = h->dev[i+1];
1330 h->ndevices--;
1331 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1332 }
1333
1334 #define SCSI3ADDR_EQ(a, b) ( \
1335 (a)[7] == (b)[7] && \
1336 (a)[6] == (b)[6] && \
1337 (a)[5] == (b)[5] && \
1338 (a)[4] == (b)[4] && \
1339 (a)[3] == (b)[3] && \
1340 (a)[2] == (b)[2] && \
1341 (a)[1] == (b)[1] && \
1342 (a)[0] == (b)[0])
1343
1344 static void fixup_botched_add(struct ctlr_info *h,
1345 struct hpsa_scsi_dev_t *added)
1346 {
1347 /* called when scsi_add_device fails in order to re-adjust
1348 * h->dev[] to match the mid layer's view.
1349 */
1350 unsigned long flags;
1351 int i, j;
1352
1353 spin_lock_irqsave(&h->lock, flags);
1354 for (i = 0; i < h->ndevices; i++) {
1355 if (h->dev[i] == added) {
1356 for (j = i; j < h->ndevices-1; j++)
1357 h->dev[j] = h->dev[j+1];
1358 h->ndevices--;
1359 break;
1360 }
1361 }
1362 spin_unlock_irqrestore(&h->lock, flags);
1363 kfree(added);
1364 }
1365
1366 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1367 struct hpsa_scsi_dev_t *dev2)
1368 {
1369 /* we compare everything except lun and target as these
1370 * are not yet assigned. Compare parts likely
1371 * to differ first
1372 */
1373 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1374 sizeof(dev1->scsi3addr)) != 0)
1375 return 0;
1376 if (memcmp(dev1->device_id, dev2->device_id,
1377 sizeof(dev1->device_id)) != 0)
1378 return 0;
1379 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1380 return 0;
1381 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1382 return 0;
1383 if (dev1->devtype != dev2->devtype)
1384 return 0;
1385 if (dev1->bus != dev2->bus)
1386 return 0;
1387 return 1;
1388 }
1389
1390 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1391 struct hpsa_scsi_dev_t *dev2)
1392 {
1393 /* Device attributes that can change, but don't mean
1394 * that the device is a different device, nor that the OS
1395 * needs to be told anything about the change.
1396 */
1397 if (dev1->raid_level != dev2->raid_level)
1398 return 1;
1399 if (dev1->offload_config != dev2->offload_config)
1400 return 1;
1401 if (dev1->offload_enabled != dev2->offload_enabled)
1402 return 1;
1403 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1404 if (dev1->queue_depth != dev2->queue_depth)
1405 return 1;
1406 return 0;
1407 }
1408
1409 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1410 * and return needle location in *index. If scsi3addr matches, but not
1411 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1412 * location in *index.
1413 * In the case of a minor device attribute change, such as RAID level, just
1414 * return DEVICE_UPDATED, along with the updated device's location in index.
1415 * If needle not found, return DEVICE_NOT_FOUND.
1416 */
1417 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1418 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1419 int *index)
1420 {
1421 int i;
1422 #define DEVICE_NOT_FOUND 0
1423 #define DEVICE_CHANGED 1
1424 #define DEVICE_SAME 2
1425 #define DEVICE_UPDATED 3
1426 if (needle == NULL)
1427 return DEVICE_NOT_FOUND;
1428
1429 for (i = 0; i < haystack_size; i++) {
1430 if (haystack[i] == NULL) /* previously removed. */
1431 continue;
1432 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1433 *index = i;
1434 if (device_is_the_same(needle, haystack[i])) {
1435 if (device_updated(needle, haystack[i]))
1436 return DEVICE_UPDATED;
1437 return DEVICE_SAME;
1438 } else {
1439 /* Keep offline devices offline */
1440 if (needle->volume_offline)
1441 return DEVICE_NOT_FOUND;
1442 return DEVICE_CHANGED;
1443 }
1444 }
1445 }
1446 *index = -1;
1447 return DEVICE_NOT_FOUND;
1448 }
1449
1450 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1451 unsigned char scsi3addr[])
1452 {
1453 struct offline_device_entry *device;
1454 unsigned long flags;
1455
1456 /* Check to see if device is already on the list */
1457 spin_lock_irqsave(&h->offline_device_lock, flags);
1458 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1459 if (memcmp(device->scsi3addr, scsi3addr,
1460 sizeof(device->scsi3addr)) == 0) {
1461 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1462 return;
1463 }
1464 }
1465 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466
1467 /* Device is not on the list, add it. */
1468 device = kmalloc(sizeof(*device), GFP_KERNEL);
1469 if (!device) {
1470 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1471 return;
1472 }
1473 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1474 spin_lock_irqsave(&h->offline_device_lock, flags);
1475 list_add_tail(&device->offline_list, &h->offline_device_list);
1476 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1477 }
1478
1479 /* Print a message explaining various offline volume states */
1480 static void hpsa_show_volume_status(struct ctlr_info *h,
1481 struct hpsa_scsi_dev_t *sd)
1482 {
1483 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1484 dev_info(&h->pdev->dev,
1485 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1486 h->scsi_host->host_no,
1487 sd->bus, sd->target, sd->lun);
1488 switch (sd->volume_offline) {
1489 case HPSA_LV_OK:
1490 break;
1491 case HPSA_LV_UNDERGOING_ERASE:
1492 dev_info(&h->pdev->dev,
1493 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1494 h->scsi_host->host_no,
1495 sd->bus, sd->target, sd->lun);
1496 break;
1497 case HPSA_LV_NOT_AVAILABLE:
1498 dev_info(&h->pdev->dev,
1499 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1500 h->scsi_host->host_no,
1501 sd->bus, sd->target, sd->lun);
1502 break;
1503 case HPSA_LV_UNDERGOING_RPI:
1504 dev_info(&h->pdev->dev,
1505 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1506 h->scsi_host->host_no,
1507 sd->bus, sd->target, sd->lun);
1508 break;
1509 case HPSA_LV_PENDING_RPI:
1510 dev_info(&h->pdev->dev,
1511 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1512 h->scsi_host->host_no,
1513 sd->bus, sd->target, sd->lun);
1514 break;
1515 case HPSA_LV_ENCRYPTED_NO_KEY:
1516 dev_info(&h->pdev->dev,
1517 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1518 h->scsi_host->host_no,
1519 sd->bus, sd->target, sd->lun);
1520 break;
1521 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1522 dev_info(&h->pdev->dev,
1523 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1524 h->scsi_host->host_no,
1525 sd->bus, sd->target, sd->lun);
1526 break;
1527 case HPSA_LV_UNDERGOING_ENCRYPTION:
1528 dev_info(&h->pdev->dev,
1529 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1530 h->scsi_host->host_no,
1531 sd->bus, sd->target, sd->lun);
1532 break;
1533 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1534 dev_info(&h->pdev->dev,
1535 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1536 h->scsi_host->host_no,
1537 sd->bus, sd->target, sd->lun);
1538 break;
1539 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1540 dev_info(&h->pdev->dev,
1541 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1542 h->scsi_host->host_no,
1543 sd->bus, sd->target, sd->lun);
1544 break;
1545 case HPSA_LV_PENDING_ENCRYPTION:
1546 dev_info(&h->pdev->dev,
1547 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1548 h->scsi_host->host_no,
1549 sd->bus, sd->target, sd->lun);
1550 break;
1551 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1552 dev_info(&h->pdev->dev,
1553 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1554 h->scsi_host->host_no,
1555 sd->bus, sd->target, sd->lun);
1556 break;
1557 }
1558 }
1559
1560 /*
1561 * Figure the list of physical drive pointers for a logical drive with
1562 * raid offload configured.
1563 */
1564 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1565 struct hpsa_scsi_dev_t *dev[], int ndevices,
1566 struct hpsa_scsi_dev_t *logical_drive)
1567 {
1568 struct raid_map_data *map = &logical_drive->raid_map;
1569 struct raid_map_disk_data *dd = &map->data[0];
1570 int i, j;
1571 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1572 le16_to_cpu(map->metadata_disks_per_row);
1573 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1574 le16_to_cpu(map->layout_map_count) *
1575 total_disks_per_row;
1576 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1577 total_disks_per_row;
1578 int qdepth;
1579
1580 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1581 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1582
1583 logical_drive->nphysical_disks = nraid_map_entries;
1584
1585 qdepth = 0;
1586 for (i = 0; i < nraid_map_entries; i++) {
1587 logical_drive->phys_disk[i] = NULL;
1588 if (!logical_drive->offload_config)
1589 continue;
1590 for (j = 0; j < ndevices; j++) {
1591 if (dev[j] == NULL)
1592 continue;
1593 if (dev[j]->devtype != TYPE_DISK)
1594 continue;
1595 if (is_logical_device(dev[j]))
1596 continue;
1597 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1598 continue;
1599
1600 logical_drive->phys_disk[i] = dev[j];
1601 if (i < nphys_disk)
1602 qdepth = min(h->nr_cmds, qdepth +
1603 logical_drive->phys_disk[i]->queue_depth);
1604 break;
1605 }
1606
1607 /*
1608 * This can happen if a physical drive is removed and
1609 * the logical drive is degraded. In that case, the RAID
1610 * map data will refer to a physical disk which isn't actually
1611 * present. And in that case offload_enabled should already
1612 * be 0, but we'll turn it off here just in case
1613 */
1614 if (!logical_drive->phys_disk[i]) {
1615 logical_drive->offload_enabled = 0;
1616 logical_drive->offload_to_be_enabled = 0;
1617 logical_drive->queue_depth = 8;
1618 }
1619 }
1620 if (nraid_map_entries)
1621 /*
1622 * This is correct for reads, too high for full stripe writes,
1623 * way too high for partial stripe writes
1624 */
1625 logical_drive->queue_depth = qdepth;
1626 else
1627 logical_drive->queue_depth = h->nr_cmds;
1628 }
1629
1630 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1631 struct hpsa_scsi_dev_t *dev[], int ndevices)
1632 {
1633 int i;
1634
1635 for (i = 0; i < ndevices; i++) {
1636 if (dev[i] == NULL)
1637 continue;
1638 if (dev[i]->devtype != TYPE_DISK)
1639 continue;
1640 if (!is_logical_device(dev[i]))
1641 continue;
1642
1643 /*
1644 * If offload is currently enabled, the RAID map and
1645 * phys_disk[] assignment *better* not be changing
1646 * and since it isn't changing, we do not need to
1647 * update it.
1648 */
1649 if (dev[i]->offload_enabled)
1650 continue;
1651
1652 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1653 }
1654 }
1655
1656 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1657 struct hpsa_scsi_dev_t *sd[], int nsds)
1658 {
1659 /* sd contains scsi3 addresses and devtypes, and inquiry
1660 * data. This function takes what's in sd to be the current
1661 * reality and updates h->dev[] to reflect that reality.
1662 */
1663 int i, entry, device_change, changes = 0;
1664 struct hpsa_scsi_dev_t *csd;
1665 unsigned long flags;
1666 struct hpsa_scsi_dev_t **added, **removed;
1667 int nadded, nremoved;
1668 struct Scsi_Host *sh = NULL;
1669
1670 /*
1671 * A reset can cause a device status to change
1672 * re-schedule the scan to see what happened.
1673 */
1674 if (h->reset_in_progress) {
1675 h->drv_req_rescan = 1;
1676 return;
1677 }
1678
1679 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1680 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1681
1682 if (!added || !removed) {
1683 dev_warn(&h->pdev->dev, "out of memory in "
1684 "adjust_hpsa_scsi_table\n");
1685 goto free_and_out;
1686 }
1687
1688 spin_lock_irqsave(&h->devlock, flags);
1689
1690 /* find any devices in h->dev[] that are not in
1691 * sd[] and remove them from h->dev[], and for any
1692 * devices which have changed, remove the old device
1693 * info and add the new device info.
1694 * If minor device attributes change, just update
1695 * the existing device structure.
1696 */
1697 i = 0;
1698 nremoved = 0;
1699 nadded = 0;
1700 while (i < h->ndevices) {
1701 csd = h->dev[i];
1702 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1703 if (device_change == DEVICE_NOT_FOUND) {
1704 changes++;
1705 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1706 continue; /* remove ^^^, hence i not incremented */
1707 } else if (device_change == DEVICE_CHANGED) {
1708 changes++;
1709 hpsa_scsi_replace_entry(h, i, sd[entry],
1710 added, &nadded, removed, &nremoved);
1711 /* Set it to NULL to prevent it from being freed
1712 * at the bottom of hpsa_update_scsi_devices()
1713 */
1714 sd[entry] = NULL;
1715 } else if (device_change == DEVICE_UPDATED) {
1716 hpsa_scsi_update_entry(h, i, sd[entry]);
1717 }
1718 i++;
1719 }
1720
1721 /* Now, make sure every device listed in sd[] is also
1722 * listed in h->dev[], adding them if they aren't found
1723 */
1724
1725 for (i = 0; i < nsds; i++) {
1726 if (!sd[i]) /* if already added above. */
1727 continue;
1728
1729 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1730 * as the SCSI mid-layer does not handle such devices well.
1731 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1732 * at 160Hz, and prevents the system from coming up.
1733 */
1734 if (sd[i]->volume_offline) {
1735 hpsa_show_volume_status(h, sd[i]);
1736 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1737 continue;
1738 }
1739
1740 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1741 h->ndevices, &entry);
1742 if (device_change == DEVICE_NOT_FOUND) {
1743 changes++;
1744 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1745 break;
1746 sd[i] = NULL; /* prevent from being freed later. */
1747 } else if (device_change == DEVICE_CHANGED) {
1748 /* should never happen... */
1749 changes++;
1750 dev_warn(&h->pdev->dev,
1751 "device unexpectedly changed.\n");
1752 /* but if it does happen, we just ignore that device */
1753 }
1754 }
1755 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1756
1757 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1758 * any logical drives that need it enabled.
1759 */
1760 for (i = 0; i < h->ndevices; i++) {
1761 if (h->dev[i] == NULL)
1762 continue;
1763 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1764 }
1765
1766 spin_unlock_irqrestore(&h->devlock, flags);
1767
1768 /* Monitor devices which are in one of several NOT READY states to be
1769 * brought online later. This must be done without holding h->devlock,
1770 * so don't touch h->dev[]
1771 */
1772 for (i = 0; i < nsds; i++) {
1773 if (!sd[i]) /* if already added above. */
1774 continue;
1775 if (sd[i]->volume_offline)
1776 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1777 }
1778
1779 /* Don't notify scsi mid layer of any changes the first time through
1780 * (or if there are no changes) scsi_scan_host will do it later the
1781 * first time through.
1782 */
1783 if (!changes)
1784 goto free_and_out;
1785
1786 sh = h->scsi_host;
1787 if (sh == NULL) {
1788 dev_warn(&h->pdev->dev, "%s: scsi_host is null\n", __func__);
1789 goto free_and_out;
1790 }
1791 /* Notify scsi mid layer of any removed devices */
1792 for (i = 0; i < nremoved; i++) {
1793 if (removed[i] == NULL)
1794 continue;
1795 if (removed[i]->expose_device) {
1796 struct scsi_device *sdev =
1797 scsi_device_lookup(sh, removed[i]->bus,
1798 removed[i]->target, removed[i]->lun);
1799 if (sdev != NULL) {
1800 scsi_remove_device(sdev);
1801 scsi_device_put(sdev);
1802 } else {
1803 /*
1804 * We don't expect to get here.
1805 * future cmds to this device will get selection
1806 * timeout as if the device was gone.
1807 */
1808 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1809 "didn't find device for removal.");
1810 }
1811 }
1812 kfree(removed[i]);
1813 removed[i] = NULL;
1814 }
1815
1816 /* Notify scsi mid layer of any added devices */
1817 for (i = 0; i < nadded; i++) {
1818 if (added[i] == NULL)
1819 continue;
1820 if (!(added[i]->expose_device))
1821 continue;
1822 if (scsi_add_device(sh, added[i]->bus,
1823 added[i]->target, added[i]->lun) == 0)
1824 continue;
1825 dev_warn(&h->pdev->dev, "addition failed, device not added.");
1826 /* now we have to remove it from h->dev,
1827 * since it didn't get added to scsi mid layer
1828 */
1829 fixup_botched_add(h, added[i]);
1830 h->drv_req_rescan = 1;
1831 }
1832
1833 free_and_out:
1834 kfree(added);
1835 kfree(removed);
1836 }
1837
1838 /*
1839 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1840 * Assume's h->devlock is held.
1841 */
1842 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1843 int bus, int target, int lun)
1844 {
1845 int i;
1846 struct hpsa_scsi_dev_t *sd;
1847
1848 for (i = 0; i < h->ndevices; i++) {
1849 sd = h->dev[i];
1850 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1851 return sd;
1852 }
1853 return NULL;
1854 }
1855
1856 static int hpsa_slave_alloc(struct scsi_device *sdev)
1857 {
1858 struct hpsa_scsi_dev_t *sd;
1859 unsigned long flags;
1860 struct ctlr_info *h;
1861
1862 h = sdev_to_hba(sdev);
1863 spin_lock_irqsave(&h->devlock, flags);
1864 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1865 sdev_id(sdev), sdev->lun);
1866 if (likely(sd)) {
1867 atomic_set(&sd->ioaccel_cmds_out, 0);
1868 sdev->hostdata = sd->expose_device ? sd : NULL;
1869 } else
1870 sdev->hostdata = NULL;
1871 spin_unlock_irqrestore(&h->devlock, flags);
1872 return 0;
1873 }
1874
1875 /* configure scsi device based on internal per-device structure */
1876 static int hpsa_slave_configure(struct scsi_device *sdev)
1877 {
1878 struct hpsa_scsi_dev_t *sd;
1879 int queue_depth;
1880
1881 sd = sdev->hostdata;
1882 sdev->no_uld_attach = !sd || !sd->expose_device;
1883
1884 if (sd)
1885 queue_depth = sd->queue_depth != 0 ?
1886 sd->queue_depth : sdev->host->can_queue;
1887 else
1888 queue_depth = sdev->host->can_queue;
1889
1890 scsi_change_queue_depth(sdev, queue_depth);
1891
1892 return 0;
1893 }
1894
1895 static void hpsa_slave_destroy(struct scsi_device *sdev)
1896 {
1897 /* nothing to do. */
1898 }
1899
1900 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1901 {
1902 int i;
1903
1904 if (!h->ioaccel2_cmd_sg_list)
1905 return;
1906 for (i = 0; i < h->nr_cmds; i++) {
1907 kfree(h->ioaccel2_cmd_sg_list[i]);
1908 h->ioaccel2_cmd_sg_list[i] = NULL;
1909 }
1910 kfree(h->ioaccel2_cmd_sg_list);
1911 h->ioaccel2_cmd_sg_list = NULL;
1912 }
1913
1914 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1915 {
1916 int i;
1917
1918 if (h->chainsize <= 0)
1919 return 0;
1920
1921 h->ioaccel2_cmd_sg_list =
1922 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1923 GFP_KERNEL);
1924 if (!h->ioaccel2_cmd_sg_list)
1925 return -ENOMEM;
1926 for (i = 0; i < h->nr_cmds; i++) {
1927 h->ioaccel2_cmd_sg_list[i] =
1928 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1929 h->maxsgentries, GFP_KERNEL);
1930 if (!h->ioaccel2_cmd_sg_list[i])
1931 goto clean;
1932 }
1933 return 0;
1934
1935 clean:
1936 hpsa_free_ioaccel2_sg_chain_blocks(h);
1937 return -ENOMEM;
1938 }
1939
1940 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1941 {
1942 int i;
1943
1944 if (!h->cmd_sg_list)
1945 return;
1946 for (i = 0; i < h->nr_cmds; i++) {
1947 kfree(h->cmd_sg_list[i]);
1948 h->cmd_sg_list[i] = NULL;
1949 }
1950 kfree(h->cmd_sg_list);
1951 h->cmd_sg_list = NULL;
1952 }
1953
1954 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1955 {
1956 int i;
1957
1958 if (h->chainsize <= 0)
1959 return 0;
1960
1961 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1962 GFP_KERNEL);
1963 if (!h->cmd_sg_list) {
1964 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1965 return -ENOMEM;
1966 }
1967 for (i = 0; i < h->nr_cmds; i++) {
1968 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1969 h->chainsize, GFP_KERNEL);
1970 if (!h->cmd_sg_list[i]) {
1971 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1972 goto clean;
1973 }
1974 }
1975 return 0;
1976
1977 clean:
1978 hpsa_free_sg_chain_blocks(h);
1979 return -ENOMEM;
1980 }
1981
1982 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1983 struct io_accel2_cmd *cp, struct CommandList *c)
1984 {
1985 struct ioaccel2_sg_element *chain_block;
1986 u64 temp64;
1987 u32 chain_size;
1988
1989 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1990 chain_size = le32_to_cpu(cp->sg[0].length);
1991 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1992 PCI_DMA_TODEVICE);
1993 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1994 /* prevent subsequent unmapping */
1995 cp->sg->address = 0;
1996 return -1;
1997 }
1998 cp->sg->address = cpu_to_le64(temp64);
1999 return 0;
2000 }
2001
2002 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2003 struct io_accel2_cmd *cp)
2004 {
2005 struct ioaccel2_sg_element *chain_sg;
2006 u64 temp64;
2007 u32 chain_size;
2008
2009 chain_sg = cp->sg;
2010 temp64 = le64_to_cpu(chain_sg->address);
2011 chain_size = le32_to_cpu(cp->sg[0].length);
2012 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2013 }
2014
2015 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2016 struct CommandList *c)
2017 {
2018 struct SGDescriptor *chain_sg, *chain_block;
2019 u64 temp64;
2020 u32 chain_len;
2021
2022 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2023 chain_block = h->cmd_sg_list[c->cmdindex];
2024 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2025 chain_len = sizeof(*chain_sg) *
2026 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2027 chain_sg->Len = cpu_to_le32(chain_len);
2028 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2029 PCI_DMA_TODEVICE);
2030 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2031 /* prevent subsequent unmapping */
2032 chain_sg->Addr = cpu_to_le64(0);
2033 return -1;
2034 }
2035 chain_sg->Addr = cpu_to_le64(temp64);
2036 return 0;
2037 }
2038
2039 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2040 struct CommandList *c)
2041 {
2042 struct SGDescriptor *chain_sg;
2043
2044 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2045 return;
2046
2047 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2048 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2049 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2050 }
2051
2052
2053 /* Decode the various types of errors on ioaccel2 path.
2054 * Return 1 for any error that should generate a RAID path retry.
2055 * Return 0 for errors that don't require a RAID path retry.
2056 */
2057 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2058 struct CommandList *c,
2059 struct scsi_cmnd *cmd,
2060 struct io_accel2_cmd *c2)
2061 {
2062 int data_len;
2063 int retry = 0;
2064 u32 ioaccel2_resid = 0;
2065
2066 switch (c2->error_data.serv_response) {
2067 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2068 switch (c2->error_data.status) {
2069 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2070 break;
2071 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2072 cmd->result |= SAM_STAT_CHECK_CONDITION;
2073 if (c2->error_data.data_present !=
2074 IOACCEL2_SENSE_DATA_PRESENT) {
2075 memset(cmd->sense_buffer, 0,
2076 SCSI_SENSE_BUFFERSIZE);
2077 break;
2078 }
2079 /* copy the sense data */
2080 data_len = c2->error_data.sense_data_len;
2081 if (data_len > SCSI_SENSE_BUFFERSIZE)
2082 data_len = SCSI_SENSE_BUFFERSIZE;
2083 if (data_len > sizeof(c2->error_data.sense_data_buff))
2084 data_len =
2085 sizeof(c2->error_data.sense_data_buff);
2086 memcpy(cmd->sense_buffer,
2087 c2->error_data.sense_data_buff, data_len);
2088 retry = 1;
2089 break;
2090 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2091 retry = 1;
2092 break;
2093 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2094 retry = 1;
2095 break;
2096 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2097 retry = 1;
2098 break;
2099 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2100 retry = 1;
2101 break;
2102 default:
2103 retry = 1;
2104 break;
2105 }
2106 break;
2107 case IOACCEL2_SERV_RESPONSE_FAILURE:
2108 switch (c2->error_data.status) {
2109 case IOACCEL2_STATUS_SR_IO_ERROR:
2110 case IOACCEL2_STATUS_SR_IO_ABORTED:
2111 case IOACCEL2_STATUS_SR_OVERRUN:
2112 retry = 1;
2113 break;
2114 case IOACCEL2_STATUS_SR_UNDERRUN:
2115 cmd->result = (DID_OK << 16); /* host byte */
2116 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2117 ioaccel2_resid = get_unaligned_le32(
2118 &c2->error_data.resid_cnt[0]);
2119 scsi_set_resid(cmd, ioaccel2_resid);
2120 break;
2121 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2122 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2123 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2124 /* We will get an event from ctlr to trigger rescan */
2125 retry = 1;
2126 break;
2127 default:
2128 retry = 1;
2129 }
2130 break;
2131 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2132 break;
2133 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2134 break;
2135 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2136 retry = 1;
2137 break;
2138 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2139 break;
2140 default:
2141 retry = 1;
2142 break;
2143 }
2144
2145 return retry; /* retry on raid path? */
2146 }
2147
2148 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2149 struct CommandList *c)
2150 {
2151 bool do_wake = false;
2152
2153 /*
2154 * Prevent the following race in the abort handler:
2155 *
2156 * 1. LLD is requested to abort a SCSI command
2157 * 2. The SCSI command completes
2158 * 3. The struct CommandList associated with step 2 is made available
2159 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2160 * 5. Abort handler follows scsi_cmnd->host_scribble and
2161 * finds struct CommandList and tries to aborts it
2162 * Now we have aborted the wrong command.
2163 *
2164 * Reset c->scsi_cmd here so that the abort or reset handler will know
2165 * this command has completed. Then, check to see if the handler is
2166 * waiting for this command, and, if so, wake it.
2167 */
2168 c->scsi_cmd = SCSI_CMD_IDLE;
2169 mb(); /* Declare command idle before checking for pending events. */
2170 if (c->abort_pending) {
2171 do_wake = true;
2172 c->abort_pending = false;
2173 }
2174 if (c->reset_pending) {
2175 unsigned long flags;
2176 struct hpsa_scsi_dev_t *dev;
2177
2178 /*
2179 * There appears to be a reset pending; lock the lock and
2180 * reconfirm. If so, then decrement the count of outstanding
2181 * commands and wake the reset command if this is the last one.
2182 */
2183 spin_lock_irqsave(&h->lock, flags);
2184 dev = c->reset_pending; /* Re-fetch under the lock. */
2185 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2186 do_wake = true;
2187 c->reset_pending = NULL;
2188 spin_unlock_irqrestore(&h->lock, flags);
2189 }
2190
2191 if (do_wake)
2192 wake_up_all(&h->event_sync_wait_queue);
2193 }
2194
2195 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2196 struct CommandList *c)
2197 {
2198 hpsa_cmd_resolve_events(h, c);
2199 cmd_tagged_free(h, c);
2200 }
2201
2202 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2203 struct CommandList *c, struct scsi_cmnd *cmd)
2204 {
2205 hpsa_cmd_resolve_and_free(h, c);
2206 cmd->scsi_done(cmd);
2207 }
2208
2209 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2210 {
2211 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2212 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2213 }
2214
2215 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2216 {
2217 cmd->result = DID_ABORT << 16;
2218 }
2219
2220 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2221 struct scsi_cmnd *cmd)
2222 {
2223 hpsa_set_scsi_cmd_aborted(cmd);
2224 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2225 c->Request.CDB, c->err_info->ScsiStatus);
2226 hpsa_cmd_resolve_and_free(h, c);
2227 }
2228
2229 static void process_ioaccel2_completion(struct ctlr_info *h,
2230 struct CommandList *c, struct scsi_cmnd *cmd,
2231 struct hpsa_scsi_dev_t *dev)
2232 {
2233 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2234
2235 /* check for good status */
2236 if (likely(c2->error_data.serv_response == 0 &&
2237 c2->error_data.status == 0))
2238 return hpsa_cmd_free_and_done(h, c, cmd);
2239
2240 /*
2241 * Any RAID offload error results in retry which will use
2242 * the normal I/O path so the controller can handle whatever's
2243 * wrong.
2244 */
2245 if (is_logical_device(dev) &&
2246 c2->error_data.serv_response ==
2247 IOACCEL2_SERV_RESPONSE_FAILURE) {
2248 if (c2->error_data.status ==
2249 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2250 dev->offload_enabled = 0;
2251
2252 return hpsa_retry_cmd(h, c);
2253 }
2254
2255 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2256 return hpsa_retry_cmd(h, c);
2257
2258 return hpsa_cmd_free_and_done(h, c, cmd);
2259 }
2260
2261 /* Returns 0 on success, < 0 otherwise. */
2262 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2263 struct CommandList *cp)
2264 {
2265 u8 tmf_status = cp->err_info->ScsiStatus;
2266
2267 switch (tmf_status) {
2268 case CISS_TMF_COMPLETE:
2269 /*
2270 * CISS_TMF_COMPLETE never happens, instead,
2271 * ei->CommandStatus == 0 for this case.
2272 */
2273 case CISS_TMF_SUCCESS:
2274 return 0;
2275 case CISS_TMF_INVALID_FRAME:
2276 case CISS_TMF_NOT_SUPPORTED:
2277 case CISS_TMF_FAILED:
2278 case CISS_TMF_WRONG_LUN:
2279 case CISS_TMF_OVERLAPPED_TAG:
2280 break;
2281 default:
2282 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2283 tmf_status);
2284 break;
2285 }
2286 return -tmf_status;
2287 }
2288
2289 static void complete_scsi_command(struct CommandList *cp)
2290 {
2291 struct scsi_cmnd *cmd;
2292 struct ctlr_info *h;
2293 struct ErrorInfo *ei;
2294 struct hpsa_scsi_dev_t *dev;
2295 struct io_accel2_cmd *c2;
2296
2297 u8 sense_key;
2298 u8 asc; /* additional sense code */
2299 u8 ascq; /* additional sense code qualifier */
2300 unsigned long sense_data_size;
2301
2302 ei = cp->err_info;
2303 cmd = cp->scsi_cmd;
2304 h = cp->h;
2305 dev = cmd->device->hostdata;
2306 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2307
2308 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2309 if ((cp->cmd_type == CMD_SCSI) &&
2310 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2311 hpsa_unmap_sg_chain_block(h, cp);
2312
2313 if ((cp->cmd_type == CMD_IOACCEL2) &&
2314 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2315 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2316
2317 cmd->result = (DID_OK << 16); /* host byte */
2318 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2319
2320 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2321 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2322
2323 /*
2324 * We check for lockup status here as it may be set for
2325 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2326 * fail_all_oustanding_cmds()
2327 */
2328 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2329 /* DID_NO_CONNECT will prevent a retry */
2330 cmd->result = DID_NO_CONNECT << 16;
2331 return hpsa_cmd_free_and_done(h, cp, cmd);
2332 }
2333
2334 if ((unlikely(hpsa_is_pending_event(cp)))) {
2335 if (cp->reset_pending)
2336 return hpsa_cmd_resolve_and_free(h, cp);
2337 if (cp->abort_pending)
2338 return hpsa_cmd_abort_and_free(h, cp, cmd);
2339 }
2340
2341 if (cp->cmd_type == CMD_IOACCEL2)
2342 return process_ioaccel2_completion(h, cp, cmd, dev);
2343
2344 scsi_set_resid(cmd, ei->ResidualCnt);
2345 if (ei->CommandStatus == 0)
2346 return hpsa_cmd_free_and_done(h, cp, cmd);
2347
2348 /* For I/O accelerator commands, copy over some fields to the normal
2349 * CISS header used below for error handling.
2350 */
2351 if (cp->cmd_type == CMD_IOACCEL1) {
2352 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2353 cp->Header.SGList = scsi_sg_count(cmd);
2354 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2355 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2356 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2357 cp->Header.tag = c->tag;
2358 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2359 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2360
2361 /* Any RAID offload error results in retry which will use
2362 * the normal I/O path so the controller can handle whatever's
2363 * wrong.
2364 */
2365 if (is_logical_device(dev)) {
2366 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2367 dev->offload_enabled = 0;
2368 return hpsa_retry_cmd(h, cp);
2369 }
2370 }
2371
2372 /* an error has occurred */
2373 switch (ei->CommandStatus) {
2374
2375 case CMD_TARGET_STATUS:
2376 cmd->result |= ei->ScsiStatus;
2377 /* copy the sense data */
2378 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2379 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2380 else
2381 sense_data_size = sizeof(ei->SenseInfo);
2382 if (ei->SenseLen < sense_data_size)
2383 sense_data_size = ei->SenseLen;
2384 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2385 if (ei->ScsiStatus)
2386 decode_sense_data(ei->SenseInfo, sense_data_size,
2387 &sense_key, &asc, &ascq);
2388 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2389 if (sense_key == ABORTED_COMMAND) {
2390 cmd->result |= DID_SOFT_ERROR << 16;
2391 break;
2392 }
2393 break;
2394 }
2395 /* Problem was not a check condition
2396 * Pass it up to the upper layers...
2397 */
2398 if (ei->ScsiStatus) {
2399 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2400 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2401 "Returning result: 0x%x\n",
2402 cp, ei->ScsiStatus,
2403 sense_key, asc, ascq,
2404 cmd->result);
2405 } else { /* scsi status is zero??? How??? */
2406 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2407 "Returning no connection.\n", cp),
2408
2409 /* Ordinarily, this case should never happen,
2410 * but there is a bug in some released firmware
2411 * revisions that allows it to happen if, for
2412 * example, a 4100 backplane loses power and
2413 * the tape drive is in it. We assume that
2414 * it's a fatal error of some kind because we
2415 * can't show that it wasn't. We will make it
2416 * look like selection timeout since that is
2417 * the most common reason for this to occur,
2418 * and it's severe enough.
2419 */
2420
2421 cmd->result = DID_NO_CONNECT << 16;
2422 }
2423 break;
2424
2425 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2426 break;
2427 case CMD_DATA_OVERRUN:
2428 dev_warn(&h->pdev->dev,
2429 "CDB %16phN data overrun\n", cp->Request.CDB);
2430 break;
2431 case CMD_INVALID: {
2432 /* print_bytes(cp, sizeof(*cp), 1, 0);
2433 print_cmd(cp); */
2434 /* We get CMD_INVALID if you address a non-existent device
2435 * instead of a selection timeout (no response). You will
2436 * see this if you yank out a drive, then try to access it.
2437 * This is kind of a shame because it means that any other
2438 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2439 * missing target. */
2440 cmd->result = DID_NO_CONNECT << 16;
2441 }
2442 break;
2443 case CMD_PROTOCOL_ERR:
2444 cmd->result = DID_ERROR << 16;
2445 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2446 cp->Request.CDB);
2447 break;
2448 case CMD_HARDWARE_ERR:
2449 cmd->result = DID_ERROR << 16;
2450 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2451 cp->Request.CDB);
2452 break;
2453 case CMD_CONNECTION_LOST:
2454 cmd->result = DID_ERROR << 16;
2455 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2456 cp->Request.CDB);
2457 break;
2458 case CMD_ABORTED:
2459 /* Return now to avoid calling scsi_done(). */
2460 return hpsa_cmd_abort_and_free(h, cp, cmd);
2461 case CMD_ABORT_FAILED:
2462 cmd->result = DID_ERROR << 16;
2463 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2464 cp->Request.CDB);
2465 break;
2466 case CMD_UNSOLICITED_ABORT:
2467 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2468 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2469 cp->Request.CDB);
2470 break;
2471 case CMD_TIMEOUT:
2472 cmd->result = DID_TIME_OUT << 16;
2473 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2474 cp->Request.CDB);
2475 break;
2476 case CMD_UNABORTABLE:
2477 cmd->result = DID_ERROR << 16;
2478 dev_warn(&h->pdev->dev, "Command unabortable\n");
2479 break;
2480 case CMD_TMF_STATUS:
2481 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2482 cmd->result = DID_ERROR << 16;
2483 break;
2484 case CMD_IOACCEL_DISABLED:
2485 /* This only handles the direct pass-through case since RAID
2486 * offload is handled above. Just attempt a retry.
2487 */
2488 cmd->result = DID_SOFT_ERROR << 16;
2489 dev_warn(&h->pdev->dev,
2490 "cp %p had HP SSD Smart Path error\n", cp);
2491 break;
2492 default:
2493 cmd->result = DID_ERROR << 16;
2494 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2495 cp, ei->CommandStatus);
2496 }
2497
2498 return hpsa_cmd_free_and_done(h, cp, cmd);
2499 }
2500
2501 static void hpsa_pci_unmap(struct pci_dev *pdev,
2502 struct CommandList *c, int sg_used, int data_direction)
2503 {
2504 int i;
2505
2506 for (i = 0; i < sg_used; i++)
2507 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2508 le32_to_cpu(c->SG[i].Len),
2509 data_direction);
2510 }
2511
2512 static int hpsa_map_one(struct pci_dev *pdev,
2513 struct CommandList *cp,
2514 unsigned char *buf,
2515 size_t buflen,
2516 int data_direction)
2517 {
2518 u64 addr64;
2519
2520 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2521 cp->Header.SGList = 0;
2522 cp->Header.SGTotal = cpu_to_le16(0);
2523 return 0;
2524 }
2525
2526 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2527 if (dma_mapping_error(&pdev->dev, addr64)) {
2528 /* Prevent subsequent unmap of something never mapped */
2529 cp->Header.SGList = 0;
2530 cp->Header.SGTotal = cpu_to_le16(0);
2531 return -1;
2532 }
2533 cp->SG[0].Addr = cpu_to_le64(addr64);
2534 cp->SG[0].Len = cpu_to_le32(buflen);
2535 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2536 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2537 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2538 return 0;
2539 }
2540
2541 #define NO_TIMEOUT ((unsigned long) -1)
2542 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2543 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2544 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2545 {
2546 DECLARE_COMPLETION_ONSTACK(wait);
2547
2548 c->waiting = &wait;
2549 __enqueue_cmd_and_start_io(h, c, reply_queue);
2550 if (timeout_msecs == NO_TIMEOUT) {
2551 /* TODO: get rid of this no-timeout thing */
2552 wait_for_completion_io(&wait);
2553 return IO_OK;
2554 }
2555 if (!wait_for_completion_io_timeout(&wait,
2556 msecs_to_jiffies(timeout_msecs))) {
2557 dev_warn(&h->pdev->dev, "Command timed out.\n");
2558 return -ETIMEDOUT;
2559 }
2560 return IO_OK;
2561 }
2562
2563 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2564 int reply_queue, unsigned long timeout_msecs)
2565 {
2566 if (unlikely(lockup_detected(h))) {
2567 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2568 return IO_OK;
2569 }
2570 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2571 }
2572
2573 static u32 lockup_detected(struct ctlr_info *h)
2574 {
2575 int cpu;
2576 u32 rc, *lockup_detected;
2577
2578 cpu = get_cpu();
2579 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2580 rc = *lockup_detected;
2581 put_cpu();
2582 return rc;
2583 }
2584
2585 #define MAX_DRIVER_CMD_RETRIES 25
2586 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2587 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2588 {
2589 int backoff_time = 10, retry_count = 0;
2590 int rc;
2591
2592 do {
2593 memset(c->err_info, 0, sizeof(*c->err_info));
2594 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2595 timeout_msecs);
2596 if (rc)
2597 break;
2598 retry_count++;
2599 if (retry_count > 3) {
2600 msleep(backoff_time);
2601 if (backoff_time < 1000)
2602 backoff_time *= 2;
2603 }
2604 } while ((check_for_unit_attention(h, c) ||
2605 check_for_busy(h, c)) &&
2606 retry_count <= MAX_DRIVER_CMD_RETRIES);
2607 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2608 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2609 rc = -EIO;
2610 return rc;
2611 }
2612
2613 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2614 struct CommandList *c)
2615 {
2616 const u8 *cdb = c->Request.CDB;
2617 const u8 *lun = c->Header.LUN.LunAddrBytes;
2618
2619 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2620 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2621 txt, lun[0], lun[1], lun[2], lun[3],
2622 lun[4], lun[5], lun[6], lun[7],
2623 cdb[0], cdb[1], cdb[2], cdb[3],
2624 cdb[4], cdb[5], cdb[6], cdb[7],
2625 cdb[8], cdb[9], cdb[10], cdb[11],
2626 cdb[12], cdb[13], cdb[14], cdb[15]);
2627 }
2628
2629 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2630 struct CommandList *cp)
2631 {
2632 const struct ErrorInfo *ei = cp->err_info;
2633 struct device *d = &cp->h->pdev->dev;
2634 u8 sense_key, asc, ascq;
2635 int sense_len;
2636
2637 switch (ei->CommandStatus) {
2638 case CMD_TARGET_STATUS:
2639 if (ei->SenseLen > sizeof(ei->SenseInfo))
2640 sense_len = sizeof(ei->SenseInfo);
2641 else
2642 sense_len = ei->SenseLen;
2643 decode_sense_data(ei->SenseInfo, sense_len,
2644 &sense_key, &asc, &ascq);
2645 hpsa_print_cmd(h, "SCSI status", cp);
2646 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2647 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2648 sense_key, asc, ascq);
2649 else
2650 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2651 if (ei->ScsiStatus == 0)
2652 dev_warn(d, "SCSI status is abnormally zero. "
2653 "(probably indicates selection timeout "
2654 "reported incorrectly due to a known "
2655 "firmware bug, circa July, 2001.)\n");
2656 break;
2657 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2658 break;
2659 case CMD_DATA_OVERRUN:
2660 hpsa_print_cmd(h, "overrun condition", cp);
2661 break;
2662 case CMD_INVALID: {
2663 /* controller unfortunately reports SCSI passthru's
2664 * to non-existent targets as invalid commands.
2665 */
2666 hpsa_print_cmd(h, "invalid command", cp);
2667 dev_warn(d, "probably means device no longer present\n");
2668 }
2669 break;
2670 case CMD_PROTOCOL_ERR:
2671 hpsa_print_cmd(h, "protocol error", cp);
2672 break;
2673 case CMD_HARDWARE_ERR:
2674 hpsa_print_cmd(h, "hardware error", cp);
2675 break;
2676 case CMD_CONNECTION_LOST:
2677 hpsa_print_cmd(h, "connection lost", cp);
2678 break;
2679 case CMD_ABORTED:
2680 hpsa_print_cmd(h, "aborted", cp);
2681 break;
2682 case CMD_ABORT_FAILED:
2683 hpsa_print_cmd(h, "abort failed", cp);
2684 break;
2685 case CMD_UNSOLICITED_ABORT:
2686 hpsa_print_cmd(h, "unsolicited abort", cp);
2687 break;
2688 case CMD_TIMEOUT:
2689 hpsa_print_cmd(h, "timed out", cp);
2690 break;
2691 case CMD_UNABORTABLE:
2692 hpsa_print_cmd(h, "unabortable", cp);
2693 break;
2694 case CMD_CTLR_LOCKUP:
2695 hpsa_print_cmd(h, "controller lockup detected", cp);
2696 break;
2697 default:
2698 hpsa_print_cmd(h, "unknown status", cp);
2699 dev_warn(d, "Unknown command status %x\n",
2700 ei->CommandStatus);
2701 }
2702 }
2703
2704 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2705 u16 page, unsigned char *buf,
2706 unsigned char bufsize)
2707 {
2708 int rc = IO_OK;
2709 struct CommandList *c;
2710 struct ErrorInfo *ei;
2711
2712 c = cmd_alloc(h);
2713
2714 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2715 page, scsi3addr, TYPE_CMD)) {
2716 rc = -1;
2717 goto out;
2718 }
2719 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2720 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2721 if (rc)
2722 goto out;
2723 ei = c->err_info;
2724 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2725 hpsa_scsi_interpret_error(h, c);
2726 rc = -1;
2727 }
2728 out:
2729 cmd_free(h, c);
2730 return rc;
2731 }
2732
2733 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2734 u8 reset_type, int reply_queue)
2735 {
2736 int rc = IO_OK;
2737 struct CommandList *c;
2738 struct ErrorInfo *ei;
2739
2740 c = cmd_alloc(h);
2741
2742
2743 /* fill_cmd can't fail here, no data buffer to map. */
2744 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2745 scsi3addr, TYPE_MSG);
2746 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2747 if (rc) {
2748 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2749 goto out;
2750 }
2751 /* no unmap needed here because no data xfer. */
2752
2753 ei = c->err_info;
2754 if (ei->CommandStatus != 0) {
2755 hpsa_scsi_interpret_error(h, c);
2756 rc = -1;
2757 }
2758 out:
2759 cmd_free(h, c);
2760 return rc;
2761 }
2762
2763 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2764 struct hpsa_scsi_dev_t *dev,
2765 unsigned char *scsi3addr)
2766 {
2767 int i;
2768 bool match = false;
2769 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2770 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2771
2772 if (hpsa_is_cmd_idle(c))
2773 return false;
2774
2775 switch (c->cmd_type) {
2776 case CMD_SCSI:
2777 case CMD_IOCTL_PEND:
2778 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2779 sizeof(c->Header.LUN.LunAddrBytes));
2780 break;
2781
2782 case CMD_IOACCEL1:
2783 case CMD_IOACCEL2:
2784 if (c->phys_disk == dev) {
2785 /* HBA mode match */
2786 match = true;
2787 } else {
2788 /* Possible RAID mode -- check each phys dev. */
2789 /* FIXME: Do we need to take out a lock here? If
2790 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2791 * instead. */
2792 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2793 /* FIXME: an alternate test might be
2794 *
2795 * match = dev->phys_disk[i]->ioaccel_handle
2796 * == c2->scsi_nexus; */
2797 match = dev->phys_disk[i] == c->phys_disk;
2798 }
2799 }
2800 break;
2801
2802 case IOACCEL2_TMF:
2803 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2804 match = dev->phys_disk[i]->ioaccel_handle ==
2805 le32_to_cpu(ac->it_nexus);
2806 }
2807 break;
2808
2809 case 0: /* The command is in the middle of being initialized. */
2810 match = false;
2811 break;
2812
2813 default:
2814 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2815 c->cmd_type);
2816 BUG();
2817 }
2818
2819 return match;
2820 }
2821
2822 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2823 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2824 {
2825 int i;
2826 int rc = 0;
2827
2828 /* We can really only handle one reset at a time */
2829 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2830 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2831 return -EINTR;
2832 }
2833
2834 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2835
2836 for (i = 0; i < h->nr_cmds; i++) {
2837 struct CommandList *c = h->cmd_pool + i;
2838 int refcount = atomic_inc_return(&c->refcount);
2839
2840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2841 unsigned long flags;
2842
2843 /*
2844 * Mark the target command as having a reset pending,
2845 * then lock a lock so that the command cannot complete
2846 * while we're considering it. If the command is not
2847 * idle then count it; otherwise revoke the event.
2848 */
2849 c->reset_pending = dev;
2850 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2851 if (!hpsa_is_cmd_idle(c))
2852 atomic_inc(&dev->reset_cmds_out);
2853 else
2854 c->reset_pending = NULL;
2855 spin_unlock_irqrestore(&h->lock, flags);
2856 }
2857
2858 cmd_free(h, c);
2859 }
2860
2861 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2862 if (!rc)
2863 wait_event(h->event_sync_wait_queue,
2864 atomic_read(&dev->reset_cmds_out) == 0 ||
2865 lockup_detected(h));
2866
2867 if (unlikely(lockup_detected(h))) {
2868 dev_warn(&h->pdev->dev,
2869 "Controller lockup detected during reset wait\n");
2870 rc = -ENODEV;
2871 }
2872
2873 if (unlikely(rc))
2874 atomic_set(&dev->reset_cmds_out, 0);
2875
2876 mutex_unlock(&h->reset_mutex);
2877 return rc;
2878 }
2879
2880 static void hpsa_get_raid_level(struct ctlr_info *h,
2881 unsigned char *scsi3addr, unsigned char *raid_level)
2882 {
2883 int rc;
2884 unsigned char *buf;
2885
2886 *raid_level = RAID_UNKNOWN;
2887 buf = kzalloc(64, GFP_KERNEL);
2888 if (!buf)
2889 return;
2890 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2891 if (rc == 0)
2892 *raid_level = buf[8];
2893 if (*raid_level > RAID_UNKNOWN)
2894 *raid_level = RAID_UNKNOWN;
2895 kfree(buf);
2896 return;
2897 }
2898
2899 #define HPSA_MAP_DEBUG
2900 #ifdef HPSA_MAP_DEBUG
2901 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2902 struct raid_map_data *map_buff)
2903 {
2904 struct raid_map_disk_data *dd = &map_buff->data[0];
2905 int map, row, col;
2906 u16 map_cnt, row_cnt, disks_per_row;
2907
2908 if (rc != 0)
2909 return;
2910
2911 /* Show details only if debugging has been activated. */
2912 if (h->raid_offload_debug < 2)
2913 return;
2914
2915 dev_info(&h->pdev->dev, "structure_size = %u\n",
2916 le32_to_cpu(map_buff->structure_size));
2917 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2918 le32_to_cpu(map_buff->volume_blk_size));
2919 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2920 le64_to_cpu(map_buff->volume_blk_cnt));
2921 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2922 map_buff->phys_blk_shift);
2923 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2924 map_buff->parity_rotation_shift);
2925 dev_info(&h->pdev->dev, "strip_size = %u\n",
2926 le16_to_cpu(map_buff->strip_size));
2927 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2928 le64_to_cpu(map_buff->disk_starting_blk));
2929 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2930 le64_to_cpu(map_buff->disk_blk_cnt));
2931 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2932 le16_to_cpu(map_buff->data_disks_per_row));
2933 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2934 le16_to_cpu(map_buff->metadata_disks_per_row));
2935 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2936 le16_to_cpu(map_buff->row_cnt));
2937 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2938 le16_to_cpu(map_buff->layout_map_count));
2939 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2940 le16_to_cpu(map_buff->flags));
2941 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2942 le16_to_cpu(map_buff->flags) &
2943 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2944 dev_info(&h->pdev->dev, "dekindex = %u\n",
2945 le16_to_cpu(map_buff->dekindex));
2946 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2947 for (map = 0; map < map_cnt; map++) {
2948 dev_info(&h->pdev->dev, "Map%u:\n", map);
2949 row_cnt = le16_to_cpu(map_buff->row_cnt);
2950 for (row = 0; row < row_cnt; row++) {
2951 dev_info(&h->pdev->dev, " Row%u:\n", row);
2952 disks_per_row =
2953 le16_to_cpu(map_buff->data_disks_per_row);
2954 for (col = 0; col < disks_per_row; col++, dd++)
2955 dev_info(&h->pdev->dev,
2956 " D%02u: h=0x%04x xor=%u,%u\n",
2957 col, dd->ioaccel_handle,
2958 dd->xor_mult[0], dd->xor_mult[1]);
2959 disks_per_row =
2960 le16_to_cpu(map_buff->metadata_disks_per_row);
2961 for (col = 0; col < disks_per_row; col++, dd++)
2962 dev_info(&h->pdev->dev,
2963 " M%02u: h=0x%04x xor=%u,%u\n",
2964 col, dd->ioaccel_handle,
2965 dd->xor_mult[0], dd->xor_mult[1]);
2966 }
2967 }
2968 }
2969 #else
2970 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2971 __attribute__((unused)) int rc,
2972 __attribute__((unused)) struct raid_map_data *map_buff)
2973 {
2974 }
2975 #endif
2976
2977 static int hpsa_get_raid_map(struct ctlr_info *h,
2978 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2979 {
2980 int rc = 0;
2981 struct CommandList *c;
2982 struct ErrorInfo *ei;
2983
2984 c = cmd_alloc(h);
2985
2986 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2987 sizeof(this_device->raid_map), 0,
2988 scsi3addr, TYPE_CMD)) {
2989 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2990 cmd_free(h, c);
2991 return -1;
2992 }
2993 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2994 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2995 if (rc)
2996 goto out;
2997 ei = c->err_info;
2998 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2999 hpsa_scsi_interpret_error(h, c);
3000 rc = -1;
3001 goto out;
3002 }
3003 cmd_free(h, c);
3004
3005 /* @todo in the future, dynamically allocate RAID map memory */
3006 if (le32_to_cpu(this_device->raid_map.structure_size) >
3007 sizeof(this_device->raid_map)) {
3008 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3009 rc = -1;
3010 }
3011 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3012 return rc;
3013 out:
3014 cmd_free(h, c);
3015 return rc;
3016 }
3017
3018 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3019 unsigned char scsi3addr[], u16 bmic_device_index,
3020 struct bmic_identify_physical_device *buf, size_t bufsize)
3021 {
3022 int rc = IO_OK;
3023 struct CommandList *c;
3024 struct ErrorInfo *ei;
3025
3026 c = cmd_alloc(h);
3027 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3028 0, RAID_CTLR_LUNID, TYPE_CMD);
3029 if (rc)
3030 goto out;
3031
3032 c->Request.CDB[2] = bmic_device_index & 0xff;
3033 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3034
3035 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3036 NO_TIMEOUT);
3037 ei = c->err_info;
3038 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3039 hpsa_scsi_interpret_error(h, c);
3040 rc = -1;
3041 }
3042 out:
3043 cmd_free(h, c);
3044 return rc;
3045 }
3046
3047 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3048 unsigned char scsi3addr[], u8 page)
3049 {
3050 int rc;
3051 int i;
3052 int pages;
3053 unsigned char *buf, bufsize;
3054
3055 buf = kzalloc(256, GFP_KERNEL);
3056 if (!buf)
3057 return 0;
3058
3059 /* Get the size of the page list first */
3060 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3061 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3062 buf, HPSA_VPD_HEADER_SZ);
3063 if (rc != 0)
3064 goto exit_unsupported;
3065 pages = buf[3];
3066 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3067 bufsize = pages + HPSA_VPD_HEADER_SZ;
3068 else
3069 bufsize = 255;
3070
3071 /* Get the whole VPD page list */
3072 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3073 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3074 buf, bufsize);
3075 if (rc != 0)
3076 goto exit_unsupported;
3077
3078 pages = buf[3];
3079 for (i = 1; i <= pages; i++)
3080 if (buf[3 + i] == page)
3081 goto exit_supported;
3082 exit_unsupported:
3083 kfree(buf);
3084 return 0;
3085 exit_supported:
3086 kfree(buf);
3087 return 1;
3088 }
3089
3090 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3091 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3092 {
3093 int rc;
3094 unsigned char *buf;
3095 u8 ioaccel_status;
3096
3097 this_device->offload_config = 0;
3098 this_device->offload_enabled = 0;
3099 this_device->offload_to_be_enabled = 0;
3100
3101 buf = kzalloc(64, GFP_KERNEL);
3102 if (!buf)
3103 return;
3104 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3105 goto out;
3106 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3107 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3108 if (rc != 0)
3109 goto out;
3110
3111 #define IOACCEL_STATUS_BYTE 4
3112 #define OFFLOAD_CONFIGURED_BIT 0x01
3113 #define OFFLOAD_ENABLED_BIT 0x02
3114 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3115 this_device->offload_config =
3116 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3117 if (this_device->offload_config) {
3118 this_device->offload_enabled =
3119 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3120 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3121 this_device->offload_enabled = 0;
3122 }
3123 this_device->offload_to_be_enabled = this_device->offload_enabled;
3124 out:
3125 kfree(buf);
3126 return;
3127 }
3128
3129 /* Get the device id from inquiry page 0x83 */
3130 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3131 unsigned char *device_id, int index, int buflen)
3132 {
3133 int rc;
3134 unsigned char *buf;
3135
3136 if (buflen > 16)
3137 buflen = 16;
3138 buf = kzalloc(64, GFP_KERNEL);
3139 if (!buf)
3140 return -ENOMEM;
3141 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3142 if (rc == 0)
3143 memcpy(device_id, &buf[index], buflen);
3144
3145 kfree(buf);
3146
3147 return rc != 0;
3148 }
3149
3150 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3151 void *buf, int bufsize,
3152 int extended_response)
3153 {
3154 int rc = IO_OK;
3155 struct CommandList *c;
3156 unsigned char scsi3addr[8];
3157 struct ErrorInfo *ei;
3158
3159 c = cmd_alloc(h);
3160
3161 /* address the controller */
3162 memset(scsi3addr, 0, sizeof(scsi3addr));
3163 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3164 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3165 rc = -1;
3166 goto out;
3167 }
3168 if (extended_response)
3169 c->Request.CDB[1] = extended_response;
3170 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3171 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3172 if (rc)
3173 goto out;
3174 ei = c->err_info;
3175 if (ei->CommandStatus != 0 &&
3176 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3177 hpsa_scsi_interpret_error(h, c);
3178 rc = -1;
3179 } else {
3180 struct ReportLUNdata *rld = buf;
3181
3182 if (rld->extended_response_flag != extended_response) {
3183 dev_err(&h->pdev->dev,
3184 "report luns requested format %u, got %u\n",
3185 extended_response,
3186 rld->extended_response_flag);
3187 rc = -1;
3188 }
3189 }
3190 out:
3191 cmd_free(h, c);
3192 return rc;
3193 }
3194
3195 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3196 struct ReportExtendedLUNdata *buf, int bufsize)
3197 {
3198 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3199 HPSA_REPORT_PHYS_EXTENDED);
3200 }
3201
3202 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3203 struct ReportLUNdata *buf, int bufsize)
3204 {
3205 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3206 }
3207
3208 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3209 int bus, int target, int lun)
3210 {
3211 device->bus = bus;
3212 device->target = target;
3213 device->lun = lun;
3214 }
3215
3216 /* Use VPD inquiry to get details of volume status */
3217 static int hpsa_get_volume_status(struct ctlr_info *h,
3218 unsigned char scsi3addr[])
3219 {
3220 int rc;
3221 int status;
3222 int size;
3223 unsigned char *buf;
3224
3225 buf = kzalloc(64, GFP_KERNEL);
3226 if (!buf)
3227 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3228
3229 /* Does controller have VPD for logical volume status? */
3230 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3231 goto exit_failed;
3232
3233 /* Get the size of the VPD return buffer */
3234 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3235 buf, HPSA_VPD_HEADER_SZ);
3236 if (rc != 0)
3237 goto exit_failed;
3238 size = buf[3];
3239
3240 /* Now get the whole VPD buffer */
3241 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3242 buf, size + HPSA_VPD_HEADER_SZ);
3243 if (rc != 0)
3244 goto exit_failed;
3245 status = buf[4]; /* status byte */
3246
3247 kfree(buf);
3248 return status;
3249 exit_failed:
3250 kfree(buf);
3251 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3252 }
3253
3254 /* Determine offline status of a volume.
3255 * Return either:
3256 * 0 (not offline)
3257 * 0xff (offline for unknown reasons)
3258 * # (integer code indicating one of several NOT READY states
3259 * describing why a volume is to be kept offline)
3260 */
3261 static int hpsa_volume_offline(struct ctlr_info *h,
3262 unsigned char scsi3addr[])
3263 {
3264 struct CommandList *c;
3265 unsigned char *sense;
3266 u8 sense_key, asc, ascq;
3267 int sense_len;
3268 int rc, ldstat = 0;
3269 u16 cmd_status;
3270 u8 scsi_status;
3271 #define ASC_LUN_NOT_READY 0x04
3272 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3273 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3274
3275 c = cmd_alloc(h);
3276
3277 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3278 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3279 if (rc) {
3280 cmd_free(h, c);
3281 return 0;
3282 }
3283 sense = c->err_info->SenseInfo;
3284 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3285 sense_len = sizeof(c->err_info->SenseInfo);
3286 else
3287 sense_len = c->err_info->SenseLen;
3288 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3289 cmd_status = c->err_info->CommandStatus;
3290 scsi_status = c->err_info->ScsiStatus;
3291 cmd_free(h, c);
3292 /* Is the volume 'not ready'? */
3293 if (cmd_status != CMD_TARGET_STATUS ||
3294 scsi_status != SAM_STAT_CHECK_CONDITION ||
3295 sense_key != NOT_READY ||
3296 asc != ASC_LUN_NOT_READY) {
3297 return 0;
3298 }
3299
3300 /* Determine the reason for not ready state */
3301 ldstat = hpsa_get_volume_status(h, scsi3addr);
3302
3303 /* Keep volume offline in certain cases: */
3304 switch (ldstat) {
3305 case HPSA_LV_UNDERGOING_ERASE:
3306 case HPSA_LV_NOT_AVAILABLE:
3307 case HPSA_LV_UNDERGOING_RPI:
3308 case HPSA_LV_PENDING_RPI:
3309 case HPSA_LV_ENCRYPTED_NO_KEY:
3310 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3311 case HPSA_LV_UNDERGOING_ENCRYPTION:
3312 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3313 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3314 return ldstat;
3315 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3316 /* If VPD status page isn't available,
3317 * use ASC/ASCQ to determine state
3318 */
3319 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3320 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3321 return ldstat;
3322 break;
3323 default:
3324 break;
3325 }
3326 return 0;
3327 }
3328
3329 /*
3330 * Find out if a logical device supports aborts by simply trying one.
3331 * Smart Array may claim not to support aborts on logical drives, but
3332 * if a MSA2000 * is connected, the drives on that will be presented
3333 * by the Smart Array as logical drives, and aborts may be sent to
3334 * those devices successfully. So the simplest way to find out is
3335 * to simply try an abort and see how the device responds.
3336 */
3337 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3338 unsigned char *scsi3addr)
3339 {
3340 struct CommandList *c;
3341 struct ErrorInfo *ei;
3342 int rc = 0;
3343
3344 u64 tag = (u64) -1; /* bogus tag */
3345
3346 /* Assume that physical devices support aborts */
3347 if (!is_logical_dev_addr_mode(scsi3addr))
3348 return 1;
3349
3350 c = cmd_alloc(h);
3351
3352 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3353 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3354 /* no unmap needed here because no data xfer. */
3355 ei = c->err_info;
3356 switch (ei->CommandStatus) {
3357 case CMD_INVALID:
3358 rc = 0;
3359 break;
3360 case CMD_UNABORTABLE:
3361 case CMD_ABORT_FAILED:
3362 rc = 1;
3363 break;
3364 case CMD_TMF_STATUS:
3365 rc = hpsa_evaluate_tmf_status(h, c);
3366 break;
3367 default:
3368 rc = 0;
3369 break;
3370 }
3371 cmd_free(h, c);
3372 return rc;
3373 }
3374
3375 static void sanitize_inquiry_string(unsigned char *s, int len)
3376 {
3377 bool terminated = false;
3378
3379 for (; len > 0; (--len, ++s)) {
3380 if (*s == 0)
3381 terminated = true;
3382 if (terminated || *s < 0x20 || *s > 0x7e)
3383 *s = ' ';
3384 }
3385 }
3386
3387 static int hpsa_update_device_info(struct ctlr_info *h,
3388 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3389 unsigned char *is_OBDR_device)
3390 {
3391
3392 #define OBDR_SIG_OFFSET 43
3393 #define OBDR_TAPE_SIG "$DR-10"
3394 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3395 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3396
3397 unsigned char *inq_buff;
3398 unsigned char *obdr_sig;
3399 int rc = 0;
3400
3401 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3402 if (!inq_buff) {
3403 rc = -ENOMEM;
3404 goto bail_out;
3405 }
3406
3407 /* Do an inquiry to the device to see what it is. */
3408 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3409 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3410 /* Inquiry failed (msg printed already) */
3411 dev_err(&h->pdev->dev,
3412 "hpsa_update_device_info: inquiry failed\n");
3413 rc = -EIO;
3414 goto bail_out;
3415 }
3416
3417 sanitize_inquiry_string(&inq_buff[8], 8);
3418 sanitize_inquiry_string(&inq_buff[16], 16);
3419
3420 this_device->devtype = (inq_buff[0] & 0x1f);
3421 memcpy(this_device->scsi3addr, scsi3addr, 8);
3422 memcpy(this_device->vendor, &inq_buff[8],
3423 sizeof(this_device->vendor));
3424 memcpy(this_device->model, &inq_buff[16],
3425 sizeof(this_device->model));
3426 memset(this_device->device_id, 0,
3427 sizeof(this_device->device_id));
3428 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3429 sizeof(this_device->device_id));
3430
3431 if (this_device->devtype == TYPE_DISK &&
3432 is_logical_dev_addr_mode(scsi3addr)) {
3433 int volume_offline;
3434
3435 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3436 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3437 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3438 volume_offline = hpsa_volume_offline(h, scsi3addr);
3439 if (volume_offline < 0 || volume_offline > 0xff)
3440 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3441 this_device->volume_offline = volume_offline & 0xff;
3442 } else {
3443 this_device->raid_level = RAID_UNKNOWN;
3444 this_device->offload_config = 0;
3445 this_device->offload_enabled = 0;
3446 this_device->offload_to_be_enabled = 0;
3447 this_device->hba_ioaccel_enabled = 0;
3448 this_device->volume_offline = 0;
3449 this_device->queue_depth = h->nr_cmds;
3450 }
3451
3452 if (is_OBDR_device) {
3453 /* See if this is a One-Button-Disaster-Recovery device
3454 * by looking for "$DR-10" at offset 43 in inquiry data.
3455 */
3456 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3457 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3458 strncmp(obdr_sig, OBDR_TAPE_SIG,
3459 OBDR_SIG_LEN) == 0);
3460 }
3461 kfree(inq_buff);
3462 return 0;
3463
3464 bail_out:
3465 kfree(inq_buff);
3466 return rc;
3467 }
3468
3469 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3470 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3471 {
3472 unsigned long flags;
3473 int rc, entry;
3474 /*
3475 * See if this device supports aborts. If we already know
3476 * the device, we already know if it supports aborts, otherwise
3477 * we have to find out if it supports aborts by trying one.
3478 */
3479 spin_lock_irqsave(&h->devlock, flags);
3480 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3481 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3482 entry >= 0 && entry < h->ndevices) {
3483 dev->supports_aborts = h->dev[entry]->supports_aborts;
3484 spin_unlock_irqrestore(&h->devlock, flags);
3485 } else {
3486 spin_unlock_irqrestore(&h->devlock, flags);
3487 dev->supports_aborts =
3488 hpsa_device_supports_aborts(h, scsi3addr);
3489 if (dev->supports_aborts < 0)
3490 dev->supports_aborts = 0;
3491 }
3492 }
3493
3494 static unsigned char *ext_target_model[] = {
3495 "MSA2012",
3496 "MSA2024",
3497 "MSA2312",
3498 "MSA2324",
3499 "P2000 G3 SAS",
3500 "MSA 2040 SAS",
3501 NULL,
3502 };
3503
3504 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3505 {
3506 int i;
3507
3508 for (i = 0; ext_target_model[i]; i++)
3509 if (strncmp(device->model, ext_target_model[i],
3510 strlen(ext_target_model[i])) == 0)
3511 return 1;
3512 return 0;
3513 }
3514
3515 /*
3516 * Helper function to assign bus, target, lun mapping of devices.
3517 * Logical drive target and lun are assigned at this time, but
3518 * physical device lun and target assignment are deferred (assigned
3519 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3520 */
3521 static void figure_bus_target_lun(struct ctlr_info *h,
3522 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3523 {
3524 u32 lunid = get_unaligned_le32(lunaddrbytes);
3525
3526 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3527 /* physical device, target and lun filled in later */
3528 if (is_hba_lunid(lunaddrbytes))
3529 hpsa_set_bus_target_lun(device,
3530 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3531 else
3532 /* defer target, lun assignment for physical devices */
3533 hpsa_set_bus_target_lun(device,
3534 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3535 return;
3536 }
3537 /* It's a logical device */
3538 if (is_ext_target(h, device)) {
3539 hpsa_set_bus_target_lun(device,
3540 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3541 lunid & 0x00ff);
3542 return;
3543 }
3544 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3545 0, lunid & 0x3fff);
3546 }
3547
3548 /*
3549 * If there is no lun 0 on a target, linux won't find any devices.
3550 * For the external targets (arrays), we have to manually detect the enclosure
3551 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3552 * it for some reason. *tmpdevice is the target we're adding,
3553 * this_device is a pointer into the current element of currentsd[]
3554 * that we're building up in update_scsi_devices(), below.
3555 * lunzerobits is a bitmap that tracks which targets already have a
3556 * lun 0 assigned.
3557 * Returns 1 if an enclosure was added, 0 if not.
3558 */
3559 static int add_ext_target_dev(struct ctlr_info *h,
3560 struct hpsa_scsi_dev_t *tmpdevice,
3561 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3562 unsigned long lunzerobits[], int *n_ext_target_devs)
3563 {
3564 unsigned char scsi3addr[8];
3565
3566 if (test_bit(tmpdevice->target, lunzerobits))
3567 return 0; /* There is already a lun 0 on this target. */
3568
3569 if (!is_logical_dev_addr_mode(lunaddrbytes))
3570 return 0; /* It's the logical targets that may lack lun 0. */
3571
3572 if (!is_ext_target(h, tmpdevice))
3573 return 0; /* Only external target devices have this problem. */
3574
3575 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3576 return 0;
3577
3578 memset(scsi3addr, 0, 8);
3579 scsi3addr[3] = tmpdevice->target;
3580 if (is_hba_lunid(scsi3addr))
3581 return 0; /* Don't add the RAID controller here. */
3582
3583 if (is_scsi_rev_5(h))
3584 return 0; /* p1210m doesn't need to do this. */
3585
3586 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3587 dev_warn(&h->pdev->dev, "Maximum number of external "
3588 "target devices exceeded. Check your hardware "
3589 "configuration.");
3590 return 0;
3591 }
3592
3593 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3594 return 0;
3595 (*n_ext_target_devs)++;
3596 hpsa_set_bus_target_lun(this_device,
3597 tmpdevice->bus, tmpdevice->target, 0);
3598 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3599 set_bit(tmpdevice->target, lunzerobits);
3600 return 1;
3601 }
3602
3603 /*
3604 * Get address of physical disk used for an ioaccel2 mode command:
3605 * 1. Extract ioaccel2 handle from the command.
3606 * 2. Find a matching ioaccel2 handle from list of physical disks.
3607 * 3. Return:
3608 * 1 and set scsi3addr to address of matching physical
3609 * 0 if no matching physical disk was found.
3610 */
3611 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3612 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3613 {
3614 struct io_accel2_cmd *c2 =
3615 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3616 unsigned long flags;
3617 int i;
3618
3619 spin_lock_irqsave(&h->devlock, flags);
3620 for (i = 0; i < h->ndevices; i++)
3621 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3622 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3623 sizeof(h->dev[i]->scsi3addr));
3624 spin_unlock_irqrestore(&h->devlock, flags);
3625 return 1;
3626 }
3627 spin_unlock_irqrestore(&h->devlock, flags);
3628 return 0;
3629 }
3630
3631 /*
3632 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3633 * logdev. The number of luns in physdev and logdev are returned in
3634 * *nphysicals and *nlogicals, respectively.
3635 * Returns 0 on success, -1 otherwise.
3636 */
3637 static int hpsa_gather_lun_info(struct ctlr_info *h,
3638 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3639 struct ReportLUNdata *logdev, u32 *nlogicals)
3640 {
3641 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3642 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3643 return -1;
3644 }
3645 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3646 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3647 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3648 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3649 *nphysicals = HPSA_MAX_PHYS_LUN;
3650 }
3651 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3652 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3653 return -1;
3654 }
3655 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3656 /* Reject Logicals in excess of our max capability. */
3657 if (*nlogicals > HPSA_MAX_LUN) {
3658 dev_warn(&h->pdev->dev,
3659 "maximum logical LUNs (%d) exceeded. "
3660 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3661 *nlogicals - HPSA_MAX_LUN);
3662 *nlogicals = HPSA_MAX_LUN;
3663 }
3664 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3665 dev_warn(&h->pdev->dev,
3666 "maximum logical + physical LUNs (%d) exceeded. "
3667 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3668 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3669 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3670 }
3671 return 0;
3672 }
3673
3674 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3675 int i, int nphysicals, int nlogicals,
3676 struct ReportExtendedLUNdata *physdev_list,
3677 struct ReportLUNdata *logdev_list)
3678 {
3679 /* Helper function, figure out where the LUN ID info is coming from
3680 * given index i, lists of physical and logical devices, where in
3681 * the list the raid controller is supposed to appear (first or last)
3682 */
3683
3684 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3685 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3686
3687 if (i == raid_ctlr_position)
3688 return RAID_CTLR_LUNID;
3689
3690 if (i < logicals_start)
3691 return &physdev_list->LUN[i -
3692 (raid_ctlr_position == 0)].lunid[0];
3693
3694 if (i < last_device)
3695 return &logdev_list->LUN[i - nphysicals -
3696 (raid_ctlr_position == 0)][0];
3697 BUG();
3698 return NULL;
3699 }
3700
3701 /* get physical drive ioaccel handle and queue depth */
3702 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3703 struct hpsa_scsi_dev_t *dev,
3704 struct ReportExtendedLUNdata *rlep, int rle_index,
3705 struct bmic_identify_physical_device *id_phys)
3706 {
3707 int rc;
3708 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3709
3710 dev->ioaccel_handle = rle->ioaccel_handle;
3711 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3712 dev->hba_ioaccel_enabled = 1;
3713 memset(id_phys, 0, sizeof(*id_phys));
3714 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3715 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3716 sizeof(*id_phys));
3717 if (!rc)
3718 /* Reserve space for FW operations */
3719 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3720 #define DRIVE_QUEUE_DEPTH 7
3721 dev->queue_depth =
3722 le16_to_cpu(id_phys->current_queue_depth_limit) -
3723 DRIVE_CMDS_RESERVED_FOR_FW;
3724 else
3725 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3726 }
3727
3728 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3729 struct ReportExtendedLUNdata *rlep, int rle_index,
3730 struct bmic_identify_physical_device *id_phys)
3731 {
3732 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3733
3734 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3735 this_device->hba_ioaccel_enabled = 1;
3736
3737 memcpy(&this_device->active_path_index,
3738 &id_phys->active_path_number,
3739 sizeof(this_device->active_path_index));
3740 memcpy(&this_device->path_map,
3741 &id_phys->redundant_path_present_map,
3742 sizeof(this_device->path_map));
3743 memcpy(&this_device->box,
3744 &id_phys->alternate_paths_phys_box_on_port,
3745 sizeof(this_device->box));
3746 memcpy(&this_device->phys_connector,
3747 &id_phys->alternate_paths_phys_connector,
3748 sizeof(this_device->phys_connector));
3749 memcpy(&this_device->bay,
3750 &id_phys->phys_bay_in_box,
3751 sizeof(this_device->bay));
3752 }
3753
3754 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3755 {
3756 /* the idea here is we could get notified
3757 * that some devices have changed, so we do a report
3758 * physical luns and report logical luns cmd, and adjust
3759 * our list of devices accordingly.
3760 *
3761 * The scsi3addr's of devices won't change so long as the
3762 * adapter is not reset. That means we can rescan and
3763 * tell which devices we already know about, vs. new
3764 * devices, vs. disappearing devices.
3765 */
3766 struct ReportExtendedLUNdata *physdev_list = NULL;
3767 struct ReportLUNdata *logdev_list = NULL;
3768 struct bmic_identify_physical_device *id_phys = NULL;
3769 u32 nphysicals = 0;
3770 u32 nlogicals = 0;
3771 u32 ndev_allocated = 0;
3772 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3773 int ncurrent = 0;
3774 int i, n_ext_target_devs, ndevs_to_allocate;
3775 int raid_ctlr_position;
3776 bool physical_device;
3777 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3778
3779 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3780 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3781 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3782 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3783 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3784
3785 if (!currentsd || !physdev_list || !logdev_list ||
3786 !tmpdevice || !id_phys) {
3787 dev_err(&h->pdev->dev, "out of memory\n");
3788 goto out;
3789 }
3790 memset(lunzerobits, 0, sizeof(lunzerobits));
3791
3792 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3793
3794 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3795 logdev_list, &nlogicals)) {
3796 h->drv_req_rescan = 1;
3797 goto out;
3798 }
3799
3800 /* We might see up to the maximum number of logical and physical disks
3801 * plus external target devices, and a device for the local RAID
3802 * controller.
3803 */
3804 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3805
3806 /* Allocate the per device structures */
3807 for (i = 0; i < ndevs_to_allocate; i++) {
3808 if (i >= HPSA_MAX_DEVICES) {
3809 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3810 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3811 ndevs_to_allocate - HPSA_MAX_DEVICES);
3812 break;
3813 }
3814
3815 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3816 if (!currentsd[i]) {
3817 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3818 __FILE__, __LINE__);
3819 h->drv_req_rescan = 1;
3820 goto out;
3821 }
3822 ndev_allocated++;
3823 }
3824
3825 if (is_scsi_rev_5(h))
3826 raid_ctlr_position = 0;
3827 else
3828 raid_ctlr_position = nphysicals + nlogicals;
3829
3830 /* adjust our table of devices */
3831 n_ext_target_devs = 0;
3832 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3833 u8 *lunaddrbytes, is_OBDR = 0;
3834 int rc = 0;
3835 int phys_dev_index = i - (raid_ctlr_position == 0);
3836
3837 physical_device = i < nphysicals + (raid_ctlr_position == 0);
3838
3839 /* Figure out where the LUN ID info is coming from */
3840 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3841 i, nphysicals, nlogicals, physdev_list, logdev_list);
3842
3843 /* skip masked non-disk devices */
3844 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
3845 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
3846 continue;
3847
3848 /* Get device type, vendor, model, device id */
3849 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3850 &is_OBDR);
3851 if (rc == -ENOMEM) {
3852 dev_warn(&h->pdev->dev,
3853 "Out of memory, rescan deferred.\n");
3854 h->drv_req_rescan = 1;
3855 goto out;
3856 }
3857 if (rc) {
3858 dev_warn(&h->pdev->dev,
3859 "Inquiry failed, skipping device.\n");
3860 continue;
3861 }
3862
3863 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3864 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3865 this_device = currentsd[ncurrent];
3866
3867 /*
3868 * For external target devices, we have to insert a LUN 0 which
3869 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3870 * is nonetheless an enclosure device there. We have to
3871 * present that otherwise linux won't find anything if
3872 * there is no lun 0.
3873 */
3874 if (add_ext_target_dev(h, tmpdevice, this_device,
3875 lunaddrbytes, lunzerobits,
3876 &n_ext_target_devs)) {
3877 ncurrent++;
3878 this_device = currentsd[ncurrent];
3879 }
3880
3881 *this_device = *tmpdevice;
3882 this_device->physical_device = physical_device;
3883
3884 /*
3885 * Expose all devices except for physical devices that
3886 * are masked.
3887 */
3888 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
3889 this_device->expose_device = 0;
3890 else
3891 this_device->expose_device = 1;
3892
3893 switch (this_device->devtype) {
3894 case TYPE_ROM:
3895 /* We don't *really* support actual CD-ROM devices,
3896 * just "One Button Disaster Recovery" tape drive
3897 * which temporarily pretends to be a CD-ROM drive.
3898 * So we check that the device is really an OBDR tape
3899 * device by checking for "$DR-10" in bytes 43-48 of
3900 * the inquiry data.
3901 */
3902 if (is_OBDR)
3903 ncurrent++;
3904 break;
3905 case TYPE_DISK:
3906 if (this_device->physical_device) {
3907 /* The disk is in HBA mode. */
3908 /* Never use RAID mapper in HBA mode. */
3909 this_device->offload_enabled = 0;
3910 hpsa_get_ioaccel_drive_info(h, this_device,
3911 physdev_list, phys_dev_index, id_phys);
3912 hpsa_get_path_info(this_device,
3913 physdev_list, phys_dev_index, id_phys);
3914 }
3915 ncurrent++;
3916 break;
3917 case TYPE_TAPE:
3918 case TYPE_MEDIUM_CHANGER:
3919 case TYPE_ENCLOSURE:
3920 ncurrent++;
3921 break;
3922 case TYPE_RAID:
3923 /* Only present the Smartarray HBA as a RAID controller.
3924 * If it's a RAID controller other than the HBA itself
3925 * (an external RAID controller, MSA500 or similar)
3926 * don't present it.
3927 */
3928 if (!is_hba_lunid(lunaddrbytes))
3929 break;
3930 ncurrent++;
3931 break;
3932 default:
3933 break;
3934 }
3935 if (ncurrent >= HPSA_MAX_DEVICES)
3936 break;
3937 }
3938 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
3939 out:
3940 kfree(tmpdevice);
3941 for (i = 0; i < ndev_allocated; i++)
3942 kfree(currentsd[i]);
3943 kfree(currentsd);
3944 kfree(physdev_list);
3945 kfree(logdev_list);
3946 kfree(id_phys);
3947 }
3948
3949 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3950 struct scatterlist *sg)
3951 {
3952 u64 addr64 = (u64) sg_dma_address(sg);
3953 unsigned int len = sg_dma_len(sg);
3954
3955 desc->Addr = cpu_to_le64(addr64);
3956 desc->Len = cpu_to_le32(len);
3957 desc->Ext = 0;
3958 }
3959
3960 /*
3961 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3962 * dma mapping and fills in the scatter gather entries of the
3963 * hpsa command, cp.
3964 */
3965 static int hpsa_scatter_gather(struct ctlr_info *h,
3966 struct CommandList *cp,
3967 struct scsi_cmnd *cmd)
3968 {
3969 struct scatterlist *sg;
3970 int use_sg, i, sg_limit, chained, last_sg;
3971 struct SGDescriptor *curr_sg;
3972
3973 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3974
3975 use_sg = scsi_dma_map(cmd);
3976 if (use_sg < 0)
3977 return use_sg;
3978
3979 if (!use_sg)
3980 goto sglist_finished;
3981
3982 /*
3983 * If the number of entries is greater than the max for a single list,
3984 * then we have a chained list; we will set up all but one entry in the
3985 * first list (the last entry is saved for link information);
3986 * otherwise, we don't have a chained list and we'll set up at each of
3987 * the entries in the one list.
3988 */
3989 curr_sg = cp->SG;
3990 chained = use_sg > h->max_cmd_sg_entries;
3991 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3992 last_sg = scsi_sg_count(cmd) - 1;
3993 scsi_for_each_sg(cmd, sg, sg_limit, i) {
3994 hpsa_set_sg_descriptor(curr_sg, sg);
3995 curr_sg++;
3996 }
3997
3998 if (chained) {
3999 /*
4000 * Continue with the chained list. Set curr_sg to the chained
4001 * list. Modify the limit to the total count less the entries
4002 * we've already set up. Resume the scan at the list entry
4003 * where the previous loop left off.
4004 */
4005 curr_sg = h->cmd_sg_list[cp->cmdindex];
4006 sg_limit = use_sg - sg_limit;
4007 for_each_sg(sg, sg, sg_limit, i) {
4008 hpsa_set_sg_descriptor(curr_sg, sg);
4009 curr_sg++;
4010 }
4011 }
4012
4013 /* Back the pointer up to the last entry and mark it as "last". */
4014 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4015
4016 if (use_sg + chained > h->maxSG)
4017 h->maxSG = use_sg + chained;
4018
4019 if (chained) {
4020 cp->Header.SGList = h->max_cmd_sg_entries;
4021 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4022 if (hpsa_map_sg_chain_block(h, cp)) {
4023 scsi_dma_unmap(cmd);
4024 return -1;
4025 }
4026 return 0;
4027 }
4028
4029 sglist_finished:
4030
4031 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4032 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4033 return 0;
4034 }
4035
4036 #define IO_ACCEL_INELIGIBLE (1)
4037 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4038 {
4039 int is_write = 0;
4040 u32 block;
4041 u32 block_cnt;
4042
4043 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4044 switch (cdb[0]) {
4045 case WRITE_6:
4046 case WRITE_12:
4047 is_write = 1;
4048 case READ_6:
4049 case READ_12:
4050 if (*cdb_len == 6) {
4051 block = get_unaligned_be16(&cdb[2]);
4052 block_cnt = cdb[4];
4053 if (block_cnt == 0)
4054 block_cnt = 256;
4055 } else {
4056 BUG_ON(*cdb_len != 12);
4057 block = get_unaligned_be32(&cdb[2]);
4058 block_cnt = get_unaligned_be32(&cdb[6]);
4059 }
4060 if (block_cnt > 0xffff)
4061 return IO_ACCEL_INELIGIBLE;
4062
4063 cdb[0] = is_write ? WRITE_10 : READ_10;
4064 cdb[1] = 0;
4065 cdb[2] = (u8) (block >> 24);
4066 cdb[3] = (u8) (block >> 16);
4067 cdb[4] = (u8) (block >> 8);
4068 cdb[5] = (u8) (block);
4069 cdb[6] = 0;
4070 cdb[7] = (u8) (block_cnt >> 8);
4071 cdb[8] = (u8) (block_cnt);
4072 cdb[9] = 0;
4073 *cdb_len = 10;
4074 break;
4075 }
4076 return 0;
4077 }
4078
4079 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4080 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4081 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4082 {
4083 struct scsi_cmnd *cmd = c->scsi_cmd;
4084 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4085 unsigned int len;
4086 unsigned int total_len = 0;
4087 struct scatterlist *sg;
4088 u64 addr64;
4089 int use_sg, i;
4090 struct SGDescriptor *curr_sg;
4091 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4092
4093 /* TODO: implement chaining support */
4094 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4095 atomic_dec(&phys_disk->ioaccel_cmds_out);
4096 return IO_ACCEL_INELIGIBLE;
4097 }
4098
4099 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4100
4101 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4102 atomic_dec(&phys_disk->ioaccel_cmds_out);
4103 return IO_ACCEL_INELIGIBLE;
4104 }
4105
4106 c->cmd_type = CMD_IOACCEL1;
4107
4108 /* Adjust the DMA address to point to the accelerated command buffer */
4109 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4110 (c->cmdindex * sizeof(*cp));
4111 BUG_ON(c->busaddr & 0x0000007F);
4112
4113 use_sg = scsi_dma_map(cmd);
4114 if (use_sg < 0) {
4115 atomic_dec(&phys_disk->ioaccel_cmds_out);
4116 return use_sg;
4117 }
4118
4119 if (use_sg) {
4120 curr_sg = cp->SG;
4121 scsi_for_each_sg(cmd, sg, use_sg, i) {
4122 addr64 = (u64) sg_dma_address(sg);
4123 len = sg_dma_len(sg);
4124 total_len += len;
4125 curr_sg->Addr = cpu_to_le64(addr64);
4126 curr_sg->Len = cpu_to_le32(len);
4127 curr_sg->Ext = cpu_to_le32(0);
4128 curr_sg++;
4129 }
4130 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4131
4132 switch (cmd->sc_data_direction) {
4133 case DMA_TO_DEVICE:
4134 control |= IOACCEL1_CONTROL_DATA_OUT;
4135 break;
4136 case DMA_FROM_DEVICE:
4137 control |= IOACCEL1_CONTROL_DATA_IN;
4138 break;
4139 case DMA_NONE:
4140 control |= IOACCEL1_CONTROL_NODATAXFER;
4141 break;
4142 default:
4143 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4144 cmd->sc_data_direction);
4145 BUG();
4146 break;
4147 }
4148 } else {
4149 control |= IOACCEL1_CONTROL_NODATAXFER;
4150 }
4151
4152 c->Header.SGList = use_sg;
4153 /* Fill out the command structure to submit */
4154 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4155 cp->transfer_len = cpu_to_le32(total_len);
4156 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4157 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4158 cp->control = cpu_to_le32(control);
4159 memcpy(cp->CDB, cdb, cdb_len);
4160 memcpy(cp->CISS_LUN, scsi3addr, 8);
4161 /* Tag was already set at init time. */
4162 enqueue_cmd_and_start_io(h, c);
4163 return 0;
4164 }
4165
4166 /*
4167 * Queue a command directly to a device behind the controller using the
4168 * I/O accelerator path.
4169 */
4170 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4171 struct CommandList *c)
4172 {
4173 struct scsi_cmnd *cmd = c->scsi_cmd;
4174 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4175
4176 c->phys_disk = dev;
4177
4178 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4179 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4180 }
4181
4182 /*
4183 * Set encryption parameters for the ioaccel2 request
4184 */
4185 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4186 struct CommandList *c, struct io_accel2_cmd *cp)
4187 {
4188 struct scsi_cmnd *cmd = c->scsi_cmd;
4189 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4190 struct raid_map_data *map = &dev->raid_map;
4191 u64 first_block;
4192
4193 /* Are we doing encryption on this device */
4194 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4195 return;
4196 /* Set the data encryption key index. */
4197 cp->dekindex = map->dekindex;
4198
4199 /* Set the encryption enable flag, encoded into direction field. */
4200 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4201
4202 /* Set encryption tweak values based on logical block address
4203 * If block size is 512, tweak value is LBA.
4204 * For other block sizes, tweak is (LBA * block size)/ 512)
4205 */
4206 switch (cmd->cmnd[0]) {
4207 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4208 case WRITE_6:
4209 case READ_6:
4210 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4211 break;
4212 case WRITE_10:
4213 case READ_10:
4214 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4215 case WRITE_12:
4216 case READ_12:
4217 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4218 break;
4219 case WRITE_16:
4220 case READ_16:
4221 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4222 break;
4223 default:
4224 dev_err(&h->pdev->dev,
4225 "ERROR: %s: size (0x%x) not supported for encryption\n",
4226 __func__, cmd->cmnd[0]);
4227 BUG();
4228 break;
4229 }
4230
4231 if (le32_to_cpu(map->volume_blk_size) != 512)
4232 first_block = first_block *
4233 le32_to_cpu(map->volume_blk_size)/512;
4234
4235 cp->tweak_lower = cpu_to_le32(first_block);
4236 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4237 }
4238
4239 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4240 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4241 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4242 {
4243 struct scsi_cmnd *cmd = c->scsi_cmd;
4244 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4245 struct ioaccel2_sg_element *curr_sg;
4246 int use_sg, i;
4247 struct scatterlist *sg;
4248 u64 addr64;
4249 u32 len;
4250 u32 total_len = 0;
4251
4252 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4253
4254 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4255 atomic_dec(&phys_disk->ioaccel_cmds_out);
4256 return IO_ACCEL_INELIGIBLE;
4257 }
4258
4259 c->cmd_type = CMD_IOACCEL2;
4260 /* Adjust the DMA address to point to the accelerated command buffer */
4261 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4262 (c->cmdindex * sizeof(*cp));
4263 BUG_ON(c->busaddr & 0x0000007F);
4264
4265 memset(cp, 0, sizeof(*cp));
4266 cp->IU_type = IOACCEL2_IU_TYPE;
4267
4268 use_sg = scsi_dma_map(cmd);
4269 if (use_sg < 0) {
4270 atomic_dec(&phys_disk->ioaccel_cmds_out);
4271 return use_sg;
4272 }
4273
4274 if (use_sg) {
4275 curr_sg = cp->sg;
4276 if (use_sg > h->ioaccel_maxsg) {
4277 addr64 = le64_to_cpu(
4278 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4279 curr_sg->address = cpu_to_le64(addr64);
4280 curr_sg->length = 0;
4281 curr_sg->reserved[0] = 0;
4282 curr_sg->reserved[1] = 0;
4283 curr_sg->reserved[2] = 0;
4284 curr_sg->chain_indicator = 0x80;
4285
4286 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4287 }
4288 scsi_for_each_sg(cmd, sg, use_sg, i) {
4289 addr64 = (u64) sg_dma_address(sg);
4290 len = sg_dma_len(sg);
4291 total_len += len;
4292 curr_sg->address = cpu_to_le64(addr64);
4293 curr_sg->length = cpu_to_le32(len);
4294 curr_sg->reserved[0] = 0;
4295 curr_sg->reserved[1] = 0;
4296 curr_sg->reserved[2] = 0;
4297 curr_sg->chain_indicator = 0;
4298 curr_sg++;
4299 }
4300
4301 switch (cmd->sc_data_direction) {
4302 case DMA_TO_DEVICE:
4303 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4304 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4305 break;
4306 case DMA_FROM_DEVICE:
4307 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4308 cp->direction |= IOACCEL2_DIR_DATA_IN;
4309 break;
4310 case DMA_NONE:
4311 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4312 cp->direction |= IOACCEL2_DIR_NO_DATA;
4313 break;
4314 default:
4315 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4316 cmd->sc_data_direction);
4317 BUG();
4318 break;
4319 }
4320 } else {
4321 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4322 cp->direction |= IOACCEL2_DIR_NO_DATA;
4323 }
4324
4325 /* Set encryption parameters, if necessary */
4326 set_encrypt_ioaccel2(h, c, cp);
4327
4328 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4329 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4330 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4331
4332 cp->data_len = cpu_to_le32(total_len);
4333 cp->err_ptr = cpu_to_le64(c->busaddr +
4334 offsetof(struct io_accel2_cmd, error_data));
4335 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4336
4337 /* fill in sg elements */
4338 if (use_sg > h->ioaccel_maxsg) {
4339 cp->sg_count = 1;
4340 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4341 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4342 atomic_dec(&phys_disk->ioaccel_cmds_out);
4343 scsi_dma_unmap(cmd);
4344 return -1;
4345 }
4346 } else
4347 cp->sg_count = (u8) use_sg;
4348
4349 enqueue_cmd_and_start_io(h, c);
4350 return 0;
4351 }
4352
4353 /*
4354 * Queue a command to the correct I/O accelerator path.
4355 */
4356 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4357 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4358 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4359 {
4360 /* Try to honor the device's queue depth */
4361 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4362 phys_disk->queue_depth) {
4363 atomic_dec(&phys_disk->ioaccel_cmds_out);
4364 return IO_ACCEL_INELIGIBLE;
4365 }
4366 if (h->transMethod & CFGTBL_Trans_io_accel1)
4367 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4368 cdb, cdb_len, scsi3addr,
4369 phys_disk);
4370 else
4371 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4372 cdb, cdb_len, scsi3addr,
4373 phys_disk);
4374 }
4375
4376 static void raid_map_helper(struct raid_map_data *map,
4377 int offload_to_mirror, u32 *map_index, u32 *current_group)
4378 {
4379 if (offload_to_mirror == 0) {
4380 /* use physical disk in the first mirrored group. */
4381 *map_index %= le16_to_cpu(map->data_disks_per_row);
4382 return;
4383 }
4384 do {
4385 /* determine mirror group that *map_index indicates */
4386 *current_group = *map_index /
4387 le16_to_cpu(map->data_disks_per_row);
4388 if (offload_to_mirror == *current_group)
4389 continue;
4390 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4391 /* select map index from next group */
4392 *map_index += le16_to_cpu(map->data_disks_per_row);
4393 (*current_group)++;
4394 } else {
4395 /* select map index from first group */
4396 *map_index %= le16_to_cpu(map->data_disks_per_row);
4397 *current_group = 0;
4398 }
4399 } while (offload_to_mirror != *current_group);
4400 }
4401
4402 /*
4403 * Attempt to perform offload RAID mapping for a logical volume I/O.
4404 */
4405 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4406 struct CommandList *c)
4407 {
4408 struct scsi_cmnd *cmd = c->scsi_cmd;
4409 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4410 struct raid_map_data *map = &dev->raid_map;
4411 struct raid_map_disk_data *dd = &map->data[0];
4412 int is_write = 0;
4413 u32 map_index;
4414 u64 first_block, last_block;
4415 u32 block_cnt;
4416 u32 blocks_per_row;
4417 u64 first_row, last_row;
4418 u32 first_row_offset, last_row_offset;
4419 u32 first_column, last_column;
4420 u64 r0_first_row, r0_last_row;
4421 u32 r5or6_blocks_per_row;
4422 u64 r5or6_first_row, r5or6_last_row;
4423 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4424 u32 r5or6_first_column, r5or6_last_column;
4425 u32 total_disks_per_row;
4426 u32 stripesize;
4427 u32 first_group, last_group, current_group;
4428 u32 map_row;
4429 u32 disk_handle;
4430 u64 disk_block;
4431 u32 disk_block_cnt;
4432 u8 cdb[16];
4433 u8 cdb_len;
4434 u16 strip_size;
4435 #if BITS_PER_LONG == 32
4436 u64 tmpdiv;
4437 #endif
4438 int offload_to_mirror;
4439
4440 /* check for valid opcode, get LBA and block count */
4441 switch (cmd->cmnd[0]) {
4442 case WRITE_6:
4443 is_write = 1;
4444 case READ_6:
4445 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4446 block_cnt = cmd->cmnd[4];
4447 if (block_cnt == 0)
4448 block_cnt = 256;
4449 break;
4450 case WRITE_10:
4451 is_write = 1;
4452 case READ_10:
4453 first_block =
4454 (((u64) cmd->cmnd[2]) << 24) |
4455 (((u64) cmd->cmnd[3]) << 16) |
4456 (((u64) cmd->cmnd[4]) << 8) |
4457 cmd->cmnd[5];
4458 block_cnt =
4459 (((u32) cmd->cmnd[7]) << 8) |
4460 cmd->cmnd[8];
4461 break;
4462 case WRITE_12:
4463 is_write = 1;
4464 case READ_12:
4465 first_block =
4466 (((u64) cmd->cmnd[2]) << 24) |
4467 (((u64) cmd->cmnd[3]) << 16) |
4468 (((u64) cmd->cmnd[4]) << 8) |
4469 cmd->cmnd[5];
4470 block_cnt =
4471 (((u32) cmd->cmnd[6]) << 24) |
4472 (((u32) cmd->cmnd[7]) << 16) |
4473 (((u32) cmd->cmnd[8]) << 8) |
4474 cmd->cmnd[9];
4475 break;
4476 case WRITE_16:
4477 is_write = 1;
4478 case READ_16:
4479 first_block =
4480 (((u64) cmd->cmnd[2]) << 56) |
4481 (((u64) cmd->cmnd[3]) << 48) |
4482 (((u64) cmd->cmnd[4]) << 40) |
4483 (((u64) cmd->cmnd[5]) << 32) |
4484 (((u64) cmd->cmnd[6]) << 24) |
4485 (((u64) cmd->cmnd[7]) << 16) |
4486 (((u64) cmd->cmnd[8]) << 8) |
4487 cmd->cmnd[9];
4488 block_cnt =
4489 (((u32) cmd->cmnd[10]) << 24) |
4490 (((u32) cmd->cmnd[11]) << 16) |
4491 (((u32) cmd->cmnd[12]) << 8) |
4492 cmd->cmnd[13];
4493 break;
4494 default:
4495 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4496 }
4497 last_block = first_block + block_cnt - 1;
4498
4499 /* check for write to non-RAID-0 */
4500 if (is_write && dev->raid_level != 0)
4501 return IO_ACCEL_INELIGIBLE;
4502
4503 /* check for invalid block or wraparound */
4504 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4505 last_block < first_block)
4506 return IO_ACCEL_INELIGIBLE;
4507
4508 /* calculate stripe information for the request */
4509 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4510 le16_to_cpu(map->strip_size);
4511 strip_size = le16_to_cpu(map->strip_size);
4512 #if BITS_PER_LONG == 32
4513 tmpdiv = first_block;
4514 (void) do_div(tmpdiv, blocks_per_row);
4515 first_row = tmpdiv;
4516 tmpdiv = last_block;
4517 (void) do_div(tmpdiv, blocks_per_row);
4518 last_row = tmpdiv;
4519 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4520 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4521 tmpdiv = first_row_offset;
4522 (void) do_div(tmpdiv, strip_size);
4523 first_column = tmpdiv;
4524 tmpdiv = last_row_offset;
4525 (void) do_div(tmpdiv, strip_size);
4526 last_column = tmpdiv;
4527 #else
4528 first_row = first_block / blocks_per_row;
4529 last_row = last_block / blocks_per_row;
4530 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4531 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4532 first_column = first_row_offset / strip_size;
4533 last_column = last_row_offset / strip_size;
4534 #endif
4535
4536 /* if this isn't a single row/column then give to the controller */
4537 if ((first_row != last_row) || (first_column != last_column))
4538 return IO_ACCEL_INELIGIBLE;
4539
4540 /* proceeding with driver mapping */
4541 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4542 le16_to_cpu(map->metadata_disks_per_row);
4543 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4544 le16_to_cpu(map->row_cnt);
4545 map_index = (map_row * total_disks_per_row) + first_column;
4546
4547 switch (dev->raid_level) {
4548 case HPSA_RAID_0:
4549 break; /* nothing special to do */
4550 case HPSA_RAID_1:
4551 /* Handles load balance across RAID 1 members.
4552 * (2-drive R1 and R10 with even # of drives.)
4553 * Appropriate for SSDs, not optimal for HDDs
4554 */
4555 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4556 if (dev->offload_to_mirror)
4557 map_index += le16_to_cpu(map->data_disks_per_row);
4558 dev->offload_to_mirror = !dev->offload_to_mirror;
4559 break;
4560 case HPSA_RAID_ADM:
4561 /* Handles N-way mirrors (R1-ADM)
4562 * and R10 with # of drives divisible by 3.)
4563 */
4564 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4565
4566 offload_to_mirror = dev->offload_to_mirror;
4567 raid_map_helper(map, offload_to_mirror,
4568 &map_index, &current_group);
4569 /* set mirror group to use next time */
4570 offload_to_mirror =
4571 (offload_to_mirror >=
4572 le16_to_cpu(map->layout_map_count) - 1)
4573 ? 0 : offload_to_mirror + 1;
4574 dev->offload_to_mirror = offload_to_mirror;
4575 /* Avoid direct use of dev->offload_to_mirror within this
4576 * function since multiple threads might simultaneously
4577 * increment it beyond the range of dev->layout_map_count -1.
4578 */
4579 break;
4580 case HPSA_RAID_5:
4581 case HPSA_RAID_6:
4582 if (le16_to_cpu(map->layout_map_count) <= 1)
4583 break;
4584
4585 /* Verify first and last block are in same RAID group */
4586 r5or6_blocks_per_row =
4587 le16_to_cpu(map->strip_size) *
4588 le16_to_cpu(map->data_disks_per_row);
4589 BUG_ON(r5or6_blocks_per_row == 0);
4590 stripesize = r5or6_blocks_per_row *
4591 le16_to_cpu(map->layout_map_count);
4592 #if BITS_PER_LONG == 32
4593 tmpdiv = first_block;
4594 first_group = do_div(tmpdiv, stripesize);
4595 tmpdiv = first_group;
4596 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4597 first_group = tmpdiv;
4598 tmpdiv = last_block;
4599 last_group = do_div(tmpdiv, stripesize);
4600 tmpdiv = last_group;
4601 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4602 last_group = tmpdiv;
4603 #else
4604 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4605 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4606 #endif
4607 if (first_group != last_group)
4608 return IO_ACCEL_INELIGIBLE;
4609
4610 /* Verify request is in a single row of RAID 5/6 */
4611 #if BITS_PER_LONG == 32
4612 tmpdiv = first_block;
4613 (void) do_div(tmpdiv, stripesize);
4614 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4615 tmpdiv = last_block;
4616 (void) do_div(tmpdiv, stripesize);
4617 r5or6_last_row = r0_last_row = tmpdiv;
4618 #else
4619 first_row = r5or6_first_row = r0_first_row =
4620 first_block / stripesize;
4621 r5or6_last_row = r0_last_row = last_block / stripesize;
4622 #endif
4623 if (r5or6_first_row != r5or6_last_row)
4624 return IO_ACCEL_INELIGIBLE;
4625
4626
4627 /* Verify request is in a single column */
4628 #if BITS_PER_LONG == 32
4629 tmpdiv = first_block;
4630 first_row_offset = do_div(tmpdiv, stripesize);
4631 tmpdiv = first_row_offset;
4632 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4633 r5or6_first_row_offset = first_row_offset;
4634 tmpdiv = last_block;
4635 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4636 tmpdiv = r5or6_last_row_offset;
4637 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4638 tmpdiv = r5or6_first_row_offset;
4639 (void) do_div(tmpdiv, map->strip_size);
4640 first_column = r5or6_first_column = tmpdiv;
4641 tmpdiv = r5or6_last_row_offset;
4642 (void) do_div(tmpdiv, map->strip_size);
4643 r5or6_last_column = tmpdiv;
4644 #else
4645 first_row_offset = r5or6_first_row_offset =
4646 (u32)((first_block % stripesize) %
4647 r5or6_blocks_per_row);
4648
4649 r5or6_last_row_offset =
4650 (u32)((last_block % stripesize) %
4651 r5or6_blocks_per_row);
4652
4653 first_column = r5or6_first_column =
4654 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4655 r5or6_last_column =
4656 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4657 #endif
4658 if (r5or6_first_column != r5or6_last_column)
4659 return IO_ACCEL_INELIGIBLE;
4660
4661 /* Request is eligible */
4662 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4663 le16_to_cpu(map->row_cnt);
4664
4665 map_index = (first_group *
4666 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4667 (map_row * total_disks_per_row) + first_column;
4668 break;
4669 default:
4670 return IO_ACCEL_INELIGIBLE;
4671 }
4672
4673 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4674 return IO_ACCEL_INELIGIBLE;
4675
4676 c->phys_disk = dev->phys_disk[map_index];
4677
4678 disk_handle = dd[map_index].ioaccel_handle;
4679 disk_block = le64_to_cpu(map->disk_starting_blk) +
4680 first_row * le16_to_cpu(map->strip_size) +
4681 (first_row_offset - first_column *
4682 le16_to_cpu(map->strip_size));
4683 disk_block_cnt = block_cnt;
4684
4685 /* handle differing logical/physical block sizes */
4686 if (map->phys_blk_shift) {
4687 disk_block <<= map->phys_blk_shift;
4688 disk_block_cnt <<= map->phys_blk_shift;
4689 }
4690 BUG_ON(disk_block_cnt > 0xffff);
4691
4692 /* build the new CDB for the physical disk I/O */
4693 if (disk_block > 0xffffffff) {
4694 cdb[0] = is_write ? WRITE_16 : READ_16;
4695 cdb[1] = 0;
4696 cdb[2] = (u8) (disk_block >> 56);
4697 cdb[3] = (u8) (disk_block >> 48);
4698 cdb[4] = (u8) (disk_block >> 40);
4699 cdb[5] = (u8) (disk_block >> 32);
4700 cdb[6] = (u8) (disk_block >> 24);
4701 cdb[7] = (u8) (disk_block >> 16);
4702 cdb[8] = (u8) (disk_block >> 8);
4703 cdb[9] = (u8) (disk_block);
4704 cdb[10] = (u8) (disk_block_cnt >> 24);
4705 cdb[11] = (u8) (disk_block_cnt >> 16);
4706 cdb[12] = (u8) (disk_block_cnt >> 8);
4707 cdb[13] = (u8) (disk_block_cnt);
4708 cdb[14] = 0;
4709 cdb[15] = 0;
4710 cdb_len = 16;
4711 } else {
4712 cdb[0] = is_write ? WRITE_10 : READ_10;
4713 cdb[1] = 0;
4714 cdb[2] = (u8) (disk_block >> 24);
4715 cdb[3] = (u8) (disk_block >> 16);
4716 cdb[4] = (u8) (disk_block >> 8);
4717 cdb[5] = (u8) (disk_block);
4718 cdb[6] = 0;
4719 cdb[7] = (u8) (disk_block_cnt >> 8);
4720 cdb[8] = (u8) (disk_block_cnt);
4721 cdb[9] = 0;
4722 cdb_len = 10;
4723 }
4724 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4725 dev->scsi3addr,
4726 dev->phys_disk[map_index]);
4727 }
4728
4729 /*
4730 * Submit commands down the "normal" RAID stack path
4731 * All callers to hpsa_ciss_submit must check lockup_detected
4732 * beforehand, before (opt.) and after calling cmd_alloc
4733 */
4734 static int hpsa_ciss_submit(struct ctlr_info *h,
4735 struct CommandList *c, struct scsi_cmnd *cmd,
4736 unsigned char scsi3addr[])
4737 {
4738 cmd->host_scribble = (unsigned char *) c;
4739 c->cmd_type = CMD_SCSI;
4740 c->scsi_cmd = cmd;
4741 c->Header.ReplyQueue = 0; /* unused in simple mode */
4742 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4743 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4744
4745 /* Fill in the request block... */
4746
4747 c->Request.Timeout = 0;
4748 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4749 c->Request.CDBLen = cmd->cmd_len;
4750 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4751 switch (cmd->sc_data_direction) {
4752 case DMA_TO_DEVICE:
4753 c->Request.type_attr_dir =
4754 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4755 break;
4756 case DMA_FROM_DEVICE:
4757 c->Request.type_attr_dir =
4758 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4759 break;
4760 case DMA_NONE:
4761 c->Request.type_attr_dir =
4762 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4763 break;
4764 case DMA_BIDIRECTIONAL:
4765 /* This can happen if a buggy application does a scsi passthru
4766 * and sets both inlen and outlen to non-zero. ( see
4767 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4768 */
4769
4770 c->Request.type_attr_dir =
4771 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4772 /* This is technically wrong, and hpsa controllers should
4773 * reject it with CMD_INVALID, which is the most correct
4774 * response, but non-fibre backends appear to let it
4775 * slide by, and give the same results as if this field
4776 * were set correctly. Either way is acceptable for
4777 * our purposes here.
4778 */
4779
4780 break;
4781
4782 default:
4783 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4784 cmd->sc_data_direction);
4785 BUG();
4786 break;
4787 }
4788
4789 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4790 hpsa_cmd_resolve_and_free(h, c);
4791 return SCSI_MLQUEUE_HOST_BUSY;
4792 }
4793 enqueue_cmd_and_start_io(h, c);
4794 /* the cmd'll come back via intr handler in complete_scsi_command() */
4795 return 0;
4796 }
4797
4798 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4799 struct CommandList *c)
4800 {
4801 dma_addr_t cmd_dma_handle, err_dma_handle;
4802
4803 /* Zero out all of commandlist except the last field, refcount */
4804 memset(c, 0, offsetof(struct CommandList, refcount));
4805 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4806 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4807 c->err_info = h->errinfo_pool + index;
4808 memset(c->err_info, 0, sizeof(*c->err_info));
4809 err_dma_handle = h->errinfo_pool_dhandle
4810 + index * sizeof(*c->err_info);
4811 c->cmdindex = index;
4812 c->busaddr = (u32) cmd_dma_handle;
4813 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4814 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4815 c->h = h;
4816 c->scsi_cmd = SCSI_CMD_IDLE;
4817 }
4818
4819 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4820 {
4821 int i;
4822
4823 for (i = 0; i < h->nr_cmds; i++) {
4824 struct CommandList *c = h->cmd_pool + i;
4825
4826 hpsa_cmd_init(h, i, c);
4827 atomic_set(&c->refcount, 0);
4828 }
4829 }
4830
4831 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4832 struct CommandList *c)
4833 {
4834 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4835
4836 BUG_ON(c->cmdindex != index);
4837
4838 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4839 memset(c->err_info, 0, sizeof(*c->err_info));
4840 c->busaddr = (u32) cmd_dma_handle;
4841 }
4842
4843 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4844 struct CommandList *c, struct scsi_cmnd *cmd,
4845 unsigned char *scsi3addr)
4846 {
4847 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4848 int rc = IO_ACCEL_INELIGIBLE;
4849
4850 cmd->host_scribble = (unsigned char *) c;
4851
4852 if (dev->offload_enabled) {
4853 hpsa_cmd_init(h, c->cmdindex, c);
4854 c->cmd_type = CMD_SCSI;
4855 c->scsi_cmd = cmd;
4856 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4857 if (rc < 0) /* scsi_dma_map failed. */
4858 rc = SCSI_MLQUEUE_HOST_BUSY;
4859 } else if (dev->hba_ioaccel_enabled) {
4860 hpsa_cmd_init(h, c->cmdindex, c);
4861 c->cmd_type = CMD_SCSI;
4862 c->scsi_cmd = cmd;
4863 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4864 if (rc < 0) /* scsi_dma_map failed. */
4865 rc = SCSI_MLQUEUE_HOST_BUSY;
4866 }
4867 return rc;
4868 }
4869
4870 static void hpsa_command_resubmit_worker(struct work_struct *work)
4871 {
4872 struct scsi_cmnd *cmd;
4873 struct hpsa_scsi_dev_t *dev;
4874 struct CommandList *c = container_of(work, struct CommandList, work);
4875
4876 cmd = c->scsi_cmd;
4877 dev = cmd->device->hostdata;
4878 if (!dev) {
4879 cmd->result = DID_NO_CONNECT << 16;
4880 return hpsa_cmd_free_and_done(c->h, c, cmd);
4881 }
4882 if (c->reset_pending)
4883 return hpsa_cmd_resolve_and_free(c->h, c);
4884 if (c->abort_pending)
4885 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4886 if (c->cmd_type == CMD_IOACCEL2) {
4887 struct ctlr_info *h = c->h;
4888 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4889 int rc;
4890
4891 if (c2->error_data.serv_response ==
4892 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4893 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4894 if (rc == 0)
4895 return;
4896 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4897 /*
4898 * If we get here, it means dma mapping failed.
4899 * Try again via scsi mid layer, which will
4900 * then get SCSI_MLQUEUE_HOST_BUSY.
4901 */
4902 cmd->result = DID_IMM_RETRY << 16;
4903 return hpsa_cmd_free_and_done(h, c, cmd);
4904 }
4905 /* else, fall thru and resubmit down CISS path */
4906 }
4907 }
4908 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4909 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4910 /*
4911 * If we get here, it means dma mapping failed. Try
4912 * again via scsi mid layer, which will then get
4913 * SCSI_MLQUEUE_HOST_BUSY.
4914 *
4915 * hpsa_ciss_submit will have already freed c
4916 * if it encountered a dma mapping failure.
4917 */
4918 cmd->result = DID_IMM_RETRY << 16;
4919 cmd->scsi_done(cmd);
4920 }
4921 }
4922
4923 /* Running in struct Scsi_Host->host_lock less mode */
4924 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4925 {
4926 struct ctlr_info *h;
4927 struct hpsa_scsi_dev_t *dev;
4928 unsigned char scsi3addr[8];
4929 struct CommandList *c;
4930 int rc = 0;
4931
4932 /* Get the ptr to our adapter structure out of cmd->host. */
4933 h = sdev_to_hba(cmd->device);
4934
4935 BUG_ON(cmd->request->tag < 0);
4936
4937 dev = cmd->device->hostdata;
4938 if (!dev) {
4939 cmd->result = DID_NO_CONNECT << 16;
4940 cmd->scsi_done(cmd);
4941 return 0;
4942 }
4943
4944 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4945
4946 if (unlikely(lockup_detected(h))) {
4947 cmd->result = DID_NO_CONNECT << 16;
4948 cmd->scsi_done(cmd);
4949 return 0;
4950 }
4951 c = cmd_tagged_alloc(h, cmd);
4952
4953 /*
4954 * Call alternate submit routine for I/O accelerated commands.
4955 * Retries always go down the normal I/O path.
4956 */
4957 if (likely(cmd->retries == 0 &&
4958 cmd->request->cmd_type == REQ_TYPE_FS &&
4959 h->acciopath_status)) {
4960 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4961 if (rc == 0)
4962 return 0;
4963 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4964 hpsa_cmd_resolve_and_free(h, c);
4965 return SCSI_MLQUEUE_HOST_BUSY;
4966 }
4967 }
4968 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4969 }
4970
4971 static void hpsa_scan_complete(struct ctlr_info *h)
4972 {
4973 unsigned long flags;
4974
4975 spin_lock_irqsave(&h->scan_lock, flags);
4976 h->scan_finished = 1;
4977 wake_up_all(&h->scan_wait_queue);
4978 spin_unlock_irqrestore(&h->scan_lock, flags);
4979 }
4980
4981 static void hpsa_scan_start(struct Scsi_Host *sh)
4982 {
4983 struct ctlr_info *h = shost_to_hba(sh);
4984 unsigned long flags;
4985
4986 /*
4987 * Don't let rescans be initiated on a controller known to be locked
4988 * up. If the controller locks up *during* a rescan, that thread is
4989 * probably hosed, but at least we can prevent new rescan threads from
4990 * piling up on a locked up controller.
4991 */
4992 if (unlikely(lockup_detected(h)))
4993 return hpsa_scan_complete(h);
4994
4995 /* wait until any scan already in progress is finished. */
4996 while (1) {
4997 spin_lock_irqsave(&h->scan_lock, flags);
4998 if (h->scan_finished)
4999 break;
5000 spin_unlock_irqrestore(&h->scan_lock, flags);
5001 wait_event(h->scan_wait_queue, h->scan_finished);
5002 /* Note: We don't need to worry about a race between this
5003 * thread and driver unload because the midlayer will
5004 * have incremented the reference count, so unload won't
5005 * happen if we're in here.
5006 */
5007 }
5008 h->scan_finished = 0; /* mark scan as in progress */
5009 spin_unlock_irqrestore(&h->scan_lock, flags);
5010
5011 if (unlikely(lockup_detected(h)))
5012 return hpsa_scan_complete(h);
5013
5014 hpsa_update_scsi_devices(h);
5015
5016 hpsa_scan_complete(h);
5017 }
5018
5019 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5020 {
5021 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5022
5023 if (!logical_drive)
5024 return -ENODEV;
5025
5026 if (qdepth < 1)
5027 qdepth = 1;
5028 else if (qdepth > logical_drive->queue_depth)
5029 qdepth = logical_drive->queue_depth;
5030
5031 return scsi_change_queue_depth(sdev, qdepth);
5032 }
5033
5034 static int hpsa_scan_finished(struct Scsi_Host *sh,
5035 unsigned long elapsed_time)
5036 {
5037 struct ctlr_info *h = shost_to_hba(sh);
5038 unsigned long flags;
5039 int finished;
5040
5041 spin_lock_irqsave(&h->scan_lock, flags);
5042 finished = h->scan_finished;
5043 spin_unlock_irqrestore(&h->scan_lock, flags);
5044 return finished;
5045 }
5046
5047 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5048 {
5049 struct Scsi_Host *sh;
5050 int error;
5051
5052 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5053 if (sh == NULL) {
5054 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5055 return -ENOMEM;
5056 }
5057
5058 sh->io_port = 0;
5059 sh->n_io_port = 0;
5060 sh->this_id = -1;
5061 sh->max_channel = 3;
5062 sh->max_cmd_len = MAX_COMMAND_SIZE;
5063 sh->max_lun = HPSA_MAX_LUN;
5064 sh->max_id = HPSA_MAX_LUN;
5065 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5066 sh->cmd_per_lun = sh->can_queue;
5067 sh->sg_tablesize = h->maxsgentries;
5068 sh->hostdata[0] = (unsigned long) h;
5069 sh->irq = h->intr[h->intr_mode];
5070 sh->unique_id = sh->irq;
5071 error = scsi_init_shared_tag_map(sh, sh->can_queue);
5072 if (error) {
5073 dev_err(&h->pdev->dev,
5074 "%s: scsi_init_shared_tag_map failed for controller %d\n",
5075 __func__, h->ctlr);
5076 scsi_host_put(sh);
5077 return error;
5078 }
5079 h->scsi_host = sh;
5080 return 0;
5081 }
5082
5083 static int hpsa_scsi_add_host(struct ctlr_info *h)
5084 {
5085 int rv;
5086
5087 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5088 if (rv) {
5089 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5090 return rv;
5091 }
5092 scsi_scan_host(h->scsi_host);
5093 return 0;
5094 }
5095
5096 /*
5097 * The block layer has already gone to the trouble of picking out a unique,
5098 * small-integer tag for this request. We use an offset from that value as
5099 * an index to select our command block. (The offset allows us to reserve the
5100 * low-numbered entries for our own uses.)
5101 */
5102 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5103 {
5104 int idx = scmd->request->tag;
5105
5106 if (idx < 0)
5107 return idx;
5108
5109 /* Offset to leave space for internal cmds. */
5110 return idx += HPSA_NRESERVED_CMDS;
5111 }
5112
5113 /*
5114 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5115 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5116 */
5117 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5118 struct CommandList *c, unsigned char lunaddr[],
5119 int reply_queue)
5120 {
5121 int rc;
5122
5123 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5124 (void) fill_cmd(c, TEST_UNIT_READY, h,
5125 NULL, 0, 0, lunaddr, TYPE_CMD);
5126 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5127 if (rc)
5128 return rc;
5129 /* no unmap needed here because no data xfer. */
5130
5131 /* Check if the unit is already ready. */
5132 if (c->err_info->CommandStatus == CMD_SUCCESS)
5133 return 0;
5134
5135 /*
5136 * The first command sent after reset will receive "unit attention" to
5137 * indicate that the LUN has been reset...this is actually what we're
5138 * looking for (but, success is good too).
5139 */
5140 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5141 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5142 (c->err_info->SenseInfo[2] == NO_SENSE ||
5143 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5144 return 0;
5145
5146 return 1;
5147 }
5148
5149 /*
5150 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5151 * returns zero when the unit is ready, and non-zero when giving up.
5152 */
5153 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5154 struct CommandList *c,
5155 unsigned char lunaddr[], int reply_queue)
5156 {
5157 int rc;
5158 int count = 0;
5159 int waittime = 1; /* seconds */
5160
5161 /* Send test unit ready until device ready, or give up. */
5162 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5163
5164 /*
5165 * Wait for a bit. do this first, because if we send
5166 * the TUR right away, the reset will just abort it.
5167 */
5168 msleep(1000 * waittime);
5169
5170 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5171 if (!rc)
5172 break;
5173
5174 /* Increase wait time with each try, up to a point. */
5175 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5176 waittime *= 2;
5177
5178 dev_warn(&h->pdev->dev,
5179 "waiting %d secs for device to become ready.\n",
5180 waittime);
5181 }
5182
5183 return rc;
5184 }
5185
5186 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5187 unsigned char lunaddr[],
5188 int reply_queue)
5189 {
5190 int first_queue;
5191 int last_queue;
5192 int rq;
5193 int rc = 0;
5194 struct CommandList *c;
5195
5196 c = cmd_alloc(h);
5197
5198 /*
5199 * If no specific reply queue was requested, then send the TUR
5200 * repeatedly, requesting a reply on each reply queue; otherwise execute
5201 * the loop exactly once using only the specified queue.
5202 */
5203 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5204 first_queue = 0;
5205 last_queue = h->nreply_queues - 1;
5206 } else {
5207 first_queue = reply_queue;
5208 last_queue = reply_queue;
5209 }
5210
5211 for (rq = first_queue; rq <= last_queue; rq++) {
5212 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5213 if (rc)
5214 break;
5215 }
5216
5217 if (rc)
5218 dev_warn(&h->pdev->dev, "giving up on device.\n");
5219 else
5220 dev_warn(&h->pdev->dev, "device is ready.\n");
5221
5222 cmd_free(h, c);
5223 return rc;
5224 }
5225
5226 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5227 * complaining. Doing a host- or bus-reset can't do anything good here.
5228 */
5229 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5230 {
5231 int rc;
5232 struct ctlr_info *h;
5233 struct hpsa_scsi_dev_t *dev;
5234 u8 reset_type;
5235 char msg[48];
5236
5237 /* find the controller to which the command to be aborted was sent */
5238 h = sdev_to_hba(scsicmd->device);
5239 if (h == NULL) /* paranoia */
5240 return FAILED;
5241
5242 if (lockup_detected(h))
5243 return FAILED;
5244
5245 dev = scsicmd->device->hostdata;
5246 if (!dev) {
5247 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5248 return FAILED;
5249 }
5250
5251 /* if controller locked up, we can guarantee command won't complete */
5252 if (lockup_detected(h)) {
5253 snprintf(msg, sizeof(msg),
5254 "cmd %d RESET FAILED, lockup detected",
5255 hpsa_get_cmd_index(scsicmd));
5256 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5257 return FAILED;
5258 }
5259
5260 /* this reset request might be the result of a lockup; check */
5261 if (detect_controller_lockup(h)) {
5262 snprintf(msg, sizeof(msg),
5263 "cmd %d RESET FAILED, new lockup detected",
5264 hpsa_get_cmd_index(scsicmd));
5265 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5266 return FAILED;
5267 }
5268
5269 /* Do not attempt on controller */
5270 if (is_hba_lunid(dev->scsi3addr))
5271 return SUCCESS;
5272
5273 if (is_logical_dev_addr_mode(dev->scsi3addr))
5274 reset_type = HPSA_DEVICE_RESET_MSG;
5275 else
5276 reset_type = HPSA_PHYS_TARGET_RESET;
5277
5278 sprintf(msg, "resetting %s",
5279 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5280 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5281
5282 h->reset_in_progress = 1;
5283
5284 /* send a reset to the SCSI LUN which the command was sent to */
5285 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5286 DEFAULT_REPLY_QUEUE);
5287 sprintf(msg, "reset %s %s",
5288 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5289 rc == 0 ? "completed successfully" : "failed");
5290 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5291 h->reset_in_progress = 0;
5292 return rc == 0 ? SUCCESS : FAILED;
5293 }
5294
5295 static void swizzle_abort_tag(u8 *tag)
5296 {
5297 u8 original_tag[8];
5298
5299 memcpy(original_tag, tag, 8);
5300 tag[0] = original_tag[3];
5301 tag[1] = original_tag[2];
5302 tag[2] = original_tag[1];
5303 tag[3] = original_tag[0];
5304 tag[4] = original_tag[7];
5305 tag[5] = original_tag[6];
5306 tag[6] = original_tag[5];
5307 tag[7] = original_tag[4];
5308 }
5309
5310 static void hpsa_get_tag(struct ctlr_info *h,
5311 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5312 {
5313 u64 tag;
5314 if (c->cmd_type == CMD_IOACCEL1) {
5315 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5316 &h->ioaccel_cmd_pool[c->cmdindex];
5317 tag = le64_to_cpu(cm1->tag);
5318 *tagupper = cpu_to_le32(tag >> 32);
5319 *taglower = cpu_to_le32(tag);
5320 return;
5321 }
5322 if (c->cmd_type == CMD_IOACCEL2) {
5323 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5324 &h->ioaccel2_cmd_pool[c->cmdindex];
5325 /* upper tag not used in ioaccel2 mode */
5326 memset(tagupper, 0, sizeof(*tagupper));
5327 *taglower = cm2->Tag;
5328 return;
5329 }
5330 tag = le64_to_cpu(c->Header.tag);
5331 *tagupper = cpu_to_le32(tag >> 32);
5332 *taglower = cpu_to_le32(tag);
5333 }
5334
5335 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5336 struct CommandList *abort, int reply_queue)
5337 {
5338 int rc = IO_OK;
5339 struct CommandList *c;
5340 struct ErrorInfo *ei;
5341 __le32 tagupper, taglower;
5342
5343 c = cmd_alloc(h);
5344
5345 /* fill_cmd can't fail here, no buffer to map */
5346 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5347 0, 0, scsi3addr, TYPE_MSG);
5348 if (h->needs_abort_tags_swizzled)
5349 swizzle_abort_tag(&c->Request.CDB[4]);
5350 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5351 hpsa_get_tag(h, abort, &taglower, &tagupper);
5352 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5353 __func__, tagupper, taglower);
5354 /* no unmap needed here because no data xfer. */
5355
5356 ei = c->err_info;
5357 switch (ei->CommandStatus) {
5358 case CMD_SUCCESS:
5359 break;
5360 case CMD_TMF_STATUS:
5361 rc = hpsa_evaluate_tmf_status(h, c);
5362 break;
5363 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5364 rc = -1;
5365 break;
5366 default:
5367 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5368 __func__, tagupper, taglower);
5369 hpsa_scsi_interpret_error(h, c);
5370 rc = -1;
5371 break;
5372 }
5373 cmd_free(h, c);
5374 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5375 __func__, tagupper, taglower);
5376 return rc;
5377 }
5378
5379 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5380 struct CommandList *command_to_abort, int reply_queue)
5381 {
5382 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5383 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5384 struct io_accel2_cmd *c2a =
5385 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5386 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5387 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5388
5389 /*
5390 * We're overlaying struct hpsa_tmf_struct on top of something which
5391 * was allocated as a struct io_accel2_cmd, so we better be sure it
5392 * actually fits, and doesn't overrun the error info space.
5393 */
5394 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5395 sizeof(struct io_accel2_cmd));
5396 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5397 offsetof(struct hpsa_tmf_struct, error_len) +
5398 sizeof(ac->error_len));
5399
5400 c->cmd_type = IOACCEL2_TMF;
5401 c->scsi_cmd = SCSI_CMD_BUSY;
5402
5403 /* Adjust the DMA address to point to the accelerated command buffer */
5404 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5405 (c->cmdindex * sizeof(struct io_accel2_cmd));
5406 BUG_ON(c->busaddr & 0x0000007F);
5407
5408 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5409 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5410 ac->reply_queue = reply_queue;
5411 ac->tmf = IOACCEL2_TMF_ABORT;
5412 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5413 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5414 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5415 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5416 ac->error_ptr = cpu_to_le64(c->busaddr +
5417 offsetof(struct io_accel2_cmd, error_data));
5418 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5419 }
5420
5421 /* ioaccel2 path firmware cannot handle abort task requests.
5422 * Change abort requests to physical target reset, and send to the
5423 * address of the physical disk used for the ioaccel 2 command.
5424 * Return 0 on success (IO_OK)
5425 * -1 on failure
5426 */
5427
5428 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5429 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5430 {
5431 int rc = IO_OK;
5432 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5433 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5434 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5435 unsigned char *psa = &phys_scsi3addr[0];
5436
5437 /* Get a pointer to the hpsa logical device. */
5438 scmd = abort->scsi_cmd;
5439 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5440 if (dev == NULL) {
5441 dev_warn(&h->pdev->dev,
5442 "Cannot abort: no device pointer for command.\n");
5443 return -1; /* not abortable */
5444 }
5445
5446 if (h->raid_offload_debug > 0)
5447 dev_info(&h->pdev->dev,
5448 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5449 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5450 "Reset as abort",
5451 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5452 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5453
5454 if (!dev->offload_enabled) {
5455 dev_warn(&h->pdev->dev,
5456 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5457 return -1; /* not abortable */
5458 }
5459
5460 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5461 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5462 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5463 return -1; /* not abortable */
5464 }
5465
5466 /* send the reset */
5467 if (h->raid_offload_debug > 0)
5468 dev_info(&h->pdev->dev,
5469 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5470 psa[0], psa[1], psa[2], psa[3],
5471 psa[4], psa[5], psa[6], psa[7]);
5472 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5473 if (rc != 0) {
5474 dev_warn(&h->pdev->dev,
5475 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5476 psa[0], psa[1], psa[2], psa[3],
5477 psa[4], psa[5], psa[6], psa[7]);
5478 return rc; /* failed to reset */
5479 }
5480
5481 /* wait for device to recover */
5482 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5483 dev_warn(&h->pdev->dev,
5484 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5485 psa[0], psa[1], psa[2], psa[3],
5486 psa[4], psa[5], psa[6], psa[7]);
5487 return -1; /* failed to recover */
5488 }
5489
5490 /* device recovered */
5491 dev_info(&h->pdev->dev,
5492 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5493 psa[0], psa[1], psa[2], psa[3],
5494 psa[4], psa[5], psa[6], psa[7]);
5495
5496 return rc; /* success */
5497 }
5498
5499 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5500 struct CommandList *abort, int reply_queue)
5501 {
5502 int rc = IO_OK;
5503 struct CommandList *c;
5504 __le32 taglower, tagupper;
5505 struct hpsa_scsi_dev_t *dev;
5506 struct io_accel2_cmd *c2;
5507
5508 dev = abort->scsi_cmd->device->hostdata;
5509 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5510 return -1;
5511
5512 c = cmd_alloc(h);
5513 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5514 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5515 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5516 hpsa_get_tag(h, abort, &taglower, &tagupper);
5517 dev_dbg(&h->pdev->dev,
5518 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5519 __func__, tagupper, taglower);
5520 /* no unmap needed here because no data xfer. */
5521
5522 dev_dbg(&h->pdev->dev,
5523 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5524 __func__, tagupper, taglower, c2->error_data.serv_response);
5525 switch (c2->error_data.serv_response) {
5526 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5527 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5528 rc = 0;
5529 break;
5530 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5531 case IOACCEL2_SERV_RESPONSE_FAILURE:
5532 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5533 rc = -1;
5534 break;
5535 default:
5536 dev_warn(&h->pdev->dev,
5537 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5538 __func__, tagupper, taglower,
5539 c2->error_data.serv_response);
5540 rc = -1;
5541 }
5542 cmd_free(h, c);
5543 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5544 tagupper, taglower);
5545 return rc;
5546 }
5547
5548 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5549 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5550 {
5551 /*
5552 * ioccelerator mode 2 commands should be aborted via the
5553 * accelerated path, since RAID path is unaware of these commands,
5554 * but not all underlying firmware can handle abort TMF.
5555 * Change abort to physical device reset when abort TMF is unsupported.
5556 */
5557 if (abort->cmd_type == CMD_IOACCEL2) {
5558 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5559 return hpsa_send_abort_ioaccel2(h, abort,
5560 reply_queue);
5561 else
5562 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5563 abort, reply_queue);
5564 }
5565 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5566 }
5567
5568 /* Find out which reply queue a command was meant to return on */
5569 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5570 struct CommandList *c)
5571 {
5572 if (c->cmd_type == CMD_IOACCEL2)
5573 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5574 return c->Header.ReplyQueue;
5575 }
5576
5577 /*
5578 * Limit concurrency of abort commands to prevent
5579 * over-subscription of commands
5580 */
5581 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5582 {
5583 #define ABORT_CMD_WAIT_MSECS 5000
5584 return !wait_event_timeout(h->abort_cmd_wait_queue,
5585 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5586 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5587 }
5588
5589 /* Send an abort for the specified command.
5590 * If the device and controller support it,
5591 * send a task abort request.
5592 */
5593 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5594 {
5595
5596 int rc;
5597 struct ctlr_info *h;
5598 struct hpsa_scsi_dev_t *dev;
5599 struct CommandList *abort; /* pointer to command to be aborted */
5600 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5601 char msg[256]; /* For debug messaging. */
5602 int ml = 0;
5603 __le32 tagupper, taglower;
5604 int refcount, reply_queue;
5605
5606 if (sc == NULL)
5607 return FAILED;
5608
5609 if (sc->device == NULL)
5610 return FAILED;
5611
5612 /* Find the controller of the command to be aborted */
5613 h = sdev_to_hba(sc->device);
5614 if (h == NULL)
5615 return FAILED;
5616
5617 /* Find the device of the command to be aborted */
5618 dev = sc->device->hostdata;
5619 if (!dev) {
5620 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5621 msg);
5622 return FAILED;
5623 }
5624
5625 /* If controller locked up, we can guarantee command won't complete */
5626 if (lockup_detected(h)) {
5627 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5628 "ABORT FAILED, lockup detected");
5629 return FAILED;
5630 }
5631
5632 /* This is a good time to check if controller lockup has occurred */
5633 if (detect_controller_lockup(h)) {
5634 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5635 "ABORT FAILED, new lockup detected");
5636 return FAILED;
5637 }
5638
5639 /* Check that controller supports some kind of task abort */
5640 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5641 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5642 return FAILED;
5643
5644 memset(msg, 0, sizeof(msg));
5645 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5646 h->scsi_host->host_no, sc->device->channel,
5647 sc->device->id, sc->device->lun,
5648 "Aborting command", sc);
5649
5650 /* Get SCSI command to be aborted */
5651 abort = (struct CommandList *) sc->host_scribble;
5652 if (abort == NULL) {
5653 /* This can happen if the command already completed. */
5654 return SUCCESS;
5655 }
5656 refcount = atomic_inc_return(&abort->refcount);
5657 if (refcount == 1) { /* Command is done already. */
5658 cmd_free(h, abort);
5659 return SUCCESS;
5660 }
5661
5662 /* Don't bother trying the abort if we know it won't work. */
5663 if (abort->cmd_type != CMD_IOACCEL2 &&
5664 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5665 cmd_free(h, abort);
5666 return FAILED;
5667 }
5668
5669 /*
5670 * Check that we're aborting the right command.
5671 * It's possible the CommandList already completed and got re-used.
5672 */
5673 if (abort->scsi_cmd != sc) {
5674 cmd_free(h, abort);
5675 return SUCCESS;
5676 }
5677
5678 abort->abort_pending = true;
5679 hpsa_get_tag(h, abort, &taglower, &tagupper);
5680 reply_queue = hpsa_extract_reply_queue(h, abort);
5681 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5682 as = abort->scsi_cmd;
5683 if (as != NULL)
5684 ml += sprintf(msg+ml,
5685 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5686 as->cmd_len, as->cmnd[0], as->cmnd[1],
5687 as->serial_number);
5688 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5689 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5690
5691 /*
5692 * Command is in flight, or possibly already completed
5693 * by the firmware (but not to the scsi mid layer) but we can't
5694 * distinguish which. Send the abort down.
5695 */
5696 if (wait_for_available_abort_cmd(h)) {
5697 dev_warn(&h->pdev->dev,
5698 "%s FAILED, timeout waiting for an abort command to become available.\n",
5699 msg);
5700 cmd_free(h, abort);
5701 return FAILED;
5702 }
5703 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5704 atomic_inc(&h->abort_cmds_available);
5705 wake_up_all(&h->abort_cmd_wait_queue);
5706 if (rc != 0) {
5707 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5708 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5709 "FAILED to abort command");
5710 cmd_free(h, abort);
5711 return FAILED;
5712 }
5713 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5714 wait_event(h->event_sync_wait_queue,
5715 abort->scsi_cmd != sc || lockup_detected(h));
5716 cmd_free(h, abort);
5717 return !lockup_detected(h) ? SUCCESS : FAILED;
5718 }
5719
5720 /*
5721 * For operations with an associated SCSI command, a command block is allocated
5722 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5723 * block request tag as an index into a table of entries. cmd_tagged_free() is
5724 * the complement, although cmd_free() may be called instead.
5725 */
5726 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5727 struct scsi_cmnd *scmd)
5728 {
5729 int idx = hpsa_get_cmd_index(scmd);
5730 struct CommandList *c = h->cmd_pool + idx;
5731
5732 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5733 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5734 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5735 /* The index value comes from the block layer, so if it's out of
5736 * bounds, it's probably not our bug.
5737 */
5738 BUG();
5739 }
5740
5741 atomic_inc(&c->refcount);
5742 if (unlikely(!hpsa_is_cmd_idle(c))) {
5743 /*
5744 * We expect that the SCSI layer will hand us a unique tag
5745 * value. Thus, there should never be a collision here between
5746 * two requests...because if the selected command isn't idle
5747 * then someone is going to be very disappointed.
5748 */
5749 dev_err(&h->pdev->dev,
5750 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5751 idx);
5752 if (c->scsi_cmd != NULL)
5753 scsi_print_command(c->scsi_cmd);
5754 scsi_print_command(scmd);
5755 }
5756
5757 hpsa_cmd_partial_init(h, idx, c);
5758 return c;
5759 }
5760
5761 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5762 {
5763 /*
5764 * Release our reference to the block. We don't need to do anything
5765 * else to free it, because it is accessed by index. (There's no point
5766 * in checking the result of the decrement, since we cannot guarantee
5767 * that there isn't a concurrent abort which is also accessing it.)
5768 */
5769 (void)atomic_dec(&c->refcount);
5770 }
5771
5772 /*
5773 * For operations that cannot sleep, a command block is allocated at init,
5774 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5775 * which ones are free or in use. Lock must be held when calling this.
5776 * cmd_free() is the complement.
5777 * This function never gives up and returns NULL. If it hangs,
5778 * another thread must call cmd_free() to free some tags.
5779 */
5780
5781 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5782 {
5783 struct CommandList *c;
5784 int refcount, i;
5785 int offset = 0;
5786
5787 /*
5788 * There is some *extremely* small but non-zero chance that that
5789 * multiple threads could get in here, and one thread could
5790 * be scanning through the list of bits looking for a free
5791 * one, but the free ones are always behind him, and other
5792 * threads sneak in behind him and eat them before he can
5793 * get to them, so that while there is always a free one, a
5794 * very unlucky thread might be starved anyway, never able to
5795 * beat the other threads. In reality, this happens so
5796 * infrequently as to be indistinguishable from never.
5797 *
5798 * Note that we start allocating commands before the SCSI host structure
5799 * is initialized. Since the search starts at bit zero, this
5800 * all works, since we have at least one command structure available;
5801 * however, it means that the structures with the low indexes have to be
5802 * reserved for driver-initiated requests, while requests from the block
5803 * layer will use the higher indexes.
5804 */
5805
5806 for (;;) {
5807 i = find_next_zero_bit(h->cmd_pool_bits,
5808 HPSA_NRESERVED_CMDS,
5809 offset);
5810 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5811 offset = 0;
5812 continue;
5813 }
5814 c = h->cmd_pool + i;
5815 refcount = atomic_inc_return(&c->refcount);
5816 if (unlikely(refcount > 1)) {
5817 cmd_free(h, c); /* already in use */
5818 offset = (i + 1) % HPSA_NRESERVED_CMDS;
5819 continue;
5820 }
5821 set_bit(i & (BITS_PER_LONG - 1),
5822 h->cmd_pool_bits + (i / BITS_PER_LONG));
5823 break; /* it's ours now. */
5824 }
5825 hpsa_cmd_partial_init(h, i, c);
5826 return c;
5827 }
5828
5829 /*
5830 * This is the complementary operation to cmd_alloc(). Note, however, in some
5831 * corner cases it may also be used to free blocks allocated by
5832 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5833 * the clear-bit is harmless.
5834 */
5835 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5836 {
5837 if (atomic_dec_and_test(&c->refcount)) {
5838 int i;
5839
5840 i = c - h->cmd_pool;
5841 clear_bit(i & (BITS_PER_LONG - 1),
5842 h->cmd_pool_bits + (i / BITS_PER_LONG));
5843 }
5844 }
5845
5846 #ifdef CONFIG_COMPAT
5847
5848 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5849 void __user *arg)
5850 {
5851 IOCTL32_Command_struct __user *arg32 =
5852 (IOCTL32_Command_struct __user *) arg;
5853 IOCTL_Command_struct arg64;
5854 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5855 int err;
5856 u32 cp;
5857
5858 memset(&arg64, 0, sizeof(arg64));
5859 err = 0;
5860 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5861 sizeof(arg64.LUN_info));
5862 err |= copy_from_user(&arg64.Request, &arg32->Request,
5863 sizeof(arg64.Request));
5864 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5865 sizeof(arg64.error_info));
5866 err |= get_user(arg64.buf_size, &arg32->buf_size);
5867 err |= get_user(cp, &arg32->buf);
5868 arg64.buf = compat_ptr(cp);
5869 err |= copy_to_user(p, &arg64, sizeof(arg64));
5870
5871 if (err)
5872 return -EFAULT;
5873
5874 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5875 if (err)
5876 return err;
5877 err |= copy_in_user(&arg32->error_info, &p->error_info,
5878 sizeof(arg32->error_info));
5879 if (err)
5880 return -EFAULT;
5881 return err;
5882 }
5883
5884 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5885 int cmd, void __user *arg)
5886 {
5887 BIG_IOCTL32_Command_struct __user *arg32 =
5888 (BIG_IOCTL32_Command_struct __user *) arg;
5889 BIG_IOCTL_Command_struct arg64;
5890 BIG_IOCTL_Command_struct __user *p =
5891 compat_alloc_user_space(sizeof(arg64));
5892 int err;
5893 u32 cp;
5894
5895 memset(&arg64, 0, sizeof(arg64));
5896 err = 0;
5897 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5898 sizeof(arg64.LUN_info));
5899 err |= copy_from_user(&arg64.Request, &arg32->Request,
5900 sizeof(arg64.Request));
5901 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5902 sizeof(arg64.error_info));
5903 err |= get_user(arg64.buf_size, &arg32->buf_size);
5904 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5905 err |= get_user(cp, &arg32->buf);
5906 arg64.buf = compat_ptr(cp);
5907 err |= copy_to_user(p, &arg64, sizeof(arg64));
5908
5909 if (err)
5910 return -EFAULT;
5911
5912 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5913 if (err)
5914 return err;
5915 err |= copy_in_user(&arg32->error_info, &p->error_info,
5916 sizeof(arg32->error_info));
5917 if (err)
5918 return -EFAULT;
5919 return err;
5920 }
5921
5922 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5923 {
5924 switch (cmd) {
5925 case CCISS_GETPCIINFO:
5926 case CCISS_GETINTINFO:
5927 case CCISS_SETINTINFO:
5928 case CCISS_GETNODENAME:
5929 case CCISS_SETNODENAME:
5930 case CCISS_GETHEARTBEAT:
5931 case CCISS_GETBUSTYPES:
5932 case CCISS_GETFIRMVER:
5933 case CCISS_GETDRIVVER:
5934 case CCISS_REVALIDVOLS:
5935 case CCISS_DEREGDISK:
5936 case CCISS_REGNEWDISK:
5937 case CCISS_REGNEWD:
5938 case CCISS_RESCANDISK:
5939 case CCISS_GETLUNINFO:
5940 return hpsa_ioctl(dev, cmd, arg);
5941
5942 case CCISS_PASSTHRU32:
5943 return hpsa_ioctl32_passthru(dev, cmd, arg);
5944 case CCISS_BIG_PASSTHRU32:
5945 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5946
5947 default:
5948 return -ENOIOCTLCMD;
5949 }
5950 }
5951 #endif
5952
5953 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5954 {
5955 struct hpsa_pci_info pciinfo;
5956
5957 if (!argp)
5958 return -EINVAL;
5959 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5960 pciinfo.bus = h->pdev->bus->number;
5961 pciinfo.dev_fn = h->pdev->devfn;
5962 pciinfo.board_id = h->board_id;
5963 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5964 return -EFAULT;
5965 return 0;
5966 }
5967
5968 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5969 {
5970 DriverVer_type DriverVer;
5971 unsigned char vmaj, vmin, vsubmin;
5972 int rc;
5973
5974 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5975 &vmaj, &vmin, &vsubmin);
5976 if (rc != 3) {
5977 dev_info(&h->pdev->dev, "driver version string '%s' "
5978 "unrecognized.", HPSA_DRIVER_VERSION);
5979 vmaj = 0;
5980 vmin = 0;
5981 vsubmin = 0;
5982 }
5983 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5984 if (!argp)
5985 return -EINVAL;
5986 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5987 return -EFAULT;
5988 return 0;
5989 }
5990
5991 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5992 {
5993 IOCTL_Command_struct iocommand;
5994 struct CommandList *c;
5995 char *buff = NULL;
5996 u64 temp64;
5997 int rc = 0;
5998
5999 if (!argp)
6000 return -EINVAL;
6001 if (!capable(CAP_SYS_RAWIO))
6002 return -EPERM;
6003 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6004 return -EFAULT;
6005 if ((iocommand.buf_size < 1) &&
6006 (iocommand.Request.Type.Direction != XFER_NONE)) {
6007 return -EINVAL;
6008 }
6009 if (iocommand.buf_size > 0) {
6010 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6011 if (buff == NULL)
6012 return -ENOMEM;
6013 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6014 /* Copy the data into the buffer we created */
6015 if (copy_from_user(buff, iocommand.buf,
6016 iocommand.buf_size)) {
6017 rc = -EFAULT;
6018 goto out_kfree;
6019 }
6020 } else {
6021 memset(buff, 0, iocommand.buf_size);
6022 }
6023 }
6024 c = cmd_alloc(h);
6025
6026 /* Fill in the command type */
6027 c->cmd_type = CMD_IOCTL_PEND;
6028 c->scsi_cmd = SCSI_CMD_BUSY;
6029 /* Fill in Command Header */
6030 c->Header.ReplyQueue = 0; /* unused in simple mode */
6031 if (iocommand.buf_size > 0) { /* buffer to fill */
6032 c->Header.SGList = 1;
6033 c->Header.SGTotal = cpu_to_le16(1);
6034 } else { /* no buffers to fill */
6035 c->Header.SGList = 0;
6036 c->Header.SGTotal = cpu_to_le16(0);
6037 }
6038 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6039
6040 /* Fill in Request block */
6041 memcpy(&c->Request, &iocommand.Request,
6042 sizeof(c->Request));
6043
6044 /* Fill in the scatter gather information */
6045 if (iocommand.buf_size > 0) {
6046 temp64 = pci_map_single(h->pdev, buff,
6047 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6048 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6049 c->SG[0].Addr = cpu_to_le64(0);
6050 c->SG[0].Len = cpu_to_le32(0);
6051 rc = -ENOMEM;
6052 goto out;
6053 }
6054 c->SG[0].Addr = cpu_to_le64(temp64);
6055 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6056 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6057 }
6058 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6059 if (iocommand.buf_size > 0)
6060 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6061 check_ioctl_unit_attention(h, c);
6062 if (rc) {
6063 rc = -EIO;
6064 goto out;
6065 }
6066
6067 /* Copy the error information out */
6068 memcpy(&iocommand.error_info, c->err_info,
6069 sizeof(iocommand.error_info));
6070 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6071 rc = -EFAULT;
6072 goto out;
6073 }
6074 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6075 iocommand.buf_size > 0) {
6076 /* Copy the data out of the buffer we created */
6077 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6078 rc = -EFAULT;
6079 goto out;
6080 }
6081 }
6082 out:
6083 cmd_free(h, c);
6084 out_kfree:
6085 kfree(buff);
6086 return rc;
6087 }
6088
6089 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6090 {
6091 BIG_IOCTL_Command_struct *ioc;
6092 struct CommandList *c;
6093 unsigned char **buff = NULL;
6094 int *buff_size = NULL;
6095 u64 temp64;
6096 BYTE sg_used = 0;
6097 int status = 0;
6098 u32 left;
6099 u32 sz;
6100 BYTE __user *data_ptr;
6101
6102 if (!argp)
6103 return -EINVAL;
6104 if (!capable(CAP_SYS_RAWIO))
6105 return -EPERM;
6106 ioc = (BIG_IOCTL_Command_struct *)
6107 kmalloc(sizeof(*ioc), GFP_KERNEL);
6108 if (!ioc) {
6109 status = -ENOMEM;
6110 goto cleanup1;
6111 }
6112 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6113 status = -EFAULT;
6114 goto cleanup1;
6115 }
6116 if ((ioc->buf_size < 1) &&
6117 (ioc->Request.Type.Direction != XFER_NONE)) {
6118 status = -EINVAL;
6119 goto cleanup1;
6120 }
6121 /* Check kmalloc limits using all SGs */
6122 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6123 status = -EINVAL;
6124 goto cleanup1;
6125 }
6126 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6127 status = -EINVAL;
6128 goto cleanup1;
6129 }
6130 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6131 if (!buff) {
6132 status = -ENOMEM;
6133 goto cleanup1;
6134 }
6135 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6136 if (!buff_size) {
6137 status = -ENOMEM;
6138 goto cleanup1;
6139 }
6140 left = ioc->buf_size;
6141 data_ptr = ioc->buf;
6142 while (left) {
6143 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6144 buff_size[sg_used] = sz;
6145 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6146 if (buff[sg_used] == NULL) {
6147 status = -ENOMEM;
6148 goto cleanup1;
6149 }
6150 if (ioc->Request.Type.Direction & XFER_WRITE) {
6151 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6152 status = -EFAULT;
6153 goto cleanup1;
6154 }
6155 } else
6156 memset(buff[sg_used], 0, sz);
6157 left -= sz;
6158 data_ptr += sz;
6159 sg_used++;
6160 }
6161 c = cmd_alloc(h);
6162
6163 c->cmd_type = CMD_IOCTL_PEND;
6164 c->scsi_cmd = SCSI_CMD_BUSY;
6165 c->Header.ReplyQueue = 0;
6166 c->Header.SGList = (u8) sg_used;
6167 c->Header.SGTotal = cpu_to_le16(sg_used);
6168 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6169 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6170 if (ioc->buf_size > 0) {
6171 int i;
6172 for (i = 0; i < sg_used; i++) {
6173 temp64 = pci_map_single(h->pdev, buff[i],
6174 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6175 if (dma_mapping_error(&h->pdev->dev,
6176 (dma_addr_t) temp64)) {
6177 c->SG[i].Addr = cpu_to_le64(0);
6178 c->SG[i].Len = cpu_to_le32(0);
6179 hpsa_pci_unmap(h->pdev, c, i,
6180 PCI_DMA_BIDIRECTIONAL);
6181 status = -ENOMEM;
6182 goto cleanup0;
6183 }
6184 c->SG[i].Addr = cpu_to_le64(temp64);
6185 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6186 c->SG[i].Ext = cpu_to_le32(0);
6187 }
6188 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6189 }
6190 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6191 if (sg_used)
6192 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6193 check_ioctl_unit_attention(h, c);
6194 if (status) {
6195 status = -EIO;
6196 goto cleanup0;
6197 }
6198
6199 /* Copy the error information out */
6200 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6201 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6202 status = -EFAULT;
6203 goto cleanup0;
6204 }
6205 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6206 int i;
6207
6208 /* Copy the data out of the buffer we created */
6209 BYTE __user *ptr = ioc->buf;
6210 for (i = 0; i < sg_used; i++) {
6211 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6212 status = -EFAULT;
6213 goto cleanup0;
6214 }
6215 ptr += buff_size[i];
6216 }
6217 }
6218 status = 0;
6219 cleanup0:
6220 cmd_free(h, c);
6221 cleanup1:
6222 if (buff) {
6223 int i;
6224
6225 for (i = 0; i < sg_used; i++)
6226 kfree(buff[i]);
6227 kfree(buff);
6228 }
6229 kfree(buff_size);
6230 kfree(ioc);
6231 return status;
6232 }
6233
6234 static void check_ioctl_unit_attention(struct ctlr_info *h,
6235 struct CommandList *c)
6236 {
6237 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6238 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6239 (void) check_for_unit_attention(h, c);
6240 }
6241
6242 /*
6243 * ioctl
6244 */
6245 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6246 {
6247 struct ctlr_info *h;
6248 void __user *argp = (void __user *)arg;
6249 int rc;
6250
6251 h = sdev_to_hba(dev);
6252
6253 switch (cmd) {
6254 case CCISS_DEREGDISK:
6255 case CCISS_REGNEWDISK:
6256 case CCISS_REGNEWD:
6257 hpsa_scan_start(h->scsi_host);
6258 return 0;
6259 case CCISS_GETPCIINFO:
6260 return hpsa_getpciinfo_ioctl(h, argp);
6261 case CCISS_GETDRIVVER:
6262 return hpsa_getdrivver_ioctl(h, argp);
6263 case CCISS_PASSTHRU:
6264 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6265 return -EAGAIN;
6266 rc = hpsa_passthru_ioctl(h, argp);
6267 atomic_inc(&h->passthru_cmds_avail);
6268 return rc;
6269 case CCISS_BIG_PASSTHRU:
6270 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6271 return -EAGAIN;
6272 rc = hpsa_big_passthru_ioctl(h, argp);
6273 atomic_inc(&h->passthru_cmds_avail);
6274 return rc;
6275 default:
6276 return -ENOTTY;
6277 }
6278 }
6279
6280 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6281 u8 reset_type)
6282 {
6283 struct CommandList *c;
6284
6285 c = cmd_alloc(h);
6286
6287 /* fill_cmd can't fail here, no data buffer to map */
6288 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6289 RAID_CTLR_LUNID, TYPE_MSG);
6290 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6291 c->waiting = NULL;
6292 enqueue_cmd_and_start_io(h, c);
6293 /* Don't wait for completion, the reset won't complete. Don't free
6294 * the command either. This is the last command we will send before
6295 * re-initializing everything, so it doesn't matter and won't leak.
6296 */
6297 return;
6298 }
6299
6300 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6301 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6302 int cmd_type)
6303 {
6304 int pci_dir = XFER_NONE;
6305 u64 tag; /* for commands to be aborted */
6306
6307 c->cmd_type = CMD_IOCTL_PEND;
6308 c->scsi_cmd = SCSI_CMD_BUSY;
6309 c->Header.ReplyQueue = 0;
6310 if (buff != NULL && size > 0) {
6311 c->Header.SGList = 1;
6312 c->Header.SGTotal = cpu_to_le16(1);
6313 } else {
6314 c->Header.SGList = 0;
6315 c->Header.SGTotal = cpu_to_le16(0);
6316 }
6317 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6318
6319 if (cmd_type == TYPE_CMD) {
6320 switch (cmd) {
6321 case HPSA_INQUIRY:
6322 /* are we trying to read a vital product page */
6323 if (page_code & VPD_PAGE) {
6324 c->Request.CDB[1] = 0x01;
6325 c->Request.CDB[2] = (page_code & 0xff);
6326 }
6327 c->Request.CDBLen = 6;
6328 c->Request.type_attr_dir =
6329 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6330 c->Request.Timeout = 0;
6331 c->Request.CDB[0] = HPSA_INQUIRY;
6332 c->Request.CDB[4] = size & 0xFF;
6333 break;
6334 case HPSA_REPORT_LOG:
6335 case HPSA_REPORT_PHYS:
6336 /* Talking to controller so It's a physical command
6337 mode = 00 target = 0. Nothing to write.
6338 */
6339 c->Request.CDBLen = 12;
6340 c->Request.type_attr_dir =
6341 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6342 c->Request.Timeout = 0;
6343 c->Request.CDB[0] = cmd;
6344 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6345 c->Request.CDB[7] = (size >> 16) & 0xFF;
6346 c->Request.CDB[8] = (size >> 8) & 0xFF;
6347 c->Request.CDB[9] = size & 0xFF;
6348 break;
6349 case HPSA_CACHE_FLUSH:
6350 c->Request.CDBLen = 12;
6351 c->Request.type_attr_dir =
6352 TYPE_ATTR_DIR(cmd_type,
6353 ATTR_SIMPLE, XFER_WRITE);
6354 c->Request.Timeout = 0;
6355 c->Request.CDB[0] = BMIC_WRITE;
6356 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6357 c->Request.CDB[7] = (size >> 8) & 0xFF;
6358 c->Request.CDB[8] = size & 0xFF;
6359 break;
6360 case TEST_UNIT_READY:
6361 c->Request.CDBLen = 6;
6362 c->Request.type_attr_dir =
6363 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6364 c->Request.Timeout = 0;
6365 break;
6366 case HPSA_GET_RAID_MAP:
6367 c->Request.CDBLen = 12;
6368 c->Request.type_attr_dir =
6369 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6370 c->Request.Timeout = 0;
6371 c->Request.CDB[0] = HPSA_CISS_READ;
6372 c->Request.CDB[1] = cmd;
6373 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6374 c->Request.CDB[7] = (size >> 16) & 0xFF;
6375 c->Request.CDB[8] = (size >> 8) & 0xFF;
6376 c->Request.CDB[9] = size & 0xFF;
6377 break;
6378 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6379 c->Request.CDBLen = 10;
6380 c->Request.type_attr_dir =
6381 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6382 c->Request.Timeout = 0;
6383 c->Request.CDB[0] = BMIC_READ;
6384 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6385 c->Request.CDB[7] = (size >> 16) & 0xFF;
6386 c->Request.CDB[8] = (size >> 8) & 0xFF;
6387 break;
6388 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6389 c->Request.CDBLen = 10;
6390 c->Request.type_attr_dir =
6391 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6392 c->Request.Timeout = 0;
6393 c->Request.CDB[0] = BMIC_READ;
6394 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6395 c->Request.CDB[7] = (size >> 16) & 0xFF;
6396 c->Request.CDB[8] = (size >> 8) & 0XFF;
6397 break;
6398 default:
6399 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6400 BUG();
6401 return -1;
6402 }
6403 } else if (cmd_type == TYPE_MSG) {
6404 switch (cmd) {
6405
6406 case HPSA_PHYS_TARGET_RESET:
6407 c->Request.CDBLen = 16;
6408 c->Request.type_attr_dir =
6409 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6410 c->Request.Timeout = 0; /* Don't time out */
6411 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6412 c->Request.CDB[0] = HPSA_RESET;
6413 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6414 /* Physical target reset needs no control bytes 4-7*/
6415 c->Request.CDB[4] = 0x00;
6416 c->Request.CDB[5] = 0x00;
6417 c->Request.CDB[6] = 0x00;
6418 c->Request.CDB[7] = 0x00;
6419 break;
6420 case HPSA_DEVICE_RESET_MSG:
6421 c->Request.CDBLen = 16;
6422 c->Request.type_attr_dir =
6423 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6424 c->Request.Timeout = 0; /* Don't time out */
6425 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6426 c->Request.CDB[0] = cmd;
6427 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6428 /* If bytes 4-7 are zero, it means reset the */
6429 /* LunID device */
6430 c->Request.CDB[4] = 0x00;
6431 c->Request.CDB[5] = 0x00;
6432 c->Request.CDB[6] = 0x00;
6433 c->Request.CDB[7] = 0x00;
6434 break;
6435 case HPSA_ABORT_MSG:
6436 memcpy(&tag, buff, sizeof(tag));
6437 dev_dbg(&h->pdev->dev,
6438 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6439 tag, c->Header.tag);
6440 c->Request.CDBLen = 16;
6441 c->Request.type_attr_dir =
6442 TYPE_ATTR_DIR(cmd_type,
6443 ATTR_SIMPLE, XFER_WRITE);
6444 c->Request.Timeout = 0; /* Don't time out */
6445 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6446 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6447 c->Request.CDB[2] = 0x00; /* reserved */
6448 c->Request.CDB[3] = 0x00; /* reserved */
6449 /* Tag to abort goes in CDB[4]-CDB[11] */
6450 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6451 c->Request.CDB[12] = 0x00; /* reserved */
6452 c->Request.CDB[13] = 0x00; /* reserved */
6453 c->Request.CDB[14] = 0x00; /* reserved */
6454 c->Request.CDB[15] = 0x00; /* reserved */
6455 break;
6456 default:
6457 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6458 cmd);
6459 BUG();
6460 }
6461 } else {
6462 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6463 BUG();
6464 }
6465
6466 switch (GET_DIR(c->Request.type_attr_dir)) {
6467 case XFER_READ:
6468 pci_dir = PCI_DMA_FROMDEVICE;
6469 break;
6470 case XFER_WRITE:
6471 pci_dir = PCI_DMA_TODEVICE;
6472 break;
6473 case XFER_NONE:
6474 pci_dir = PCI_DMA_NONE;
6475 break;
6476 default:
6477 pci_dir = PCI_DMA_BIDIRECTIONAL;
6478 }
6479 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6480 return -1;
6481 return 0;
6482 }
6483
6484 /*
6485 * Map (physical) PCI mem into (virtual) kernel space
6486 */
6487 static void __iomem *remap_pci_mem(ulong base, ulong size)
6488 {
6489 ulong page_base = ((ulong) base) & PAGE_MASK;
6490 ulong page_offs = ((ulong) base) - page_base;
6491 void __iomem *page_remapped = ioremap_nocache(page_base,
6492 page_offs + size);
6493
6494 return page_remapped ? (page_remapped + page_offs) : NULL;
6495 }
6496
6497 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6498 {
6499 return h->access.command_completed(h, q);
6500 }
6501
6502 static inline bool interrupt_pending(struct ctlr_info *h)
6503 {
6504 return h->access.intr_pending(h);
6505 }
6506
6507 static inline long interrupt_not_for_us(struct ctlr_info *h)
6508 {
6509 return (h->access.intr_pending(h) == 0) ||
6510 (h->interrupts_enabled == 0);
6511 }
6512
6513 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6514 u32 raw_tag)
6515 {
6516 if (unlikely(tag_index >= h->nr_cmds)) {
6517 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6518 return 1;
6519 }
6520 return 0;
6521 }
6522
6523 static inline void finish_cmd(struct CommandList *c)
6524 {
6525 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6526 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6527 || c->cmd_type == CMD_IOACCEL2))
6528 complete_scsi_command(c);
6529 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6530 complete(c->waiting);
6531 }
6532
6533 /* process completion of an indexed ("direct lookup") command */
6534 static inline void process_indexed_cmd(struct ctlr_info *h,
6535 u32 raw_tag)
6536 {
6537 u32 tag_index;
6538 struct CommandList *c;
6539
6540 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6541 if (!bad_tag(h, tag_index, raw_tag)) {
6542 c = h->cmd_pool + tag_index;
6543 finish_cmd(c);
6544 }
6545 }
6546
6547 /* Some controllers, like p400, will give us one interrupt
6548 * after a soft reset, even if we turned interrupts off.
6549 * Only need to check for this in the hpsa_xxx_discard_completions
6550 * functions.
6551 */
6552 static int ignore_bogus_interrupt(struct ctlr_info *h)
6553 {
6554 if (likely(!reset_devices))
6555 return 0;
6556
6557 if (likely(h->interrupts_enabled))
6558 return 0;
6559
6560 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6561 "(known firmware bug.) Ignoring.\n");
6562
6563 return 1;
6564 }
6565
6566 /*
6567 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6568 * Relies on (h-q[x] == x) being true for x such that
6569 * 0 <= x < MAX_REPLY_QUEUES.
6570 */
6571 static struct ctlr_info *queue_to_hba(u8 *queue)
6572 {
6573 return container_of((queue - *queue), struct ctlr_info, q[0]);
6574 }
6575
6576 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6577 {
6578 struct ctlr_info *h = queue_to_hba(queue);
6579 u8 q = *(u8 *) queue;
6580 u32 raw_tag;
6581
6582 if (ignore_bogus_interrupt(h))
6583 return IRQ_NONE;
6584
6585 if (interrupt_not_for_us(h))
6586 return IRQ_NONE;
6587 h->last_intr_timestamp = get_jiffies_64();
6588 while (interrupt_pending(h)) {
6589 raw_tag = get_next_completion(h, q);
6590 while (raw_tag != FIFO_EMPTY)
6591 raw_tag = next_command(h, q);
6592 }
6593 return IRQ_HANDLED;
6594 }
6595
6596 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6597 {
6598 struct ctlr_info *h = queue_to_hba(queue);
6599 u32 raw_tag;
6600 u8 q = *(u8 *) queue;
6601
6602 if (ignore_bogus_interrupt(h))
6603 return IRQ_NONE;
6604
6605 h->last_intr_timestamp = get_jiffies_64();
6606 raw_tag = get_next_completion(h, q);
6607 while (raw_tag != FIFO_EMPTY)
6608 raw_tag = next_command(h, q);
6609 return IRQ_HANDLED;
6610 }
6611
6612 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6613 {
6614 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6615 u32 raw_tag;
6616 u8 q = *(u8 *) queue;
6617
6618 if (interrupt_not_for_us(h))
6619 return IRQ_NONE;
6620 h->last_intr_timestamp = get_jiffies_64();
6621 while (interrupt_pending(h)) {
6622 raw_tag = get_next_completion(h, q);
6623 while (raw_tag != FIFO_EMPTY) {
6624 process_indexed_cmd(h, raw_tag);
6625 raw_tag = next_command(h, q);
6626 }
6627 }
6628 return IRQ_HANDLED;
6629 }
6630
6631 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6632 {
6633 struct ctlr_info *h = queue_to_hba(queue);
6634 u32 raw_tag;
6635 u8 q = *(u8 *) queue;
6636
6637 h->last_intr_timestamp = get_jiffies_64();
6638 raw_tag = get_next_completion(h, q);
6639 while (raw_tag != FIFO_EMPTY) {
6640 process_indexed_cmd(h, raw_tag);
6641 raw_tag = next_command(h, q);
6642 }
6643 return IRQ_HANDLED;
6644 }
6645
6646 /* Send a message CDB to the firmware. Careful, this only works
6647 * in simple mode, not performant mode due to the tag lookup.
6648 * We only ever use this immediately after a controller reset.
6649 */
6650 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6651 unsigned char type)
6652 {
6653 struct Command {
6654 struct CommandListHeader CommandHeader;
6655 struct RequestBlock Request;
6656 struct ErrDescriptor ErrorDescriptor;
6657 };
6658 struct Command *cmd;
6659 static const size_t cmd_sz = sizeof(*cmd) +
6660 sizeof(cmd->ErrorDescriptor);
6661 dma_addr_t paddr64;
6662 __le32 paddr32;
6663 u32 tag;
6664 void __iomem *vaddr;
6665 int i, err;
6666
6667 vaddr = pci_ioremap_bar(pdev, 0);
6668 if (vaddr == NULL)
6669 return -ENOMEM;
6670
6671 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6672 * CCISS commands, so they must be allocated from the lower 4GiB of
6673 * memory.
6674 */
6675 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6676 if (err) {
6677 iounmap(vaddr);
6678 return err;
6679 }
6680
6681 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6682 if (cmd == NULL) {
6683 iounmap(vaddr);
6684 return -ENOMEM;
6685 }
6686
6687 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6688 * although there's no guarantee, we assume that the address is at
6689 * least 4-byte aligned (most likely, it's page-aligned).
6690 */
6691 paddr32 = cpu_to_le32(paddr64);
6692
6693 cmd->CommandHeader.ReplyQueue = 0;
6694 cmd->CommandHeader.SGList = 0;
6695 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6696 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6697 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6698
6699 cmd->Request.CDBLen = 16;
6700 cmd->Request.type_attr_dir =
6701 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6702 cmd->Request.Timeout = 0; /* Don't time out */
6703 cmd->Request.CDB[0] = opcode;
6704 cmd->Request.CDB[1] = type;
6705 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6706 cmd->ErrorDescriptor.Addr =
6707 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6708 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6709
6710 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6711
6712 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6713 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6714 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6715 break;
6716 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6717 }
6718
6719 iounmap(vaddr);
6720
6721 /* we leak the DMA buffer here ... no choice since the controller could
6722 * still complete the command.
6723 */
6724 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6725 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6726 opcode, type);
6727 return -ETIMEDOUT;
6728 }
6729
6730 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6731
6732 if (tag & HPSA_ERROR_BIT) {
6733 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6734 opcode, type);
6735 return -EIO;
6736 }
6737
6738 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6739 opcode, type);
6740 return 0;
6741 }
6742
6743 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6744
6745 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6746 void __iomem *vaddr, u32 use_doorbell)
6747 {
6748
6749 if (use_doorbell) {
6750 /* For everything after the P600, the PCI power state method
6751 * of resetting the controller doesn't work, so we have this
6752 * other way using the doorbell register.
6753 */
6754 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6755 writel(use_doorbell, vaddr + SA5_DOORBELL);
6756
6757 /* PMC hardware guys tell us we need a 10 second delay after
6758 * doorbell reset and before any attempt to talk to the board
6759 * at all to ensure that this actually works and doesn't fall
6760 * over in some weird corner cases.
6761 */
6762 msleep(10000);
6763 } else { /* Try to do it the PCI power state way */
6764
6765 /* Quoting from the Open CISS Specification: "The Power
6766 * Management Control/Status Register (CSR) controls the power
6767 * state of the device. The normal operating state is D0,
6768 * CSR=00h. The software off state is D3, CSR=03h. To reset
6769 * the controller, place the interface device in D3 then to D0,
6770 * this causes a secondary PCI reset which will reset the
6771 * controller." */
6772
6773 int rc = 0;
6774
6775 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6776
6777 /* enter the D3hot power management state */
6778 rc = pci_set_power_state(pdev, PCI_D3hot);
6779 if (rc)
6780 return rc;
6781
6782 msleep(500);
6783
6784 /* enter the D0 power management state */
6785 rc = pci_set_power_state(pdev, PCI_D0);
6786 if (rc)
6787 return rc;
6788
6789 /*
6790 * The P600 requires a small delay when changing states.
6791 * Otherwise we may think the board did not reset and we bail.
6792 * This for kdump only and is particular to the P600.
6793 */
6794 msleep(500);
6795 }
6796 return 0;
6797 }
6798
6799 static void init_driver_version(char *driver_version, int len)
6800 {
6801 memset(driver_version, 0, len);
6802 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6803 }
6804
6805 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6806 {
6807 char *driver_version;
6808 int i, size = sizeof(cfgtable->driver_version);
6809
6810 driver_version = kmalloc(size, GFP_KERNEL);
6811 if (!driver_version)
6812 return -ENOMEM;
6813
6814 init_driver_version(driver_version, size);
6815 for (i = 0; i < size; i++)
6816 writeb(driver_version[i], &cfgtable->driver_version[i]);
6817 kfree(driver_version);
6818 return 0;
6819 }
6820
6821 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6822 unsigned char *driver_ver)
6823 {
6824 int i;
6825
6826 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6827 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6828 }
6829
6830 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6831 {
6832
6833 char *driver_ver, *old_driver_ver;
6834 int rc, size = sizeof(cfgtable->driver_version);
6835
6836 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6837 if (!old_driver_ver)
6838 return -ENOMEM;
6839 driver_ver = old_driver_ver + size;
6840
6841 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6842 * should have been changed, otherwise we know the reset failed.
6843 */
6844 init_driver_version(old_driver_ver, size);
6845 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6846 rc = !memcmp(driver_ver, old_driver_ver, size);
6847 kfree(old_driver_ver);
6848 return rc;
6849 }
6850 /* This does a hard reset of the controller using PCI power management
6851 * states or the using the doorbell register.
6852 */
6853 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6854 {
6855 u64 cfg_offset;
6856 u32 cfg_base_addr;
6857 u64 cfg_base_addr_index;
6858 void __iomem *vaddr;
6859 unsigned long paddr;
6860 u32 misc_fw_support;
6861 int rc;
6862 struct CfgTable __iomem *cfgtable;
6863 u32 use_doorbell;
6864 u16 command_register;
6865
6866 /* For controllers as old as the P600, this is very nearly
6867 * the same thing as
6868 *
6869 * pci_save_state(pci_dev);
6870 * pci_set_power_state(pci_dev, PCI_D3hot);
6871 * pci_set_power_state(pci_dev, PCI_D0);
6872 * pci_restore_state(pci_dev);
6873 *
6874 * For controllers newer than the P600, the pci power state
6875 * method of resetting doesn't work so we have another way
6876 * using the doorbell register.
6877 */
6878
6879 if (!ctlr_is_resettable(board_id)) {
6880 dev_warn(&pdev->dev, "Controller not resettable\n");
6881 return -ENODEV;
6882 }
6883
6884 /* if controller is soft- but not hard resettable... */
6885 if (!ctlr_is_hard_resettable(board_id))
6886 return -ENOTSUPP; /* try soft reset later. */
6887
6888 /* Save the PCI command register */
6889 pci_read_config_word(pdev, 4, &command_register);
6890 pci_save_state(pdev);
6891
6892 /* find the first memory BAR, so we can find the cfg table */
6893 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6894 if (rc)
6895 return rc;
6896 vaddr = remap_pci_mem(paddr, 0x250);
6897 if (!vaddr)
6898 return -ENOMEM;
6899
6900 /* find cfgtable in order to check if reset via doorbell is supported */
6901 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6902 &cfg_base_addr_index, &cfg_offset);
6903 if (rc)
6904 goto unmap_vaddr;
6905 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6906 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6907 if (!cfgtable) {
6908 rc = -ENOMEM;
6909 goto unmap_vaddr;
6910 }
6911 rc = write_driver_ver_to_cfgtable(cfgtable);
6912 if (rc)
6913 goto unmap_cfgtable;
6914
6915 /* If reset via doorbell register is supported, use that.
6916 * There are two such methods. Favor the newest method.
6917 */
6918 misc_fw_support = readl(&cfgtable->misc_fw_support);
6919 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6920 if (use_doorbell) {
6921 use_doorbell = DOORBELL_CTLR_RESET2;
6922 } else {
6923 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6924 if (use_doorbell) {
6925 dev_warn(&pdev->dev,
6926 "Soft reset not supported. Firmware update is required.\n");
6927 rc = -ENOTSUPP; /* try soft reset */
6928 goto unmap_cfgtable;
6929 }
6930 }
6931
6932 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6933 if (rc)
6934 goto unmap_cfgtable;
6935
6936 pci_restore_state(pdev);
6937 pci_write_config_word(pdev, 4, command_register);
6938
6939 /* Some devices (notably the HP Smart Array 5i Controller)
6940 need a little pause here */
6941 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6942
6943 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6944 if (rc) {
6945 dev_warn(&pdev->dev,
6946 "Failed waiting for board to become ready after hard reset\n");
6947 goto unmap_cfgtable;
6948 }
6949
6950 rc = controller_reset_failed(vaddr);
6951 if (rc < 0)
6952 goto unmap_cfgtable;
6953 if (rc) {
6954 dev_warn(&pdev->dev, "Unable to successfully reset "
6955 "controller. Will try soft reset.\n");
6956 rc = -ENOTSUPP;
6957 } else {
6958 dev_info(&pdev->dev, "board ready after hard reset.\n");
6959 }
6960
6961 unmap_cfgtable:
6962 iounmap(cfgtable);
6963
6964 unmap_vaddr:
6965 iounmap(vaddr);
6966 return rc;
6967 }
6968
6969 /*
6970 * We cannot read the structure directly, for portability we must use
6971 * the io functions.
6972 * This is for debug only.
6973 */
6974 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6975 {
6976 #ifdef HPSA_DEBUG
6977 int i;
6978 char temp_name[17];
6979
6980 dev_info(dev, "Controller Configuration information\n");
6981 dev_info(dev, "------------------------------------\n");
6982 for (i = 0; i < 4; i++)
6983 temp_name[i] = readb(&(tb->Signature[i]));
6984 temp_name[4] = '\0';
6985 dev_info(dev, " Signature = %s\n", temp_name);
6986 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6987 dev_info(dev, " Transport methods supported = 0x%x\n",
6988 readl(&(tb->TransportSupport)));
6989 dev_info(dev, " Transport methods active = 0x%x\n",
6990 readl(&(tb->TransportActive)));
6991 dev_info(dev, " Requested transport Method = 0x%x\n",
6992 readl(&(tb->HostWrite.TransportRequest)));
6993 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6994 readl(&(tb->HostWrite.CoalIntDelay)));
6995 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6996 readl(&(tb->HostWrite.CoalIntCount)));
6997 dev_info(dev, " Max outstanding commands = %d\n",
6998 readl(&(tb->CmdsOutMax)));
6999 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7000 for (i = 0; i < 16; i++)
7001 temp_name[i] = readb(&(tb->ServerName[i]));
7002 temp_name[16] = '\0';
7003 dev_info(dev, " Server Name = %s\n", temp_name);
7004 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7005 readl(&(tb->HeartBeat)));
7006 #endif /* HPSA_DEBUG */
7007 }
7008
7009 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7010 {
7011 int i, offset, mem_type, bar_type;
7012
7013 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7014 return 0;
7015 offset = 0;
7016 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7017 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7018 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7019 offset += 4;
7020 else {
7021 mem_type = pci_resource_flags(pdev, i) &
7022 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7023 switch (mem_type) {
7024 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7025 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7026 offset += 4; /* 32 bit */
7027 break;
7028 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7029 offset += 8;
7030 break;
7031 default: /* reserved in PCI 2.2 */
7032 dev_warn(&pdev->dev,
7033 "base address is invalid\n");
7034 return -1;
7035 break;
7036 }
7037 }
7038 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7039 return i + 1;
7040 }
7041 return -1;
7042 }
7043
7044 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7045 {
7046 if (h->msix_vector) {
7047 if (h->pdev->msix_enabled)
7048 pci_disable_msix(h->pdev);
7049 h->msix_vector = 0;
7050 } else if (h->msi_vector) {
7051 if (h->pdev->msi_enabled)
7052 pci_disable_msi(h->pdev);
7053 h->msi_vector = 0;
7054 }
7055 }
7056
7057 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7058 * controllers that are capable. If not, we use legacy INTx mode.
7059 */
7060 static void hpsa_interrupt_mode(struct ctlr_info *h)
7061 {
7062 #ifdef CONFIG_PCI_MSI
7063 int err, i;
7064 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7065
7066 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7067 hpsa_msix_entries[i].vector = 0;
7068 hpsa_msix_entries[i].entry = i;
7069 }
7070
7071 /* Some boards advertise MSI but don't really support it */
7072 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7073 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7074 goto default_int_mode;
7075 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7076 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7077 h->msix_vector = MAX_REPLY_QUEUES;
7078 if (h->msix_vector > num_online_cpus())
7079 h->msix_vector = num_online_cpus();
7080 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7081 1, h->msix_vector);
7082 if (err < 0) {
7083 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7084 h->msix_vector = 0;
7085 goto single_msi_mode;
7086 } else if (err < h->msix_vector) {
7087 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7088 "available\n", err);
7089 }
7090 h->msix_vector = err;
7091 for (i = 0; i < h->msix_vector; i++)
7092 h->intr[i] = hpsa_msix_entries[i].vector;
7093 return;
7094 }
7095 single_msi_mode:
7096 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7097 dev_info(&h->pdev->dev, "MSI capable controller\n");
7098 if (!pci_enable_msi(h->pdev))
7099 h->msi_vector = 1;
7100 else
7101 dev_warn(&h->pdev->dev, "MSI init failed\n");
7102 }
7103 default_int_mode:
7104 #endif /* CONFIG_PCI_MSI */
7105 /* if we get here we're going to use the default interrupt mode */
7106 h->intr[h->intr_mode] = h->pdev->irq;
7107 }
7108
7109 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7110 {
7111 int i;
7112 u32 subsystem_vendor_id, subsystem_device_id;
7113
7114 subsystem_vendor_id = pdev->subsystem_vendor;
7115 subsystem_device_id = pdev->subsystem_device;
7116 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7117 subsystem_vendor_id;
7118
7119 for (i = 0; i < ARRAY_SIZE(products); i++)
7120 if (*board_id == products[i].board_id)
7121 return i;
7122
7123 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7124 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7125 !hpsa_allow_any) {
7126 dev_warn(&pdev->dev, "unrecognized board ID: "
7127 "0x%08x, ignoring.\n", *board_id);
7128 return -ENODEV;
7129 }
7130 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7131 }
7132
7133 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7134 unsigned long *memory_bar)
7135 {
7136 int i;
7137
7138 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7139 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7140 /* addressing mode bits already removed */
7141 *memory_bar = pci_resource_start(pdev, i);
7142 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7143 *memory_bar);
7144 return 0;
7145 }
7146 dev_warn(&pdev->dev, "no memory BAR found\n");
7147 return -ENODEV;
7148 }
7149
7150 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7151 int wait_for_ready)
7152 {
7153 int i, iterations;
7154 u32 scratchpad;
7155 if (wait_for_ready)
7156 iterations = HPSA_BOARD_READY_ITERATIONS;
7157 else
7158 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7159
7160 for (i = 0; i < iterations; i++) {
7161 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7162 if (wait_for_ready) {
7163 if (scratchpad == HPSA_FIRMWARE_READY)
7164 return 0;
7165 } else {
7166 if (scratchpad != HPSA_FIRMWARE_READY)
7167 return 0;
7168 }
7169 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7170 }
7171 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7172 return -ENODEV;
7173 }
7174
7175 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7176 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7177 u64 *cfg_offset)
7178 {
7179 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7180 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7181 *cfg_base_addr &= (u32) 0x0000ffff;
7182 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7183 if (*cfg_base_addr_index == -1) {
7184 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7185 return -ENODEV;
7186 }
7187 return 0;
7188 }
7189
7190 static void hpsa_free_cfgtables(struct ctlr_info *h)
7191 {
7192 if (h->transtable) {
7193 iounmap(h->transtable);
7194 h->transtable = NULL;
7195 }
7196 if (h->cfgtable) {
7197 iounmap(h->cfgtable);
7198 h->cfgtable = NULL;
7199 }
7200 }
7201
7202 /* Find and map CISS config table and transfer table
7203 + * several items must be unmapped (freed) later
7204 + * */
7205 static int hpsa_find_cfgtables(struct ctlr_info *h)
7206 {
7207 u64 cfg_offset;
7208 u32 cfg_base_addr;
7209 u64 cfg_base_addr_index;
7210 u32 trans_offset;
7211 int rc;
7212
7213 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7214 &cfg_base_addr_index, &cfg_offset);
7215 if (rc)
7216 return rc;
7217 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7218 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7219 if (!h->cfgtable) {
7220 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7221 return -ENOMEM;
7222 }
7223 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7224 if (rc)
7225 return rc;
7226 /* Find performant mode table. */
7227 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7228 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7229 cfg_base_addr_index)+cfg_offset+trans_offset,
7230 sizeof(*h->transtable));
7231 if (!h->transtable) {
7232 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7233 hpsa_free_cfgtables(h);
7234 return -ENOMEM;
7235 }
7236 return 0;
7237 }
7238
7239 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7240 {
7241 #define MIN_MAX_COMMANDS 16
7242 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7243
7244 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7245
7246 /* Limit commands in memory limited kdump scenario. */
7247 if (reset_devices && h->max_commands > 32)
7248 h->max_commands = 32;
7249
7250 if (h->max_commands < MIN_MAX_COMMANDS) {
7251 dev_warn(&h->pdev->dev,
7252 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7253 h->max_commands,
7254 MIN_MAX_COMMANDS);
7255 h->max_commands = MIN_MAX_COMMANDS;
7256 }
7257 }
7258
7259 /* If the controller reports that the total max sg entries is greater than 512,
7260 * then we know that chained SG blocks work. (Original smart arrays did not
7261 * support chained SG blocks and would return zero for max sg entries.)
7262 */
7263 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7264 {
7265 return h->maxsgentries > 512;
7266 }
7267
7268 /* Interrogate the hardware for some limits:
7269 * max commands, max SG elements without chaining, and with chaining,
7270 * SG chain block size, etc.
7271 */
7272 static void hpsa_find_board_params(struct ctlr_info *h)
7273 {
7274 hpsa_get_max_perf_mode_cmds(h);
7275 h->nr_cmds = h->max_commands;
7276 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7277 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7278 if (hpsa_supports_chained_sg_blocks(h)) {
7279 /* Limit in-command s/g elements to 32 save dma'able memory. */
7280 h->max_cmd_sg_entries = 32;
7281 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7282 h->maxsgentries--; /* save one for chain pointer */
7283 } else {
7284 /*
7285 * Original smart arrays supported at most 31 s/g entries
7286 * embedded inline in the command (trying to use more
7287 * would lock up the controller)
7288 */
7289 h->max_cmd_sg_entries = 31;
7290 h->maxsgentries = 31; /* default to traditional values */
7291 h->chainsize = 0;
7292 }
7293
7294 /* Find out what task management functions are supported and cache */
7295 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7296 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7297 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7298 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7299 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7300 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7301 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7302 }
7303
7304 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7305 {
7306 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7307 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7308 return false;
7309 }
7310 return true;
7311 }
7312
7313 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7314 {
7315 u32 driver_support;
7316
7317 driver_support = readl(&(h->cfgtable->driver_support));
7318 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7319 #ifdef CONFIG_X86
7320 driver_support |= ENABLE_SCSI_PREFETCH;
7321 #endif
7322 driver_support |= ENABLE_UNIT_ATTN;
7323 writel(driver_support, &(h->cfgtable->driver_support));
7324 }
7325
7326 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7327 * in a prefetch beyond physical memory.
7328 */
7329 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7330 {
7331 u32 dma_prefetch;
7332
7333 if (h->board_id != 0x3225103C)
7334 return;
7335 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7336 dma_prefetch |= 0x8000;
7337 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7338 }
7339
7340 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7341 {
7342 int i;
7343 u32 doorbell_value;
7344 unsigned long flags;
7345 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7346 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7347 spin_lock_irqsave(&h->lock, flags);
7348 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7349 spin_unlock_irqrestore(&h->lock, flags);
7350 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7351 goto done;
7352 /* delay and try again */
7353 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7354 }
7355 return -ENODEV;
7356 done:
7357 return 0;
7358 }
7359
7360 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7361 {
7362 int i;
7363 u32 doorbell_value;
7364 unsigned long flags;
7365
7366 /* under certain very rare conditions, this can take awhile.
7367 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7368 * as we enter this code.)
7369 */
7370 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7371 if (h->remove_in_progress)
7372 goto done;
7373 spin_lock_irqsave(&h->lock, flags);
7374 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7375 spin_unlock_irqrestore(&h->lock, flags);
7376 if (!(doorbell_value & CFGTBL_ChangeReq))
7377 goto done;
7378 /* delay and try again */
7379 msleep(MODE_CHANGE_WAIT_INTERVAL);
7380 }
7381 return -ENODEV;
7382 done:
7383 return 0;
7384 }
7385
7386 /* return -ENODEV or other reason on error, 0 on success */
7387 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7388 {
7389 u32 trans_support;
7390
7391 trans_support = readl(&(h->cfgtable->TransportSupport));
7392 if (!(trans_support & SIMPLE_MODE))
7393 return -ENOTSUPP;
7394
7395 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7396
7397 /* Update the field, and then ring the doorbell */
7398 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7399 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7400 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7401 if (hpsa_wait_for_mode_change_ack(h))
7402 goto error;
7403 print_cfg_table(&h->pdev->dev, h->cfgtable);
7404 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7405 goto error;
7406 h->transMethod = CFGTBL_Trans_Simple;
7407 return 0;
7408 error:
7409 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7410 return -ENODEV;
7411 }
7412
7413 /* free items allocated or mapped by hpsa_pci_init */
7414 static void hpsa_free_pci_init(struct ctlr_info *h)
7415 {
7416 hpsa_free_cfgtables(h); /* pci_init 4 */
7417 iounmap(h->vaddr); /* pci_init 3 */
7418 h->vaddr = NULL;
7419 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7420 /*
7421 * call pci_disable_device before pci_release_regions per
7422 * Documentation/PCI/pci.txt
7423 */
7424 pci_disable_device(h->pdev); /* pci_init 1 */
7425 pci_release_regions(h->pdev); /* pci_init 2 */
7426 }
7427
7428 /* several items must be freed later */
7429 static int hpsa_pci_init(struct ctlr_info *h)
7430 {
7431 int prod_index, err;
7432
7433 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7434 if (prod_index < 0)
7435 return prod_index;
7436 h->product_name = products[prod_index].product_name;
7437 h->access = *(products[prod_index].access);
7438
7439 h->needs_abort_tags_swizzled =
7440 ctlr_needs_abort_tags_swizzled(h->board_id);
7441
7442 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7443 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7444
7445 err = pci_enable_device(h->pdev);
7446 if (err) {
7447 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7448 pci_disable_device(h->pdev);
7449 return err;
7450 }
7451
7452 err = pci_request_regions(h->pdev, HPSA);
7453 if (err) {
7454 dev_err(&h->pdev->dev,
7455 "failed to obtain PCI resources\n");
7456 pci_disable_device(h->pdev);
7457 return err;
7458 }
7459
7460 pci_set_master(h->pdev);
7461
7462 hpsa_interrupt_mode(h);
7463 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7464 if (err)
7465 goto clean2; /* intmode+region, pci */
7466 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7467 if (!h->vaddr) {
7468 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7469 err = -ENOMEM;
7470 goto clean2; /* intmode+region, pci */
7471 }
7472 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7473 if (err)
7474 goto clean3; /* vaddr, intmode+region, pci */
7475 err = hpsa_find_cfgtables(h);
7476 if (err)
7477 goto clean3; /* vaddr, intmode+region, pci */
7478 hpsa_find_board_params(h);
7479
7480 if (!hpsa_CISS_signature_present(h)) {
7481 err = -ENODEV;
7482 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7483 }
7484 hpsa_set_driver_support_bits(h);
7485 hpsa_p600_dma_prefetch_quirk(h);
7486 err = hpsa_enter_simple_mode(h);
7487 if (err)
7488 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7489 return 0;
7490
7491 clean4: /* cfgtables, vaddr, intmode+region, pci */
7492 hpsa_free_cfgtables(h);
7493 clean3: /* vaddr, intmode+region, pci */
7494 iounmap(h->vaddr);
7495 h->vaddr = NULL;
7496 clean2: /* intmode+region, pci */
7497 hpsa_disable_interrupt_mode(h);
7498 /*
7499 * call pci_disable_device before pci_release_regions per
7500 * Documentation/PCI/pci.txt
7501 */
7502 pci_disable_device(h->pdev);
7503 pci_release_regions(h->pdev);
7504 return err;
7505 }
7506
7507 static void hpsa_hba_inquiry(struct ctlr_info *h)
7508 {
7509 int rc;
7510
7511 #define HBA_INQUIRY_BYTE_COUNT 64
7512 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7513 if (!h->hba_inquiry_data)
7514 return;
7515 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7516 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7517 if (rc != 0) {
7518 kfree(h->hba_inquiry_data);
7519 h->hba_inquiry_data = NULL;
7520 }
7521 }
7522
7523 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7524 {
7525 int rc, i;
7526 void __iomem *vaddr;
7527
7528 if (!reset_devices)
7529 return 0;
7530
7531 /* kdump kernel is loading, we don't know in which state is
7532 * the pci interface. The dev->enable_cnt is equal zero
7533 * so we call enable+disable, wait a while and switch it on.
7534 */
7535 rc = pci_enable_device(pdev);
7536 if (rc) {
7537 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7538 return -ENODEV;
7539 }
7540 pci_disable_device(pdev);
7541 msleep(260); /* a randomly chosen number */
7542 rc = pci_enable_device(pdev);
7543 if (rc) {
7544 dev_warn(&pdev->dev, "failed to enable device.\n");
7545 return -ENODEV;
7546 }
7547
7548 pci_set_master(pdev);
7549
7550 vaddr = pci_ioremap_bar(pdev, 0);
7551 if (vaddr == NULL) {
7552 rc = -ENOMEM;
7553 goto out_disable;
7554 }
7555 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7556 iounmap(vaddr);
7557
7558 /* Reset the controller with a PCI power-cycle or via doorbell */
7559 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7560
7561 /* -ENOTSUPP here means we cannot reset the controller
7562 * but it's already (and still) up and running in
7563 * "performant mode". Or, it might be 640x, which can't reset
7564 * due to concerns about shared bbwc between 6402/6404 pair.
7565 */
7566 if (rc)
7567 goto out_disable;
7568
7569 /* Now try to get the controller to respond to a no-op */
7570 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7571 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7572 if (hpsa_noop(pdev) == 0)
7573 break;
7574 else
7575 dev_warn(&pdev->dev, "no-op failed%s\n",
7576 (i < 11 ? "; re-trying" : ""));
7577 }
7578
7579 out_disable:
7580
7581 pci_disable_device(pdev);
7582 return rc;
7583 }
7584
7585 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7586 {
7587 kfree(h->cmd_pool_bits);
7588 h->cmd_pool_bits = NULL;
7589 if (h->cmd_pool) {
7590 pci_free_consistent(h->pdev,
7591 h->nr_cmds * sizeof(struct CommandList),
7592 h->cmd_pool,
7593 h->cmd_pool_dhandle);
7594 h->cmd_pool = NULL;
7595 h->cmd_pool_dhandle = 0;
7596 }
7597 if (h->errinfo_pool) {
7598 pci_free_consistent(h->pdev,
7599 h->nr_cmds * sizeof(struct ErrorInfo),
7600 h->errinfo_pool,
7601 h->errinfo_pool_dhandle);
7602 h->errinfo_pool = NULL;
7603 h->errinfo_pool_dhandle = 0;
7604 }
7605 }
7606
7607 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7608 {
7609 h->cmd_pool_bits = kzalloc(
7610 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7611 sizeof(unsigned long), GFP_KERNEL);
7612 h->cmd_pool = pci_alloc_consistent(h->pdev,
7613 h->nr_cmds * sizeof(*h->cmd_pool),
7614 &(h->cmd_pool_dhandle));
7615 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7616 h->nr_cmds * sizeof(*h->errinfo_pool),
7617 &(h->errinfo_pool_dhandle));
7618 if ((h->cmd_pool_bits == NULL)
7619 || (h->cmd_pool == NULL)
7620 || (h->errinfo_pool == NULL)) {
7621 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7622 goto clean_up;
7623 }
7624 hpsa_preinitialize_commands(h);
7625 return 0;
7626 clean_up:
7627 hpsa_free_cmd_pool(h);
7628 return -ENOMEM;
7629 }
7630
7631 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7632 {
7633 int i, cpu;
7634
7635 cpu = cpumask_first(cpu_online_mask);
7636 for (i = 0; i < h->msix_vector; i++) {
7637 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7638 cpu = cpumask_next(cpu, cpu_online_mask);
7639 }
7640 }
7641
7642 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7643 static void hpsa_free_irqs(struct ctlr_info *h)
7644 {
7645 int i;
7646
7647 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7648 /* Single reply queue, only one irq to free */
7649 i = h->intr_mode;
7650 irq_set_affinity_hint(h->intr[i], NULL);
7651 free_irq(h->intr[i], &h->q[i]);
7652 h->q[i] = 0;
7653 return;
7654 }
7655
7656 for (i = 0; i < h->msix_vector; i++) {
7657 irq_set_affinity_hint(h->intr[i], NULL);
7658 free_irq(h->intr[i], &h->q[i]);
7659 h->q[i] = 0;
7660 }
7661 for (; i < MAX_REPLY_QUEUES; i++)
7662 h->q[i] = 0;
7663 }
7664
7665 /* returns 0 on success; cleans up and returns -Enn on error */
7666 static int hpsa_request_irqs(struct ctlr_info *h,
7667 irqreturn_t (*msixhandler)(int, void *),
7668 irqreturn_t (*intxhandler)(int, void *))
7669 {
7670 int rc, i;
7671
7672 /*
7673 * initialize h->q[x] = x so that interrupt handlers know which
7674 * queue to process.
7675 */
7676 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7677 h->q[i] = (u8) i;
7678
7679 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7680 /* If performant mode and MSI-X, use multiple reply queues */
7681 for (i = 0; i < h->msix_vector; i++) {
7682 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7683 rc = request_irq(h->intr[i], msixhandler,
7684 0, h->intrname[i],
7685 &h->q[i]);
7686 if (rc) {
7687 int j;
7688
7689 dev_err(&h->pdev->dev,
7690 "failed to get irq %d for %s\n",
7691 h->intr[i], h->devname);
7692 for (j = 0; j < i; j++) {
7693 free_irq(h->intr[j], &h->q[j]);
7694 h->q[j] = 0;
7695 }
7696 for (; j < MAX_REPLY_QUEUES; j++)
7697 h->q[j] = 0;
7698 return rc;
7699 }
7700 }
7701 hpsa_irq_affinity_hints(h);
7702 } else {
7703 /* Use single reply pool */
7704 if (h->msix_vector > 0 || h->msi_vector) {
7705 if (h->msix_vector)
7706 sprintf(h->intrname[h->intr_mode],
7707 "%s-msix", h->devname);
7708 else
7709 sprintf(h->intrname[h->intr_mode],
7710 "%s-msi", h->devname);
7711 rc = request_irq(h->intr[h->intr_mode],
7712 msixhandler, 0,
7713 h->intrname[h->intr_mode],
7714 &h->q[h->intr_mode]);
7715 } else {
7716 sprintf(h->intrname[h->intr_mode],
7717 "%s-intx", h->devname);
7718 rc = request_irq(h->intr[h->intr_mode],
7719 intxhandler, IRQF_SHARED,
7720 h->intrname[h->intr_mode],
7721 &h->q[h->intr_mode]);
7722 }
7723 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7724 }
7725 if (rc) {
7726 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7727 h->intr[h->intr_mode], h->devname);
7728 hpsa_free_irqs(h);
7729 return -ENODEV;
7730 }
7731 return 0;
7732 }
7733
7734 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7735 {
7736 int rc;
7737 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7738
7739 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7740 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7741 if (rc) {
7742 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7743 return rc;
7744 }
7745
7746 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7747 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7748 if (rc) {
7749 dev_warn(&h->pdev->dev, "Board failed to become ready "
7750 "after soft reset.\n");
7751 return rc;
7752 }
7753
7754 return 0;
7755 }
7756
7757 static void hpsa_free_reply_queues(struct ctlr_info *h)
7758 {
7759 int i;
7760
7761 for (i = 0; i < h->nreply_queues; i++) {
7762 if (!h->reply_queue[i].head)
7763 continue;
7764 pci_free_consistent(h->pdev,
7765 h->reply_queue_size,
7766 h->reply_queue[i].head,
7767 h->reply_queue[i].busaddr);
7768 h->reply_queue[i].head = NULL;
7769 h->reply_queue[i].busaddr = 0;
7770 }
7771 h->reply_queue_size = 0;
7772 }
7773
7774 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7775 {
7776 hpsa_free_performant_mode(h); /* init_one 7 */
7777 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7778 hpsa_free_cmd_pool(h); /* init_one 5 */
7779 hpsa_free_irqs(h); /* init_one 4 */
7780 scsi_host_put(h->scsi_host); /* init_one 3 */
7781 h->scsi_host = NULL; /* init_one 3 */
7782 hpsa_free_pci_init(h); /* init_one 2_5 */
7783 free_percpu(h->lockup_detected); /* init_one 2 */
7784 h->lockup_detected = NULL; /* init_one 2 */
7785 if (h->resubmit_wq) {
7786 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7787 h->resubmit_wq = NULL;
7788 }
7789 if (h->rescan_ctlr_wq) {
7790 destroy_workqueue(h->rescan_ctlr_wq);
7791 h->rescan_ctlr_wq = NULL;
7792 }
7793 kfree(h); /* init_one 1 */
7794 }
7795
7796 /* Called when controller lockup detected. */
7797 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7798 {
7799 int i, refcount;
7800 struct CommandList *c;
7801 int failcount = 0;
7802
7803 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7804 for (i = 0; i < h->nr_cmds; i++) {
7805 c = h->cmd_pool + i;
7806 refcount = atomic_inc_return(&c->refcount);
7807 if (refcount > 1) {
7808 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7809 finish_cmd(c);
7810 atomic_dec(&h->commands_outstanding);
7811 failcount++;
7812 }
7813 cmd_free(h, c);
7814 }
7815 dev_warn(&h->pdev->dev,
7816 "failed %d commands in fail_all\n", failcount);
7817 }
7818
7819 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7820 {
7821 int cpu;
7822
7823 for_each_online_cpu(cpu) {
7824 u32 *lockup_detected;
7825 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7826 *lockup_detected = value;
7827 }
7828 wmb(); /* be sure the per-cpu variables are out to memory */
7829 }
7830
7831 static void controller_lockup_detected(struct ctlr_info *h)
7832 {
7833 unsigned long flags;
7834 u32 lockup_detected;
7835
7836 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7837 spin_lock_irqsave(&h->lock, flags);
7838 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7839 if (!lockup_detected) {
7840 /* no heartbeat, but controller gave us a zero. */
7841 dev_warn(&h->pdev->dev,
7842 "lockup detected after %d but scratchpad register is zero\n",
7843 h->heartbeat_sample_interval / HZ);
7844 lockup_detected = 0xffffffff;
7845 }
7846 set_lockup_detected_for_all_cpus(h, lockup_detected);
7847 spin_unlock_irqrestore(&h->lock, flags);
7848 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7849 lockup_detected, h->heartbeat_sample_interval / HZ);
7850 pci_disable_device(h->pdev);
7851 fail_all_outstanding_cmds(h);
7852 }
7853
7854 static int detect_controller_lockup(struct ctlr_info *h)
7855 {
7856 u64 now;
7857 u32 heartbeat;
7858 unsigned long flags;
7859
7860 now = get_jiffies_64();
7861 /* If we've received an interrupt recently, we're ok. */
7862 if (time_after64(h->last_intr_timestamp +
7863 (h->heartbeat_sample_interval), now))
7864 return false;
7865
7866 /*
7867 * If we've already checked the heartbeat recently, we're ok.
7868 * This could happen if someone sends us a signal. We
7869 * otherwise don't care about signals in this thread.
7870 */
7871 if (time_after64(h->last_heartbeat_timestamp +
7872 (h->heartbeat_sample_interval), now))
7873 return false;
7874
7875 /* If heartbeat has not changed since we last looked, we're not ok. */
7876 spin_lock_irqsave(&h->lock, flags);
7877 heartbeat = readl(&h->cfgtable->HeartBeat);
7878 spin_unlock_irqrestore(&h->lock, flags);
7879 if (h->last_heartbeat == heartbeat) {
7880 controller_lockup_detected(h);
7881 return true;
7882 }
7883
7884 /* We're ok. */
7885 h->last_heartbeat = heartbeat;
7886 h->last_heartbeat_timestamp = now;
7887 return false;
7888 }
7889
7890 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7891 {
7892 int i;
7893 char *event_type;
7894
7895 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7896 return;
7897
7898 /* Ask the controller to clear the events we're handling. */
7899 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7900 | CFGTBL_Trans_io_accel2)) &&
7901 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7902 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7903
7904 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7905 event_type = "state change";
7906 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7907 event_type = "configuration change";
7908 /* Stop sending new RAID offload reqs via the IO accelerator */
7909 scsi_block_requests(h->scsi_host);
7910 for (i = 0; i < h->ndevices; i++)
7911 h->dev[i]->offload_enabled = 0;
7912 hpsa_drain_accel_commands(h);
7913 /* Set 'accelerator path config change' bit */
7914 dev_warn(&h->pdev->dev,
7915 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7916 h->events, event_type);
7917 writel(h->events, &(h->cfgtable->clear_event_notify));
7918 /* Set the "clear event notify field update" bit 6 */
7919 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7920 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7921 hpsa_wait_for_clear_event_notify_ack(h);
7922 scsi_unblock_requests(h->scsi_host);
7923 } else {
7924 /* Acknowledge controller notification events. */
7925 writel(h->events, &(h->cfgtable->clear_event_notify));
7926 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7927 hpsa_wait_for_clear_event_notify_ack(h);
7928 #if 0
7929 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7930 hpsa_wait_for_mode_change_ack(h);
7931 #endif
7932 }
7933 return;
7934 }
7935
7936 /* Check a register on the controller to see if there are configuration
7937 * changes (added/changed/removed logical drives, etc.) which mean that
7938 * we should rescan the controller for devices.
7939 * Also check flag for driver-initiated rescan.
7940 */
7941 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7942 {
7943 if (h->drv_req_rescan) {
7944 h->drv_req_rescan = 0;
7945 return 1;
7946 }
7947
7948 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7949 return 0;
7950
7951 h->events = readl(&(h->cfgtable->event_notify));
7952 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7953 }
7954
7955 /*
7956 * Check if any of the offline devices have become ready
7957 */
7958 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7959 {
7960 unsigned long flags;
7961 struct offline_device_entry *d;
7962 struct list_head *this, *tmp;
7963
7964 spin_lock_irqsave(&h->offline_device_lock, flags);
7965 list_for_each_safe(this, tmp, &h->offline_device_list) {
7966 d = list_entry(this, struct offline_device_entry,
7967 offline_list);
7968 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7969 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7970 spin_lock_irqsave(&h->offline_device_lock, flags);
7971 list_del(&d->offline_list);
7972 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7973 return 1;
7974 }
7975 spin_lock_irqsave(&h->offline_device_lock, flags);
7976 }
7977 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7978 return 0;
7979 }
7980
7981 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7982 {
7983 unsigned long flags;
7984 struct ctlr_info *h = container_of(to_delayed_work(work),
7985 struct ctlr_info, rescan_ctlr_work);
7986
7987
7988 if (h->remove_in_progress)
7989 return;
7990
7991 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7992 scsi_host_get(h->scsi_host);
7993 hpsa_ack_ctlr_events(h);
7994 hpsa_scan_start(h->scsi_host);
7995 scsi_host_put(h->scsi_host);
7996 }
7997 spin_lock_irqsave(&h->lock, flags);
7998 if (!h->remove_in_progress)
7999 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8000 h->heartbeat_sample_interval);
8001 spin_unlock_irqrestore(&h->lock, flags);
8002 }
8003
8004 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8005 {
8006 unsigned long flags;
8007 struct ctlr_info *h = container_of(to_delayed_work(work),
8008 struct ctlr_info, monitor_ctlr_work);
8009
8010 detect_controller_lockup(h);
8011 if (lockup_detected(h))
8012 return;
8013
8014 spin_lock_irqsave(&h->lock, flags);
8015 if (!h->remove_in_progress)
8016 schedule_delayed_work(&h->monitor_ctlr_work,
8017 h->heartbeat_sample_interval);
8018 spin_unlock_irqrestore(&h->lock, flags);
8019 }
8020
8021 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8022 char *name)
8023 {
8024 struct workqueue_struct *wq = NULL;
8025
8026 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8027 if (!wq)
8028 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8029
8030 return wq;
8031 }
8032
8033 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8034 {
8035 int dac, rc;
8036 struct ctlr_info *h;
8037 int try_soft_reset = 0;
8038 unsigned long flags;
8039 u32 board_id;
8040
8041 if (number_of_controllers == 0)
8042 printk(KERN_INFO DRIVER_NAME "\n");
8043
8044 rc = hpsa_lookup_board_id(pdev, &board_id);
8045 if (rc < 0) {
8046 dev_warn(&pdev->dev, "Board ID not found\n");
8047 return rc;
8048 }
8049
8050 rc = hpsa_init_reset_devices(pdev, board_id);
8051 if (rc) {
8052 if (rc != -ENOTSUPP)
8053 return rc;
8054 /* If the reset fails in a particular way (it has no way to do
8055 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8056 * a soft reset once we get the controller configured up to the
8057 * point that it can accept a command.
8058 */
8059 try_soft_reset = 1;
8060 rc = 0;
8061 }
8062
8063 reinit_after_soft_reset:
8064
8065 /* Command structures must be aligned on a 32-byte boundary because
8066 * the 5 lower bits of the address are used by the hardware. and by
8067 * the driver. See comments in hpsa.h for more info.
8068 */
8069 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8070 h = kzalloc(sizeof(*h), GFP_KERNEL);
8071 if (!h) {
8072 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8073 return -ENOMEM;
8074 }
8075
8076 h->pdev = pdev;
8077
8078 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8079 INIT_LIST_HEAD(&h->offline_device_list);
8080 spin_lock_init(&h->lock);
8081 spin_lock_init(&h->offline_device_lock);
8082 spin_lock_init(&h->scan_lock);
8083 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8084 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8085
8086 /* Allocate and clear per-cpu variable lockup_detected */
8087 h->lockup_detected = alloc_percpu(u32);
8088 if (!h->lockup_detected) {
8089 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8090 rc = -ENOMEM;
8091 goto clean1; /* aer/h */
8092 }
8093 set_lockup_detected_for_all_cpus(h, 0);
8094
8095 rc = hpsa_pci_init(h);
8096 if (rc)
8097 goto clean2; /* lu, aer/h */
8098
8099 /* relies on h-> settings made by hpsa_pci_init, including
8100 * interrupt_mode h->intr */
8101 rc = hpsa_scsi_host_alloc(h);
8102 if (rc)
8103 goto clean2_5; /* pci, lu, aer/h */
8104
8105 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8106 h->ctlr = number_of_controllers;
8107 number_of_controllers++;
8108
8109 /* configure PCI DMA stuff */
8110 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8111 if (rc == 0) {
8112 dac = 1;
8113 } else {
8114 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8115 if (rc == 0) {
8116 dac = 0;
8117 } else {
8118 dev_err(&pdev->dev, "no suitable DMA available\n");
8119 goto clean3; /* shost, pci, lu, aer/h */
8120 }
8121 }
8122
8123 /* make sure the board interrupts are off */
8124 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8125
8126 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8127 if (rc)
8128 goto clean3; /* shost, pci, lu, aer/h */
8129 rc = hpsa_alloc_cmd_pool(h);
8130 if (rc)
8131 goto clean4; /* irq, shost, pci, lu, aer/h */
8132 rc = hpsa_alloc_sg_chain_blocks(h);
8133 if (rc)
8134 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8135 init_waitqueue_head(&h->scan_wait_queue);
8136 init_waitqueue_head(&h->abort_cmd_wait_queue);
8137 init_waitqueue_head(&h->event_sync_wait_queue);
8138 mutex_init(&h->reset_mutex);
8139 h->scan_finished = 1; /* no scan currently in progress */
8140
8141 pci_set_drvdata(pdev, h);
8142 h->ndevices = 0;
8143
8144 spin_lock_init(&h->devlock);
8145 rc = hpsa_put_ctlr_into_performant_mode(h);
8146 if (rc)
8147 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8148
8149 /* hook into SCSI subsystem */
8150 rc = hpsa_scsi_add_host(h);
8151 if (rc)
8152 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8153
8154 /* create the resubmit workqueue */
8155 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8156 if (!h->rescan_ctlr_wq) {
8157 rc = -ENOMEM;
8158 goto clean7;
8159 }
8160
8161 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8162 if (!h->resubmit_wq) {
8163 rc = -ENOMEM;
8164 goto clean7; /* aer/h */
8165 }
8166
8167 /*
8168 * At this point, the controller is ready to take commands.
8169 * Now, if reset_devices and the hard reset didn't work, try
8170 * the soft reset and see if that works.
8171 */
8172 if (try_soft_reset) {
8173
8174 /* This is kind of gross. We may or may not get a completion
8175 * from the soft reset command, and if we do, then the value
8176 * from the fifo may or may not be valid. So, we wait 10 secs
8177 * after the reset throwing away any completions we get during
8178 * that time. Unregister the interrupt handler and register
8179 * fake ones to scoop up any residual completions.
8180 */
8181 spin_lock_irqsave(&h->lock, flags);
8182 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8183 spin_unlock_irqrestore(&h->lock, flags);
8184 hpsa_free_irqs(h);
8185 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8186 hpsa_intx_discard_completions);
8187 if (rc) {
8188 dev_warn(&h->pdev->dev,
8189 "Failed to request_irq after soft reset.\n");
8190 /*
8191 * cannot goto clean7 or free_irqs will be called
8192 * again. Instead, do its work
8193 */
8194 hpsa_free_performant_mode(h); /* clean7 */
8195 hpsa_free_sg_chain_blocks(h); /* clean6 */
8196 hpsa_free_cmd_pool(h); /* clean5 */
8197 /*
8198 * skip hpsa_free_irqs(h) clean4 since that
8199 * was just called before request_irqs failed
8200 */
8201 goto clean3;
8202 }
8203
8204 rc = hpsa_kdump_soft_reset(h);
8205 if (rc)
8206 /* Neither hard nor soft reset worked, we're hosed. */
8207 goto clean7;
8208
8209 dev_info(&h->pdev->dev, "Board READY.\n");
8210 dev_info(&h->pdev->dev,
8211 "Waiting for stale completions to drain.\n");
8212 h->access.set_intr_mask(h, HPSA_INTR_ON);
8213 msleep(10000);
8214 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8215
8216 rc = controller_reset_failed(h->cfgtable);
8217 if (rc)
8218 dev_info(&h->pdev->dev,
8219 "Soft reset appears to have failed.\n");
8220
8221 /* since the controller's reset, we have to go back and re-init
8222 * everything. Easiest to just forget what we've done and do it
8223 * all over again.
8224 */
8225 hpsa_undo_allocations_after_kdump_soft_reset(h);
8226 try_soft_reset = 0;
8227 if (rc)
8228 /* don't goto clean, we already unallocated */
8229 return -ENODEV;
8230
8231 goto reinit_after_soft_reset;
8232 }
8233
8234 /* Enable Accelerated IO path at driver layer */
8235 h->acciopath_status = 1;
8236
8237
8238 /* Turn the interrupts on so we can service requests */
8239 h->access.set_intr_mask(h, HPSA_INTR_ON);
8240
8241 hpsa_hba_inquiry(h);
8242
8243 /* Monitor the controller for firmware lockups */
8244 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8245 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8246 schedule_delayed_work(&h->monitor_ctlr_work,
8247 h->heartbeat_sample_interval);
8248 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8249 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8250 h->heartbeat_sample_interval);
8251 return 0;
8252
8253 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8254 hpsa_free_performant_mode(h);
8255 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8256 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8257 hpsa_free_sg_chain_blocks(h);
8258 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8259 hpsa_free_cmd_pool(h);
8260 clean4: /* irq, shost, pci, lu, aer/h */
8261 hpsa_free_irqs(h);
8262 clean3: /* shost, pci, lu, aer/h */
8263 scsi_host_put(h->scsi_host);
8264 h->scsi_host = NULL;
8265 clean2_5: /* pci, lu, aer/h */
8266 hpsa_free_pci_init(h);
8267 clean2: /* lu, aer/h */
8268 if (h->lockup_detected) {
8269 free_percpu(h->lockup_detected);
8270 h->lockup_detected = NULL;
8271 }
8272 clean1: /* wq/aer/h */
8273 if (h->resubmit_wq) {
8274 destroy_workqueue(h->resubmit_wq);
8275 h->resubmit_wq = NULL;
8276 }
8277 if (h->rescan_ctlr_wq) {
8278 destroy_workqueue(h->rescan_ctlr_wq);
8279 h->rescan_ctlr_wq = NULL;
8280 }
8281 kfree(h);
8282 return rc;
8283 }
8284
8285 static void hpsa_flush_cache(struct ctlr_info *h)
8286 {
8287 char *flush_buf;
8288 struct CommandList *c;
8289 int rc;
8290
8291 if (unlikely(lockup_detected(h)))
8292 return;
8293 flush_buf = kzalloc(4, GFP_KERNEL);
8294 if (!flush_buf)
8295 return;
8296
8297 c = cmd_alloc(h);
8298
8299 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8300 RAID_CTLR_LUNID, TYPE_CMD)) {
8301 goto out;
8302 }
8303 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8304 PCI_DMA_TODEVICE, NO_TIMEOUT);
8305 if (rc)
8306 goto out;
8307 if (c->err_info->CommandStatus != 0)
8308 out:
8309 dev_warn(&h->pdev->dev,
8310 "error flushing cache on controller\n");
8311 cmd_free(h, c);
8312 kfree(flush_buf);
8313 }
8314
8315 static void hpsa_shutdown(struct pci_dev *pdev)
8316 {
8317 struct ctlr_info *h;
8318
8319 h = pci_get_drvdata(pdev);
8320 /* Turn board interrupts off and send the flush cache command
8321 * sendcmd will turn off interrupt, and send the flush...
8322 * To write all data in the battery backed cache to disks
8323 */
8324 hpsa_flush_cache(h);
8325 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8326 hpsa_free_irqs(h); /* init_one 4 */
8327 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8328 }
8329
8330 static void hpsa_free_device_info(struct ctlr_info *h)
8331 {
8332 int i;
8333
8334 for (i = 0; i < h->ndevices; i++) {
8335 kfree(h->dev[i]);
8336 h->dev[i] = NULL;
8337 }
8338 }
8339
8340 static void hpsa_remove_one(struct pci_dev *pdev)
8341 {
8342 struct ctlr_info *h;
8343 unsigned long flags;
8344
8345 if (pci_get_drvdata(pdev) == NULL) {
8346 dev_err(&pdev->dev, "unable to remove device\n");
8347 return;
8348 }
8349 h = pci_get_drvdata(pdev);
8350
8351 /* Get rid of any controller monitoring work items */
8352 spin_lock_irqsave(&h->lock, flags);
8353 h->remove_in_progress = 1;
8354 spin_unlock_irqrestore(&h->lock, flags);
8355 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8356 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8357 destroy_workqueue(h->rescan_ctlr_wq);
8358 destroy_workqueue(h->resubmit_wq);
8359
8360 /*
8361 * Call before disabling interrupts.
8362 * scsi_remove_host can trigger I/O operations especially
8363 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8364 * operations which cannot complete and will hang the system.
8365 */
8366 if (h->scsi_host)
8367 scsi_remove_host(h->scsi_host); /* init_one 8 */
8368 /* includes hpsa_free_irqs - init_one 4 */
8369 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8370 hpsa_shutdown(pdev);
8371
8372 hpsa_free_device_info(h); /* scan */
8373
8374 kfree(h->hba_inquiry_data); /* init_one 10 */
8375 h->hba_inquiry_data = NULL; /* init_one 10 */
8376 hpsa_free_ioaccel2_sg_chain_blocks(h);
8377 hpsa_free_performant_mode(h); /* init_one 7 */
8378 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8379 hpsa_free_cmd_pool(h); /* init_one 5 */
8380
8381 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8382
8383 scsi_host_put(h->scsi_host); /* init_one 3 */
8384 h->scsi_host = NULL; /* init_one 3 */
8385
8386 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8387 hpsa_free_pci_init(h); /* init_one 2.5 */
8388
8389 free_percpu(h->lockup_detected); /* init_one 2 */
8390 h->lockup_detected = NULL; /* init_one 2 */
8391 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8392 kfree(h); /* init_one 1 */
8393 }
8394
8395 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8396 __attribute__((unused)) pm_message_t state)
8397 {
8398 return -ENOSYS;
8399 }
8400
8401 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8402 {
8403 return -ENOSYS;
8404 }
8405
8406 static struct pci_driver hpsa_pci_driver = {
8407 .name = HPSA,
8408 .probe = hpsa_init_one,
8409 .remove = hpsa_remove_one,
8410 .id_table = hpsa_pci_device_id, /* id_table */
8411 .shutdown = hpsa_shutdown,
8412 .suspend = hpsa_suspend,
8413 .resume = hpsa_resume,
8414 };
8415
8416 /* Fill in bucket_map[], given nsgs (the max number of
8417 * scatter gather elements supported) and bucket[],
8418 * which is an array of 8 integers. The bucket[] array
8419 * contains 8 different DMA transfer sizes (in 16
8420 * byte increments) which the controller uses to fetch
8421 * commands. This function fills in bucket_map[], which
8422 * maps a given number of scatter gather elements to one of
8423 * the 8 DMA transfer sizes. The point of it is to allow the
8424 * controller to only do as much DMA as needed to fetch the
8425 * command, with the DMA transfer size encoded in the lower
8426 * bits of the command address.
8427 */
8428 static void calc_bucket_map(int bucket[], int num_buckets,
8429 int nsgs, int min_blocks, u32 *bucket_map)
8430 {
8431 int i, j, b, size;
8432
8433 /* Note, bucket_map must have nsgs+1 entries. */
8434 for (i = 0; i <= nsgs; i++) {
8435 /* Compute size of a command with i SG entries */
8436 size = i + min_blocks;
8437 b = num_buckets; /* Assume the biggest bucket */
8438 /* Find the bucket that is just big enough */
8439 for (j = 0; j < num_buckets; j++) {
8440 if (bucket[j] >= size) {
8441 b = j;
8442 break;
8443 }
8444 }
8445 /* for a command with i SG entries, use bucket b. */
8446 bucket_map[i] = b;
8447 }
8448 }
8449
8450 /*
8451 * return -ENODEV on err, 0 on success (or no action)
8452 * allocates numerous items that must be freed later
8453 */
8454 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8455 {
8456 int i;
8457 unsigned long register_value;
8458 unsigned long transMethod = CFGTBL_Trans_Performant |
8459 (trans_support & CFGTBL_Trans_use_short_tags) |
8460 CFGTBL_Trans_enable_directed_msix |
8461 (trans_support & (CFGTBL_Trans_io_accel1 |
8462 CFGTBL_Trans_io_accel2));
8463 struct access_method access = SA5_performant_access;
8464
8465 /* This is a bit complicated. There are 8 registers on
8466 * the controller which we write to to tell it 8 different
8467 * sizes of commands which there may be. It's a way of
8468 * reducing the DMA done to fetch each command. Encoded into
8469 * each command's tag are 3 bits which communicate to the controller
8470 * which of the eight sizes that command fits within. The size of
8471 * each command depends on how many scatter gather entries there are.
8472 * Each SG entry requires 16 bytes. The eight registers are programmed
8473 * with the number of 16-byte blocks a command of that size requires.
8474 * The smallest command possible requires 5 such 16 byte blocks.
8475 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8476 * blocks. Note, this only extends to the SG entries contained
8477 * within the command block, and does not extend to chained blocks
8478 * of SG elements. bft[] contains the eight values we write to
8479 * the registers. They are not evenly distributed, but have more
8480 * sizes for small commands, and fewer sizes for larger commands.
8481 */
8482 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8483 #define MIN_IOACCEL2_BFT_ENTRY 5
8484 #define HPSA_IOACCEL2_HEADER_SZ 4
8485 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8486 13, 14, 15, 16, 17, 18, 19,
8487 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8488 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8489 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8490 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8491 16 * MIN_IOACCEL2_BFT_ENTRY);
8492 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8493 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8494 /* 5 = 1 s/g entry or 4k
8495 * 6 = 2 s/g entry or 8k
8496 * 8 = 4 s/g entry or 16k
8497 * 10 = 6 s/g entry or 24k
8498 */
8499
8500 /* If the controller supports either ioaccel method then
8501 * we can also use the RAID stack submit path that does not
8502 * perform the superfluous readl() after each command submission.
8503 */
8504 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8505 access = SA5_performant_access_no_read;
8506
8507 /* Controller spec: zero out this buffer. */
8508 for (i = 0; i < h->nreply_queues; i++)
8509 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8510
8511 bft[7] = SG_ENTRIES_IN_CMD + 4;
8512 calc_bucket_map(bft, ARRAY_SIZE(bft),
8513 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8514 for (i = 0; i < 8; i++)
8515 writel(bft[i], &h->transtable->BlockFetch[i]);
8516
8517 /* size of controller ring buffer */
8518 writel(h->max_commands, &h->transtable->RepQSize);
8519 writel(h->nreply_queues, &h->transtable->RepQCount);
8520 writel(0, &h->transtable->RepQCtrAddrLow32);
8521 writel(0, &h->transtable->RepQCtrAddrHigh32);
8522
8523 for (i = 0; i < h->nreply_queues; i++) {
8524 writel(0, &h->transtable->RepQAddr[i].upper);
8525 writel(h->reply_queue[i].busaddr,
8526 &h->transtable->RepQAddr[i].lower);
8527 }
8528
8529 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8530 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8531 /*
8532 * enable outbound interrupt coalescing in accelerator mode;
8533 */
8534 if (trans_support & CFGTBL_Trans_io_accel1) {
8535 access = SA5_ioaccel_mode1_access;
8536 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8537 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8538 } else {
8539 if (trans_support & CFGTBL_Trans_io_accel2) {
8540 access = SA5_ioaccel_mode2_access;
8541 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8542 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8543 }
8544 }
8545 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8546 if (hpsa_wait_for_mode_change_ack(h)) {
8547 dev_err(&h->pdev->dev,
8548 "performant mode problem - doorbell timeout\n");
8549 return -ENODEV;
8550 }
8551 register_value = readl(&(h->cfgtable->TransportActive));
8552 if (!(register_value & CFGTBL_Trans_Performant)) {
8553 dev_err(&h->pdev->dev,
8554 "performant mode problem - transport not active\n");
8555 return -ENODEV;
8556 }
8557 /* Change the access methods to the performant access methods */
8558 h->access = access;
8559 h->transMethod = transMethod;
8560
8561 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8562 (trans_support & CFGTBL_Trans_io_accel2)))
8563 return 0;
8564
8565 if (trans_support & CFGTBL_Trans_io_accel1) {
8566 /* Set up I/O accelerator mode */
8567 for (i = 0; i < h->nreply_queues; i++) {
8568 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8569 h->reply_queue[i].current_entry =
8570 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8571 }
8572 bft[7] = h->ioaccel_maxsg + 8;
8573 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8574 h->ioaccel1_blockFetchTable);
8575
8576 /* initialize all reply queue entries to unused */
8577 for (i = 0; i < h->nreply_queues; i++)
8578 memset(h->reply_queue[i].head,
8579 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8580 h->reply_queue_size);
8581
8582 /* set all the constant fields in the accelerator command
8583 * frames once at init time to save CPU cycles later.
8584 */
8585 for (i = 0; i < h->nr_cmds; i++) {
8586 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8587
8588 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8589 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8590 (i * sizeof(struct ErrorInfo)));
8591 cp->err_info_len = sizeof(struct ErrorInfo);
8592 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8593 cp->host_context_flags =
8594 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8595 cp->timeout_sec = 0;
8596 cp->ReplyQueue = 0;
8597 cp->tag =
8598 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8599 cp->host_addr =
8600 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8601 (i * sizeof(struct io_accel1_cmd)));
8602 }
8603 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8604 u64 cfg_offset, cfg_base_addr_index;
8605 u32 bft2_offset, cfg_base_addr;
8606 int rc;
8607
8608 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8609 &cfg_base_addr_index, &cfg_offset);
8610 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8611 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8612 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8613 4, h->ioaccel2_blockFetchTable);
8614 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8615 BUILD_BUG_ON(offsetof(struct CfgTable,
8616 io_accel_request_size_offset) != 0xb8);
8617 h->ioaccel2_bft2_regs =
8618 remap_pci_mem(pci_resource_start(h->pdev,
8619 cfg_base_addr_index) +
8620 cfg_offset + bft2_offset,
8621 ARRAY_SIZE(bft2) *
8622 sizeof(*h->ioaccel2_bft2_regs));
8623 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8624 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8625 }
8626 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8627 if (hpsa_wait_for_mode_change_ack(h)) {
8628 dev_err(&h->pdev->dev,
8629 "performant mode problem - enabling ioaccel mode\n");
8630 return -ENODEV;
8631 }
8632 return 0;
8633 }
8634
8635 /* Free ioaccel1 mode command blocks and block fetch table */
8636 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8637 {
8638 if (h->ioaccel_cmd_pool) {
8639 pci_free_consistent(h->pdev,
8640 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8641 h->ioaccel_cmd_pool,
8642 h->ioaccel_cmd_pool_dhandle);
8643 h->ioaccel_cmd_pool = NULL;
8644 h->ioaccel_cmd_pool_dhandle = 0;
8645 }
8646 kfree(h->ioaccel1_blockFetchTable);
8647 h->ioaccel1_blockFetchTable = NULL;
8648 }
8649
8650 /* Allocate ioaccel1 mode command blocks and block fetch table */
8651 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8652 {
8653 h->ioaccel_maxsg =
8654 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8655 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8656 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8657
8658 /* Command structures must be aligned on a 128-byte boundary
8659 * because the 7 lower bits of the address are used by the
8660 * hardware.
8661 */
8662 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8663 IOACCEL1_COMMANDLIST_ALIGNMENT);
8664 h->ioaccel_cmd_pool =
8665 pci_alloc_consistent(h->pdev,
8666 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8667 &(h->ioaccel_cmd_pool_dhandle));
8668
8669 h->ioaccel1_blockFetchTable =
8670 kmalloc(((h->ioaccel_maxsg + 1) *
8671 sizeof(u32)), GFP_KERNEL);
8672
8673 if ((h->ioaccel_cmd_pool == NULL) ||
8674 (h->ioaccel1_blockFetchTable == NULL))
8675 goto clean_up;
8676
8677 memset(h->ioaccel_cmd_pool, 0,
8678 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8679 return 0;
8680
8681 clean_up:
8682 hpsa_free_ioaccel1_cmd_and_bft(h);
8683 return -ENOMEM;
8684 }
8685
8686 /* Free ioaccel2 mode command blocks and block fetch table */
8687 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8688 {
8689 hpsa_free_ioaccel2_sg_chain_blocks(h);
8690
8691 if (h->ioaccel2_cmd_pool) {
8692 pci_free_consistent(h->pdev,
8693 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8694 h->ioaccel2_cmd_pool,
8695 h->ioaccel2_cmd_pool_dhandle);
8696 h->ioaccel2_cmd_pool = NULL;
8697 h->ioaccel2_cmd_pool_dhandle = 0;
8698 }
8699 kfree(h->ioaccel2_blockFetchTable);
8700 h->ioaccel2_blockFetchTable = NULL;
8701 }
8702
8703 /* Allocate ioaccel2 mode command blocks and block fetch table */
8704 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8705 {
8706 int rc;
8707
8708 /* Allocate ioaccel2 mode command blocks and block fetch table */
8709
8710 h->ioaccel_maxsg =
8711 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8712 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8713 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8714
8715 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8716 IOACCEL2_COMMANDLIST_ALIGNMENT);
8717 h->ioaccel2_cmd_pool =
8718 pci_alloc_consistent(h->pdev,
8719 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8720 &(h->ioaccel2_cmd_pool_dhandle));
8721
8722 h->ioaccel2_blockFetchTable =
8723 kmalloc(((h->ioaccel_maxsg + 1) *
8724 sizeof(u32)), GFP_KERNEL);
8725
8726 if ((h->ioaccel2_cmd_pool == NULL) ||
8727 (h->ioaccel2_blockFetchTable == NULL)) {
8728 rc = -ENOMEM;
8729 goto clean_up;
8730 }
8731
8732 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8733 if (rc)
8734 goto clean_up;
8735
8736 memset(h->ioaccel2_cmd_pool, 0,
8737 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8738 return 0;
8739
8740 clean_up:
8741 hpsa_free_ioaccel2_cmd_and_bft(h);
8742 return rc;
8743 }
8744
8745 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8746 static void hpsa_free_performant_mode(struct ctlr_info *h)
8747 {
8748 kfree(h->blockFetchTable);
8749 h->blockFetchTable = NULL;
8750 hpsa_free_reply_queues(h);
8751 hpsa_free_ioaccel1_cmd_and_bft(h);
8752 hpsa_free_ioaccel2_cmd_and_bft(h);
8753 }
8754
8755 /* return -ENODEV on error, 0 on success (or no action)
8756 * allocates numerous items that must be freed later
8757 */
8758 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8759 {
8760 u32 trans_support;
8761 unsigned long transMethod = CFGTBL_Trans_Performant |
8762 CFGTBL_Trans_use_short_tags;
8763 int i, rc;
8764
8765 if (hpsa_simple_mode)
8766 return 0;
8767
8768 trans_support = readl(&(h->cfgtable->TransportSupport));
8769 if (!(trans_support & PERFORMANT_MODE))
8770 return 0;
8771
8772 /* Check for I/O accelerator mode support */
8773 if (trans_support & CFGTBL_Trans_io_accel1) {
8774 transMethod |= CFGTBL_Trans_io_accel1 |
8775 CFGTBL_Trans_enable_directed_msix;
8776 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8777 if (rc)
8778 return rc;
8779 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8780 transMethod |= CFGTBL_Trans_io_accel2 |
8781 CFGTBL_Trans_enable_directed_msix;
8782 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8783 if (rc)
8784 return rc;
8785 }
8786
8787 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8788 hpsa_get_max_perf_mode_cmds(h);
8789 /* Performant mode ring buffer and supporting data structures */
8790 h->reply_queue_size = h->max_commands * sizeof(u64);
8791
8792 for (i = 0; i < h->nreply_queues; i++) {
8793 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8794 h->reply_queue_size,
8795 &(h->reply_queue[i].busaddr));
8796 if (!h->reply_queue[i].head) {
8797 rc = -ENOMEM;
8798 goto clean1; /* rq, ioaccel */
8799 }
8800 h->reply_queue[i].size = h->max_commands;
8801 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
8802 h->reply_queue[i].current_entry = 0;
8803 }
8804
8805 /* Need a block fetch table for performant mode */
8806 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8807 sizeof(u32)), GFP_KERNEL);
8808 if (!h->blockFetchTable) {
8809 rc = -ENOMEM;
8810 goto clean1; /* rq, ioaccel */
8811 }
8812
8813 rc = hpsa_enter_performant_mode(h, trans_support);
8814 if (rc)
8815 goto clean2; /* bft, rq, ioaccel */
8816 return 0;
8817
8818 clean2: /* bft, rq, ioaccel */
8819 kfree(h->blockFetchTable);
8820 h->blockFetchTable = NULL;
8821 clean1: /* rq, ioaccel */
8822 hpsa_free_reply_queues(h);
8823 hpsa_free_ioaccel1_cmd_and_bft(h);
8824 hpsa_free_ioaccel2_cmd_and_bft(h);
8825 return rc;
8826 }
8827
8828 static int is_accelerated_cmd(struct CommandList *c)
8829 {
8830 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8831 }
8832
8833 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8834 {
8835 struct CommandList *c = NULL;
8836 int i, accel_cmds_out;
8837 int refcount;
8838
8839 do { /* wait for all outstanding ioaccel commands to drain out */
8840 accel_cmds_out = 0;
8841 for (i = 0; i < h->nr_cmds; i++) {
8842 c = h->cmd_pool + i;
8843 refcount = atomic_inc_return(&c->refcount);
8844 if (refcount > 1) /* Command is allocated */
8845 accel_cmds_out += is_accelerated_cmd(c);
8846 cmd_free(h, c);
8847 }
8848 if (accel_cmds_out <= 0)
8849 break;
8850 msleep(100);
8851 } while (1);
8852 }
8853
8854 /*
8855 * This is it. Register the PCI driver information for the cards we control
8856 * the OS will call our registered routines when it finds one of our cards.
8857 */
8858 static int __init hpsa_init(void)
8859 {
8860 return pci_register_driver(&hpsa_pci_driver);
8861 }
8862
8863 static void __exit hpsa_cleanup(void)
8864 {
8865 pci_unregister_driver(&hpsa_pci_driver);
8866 }
8867
8868 static void __attribute__((unused)) verify_offsets(void)
8869 {
8870 #define VERIFY_OFFSET(member, offset) \
8871 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8872
8873 VERIFY_OFFSET(structure_size, 0);
8874 VERIFY_OFFSET(volume_blk_size, 4);
8875 VERIFY_OFFSET(volume_blk_cnt, 8);
8876 VERIFY_OFFSET(phys_blk_shift, 16);
8877 VERIFY_OFFSET(parity_rotation_shift, 17);
8878 VERIFY_OFFSET(strip_size, 18);
8879 VERIFY_OFFSET(disk_starting_blk, 20);
8880 VERIFY_OFFSET(disk_blk_cnt, 28);
8881 VERIFY_OFFSET(data_disks_per_row, 36);
8882 VERIFY_OFFSET(metadata_disks_per_row, 38);
8883 VERIFY_OFFSET(row_cnt, 40);
8884 VERIFY_OFFSET(layout_map_count, 42);
8885 VERIFY_OFFSET(flags, 44);
8886 VERIFY_OFFSET(dekindex, 46);
8887 /* VERIFY_OFFSET(reserved, 48 */
8888 VERIFY_OFFSET(data, 64);
8889
8890 #undef VERIFY_OFFSET
8891
8892 #define VERIFY_OFFSET(member, offset) \
8893 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8894
8895 VERIFY_OFFSET(IU_type, 0);
8896 VERIFY_OFFSET(direction, 1);
8897 VERIFY_OFFSET(reply_queue, 2);
8898 /* VERIFY_OFFSET(reserved1, 3); */
8899 VERIFY_OFFSET(scsi_nexus, 4);
8900 VERIFY_OFFSET(Tag, 8);
8901 VERIFY_OFFSET(cdb, 16);
8902 VERIFY_OFFSET(cciss_lun, 32);
8903 VERIFY_OFFSET(data_len, 40);
8904 VERIFY_OFFSET(cmd_priority_task_attr, 44);
8905 VERIFY_OFFSET(sg_count, 45);
8906 /* VERIFY_OFFSET(reserved3 */
8907 VERIFY_OFFSET(err_ptr, 48);
8908 VERIFY_OFFSET(err_len, 56);
8909 /* VERIFY_OFFSET(reserved4 */
8910 VERIFY_OFFSET(sg, 64);
8911
8912 #undef VERIFY_OFFSET
8913
8914 #define VERIFY_OFFSET(member, offset) \
8915 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8916
8917 VERIFY_OFFSET(dev_handle, 0x00);
8918 VERIFY_OFFSET(reserved1, 0x02);
8919 VERIFY_OFFSET(function, 0x03);
8920 VERIFY_OFFSET(reserved2, 0x04);
8921 VERIFY_OFFSET(err_info, 0x0C);
8922 VERIFY_OFFSET(reserved3, 0x10);
8923 VERIFY_OFFSET(err_info_len, 0x12);
8924 VERIFY_OFFSET(reserved4, 0x13);
8925 VERIFY_OFFSET(sgl_offset, 0x14);
8926 VERIFY_OFFSET(reserved5, 0x15);
8927 VERIFY_OFFSET(transfer_len, 0x1C);
8928 VERIFY_OFFSET(reserved6, 0x20);
8929 VERIFY_OFFSET(io_flags, 0x24);
8930 VERIFY_OFFSET(reserved7, 0x26);
8931 VERIFY_OFFSET(LUN, 0x34);
8932 VERIFY_OFFSET(control, 0x3C);
8933 VERIFY_OFFSET(CDB, 0x40);
8934 VERIFY_OFFSET(reserved8, 0x50);
8935 VERIFY_OFFSET(host_context_flags, 0x60);
8936 VERIFY_OFFSET(timeout_sec, 0x62);
8937 VERIFY_OFFSET(ReplyQueue, 0x64);
8938 VERIFY_OFFSET(reserved9, 0x65);
8939 VERIFY_OFFSET(tag, 0x68);
8940 VERIFY_OFFSET(host_addr, 0x70);
8941 VERIFY_OFFSET(CISS_LUN, 0x78);
8942 VERIFY_OFFSET(SG, 0x78 + 8);
8943 #undef VERIFY_OFFSET
8944 }
8945
8946 module_init(hpsa_init);
8947 module_exit(hpsa_cleanup);