]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/sd.c
scsi: sd: Fix potential NULL pointer dereference
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/async.h>
55 #include <linux/slab.h>
56 #include <linux/sed-opal.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/pr.h>
59 #include <linux/t10-pi.h>
60 #include <linux/uaccess.h>
61 #include <asm/unaligned.h>
62
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_dbg.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102 #define SD_MINORS 16
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static int sd_resume_runtime(struct device *);
115 static void sd_rescan(struct device *);
116 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123
124 static DEFINE_IDA(sd_index_ida);
125
126 /* This semaphore is used to mediate the 0->1 reference get in the
127 * face of object destruction (i.e. we can't allow a get on an
128 * object after last put) */
129 static DEFINE_MUTEX(sd_ref_mutex);
130
131 static struct kmem_cache *sd_cdb_cache;
132 static mempool_t *sd_cdb_pool;
133 static mempool_t *sd_page_pool;
134 static struct lock_class_key sd_bio_compl_lkclass;
135
136 static const char *sd_cache_types[] = {
137 "write through", "none", "write back",
138 "write back, no read (daft)"
139 };
140
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 bool wc = false, fua = false;
144
145 if (sdkp->WCE) {
146 wc = true;
147 if (sdkp->DPOFUA)
148 fua = true;
149 }
150
151 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 const char *buf, size_t count)
157 {
158 int ct, rcd, wce, sp;
159 struct scsi_disk *sdkp = to_scsi_disk(dev);
160 struct scsi_device *sdp = sdkp->device;
161 char buffer[64];
162 char *buffer_data;
163 struct scsi_mode_data data;
164 struct scsi_sense_hdr sshdr;
165 static const char temp[] = "temporary ";
166 int len;
167
168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 /* no cache control on RBC devices; theoretically they
170 * can do it, but there's probably so many exceptions
171 * it's not worth the risk */
172 return -EINVAL;
173
174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 buf += sizeof(temp) - 1;
176 sdkp->cache_override = 1;
177 } else {
178 sdkp->cache_override = 0;
179 }
180
181 ct = sysfs_match_string(sd_cache_types, buf);
182 if (ct < 0)
183 return -EINVAL;
184
185 rcd = ct & 0x01 ? 1 : 0;
186 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
187
188 if (sdkp->cache_override) {
189 sdkp->WCE = wce;
190 sdkp->RCD = rcd;
191 sd_set_flush_flag(sdkp);
192 return count;
193 }
194
195 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
196 sdkp->max_retries, &data, NULL))
197 return -EINVAL;
198 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
199 data.block_descriptor_length);
200 buffer_data = buffer + data.header_length +
201 data.block_descriptor_length;
202 buffer_data[2] &= ~0x05;
203 buffer_data[2] |= wce << 2 | rcd;
204 sp = buffer_data[0] & 0x80 ? 1 : 0;
205 buffer_data[0] &= ~0x80;
206
207 /*
208 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
209 * received mode parameter buffer before doing MODE SELECT.
210 */
211 data.device_specific = 0;
212
213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 sdkp->max_retries, &data, &sshdr)) {
215 if (scsi_sense_valid(&sshdr))
216 sd_print_sense_hdr(sdkp, &sshdr);
217 return -EINVAL;
218 }
219 sd_revalidate_disk(sdkp->disk);
220 return count;
221 }
222
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 char *buf)
226 {
227 struct scsi_disk *sdkp = to_scsi_disk(dev);
228 struct scsi_device *sdp = sdkp->device;
229
230 return sprintf(buf, "%u\n", sdp->manage_start_stop);
231 }
232
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 const char *buf, size_t count)
236 {
237 struct scsi_disk *sdkp = to_scsi_disk(dev);
238 struct scsi_device *sdp = sdkp->device;
239 bool v;
240
241 if (!capable(CAP_SYS_ADMIN))
242 return -EACCES;
243
244 if (kstrtobool(buf, &v))
245 return -EINVAL;
246
247 sdp->manage_start_stop = v;
248
249 return count;
250 }
251 static DEVICE_ATTR_RW(manage_start_stop);
252
253 static ssize_t
254 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257
258 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
259 }
260
261 static ssize_t
262 allow_restart_store(struct device *dev, struct device_attribute *attr,
263 const char *buf, size_t count)
264 {
265 bool v;
266 struct scsi_disk *sdkp = to_scsi_disk(dev);
267 struct scsi_device *sdp = sdkp->device;
268
269 if (!capable(CAP_SYS_ADMIN))
270 return -EACCES;
271
272 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
273 return -EINVAL;
274
275 if (kstrtobool(buf, &v))
276 return -EINVAL;
277
278 sdp->allow_restart = v;
279
280 return count;
281 }
282 static DEVICE_ATTR_RW(allow_restart);
283
284 static ssize_t
285 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
286 {
287 struct scsi_disk *sdkp = to_scsi_disk(dev);
288 int ct = sdkp->RCD + 2*sdkp->WCE;
289
290 return sprintf(buf, "%s\n", sd_cache_types[ct]);
291 }
292 static DEVICE_ATTR_RW(cache_type);
293
294 static ssize_t
295 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
296 {
297 struct scsi_disk *sdkp = to_scsi_disk(dev);
298
299 return sprintf(buf, "%u\n", sdkp->DPOFUA);
300 }
301 static DEVICE_ATTR_RO(FUA);
302
303 static ssize_t
304 protection_type_show(struct device *dev, struct device_attribute *attr,
305 char *buf)
306 {
307 struct scsi_disk *sdkp = to_scsi_disk(dev);
308
309 return sprintf(buf, "%u\n", sdkp->protection_type);
310 }
311
312 static ssize_t
313 protection_type_store(struct device *dev, struct device_attribute *attr,
314 const char *buf, size_t count)
315 {
316 struct scsi_disk *sdkp = to_scsi_disk(dev);
317 unsigned int val;
318 int err;
319
320 if (!capable(CAP_SYS_ADMIN))
321 return -EACCES;
322
323 err = kstrtouint(buf, 10, &val);
324
325 if (err)
326 return err;
327
328 if (val <= T10_PI_TYPE3_PROTECTION)
329 sdkp->protection_type = val;
330
331 return count;
332 }
333 static DEVICE_ATTR_RW(protection_type);
334
335 static ssize_t
336 protection_mode_show(struct device *dev, struct device_attribute *attr,
337 char *buf)
338 {
339 struct scsi_disk *sdkp = to_scsi_disk(dev);
340 struct scsi_device *sdp = sdkp->device;
341 unsigned int dif, dix;
342
343 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
344 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
345
346 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
347 dif = 0;
348 dix = 1;
349 }
350
351 if (!dif && !dix)
352 return sprintf(buf, "none\n");
353
354 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
355 }
356 static DEVICE_ATTR_RO(protection_mode);
357
358 static ssize_t
359 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
360 {
361 struct scsi_disk *sdkp = to_scsi_disk(dev);
362
363 return sprintf(buf, "%u\n", sdkp->ATO);
364 }
365 static DEVICE_ATTR_RO(app_tag_own);
366
367 static ssize_t
368 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
369 char *buf)
370 {
371 struct scsi_disk *sdkp = to_scsi_disk(dev);
372
373 return sprintf(buf, "%u\n", sdkp->lbpme);
374 }
375 static DEVICE_ATTR_RO(thin_provisioning);
376
377 /* sysfs_match_string() requires dense arrays */
378 static const char *lbp_mode[] = {
379 [SD_LBP_FULL] = "full",
380 [SD_LBP_UNMAP] = "unmap",
381 [SD_LBP_WS16] = "writesame_16",
382 [SD_LBP_WS10] = "writesame_10",
383 [SD_LBP_ZERO] = "writesame_zero",
384 [SD_LBP_DISABLE] = "disabled",
385 };
386
387 static ssize_t
388 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
389 char *buf)
390 {
391 struct scsi_disk *sdkp = to_scsi_disk(dev);
392
393 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
394 }
395
396 static ssize_t
397 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
398 const char *buf, size_t count)
399 {
400 struct scsi_disk *sdkp = to_scsi_disk(dev);
401 struct scsi_device *sdp = sdkp->device;
402 int mode;
403
404 if (!capable(CAP_SYS_ADMIN))
405 return -EACCES;
406
407 if (sd_is_zoned(sdkp)) {
408 sd_config_discard(sdkp, SD_LBP_DISABLE);
409 return count;
410 }
411
412 if (sdp->type != TYPE_DISK)
413 return -EINVAL;
414
415 mode = sysfs_match_string(lbp_mode, buf);
416 if (mode < 0)
417 return -EINVAL;
418
419 sd_config_discard(sdkp, mode);
420
421 return count;
422 }
423 static DEVICE_ATTR_RW(provisioning_mode);
424
425 /* sysfs_match_string() requires dense arrays */
426 static const char *zeroing_mode[] = {
427 [SD_ZERO_WRITE] = "write",
428 [SD_ZERO_WS] = "writesame",
429 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
430 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
431 };
432
433 static ssize_t
434 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
435 char *buf)
436 {
437 struct scsi_disk *sdkp = to_scsi_disk(dev);
438
439 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
440 }
441
442 static ssize_t
443 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
444 const char *buf, size_t count)
445 {
446 struct scsi_disk *sdkp = to_scsi_disk(dev);
447 int mode;
448
449 if (!capable(CAP_SYS_ADMIN))
450 return -EACCES;
451
452 mode = sysfs_match_string(zeroing_mode, buf);
453 if (mode < 0)
454 return -EINVAL;
455
456 sdkp->zeroing_mode = mode;
457
458 return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct scsi_disk *sdkp = to_scsi_disk(dev);
467
468 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473 struct device_attribute *attr, const char *buf,
474 size_t count)
475 {
476 struct scsi_disk *sdkp = to_scsi_disk(dev);
477 int err;
478
479 if (!capable(CAP_SYS_ADMIN))
480 return -EACCES;
481
482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483
484 return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
495 }
496
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 struct scsi_device *sdp = sdkp->device;
503 unsigned long max;
504 int err;
505
506 if (!capable(CAP_SYS_ADMIN))
507 return -EACCES;
508
509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 return -EINVAL;
511
512 err = kstrtoul(buf, 10, &max);
513
514 if (err)
515 return err;
516
517 if (max == 0)
518 sdp->no_write_same = 1;
519 else if (max <= SD_MAX_WS16_BLOCKS) {
520 sdp->no_write_same = 0;
521 sdkp->max_ws_blocks = max;
522 }
523
524 sd_config_write_same(sdkp);
525
526 return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529
530 static ssize_t
531 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
532 {
533 struct scsi_disk *sdkp = to_scsi_disk(dev);
534
535 if (sdkp->device->type == TYPE_ZBC)
536 return sprintf(buf, "host-managed\n");
537 if (sdkp->zoned == 1)
538 return sprintf(buf, "host-aware\n");
539 if (sdkp->zoned == 2)
540 return sprintf(buf, "drive-managed\n");
541 return sprintf(buf, "none\n");
542 }
543 static DEVICE_ATTR_RO(zoned_cap);
544
545 static ssize_t
546 max_retries_store(struct device *dev, struct device_attribute *attr,
547 const char *buf, size_t count)
548 {
549 struct scsi_disk *sdkp = to_scsi_disk(dev);
550 struct scsi_device *sdev = sdkp->device;
551 int retries, err;
552
553 err = kstrtoint(buf, 10, &retries);
554 if (err)
555 return err;
556
557 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
558 sdkp->max_retries = retries;
559 return count;
560 }
561
562 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
563 SD_MAX_RETRIES);
564 return -EINVAL;
565 }
566
567 static ssize_t
568 max_retries_show(struct device *dev, struct device_attribute *attr,
569 char *buf)
570 {
571 struct scsi_disk *sdkp = to_scsi_disk(dev);
572
573 return sprintf(buf, "%d\n", sdkp->max_retries);
574 }
575
576 static DEVICE_ATTR_RW(max_retries);
577
578 static struct attribute *sd_disk_attrs[] = {
579 &dev_attr_cache_type.attr,
580 &dev_attr_FUA.attr,
581 &dev_attr_allow_restart.attr,
582 &dev_attr_manage_start_stop.attr,
583 &dev_attr_protection_type.attr,
584 &dev_attr_protection_mode.attr,
585 &dev_attr_app_tag_own.attr,
586 &dev_attr_thin_provisioning.attr,
587 &dev_attr_provisioning_mode.attr,
588 &dev_attr_zeroing_mode.attr,
589 &dev_attr_max_write_same_blocks.attr,
590 &dev_attr_max_medium_access_timeouts.attr,
591 &dev_attr_zoned_cap.attr,
592 &dev_attr_max_retries.attr,
593 NULL,
594 };
595 ATTRIBUTE_GROUPS(sd_disk);
596
597 static struct class sd_disk_class = {
598 .name = "scsi_disk",
599 .owner = THIS_MODULE,
600 .dev_release = scsi_disk_release,
601 .dev_groups = sd_disk_groups,
602 };
603
604 static const struct dev_pm_ops sd_pm_ops = {
605 .suspend = sd_suspend_system,
606 .resume = sd_resume,
607 .poweroff = sd_suspend_system,
608 .restore = sd_resume,
609 .runtime_suspend = sd_suspend_runtime,
610 .runtime_resume = sd_resume_runtime,
611 };
612
613 static struct scsi_driver sd_template = {
614 .gendrv = {
615 .name = "sd",
616 .owner = THIS_MODULE,
617 .probe = sd_probe,
618 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
619 .remove = sd_remove,
620 .shutdown = sd_shutdown,
621 .pm = &sd_pm_ops,
622 },
623 .rescan = sd_rescan,
624 .init_command = sd_init_command,
625 .uninit_command = sd_uninit_command,
626 .done = sd_done,
627 .eh_action = sd_eh_action,
628 .eh_reset = sd_eh_reset,
629 };
630
631 /*
632 * Don't request a new module, as that could deadlock in multipath
633 * environment.
634 */
635 static void sd_default_probe(dev_t devt)
636 {
637 }
638
639 /*
640 * Device no to disk mapping:
641 *
642 * major disc2 disc p1
643 * |............|.............|....|....| <- dev_t
644 * 31 20 19 8 7 4 3 0
645 *
646 * Inside a major, we have 16k disks, however mapped non-
647 * contiguously. The first 16 disks are for major0, the next
648 * ones with major1, ... Disk 256 is for major0 again, disk 272
649 * for major1, ...
650 * As we stay compatible with our numbering scheme, we can reuse
651 * the well-know SCSI majors 8, 65--71, 136--143.
652 */
653 static int sd_major(int major_idx)
654 {
655 switch (major_idx) {
656 case 0:
657 return SCSI_DISK0_MAJOR;
658 case 1 ... 7:
659 return SCSI_DISK1_MAJOR + major_idx - 1;
660 case 8 ... 15:
661 return SCSI_DISK8_MAJOR + major_idx - 8;
662 default:
663 BUG();
664 return 0; /* shut up gcc */
665 }
666 }
667
668 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
669 {
670 struct scsi_disk *sdkp = NULL;
671
672 mutex_lock(&sd_ref_mutex);
673
674 if (disk->private_data) {
675 sdkp = scsi_disk(disk);
676 if (scsi_device_get(sdkp->device) == 0)
677 get_device(&sdkp->dev);
678 else
679 sdkp = NULL;
680 }
681 mutex_unlock(&sd_ref_mutex);
682 return sdkp;
683 }
684
685 static void scsi_disk_put(struct scsi_disk *sdkp)
686 {
687 struct scsi_device *sdev = sdkp->device;
688
689 mutex_lock(&sd_ref_mutex);
690 put_device(&sdkp->dev);
691 scsi_device_put(sdev);
692 mutex_unlock(&sd_ref_mutex);
693 }
694
695 #ifdef CONFIG_BLK_SED_OPAL
696 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
697 size_t len, bool send)
698 {
699 struct scsi_disk *sdkp = data;
700 struct scsi_device *sdev = sdkp->device;
701 u8 cdb[12] = { 0, };
702 int ret;
703
704 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
705 cdb[1] = secp;
706 put_unaligned_be16(spsp, &cdb[2]);
707 put_unaligned_be32(len, &cdb[6]);
708
709 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
710 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
711 RQF_PM, NULL);
712 return ret <= 0 ? ret : -EIO;
713 }
714 #endif /* CONFIG_BLK_SED_OPAL */
715
716 /*
717 * Look up the DIX operation based on whether the command is read or
718 * write and whether dix and dif are enabled.
719 */
720 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
721 {
722 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
723 static const unsigned int ops[] = { /* wrt dix dif */
724 SCSI_PROT_NORMAL, /* 0 0 0 */
725 SCSI_PROT_READ_STRIP, /* 0 0 1 */
726 SCSI_PROT_READ_INSERT, /* 0 1 0 */
727 SCSI_PROT_READ_PASS, /* 0 1 1 */
728 SCSI_PROT_NORMAL, /* 1 0 0 */
729 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
730 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
731 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
732 };
733
734 return ops[write << 2 | dix << 1 | dif];
735 }
736
737 /*
738 * Returns a mask of the protection flags that are valid for a given DIX
739 * operation.
740 */
741 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
742 {
743 static const unsigned int flag_mask[] = {
744 [SCSI_PROT_NORMAL] = 0,
745
746 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
747 SCSI_PROT_GUARD_CHECK |
748 SCSI_PROT_REF_CHECK |
749 SCSI_PROT_REF_INCREMENT,
750
751 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
752 SCSI_PROT_IP_CHECKSUM,
753
754 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
755 SCSI_PROT_GUARD_CHECK |
756 SCSI_PROT_REF_CHECK |
757 SCSI_PROT_REF_INCREMENT |
758 SCSI_PROT_IP_CHECKSUM,
759
760 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
761 SCSI_PROT_REF_INCREMENT,
762
763 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
764 SCSI_PROT_REF_CHECK |
765 SCSI_PROT_REF_INCREMENT |
766 SCSI_PROT_IP_CHECKSUM,
767
768 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
769 SCSI_PROT_GUARD_CHECK |
770 SCSI_PROT_REF_CHECK |
771 SCSI_PROT_REF_INCREMENT |
772 SCSI_PROT_IP_CHECKSUM,
773 };
774
775 return flag_mask[prot_op];
776 }
777
778 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
779 unsigned int dix, unsigned int dif)
780 {
781 struct request *rq = scsi_cmd_to_rq(scmd);
782 struct bio *bio = rq->bio;
783 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
784 unsigned int protect = 0;
785
786 if (dix) { /* DIX Type 0, 1, 2, 3 */
787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789
790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
792 }
793
794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796
797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
799 }
800
801 if (dif) { /* DIX/DIF Type 1, 2, 3 */
802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803
804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
805 protect = 3 << 5; /* Disable target PI checking */
806 else
807 protect = 1 << 5; /* Enable target PI checking */
808 }
809
810 scsi_set_prot_op(scmd, prot_op);
811 scsi_set_prot_type(scmd, dif);
812 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
813
814 return protect;
815 }
816
817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 {
819 struct request_queue *q = sdkp->disk->queue;
820 unsigned int logical_block_size = sdkp->device->sector_size;
821 unsigned int max_blocks = 0;
822
823 q->limits.discard_alignment =
824 sdkp->unmap_alignment * logical_block_size;
825 q->limits.discard_granularity =
826 max(sdkp->physical_block_size,
827 sdkp->unmap_granularity * logical_block_size);
828 sdkp->provisioning_mode = mode;
829
830 switch (mode) {
831
832 case SD_LBP_FULL:
833 case SD_LBP_DISABLE:
834 blk_queue_max_discard_sectors(q, 0);
835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
836 return;
837
838 case SD_LBP_UNMAP:
839 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
840 (u32)SD_MAX_WS16_BLOCKS);
841 break;
842
843 case SD_LBP_WS16:
844 if (sdkp->device->unmap_limit_for_ws)
845 max_blocks = sdkp->max_unmap_blocks;
846 else
847 max_blocks = sdkp->max_ws_blocks;
848
849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
850 break;
851
852 case SD_LBP_WS10:
853 if (sdkp->device->unmap_limit_for_ws)
854 max_blocks = sdkp->max_unmap_blocks;
855 else
856 max_blocks = sdkp->max_ws_blocks;
857
858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
859 break;
860
861 case SD_LBP_ZERO:
862 max_blocks = min_not_zero(sdkp->max_ws_blocks,
863 (u32)SD_MAX_WS10_BLOCKS);
864 break;
865 }
866
867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
869 }
870
871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 {
873 struct scsi_device *sdp = cmd->device;
874 struct request *rq = scsi_cmd_to_rq(cmd);
875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
878 unsigned int data_len = 24;
879 char *buf;
880
881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 if (!rq->special_vec.bv_page)
883 return BLK_STS_RESOURCE;
884 clear_highpage(rq->special_vec.bv_page);
885 rq->special_vec.bv_offset = 0;
886 rq->special_vec.bv_len = data_len;
887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888
889 cmd->cmd_len = 10;
890 cmd->cmnd[0] = UNMAP;
891 cmd->cmnd[8] = 24;
892
893 buf = bvec_virt(&rq->special_vec);
894 put_unaligned_be16(6 + 16, &buf[0]);
895 put_unaligned_be16(16, &buf[2]);
896 put_unaligned_be64(lba, &buf[8]);
897 put_unaligned_be32(nr_blocks, &buf[16]);
898
899 cmd->allowed = sdkp->max_retries;
900 cmd->transfersize = data_len;
901 rq->timeout = SD_TIMEOUT;
902
903 return scsi_alloc_sgtables(cmd);
904 }
905
906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
907 bool unmap)
908 {
909 struct scsi_device *sdp = cmd->device;
910 struct request *rq = scsi_cmd_to_rq(cmd);
911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914 u32 data_len = sdp->sector_size;
915
916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
917 if (!rq->special_vec.bv_page)
918 return BLK_STS_RESOURCE;
919 clear_highpage(rq->special_vec.bv_page);
920 rq->special_vec.bv_offset = 0;
921 rq->special_vec.bv_len = data_len;
922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
923
924 cmd->cmd_len = 16;
925 cmd->cmnd[0] = WRITE_SAME_16;
926 if (unmap)
927 cmd->cmnd[1] = 0x8; /* UNMAP */
928 put_unaligned_be64(lba, &cmd->cmnd[2]);
929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930
931 cmd->allowed = sdkp->max_retries;
932 cmd->transfersize = data_len;
933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934
935 return scsi_alloc_sgtables(cmd);
936 }
937
938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
939 bool unmap)
940 {
941 struct scsi_device *sdp = cmd->device;
942 struct request *rq = scsi_cmd_to_rq(cmd);
943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
946 u32 data_len = sdp->sector_size;
947
948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
949 if (!rq->special_vec.bv_page)
950 return BLK_STS_RESOURCE;
951 clear_highpage(rq->special_vec.bv_page);
952 rq->special_vec.bv_offset = 0;
953 rq->special_vec.bv_len = data_len;
954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
955
956 cmd->cmd_len = 10;
957 cmd->cmnd[0] = WRITE_SAME;
958 if (unmap)
959 cmd->cmnd[1] = 0x8; /* UNMAP */
960 put_unaligned_be32(lba, &cmd->cmnd[2]);
961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962
963 cmd->allowed = sdkp->max_retries;
964 cmd->transfersize = data_len;
965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966
967 return scsi_alloc_sgtables(cmd);
968 }
969
970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 {
972 struct request *rq = scsi_cmd_to_rq(cmd);
973 struct scsi_device *sdp = cmd->device;
974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977
978 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
979 switch (sdkp->zeroing_mode) {
980 case SD_ZERO_WS16_UNMAP:
981 return sd_setup_write_same16_cmnd(cmd, true);
982 case SD_ZERO_WS10_UNMAP:
983 return sd_setup_write_same10_cmnd(cmd, true);
984 }
985 }
986
987 if (sdp->no_write_same) {
988 rq->rq_flags |= RQF_QUIET;
989 return BLK_STS_TARGET;
990 }
991
992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 return sd_setup_write_same16_cmnd(cmd, false);
994
995 return sd_setup_write_same10_cmnd(cmd, false);
996 }
997
998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 struct request_queue *q = sdkp->disk->queue;
1001 unsigned int logical_block_size = sdkp->device->sector_size;
1002
1003 if (sdkp->device->no_write_same) {
1004 sdkp->max_ws_blocks = 0;
1005 goto out;
1006 }
1007
1008 /* Some devices can not handle block counts above 0xffff despite
1009 * supporting WRITE SAME(16). Consequently we default to 64k
1010 * blocks per I/O unless the device explicitly advertises a
1011 * bigger limit.
1012 */
1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 (u32)SD_MAX_WS16_BLOCKS);
1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 (u32)SD_MAX_WS10_BLOCKS);
1019 else {
1020 sdkp->device->no_write_same = 1;
1021 sdkp->max_ws_blocks = 0;
1022 }
1023
1024 if (sdkp->lbprz && sdkp->lbpws)
1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 else if (sdkp->lbprz && sdkp->lbpws10)
1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 else if (sdkp->max_ws_blocks)
1029 sdkp->zeroing_mode = SD_ZERO_WS;
1030 else
1031 sdkp->zeroing_mode = SD_ZERO_WRITE;
1032
1033 if (sdkp->max_ws_blocks &&
1034 sdkp->physical_block_size > logical_block_size) {
1035 /*
1036 * Reporting a maximum number of blocks that is not aligned
1037 * on the device physical size would cause a large write same
1038 * request to be split into physically unaligned chunks by
1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 * even if the caller of these functions took care to align the
1041 * large request. So make sure the maximum reported is aligned
1042 * to the device physical block size. This is only an optional
1043 * optimization for regular disks, but this is mandatory to
1044 * avoid failure of large write same requests directed at
1045 * sequential write required zones of host-managed ZBC disks.
1046 */
1047 sdkp->max_ws_blocks =
1048 round_down(sdkp->max_ws_blocks,
1049 bytes_to_logical(sdkp->device,
1050 sdkp->physical_block_size));
1051 }
1052
1053 out:
1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 (logical_block_size >> 9));
1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 }
1059
1060 /**
1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062 * @cmd: command to prepare
1063 *
1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065 * the preference indicated by the target device.
1066 **/
1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 struct request *rq = scsi_cmd_to_rq(cmd);
1070 struct scsi_device *sdp = cmd->device;
1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 struct bio *bio = rq->bio;
1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 blk_status_t ret;
1076
1077 if (sdkp->device->no_write_same)
1078 return BLK_STS_TARGET;
1079
1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081
1082 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083
1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085 cmd->cmd_len = 16;
1086 cmd->cmnd[0] = WRITE_SAME_16;
1087 put_unaligned_be64(lba, &cmd->cmnd[2]);
1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1089 } else {
1090 cmd->cmd_len = 10;
1091 cmd->cmnd[0] = WRITE_SAME;
1092 put_unaligned_be32(lba, &cmd->cmnd[2]);
1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094 }
1095
1096 cmd->transfersize = sdp->sector_size;
1097 cmd->allowed = sdkp->max_retries;
1098
1099 /*
1100 * For WRITE SAME the data transferred via the DATA OUT buffer is
1101 * different from the amount of data actually written to the target.
1102 *
1103 * We set up __data_len to the amount of data transferred via the
1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1105 * to transfer a single sector of data first, but then reset it to
1106 * the amount of data to be written right after so that the I/O path
1107 * knows how much to actually write.
1108 */
1109 rq->__data_len = sdp->sector_size;
1110 ret = scsi_alloc_sgtables(cmd);
1111 rq->__data_len = blk_rq_bytes(rq);
1112
1113 return ret;
1114 }
1115
1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 {
1118 struct request *rq = scsi_cmd_to_rq(cmd);
1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120
1121 /* flush requests don't perform I/O, zero the S/G table */
1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123
1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125 cmd->cmd_len = 10;
1126 cmd->transfersize = 0;
1127 cmd->allowed = sdkp->max_retries;
1128
1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1130 return BLK_STS_OK;
1131 }
1132
1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1134 sector_t lba, unsigned int nr_blocks,
1135 unsigned char flags)
1136 {
1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1138 if (unlikely(cmd->cmnd == NULL))
1139 return BLK_STS_RESOURCE;
1140
1141 cmd->cmd_len = SD_EXT_CDB_SIZE;
1142 memset(cmd->cmnd, 0, cmd->cmd_len);
1143
1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1147 cmd->cmnd[10] = flags;
1148 put_unaligned_be64(lba, &cmd->cmnd[12]);
1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1151
1152 return BLK_STS_OK;
1153 }
1154
1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1156 sector_t lba, unsigned int nr_blocks,
1157 unsigned char flags)
1158 {
1159 cmd->cmd_len = 16;
1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1161 cmd->cmnd[1] = flags;
1162 cmd->cmnd[14] = 0;
1163 cmd->cmnd[15] = 0;
1164 put_unaligned_be64(lba, &cmd->cmnd[2]);
1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1166
1167 return BLK_STS_OK;
1168 }
1169
1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1171 sector_t lba, unsigned int nr_blocks,
1172 unsigned char flags)
1173 {
1174 cmd->cmd_len = 10;
1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1176 cmd->cmnd[1] = flags;
1177 cmd->cmnd[6] = 0;
1178 cmd->cmnd[9] = 0;
1179 put_unaligned_be32(lba, &cmd->cmnd[2]);
1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1181
1182 return BLK_STS_OK;
1183 }
1184
1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1186 sector_t lba, unsigned int nr_blocks,
1187 unsigned char flags)
1188 {
1189 /* Avoid that 0 blocks gets translated into 256 blocks. */
1190 if (WARN_ON_ONCE(nr_blocks == 0))
1191 return BLK_STS_IOERR;
1192
1193 if (unlikely(flags & 0x8)) {
1194 /*
1195 * This happens only if this drive failed 10byte rw
1196 * command with ILLEGAL_REQUEST during operation and
1197 * thus turned off use_10_for_rw.
1198 */
1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1200 return BLK_STS_IOERR;
1201 }
1202
1203 cmd->cmd_len = 6;
1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1205 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1206 cmd->cmnd[2] = (lba >> 8) & 0xff;
1207 cmd->cmnd[3] = lba & 0xff;
1208 cmd->cmnd[4] = nr_blocks;
1209 cmd->cmnd[5] = 0;
1210
1211 return BLK_STS_OK;
1212 }
1213
1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 {
1216 struct request *rq = scsi_cmd_to_rq(cmd);
1217 struct scsi_device *sdp = cmd->device;
1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220 sector_t threshold;
1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1223 bool write = rq_data_dir(rq) == WRITE;
1224 unsigned char protect, fua;
1225 blk_status_t ret;
1226 unsigned int dif;
1227 bool dix;
1228
1229 ret = scsi_alloc_sgtables(cmd);
1230 if (ret != BLK_STS_OK)
1231 return ret;
1232
1233 ret = BLK_STS_IOERR;
1234 if (!scsi_device_online(sdp) || sdp->changed) {
1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1236 goto fail;
1237 }
1238
1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1241 goto fail;
1242 }
1243
1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1246 goto fail;
1247 }
1248
1249 /*
1250 * Some SD card readers can't handle accesses which touch the
1251 * last one or two logical blocks. Split accesses as needed.
1252 */
1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254
1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1256 if (lba < threshold) {
1257 /* Access up to the threshold but not beyond */
1258 nr_blocks = threshold - lba;
1259 } else {
1260 /* Access only a single logical block */
1261 nr_blocks = 1;
1262 }
1263 }
1264
1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1267 if (ret)
1268 goto fail;
1269 }
1270
1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1272 dix = scsi_prot_sg_count(cmd);
1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1274
1275 if (dif || dix)
1276 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1277 else
1278 protect = 0;
1279
1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282 protect | fua);
1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285 protect | fua);
1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1287 sdp->use_10_for_rw || protect) {
1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1289 protect | fua);
1290 } else {
1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1292 protect | fua);
1293 }
1294
1295 if (unlikely(ret != BLK_STS_OK))
1296 goto fail;
1297
1298 /*
1299 * We shouldn't disconnect in the middle of a sector, so with a dumb
1300 * host adapter, it's safe to assume that we can at least transfer
1301 * this many bytes between each connect / disconnect.
1302 */
1303 cmd->transfersize = sdp->sector_size;
1304 cmd->underflow = nr_blocks << 9;
1305 cmd->allowed = sdkp->max_retries;
1306 cmd->sdb.length = nr_blocks * sdp->sector_size;
1307
1308 SCSI_LOG_HLQUEUE(1,
1309 scmd_printk(KERN_INFO, cmd,
1310 "%s: block=%llu, count=%d\n", __func__,
1311 (unsigned long long)blk_rq_pos(rq),
1312 blk_rq_sectors(rq)));
1313 SCSI_LOG_HLQUEUE(2,
1314 scmd_printk(KERN_INFO, cmd,
1315 "%s %d/%u 512 byte blocks.\n",
1316 write ? "writing" : "reading", nr_blocks,
1317 blk_rq_sectors(rq)));
1318
1319 /*
1320 * This indicates that the command is ready from our end to be queued.
1321 */
1322 return BLK_STS_OK;
1323 fail:
1324 scsi_free_sgtables(cmd);
1325 return ret;
1326 }
1327
1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 {
1330 struct request *rq = scsi_cmd_to_rq(cmd);
1331
1332 switch (req_op(rq)) {
1333 case REQ_OP_DISCARD:
1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335 case SD_LBP_UNMAP:
1336 return sd_setup_unmap_cmnd(cmd);
1337 case SD_LBP_WS16:
1338 return sd_setup_write_same16_cmnd(cmd, true);
1339 case SD_LBP_WS10:
1340 return sd_setup_write_same10_cmnd(cmd, true);
1341 case SD_LBP_ZERO:
1342 return sd_setup_write_same10_cmnd(cmd, false);
1343 default:
1344 return BLK_STS_TARGET;
1345 }
1346 case REQ_OP_WRITE_ZEROES:
1347 return sd_setup_write_zeroes_cmnd(cmd);
1348 case REQ_OP_WRITE_SAME:
1349 return sd_setup_write_same_cmnd(cmd);
1350 case REQ_OP_FLUSH:
1351 return sd_setup_flush_cmnd(cmd);
1352 case REQ_OP_READ:
1353 case REQ_OP_WRITE:
1354 case REQ_OP_ZONE_APPEND:
1355 return sd_setup_read_write_cmnd(cmd);
1356 case REQ_OP_ZONE_RESET:
1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 false);
1359 case REQ_OP_ZONE_RESET_ALL:
1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 true);
1362 case REQ_OP_ZONE_OPEN:
1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1364 case REQ_OP_ZONE_CLOSE:
1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1366 case REQ_OP_ZONE_FINISH:
1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1368 default:
1369 WARN_ON_ONCE(1);
1370 return BLK_STS_NOTSUPP;
1371 }
1372 }
1373
1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 {
1376 struct request *rq = scsi_cmd_to_rq(SCpnt);
1377 u8 *cmnd;
1378
1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1380 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381
1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1383 cmnd = SCpnt->cmnd;
1384 SCpnt->cmnd = NULL;
1385 SCpnt->cmd_len = 0;
1386 mempool_free(cmnd, sd_cdb_pool);
1387 }
1388 }
1389
1390 static bool sd_need_revalidate(struct block_device *bdev,
1391 struct scsi_disk *sdkp)
1392 {
1393 if (sdkp->device->removable || sdkp->write_prot) {
1394 if (bdev_check_media_change(bdev))
1395 return true;
1396 }
1397
1398 /*
1399 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1400 * nothing to do with partitions, BLKRRPART is used to force a full
1401 * revalidate after things like a format for historical reasons.
1402 */
1403 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1404 }
1405
1406 /**
1407 * sd_open - open a scsi disk device
1408 * @bdev: Block device of the scsi disk to open
1409 * @mode: FMODE_* mask
1410 *
1411 * Returns 0 if successful. Returns a negated errno value in case
1412 * of error.
1413 *
1414 * Note: This can be called from a user context (e.g. fsck(1) )
1415 * or from within the kernel (e.g. as a result of a mount(1) ).
1416 * In the latter case @inode and @filp carry an abridged amount
1417 * of information as noted above.
1418 *
1419 * Locking: called with bdev->bd_disk->open_mutex held.
1420 **/
1421 static int sd_open(struct block_device *bdev, fmode_t mode)
1422 {
1423 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1424 struct scsi_device *sdev;
1425 int retval;
1426
1427 if (!sdkp)
1428 return -ENXIO;
1429
1430 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1431
1432 sdev = sdkp->device;
1433
1434 /*
1435 * If the device is in error recovery, wait until it is done.
1436 * If the device is offline, then disallow any access to it.
1437 */
1438 retval = -ENXIO;
1439 if (!scsi_block_when_processing_errors(sdev))
1440 goto error_out;
1441
1442 if (sd_need_revalidate(bdev, sdkp))
1443 sd_revalidate_disk(bdev->bd_disk);
1444
1445 /*
1446 * If the drive is empty, just let the open fail.
1447 */
1448 retval = -ENOMEDIUM;
1449 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1450 goto error_out;
1451
1452 /*
1453 * If the device has the write protect tab set, have the open fail
1454 * if the user expects to be able to write to the thing.
1455 */
1456 retval = -EROFS;
1457 if (sdkp->write_prot && (mode & FMODE_WRITE))
1458 goto error_out;
1459
1460 /*
1461 * It is possible that the disk changing stuff resulted in
1462 * the device being taken offline. If this is the case,
1463 * report this to the user, and don't pretend that the
1464 * open actually succeeded.
1465 */
1466 retval = -ENXIO;
1467 if (!scsi_device_online(sdev))
1468 goto error_out;
1469
1470 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1471 if (scsi_block_when_processing_errors(sdev))
1472 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1473 }
1474
1475 return 0;
1476
1477 error_out:
1478 scsi_disk_put(sdkp);
1479 return retval;
1480 }
1481
1482 /**
1483 * sd_release - invoked when the (last) close(2) is called on this
1484 * scsi disk.
1485 * @disk: disk to release
1486 * @mode: FMODE_* mask
1487 *
1488 * Returns 0.
1489 *
1490 * Note: may block (uninterruptible) if error recovery is underway
1491 * on this disk.
1492 *
1493 * Locking: called with bdev->bd_disk->open_mutex held.
1494 **/
1495 static void sd_release(struct gendisk *disk, fmode_t mode)
1496 {
1497 struct scsi_disk *sdkp = scsi_disk(disk);
1498 struct scsi_device *sdev = sdkp->device;
1499
1500 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1501
1502 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1503 if (scsi_block_when_processing_errors(sdev))
1504 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1505 }
1506
1507 scsi_disk_put(sdkp);
1508 }
1509
1510 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1511 {
1512 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1513 struct scsi_device *sdp = sdkp->device;
1514 struct Scsi_Host *host = sdp->host;
1515 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1516 int diskinfo[4];
1517
1518 /* default to most commonly used values */
1519 diskinfo[0] = 0x40; /* 1 << 6 */
1520 diskinfo[1] = 0x20; /* 1 << 5 */
1521 diskinfo[2] = capacity >> 11;
1522
1523 /* override with calculated, extended default, or driver values */
1524 if (host->hostt->bios_param)
1525 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1526 else
1527 scsicam_bios_param(bdev, capacity, diskinfo);
1528
1529 geo->heads = diskinfo[0];
1530 geo->sectors = diskinfo[1];
1531 geo->cylinders = diskinfo[2];
1532 return 0;
1533 }
1534
1535 /**
1536 * sd_ioctl - process an ioctl
1537 * @bdev: target block device
1538 * @mode: FMODE_* mask
1539 * @cmd: ioctl command number
1540 * @arg: this is third argument given to ioctl(2) system call.
1541 * Often contains a pointer.
1542 *
1543 * Returns 0 if successful (some ioctls return positive numbers on
1544 * success as well). Returns a negated errno value in case of error.
1545 *
1546 * Note: most ioctls are forward onto the block subsystem or further
1547 * down in the scsi subsystem.
1548 **/
1549 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1550 unsigned int cmd, unsigned long arg)
1551 {
1552 struct gendisk *disk = bdev->bd_disk;
1553 struct scsi_disk *sdkp = scsi_disk(disk);
1554 struct scsi_device *sdp = sdkp->device;
1555 void __user *p = (void __user *)arg;
1556 int error;
1557
1558 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1559 "cmd=0x%x\n", disk->disk_name, cmd));
1560
1561 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1562 return -ENOIOCTLCMD;
1563
1564 /*
1565 * If we are in the middle of error recovery, don't let anyone
1566 * else try and use this device. Also, if error recovery fails, it
1567 * may try and take the device offline, in which case all further
1568 * access to the device is prohibited.
1569 */
1570 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1571 (mode & FMODE_NDELAY) != 0);
1572 if (error)
1573 return error;
1574
1575 if (is_sed_ioctl(cmd))
1576 return sed_ioctl(sdkp->opal_dev, cmd, p);
1577 return scsi_ioctl(sdp, disk, mode, cmd, p);
1578 }
1579
1580 static void set_media_not_present(struct scsi_disk *sdkp)
1581 {
1582 if (sdkp->media_present)
1583 sdkp->device->changed = 1;
1584
1585 if (sdkp->device->removable) {
1586 sdkp->media_present = 0;
1587 sdkp->capacity = 0;
1588 }
1589 }
1590
1591 static int media_not_present(struct scsi_disk *sdkp,
1592 struct scsi_sense_hdr *sshdr)
1593 {
1594 if (!scsi_sense_valid(sshdr))
1595 return 0;
1596
1597 /* not invoked for commands that could return deferred errors */
1598 switch (sshdr->sense_key) {
1599 case UNIT_ATTENTION:
1600 case NOT_READY:
1601 /* medium not present */
1602 if (sshdr->asc == 0x3A) {
1603 set_media_not_present(sdkp);
1604 return 1;
1605 }
1606 }
1607 return 0;
1608 }
1609
1610 /**
1611 * sd_check_events - check media events
1612 * @disk: kernel device descriptor
1613 * @clearing: disk events currently being cleared
1614 *
1615 * Returns mask of DISK_EVENT_*.
1616 *
1617 * Note: this function is invoked from the block subsystem.
1618 **/
1619 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1620 {
1621 struct scsi_disk *sdkp = scsi_disk_get(disk);
1622 struct scsi_device *sdp;
1623 int retval;
1624 bool disk_changed;
1625
1626 if (!sdkp)
1627 return 0;
1628
1629 sdp = sdkp->device;
1630 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1631
1632 /*
1633 * If the device is offline, don't send any commands - just pretend as
1634 * if the command failed. If the device ever comes back online, we
1635 * can deal with it then. It is only because of unrecoverable errors
1636 * that we would ever take a device offline in the first place.
1637 */
1638 if (!scsi_device_online(sdp)) {
1639 set_media_not_present(sdkp);
1640 goto out;
1641 }
1642
1643 /*
1644 * Using TEST_UNIT_READY enables differentiation between drive with
1645 * no cartridge loaded - NOT READY, drive with changed cartridge -
1646 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1647 *
1648 * Drives that auto spin down. eg iomega jaz 1G, will be started
1649 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1650 * sd_revalidate() is called.
1651 */
1652 if (scsi_block_when_processing_errors(sdp)) {
1653 struct scsi_sense_hdr sshdr = { 0, };
1654
1655 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1656 &sshdr);
1657
1658 /* failed to execute TUR, assume media not present */
1659 if (retval < 0 || host_byte(retval)) {
1660 set_media_not_present(sdkp);
1661 goto out;
1662 }
1663
1664 if (media_not_present(sdkp, &sshdr))
1665 goto out;
1666 }
1667
1668 /*
1669 * For removable scsi disk we have to recognise the presence
1670 * of a disk in the drive.
1671 */
1672 if (!sdkp->media_present)
1673 sdp->changed = 1;
1674 sdkp->media_present = 1;
1675 out:
1676 /*
1677 * sdp->changed is set under the following conditions:
1678 *
1679 * Medium present state has changed in either direction.
1680 * Device has indicated UNIT_ATTENTION.
1681 */
1682 disk_changed = sdp->changed;
1683 sdp->changed = 0;
1684 scsi_disk_put(sdkp);
1685 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1686 }
1687
1688 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1689 {
1690 int retries, res;
1691 struct scsi_device *sdp = sdkp->device;
1692 const int timeout = sdp->request_queue->rq_timeout
1693 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1694 struct scsi_sense_hdr my_sshdr;
1695
1696 if (!scsi_device_online(sdp))
1697 return -ENODEV;
1698
1699 /* caller might not be interested in sense, but we need it */
1700 if (!sshdr)
1701 sshdr = &my_sshdr;
1702
1703 for (retries = 3; retries > 0; --retries) {
1704 unsigned char cmd[10] = { 0 };
1705
1706 cmd[0] = SYNCHRONIZE_CACHE;
1707 /*
1708 * Leave the rest of the command zero to indicate
1709 * flush everything.
1710 */
1711 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1712 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1713 if (res == 0)
1714 break;
1715 }
1716
1717 if (res) {
1718 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1719
1720 if (res < 0)
1721 return res;
1722
1723 if (scsi_status_is_check_condition(res) &&
1724 scsi_sense_valid(sshdr)) {
1725 sd_print_sense_hdr(sdkp, sshdr);
1726
1727 /* we need to evaluate the error return */
1728 if (sshdr->asc == 0x3a || /* medium not present */
1729 sshdr->asc == 0x20 || /* invalid command */
1730 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1731 /* this is no error here */
1732 return 0;
1733 }
1734
1735 switch (host_byte(res)) {
1736 /* ignore errors due to racing a disconnection */
1737 case DID_BAD_TARGET:
1738 case DID_NO_CONNECT:
1739 return 0;
1740 /* signal the upper layer it might try again */
1741 case DID_BUS_BUSY:
1742 case DID_IMM_RETRY:
1743 case DID_REQUEUE:
1744 case DID_SOFT_ERROR:
1745 return -EBUSY;
1746 default:
1747 return -EIO;
1748 }
1749 }
1750 return 0;
1751 }
1752
1753 static void sd_rescan(struct device *dev)
1754 {
1755 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1756
1757 sd_revalidate_disk(sdkp->disk);
1758 }
1759
1760 static char sd_pr_type(enum pr_type type)
1761 {
1762 switch (type) {
1763 case PR_WRITE_EXCLUSIVE:
1764 return 0x01;
1765 case PR_EXCLUSIVE_ACCESS:
1766 return 0x03;
1767 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1768 return 0x05;
1769 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1770 return 0x06;
1771 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1772 return 0x07;
1773 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1774 return 0x08;
1775 default:
1776 return 0;
1777 }
1778 };
1779
1780 static int sd_pr_command(struct block_device *bdev, u8 sa,
1781 u64 key, u64 sa_key, u8 type, u8 flags)
1782 {
1783 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1784 struct scsi_device *sdev = sdkp->device;
1785 struct scsi_sense_hdr sshdr;
1786 int result;
1787 u8 cmd[16] = { 0, };
1788 u8 data[24] = { 0, };
1789
1790 cmd[0] = PERSISTENT_RESERVE_OUT;
1791 cmd[1] = sa;
1792 cmd[2] = type;
1793 put_unaligned_be32(sizeof(data), &cmd[5]);
1794
1795 put_unaligned_be64(key, &data[0]);
1796 put_unaligned_be64(sa_key, &data[8]);
1797 data[20] = flags;
1798
1799 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1800 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1801
1802 if (scsi_status_is_check_condition(result) &&
1803 scsi_sense_valid(&sshdr)) {
1804 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1805 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1806 }
1807
1808 return result;
1809 }
1810
1811 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1812 u32 flags)
1813 {
1814 if (flags & ~PR_FL_IGNORE_KEY)
1815 return -EOPNOTSUPP;
1816 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1817 old_key, new_key, 0,
1818 (1 << 0) /* APTPL */);
1819 }
1820
1821 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1822 u32 flags)
1823 {
1824 if (flags)
1825 return -EOPNOTSUPP;
1826 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1827 }
1828
1829 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1830 {
1831 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1832 }
1833
1834 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1835 enum pr_type type, bool abort)
1836 {
1837 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1838 sd_pr_type(type), 0);
1839 }
1840
1841 static int sd_pr_clear(struct block_device *bdev, u64 key)
1842 {
1843 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1844 }
1845
1846 static const struct pr_ops sd_pr_ops = {
1847 .pr_register = sd_pr_register,
1848 .pr_reserve = sd_pr_reserve,
1849 .pr_release = sd_pr_release,
1850 .pr_preempt = sd_pr_preempt,
1851 .pr_clear = sd_pr_clear,
1852 };
1853
1854 static const struct block_device_operations sd_fops = {
1855 .owner = THIS_MODULE,
1856 .open = sd_open,
1857 .release = sd_release,
1858 .ioctl = sd_ioctl,
1859 .getgeo = sd_getgeo,
1860 .compat_ioctl = blkdev_compat_ptr_ioctl,
1861 .check_events = sd_check_events,
1862 .unlock_native_capacity = sd_unlock_native_capacity,
1863 .report_zones = sd_zbc_report_zones,
1864 .pr_ops = &sd_pr_ops,
1865 };
1866
1867 /**
1868 * sd_eh_reset - reset error handling callback
1869 * @scmd: sd-issued command that has failed
1870 *
1871 * This function is called by the SCSI midlayer before starting
1872 * SCSI EH. When counting medium access failures we have to be
1873 * careful to register it only only once per device and SCSI EH run;
1874 * there might be several timed out commands which will cause the
1875 * 'max_medium_access_timeouts' counter to trigger after the first
1876 * SCSI EH run already and set the device to offline.
1877 * So this function resets the internal counter before starting SCSI EH.
1878 **/
1879 static void sd_eh_reset(struct scsi_cmnd *scmd)
1880 {
1881 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1882
1883 /* New SCSI EH run, reset gate variable */
1884 sdkp->ignore_medium_access_errors = false;
1885 }
1886
1887 /**
1888 * sd_eh_action - error handling callback
1889 * @scmd: sd-issued command that has failed
1890 * @eh_disp: The recovery disposition suggested by the midlayer
1891 *
1892 * This function is called by the SCSI midlayer upon completion of an
1893 * error test command (currently TEST UNIT READY). The result of sending
1894 * the eh command is passed in eh_disp. We're looking for devices that
1895 * fail medium access commands but are OK with non access commands like
1896 * test unit ready (so wrongly see the device as having a successful
1897 * recovery)
1898 **/
1899 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1900 {
1901 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1902 struct scsi_device *sdev = scmd->device;
1903
1904 if (!scsi_device_online(sdev) ||
1905 !scsi_medium_access_command(scmd) ||
1906 host_byte(scmd->result) != DID_TIME_OUT ||
1907 eh_disp != SUCCESS)
1908 return eh_disp;
1909
1910 /*
1911 * The device has timed out executing a medium access command.
1912 * However, the TEST UNIT READY command sent during error
1913 * handling completed successfully. Either the device is in the
1914 * process of recovering or has it suffered an internal failure
1915 * that prevents access to the storage medium.
1916 */
1917 if (!sdkp->ignore_medium_access_errors) {
1918 sdkp->medium_access_timed_out++;
1919 sdkp->ignore_medium_access_errors = true;
1920 }
1921
1922 /*
1923 * If the device keeps failing read/write commands but TEST UNIT
1924 * READY always completes successfully we assume that medium
1925 * access is no longer possible and take the device offline.
1926 */
1927 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1928 scmd_printk(KERN_ERR, scmd,
1929 "Medium access timeout failure. Offlining disk!\n");
1930 mutex_lock(&sdev->state_mutex);
1931 scsi_device_set_state(sdev, SDEV_OFFLINE);
1932 mutex_unlock(&sdev->state_mutex);
1933
1934 return SUCCESS;
1935 }
1936
1937 return eh_disp;
1938 }
1939
1940 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1941 {
1942 struct request *req = scsi_cmd_to_rq(scmd);
1943 struct scsi_device *sdev = scmd->device;
1944 unsigned int transferred, good_bytes;
1945 u64 start_lba, end_lba, bad_lba;
1946
1947 /*
1948 * Some commands have a payload smaller than the device logical
1949 * block size (e.g. INQUIRY on a 4K disk).
1950 */
1951 if (scsi_bufflen(scmd) <= sdev->sector_size)
1952 return 0;
1953
1954 /* Check if we have a 'bad_lba' information */
1955 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1956 SCSI_SENSE_BUFFERSIZE,
1957 &bad_lba))
1958 return 0;
1959
1960 /*
1961 * If the bad lba was reported incorrectly, we have no idea where
1962 * the error is.
1963 */
1964 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1965 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1966 if (bad_lba < start_lba || bad_lba >= end_lba)
1967 return 0;
1968
1969 /*
1970 * resid is optional but mostly filled in. When it's unused,
1971 * its value is zero, so we assume the whole buffer transferred
1972 */
1973 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1974
1975 /* This computation should always be done in terms of the
1976 * resolution of the device's medium.
1977 */
1978 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1979
1980 return min(good_bytes, transferred);
1981 }
1982
1983 /**
1984 * sd_done - bottom half handler: called when the lower level
1985 * driver has completed (successfully or otherwise) a scsi command.
1986 * @SCpnt: mid-level's per command structure.
1987 *
1988 * Note: potentially run from within an ISR. Must not block.
1989 **/
1990 static int sd_done(struct scsi_cmnd *SCpnt)
1991 {
1992 int result = SCpnt->result;
1993 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1994 unsigned int sector_size = SCpnt->device->sector_size;
1995 unsigned int resid;
1996 struct scsi_sense_hdr sshdr;
1997 struct request *req = scsi_cmd_to_rq(SCpnt);
1998 struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
1999 int sense_valid = 0;
2000 int sense_deferred = 0;
2001
2002 switch (req_op(req)) {
2003 case REQ_OP_DISCARD:
2004 case REQ_OP_WRITE_ZEROES:
2005 case REQ_OP_WRITE_SAME:
2006 case REQ_OP_ZONE_RESET:
2007 case REQ_OP_ZONE_RESET_ALL:
2008 case REQ_OP_ZONE_OPEN:
2009 case REQ_OP_ZONE_CLOSE:
2010 case REQ_OP_ZONE_FINISH:
2011 if (!result) {
2012 good_bytes = blk_rq_bytes(req);
2013 scsi_set_resid(SCpnt, 0);
2014 } else {
2015 good_bytes = 0;
2016 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2017 }
2018 break;
2019 default:
2020 /*
2021 * In case of bogus fw or device, we could end up having
2022 * an unaligned partial completion. Check this here and force
2023 * alignment.
2024 */
2025 resid = scsi_get_resid(SCpnt);
2026 if (resid & (sector_size - 1)) {
2027 sd_printk(KERN_INFO, sdkp,
2028 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2029 resid, sector_size);
2030 scsi_print_command(SCpnt);
2031 resid = min(scsi_bufflen(SCpnt),
2032 round_up(resid, sector_size));
2033 scsi_set_resid(SCpnt, resid);
2034 }
2035 }
2036
2037 if (result) {
2038 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2039 if (sense_valid)
2040 sense_deferred = scsi_sense_is_deferred(&sshdr);
2041 }
2042 sdkp->medium_access_timed_out = 0;
2043
2044 if (!scsi_status_is_check_condition(result) &&
2045 (!sense_valid || sense_deferred))
2046 goto out;
2047
2048 switch (sshdr.sense_key) {
2049 case HARDWARE_ERROR:
2050 case MEDIUM_ERROR:
2051 good_bytes = sd_completed_bytes(SCpnt);
2052 break;
2053 case RECOVERED_ERROR:
2054 good_bytes = scsi_bufflen(SCpnt);
2055 break;
2056 case NO_SENSE:
2057 /* This indicates a false check condition, so ignore it. An
2058 * unknown amount of data was transferred so treat it as an
2059 * error.
2060 */
2061 SCpnt->result = 0;
2062 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2063 break;
2064 case ABORTED_COMMAND:
2065 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2066 good_bytes = sd_completed_bytes(SCpnt);
2067 break;
2068 case ILLEGAL_REQUEST:
2069 switch (sshdr.asc) {
2070 case 0x10: /* DIX: Host detected corruption */
2071 good_bytes = sd_completed_bytes(SCpnt);
2072 break;
2073 case 0x20: /* INVALID COMMAND OPCODE */
2074 case 0x24: /* INVALID FIELD IN CDB */
2075 switch (SCpnt->cmnd[0]) {
2076 case UNMAP:
2077 sd_config_discard(sdkp, SD_LBP_DISABLE);
2078 break;
2079 case WRITE_SAME_16:
2080 case WRITE_SAME:
2081 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2082 sd_config_discard(sdkp, SD_LBP_DISABLE);
2083 } else {
2084 sdkp->device->no_write_same = 1;
2085 sd_config_write_same(sdkp);
2086 req->rq_flags |= RQF_QUIET;
2087 }
2088 break;
2089 }
2090 }
2091 break;
2092 default:
2093 break;
2094 }
2095
2096 out:
2097 if (sd_is_zoned(sdkp))
2098 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2099
2100 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2101 "sd_done: completed %d of %d bytes\n",
2102 good_bytes, scsi_bufflen(SCpnt)));
2103
2104 return good_bytes;
2105 }
2106
2107 /*
2108 * spinup disk - called only in sd_revalidate_disk()
2109 */
2110 static void
2111 sd_spinup_disk(struct scsi_disk *sdkp)
2112 {
2113 unsigned char cmd[10];
2114 unsigned long spintime_expire = 0;
2115 int retries, spintime;
2116 unsigned int the_result;
2117 struct scsi_sense_hdr sshdr;
2118 int sense_valid = 0;
2119
2120 spintime = 0;
2121
2122 /* Spin up drives, as required. Only do this at boot time */
2123 /* Spinup needs to be done for module loads too. */
2124 do {
2125 retries = 0;
2126
2127 do {
2128 bool media_was_present = sdkp->media_present;
2129
2130 cmd[0] = TEST_UNIT_READY;
2131 memset((void *) &cmd[1], 0, 9);
2132
2133 the_result = scsi_execute_req(sdkp->device, cmd,
2134 DMA_NONE, NULL, 0,
2135 &sshdr, SD_TIMEOUT,
2136 sdkp->max_retries, NULL);
2137
2138 /*
2139 * If the drive has indicated to us that it
2140 * doesn't have any media in it, don't bother
2141 * with any more polling.
2142 */
2143 if (media_not_present(sdkp, &sshdr)) {
2144 if (media_was_present)
2145 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2146 return;
2147 }
2148
2149 if (the_result)
2150 sense_valid = scsi_sense_valid(&sshdr);
2151 retries++;
2152 } while (retries < 3 &&
2153 (!scsi_status_is_good(the_result) ||
2154 (scsi_status_is_check_condition(the_result) &&
2155 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2156
2157 if (!scsi_status_is_check_condition(the_result)) {
2158 /* no sense, TUR either succeeded or failed
2159 * with a status error */
2160 if(!spintime && !scsi_status_is_good(the_result)) {
2161 sd_print_result(sdkp, "Test Unit Ready failed",
2162 the_result);
2163 }
2164 break;
2165 }
2166
2167 /*
2168 * The device does not want the automatic start to be issued.
2169 */
2170 if (sdkp->device->no_start_on_add)
2171 break;
2172
2173 if (sense_valid && sshdr.sense_key == NOT_READY) {
2174 if (sshdr.asc == 4 && sshdr.ascq == 3)
2175 break; /* manual intervention required */
2176 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2177 break; /* standby */
2178 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2179 break; /* unavailable */
2180 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2181 break; /* sanitize in progress */
2182 /*
2183 * Issue command to spin up drive when not ready
2184 */
2185 if (!spintime) {
2186 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2187 cmd[0] = START_STOP;
2188 cmd[1] = 1; /* Return immediately */
2189 memset((void *) &cmd[2], 0, 8);
2190 cmd[4] = 1; /* Start spin cycle */
2191 if (sdkp->device->start_stop_pwr_cond)
2192 cmd[4] |= 1 << 4;
2193 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2194 NULL, 0, &sshdr,
2195 SD_TIMEOUT, sdkp->max_retries,
2196 NULL);
2197 spintime_expire = jiffies + 100 * HZ;
2198 spintime = 1;
2199 }
2200 /* Wait 1 second for next try */
2201 msleep(1000);
2202 printk(KERN_CONT ".");
2203
2204 /*
2205 * Wait for USB flash devices with slow firmware.
2206 * Yes, this sense key/ASC combination shouldn't
2207 * occur here. It's characteristic of these devices.
2208 */
2209 } else if (sense_valid &&
2210 sshdr.sense_key == UNIT_ATTENTION &&
2211 sshdr.asc == 0x28) {
2212 if (!spintime) {
2213 spintime_expire = jiffies + 5 * HZ;
2214 spintime = 1;
2215 }
2216 /* Wait 1 second for next try */
2217 msleep(1000);
2218 } else {
2219 /* we don't understand the sense code, so it's
2220 * probably pointless to loop */
2221 if(!spintime) {
2222 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2223 sd_print_sense_hdr(sdkp, &sshdr);
2224 }
2225 break;
2226 }
2227
2228 } while (spintime && time_before_eq(jiffies, spintime_expire));
2229
2230 if (spintime) {
2231 if (scsi_status_is_good(the_result))
2232 printk(KERN_CONT "ready\n");
2233 else
2234 printk(KERN_CONT "not responding...\n");
2235 }
2236 }
2237
2238 /*
2239 * Determine whether disk supports Data Integrity Field.
2240 */
2241 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2242 {
2243 struct scsi_device *sdp = sdkp->device;
2244 u8 type;
2245 int ret = 0;
2246
2247 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2248 sdkp->protection_type = 0;
2249 return ret;
2250 }
2251
2252 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2253
2254 if (type > T10_PI_TYPE3_PROTECTION)
2255 ret = -ENODEV;
2256 else if (scsi_host_dif_capable(sdp->host, type))
2257 ret = 1;
2258
2259 if (sdkp->first_scan || type != sdkp->protection_type)
2260 switch (ret) {
2261 case -ENODEV:
2262 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2263 " protection type %u. Disabling disk!\n",
2264 type);
2265 break;
2266 case 1:
2267 sd_printk(KERN_NOTICE, sdkp,
2268 "Enabling DIF Type %u protection\n", type);
2269 break;
2270 case 0:
2271 sd_printk(KERN_NOTICE, sdkp,
2272 "Disabling DIF Type %u protection\n", type);
2273 break;
2274 }
2275
2276 sdkp->protection_type = type;
2277
2278 return ret;
2279 }
2280
2281 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2282 struct scsi_sense_hdr *sshdr, int sense_valid,
2283 int the_result)
2284 {
2285 if (sense_valid)
2286 sd_print_sense_hdr(sdkp, sshdr);
2287 else
2288 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2289
2290 /*
2291 * Set dirty bit for removable devices if not ready -
2292 * sometimes drives will not report this properly.
2293 */
2294 if (sdp->removable &&
2295 sense_valid && sshdr->sense_key == NOT_READY)
2296 set_media_not_present(sdkp);
2297
2298 /*
2299 * We used to set media_present to 0 here to indicate no media
2300 * in the drive, but some drives fail read capacity even with
2301 * media present, so we can't do that.
2302 */
2303 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2304 }
2305
2306 #define RC16_LEN 32
2307 #if RC16_LEN > SD_BUF_SIZE
2308 #error RC16_LEN must not be more than SD_BUF_SIZE
2309 #endif
2310
2311 #define READ_CAPACITY_RETRIES_ON_RESET 10
2312
2313 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2314 unsigned char *buffer)
2315 {
2316 unsigned char cmd[16];
2317 struct scsi_sense_hdr sshdr;
2318 int sense_valid = 0;
2319 int the_result;
2320 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2321 unsigned int alignment;
2322 unsigned long long lba;
2323 unsigned sector_size;
2324
2325 if (sdp->no_read_capacity_16)
2326 return -EINVAL;
2327
2328 do {
2329 memset(cmd, 0, 16);
2330 cmd[0] = SERVICE_ACTION_IN_16;
2331 cmd[1] = SAI_READ_CAPACITY_16;
2332 cmd[13] = RC16_LEN;
2333 memset(buffer, 0, RC16_LEN);
2334
2335 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2336 buffer, RC16_LEN, &sshdr,
2337 SD_TIMEOUT, sdkp->max_retries, NULL);
2338
2339 if (media_not_present(sdkp, &sshdr))
2340 return -ENODEV;
2341
2342 if (the_result > 0) {
2343 sense_valid = scsi_sense_valid(&sshdr);
2344 if (sense_valid &&
2345 sshdr.sense_key == ILLEGAL_REQUEST &&
2346 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2347 sshdr.ascq == 0x00)
2348 /* Invalid Command Operation Code or
2349 * Invalid Field in CDB, just retry
2350 * silently with RC10 */
2351 return -EINVAL;
2352 if (sense_valid &&
2353 sshdr.sense_key == UNIT_ATTENTION &&
2354 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2355 /* Device reset might occur several times,
2356 * give it one more chance */
2357 if (--reset_retries > 0)
2358 continue;
2359 }
2360 retries--;
2361
2362 } while (the_result && retries);
2363
2364 if (the_result) {
2365 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2366 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2367 return -EINVAL;
2368 }
2369
2370 sector_size = get_unaligned_be32(&buffer[8]);
2371 lba = get_unaligned_be64(&buffer[0]);
2372
2373 if (sd_read_protection_type(sdkp, buffer) < 0) {
2374 sdkp->capacity = 0;
2375 return -ENODEV;
2376 }
2377
2378 /* Logical blocks per physical block exponent */
2379 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2380
2381 /* RC basis */
2382 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2383
2384 /* Lowest aligned logical block */
2385 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2386 blk_queue_alignment_offset(sdp->request_queue, alignment);
2387 if (alignment && sdkp->first_scan)
2388 sd_printk(KERN_NOTICE, sdkp,
2389 "physical block alignment offset: %u\n", alignment);
2390
2391 if (buffer[14] & 0x80) { /* LBPME */
2392 sdkp->lbpme = 1;
2393
2394 if (buffer[14] & 0x40) /* LBPRZ */
2395 sdkp->lbprz = 1;
2396
2397 sd_config_discard(sdkp, SD_LBP_WS16);
2398 }
2399
2400 sdkp->capacity = lba + 1;
2401 return sector_size;
2402 }
2403
2404 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2405 unsigned char *buffer)
2406 {
2407 unsigned char cmd[16];
2408 struct scsi_sense_hdr sshdr;
2409 int sense_valid = 0;
2410 int the_result;
2411 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2412 sector_t lba;
2413 unsigned sector_size;
2414
2415 do {
2416 cmd[0] = READ_CAPACITY;
2417 memset(&cmd[1], 0, 9);
2418 memset(buffer, 0, 8);
2419
2420 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2421 buffer, 8, &sshdr,
2422 SD_TIMEOUT, sdkp->max_retries, NULL);
2423
2424 if (media_not_present(sdkp, &sshdr))
2425 return -ENODEV;
2426
2427 if (the_result > 0) {
2428 sense_valid = scsi_sense_valid(&sshdr);
2429 if (sense_valid &&
2430 sshdr.sense_key == UNIT_ATTENTION &&
2431 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2432 /* Device reset might occur several times,
2433 * give it one more chance */
2434 if (--reset_retries > 0)
2435 continue;
2436 }
2437 retries--;
2438
2439 } while (the_result && retries);
2440
2441 if (the_result) {
2442 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2443 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2444 return -EINVAL;
2445 }
2446
2447 sector_size = get_unaligned_be32(&buffer[4]);
2448 lba = get_unaligned_be32(&buffer[0]);
2449
2450 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2451 /* Some buggy (usb cardreader) devices return an lba of
2452 0xffffffff when the want to report a size of 0 (with
2453 which they really mean no media is present) */
2454 sdkp->capacity = 0;
2455 sdkp->physical_block_size = sector_size;
2456 return sector_size;
2457 }
2458
2459 sdkp->capacity = lba + 1;
2460 sdkp->physical_block_size = sector_size;
2461 return sector_size;
2462 }
2463
2464 static int sd_try_rc16_first(struct scsi_device *sdp)
2465 {
2466 if (sdp->host->max_cmd_len < 16)
2467 return 0;
2468 if (sdp->try_rc_10_first)
2469 return 0;
2470 if (sdp->scsi_level > SCSI_SPC_2)
2471 return 1;
2472 if (scsi_device_protection(sdp))
2473 return 1;
2474 return 0;
2475 }
2476
2477 /*
2478 * read disk capacity
2479 */
2480 static void
2481 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2482 {
2483 int sector_size;
2484 struct scsi_device *sdp = sdkp->device;
2485
2486 if (sd_try_rc16_first(sdp)) {
2487 sector_size = read_capacity_16(sdkp, sdp, buffer);
2488 if (sector_size == -EOVERFLOW)
2489 goto got_data;
2490 if (sector_size == -ENODEV)
2491 return;
2492 if (sector_size < 0)
2493 sector_size = read_capacity_10(sdkp, sdp, buffer);
2494 if (sector_size < 0)
2495 return;
2496 } else {
2497 sector_size = read_capacity_10(sdkp, sdp, buffer);
2498 if (sector_size == -EOVERFLOW)
2499 goto got_data;
2500 if (sector_size < 0)
2501 return;
2502 if ((sizeof(sdkp->capacity) > 4) &&
2503 (sdkp->capacity > 0xffffffffULL)) {
2504 int old_sector_size = sector_size;
2505 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2506 "Trying to use READ CAPACITY(16).\n");
2507 sector_size = read_capacity_16(sdkp, sdp, buffer);
2508 if (sector_size < 0) {
2509 sd_printk(KERN_NOTICE, sdkp,
2510 "Using 0xffffffff as device size\n");
2511 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2512 sector_size = old_sector_size;
2513 goto got_data;
2514 }
2515 /* Remember that READ CAPACITY(16) succeeded */
2516 sdp->try_rc_10_first = 0;
2517 }
2518 }
2519
2520 /* Some devices are known to return the total number of blocks,
2521 * not the highest block number. Some devices have versions
2522 * which do this and others which do not. Some devices we might
2523 * suspect of doing this but we don't know for certain.
2524 *
2525 * If we know the reported capacity is wrong, decrement it. If
2526 * we can only guess, then assume the number of blocks is even
2527 * (usually true but not always) and err on the side of lowering
2528 * the capacity.
2529 */
2530 if (sdp->fix_capacity ||
2531 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2532 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2533 "from its reported value: %llu\n",
2534 (unsigned long long) sdkp->capacity);
2535 --sdkp->capacity;
2536 }
2537
2538 got_data:
2539 if (sector_size == 0) {
2540 sector_size = 512;
2541 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2542 "assuming 512.\n");
2543 }
2544
2545 if (sector_size != 512 &&
2546 sector_size != 1024 &&
2547 sector_size != 2048 &&
2548 sector_size != 4096) {
2549 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2550 sector_size);
2551 /*
2552 * The user might want to re-format the drive with
2553 * a supported sectorsize. Once this happens, it
2554 * would be relatively trivial to set the thing up.
2555 * For this reason, we leave the thing in the table.
2556 */
2557 sdkp->capacity = 0;
2558 /*
2559 * set a bogus sector size so the normal read/write
2560 * logic in the block layer will eventually refuse any
2561 * request on this device without tripping over power
2562 * of two sector size assumptions
2563 */
2564 sector_size = 512;
2565 }
2566 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2567 blk_queue_physical_block_size(sdp->request_queue,
2568 sdkp->physical_block_size);
2569 sdkp->device->sector_size = sector_size;
2570
2571 if (sdkp->capacity > 0xffffffff)
2572 sdp->use_16_for_rw = 1;
2573
2574 }
2575
2576 /*
2577 * Print disk capacity
2578 */
2579 static void
2580 sd_print_capacity(struct scsi_disk *sdkp,
2581 sector_t old_capacity)
2582 {
2583 int sector_size = sdkp->device->sector_size;
2584 char cap_str_2[10], cap_str_10[10];
2585
2586 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2587 return;
2588
2589 string_get_size(sdkp->capacity, sector_size,
2590 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2591 string_get_size(sdkp->capacity, sector_size,
2592 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2593
2594 sd_printk(KERN_NOTICE, sdkp,
2595 "%llu %d-byte logical blocks: (%s/%s)\n",
2596 (unsigned long long)sdkp->capacity,
2597 sector_size, cap_str_10, cap_str_2);
2598
2599 if (sdkp->physical_block_size != sector_size)
2600 sd_printk(KERN_NOTICE, sdkp,
2601 "%u-byte physical blocks\n",
2602 sdkp->physical_block_size);
2603 }
2604
2605 /* called with buffer of length 512 */
2606 static inline int
2607 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2608 unsigned char *buffer, int len, struct scsi_mode_data *data,
2609 struct scsi_sense_hdr *sshdr)
2610 {
2611 /*
2612 * If we must use MODE SENSE(10), make sure that the buffer length
2613 * is at least 8 bytes so that the mode sense header fits.
2614 */
2615 if (sdkp->device->use_10_for_ms && len < 8)
2616 len = 8;
2617
2618 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2619 SD_TIMEOUT, sdkp->max_retries, data,
2620 sshdr);
2621 }
2622
2623 /*
2624 * read write protect setting, if possible - called only in sd_revalidate_disk()
2625 * called with buffer of length SD_BUF_SIZE
2626 */
2627 static void
2628 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2629 {
2630 int res;
2631 struct scsi_device *sdp = sdkp->device;
2632 struct scsi_mode_data data;
2633 int old_wp = sdkp->write_prot;
2634
2635 set_disk_ro(sdkp->disk, 0);
2636 if (sdp->skip_ms_page_3f) {
2637 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2638 return;
2639 }
2640
2641 if (sdp->use_192_bytes_for_3f) {
2642 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2643 } else {
2644 /*
2645 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2646 * We have to start carefully: some devices hang if we ask
2647 * for more than is available.
2648 */
2649 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2650
2651 /*
2652 * Second attempt: ask for page 0 When only page 0 is
2653 * implemented, a request for page 3F may return Sense Key
2654 * 5: Illegal Request, Sense Code 24: Invalid field in
2655 * CDB.
2656 */
2657 if (res < 0)
2658 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2659
2660 /*
2661 * Third attempt: ask 255 bytes, as we did earlier.
2662 */
2663 if (res < 0)
2664 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2665 &data, NULL);
2666 }
2667
2668 if (res < 0) {
2669 sd_first_printk(KERN_WARNING, sdkp,
2670 "Test WP failed, assume Write Enabled\n");
2671 } else {
2672 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2673 set_disk_ro(sdkp->disk, sdkp->write_prot);
2674 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2675 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2676 sdkp->write_prot ? "on" : "off");
2677 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2678 }
2679 }
2680 }
2681
2682 /*
2683 * sd_read_cache_type - called only from sd_revalidate_disk()
2684 * called with buffer of length SD_BUF_SIZE
2685 */
2686 static void
2687 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2688 {
2689 int len = 0, res;
2690 struct scsi_device *sdp = sdkp->device;
2691
2692 int dbd;
2693 int modepage;
2694 int first_len;
2695 struct scsi_mode_data data;
2696 struct scsi_sense_hdr sshdr;
2697 int old_wce = sdkp->WCE;
2698 int old_rcd = sdkp->RCD;
2699 int old_dpofua = sdkp->DPOFUA;
2700
2701
2702 if (sdkp->cache_override)
2703 return;
2704
2705 first_len = 4;
2706 if (sdp->skip_ms_page_8) {
2707 if (sdp->type == TYPE_RBC)
2708 goto defaults;
2709 else {
2710 if (sdp->skip_ms_page_3f)
2711 goto defaults;
2712 modepage = 0x3F;
2713 if (sdp->use_192_bytes_for_3f)
2714 first_len = 192;
2715 dbd = 0;
2716 }
2717 } else if (sdp->type == TYPE_RBC) {
2718 modepage = 6;
2719 dbd = 8;
2720 } else {
2721 modepage = 8;
2722 dbd = 0;
2723 }
2724
2725 /* cautiously ask */
2726 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2727 &data, &sshdr);
2728
2729 if (res < 0)
2730 goto bad_sense;
2731
2732 if (!data.header_length) {
2733 modepage = 6;
2734 first_len = 0;
2735 sd_first_printk(KERN_ERR, sdkp,
2736 "Missing header in MODE_SENSE response\n");
2737 }
2738
2739 /* that went OK, now ask for the proper length */
2740 len = data.length;
2741
2742 /*
2743 * We're only interested in the first three bytes, actually.
2744 * But the data cache page is defined for the first 20.
2745 */
2746 if (len < 3)
2747 goto bad_sense;
2748 else if (len > SD_BUF_SIZE) {
2749 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2750 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2751 len = SD_BUF_SIZE;
2752 }
2753 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2754 len = 192;
2755
2756 /* Get the data */
2757 if (len > first_len)
2758 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2759 &data, &sshdr);
2760
2761 if (!res) {
2762 int offset = data.header_length + data.block_descriptor_length;
2763
2764 while (offset < len) {
2765 u8 page_code = buffer[offset] & 0x3F;
2766 u8 spf = buffer[offset] & 0x40;
2767
2768 if (page_code == 8 || page_code == 6) {
2769 /* We're interested only in the first 3 bytes.
2770 */
2771 if (len - offset <= 2) {
2772 sd_first_printk(KERN_ERR, sdkp,
2773 "Incomplete mode parameter "
2774 "data\n");
2775 goto defaults;
2776 } else {
2777 modepage = page_code;
2778 goto Page_found;
2779 }
2780 } else {
2781 /* Go to the next page */
2782 if (spf && len - offset > 3)
2783 offset += 4 + (buffer[offset+2] << 8) +
2784 buffer[offset+3];
2785 else if (!spf && len - offset > 1)
2786 offset += 2 + buffer[offset+1];
2787 else {
2788 sd_first_printk(KERN_ERR, sdkp,
2789 "Incomplete mode "
2790 "parameter data\n");
2791 goto defaults;
2792 }
2793 }
2794 }
2795
2796 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2797 goto defaults;
2798
2799 Page_found:
2800 if (modepage == 8) {
2801 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2802 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2803 } else {
2804 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2805 sdkp->RCD = 0;
2806 }
2807
2808 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2809 if (sdp->broken_fua) {
2810 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2811 sdkp->DPOFUA = 0;
2812 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2813 !sdkp->device->use_16_for_rw) {
2814 sd_first_printk(KERN_NOTICE, sdkp,
2815 "Uses READ/WRITE(6), disabling FUA\n");
2816 sdkp->DPOFUA = 0;
2817 }
2818
2819 /* No cache flush allowed for write protected devices */
2820 if (sdkp->WCE && sdkp->write_prot)
2821 sdkp->WCE = 0;
2822
2823 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2824 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2825 sd_printk(KERN_NOTICE, sdkp,
2826 "Write cache: %s, read cache: %s, %s\n",
2827 sdkp->WCE ? "enabled" : "disabled",
2828 sdkp->RCD ? "disabled" : "enabled",
2829 sdkp->DPOFUA ? "supports DPO and FUA"
2830 : "doesn't support DPO or FUA");
2831
2832 return;
2833 }
2834
2835 bad_sense:
2836 if (scsi_sense_valid(&sshdr) &&
2837 sshdr.sense_key == ILLEGAL_REQUEST &&
2838 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2839 /* Invalid field in CDB */
2840 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2841 else
2842 sd_first_printk(KERN_ERR, sdkp,
2843 "Asking for cache data failed\n");
2844
2845 defaults:
2846 if (sdp->wce_default_on) {
2847 sd_first_printk(KERN_NOTICE, sdkp,
2848 "Assuming drive cache: write back\n");
2849 sdkp->WCE = 1;
2850 } else {
2851 sd_first_printk(KERN_ERR, sdkp,
2852 "Assuming drive cache: write through\n");
2853 sdkp->WCE = 0;
2854 }
2855 sdkp->RCD = 0;
2856 sdkp->DPOFUA = 0;
2857 }
2858
2859 /*
2860 * The ATO bit indicates whether the DIF application tag is available
2861 * for use by the operating system.
2862 */
2863 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2864 {
2865 int res, offset;
2866 struct scsi_device *sdp = sdkp->device;
2867 struct scsi_mode_data data;
2868 struct scsi_sense_hdr sshdr;
2869
2870 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2871 return;
2872
2873 if (sdkp->protection_type == 0)
2874 return;
2875
2876 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2877 sdkp->max_retries, &data, &sshdr);
2878
2879 if (res < 0 || !data.header_length ||
2880 data.length < 6) {
2881 sd_first_printk(KERN_WARNING, sdkp,
2882 "getting Control mode page failed, assume no ATO\n");
2883
2884 if (scsi_sense_valid(&sshdr))
2885 sd_print_sense_hdr(sdkp, &sshdr);
2886
2887 return;
2888 }
2889
2890 offset = data.header_length + data.block_descriptor_length;
2891
2892 if ((buffer[offset] & 0x3f) != 0x0a) {
2893 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2894 return;
2895 }
2896
2897 if ((buffer[offset + 5] & 0x80) == 0)
2898 return;
2899
2900 sdkp->ATO = 1;
2901
2902 return;
2903 }
2904
2905 /**
2906 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2907 * @sdkp: disk to query
2908 */
2909 static void sd_read_block_limits(struct scsi_disk *sdkp)
2910 {
2911 unsigned int sector_sz = sdkp->device->sector_size;
2912 const int vpd_len = 64;
2913 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2914
2915 if (!buffer ||
2916 /* Block Limits VPD */
2917 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2918 goto out;
2919
2920 blk_queue_io_min(sdkp->disk->queue,
2921 get_unaligned_be16(&buffer[6]) * sector_sz);
2922
2923 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2924 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2925
2926 if (buffer[3] == 0x3c) {
2927 unsigned int lba_count, desc_count;
2928
2929 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2930
2931 if (!sdkp->lbpme)
2932 goto out;
2933
2934 lba_count = get_unaligned_be32(&buffer[20]);
2935 desc_count = get_unaligned_be32(&buffer[24]);
2936
2937 if (lba_count && desc_count)
2938 sdkp->max_unmap_blocks = lba_count;
2939
2940 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2941
2942 if (buffer[32] & 0x80)
2943 sdkp->unmap_alignment =
2944 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2945
2946 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2947
2948 if (sdkp->max_unmap_blocks)
2949 sd_config_discard(sdkp, SD_LBP_UNMAP);
2950 else
2951 sd_config_discard(sdkp, SD_LBP_WS16);
2952
2953 } else { /* LBP VPD page tells us what to use */
2954 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2955 sd_config_discard(sdkp, SD_LBP_UNMAP);
2956 else if (sdkp->lbpws)
2957 sd_config_discard(sdkp, SD_LBP_WS16);
2958 else if (sdkp->lbpws10)
2959 sd_config_discard(sdkp, SD_LBP_WS10);
2960 else
2961 sd_config_discard(sdkp, SD_LBP_DISABLE);
2962 }
2963 }
2964
2965 out:
2966 kfree(buffer);
2967 }
2968
2969 /**
2970 * sd_read_block_characteristics - Query block dev. characteristics
2971 * @sdkp: disk to query
2972 */
2973 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2974 {
2975 struct request_queue *q = sdkp->disk->queue;
2976 unsigned char *buffer;
2977 u16 rot;
2978 const int vpd_len = 64;
2979
2980 buffer = kmalloc(vpd_len, GFP_KERNEL);
2981
2982 if (!buffer ||
2983 /* Block Device Characteristics VPD */
2984 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2985 goto out;
2986
2987 rot = get_unaligned_be16(&buffer[4]);
2988
2989 if (rot == 1) {
2990 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2991 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2992 }
2993
2994 if (sdkp->device->type == TYPE_ZBC) {
2995 /* Host-managed */
2996 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2997 } else {
2998 sdkp->zoned = (buffer[8] >> 4) & 3;
2999 if (sdkp->zoned == 1) {
3000 /* Host-aware */
3001 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3002 } else {
3003 /* Regular disk or drive managed disk */
3004 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3005 }
3006 }
3007
3008 if (!sdkp->first_scan)
3009 goto out;
3010
3011 if (blk_queue_is_zoned(q)) {
3012 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3013 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3014 } else {
3015 if (sdkp->zoned == 1)
3016 sd_printk(KERN_NOTICE, sdkp,
3017 "Host-aware SMR disk used as regular disk\n");
3018 else if (sdkp->zoned == 2)
3019 sd_printk(KERN_NOTICE, sdkp,
3020 "Drive-managed SMR disk\n");
3021 }
3022
3023 out:
3024 kfree(buffer);
3025 }
3026
3027 /**
3028 * sd_read_block_provisioning - Query provisioning VPD page
3029 * @sdkp: disk to query
3030 */
3031 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3032 {
3033 unsigned char *buffer;
3034 const int vpd_len = 8;
3035
3036 if (sdkp->lbpme == 0)
3037 return;
3038
3039 buffer = kmalloc(vpd_len, GFP_KERNEL);
3040
3041 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3042 goto out;
3043
3044 sdkp->lbpvpd = 1;
3045 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3046 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3047 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3048
3049 out:
3050 kfree(buffer);
3051 }
3052
3053 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3054 {
3055 struct scsi_device *sdev = sdkp->device;
3056
3057 if (sdev->host->no_write_same) {
3058 sdev->no_write_same = 1;
3059
3060 return;
3061 }
3062
3063 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3064 /* too large values might cause issues with arcmsr */
3065 int vpd_buf_len = 64;
3066
3067 sdev->no_report_opcodes = 1;
3068
3069 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3070 * CODES is unsupported and the device has an ATA
3071 * Information VPD page (SAT).
3072 */
3073 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3074 sdev->no_write_same = 1;
3075 }
3076
3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3078 sdkp->ws16 = 1;
3079
3080 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3081 sdkp->ws10 = 1;
3082 }
3083
3084 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3085 {
3086 struct scsi_device *sdev = sdkp->device;
3087
3088 if (!sdev->security_supported)
3089 return;
3090
3091 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3092 SECURITY_PROTOCOL_IN) == 1 &&
3093 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3094 SECURITY_PROTOCOL_OUT) == 1)
3095 sdkp->security = 1;
3096 }
3097
3098 /*
3099 * Determine the device's preferred I/O size for reads and writes
3100 * unless the reported value is unreasonably small, large, not a
3101 * multiple of the physical block size, or simply garbage.
3102 */
3103 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3104 unsigned int dev_max)
3105 {
3106 struct scsi_device *sdp = sdkp->device;
3107 unsigned int opt_xfer_bytes =
3108 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3109
3110 if (sdkp->opt_xfer_blocks == 0)
3111 return false;
3112
3113 if (sdkp->opt_xfer_blocks > dev_max) {
3114 sd_first_printk(KERN_WARNING, sdkp,
3115 "Optimal transfer size %u logical blocks " \
3116 "> dev_max (%u logical blocks)\n",
3117 sdkp->opt_xfer_blocks, dev_max);
3118 return false;
3119 }
3120
3121 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3122 sd_first_printk(KERN_WARNING, sdkp,
3123 "Optimal transfer size %u logical blocks " \
3124 "> sd driver limit (%u logical blocks)\n",
3125 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3126 return false;
3127 }
3128
3129 if (opt_xfer_bytes < PAGE_SIZE) {
3130 sd_first_printk(KERN_WARNING, sdkp,
3131 "Optimal transfer size %u bytes < " \
3132 "PAGE_SIZE (%u bytes)\n",
3133 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3134 return false;
3135 }
3136
3137 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3138 sd_first_printk(KERN_WARNING, sdkp,
3139 "Optimal transfer size %u bytes not a " \
3140 "multiple of physical block size (%u bytes)\n",
3141 opt_xfer_bytes, sdkp->physical_block_size);
3142 return false;
3143 }
3144
3145 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3146 opt_xfer_bytes);
3147 return true;
3148 }
3149
3150 /**
3151 * sd_revalidate_disk - called the first time a new disk is seen,
3152 * performs disk spin up, read_capacity, etc.
3153 * @disk: struct gendisk we care about
3154 **/
3155 static int sd_revalidate_disk(struct gendisk *disk)
3156 {
3157 struct scsi_disk *sdkp = scsi_disk(disk);
3158 struct scsi_device *sdp = sdkp->device;
3159 struct request_queue *q = sdkp->disk->queue;
3160 sector_t old_capacity = sdkp->capacity;
3161 unsigned char *buffer;
3162 unsigned int dev_max, rw_max;
3163
3164 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3165 "sd_revalidate_disk\n"));
3166
3167 /*
3168 * If the device is offline, don't try and read capacity or any
3169 * of the other niceties.
3170 */
3171 if (!scsi_device_online(sdp))
3172 goto out;
3173
3174 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3175 if (!buffer) {
3176 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3177 "allocation failure.\n");
3178 goto out;
3179 }
3180
3181 sd_spinup_disk(sdkp);
3182
3183 /*
3184 * Without media there is no reason to ask; moreover, some devices
3185 * react badly if we do.
3186 */
3187 if (sdkp->media_present) {
3188 sd_read_capacity(sdkp, buffer);
3189
3190 /*
3191 * set the default to rotational. All non-rotational devices
3192 * support the block characteristics VPD page, which will
3193 * cause this to be updated correctly and any device which
3194 * doesn't support it should be treated as rotational.
3195 */
3196 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3197 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3198
3199 if (scsi_device_supports_vpd(sdp)) {
3200 sd_read_block_provisioning(sdkp);
3201 sd_read_block_limits(sdkp);
3202 sd_read_block_characteristics(sdkp);
3203 sd_zbc_read_zones(sdkp, buffer);
3204 }
3205
3206 sd_print_capacity(sdkp, old_capacity);
3207
3208 sd_read_write_protect_flag(sdkp, buffer);
3209 sd_read_cache_type(sdkp, buffer);
3210 sd_read_app_tag_own(sdkp, buffer);
3211 sd_read_write_same(sdkp, buffer);
3212 sd_read_security(sdkp, buffer);
3213 }
3214
3215 /*
3216 * We now have all cache related info, determine how we deal
3217 * with flush requests.
3218 */
3219 sd_set_flush_flag(sdkp);
3220
3221 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3222 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3223
3224 /* Some devices report a maximum block count for READ/WRITE requests. */
3225 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3226 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3227
3228 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3229 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3230 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3231 } else {
3232 q->limits.io_opt = 0;
3233 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3234 (sector_t)BLK_DEF_MAX_SECTORS);
3235 }
3236
3237 /* Do not exceed controller limit */
3238 rw_max = min(rw_max, queue_max_hw_sectors(q));
3239
3240 /*
3241 * Only update max_sectors if previously unset or if the current value
3242 * exceeds the capabilities of the hardware.
3243 */
3244 if (sdkp->first_scan ||
3245 q->limits.max_sectors > q->limits.max_dev_sectors ||
3246 q->limits.max_sectors > q->limits.max_hw_sectors)
3247 q->limits.max_sectors = rw_max;
3248
3249 sdkp->first_scan = 0;
3250
3251 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3252 sd_config_write_same(sdkp);
3253 kfree(buffer);
3254
3255 /*
3256 * For a zoned drive, revalidating the zones can be done only once
3257 * the gendisk capacity is set. So if this fails, set back the gendisk
3258 * capacity to 0.
3259 */
3260 if (sd_zbc_revalidate_zones(sdkp))
3261 set_capacity_and_notify(disk, 0);
3262
3263 out:
3264 return 0;
3265 }
3266
3267 /**
3268 * sd_unlock_native_capacity - unlock native capacity
3269 * @disk: struct gendisk to set capacity for
3270 *
3271 * Block layer calls this function if it detects that partitions
3272 * on @disk reach beyond the end of the device. If the SCSI host
3273 * implements ->unlock_native_capacity() method, it's invoked to
3274 * give it a chance to adjust the device capacity.
3275 *
3276 * CONTEXT:
3277 * Defined by block layer. Might sleep.
3278 */
3279 static void sd_unlock_native_capacity(struct gendisk *disk)
3280 {
3281 struct scsi_device *sdev = scsi_disk(disk)->device;
3282
3283 if (sdev->host->hostt->unlock_native_capacity)
3284 sdev->host->hostt->unlock_native_capacity(sdev);
3285 }
3286
3287 /**
3288 * sd_format_disk_name - format disk name
3289 * @prefix: name prefix - ie. "sd" for SCSI disks
3290 * @index: index of the disk to format name for
3291 * @buf: output buffer
3292 * @buflen: length of the output buffer
3293 *
3294 * SCSI disk names starts at sda. The 26th device is sdz and the
3295 * 27th is sdaa. The last one for two lettered suffix is sdzz
3296 * which is followed by sdaaa.
3297 *
3298 * This is basically 26 base counting with one extra 'nil' entry
3299 * at the beginning from the second digit on and can be
3300 * determined using similar method as 26 base conversion with the
3301 * index shifted -1 after each digit is computed.
3302 *
3303 * CONTEXT:
3304 * Don't care.
3305 *
3306 * RETURNS:
3307 * 0 on success, -errno on failure.
3308 */
3309 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3310 {
3311 const int base = 'z' - 'a' + 1;
3312 char *begin = buf + strlen(prefix);
3313 char *end = buf + buflen;
3314 char *p;
3315 int unit;
3316
3317 p = end - 1;
3318 *p = '\0';
3319 unit = base;
3320 do {
3321 if (p == begin)
3322 return -EINVAL;
3323 *--p = 'a' + (index % unit);
3324 index = (index / unit) - 1;
3325 } while (index >= 0);
3326
3327 memmove(begin, p, end - p);
3328 memcpy(buf, prefix, strlen(prefix));
3329
3330 return 0;
3331 }
3332
3333 /**
3334 * sd_probe - called during driver initialization and whenever a
3335 * new scsi device is attached to the system. It is called once
3336 * for each scsi device (not just disks) present.
3337 * @dev: pointer to device object
3338 *
3339 * Returns 0 if successful (or not interested in this scsi device
3340 * (e.g. scanner)); 1 when there is an error.
3341 *
3342 * Note: this function is invoked from the scsi mid-level.
3343 * This function sets up the mapping between a given
3344 * <host,channel,id,lun> (found in sdp) and new device name
3345 * (e.g. /dev/sda). More precisely it is the block device major
3346 * and minor number that is chosen here.
3347 *
3348 * Assume sd_probe is not re-entrant (for time being)
3349 * Also think about sd_probe() and sd_remove() running coincidentally.
3350 **/
3351 static int sd_probe(struct device *dev)
3352 {
3353 struct scsi_device *sdp = to_scsi_device(dev);
3354 struct scsi_disk *sdkp;
3355 struct gendisk *gd;
3356 int index;
3357 int error;
3358
3359 scsi_autopm_get_device(sdp);
3360 error = -ENODEV;
3361 if (sdp->type != TYPE_DISK &&
3362 sdp->type != TYPE_ZBC &&
3363 sdp->type != TYPE_MOD &&
3364 sdp->type != TYPE_RBC)
3365 goto out;
3366
3367 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3368 sdev_printk(KERN_WARNING, sdp,
3369 "Unsupported ZBC host-managed device.\n");
3370 goto out;
3371 }
3372
3373 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3374 "sd_probe\n"));
3375
3376 error = -ENOMEM;
3377 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3378 if (!sdkp)
3379 goto out;
3380
3381 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3382 &sd_bio_compl_lkclass);
3383 if (!gd)
3384 goto out_free;
3385
3386 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3387 if (index < 0) {
3388 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3389 goto out_put;
3390 }
3391
3392 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3393 if (error) {
3394 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3395 goto out_free_index;
3396 }
3397
3398 sdkp->device = sdp;
3399 sdkp->driver = &sd_template;
3400 sdkp->disk = gd;
3401 sdkp->index = index;
3402 sdkp->max_retries = SD_MAX_RETRIES;
3403 atomic_set(&sdkp->openers, 0);
3404 atomic_set(&sdkp->device->ioerr_cnt, 0);
3405
3406 if (!sdp->request_queue->rq_timeout) {
3407 if (sdp->type != TYPE_MOD)
3408 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3409 else
3410 blk_queue_rq_timeout(sdp->request_queue,
3411 SD_MOD_TIMEOUT);
3412 }
3413
3414 device_initialize(&sdkp->dev);
3415 sdkp->dev.parent = get_device(dev);
3416 sdkp->dev.class = &sd_disk_class;
3417 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3418
3419 error = device_add(&sdkp->dev);
3420 if (error) {
3421 put_device(&sdkp->dev);
3422 goto out;
3423 }
3424
3425 dev_set_drvdata(dev, sdkp);
3426
3427 gd->major = sd_major((index & 0xf0) >> 4);
3428 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3429 gd->minors = SD_MINORS;
3430
3431 gd->fops = &sd_fops;
3432 gd->private_data = &sdkp->driver;
3433
3434 /* defaults, until the device tells us otherwise */
3435 sdp->sector_size = 512;
3436 sdkp->capacity = 0;
3437 sdkp->media_present = 1;
3438 sdkp->write_prot = 0;
3439 sdkp->cache_override = 0;
3440 sdkp->WCE = 0;
3441 sdkp->RCD = 0;
3442 sdkp->ATO = 0;
3443 sdkp->first_scan = 1;
3444 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3445
3446 sd_revalidate_disk(gd);
3447
3448 gd->flags = GENHD_FL_EXT_DEVT;
3449 if (sdp->removable) {
3450 gd->flags |= GENHD_FL_REMOVABLE;
3451 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3452 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3453 }
3454
3455 blk_pm_runtime_init(sdp->request_queue, dev);
3456 if (sdp->rpm_autosuspend) {
3457 pm_runtime_set_autosuspend_delay(dev,
3458 sdp->host->hostt->rpm_autosuspend_delay);
3459 }
3460 device_add_disk(dev, gd, NULL);
3461 if (sdkp->capacity)
3462 sd_dif_config_host(sdkp);
3463
3464 sd_revalidate_disk(gd);
3465
3466 if (sdkp->security) {
3467 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3468 if (sdkp->opal_dev)
3469 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3470 }
3471
3472 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3473 sdp->removable ? "removable " : "");
3474 scsi_autopm_put_device(sdp);
3475
3476 return 0;
3477
3478 out_free_index:
3479 ida_free(&sd_index_ida, index);
3480 out_put:
3481 put_disk(gd);
3482 out_free:
3483 kfree(sdkp);
3484 out:
3485 scsi_autopm_put_device(sdp);
3486 return error;
3487 }
3488
3489 /**
3490 * sd_remove - called whenever a scsi disk (previously recognized by
3491 * sd_probe) is detached from the system. It is called (potentially
3492 * multiple times) during sd module unload.
3493 * @dev: pointer to device object
3494 *
3495 * Note: this function is invoked from the scsi mid-level.
3496 * This function potentially frees up a device name (e.g. /dev/sdc)
3497 * that could be re-used by a subsequent sd_probe().
3498 * This function is not called when the built-in sd driver is "exit-ed".
3499 **/
3500 static int sd_remove(struct device *dev)
3501 {
3502 struct scsi_disk *sdkp;
3503
3504 sdkp = dev_get_drvdata(dev);
3505 scsi_autopm_get_device(sdkp->device);
3506
3507 async_synchronize_full_domain(&scsi_sd_pm_domain);
3508 device_del(&sdkp->dev);
3509 del_gendisk(sdkp->disk);
3510 sd_shutdown(dev);
3511
3512 free_opal_dev(sdkp->opal_dev);
3513
3514 mutex_lock(&sd_ref_mutex);
3515 dev_set_drvdata(dev, NULL);
3516 put_device(&sdkp->dev);
3517 mutex_unlock(&sd_ref_mutex);
3518
3519 return 0;
3520 }
3521
3522 /**
3523 * scsi_disk_release - Called to free the scsi_disk structure
3524 * @dev: pointer to embedded class device
3525 *
3526 * sd_ref_mutex must be held entering this routine. Because it is
3527 * called on last put, you should always use the scsi_disk_get()
3528 * scsi_disk_put() helpers which manipulate the semaphore directly
3529 * and never do a direct put_device.
3530 **/
3531 static void scsi_disk_release(struct device *dev)
3532 {
3533 struct scsi_disk *sdkp = to_scsi_disk(dev);
3534 struct gendisk *disk = sdkp->disk;
3535 struct request_queue *q = disk->queue;
3536
3537 ida_free(&sd_index_ida, sdkp->index);
3538
3539 /*
3540 * Wait until all requests that are in progress have completed.
3541 * This is necessary to avoid that e.g. scsi_end_request() crashes
3542 * due to clearing the disk->private_data pointer. Wait from inside
3543 * scsi_disk_release() instead of from sd_release() to avoid that
3544 * freezing and unfreezing the request queue affects user space I/O
3545 * in case multiple processes open a /dev/sd... node concurrently.
3546 */
3547 blk_mq_freeze_queue(q);
3548 blk_mq_unfreeze_queue(q);
3549
3550 disk->private_data = NULL;
3551 put_disk(disk);
3552 put_device(&sdkp->device->sdev_gendev);
3553
3554 sd_zbc_release_disk(sdkp);
3555
3556 kfree(sdkp);
3557 }
3558
3559 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3560 {
3561 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3562 struct scsi_sense_hdr sshdr;
3563 struct scsi_device *sdp = sdkp->device;
3564 int res;
3565
3566 if (start)
3567 cmd[4] |= 1; /* START */
3568
3569 if (sdp->start_stop_pwr_cond)
3570 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3571
3572 if (!scsi_device_online(sdp))
3573 return -ENODEV;
3574
3575 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3576 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3577 if (res) {
3578 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3579 if (res > 0 && scsi_sense_valid(&sshdr)) {
3580 sd_print_sense_hdr(sdkp, &sshdr);
3581 /* 0x3a is medium not present */
3582 if (sshdr.asc == 0x3a)
3583 res = 0;
3584 }
3585 }
3586
3587 /* SCSI error codes must not go to the generic layer */
3588 if (res)
3589 return -EIO;
3590
3591 return 0;
3592 }
3593
3594 /*
3595 * Send a SYNCHRONIZE CACHE instruction down to the device through
3596 * the normal SCSI command structure. Wait for the command to
3597 * complete.
3598 */
3599 static void sd_shutdown(struct device *dev)
3600 {
3601 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3602
3603 if (!sdkp)
3604 return; /* this can happen */
3605
3606 if (pm_runtime_suspended(dev))
3607 return;
3608
3609 if (sdkp->WCE && sdkp->media_present) {
3610 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3611 sd_sync_cache(sdkp, NULL);
3612 }
3613
3614 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3615 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3616 sd_start_stop_device(sdkp, 0);
3617 }
3618 }
3619
3620 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3621 {
3622 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3623 struct scsi_sense_hdr sshdr;
3624 int ret = 0;
3625
3626 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3627 return 0;
3628
3629 if (sdkp->WCE && sdkp->media_present) {
3630 if (!sdkp->device->silence_suspend)
3631 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3632 ret = sd_sync_cache(sdkp, &sshdr);
3633
3634 if (ret) {
3635 /* ignore OFFLINE device */
3636 if (ret == -ENODEV)
3637 return 0;
3638
3639 if (!scsi_sense_valid(&sshdr) ||
3640 sshdr.sense_key != ILLEGAL_REQUEST)
3641 return ret;
3642
3643 /*
3644 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3645 * doesn't support sync. There's not much to do and
3646 * suspend shouldn't fail.
3647 */
3648 ret = 0;
3649 }
3650 }
3651
3652 if (sdkp->device->manage_start_stop) {
3653 if (!sdkp->device->silence_suspend)
3654 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3655 /* an error is not worth aborting a system sleep */
3656 ret = sd_start_stop_device(sdkp, 0);
3657 if (ignore_stop_errors)
3658 ret = 0;
3659 }
3660
3661 return ret;
3662 }
3663
3664 static int sd_suspend_system(struct device *dev)
3665 {
3666 return sd_suspend_common(dev, true);
3667 }
3668
3669 static int sd_suspend_runtime(struct device *dev)
3670 {
3671 return sd_suspend_common(dev, false);
3672 }
3673
3674 static int sd_resume(struct device *dev)
3675 {
3676 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3677 int ret;
3678
3679 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3680 return 0;
3681
3682 if (!sdkp->device->manage_start_stop)
3683 return 0;
3684
3685 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3686 ret = sd_start_stop_device(sdkp, 1);
3687 if (!ret)
3688 opal_unlock_from_suspend(sdkp->opal_dev);
3689 return ret;
3690 }
3691
3692 static int sd_resume_runtime(struct device *dev)
3693 {
3694 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3695 struct scsi_device *sdp;
3696
3697 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3698 return 0;
3699
3700 sdp = sdkp->device;
3701
3702 if (sdp->ignore_media_change) {
3703 /* clear the device's sense data */
3704 static const u8 cmd[10] = { REQUEST_SENSE };
3705
3706 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3707 NULL, sdp->request_queue->rq_timeout, 1, 0,
3708 RQF_PM, NULL))
3709 sd_printk(KERN_NOTICE, sdkp,
3710 "Failed to clear sense data\n");
3711 }
3712
3713 return sd_resume(dev);
3714 }
3715
3716 /**
3717 * init_sd - entry point for this driver (both when built in or when
3718 * a module).
3719 *
3720 * Note: this function registers this driver with the scsi mid-level.
3721 **/
3722 static int __init init_sd(void)
3723 {
3724 int majors = 0, i, err;
3725
3726 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3727
3728 for (i = 0; i < SD_MAJORS; i++) {
3729 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3730 continue;
3731 majors++;
3732 }
3733
3734 if (!majors)
3735 return -ENODEV;
3736
3737 err = class_register(&sd_disk_class);
3738 if (err)
3739 goto err_out;
3740
3741 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3742 0, 0, NULL);
3743 if (!sd_cdb_cache) {
3744 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3745 err = -ENOMEM;
3746 goto err_out_class;
3747 }
3748
3749 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3750 if (!sd_cdb_pool) {
3751 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3752 err = -ENOMEM;
3753 goto err_out_cache;
3754 }
3755
3756 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3757 if (!sd_page_pool) {
3758 printk(KERN_ERR "sd: can't init discard page pool\n");
3759 err = -ENOMEM;
3760 goto err_out_ppool;
3761 }
3762
3763 err = scsi_register_driver(&sd_template.gendrv);
3764 if (err)
3765 goto err_out_driver;
3766
3767 return 0;
3768
3769 err_out_driver:
3770 mempool_destroy(sd_page_pool);
3771
3772 err_out_ppool:
3773 mempool_destroy(sd_cdb_pool);
3774
3775 err_out_cache:
3776 kmem_cache_destroy(sd_cdb_cache);
3777
3778 err_out_class:
3779 class_unregister(&sd_disk_class);
3780 err_out:
3781 for (i = 0; i < SD_MAJORS; i++)
3782 unregister_blkdev(sd_major(i), "sd");
3783 return err;
3784 }
3785
3786 /**
3787 * exit_sd - exit point for this driver (when it is a module).
3788 *
3789 * Note: this function unregisters this driver from the scsi mid-level.
3790 **/
3791 static void __exit exit_sd(void)
3792 {
3793 int i;
3794
3795 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3796
3797 scsi_unregister_driver(&sd_template.gendrv);
3798 mempool_destroy(sd_cdb_pool);
3799 mempool_destroy(sd_page_pool);
3800 kmem_cache_destroy(sd_cdb_cache);
3801
3802 class_unregister(&sd_disk_class);
3803
3804 for (i = 0; i < SD_MAJORS; i++)
3805 unregister_blkdev(sd_major(i), "sd");
3806 }
3807
3808 module_init(init_sd);
3809 module_exit(exit_sd);
3810
3811 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3812 {
3813 scsi_print_sense_hdr(sdkp->device,
3814 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3815 }
3816
3817 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3818 {
3819 const char *hb_string = scsi_hostbyte_string(result);
3820
3821 if (hb_string)
3822 sd_printk(KERN_INFO, sdkp,
3823 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3824 hb_string ? hb_string : "invalid",
3825 "DRIVER_OK");
3826 else
3827 sd_printk(KERN_INFO, sdkp,
3828 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3829 msg, host_byte(result), "DRIVER_OK");
3830 }