]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/spi/spi.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48 struct spi_device *spi = to_spi_device(dev);
49
50 spi_controller_put(spi->controller);
51 kfree(spi->driver_override);
52 kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 const struct spi_device *spi = to_spi_device(dev);
59 int len;
60
61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 if (len != -ENODEV)
63 return len;
64
65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70 struct device_attribute *a,
71 const char *buf, size_t count)
72 {
73 struct spi_device *spi = to_spi_device(dev);
74 const char *end = memchr(buf, '\n', count);
75 const size_t len = end ? end - buf : count;
76 const char *driver_override, *old;
77
78 /* We need to keep extra room for a newline when displaying value */
79 if (len >= (PAGE_SIZE - 1))
80 return -EINVAL;
81
82 driver_override = kstrndup(buf, len, GFP_KERNEL);
83 if (!driver_override)
84 return -ENOMEM;
85
86 device_lock(dev);
87 old = spi->driver_override;
88 if (len) {
89 spi->driver_override = driver_override;
90 } else {
91 /* Empty string, disable driver override */
92 spi->driver_override = NULL;
93 kfree(driver_override);
94 }
95 device_unlock(dev);
96 kfree(old);
97
98 return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102 struct device_attribute *a, char *buf)
103 {
104 const struct spi_device *spi = to_spi_device(dev);
105 ssize_t len;
106
107 device_lock(dev);
108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 device_unlock(dev);
110 return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file) \
115 static ssize_t spi_controller_##field##_show(struct device *dev, \
116 struct device_attribute *attr, \
117 char *buf) \
118 { \
119 struct spi_controller *ctlr = container_of(dev, \
120 struct spi_controller, dev); \
121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
122 } \
123 static struct device_attribute dev_attr_spi_controller_##field = { \
124 .attr = { .name = file, .mode = 0444 }, \
125 .show = spi_controller_##field##_show, \
126 }; \
127 static ssize_t spi_device_##field##_show(struct device *dev, \
128 struct device_attribute *attr, \
129 char *buf) \
130 { \
131 struct spi_device *spi = to_spi_device(dev); \
132 return spi_statistics_##field##_show(&spi->statistics, buf); \
133 } \
134 static struct device_attribute dev_attr_spi_device_##field = { \
135 .attr = { .name = file, .mode = 0444 }, \
136 .show = spi_device_##field##_show, \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 char *buf) \
142 { \
143 unsigned long flags; \
144 ssize_t len; \
145 spin_lock_irqsave(&stat->lock, flags); \
146 len = sprintf(buf, format_string, stat->field); \
147 spin_unlock_irqrestore(&stat->lock, flags); \
148 return len; \
149 } \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string) \
153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
154 field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
171 "transfer_bytes_histo_" number, \
172 transfer_bytes_histo[index], "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194 &dev_attr_modalias.attr,
195 &dev_attr_driver_override.attr,
196 NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200 .attrs = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204 &dev_attr_spi_device_messages.attr,
205 &dev_attr_spi_device_transfers.attr,
206 &dev_attr_spi_device_errors.attr,
207 &dev_attr_spi_device_timedout.attr,
208 &dev_attr_spi_device_spi_sync.attr,
209 &dev_attr_spi_device_spi_sync_immediate.attr,
210 &dev_attr_spi_device_spi_async.attr,
211 &dev_attr_spi_device_bytes.attr,
212 &dev_attr_spi_device_bytes_rx.attr,
213 &dev_attr_spi_device_bytes_tx.attr,
214 &dev_attr_spi_device_transfer_bytes_histo0.attr,
215 &dev_attr_spi_device_transfer_bytes_histo1.attr,
216 &dev_attr_spi_device_transfer_bytes_histo2.attr,
217 &dev_attr_spi_device_transfer_bytes_histo3.attr,
218 &dev_attr_spi_device_transfer_bytes_histo4.attr,
219 &dev_attr_spi_device_transfer_bytes_histo5.attr,
220 &dev_attr_spi_device_transfer_bytes_histo6.attr,
221 &dev_attr_spi_device_transfer_bytes_histo7.attr,
222 &dev_attr_spi_device_transfer_bytes_histo8.attr,
223 &dev_attr_spi_device_transfer_bytes_histo9.attr,
224 &dev_attr_spi_device_transfer_bytes_histo10.attr,
225 &dev_attr_spi_device_transfer_bytes_histo11.attr,
226 &dev_attr_spi_device_transfer_bytes_histo12.attr,
227 &dev_attr_spi_device_transfer_bytes_histo13.attr,
228 &dev_attr_spi_device_transfer_bytes_histo14.attr,
229 &dev_attr_spi_device_transfer_bytes_histo15.attr,
230 &dev_attr_spi_device_transfer_bytes_histo16.attr,
231 &dev_attr_spi_device_transfers_split_maxsize.attr,
232 NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236 .name = "statistics",
237 .attrs = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241 &spi_dev_group,
242 &spi_device_statistics_group,
243 NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 &dev_attr_spi_controller_messages.attr,
248 &dev_attr_spi_controller_transfers.attr,
249 &dev_attr_spi_controller_errors.attr,
250 &dev_attr_spi_controller_timedout.attr,
251 &dev_attr_spi_controller_spi_sync.attr,
252 &dev_attr_spi_controller_spi_sync_immediate.attr,
253 &dev_attr_spi_controller_spi_async.attr,
254 &dev_attr_spi_controller_bytes.attr,
255 &dev_attr_spi_controller_bytes_rx.attr,
256 &dev_attr_spi_controller_bytes_tx.attr,
257 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 &dev_attr_spi_controller_transfers_split_maxsize.attr,
275 NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279 .name = "statistics",
280 .attrs = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284 &spi_controller_statistics_group,
285 NULL,
286 };
287
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 struct spi_transfer *xfer,
290 struct spi_controller *ctlr)
291 {
292 unsigned long flags;
293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295 if (l2len < 0)
296 l2len = 0;
297
298 spin_lock_irqsave(&stats->lock, flags);
299
300 stats->transfers++;
301 stats->transfer_bytes_histo[l2len]++;
302
303 stats->bytes += xfer->len;
304 if ((xfer->tx_buf) &&
305 (xfer->tx_buf != ctlr->dummy_tx))
306 stats->bytes_tx += xfer->len;
307 if ((xfer->rx_buf) &&
308 (xfer->rx_buf != ctlr->dummy_rx))
309 stats->bytes_rx += xfer->len;
310
311 spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316 * and the sysfs version makes coldplug work too.
317 */
318
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 const struct spi_device *sdev)
321 {
322 while (id->name[0]) {
323 if (!strcmp(sdev->modalias, id->name))
324 return id;
325 id++;
326 }
327 return NULL;
328 }
329
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333
334 return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 const struct spi_device *spi = to_spi_device(dev);
341 const struct spi_driver *sdrv = to_spi_driver(drv);
342
343 /* Check override first, and if set, only use the named driver */
344 if (spi->driver_override)
345 return strcmp(spi->driver_override, drv->name) == 0;
346
347 /* Attempt an OF style match */
348 if (of_driver_match_device(dev, drv))
349 return 1;
350
351 /* Then try ACPI */
352 if (acpi_driver_match_device(dev, drv))
353 return 1;
354
355 if (sdrv->id_table)
356 return !!spi_match_id(sdrv->id_table, spi);
357
358 return strcmp(spi->modalias, drv->name) == 0;
359 }
360
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 const struct spi_device *spi = to_spi_device(dev);
364 int rc;
365
366 rc = acpi_device_uevent_modalias(dev, env);
367 if (rc != -ENODEV)
368 return rc;
369
370 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372
373 static int spi_probe(struct device *dev)
374 {
375 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
376 struct spi_device *spi = to_spi_device(dev);
377 int ret;
378
379 ret = of_clk_set_defaults(dev->of_node, false);
380 if (ret)
381 return ret;
382
383 if (dev->of_node) {
384 spi->irq = of_irq_get(dev->of_node, 0);
385 if (spi->irq == -EPROBE_DEFER)
386 return -EPROBE_DEFER;
387 if (spi->irq < 0)
388 spi->irq = 0;
389 }
390
391 ret = dev_pm_domain_attach(dev, true);
392 if (ret)
393 return ret;
394
395 if (sdrv->probe) {
396 ret = sdrv->probe(spi);
397 if (ret)
398 dev_pm_domain_detach(dev, true);
399 }
400
401 return ret;
402 }
403
404 static void spi_remove(struct device *dev)
405 {
406 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
407
408 if (sdrv->remove) {
409 int ret;
410
411 ret = sdrv->remove(to_spi_device(dev));
412 if (ret)
413 dev_warn(dev,
414 "Failed to unbind driver (%pe), ignoring\n",
415 ERR_PTR(ret));
416 }
417
418 dev_pm_domain_detach(dev, true);
419 }
420
421 static void spi_shutdown(struct device *dev)
422 {
423 if (dev->driver) {
424 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
425
426 if (sdrv->shutdown)
427 sdrv->shutdown(to_spi_device(dev));
428 }
429 }
430
431 struct bus_type spi_bus_type = {
432 .name = "spi",
433 .dev_groups = spi_dev_groups,
434 .match = spi_match_device,
435 .uevent = spi_uevent,
436 .probe = spi_probe,
437 .remove = spi_remove,
438 .shutdown = spi_shutdown,
439 };
440 EXPORT_SYMBOL_GPL(spi_bus_type);
441
442 /**
443 * __spi_register_driver - register a SPI driver
444 * @owner: owner module of the driver to register
445 * @sdrv: the driver to register
446 * Context: can sleep
447 *
448 * Return: zero on success, else a negative error code.
449 */
450 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 {
452 sdrv->driver.owner = owner;
453 sdrv->driver.bus = &spi_bus_type;
454 return driver_register(&sdrv->driver);
455 }
456 EXPORT_SYMBOL_GPL(__spi_register_driver);
457
458 /*-------------------------------------------------------------------------*/
459
460 /* SPI devices should normally not be created by SPI device drivers; that
461 * would make them board-specific. Similarly with SPI controller drivers.
462 * Device registration normally goes into like arch/.../mach.../board-YYY.c
463 * with other readonly (flashable) information about mainboard devices.
464 */
465
466 struct boardinfo {
467 struct list_head list;
468 struct spi_board_info board_info;
469 };
470
471 static LIST_HEAD(board_list);
472 static LIST_HEAD(spi_controller_list);
473
474 /*
475 * Used to protect add/del operation for board_info list and
476 * spi_controller list, and their matching process
477 * also used to protect object of type struct idr
478 */
479 static DEFINE_MUTEX(board_lock);
480
481 /**
482 * spi_alloc_device - Allocate a new SPI device
483 * @ctlr: Controller to which device is connected
484 * Context: can sleep
485 *
486 * Allows a driver to allocate and initialize a spi_device without
487 * registering it immediately. This allows a driver to directly
488 * fill the spi_device with device parameters before calling
489 * spi_add_device() on it.
490 *
491 * Caller is responsible to call spi_add_device() on the returned
492 * spi_device structure to add it to the SPI controller. If the caller
493 * needs to discard the spi_device without adding it, then it should
494 * call spi_dev_put() on it.
495 *
496 * Return: a pointer to the new device, or NULL.
497 */
498 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 {
500 struct spi_device *spi;
501
502 if (!spi_controller_get(ctlr))
503 return NULL;
504
505 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 if (!spi) {
507 spi_controller_put(ctlr);
508 return NULL;
509 }
510
511 spi->master = spi->controller = ctlr;
512 spi->dev.parent = &ctlr->dev;
513 spi->dev.bus = &spi_bus_type;
514 spi->dev.release = spidev_release;
515 spi->cs_gpio = -ENOENT;
516 spi->mode = ctlr->buswidth_override_bits;
517
518 spin_lock_init(&spi->statistics.lock);
519
520 device_initialize(&spi->dev);
521 return spi;
522 }
523 EXPORT_SYMBOL_GPL(spi_alloc_device);
524
525 static void spi_dev_set_name(struct spi_device *spi)
526 {
527 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528
529 if (adev) {
530 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
531 return;
532 }
533
534 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
535 spi->chip_select);
536 }
537
538 static int spi_dev_check(struct device *dev, void *data)
539 {
540 struct spi_device *spi = to_spi_device(dev);
541 struct spi_device *new_spi = data;
542
543 if (spi->controller == new_spi->controller &&
544 spi->chip_select == new_spi->chip_select)
545 return -EBUSY;
546 return 0;
547 }
548
549 static void spi_cleanup(struct spi_device *spi)
550 {
551 if (spi->controller->cleanup)
552 spi->controller->cleanup(spi);
553 }
554
555 static int __spi_add_device(struct spi_device *spi)
556 {
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
560
561 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
562 if (status) {
563 dev_err(dev, "chipselect %d already in use\n",
564 spi->chip_select);
565 return status;
566 }
567
568 /* Controller may unregister concurrently */
569 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
570 !device_is_registered(&ctlr->dev)) {
571 return -ENODEV;
572 }
573
574 /* Descriptors take precedence */
575 if (ctlr->cs_gpiods)
576 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
577 else if (ctlr->cs_gpios)
578 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
579
580 /* Drivers may modify this initial i/o setup, but will
581 * normally rely on the device being setup. Devices
582 * using SPI_CS_HIGH can't coexist well otherwise...
583 */
584 status = spi_setup(spi);
585 if (status < 0) {
586 dev_err(dev, "can't setup %s, status %d\n",
587 dev_name(&spi->dev), status);
588 return status;
589 }
590
591 /* Device may be bound to an active driver when this returns */
592 status = device_add(&spi->dev);
593 if (status < 0) {
594 dev_err(dev, "can't add %s, status %d\n",
595 dev_name(&spi->dev), status);
596 spi_cleanup(spi);
597 } else {
598 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
599 }
600
601 return status;
602 }
603
604 /**
605 * spi_add_device - Add spi_device allocated with spi_alloc_device
606 * @spi: spi_device to register
607 *
608 * Companion function to spi_alloc_device. Devices allocated with
609 * spi_alloc_device can be added onto the spi bus with this function.
610 *
611 * Return: 0 on success; negative errno on failure
612 */
613 int spi_add_device(struct spi_device *spi)
614 {
615 struct spi_controller *ctlr = spi->controller;
616 struct device *dev = ctlr->dev.parent;
617 int status;
618
619 /* Chipselects are numbered 0..max; validate. */
620 if (spi->chip_select >= ctlr->num_chipselect) {
621 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
622 ctlr->num_chipselect);
623 return -EINVAL;
624 }
625
626 /* Set the bus ID string */
627 spi_dev_set_name(spi);
628
629 /* We need to make sure there's no other device with this
630 * chipselect **BEFORE** we call setup(), else we'll trash
631 * its configuration. Lock against concurrent add() calls.
632 */
633 mutex_lock(&ctlr->add_lock);
634 status = __spi_add_device(spi);
635 mutex_unlock(&ctlr->add_lock);
636 return status;
637 }
638 EXPORT_SYMBOL_GPL(spi_add_device);
639
640 static int spi_add_device_locked(struct spi_device *spi)
641 {
642 struct spi_controller *ctlr = spi->controller;
643 struct device *dev = ctlr->dev.parent;
644
645 /* Chipselects are numbered 0..max; validate. */
646 if (spi->chip_select >= ctlr->num_chipselect) {
647 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
648 ctlr->num_chipselect);
649 return -EINVAL;
650 }
651
652 /* Set the bus ID string */
653 spi_dev_set_name(spi);
654
655 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
656 return __spi_add_device(spi);
657 }
658
659 /**
660 * spi_new_device - instantiate one new SPI device
661 * @ctlr: Controller to which device is connected
662 * @chip: Describes the SPI device
663 * Context: can sleep
664 *
665 * On typical mainboards, this is purely internal; and it's not needed
666 * after board init creates the hard-wired devices. Some development
667 * platforms may not be able to use spi_register_board_info though, and
668 * this is exported so that for example a USB or parport based adapter
669 * driver could add devices (which it would learn about out-of-band).
670 *
671 * Return: the new device, or NULL.
672 */
673 struct spi_device *spi_new_device(struct spi_controller *ctlr,
674 struct spi_board_info *chip)
675 {
676 struct spi_device *proxy;
677 int status;
678
679 /* NOTE: caller did any chip->bus_num checks necessary.
680 *
681 * Also, unless we change the return value convention to use
682 * error-or-pointer (not NULL-or-pointer), troubleshootability
683 * suggests syslogged diagnostics are best here (ugh).
684 */
685
686 proxy = spi_alloc_device(ctlr);
687 if (!proxy)
688 return NULL;
689
690 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
691
692 proxy->chip_select = chip->chip_select;
693 proxy->max_speed_hz = chip->max_speed_hz;
694 proxy->mode = chip->mode;
695 proxy->irq = chip->irq;
696 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
697 proxy->dev.platform_data = (void *) chip->platform_data;
698 proxy->controller_data = chip->controller_data;
699 proxy->controller_state = NULL;
700
701 if (chip->swnode) {
702 status = device_add_software_node(&proxy->dev, chip->swnode);
703 if (status) {
704 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
705 chip->modalias, status);
706 goto err_dev_put;
707 }
708 }
709
710 status = spi_add_device(proxy);
711 if (status < 0)
712 goto err_dev_put;
713
714 return proxy;
715
716 err_dev_put:
717 device_remove_software_node(&proxy->dev);
718 spi_dev_put(proxy);
719 return NULL;
720 }
721 EXPORT_SYMBOL_GPL(spi_new_device);
722
723 /**
724 * spi_unregister_device - unregister a single SPI device
725 * @spi: spi_device to unregister
726 *
727 * Start making the passed SPI device vanish. Normally this would be handled
728 * by spi_unregister_controller().
729 */
730 void spi_unregister_device(struct spi_device *spi)
731 {
732 if (!spi)
733 return;
734
735 if (spi->dev.of_node) {
736 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
737 of_node_put(spi->dev.of_node);
738 }
739 if (ACPI_COMPANION(&spi->dev))
740 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
741 device_remove_software_node(&spi->dev);
742 device_del(&spi->dev);
743 spi_cleanup(spi);
744 put_device(&spi->dev);
745 }
746 EXPORT_SYMBOL_GPL(spi_unregister_device);
747
748 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
749 struct spi_board_info *bi)
750 {
751 struct spi_device *dev;
752
753 if (ctlr->bus_num != bi->bus_num)
754 return;
755
756 dev = spi_new_device(ctlr, bi);
757 if (!dev)
758 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
759 bi->modalias);
760 }
761
762 /**
763 * spi_register_board_info - register SPI devices for a given board
764 * @info: array of chip descriptors
765 * @n: how many descriptors are provided
766 * Context: can sleep
767 *
768 * Board-specific early init code calls this (probably during arch_initcall)
769 * with segments of the SPI device table. Any device nodes are created later,
770 * after the relevant parent SPI controller (bus_num) is defined. We keep
771 * this table of devices forever, so that reloading a controller driver will
772 * not make Linux forget about these hard-wired devices.
773 *
774 * Other code can also call this, e.g. a particular add-on board might provide
775 * SPI devices through its expansion connector, so code initializing that board
776 * would naturally declare its SPI devices.
777 *
778 * The board info passed can safely be __initdata ... but be careful of
779 * any embedded pointers (platform_data, etc), they're copied as-is.
780 *
781 * Return: zero on success, else a negative error code.
782 */
783 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
784 {
785 struct boardinfo *bi;
786 int i;
787
788 if (!n)
789 return 0;
790
791 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
792 if (!bi)
793 return -ENOMEM;
794
795 for (i = 0; i < n; i++, bi++, info++) {
796 struct spi_controller *ctlr;
797
798 memcpy(&bi->board_info, info, sizeof(*info));
799
800 mutex_lock(&board_lock);
801 list_add_tail(&bi->list, &board_list);
802 list_for_each_entry(ctlr, &spi_controller_list, list)
803 spi_match_controller_to_boardinfo(ctlr,
804 &bi->board_info);
805 mutex_unlock(&board_lock);
806 }
807
808 return 0;
809 }
810
811 /*-------------------------------------------------------------------------*/
812
813 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
814 {
815 bool activate = enable;
816
817 /*
818 * Avoid calling into the driver (or doing delays) if the chip select
819 * isn't actually changing from the last time this was called.
820 */
821 if (!force && (spi->controller->last_cs_enable == enable) &&
822 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
823 return;
824
825 trace_spi_set_cs(spi, activate);
826
827 spi->controller->last_cs_enable = enable;
828 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
829
830 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
831 !spi->controller->set_cs_timing) {
832 if (activate)
833 spi_delay_exec(&spi->cs_setup, NULL);
834 else
835 spi_delay_exec(&spi->cs_hold, NULL);
836 }
837
838 if (spi->mode & SPI_CS_HIGH)
839 enable = !enable;
840
841 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
842 if (!(spi->mode & SPI_NO_CS)) {
843 if (spi->cs_gpiod) {
844 /*
845 * Historically ACPI has no means of the GPIO polarity and
846 * thus the SPISerialBus() resource defines it on the per-chip
847 * basis. In order to avoid a chain of negations, the GPIO
848 * polarity is considered being Active High. Even for the cases
849 * when _DSD() is involved (in the updated versions of ACPI)
850 * the GPIO CS polarity must be defined Active High to avoid
851 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
852 * into account.
853 */
854 if (has_acpi_companion(&spi->dev))
855 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
856 else
857 /* Polarity handled by GPIO library */
858 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
859 } else {
860 /*
861 * invert the enable line, as active low is
862 * default for SPI.
863 */
864 gpio_set_value_cansleep(spi->cs_gpio, !enable);
865 }
866 }
867 /* Some SPI masters need both GPIO CS & slave_select */
868 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
869 spi->controller->set_cs)
870 spi->controller->set_cs(spi, !enable);
871 } else if (spi->controller->set_cs) {
872 spi->controller->set_cs(spi, !enable);
873 }
874
875 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
876 !spi->controller->set_cs_timing) {
877 if (!activate)
878 spi_delay_exec(&spi->cs_inactive, NULL);
879 }
880 }
881
882 #ifdef CONFIG_HAS_DMA
883 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
884 struct sg_table *sgt, void *buf, size_t len,
885 enum dma_data_direction dir)
886 {
887 const bool vmalloced_buf = is_vmalloc_addr(buf);
888 unsigned int max_seg_size = dma_get_max_seg_size(dev);
889 #ifdef CONFIG_HIGHMEM
890 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
891 (unsigned long)buf < (PKMAP_BASE +
892 (LAST_PKMAP * PAGE_SIZE)));
893 #else
894 const bool kmap_buf = false;
895 #endif
896 int desc_len;
897 int sgs;
898 struct page *vm_page;
899 struct scatterlist *sg;
900 void *sg_buf;
901 size_t min;
902 int i, ret;
903
904 if (vmalloced_buf || kmap_buf) {
905 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
906 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
907 } else if (virt_addr_valid(buf)) {
908 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
909 sgs = DIV_ROUND_UP(len, desc_len);
910 } else {
911 return -EINVAL;
912 }
913
914 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
915 if (ret != 0)
916 return ret;
917
918 sg = &sgt->sgl[0];
919 for (i = 0; i < sgs; i++) {
920
921 if (vmalloced_buf || kmap_buf) {
922 /*
923 * Next scatterlist entry size is the minimum between
924 * the desc_len and the remaining buffer length that
925 * fits in a page.
926 */
927 min = min_t(size_t, desc_len,
928 min_t(size_t, len,
929 PAGE_SIZE - offset_in_page(buf)));
930 if (vmalloced_buf)
931 vm_page = vmalloc_to_page(buf);
932 else
933 vm_page = kmap_to_page(buf);
934 if (!vm_page) {
935 sg_free_table(sgt);
936 return -ENOMEM;
937 }
938 sg_set_page(sg, vm_page,
939 min, offset_in_page(buf));
940 } else {
941 min = min_t(size_t, len, desc_len);
942 sg_buf = buf;
943 sg_set_buf(sg, sg_buf, min);
944 }
945
946 buf += min;
947 len -= min;
948 sg = sg_next(sg);
949 }
950
951 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
952 if (!ret)
953 ret = -ENOMEM;
954 if (ret < 0) {
955 sg_free_table(sgt);
956 return ret;
957 }
958
959 sgt->nents = ret;
960
961 return 0;
962 }
963
964 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
965 struct sg_table *sgt, enum dma_data_direction dir)
966 {
967 if (sgt->orig_nents) {
968 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
969 sg_free_table(sgt);
970 }
971 }
972
973 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
974 {
975 struct device *tx_dev, *rx_dev;
976 struct spi_transfer *xfer;
977 int ret;
978
979 if (!ctlr->can_dma)
980 return 0;
981
982 if (ctlr->dma_tx)
983 tx_dev = ctlr->dma_tx->device->dev;
984 else if (ctlr->dma_map_dev)
985 tx_dev = ctlr->dma_map_dev;
986 else
987 tx_dev = ctlr->dev.parent;
988
989 if (ctlr->dma_rx)
990 rx_dev = ctlr->dma_rx->device->dev;
991 else if (ctlr->dma_map_dev)
992 rx_dev = ctlr->dma_map_dev;
993 else
994 rx_dev = ctlr->dev.parent;
995
996 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
997 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
998 continue;
999
1000 if (xfer->tx_buf != NULL) {
1001 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1002 (void *)xfer->tx_buf, xfer->len,
1003 DMA_TO_DEVICE);
1004 if (ret != 0)
1005 return ret;
1006 }
1007
1008 if (xfer->rx_buf != NULL) {
1009 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1010 xfer->rx_buf, xfer->len,
1011 DMA_FROM_DEVICE);
1012 if (ret != 0) {
1013 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1014 DMA_TO_DEVICE);
1015 return ret;
1016 }
1017 }
1018 }
1019
1020 ctlr->cur_msg_mapped = true;
1021
1022 return 0;
1023 }
1024
1025 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1026 {
1027 struct spi_transfer *xfer;
1028 struct device *tx_dev, *rx_dev;
1029
1030 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1031 return 0;
1032
1033 if (ctlr->dma_tx)
1034 tx_dev = ctlr->dma_tx->device->dev;
1035 else
1036 tx_dev = ctlr->dev.parent;
1037
1038 if (ctlr->dma_rx)
1039 rx_dev = ctlr->dma_rx->device->dev;
1040 else
1041 rx_dev = ctlr->dev.parent;
1042
1043 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1045 continue;
1046
1047 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1048 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1049 }
1050
1051 ctlr->cur_msg_mapped = false;
1052
1053 return 0;
1054 }
1055 #else /* !CONFIG_HAS_DMA */
1056 static inline int __spi_map_msg(struct spi_controller *ctlr,
1057 struct spi_message *msg)
1058 {
1059 return 0;
1060 }
1061
1062 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1063 struct spi_message *msg)
1064 {
1065 return 0;
1066 }
1067 #endif /* !CONFIG_HAS_DMA */
1068
1069 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1070 struct spi_message *msg)
1071 {
1072 struct spi_transfer *xfer;
1073
1074 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1075 /*
1076 * Restore the original value of tx_buf or rx_buf if they are
1077 * NULL.
1078 */
1079 if (xfer->tx_buf == ctlr->dummy_tx)
1080 xfer->tx_buf = NULL;
1081 if (xfer->rx_buf == ctlr->dummy_rx)
1082 xfer->rx_buf = NULL;
1083 }
1084
1085 return __spi_unmap_msg(ctlr, msg);
1086 }
1087
1088 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1089 {
1090 struct spi_transfer *xfer;
1091 void *tmp;
1092 unsigned int max_tx, max_rx;
1093
1094 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1095 && !(msg->spi->mode & SPI_3WIRE)) {
1096 max_tx = 0;
1097 max_rx = 0;
1098
1099 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1100 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1101 !xfer->tx_buf)
1102 max_tx = max(xfer->len, max_tx);
1103 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1104 !xfer->rx_buf)
1105 max_rx = max(xfer->len, max_rx);
1106 }
1107
1108 if (max_tx) {
1109 tmp = krealloc(ctlr->dummy_tx, max_tx,
1110 GFP_KERNEL | GFP_DMA);
1111 if (!tmp)
1112 return -ENOMEM;
1113 ctlr->dummy_tx = tmp;
1114 memset(tmp, 0, max_tx);
1115 }
1116
1117 if (max_rx) {
1118 tmp = krealloc(ctlr->dummy_rx, max_rx,
1119 GFP_KERNEL | GFP_DMA);
1120 if (!tmp)
1121 return -ENOMEM;
1122 ctlr->dummy_rx = tmp;
1123 }
1124
1125 if (max_tx || max_rx) {
1126 list_for_each_entry(xfer, &msg->transfers,
1127 transfer_list) {
1128 if (!xfer->len)
1129 continue;
1130 if (!xfer->tx_buf)
1131 xfer->tx_buf = ctlr->dummy_tx;
1132 if (!xfer->rx_buf)
1133 xfer->rx_buf = ctlr->dummy_rx;
1134 }
1135 }
1136 }
1137
1138 return __spi_map_msg(ctlr, msg);
1139 }
1140
1141 static int spi_transfer_wait(struct spi_controller *ctlr,
1142 struct spi_message *msg,
1143 struct spi_transfer *xfer)
1144 {
1145 struct spi_statistics *statm = &ctlr->statistics;
1146 struct spi_statistics *stats = &msg->spi->statistics;
1147 u32 speed_hz = xfer->speed_hz;
1148 unsigned long long ms;
1149
1150 if (spi_controller_is_slave(ctlr)) {
1151 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1152 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1153 return -EINTR;
1154 }
1155 } else {
1156 if (!speed_hz)
1157 speed_hz = 100000;
1158
1159 /*
1160 * For each byte we wait for 8 cycles of the SPI clock.
1161 * Since speed is defined in Hz and we want milliseconds,
1162 * use respective multiplier, but before the division,
1163 * otherwise we may get 0 for short transfers.
1164 */
1165 ms = 8LL * MSEC_PER_SEC * xfer->len;
1166 do_div(ms, speed_hz);
1167
1168 /*
1169 * Increase it twice and add 200 ms tolerance, use
1170 * predefined maximum in case of overflow.
1171 */
1172 ms += ms + 200;
1173 if (ms > UINT_MAX)
1174 ms = UINT_MAX;
1175
1176 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1177 msecs_to_jiffies(ms));
1178
1179 if (ms == 0) {
1180 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1181 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1182 dev_err(&msg->spi->dev,
1183 "SPI transfer timed out\n");
1184 return -ETIMEDOUT;
1185 }
1186 }
1187
1188 return 0;
1189 }
1190
1191 static void _spi_transfer_delay_ns(u32 ns)
1192 {
1193 if (!ns)
1194 return;
1195 if (ns <= NSEC_PER_USEC) {
1196 ndelay(ns);
1197 } else {
1198 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1199
1200 if (us <= 10)
1201 udelay(us);
1202 else
1203 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1204 }
1205 }
1206
1207 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1208 {
1209 u32 delay = _delay->value;
1210 u32 unit = _delay->unit;
1211 u32 hz;
1212
1213 if (!delay)
1214 return 0;
1215
1216 switch (unit) {
1217 case SPI_DELAY_UNIT_USECS:
1218 delay *= NSEC_PER_USEC;
1219 break;
1220 case SPI_DELAY_UNIT_NSECS:
1221 /* Nothing to do here */
1222 break;
1223 case SPI_DELAY_UNIT_SCK:
1224 /* clock cycles need to be obtained from spi_transfer */
1225 if (!xfer)
1226 return -EINVAL;
1227 /*
1228 * If there is unknown effective speed, approximate it
1229 * by underestimating with half of the requested hz.
1230 */
1231 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1232 if (!hz)
1233 return -EINVAL;
1234
1235 /* Convert delay to nanoseconds */
1236 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1237 break;
1238 default:
1239 return -EINVAL;
1240 }
1241
1242 return delay;
1243 }
1244 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1245
1246 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1247 {
1248 int delay;
1249
1250 might_sleep();
1251
1252 if (!_delay)
1253 return -EINVAL;
1254
1255 delay = spi_delay_to_ns(_delay, xfer);
1256 if (delay < 0)
1257 return delay;
1258
1259 _spi_transfer_delay_ns(delay);
1260
1261 return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(spi_delay_exec);
1264
1265 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1266 struct spi_transfer *xfer)
1267 {
1268 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1269 u32 delay = xfer->cs_change_delay.value;
1270 u32 unit = xfer->cs_change_delay.unit;
1271 int ret;
1272
1273 /* return early on "fast" mode - for everything but USECS */
1274 if (!delay) {
1275 if (unit == SPI_DELAY_UNIT_USECS)
1276 _spi_transfer_delay_ns(default_delay_ns);
1277 return;
1278 }
1279
1280 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1281 if (ret) {
1282 dev_err_once(&msg->spi->dev,
1283 "Use of unsupported delay unit %i, using default of %luus\n",
1284 unit, default_delay_ns / NSEC_PER_USEC);
1285 _spi_transfer_delay_ns(default_delay_ns);
1286 }
1287 }
1288
1289 /*
1290 * spi_transfer_one_message - Default implementation of transfer_one_message()
1291 *
1292 * This is a standard implementation of transfer_one_message() for
1293 * drivers which implement a transfer_one() operation. It provides
1294 * standard handling of delays and chip select management.
1295 */
1296 static int spi_transfer_one_message(struct spi_controller *ctlr,
1297 struct spi_message *msg)
1298 {
1299 struct spi_transfer *xfer;
1300 bool keep_cs = false;
1301 int ret = 0;
1302 struct spi_statistics *statm = &ctlr->statistics;
1303 struct spi_statistics *stats = &msg->spi->statistics;
1304
1305 spi_set_cs(msg->spi, true, false);
1306
1307 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1308 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1309
1310 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1311 trace_spi_transfer_start(msg, xfer);
1312
1313 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1314 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1315
1316 if (!ctlr->ptp_sts_supported) {
1317 xfer->ptp_sts_word_pre = 0;
1318 ptp_read_system_prets(xfer->ptp_sts);
1319 }
1320
1321 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1322 reinit_completion(&ctlr->xfer_completion);
1323
1324 fallback_pio:
1325 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1326 if (ret < 0) {
1327 if (ctlr->cur_msg_mapped &&
1328 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1329 __spi_unmap_msg(ctlr, msg);
1330 ctlr->fallback = true;
1331 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1332 goto fallback_pio;
1333 }
1334
1335 SPI_STATISTICS_INCREMENT_FIELD(statm,
1336 errors);
1337 SPI_STATISTICS_INCREMENT_FIELD(stats,
1338 errors);
1339 dev_err(&msg->spi->dev,
1340 "SPI transfer failed: %d\n", ret);
1341 goto out;
1342 }
1343
1344 if (ret > 0) {
1345 ret = spi_transfer_wait(ctlr, msg, xfer);
1346 if (ret < 0)
1347 msg->status = ret;
1348 }
1349 } else {
1350 if (xfer->len)
1351 dev_err(&msg->spi->dev,
1352 "Bufferless transfer has length %u\n",
1353 xfer->len);
1354 }
1355
1356 if (!ctlr->ptp_sts_supported) {
1357 ptp_read_system_postts(xfer->ptp_sts);
1358 xfer->ptp_sts_word_post = xfer->len;
1359 }
1360
1361 trace_spi_transfer_stop(msg, xfer);
1362
1363 if (msg->status != -EINPROGRESS)
1364 goto out;
1365
1366 spi_transfer_delay_exec(xfer);
1367
1368 if (xfer->cs_change) {
1369 if (list_is_last(&xfer->transfer_list,
1370 &msg->transfers)) {
1371 keep_cs = true;
1372 } else {
1373 spi_set_cs(msg->spi, false, false);
1374 _spi_transfer_cs_change_delay(msg, xfer);
1375 spi_set_cs(msg->spi, true, false);
1376 }
1377 }
1378
1379 msg->actual_length += xfer->len;
1380 }
1381
1382 out:
1383 if (ret != 0 || !keep_cs)
1384 spi_set_cs(msg->spi, false, false);
1385
1386 if (msg->status == -EINPROGRESS)
1387 msg->status = ret;
1388
1389 if (msg->status && ctlr->handle_err)
1390 ctlr->handle_err(ctlr, msg);
1391
1392 spi_finalize_current_message(ctlr);
1393
1394 return ret;
1395 }
1396
1397 /**
1398 * spi_finalize_current_transfer - report completion of a transfer
1399 * @ctlr: the controller reporting completion
1400 *
1401 * Called by SPI drivers using the core transfer_one_message()
1402 * implementation to notify it that the current interrupt driven
1403 * transfer has finished and the next one may be scheduled.
1404 */
1405 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1406 {
1407 complete(&ctlr->xfer_completion);
1408 }
1409 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1410
1411 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1412 {
1413 if (ctlr->auto_runtime_pm) {
1414 pm_runtime_mark_last_busy(ctlr->dev.parent);
1415 pm_runtime_put_autosuspend(ctlr->dev.parent);
1416 }
1417 }
1418
1419 /**
1420 * __spi_pump_messages - function which processes spi message queue
1421 * @ctlr: controller to process queue for
1422 * @in_kthread: true if we are in the context of the message pump thread
1423 *
1424 * This function checks if there is any spi message in the queue that
1425 * needs processing and if so call out to the driver to initialize hardware
1426 * and transfer each message.
1427 *
1428 * Note that it is called both from the kthread itself and also from
1429 * inside spi_sync(); the queue extraction handling at the top of the
1430 * function should deal with this safely.
1431 */
1432 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1433 {
1434 struct spi_transfer *xfer;
1435 struct spi_message *msg;
1436 bool was_busy = false;
1437 unsigned long flags;
1438 int ret;
1439
1440 /* Lock queue */
1441 spin_lock_irqsave(&ctlr->queue_lock, flags);
1442
1443 /* Make sure we are not already running a message */
1444 if (ctlr->cur_msg) {
1445 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1446 return;
1447 }
1448
1449 /* If another context is idling the device then defer */
1450 if (ctlr->idling) {
1451 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1452 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1453 return;
1454 }
1455
1456 /* Check if the queue is idle */
1457 if (list_empty(&ctlr->queue) || !ctlr->running) {
1458 if (!ctlr->busy) {
1459 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460 return;
1461 }
1462
1463 /* Defer any non-atomic teardown to the thread */
1464 if (!in_kthread) {
1465 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1466 !ctlr->unprepare_transfer_hardware) {
1467 spi_idle_runtime_pm(ctlr);
1468 ctlr->busy = false;
1469 trace_spi_controller_idle(ctlr);
1470 } else {
1471 kthread_queue_work(ctlr->kworker,
1472 &ctlr->pump_messages);
1473 }
1474 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1475 return;
1476 }
1477
1478 ctlr->busy = false;
1479 ctlr->idling = true;
1480 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1481
1482 kfree(ctlr->dummy_rx);
1483 ctlr->dummy_rx = NULL;
1484 kfree(ctlr->dummy_tx);
1485 ctlr->dummy_tx = NULL;
1486 if (ctlr->unprepare_transfer_hardware &&
1487 ctlr->unprepare_transfer_hardware(ctlr))
1488 dev_err(&ctlr->dev,
1489 "failed to unprepare transfer hardware\n");
1490 spi_idle_runtime_pm(ctlr);
1491 trace_spi_controller_idle(ctlr);
1492
1493 spin_lock_irqsave(&ctlr->queue_lock, flags);
1494 ctlr->idling = false;
1495 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1496 return;
1497 }
1498
1499 /* Extract head of queue */
1500 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1501 ctlr->cur_msg = msg;
1502
1503 list_del_init(&msg->queue);
1504 if (ctlr->busy)
1505 was_busy = true;
1506 else
1507 ctlr->busy = true;
1508 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1509
1510 mutex_lock(&ctlr->io_mutex);
1511
1512 if (!was_busy && ctlr->auto_runtime_pm) {
1513 ret = pm_runtime_get_sync(ctlr->dev.parent);
1514 if (ret < 0) {
1515 pm_runtime_put_noidle(ctlr->dev.parent);
1516 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1517 ret);
1518 mutex_unlock(&ctlr->io_mutex);
1519 return;
1520 }
1521 }
1522
1523 if (!was_busy)
1524 trace_spi_controller_busy(ctlr);
1525
1526 if (!was_busy && ctlr->prepare_transfer_hardware) {
1527 ret = ctlr->prepare_transfer_hardware(ctlr);
1528 if (ret) {
1529 dev_err(&ctlr->dev,
1530 "failed to prepare transfer hardware: %d\n",
1531 ret);
1532
1533 if (ctlr->auto_runtime_pm)
1534 pm_runtime_put(ctlr->dev.parent);
1535
1536 msg->status = ret;
1537 spi_finalize_current_message(ctlr);
1538
1539 mutex_unlock(&ctlr->io_mutex);
1540 return;
1541 }
1542 }
1543
1544 trace_spi_message_start(msg);
1545
1546 if (ctlr->prepare_message) {
1547 ret = ctlr->prepare_message(ctlr, msg);
1548 if (ret) {
1549 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1550 ret);
1551 msg->status = ret;
1552 spi_finalize_current_message(ctlr);
1553 goto out;
1554 }
1555 ctlr->cur_msg_prepared = true;
1556 }
1557
1558 ret = spi_map_msg(ctlr, msg);
1559 if (ret) {
1560 msg->status = ret;
1561 spi_finalize_current_message(ctlr);
1562 goto out;
1563 }
1564
1565 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1566 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1567 xfer->ptp_sts_word_pre = 0;
1568 ptp_read_system_prets(xfer->ptp_sts);
1569 }
1570 }
1571
1572 ret = ctlr->transfer_one_message(ctlr, msg);
1573 if (ret) {
1574 dev_err(&ctlr->dev,
1575 "failed to transfer one message from queue\n");
1576 goto out;
1577 }
1578
1579 out:
1580 mutex_unlock(&ctlr->io_mutex);
1581
1582 /* Prod the scheduler in case transfer_one() was busy waiting */
1583 if (!ret)
1584 cond_resched();
1585 }
1586
1587 /**
1588 * spi_pump_messages - kthread work function which processes spi message queue
1589 * @work: pointer to kthread work struct contained in the controller struct
1590 */
1591 static void spi_pump_messages(struct kthread_work *work)
1592 {
1593 struct spi_controller *ctlr =
1594 container_of(work, struct spi_controller, pump_messages);
1595
1596 __spi_pump_messages(ctlr, true);
1597 }
1598
1599 /**
1600 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1601 * TX timestamp for the requested byte from the SPI
1602 * transfer. The frequency with which this function
1603 * must be called (once per word, once for the whole
1604 * transfer, once per batch of words etc) is arbitrary
1605 * as long as the @tx buffer offset is greater than or
1606 * equal to the requested byte at the time of the
1607 * call. The timestamp is only taken once, at the
1608 * first such call. It is assumed that the driver
1609 * advances its @tx buffer pointer monotonically.
1610 * @ctlr: Pointer to the spi_controller structure of the driver
1611 * @xfer: Pointer to the transfer being timestamped
1612 * @progress: How many words (not bytes) have been transferred so far
1613 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1614 * transfer, for less jitter in time measurement. Only compatible
1615 * with PIO drivers. If true, must follow up with
1616 * spi_take_timestamp_post or otherwise system will crash.
1617 * WARNING: for fully predictable results, the CPU frequency must
1618 * also be under control (governor).
1619 */
1620 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1621 struct spi_transfer *xfer,
1622 size_t progress, bool irqs_off)
1623 {
1624 if (!xfer->ptp_sts)
1625 return;
1626
1627 if (xfer->timestamped)
1628 return;
1629
1630 if (progress > xfer->ptp_sts_word_pre)
1631 return;
1632
1633 /* Capture the resolution of the timestamp */
1634 xfer->ptp_sts_word_pre = progress;
1635
1636 if (irqs_off) {
1637 local_irq_save(ctlr->irq_flags);
1638 preempt_disable();
1639 }
1640
1641 ptp_read_system_prets(xfer->ptp_sts);
1642 }
1643 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1644
1645 /**
1646 * spi_take_timestamp_post - helper for drivers to collect the end of the
1647 * TX timestamp for the requested byte from the SPI
1648 * transfer. Can be called with an arbitrary
1649 * frequency: only the first call where @tx exceeds
1650 * or is equal to the requested word will be
1651 * timestamped.
1652 * @ctlr: Pointer to the spi_controller structure of the driver
1653 * @xfer: Pointer to the transfer being timestamped
1654 * @progress: How many words (not bytes) have been transferred so far
1655 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1656 */
1657 void spi_take_timestamp_post(struct spi_controller *ctlr,
1658 struct spi_transfer *xfer,
1659 size_t progress, bool irqs_off)
1660 {
1661 if (!xfer->ptp_sts)
1662 return;
1663
1664 if (xfer->timestamped)
1665 return;
1666
1667 if (progress < xfer->ptp_sts_word_post)
1668 return;
1669
1670 ptp_read_system_postts(xfer->ptp_sts);
1671
1672 if (irqs_off) {
1673 local_irq_restore(ctlr->irq_flags);
1674 preempt_enable();
1675 }
1676
1677 /* Capture the resolution of the timestamp */
1678 xfer->ptp_sts_word_post = progress;
1679
1680 xfer->timestamped = true;
1681 }
1682 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1683
1684 /**
1685 * spi_set_thread_rt - set the controller to pump at realtime priority
1686 * @ctlr: controller to boost priority of
1687 *
1688 * This can be called because the controller requested realtime priority
1689 * (by setting the ->rt value before calling spi_register_controller()) or
1690 * because a device on the bus said that its transfers needed realtime
1691 * priority.
1692 *
1693 * NOTE: at the moment if any device on a bus says it needs realtime then
1694 * the thread will be at realtime priority for all transfers on that
1695 * controller. If this eventually becomes a problem we may see if we can
1696 * find a way to boost the priority only temporarily during relevant
1697 * transfers.
1698 */
1699 static void spi_set_thread_rt(struct spi_controller *ctlr)
1700 {
1701 dev_info(&ctlr->dev,
1702 "will run message pump with realtime priority\n");
1703 sched_set_fifo(ctlr->kworker->task);
1704 }
1705
1706 static int spi_init_queue(struct spi_controller *ctlr)
1707 {
1708 ctlr->running = false;
1709 ctlr->busy = false;
1710
1711 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1712 if (IS_ERR(ctlr->kworker)) {
1713 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1714 return PTR_ERR(ctlr->kworker);
1715 }
1716
1717 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1718
1719 /*
1720 * Controller config will indicate if this controller should run the
1721 * message pump with high (realtime) priority to reduce the transfer
1722 * latency on the bus by minimising the delay between a transfer
1723 * request and the scheduling of the message pump thread. Without this
1724 * setting the message pump thread will remain at default priority.
1725 */
1726 if (ctlr->rt)
1727 spi_set_thread_rt(ctlr);
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * spi_get_next_queued_message() - called by driver to check for queued
1734 * messages
1735 * @ctlr: the controller to check for queued messages
1736 *
1737 * If there are more messages in the queue, the next message is returned from
1738 * this call.
1739 *
1740 * Return: the next message in the queue, else NULL if the queue is empty.
1741 */
1742 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1743 {
1744 struct spi_message *next;
1745 unsigned long flags;
1746
1747 /* get a pointer to the next message, if any */
1748 spin_lock_irqsave(&ctlr->queue_lock, flags);
1749 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1750 queue);
1751 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1752
1753 return next;
1754 }
1755 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1756
1757 /**
1758 * spi_finalize_current_message() - the current message is complete
1759 * @ctlr: the controller to return the message to
1760 *
1761 * Called by the driver to notify the core that the message in the front of the
1762 * queue is complete and can be removed from the queue.
1763 */
1764 void spi_finalize_current_message(struct spi_controller *ctlr)
1765 {
1766 struct spi_transfer *xfer;
1767 struct spi_message *mesg;
1768 unsigned long flags;
1769 int ret;
1770
1771 spin_lock_irqsave(&ctlr->queue_lock, flags);
1772 mesg = ctlr->cur_msg;
1773 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1774
1775 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1776 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1777 ptp_read_system_postts(xfer->ptp_sts);
1778 xfer->ptp_sts_word_post = xfer->len;
1779 }
1780 }
1781
1782 if (unlikely(ctlr->ptp_sts_supported))
1783 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1784 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1785
1786 spi_unmap_msg(ctlr, mesg);
1787
1788 /* In the prepare_messages callback the spi bus has the opportunity to
1789 * split a transfer to smaller chunks.
1790 * Release splited transfers here since spi_map_msg is done on the
1791 * splited transfers.
1792 */
1793 spi_res_release(ctlr, mesg);
1794
1795 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1796 ret = ctlr->unprepare_message(ctlr, mesg);
1797 if (ret) {
1798 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1799 ret);
1800 }
1801 }
1802
1803 spin_lock_irqsave(&ctlr->queue_lock, flags);
1804 ctlr->cur_msg = NULL;
1805 ctlr->cur_msg_prepared = false;
1806 ctlr->fallback = false;
1807 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1808 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1809
1810 trace_spi_message_done(mesg);
1811
1812 mesg->state = NULL;
1813 if (mesg->complete)
1814 mesg->complete(mesg->context);
1815 }
1816 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1817
1818 static int spi_start_queue(struct spi_controller *ctlr)
1819 {
1820 unsigned long flags;
1821
1822 spin_lock_irqsave(&ctlr->queue_lock, flags);
1823
1824 if (ctlr->running || ctlr->busy) {
1825 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1826 return -EBUSY;
1827 }
1828
1829 ctlr->running = true;
1830 ctlr->cur_msg = NULL;
1831 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1832
1833 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1834
1835 return 0;
1836 }
1837
1838 static int spi_stop_queue(struct spi_controller *ctlr)
1839 {
1840 unsigned long flags;
1841 unsigned limit = 500;
1842 int ret = 0;
1843
1844 spin_lock_irqsave(&ctlr->queue_lock, flags);
1845
1846 /*
1847 * This is a bit lame, but is optimized for the common execution path.
1848 * A wait_queue on the ctlr->busy could be used, but then the common
1849 * execution path (pump_messages) would be required to call wake_up or
1850 * friends on every SPI message. Do this instead.
1851 */
1852 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1853 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1854 usleep_range(10000, 11000);
1855 spin_lock_irqsave(&ctlr->queue_lock, flags);
1856 }
1857
1858 if (!list_empty(&ctlr->queue) || ctlr->busy)
1859 ret = -EBUSY;
1860 else
1861 ctlr->running = false;
1862
1863 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1864
1865 if (ret) {
1866 dev_warn(&ctlr->dev, "could not stop message queue\n");
1867 return ret;
1868 }
1869 return ret;
1870 }
1871
1872 static int spi_destroy_queue(struct spi_controller *ctlr)
1873 {
1874 int ret;
1875
1876 ret = spi_stop_queue(ctlr);
1877
1878 /*
1879 * kthread_flush_worker will block until all work is done.
1880 * If the reason that stop_queue timed out is that the work will never
1881 * finish, then it does no good to call flush/stop thread, so
1882 * return anyway.
1883 */
1884 if (ret) {
1885 dev_err(&ctlr->dev, "problem destroying queue\n");
1886 return ret;
1887 }
1888
1889 kthread_destroy_worker(ctlr->kworker);
1890
1891 return 0;
1892 }
1893
1894 static int __spi_queued_transfer(struct spi_device *spi,
1895 struct spi_message *msg,
1896 bool need_pump)
1897 {
1898 struct spi_controller *ctlr = spi->controller;
1899 unsigned long flags;
1900
1901 spin_lock_irqsave(&ctlr->queue_lock, flags);
1902
1903 if (!ctlr->running) {
1904 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1905 return -ESHUTDOWN;
1906 }
1907 msg->actual_length = 0;
1908 msg->status = -EINPROGRESS;
1909
1910 list_add_tail(&msg->queue, &ctlr->queue);
1911 if (!ctlr->busy && need_pump)
1912 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1913
1914 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1915 return 0;
1916 }
1917
1918 /**
1919 * spi_queued_transfer - transfer function for queued transfers
1920 * @spi: spi device which is requesting transfer
1921 * @msg: spi message which is to handled is queued to driver queue
1922 *
1923 * Return: zero on success, else a negative error code.
1924 */
1925 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1926 {
1927 return __spi_queued_transfer(spi, msg, true);
1928 }
1929
1930 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1931 {
1932 int ret;
1933
1934 ctlr->transfer = spi_queued_transfer;
1935 if (!ctlr->transfer_one_message)
1936 ctlr->transfer_one_message = spi_transfer_one_message;
1937
1938 /* Initialize and start queue */
1939 ret = spi_init_queue(ctlr);
1940 if (ret) {
1941 dev_err(&ctlr->dev, "problem initializing queue\n");
1942 goto err_init_queue;
1943 }
1944 ctlr->queued = true;
1945 ret = spi_start_queue(ctlr);
1946 if (ret) {
1947 dev_err(&ctlr->dev, "problem starting queue\n");
1948 goto err_start_queue;
1949 }
1950
1951 return 0;
1952
1953 err_start_queue:
1954 spi_destroy_queue(ctlr);
1955 err_init_queue:
1956 return ret;
1957 }
1958
1959 /**
1960 * spi_flush_queue - Send all pending messages in the queue from the callers'
1961 * context
1962 * @ctlr: controller to process queue for
1963 *
1964 * This should be used when one wants to ensure all pending messages have been
1965 * sent before doing something. Is used by the spi-mem code to make sure SPI
1966 * memory operations do not preempt regular SPI transfers that have been queued
1967 * before the spi-mem operation.
1968 */
1969 void spi_flush_queue(struct spi_controller *ctlr)
1970 {
1971 if (ctlr->transfer == spi_queued_transfer)
1972 __spi_pump_messages(ctlr, false);
1973 }
1974
1975 /*-------------------------------------------------------------------------*/
1976
1977 #if defined(CONFIG_OF)
1978 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1979 struct device_node *nc)
1980 {
1981 u32 value;
1982 int rc;
1983
1984 /* Mode (clock phase/polarity/etc.) */
1985 if (of_property_read_bool(nc, "spi-cpha"))
1986 spi->mode |= SPI_CPHA;
1987 if (of_property_read_bool(nc, "spi-cpol"))
1988 spi->mode |= SPI_CPOL;
1989 if (of_property_read_bool(nc, "spi-3wire"))
1990 spi->mode |= SPI_3WIRE;
1991 if (of_property_read_bool(nc, "spi-lsb-first"))
1992 spi->mode |= SPI_LSB_FIRST;
1993 if (of_property_read_bool(nc, "spi-cs-high"))
1994 spi->mode |= SPI_CS_HIGH;
1995
1996 /* Device DUAL/QUAD mode */
1997 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1998 switch (value) {
1999 case 0:
2000 spi->mode |= SPI_NO_TX;
2001 break;
2002 case 1:
2003 break;
2004 case 2:
2005 spi->mode |= SPI_TX_DUAL;
2006 break;
2007 case 4:
2008 spi->mode |= SPI_TX_QUAD;
2009 break;
2010 case 8:
2011 spi->mode |= SPI_TX_OCTAL;
2012 break;
2013 default:
2014 dev_warn(&ctlr->dev,
2015 "spi-tx-bus-width %d not supported\n",
2016 value);
2017 break;
2018 }
2019 }
2020
2021 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2022 switch (value) {
2023 case 0:
2024 spi->mode |= SPI_NO_RX;
2025 break;
2026 case 1:
2027 break;
2028 case 2:
2029 spi->mode |= SPI_RX_DUAL;
2030 break;
2031 case 4:
2032 spi->mode |= SPI_RX_QUAD;
2033 break;
2034 case 8:
2035 spi->mode |= SPI_RX_OCTAL;
2036 break;
2037 default:
2038 dev_warn(&ctlr->dev,
2039 "spi-rx-bus-width %d not supported\n",
2040 value);
2041 break;
2042 }
2043 }
2044
2045 if (spi_controller_is_slave(ctlr)) {
2046 if (!of_node_name_eq(nc, "slave")) {
2047 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2048 nc);
2049 return -EINVAL;
2050 }
2051 return 0;
2052 }
2053
2054 /* Device address */
2055 rc = of_property_read_u32(nc, "reg", &value);
2056 if (rc) {
2057 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2058 nc, rc);
2059 return rc;
2060 }
2061 spi->chip_select = value;
2062
2063 /* Device speed */
2064 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2065 spi->max_speed_hz = value;
2066
2067 return 0;
2068 }
2069
2070 static struct spi_device *
2071 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2072 {
2073 struct spi_device *spi;
2074 int rc;
2075
2076 /* Alloc an spi_device */
2077 spi = spi_alloc_device(ctlr);
2078 if (!spi) {
2079 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2080 rc = -ENOMEM;
2081 goto err_out;
2082 }
2083
2084 /* Select device driver */
2085 rc = of_modalias_node(nc, spi->modalias,
2086 sizeof(spi->modalias));
2087 if (rc < 0) {
2088 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2089 goto err_out;
2090 }
2091
2092 rc = of_spi_parse_dt(ctlr, spi, nc);
2093 if (rc)
2094 goto err_out;
2095
2096 /* Store a pointer to the node in the device structure */
2097 of_node_get(nc);
2098 spi->dev.of_node = nc;
2099 spi->dev.fwnode = of_fwnode_handle(nc);
2100
2101 /* Register the new device */
2102 rc = spi_add_device(spi);
2103 if (rc) {
2104 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2105 goto err_of_node_put;
2106 }
2107
2108 return spi;
2109
2110 err_of_node_put:
2111 of_node_put(nc);
2112 err_out:
2113 spi_dev_put(spi);
2114 return ERR_PTR(rc);
2115 }
2116
2117 /**
2118 * of_register_spi_devices() - Register child devices onto the SPI bus
2119 * @ctlr: Pointer to spi_controller device
2120 *
2121 * Registers an spi_device for each child node of controller node which
2122 * represents a valid SPI slave.
2123 */
2124 static void of_register_spi_devices(struct spi_controller *ctlr)
2125 {
2126 struct spi_device *spi;
2127 struct device_node *nc;
2128
2129 if (!ctlr->dev.of_node)
2130 return;
2131
2132 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2133 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2134 continue;
2135 spi = of_register_spi_device(ctlr, nc);
2136 if (IS_ERR(spi)) {
2137 dev_warn(&ctlr->dev,
2138 "Failed to create SPI device for %pOF\n", nc);
2139 of_node_clear_flag(nc, OF_POPULATED);
2140 }
2141 }
2142 }
2143 #else
2144 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2145 #endif
2146
2147 /**
2148 * spi_new_ancillary_device() - Register ancillary SPI device
2149 * @spi: Pointer to the main SPI device registering the ancillary device
2150 * @chip_select: Chip Select of the ancillary device
2151 *
2152 * Register an ancillary SPI device; for example some chips have a chip-select
2153 * for normal device usage and another one for setup/firmware upload.
2154 *
2155 * This may only be called from main SPI device's probe routine.
2156 *
2157 * Return: 0 on success; negative errno on failure
2158 */
2159 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2160 u8 chip_select)
2161 {
2162 struct spi_device *ancillary;
2163 int rc = 0;
2164
2165 /* Alloc an spi_device */
2166 ancillary = spi_alloc_device(spi->controller);
2167 if (!ancillary) {
2168 rc = -ENOMEM;
2169 goto err_out;
2170 }
2171
2172 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2173
2174 /* Use provided chip-select for ancillary device */
2175 ancillary->chip_select = chip_select;
2176
2177 /* Take over SPI mode/speed from SPI main device */
2178 ancillary->max_speed_hz = spi->max_speed_hz;
2179 ancillary->mode = spi->mode;
2180
2181 /* Register the new device */
2182 rc = spi_add_device_locked(ancillary);
2183 if (rc) {
2184 dev_err(&spi->dev, "failed to register ancillary device\n");
2185 goto err_out;
2186 }
2187
2188 return ancillary;
2189
2190 err_out:
2191 spi_dev_put(ancillary);
2192 return ERR_PTR(rc);
2193 }
2194 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2195
2196 #ifdef CONFIG_ACPI
2197 struct acpi_spi_lookup {
2198 struct spi_controller *ctlr;
2199 u32 max_speed_hz;
2200 u32 mode;
2201 int irq;
2202 u8 bits_per_word;
2203 u8 chip_select;
2204 };
2205
2206 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2207 struct acpi_spi_lookup *lookup)
2208 {
2209 const union acpi_object *obj;
2210
2211 if (!x86_apple_machine)
2212 return;
2213
2214 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2215 && obj->buffer.length >= 4)
2216 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2217
2218 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2219 && obj->buffer.length == 8)
2220 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2221
2222 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2223 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2224 lookup->mode |= SPI_LSB_FIRST;
2225
2226 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2227 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2228 lookup->mode |= SPI_CPOL;
2229
2230 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2231 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2232 lookup->mode |= SPI_CPHA;
2233 }
2234
2235 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2236 {
2237 struct acpi_spi_lookup *lookup = data;
2238 struct spi_controller *ctlr = lookup->ctlr;
2239
2240 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2241 struct acpi_resource_spi_serialbus *sb;
2242 acpi_handle parent_handle;
2243 acpi_status status;
2244
2245 sb = &ares->data.spi_serial_bus;
2246 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2247
2248 status = acpi_get_handle(NULL,
2249 sb->resource_source.string_ptr,
2250 &parent_handle);
2251
2252 if (ACPI_FAILURE(status) ||
2253 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2254 return -ENODEV;
2255
2256 /*
2257 * ACPI DeviceSelection numbering is handled by the
2258 * host controller driver in Windows and can vary
2259 * from driver to driver. In Linux we always expect
2260 * 0 .. max - 1 so we need to ask the driver to
2261 * translate between the two schemes.
2262 */
2263 if (ctlr->fw_translate_cs) {
2264 int cs = ctlr->fw_translate_cs(ctlr,
2265 sb->device_selection);
2266 if (cs < 0)
2267 return cs;
2268 lookup->chip_select = cs;
2269 } else {
2270 lookup->chip_select = sb->device_selection;
2271 }
2272
2273 lookup->max_speed_hz = sb->connection_speed;
2274 lookup->bits_per_word = sb->data_bit_length;
2275
2276 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2277 lookup->mode |= SPI_CPHA;
2278 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2279 lookup->mode |= SPI_CPOL;
2280 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2281 lookup->mode |= SPI_CS_HIGH;
2282 }
2283 } else if (lookup->irq < 0) {
2284 struct resource r;
2285
2286 if (acpi_dev_resource_interrupt(ares, 0, &r))
2287 lookup->irq = r.start;
2288 }
2289
2290 /* Always tell the ACPI core to skip this resource */
2291 return 1;
2292 }
2293
2294 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2295 struct acpi_device *adev)
2296 {
2297 acpi_handle parent_handle = NULL;
2298 struct list_head resource_list;
2299 struct acpi_spi_lookup lookup = {};
2300 struct spi_device *spi;
2301 int ret;
2302
2303 if (acpi_bus_get_status(adev) || !adev->status.present ||
2304 acpi_device_enumerated(adev))
2305 return AE_OK;
2306
2307 lookup.ctlr = ctlr;
2308 lookup.irq = -1;
2309
2310 INIT_LIST_HEAD(&resource_list);
2311 ret = acpi_dev_get_resources(adev, &resource_list,
2312 acpi_spi_add_resource, &lookup);
2313 acpi_dev_free_resource_list(&resource_list);
2314
2315 if (ret < 0)
2316 /* found SPI in _CRS but it points to another controller */
2317 return AE_OK;
2318
2319 if (!lookup.max_speed_hz &&
2320 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2321 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2322 /* Apple does not use _CRS but nested devices for SPI slaves */
2323 acpi_spi_parse_apple_properties(adev, &lookup);
2324 }
2325
2326 if (!lookup.max_speed_hz)
2327 return AE_OK;
2328
2329 spi = spi_alloc_device(ctlr);
2330 if (!spi) {
2331 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2332 dev_name(&adev->dev));
2333 return AE_NO_MEMORY;
2334 }
2335
2336
2337 ACPI_COMPANION_SET(&spi->dev, adev);
2338 spi->max_speed_hz = lookup.max_speed_hz;
2339 spi->mode |= lookup.mode;
2340 spi->irq = lookup.irq;
2341 spi->bits_per_word = lookup.bits_per_word;
2342 spi->chip_select = lookup.chip_select;
2343
2344 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2345 sizeof(spi->modalias));
2346
2347 if (spi->irq < 0)
2348 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2349
2350 acpi_device_set_enumerated(adev);
2351
2352 adev->power.flags.ignore_parent = true;
2353 if (spi_add_device(spi)) {
2354 adev->power.flags.ignore_parent = false;
2355 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2356 dev_name(&adev->dev));
2357 spi_dev_put(spi);
2358 }
2359
2360 return AE_OK;
2361 }
2362
2363 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2364 void *data, void **return_value)
2365 {
2366 struct spi_controller *ctlr = data;
2367 struct acpi_device *adev;
2368
2369 if (acpi_bus_get_device(handle, &adev))
2370 return AE_OK;
2371
2372 return acpi_register_spi_device(ctlr, adev);
2373 }
2374
2375 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2376
2377 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379 acpi_status status;
2380 acpi_handle handle;
2381
2382 handle = ACPI_HANDLE(ctlr->dev.parent);
2383 if (!handle)
2384 return;
2385
2386 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2387 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2388 acpi_spi_add_device, NULL, ctlr, NULL);
2389 if (ACPI_FAILURE(status))
2390 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2391 }
2392 #else
2393 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2394 #endif /* CONFIG_ACPI */
2395
2396 static void spi_controller_release(struct device *dev)
2397 {
2398 struct spi_controller *ctlr;
2399
2400 ctlr = container_of(dev, struct spi_controller, dev);
2401 kfree(ctlr);
2402 }
2403
2404 static struct class spi_master_class = {
2405 .name = "spi_master",
2406 .owner = THIS_MODULE,
2407 .dev_release = spi_controller_release,
2408 .dev_groups = spi_master_groups,
2409 };
2410
2411 #ifdef CONFIG_SPI_SLAVE
2412 /**
2413 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2414 * controller
2415 * @spi: device used for the current transfer
2416 */
2417 int spi_slave_abort(struct spi_device *spi)
2418 {
2419 struct spi_controller *ctlr = spi->controller;
2420
2421 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2422 return ctlr->slave_abort(ctlr);
2423
2424 return -ENOTSUPP;
2425 }
2426 EXPORT_SYMBOL_GPL(spi_slave_abort);
2427
2428 static int match_true(struct device *dev, void *data)
2429 {
2430 return 1;
2431 }
2432
2433 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2434 char *buf)
2435 {
2436 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2437 dev);
2438 struct device *child;
2439
2440 child = device_find_child(&ctlr->dev, NULL, match_true);
2441 return sprintf(buf, "%s\n",
2442 child ? to_spi_device(child)->modalias : NULL);
2443 }
2444
2445 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2446 const char *buf, size_t count)
2447 {
2448 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2449 dev);
2450 struct spi_device *spi;
2451 struct device *child;
2452 char name[32];
2453 int rc;
2454
2455 rc = sscanf(buf, "%31s", name);
2456 if (rc != 1 || !name[0])
2457 return -EINVAL;
2458
2459 child = device_find_child(&ctlr->dev, NULL, match_true);
2460 if (child) {
2461 /* Remove registered slave */
2462 device_unregister(child);
2463 put_device(child);
2464 }
2465
2466 if (strcmp(name, "(null)")) {
2467 /* Register new slave */
2468 spi = spi_alloc_device(ctlr);
2469 if (!spi)
2470 return -ENOMEM;
2471
2472 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2473
2474 rc = spi_add_device(spi);
2475 if (rc) {
2476 spi_dev_put(spi);
2477 return rc;
2478 }
2479 }
2480
2481 return count;
2482 }
2483
2484 static DEVICE_ATTR_RW(slave);
2485
2486 static struct attribute *spi_slave_attrs[] = {
2487 &dev_attr_slave.attr,
2488 NULL,
2489 };
2490
2491 static const struct attribute_group spi_slave_group = {
2492 .attrs = spi_slave_attrs,
2493 };
2494
2495 static const struct attribute_group *spi_slave_groups[] = {
2496 &spi_controller_statistics_group,
2497 &spi_slave_group,
2498 NULL,
2499 };
2500
2501 static struct class spi_slave_class = {
2502 .name = "spi_slave",
2503 .owner = THIS_MODULE,
2504 .dev_release = spi_controller_release,
2505 .dev_groups = spi_slave_groups,
2506 };
2507 #else
2508 extern struct class spi_slave_class; /* dummy */
2509 #endif
2510
2511 /**
2512 * __spi_alloc_controller - allocate an SPI master or slave controller
2513 * @dev: the controller, possibly using the platform_bus
2514 * @size: how much zeroed driver-private data to allocate; the pointer to this
2515 * memory is in the driver_data field of the returned device, accessible
2516 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2517 * drivers granting DMA access to portions of their private data need to
2518 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2519 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2520 * slave (true) controller
2521 * Context: can sleep
2522 *
2523 * This call is used only by SPI controller drivers, which are the
2524 * only ones directly touching chip registers. It's how they allocate
2525 * an spi_controller structure, prior to calling spi_register_controller().
2526 *
2527 * This must be called from context that can sleep.
2528 *
2529 * The caller is responsible for assigning the bus number and initializing the
2530 * controller's methods before calling spi_register_controller(); and (after
2531 * errors adding the device) calling spi_controller_put() to prevent a memory
2532 * leak.
2533 *
2534 * Return: the SPI controller structure on success, else NULL.
2535 */
2536 struct spi_controller *__spi_alloc_controller(struct device *dev,
2537 unsigned int size, bool slave)
2538 {
2539 struct spi_controller *ctlr;
2540 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2541
2542 if (!dev)
2543 return NULL;
2544
2545 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2546 if (!ctlr)
2547 return NULL;
2548
2549 device_initialize(&ctlr->dev);
2550 INIT_LIST_HEAD(&ctlr->queue);
2551 spin_lock_init(&ctlr->queue_lock);
2552 spin_lock_init(&ctlr->bus_lock_spinlock);
2553 mutex_init(&ctlr->bus_lock_mutex);
2554 mutex_init(&ctlr->io_mutex);
2555 mutex_init(&ctlr->add_lock);
2556 ctlr->bus_num = -1;
2557 ctlr->num_chipselect = 1;
2558 ctlr->slave = slave;
2559 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2560 ctlr->dev.class = &spi_slave_class;
2561 else
2562 ctlr->dev.class = &spi_master_class;
2563 ctlr->dev.parent = dev;
2564 pm_suspend_ignore_children(&ctlr->dev, true);
2565 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2566
2567 return ctlr;
2568 }
2569 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2570
2571 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2572 {
2573 spi_controller_put(*(struct spi_controller **)ctlr);
2574 }
2575
2576 /**
2577 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2578 * @dev: physical device of SPI controller
2579 * @size: how much zeroed driver-private data to allocate
2580 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2581 * Context: can sleep
2582 *
2583 * Allocate an SPI controller and automatically release a reference on it
2584 * when @dev is unbound from its driver. Drivers are thus relieved from
2585 * having to call spi_controller_put().
2586 *
2587 * The arguments to this function are identical to __spi_alloc_controller().
2588 *
2589 * Return: the SPI controller structure on success, else NULL.
2590 */
2591 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2592 unsigned int size,
2593 bool slave)
2594 {
2595 struct spi_controller **ptr, *ctlr;
2596
2597 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2598 GFP_KERNEL);
2599 if (!ptr)
2600 return NULL;
2601
2602 ctlr = __spi_alloc_controller(dev, size, slave);
2603 if (ctlr) {
2604 ctlr->devm_allocated = true;
2605 *ptr = ctlr;
2606 devres_add(dev, ptr);
2607 } else {
2608 devres_free(ptr);
2609 }
2610
2611 return ctlr;
2612 }
2613 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2614
2615 #ifdef CONFIG_OF
2616 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2617 {
2618 int nb, i, *cs;
2619 struct device_node *np = ctlr->dev.of_node;
2620
2621 if (!np)
2622 return 0;
2623
2624 nb = of_gpio_named_count(np, "cs-gpios");
2625 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2626
2627 /* Return error only for an incorrectly formed cs-gpios property */
2628 if (nb == 0 || nb == -ENOENT)
2629 return 0;
2630 else if (nb < 0)
2631 return nb;
2632
2633 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2634 GFP_KERNEL);
2635 ctlr->cs_gpios = cs;
2636
2637 if (!ctlr->cs_gpios)
2638 return -ENOMEM;
2639
2640 for (i = 0; i < ctlr->num_chipselect; i++)
2641 cs[i] = -ENOENT;
2642
2643 for (i = 0; i < nb; i++)
2644 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2645
2646 return 0;
2647 }
2648 #else
2649 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2650 {
2651 return 0;
2652 }
2653 #endif
2654
2655 /**
2656 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2657 * @ctlr: The SPI master to grab GPIO descriptors for
2658 */
2659 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2660 {
2661 int nb, i;
2662 struct gpio_desc **cs;
2663 struct device *dev = &ctlr->dev;
2664 unsigned long native_cs_mask = 0;
2665 unsigned int num_cs_gpios = 0;
2666
2667 nb = gpiod_count(dev, "cs");
2668 if (nb < 0) {
2669 /* No GPIOs at all is fine, else return the error */
2670 if (nb == -ENOENT)
2671 return 0;
2672 return nb;
2673 }
2674
2675 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2676
2677 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2678 GFP_KERNEL);
2679 if (!cs)
2680 return -ENOMEM;
2681 ctlr->cs_gpiods = cs;
2682
2683 for (i = 0; i < nb; i++) {
2684 /*
2685 * Most chipselects are active low, the inverted
2686 * semantics are handled by special quirks in gpiolib,
2687 * so initializing them GPIOD_OUT_LOW here means
2688 * "unasserted", in most cases this will drive the physical
2689 * line high.
2690 */
2691 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2692 GPIOD_OUT_LOW);
2693 if (IS_ERR(cs[i]))
2694 return PTR_ERR(cs[i]);
2695
2696 if (cs[i]) {
2697 /*
2698 * If we find a CS GPIO, name it after the device and
2699 * chip select line.
2700 */
2701 char *gpioname;
2702
2703 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2704 dev_name(dev), i);
2705 if (!gpioname)
2706 return -ENOMEM;
2707 gpiod_set_consumer_name(cs[i], gpioname);
2708 num_cs_gpios++;
2709 continue;
2710 }
2711
2712 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2713 dev_err(dev, "Invalid native chip select %d\n", i);
2714 return -EINVAL;
2715 }
2716 native_cs_mask |= BIT(i);
2717 }
2718
2719 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2720
2721 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2722 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2723 dev_err(dev, "No unused native chip select available\n");
2724 return -EINVAL;
2725 }
2726
2727 return 0;
2728 }
2729
2730 static int spi_controller_check_ops(struct spi_controller *ctlr)
2731 {
2732 /*
2733 * The controller may implement only the high-level SPI-memory like
2734 * operations if it does not support regular SPI transfers, and this is
2735 * valid use case.
2736 * If ->mem_ops is NULL, we request that at least one of the
2737 * ->transfer_xxx() method be implemented.
2738 */
2739 if (ctlr->mem_ops) {
2740 if (!ctlr->mem_ops->exec_op)
2741 return -EINVAL;
2742 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2743 !ctlr->transfer_one_message) {
2744 return -EINVAL;
2745 }
2746
2747 return 0;
2748 }
2749
2750 /**
2751 * spi_register_controller - register SPI master or slave controller
2752 * @ctlr: initialized master, originally from spi_alloc_master() or
2753 * spi_alloc_slave()
2754 * Context: can sleep
2755 *
2756 * SPI controllers connect to their drivers using some non-SPI bus,
2757 * such as the platform bus. The final stage of probe() in that code
2758 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2759 *
2760 * SPI controllers use board specific (often SOC specific) bus numbers,
2761 * and board-specific addressing for SPI devices combines those numbers
2762 * with chip select numbers. Since SPI does not directly support dynamic
2763 * device identification, boards need configuration tables telling which
2764 * chip is at which address.
2765 *
2766 * This must be called from context that can sleep. It returns zero on
2767 * success, else a negative error code (dropping the controller's refcount).
2768 * After a successful return, the caller is responsible for calling
2769 * spi_unregister_controller().
2770 *
2771 * Return: zero on success, else a negative error code.
2772 */
2773 int spi_register_controller(struct spi_controller *ctlr)
2774 {
2775 struct device *dev = ctlr->dev.parent;
2776 struct boardinfo *bi;
2777 int status;
2778 int id, first_dynamic;
2779
2780 if (!dev)
2781 return -ENODEV;
2782
2783 /*
2784 * Make sure all necessary hooks are implemented before registering
2785 * the SPI controller.
2786 */
2787 status = spi_controller_check_ops(ctlr);
2788 if (status)
2789 return status;
2790
2791 if (ctlr->bus_num >= 0) {
2792 /* devices with a fixed bus num must check-in with the num */
2793 mutex_lock(&board_lock);
2794 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2795 ctlr->bus_num + 1, GFP_KERNEL);
2796 mutex_unlock(&board_lock);
2797 if (WARN(id < 0, "couldn't get idr"))
2798 return id == -ENOSPC ? -EBUSY : id;
2799 ctlr->bus_num = id;
2800 } else if (ctlr->dev.of_node) {
2801 /* allocate dynamic bus number using Linux idr */
2802 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2803 if (id >= 0) {
2804 ctlr->bus_num = id;
2805 mutex_lock(&board_lock);
2806 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2807 ctlr->bus_num + 1, GFP_KERNEL);
2808 mutex_unlock(&board_lock);
2809 if (WARN(id < 0, "couldn't get idr"))
2810 return id == -ENOSPC ? -EBUSY : id;
2811 }
2812 }
2813 if (ctlr->bus_num < 0) {
2814 first_dynamic = of_alias_get_highest_id("spi");
2815 if (first_dynamic < 0)
2816 first_dynamic = 0;
2817 else
2818 first_dynamic++;
2819
2820 mutex_lock(&board_lock);
2821 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2822 0, GFP_KERNEL);
2823 mutex_unlock(&board_lock);
2824 if (WARN(id < 0, "couldn't get idr"))
2825 return id;
2826 ctlr->bus_num = id;
2827 }
2828 ctlr->bus_lock_flag = 0;
2829 init_completion(&ctlr->xfer_completion);
2830 if (!ctlr->max_dma_len)
2831 ctlr->max_dma_len = INT_MAX;
2832
2833 /* register the device, then userspace will see it.
2834 * registration fails if the bus ID is in use.
2835 */
2836 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2837
2838 if (!spi_controller_is_slave(ctlr)) {
2839 if (ctlr->use_gpio_descriptors) {
2840 status = spi_get_gpio_descs(ctlr);
2841 if (status)
2842 goto free_bus_id;
2843 /*
2844 * A controller using GPIO descriptors always
2845 * supports SPI_CS_HIGH if need be.
2846 */
2847 ctlr->mode_bits |= SPI_CS_HIGH;
2848 } else {
2849 /* Legacy code path for GPIOs from DT */
2850 status = of_spi_get_gpio_numbers(ctlr);
2851 if (status)
2852 goto free_bus_id;
2853 }
2854 }
2855
2856 /*
2857 * Even if it's just one always-selected device, there must
2858 * be at least one chipselect.
2859 */
2860 if (!ctlr->num_chipselect) {
2861 status = -EINVAL;
2862 goto free_bus_id;
2863 }
2864
2865 status = device_add(&ctlr->dev);
2866 if (status < 0)
2867 goto free_bus_id;
2868 dev_dbg(dev, "registered %s %s\n",
2869 spi_controller_is_slave(ctlr) ? "slave" : "master",
2870 dev_name(&ctlr->dev));
2871
2872 /*
2873 * If we're using a queued driver, start the queue. Note that we don't
2874 * need the queueing logic if the driver is only supporting high-level
2875 * memory operations.
2876 */
2877 if (ctlr->transfer) {
2878 dev_info(dev, "controller is unqueued, this is deprecated\n");
2879 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2880 status = spi_controller_initialize_queue(ctlr);
2881 if (status) {
2882 device_del(&ctlr->dev);
2883 goto free_bus_id;
2884 }
2885 }
2886 /* add statistics */
2887 spin_lock_init(&ctlr->statistics.lock);
2888
2889 mutex_lock(&board_lock);
2890 list_add_tail(&ctlr->list, &spi_controller_list);
2891 list_for_each_entry(bi, &board_list, list)
2892 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2893 mutex_unlock(&board_lock);
2894
2895 /* Register devices from the device tree and ACPI */
2896 of_register_spi_devices(ctlr);
2897 acpi_register_spi_devices(ctlr);
2898 return status;
2899
2900 free_bus_id:
2901 mutex_lock(&board_lock);
2902 idr_remove(&spi_master_idr, ctlr->bus_num);
2903 mutex_unlock(&board_lock);
2904 return status;
2905 }
2906 EXPORT_SYMBOL_GPL(spi_register_controller);
2907
2908 static void devm_spi_unregister(void *ctlr)
2909 {
2910 spi_unregister_controller(ctlr);
2911 }
2912
2913 /**
2914 * devm_spi_register_controller - register managed SPI master or slave
2915 * controller
2916 * @dev: device managing SPI controller
2917 * @ctlr: initialized controller, originally from spi_alloc_master() or
2918 * spi_alloc_slave()
2919 * Context: can sleep
2920 *
2921 * Register a SPI device as with spi_register_controller() which will
2922 * automatically be unregistered and freed.
2923 *
2924 * Return: zero on success, else a negative error code.
2925 */
2926 int devm_spi_register_controller(struct device *dev,
2927 struct spi_controller *ctlr)
2928 {
2929 int ret;
2930
2931 ret = spi_register_controller(ctlr);
2932 if (ret)
2933 return ret;
2934
2935 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2936 }
2937 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2938
2939 static int __unregister(struct device *dev, void *null)
2940 {
2941 spi_unregister_device(to_spi_device(dev));
2942 return 0;
2943 }
2944
2945 /**
2946 * spi_unregister_controller - unregister SPI master or slave controller
2947 * @ctlr: the controller being unregistered
2948 * Context: can sleep
2949 *
2950 * This call is used only by SPI controller drivers, which are the
2951 * only ones directly touching chip registers.
2952 *
2953 * This must be called from context that can sleep.
2954 *
2955 * Note that this function also drops a reference to the controller.
2956 */
2957 void spi_unregister_controller(struct spi_controller *ctlr)
2958 {
2959 struct spi_controller *found;
2960 int id = ctlr->bus_num;
2961
2962 /* Prevent addition of new devices, unregister existing ones */
2963 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2964 mutex_lock(&ctlr->add_lock);
2965
2966 device_for_each_child(&ctlr->dev, NULL, __unregister);
2967
2968 /* First make sure that this controller was ever added */
2969 mutex_lock(&board_lock);
2970 found = idr_find(&spi_master_idr, id);
2971 mutex_unlock(&board_lock);
2972 if (ctlr->queued) {
2973 if (spi_destroy_queue(ctlr))
2974 dev_err(&ctlr->dev, "queue remove failed\n");
2975 }
2976 mutex_lock(&board_lock);
2977 list_del(&ctlr->list);
2978 mutex_unlock(&board_lock);
2979
2980 device_del(&ctlr->dev);
2981
2982 /* Release the last reference on the controller if its driver
2983 * has not yet been converted to devm_spi_alloc_master/slave().
2984 */
2985 if (!ctlr->devm_allocated)
2986 put_device(&ctlr->dev);
2987
2988 /* free bus id */
2989 mutex_lock(&board_lock);
2990 if (found == ctlr)
2991 idr_remove(&spi_master_idr, id);
2992 mutex_unlock(&board_lock);
2993
2994 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2995 mutex_unlock(&ctlr->add_lock);
2996 }
2997 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2998
2999 int spi_controller_suspend(struct spi_controller *ctlr)
3000 {
3001 int ret;
3002
3003 /* Basically no-ops for non-queued controllers */
3004 if (!ctlr->queued)
3005 return 0;
3006
3007 ret = spi_stop_queue(ctlr);
3008 if (ret)
3009 dev_err(&ctlr->dev, "queue stop failed\n");
3010
3011 return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3014
3015 int spi_controller_resume(struct spi_controller *ctlr)
3016 {
3017 int ret;
3018
3019 if (!ctlr->queued)
3020 return 0;
3021
3022 ret = spi_start_queue(ctlr);
3023 if (ret)
3024 dev_err(&ctlr->dev, "queue restart failed\n");
3025
3026 return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(spi_controller_resume);
3029
3030 static int __spi_controller_match(struct device *dev, const void *data)
3031 {
3032 struct spi_controller *ctlr;
3033 const u16 *bus_num = data;
3034
3035 ctlr = container_of(dev, struct spi_controller, dev);
3036 return ctlr->bus_num == *bus_num;
3037 }
3038
3039 /**
3040 * spi_busnum_to_master - look up master associated with bus_num
3041 * @bus_num: the master's bus number
3042 * Context: can sleep
3043 *
3044 * This call may be used with devices that are registered after
3045 * arch init time. It returns a refcounted pointer to the relevant
3046 * spi_controller (which the caller must release), or NULL if there is
3047 * no such master registered.
3048 *
3049 * Return: the SPI master structure on success, else NULL.
3050 */
3051 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3052 {
3053 struct device *dev;
3054 struct spi_controller *ctlr = NULL;
3055
3056 dev = class_find_device(&spi_master_class, NULL, &bus_num,
3057 __spi_controller_match);
3058 if (dev)
3059 ctlr = container_of(dev, struct spi_controller, dev);
3060 /* reference got in class_find_device */
3061 return ctlr;
3062 }
3063 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3064
3065 /*-------------------------------------------------------------------------*/
3066
3067 /* Core methods for SPI resource management */
3068
3069 /**
3070 * spi_res_alloc - allocate a spi resource that is life-cycle managed
3071 * during the processing of a spi_message while using
3072 * spi_transfer_one
3073 * @spi: the spi device for which we allocate memory
3074 * @release: the release code to execute for this resource
3075 * @size: size to alloc and return
3076 * @gfp: GFP allocation flags
3077 *
3078 * Return: the pointer to the allocated data
3079 *
3080 * This may get enhanced in the future to allocate from a memory pool
3081 * of the @spi_device or @spi_controller to avoid repeated allocations.
3082 */
3083 void *spi_res_alloc(struct spi_device *spi,
3084 spi_res_release_t release,
3085 size_t size, gfp_t gfp)
3086 {
3087 struct spi_res *sres;
3088
3089 sres = kzalloc(sizeof(*sres) + size, gfp);
3090 if (!sres)
3091 return NULL;
3092
3093 INIT_LIST_HEAD(&sres->entry);
3094 sres->release = release;
3095
3096 return sres->data;
3097 }
3098 EXPORT_SYMBOL_GPL(spi_res_alloc);
3099
3100 /**
3101 * spi_res_free - free an spi resource
3102 * @res: pointer to the custom data of a resource
3103 *
3104 */
3105 void spi_res_free(void *res)
3106 {
3107 struct spi_res *sres = container_of(res, struct spi_res, data);
3108
3109 if (!res)
3110 return;
3111
3112 WARN_ON(!list_empty(&sres->entry));
3113 kfree(sres);
3114 }
3115 EXPORT_SYMBOL_GPL(spi_res_free);
3116
3117 /**
3118 * spi_res_add - add a spi_res to the spi_message
3119 * @message: the spi message
3120 * @res: the spi_resource
3121 */
3122 void spi_res_add(struct spi_message *message, void *res)
3123 {
3124 struct spi_res *sres = container_of(res, struct spi_res, data);
3125
3126 WARN_ON(!list_empty(&sres->entry));
3127 list_add_tail(&sres->entry, &message->resources);
3128 }
3129 EXPORT_SYMBOL_GPL(spi_res_add);
3130
3131 /**
3132 * spi_res_release - release all spi resources for this message
3133 * @ctlr: the @spi_controller
3134 * @message: the @spi_message
3135 */
3136 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3137 {
3138 struct spi_res *res, *tmp;
3139
3140 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3141 if (res->release)
3142 res->release(ctlr, message, res->data);
3143
3144 list_del(&res->entry);
3145
3146 kfree(res);
3147 }
3148 }
3149 EXPORT_SYMBOL_GPL(spi_res_release);
3150
3151 /*-------------------------------------------------------------------------*/
3152
3153 /* Core methods for spi_message alterations */
3154
3155 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3156 struct spi_message *msg,
3157 void *res)
3158 {
3159 struct spi_replaced_transfers *rxfer = res;
3160 size_t i;
3161
3162 /* call extra callback if requested */
3163 if (rxfer->release)
3164 rxfer->release(ctlr, msg, res);
3165
3166 /* insert replaced transfers back into the message */
3167 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3168
3169 /* remove the formerly inserted entries */
3170 for (i = 0; i < rxfer->inserted; i++)
3171 list_del(&rxfer->inserted_transfers[i].transfer_list);
3172 }
3173
3174 /**
3175 * spi_replace_transfers - replace transfers with several transfers
3176 * and register change with spi_message.resources
3177 * @msg: the spi_message we work upon
3178 * @xfer_first: the first spi_transfer we want to replace
3179 * @remove: number of transfers to remove
3180 * @insert: the number of transfers we want to insert instead
3181 * @release: extra release code necessary in some circumstances
3182 * @extradatasize: extra data to allocate (with alignment guarantees
3183 * of struct @spi_transfer)
3184 * @gfp: gfp flags
3185 *
3186 * Returns: pointer to @spi_replaced_transfers,
3187 * PTR_ERR(...) in case of errors.
3188 */
3189 struct spi_replaced_transfers *spi_replace_transfers(
3190 struct spi_message *msg,
3191 struct spi_transfer *xfer_first,
3192 size_t remove,
3193 size_t insert,
3194 spi_replaced_release_t release,
3195 size_t extradatasize,
3196 gfp_t gfp)
3197 {
3198 struct spi_replaced_transfers *rxfer;
3199 struct spi_transfer *xfer;
3200 size_t i;
3201
3202 /* allocate the structure using spi_res */
3203 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3204 struct_size(rxfer, inserted_transfers, insert)
3205 + extradatasize,
3206 gfp);
3207 if (!rxfer)
3208 return ERR_PTR(-ENOMEM);
3209
3210 /* the release code to invoke before running the generic release */
3211 rxfer->release = release;
3212
3213 /* assign extradata */
3214 if (extradatasize)
3215 rxfer->extradata =
3216 &rxfer->inserted_transfers[insert];
3217
3218 /* init the replaced_transfers list */
3219 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3220
3221 /* assign the list_entry after which we should reinsert
3222 * the @replaced_transfers - it may be spi_message.messages!
3223 */
3224 rxfer->replaced_after = xfer_first->transfer_list.prev;
3225
3226 /* remove the requested number of transfers */
3227 for (i = 0; i < remove; i++) {
3228 /* if the entry after replaced_after it is msg->transfers
3229 * then we have been requested to remove more transfers
3230 * than are in the list
3231 */
3232 if (rxfer->replaced_after->next == &msg->transfers) {
3233 dev_err(&msg->spi->dev,
3234 "requested to remove more spi_transfers than are available\n");
3235 /* insert replaced transfers back into the message */
3236 list_splice(&rxfer->replaced_transfers,
3237 rxfer->replaced_after);
3238
3239 /* free the spi_replace_transfer structure */
3240 spi_res_free(rxfer);
3241
3242 /* and return with an error */
3243 return ERR_PTR(-EINVAL);
3244 }
3245
3246 /* remove the entry after replaced_after from list of
3247 * transfers and add it to list of replaced_transfers
3248 */
3249 list_move_tail(rxfer->replaced_after->next,
3250 &rxfer->replaced_transfers);
3251 }
3252
3253 /* create copy of the given xfer with identical settings
3254 * based on the first transfer to get removed
3255 */
3256 for (i = 0; i < insert; i++) {
3257 /* we need to run in reverse order */
3258 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3259
3260 /* copy all spi_transfer data */
3261 memcpy(xfer, xfer_first, sizeof(*xfer));
3262
3263 /* add to list */
3264 list_add(&xfer->transfer_list, rxfer->replaced_after);
3265
3266 /* clear cs_change and delay for all but the last */
3267 if (i) {
3268 xfer->cs_change = false;
3269 xfer->delay.value = 0;
3270 }
3271 }
3272
3273 /* set up inserted */
3274 rxfer->inserted = insert;
3275
3276 /* and register it with spi_res/spi_message */
3277 spi_res_add(msg, rxfer);
3278
3279 return rxfer;
3280 }
3281 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3282
3283 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3284 struct spi_message *msg,
3285 struct spi_transfer **xferp,
3286 size_t maxsize,
3287 gfp_t gfp)
3288 {
3289 struct spi_transfer *xfer = *xferp, *xfers;
3290 struct spi_replaced_transfers *srt;
3291 size_t offset;
3292 size_t count, i;
3293
3294 /* calculate how many we have to replace */
3295 count = DIV_ROUND_UP(xfer->len, maxsize);
3296
3297 /* create replacement */
3298 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3299 if (IS_ERR(srt))
3300 return PTR_ERR(srt);
3301 xfers = srt->inserted_transfers;
3302
3303 /* now handle each of those newly inserted spi_transfers
3304 * note that the replacements spi_transfers all are preset
3305 * to the same values as *xferp, so tx_buf, rx_buf and len
3306 * are all identical (as well as most others)
3307 * so we just have to fix up len and the pointers.
3308 *
3309 * this also includes support for the depreciated
3310 * spi_message.is_dma_mapped interface
3311 */
3312
3313 /* the first transfer just needs the length modified, so we
3314 * run it outside the loop
3315 */
3316 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3317
3318 /* all the others need rx_buf/tx_buf also set */
3319 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3320 /* update rx_buf, tx_buf and dma */
3321 if (xfers[i].rx_buf)
3322 xfers[i].rx_buf += offset;
3323 if (xfers[i].rx_dma)
3324 xfers[i].rx_dma += offset;
3325 if (xfers[i].tx_buf)
3326 xfers[i].tx_buf += offset;
3327 if (xfers[i].tx_dma)
3328 xfers[i].tx_dma += offset;
3329
3330 /* update length */
3331 xfers[i].len = min(maxsize, xfers[i].len - offset);
3332 }
3333
3334 /* we set up xferp to the last entry we have inserted,
3335 * so that we skip those already split transfers
3336 */
3337 *xferp = &xfers[count - 1];
3338
3339 /* increment statistics counters */
3340 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3341 transfers_split_maxsize);
3342 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3343 transfers_split_maxsize);
3344
3345 return 0;
3346 }
3347
3348 /**
3349 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3350 * when an individual transfer exceeds a
3351 * certain size
3352 * @ctlr: the @spi_controller for this transfer
3353 * @msg: the @spi_message to transform
3354 * @maxsize: the maximum when to apply this
3355 * @gfp: GFP allocation flags
3356 *
3357 * Return: status of transformation
3358 */
3359 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3360 struct spi_message *msg,
3361 size_t maxsize,
3362 gfp_t gfp)
3363 {
3364 struct spi_transfer *xfer;
3365 int ret;
3366
3367 /* iterate over the transfer_list,
3368 * but note that xfer is advanced to the last transfer inserted
3369 * to avoid checking sizes again unnecessarily (also xfer does
3370 * potentiall belong to a different list by the time the
3371 * replacement has happened
3372 */
3373 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3374 if (xfer->len > maxsize) {
3375 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3376 maxsize, gfp);
3377 if (ret)
3378 return ret;
3379 }
3380 }
3381
3382 return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3385
3386 /*-------------------------------------------------------------------------*/
3387
3388 /* Core methods for SPI controller protocol drivers. Some of the
3389 * other core methods are currently defined as inline functions.
3390 */
3391
3392 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3393 u8 bits_per_word)
3394 {
3395 if (ctlr->bits_per_word_mask) {
3396 /* Only 32 bits fit in the mask */
3397 if (bits_per_word > 32)
3398 return -EINVAL;
3399 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3400 return -EINVAL;
3401 }
3402
3403 return 0;
3404 }
3405
3406 /**
3407 * spi_setup - setup SPI mode and clock rate
3408 * @spi: the device whose settings are being modified
3409 * Context: can sleep, and no requests are queued to the device
3410 *
3411 * SPI protocol drivers may need to update the transfer mode if the
3412 * device doesn't work with its default. They may likewise need
3413 * to update clock rates or word sizes from initial values. This function
3414 * changes those settings, and must be called from a context that can sleep.
3415 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3416 * effect the next time the device is selected and data is transferred to
3417 * or from it. When this function returns, the spi device is deselected.
3418 *
3419 * Note that this call will fail if the protocol driver specifies an option
3420 * that the underlying controller or its driver does not support. For
3421 * example, not all hardware supports wire transfers using nine bit words,
3422 * LSB-first wire encoding, or active-high chipselects.
3423 *
3424 * Return: zero on success, else a negative error code.
3425 */
3426 int spi_setup(struct spi_device *spi)
3427 {
3428 unsigned bad_bits, ugly_bits;
3429 int status;
3430
3431 /*
3432 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3433 * are set at the same time
3434 */
3435 if ((hweight_long(spi->mode &
3436 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3437 (hweight_long(spi->mode &
3438 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3439 dev_err(&spi->dev,
3440 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3441 return -EINVAL;
3442 }
3443 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3444 */
3445 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3446 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3447 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3448 return -EINVAL;
3449 /* help drivers fail *cleanly* when they need options
3450 * that aren't supported with their current controller
3451 * SPI_CS_WORD has a fallback software implementation,
3452 * so it is ignored here.
3453 */
3454 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3455 SPI_NO_TX | SPI_NO_RX);
3456 /* nothing prevents from working with active-high CS in case if it
3457 * is driven by GPIO.
3458 */
3459 if (gpio_is_valid(spi->cs_gpio))
3460 bad_bits &= ~SPI_CS_HIGH;
3461 ugly_bits = bad_bits &
3462 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3463 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3464 if (ugly_bits) {
3465 dev_warn(&spi->dev,
3466 "setup: ignoring unsupported mode bits %x\n",
3467 ugly_bits);
3468 spi->mode &= ~ugly_bits;
3469 bad_bits &= ~ugly_bits;
3470 }
3471 if (bad_bits) {
3472 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3473 bad_bits);
3474 return -EINVAL;
3475 }
3476
3477 if (!spi->bits_per_word)
3478 spi->bits_per_word = 8;
3479
3480 status = __spi_validate_bits_per_word(spi->controller,
3481 spi->bits_per_word);
3482 if (status)
3483 return status;
3484
3485 if (spi->controller->max_speed_hz &&
3486 (!spi->max_speed_hz ||
3487 spi->max_speed_hz > spi->controller->max_speed_hz))
3488 spi->max_speed_hz = spi->controller->max_speed_hz;
3489
3490 mutex_lock(&spi->controller->io_mutex);
3491
3492 if (spi->controller->setup) {
3493 status = spi->controller->setup(spi);
3494 if (status) {
3495 mutex_unlock(&spi->controller->io_mutex);
3496 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3497 status);
3498 return status;
3499 }
3500 }
3501
3502 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3503 status = pm_runtime_get_sync(spi->controller->dev.parent);
3504 if (status < 0) {
3505 mutex_unlock(&spi->controller->io_mutex);
3506 pm_runtime_put_noidle(spi->controller->dev.parent);
3507 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3508 status);
3509 return status;
3510 }
3511
3512 /*
3513 * We do not want to return positive value from pm_runtime_get,
3514 * there are many instances of devices calling spi_setup() and
3515 * checking for a non-zero return value instead of a negative
3516 * return value.
3517 */
3518 status = 0;
3519
3520 spi_set_cs(spi, false, true);
3521 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3522 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3523 } else {
3524 spi_set_cs(spi, false, true);
3525 }
3526
3527 mutex_unlock(&spi->controller->io_mutex);
3528
3529 if (spi->rt && !spi->controller->rt) {
3530 spi->controller->rt = true;
3531 spi_set_thread_rt(spi->controller);
3532 }
3533
3534 trace_spi_setup(spi, status);
3535
3536 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3537 spi->mode & SPI_MODE_X_MASK,
3538 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3539 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3540 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3541 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3542 spi->bits_per_word, spi->max_speed_hz,
3543 status);
3544
3545 return status;
3546 }
3547 EXPORT_SYMBOL_GPL(spi_setup);
3548
3549 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3550 struct spi_device *spi)
3551 {
3552 int delay1, delay2;
3553
3554 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3555 if (delay1 < 0)
3556 return delay1;
3557
3558 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3559 if (delay2 < 0)
3560 return delay2;
3561
3562 if (delay1 < delay2)
3563 memcpy(&xfer->word_delay, &spi->word_delay,
3564 sizeof(xfer->word_delay));
3565
3566 return 0;
3567 }
3568
3569 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3570 {
3571 struct spi_controller *ctlr = spi->controller;
3572 struct spi_transfer *xfer;
3573 int w_size;
3574
3575 if (list_empty(&message->transfers))
3576 return -EINVAL;
3577
3578 /* If an SPI controller does not support toggling the CS line on each
3579 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3580 * for the CS line, we can emulate the CS-per-word hardware function by
3581 * splitting transfers into one-word transfers and ensuring that
3582 * cs_change is set for each transfer.
3583 */
3584 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3585 spi->cs_gpiod ||
3586 gpio_is_valid(spi->cs_gpio))) {
3587 size_t maxsize;
3588 int ret;
3589
3590 maxsize = (spi->bits_per_word + 7) / 8;
3591
3592 /* spi_split_transfers_maxsize() requires message->spi */
3593 message->spi = spi;
3594
3595 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3596 GFP_KERNEL);
3597 if (ret)
3598 return ret;
3599
3600 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3601 /* don't change cs_change on the last entry in the list */
3602 if (list_is_last(&xfer->transfer_list, &message->transfers))
3603 break;
3604 xfer->cs_change = 1;
3605 }
3606 }
3607
3608 /* Half-duplex links include original MicroWire, and ones with
3609 * only one data pin like SPI_3WIRE (switches direction) or where
3610 * either MOSI or MISO is missing. They can also be caused by
3611 * software limitations.
3612 */
3613 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3614 (spi->mode & SPI_3WIRE)) {
3615 unsigned flags = ctlr->flags;
3616
3617 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3618 if (xfer->rx_buf && xfer->tx_buf)
3619 return -EINVAL;
3620 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3621 return -EINVAL;
3622 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3623 return -EINVAL;
3624 }
3625 }
3626
3627 /**
3628 * Set transfer bits_per_word and max speed as spi device default if
3629 * it is not set for this transfer.
3630 * Set transfer tx_nbits and rx_nbits as single transfer default
3631 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3632 * Ensure transfer word_delay is at least as long as that required by
3633 * device itself.
3634 */
3635 message->frame_length = 0;
3636 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3637 xfer->effective_speed_hz = 0;
3638 message->frame_length += xfer->len;
3639 if (!xfer->bits_per_word)
3640 xfer->bits_per_word = spi->bits_per_word;
3641
3642 if (!xfer->speed_hz)
3643 xfer->speed_hz = spi->max_speed_hz;
3644
3645 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3646 xfer->speed_hz = ctlr->max_speed_hz;
3647
3648 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3649 return -EINVAL;
3650
3651 /*
3652 * SPI transfer length should be multiple of SPI word size
3653 * where SPI word size should be power-of-two multiple
3654 */
3655 if (xfer->bits_per_word <= 8)
3656 w_size = 1;
3657 else if (xfer->bits_per_word <= 16)
3658 w_size = 2;
3659 else
3660 w_size = 4;
3661
3662 /* No partial transfers accepted */
3663 if (xfer->len % w_size)
3664 return -EINVAL;
3665
3666 if (xfer->speed_hz && ctlr->min_speed_hz &&
3667 xfer->speed_hz < ctlr->min_speed_hz)
3668 return -EINVAL;
3669
3670 if (xfer->tx_buf && !xfer->tx_nbits)
3671 xfer->tx_nbits = SPI_NBITS_SINGLE;
3672 if (xfer->rx_buf && !xfer->rx_nbits)
3673 xfer->rx_nbits = SPI_NBITS_SINGLE;
3674 /* check transfer tx/rx_nbits:
3675 * 1. check the value matches one of single, dual and quad
3676 * 2. check tx/rx_nbits match the mode in spi_device
3677 */
3678 if (xfer->tx_buf) {
3679 if (spi->mode & SPI_NO_TX)
3680 return -EINVAL;
3681 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3682 xfer->tx_nbits != SPI_NBITS_DUAL &&
3683 xfer->tx_nbits != SPI_NBITS_QUAD)
3684 return -EINVAL;
3685 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3686 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3687 return -EINVAL;
3688 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3689 !(spi->mode & SPI_TX_QUAD))
3690 return -EINVAL;
3691 }
3692 /* check transfer rx_nbits */
3693 if (xfer->rx_buf) {
3694 if (spi->mode & SPI_NO_RX)
3695 return -EINVAL;
3696 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3697 xfer->rx_nbits != SPI_NBITS_DUAL &&
3698 xfer->rx_nbits != SPI_NBITS_QUAD)
3699 return -EINVAL;
3700 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3701 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3702 return -EINVAL;
3703 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3704 !(spi->mode & SPI_RX_QUAD))
3705 return -EINVAL;
3706 }
3707
3708 if (_spi_xfer_word_delay_update(xfer, spi))
3709 return -EINVAL;
3710 }
3711
3712 message->status = -EINPROGRESS;
3713
3714 return 0;
3715 }
3716
3717 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3718 {
3719 struct spi_controller *ctlr = spi->controller;
3720 struct spi_transfer *xfer;
3721
3722 /*
3723 * Some controllers do not support doing regular SPI transfers. Return
3724 * ENOTSUPP when this is the case.
3725 */
3726 if (!ctlr->transfer)
3727 return -ENOTSUPP;
3728
3729 message->spi = spi;
3730
3731 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3732 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3733
3734 trace_spi_message_submit(message);
3735
3736 if (!ctlr->ptp_sts_supported) {
3737 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3738 xfer->ptp_sts_word_pre = 0;
3739 ptp_read_system_prets(xfer->ptp_sts);
3740 }
3741 }
3742
3743 return ctlr->transfer(spi, message);
3744 }
3745
3746 /**
3747 * spi_async - asynchronous SPI transfer
3748 * @spi: device with which data will be exchanged
3749 * @message: describes the data transfers, including completion callback
3750 * Context: any (irqs may be blocked, etc)
3751 *
3752 * This call may be used in_irq and other contexts which can't sleep,
3753 * as well as from task contexts which can sleep.
3754 *
3755 * The completion callback is invoked in a context which can't sleep.
3756 * Before that invocation, the value of message->status is undefined.
3757 * When the callback is issued, message->status holds either zero (to
3758 * indicate complete success) or a negative error code. After that
3759 * callback returns, the driver which issued the transfer request may
3760 * deallocate the associated memory; it's no longer in use by any SPI
3761 * core or controller driver code.
3762 *
3763 * Note that although all messages to a spi_device are handled in
3764 * FIFO order, messages may go to different devices in other orders.
3765 * Some device might be higher priority, or have various "hard" access
3766 * time requirements, for example.
3767 *
3768 * On detection of any fault during the transfer, processing of
3769 * the entire message is aborted, and the device is deselected.
3770 * Until returning from the associated message completion callback,
3771 * no other spi_message queued to that device will be processed.
3772 * (This rule applies equally to all the synchronous transfer calls,
3773 * which are wrappers around this core asynchronous primitive.)
3774 *
3775 * Return: zero on success, else a negative error code.
3776 */
3777 int spi_async(struct spi_device *spi, struct spi_message *message)
3778 {
3779 struct spi_controller *ctlr = spi->controller;
3780 int ret;
3781 unsigned long flags;
3782
3783 ret = __spi_validate(spi, message);
3784 if (ret != 0)
3785 return ret;
3786
3787 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3788
3789 if (ctlr->bus_lock_flag)
3790 ret = -EBUSY;
3791 else
3792 ret = __spi_async(spi, message);
3793
3794 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3795
3796 return ret;
3797 }
3798 EXPORT_SYMBOL_GPL(spi_async);
3799
3800 /**
3801 * spi_async_locked - version of spi_async with exclusive bus usage
3802 * @spi: device with which data will be exchanged
3803 * @message: describes the data transfers, including completion callback
3804 * Context: any (irqs may be blocked, etc)
3805 *
3806 * This call may be used in_irq and other contexts which can't sleep,
3807 * as well as from task contexts which can sleep.
3808 *
3809 * The completion callback is invoked in a context which can't sleep.
3810 * Before that invocation, the value of message->status is undefined.
3811 * When the callback is issued, message->status holds either zero (to
3812 * indicate complete success) or a negative error code. After that
3813 * callback returns, the driver which issued the transfer request may
3814 * deallocate the associated memory; it's no longer in use by any SPI
3815 * core or controller driver code.
3816 *
3817 * Note that although all messages to a spi_device are handled in
3818 * FIFO order, messages may go to different devices in other orders.
3819 * Some device might be higher priority, or have various "hard" access
3820 * time requirements, for example.
3821 *
3822 * On detection of any fault during the transfer, processing of
3823 * the entire message is aborted, and the device is deselected.
3824 * Until returning from the associated message completion callback,
3825 * no other spi_message queued to that device will be processed.
3826 * (This rule applies equally to all the synchronous transfer calls,
3827 * which are wrappers around this core asynchronous primitive.)
3828 *
3829 * Return: zero on success, else a negative error code.
3830 */
3831 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3832 {
3833 struct spi_controller *ctlr = spi->controller;
3834 int ret;
3835 unsigned long flags;
3836
3837 ret = __spi_validate(spi, message);
3838 if (ret != 0)
3839 return ret;
3840
3841 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3842
3843 ret = __spi_async(spi, message);
3844
3845 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3846
3847 return ret;
3848
3849 }
3850 EXPORT_SYMBOL_GPL(spi_async_locked);
3851
3852 /*-------------------------------------------------------------------------*/
3853
3854 /* Utility methods for SPI protocol drivers, layered on
3855 * top of the core. Some other utility methods are defined as
3856 * inline functions.
3857 */
3858
3859 static void spi_complete(void *arg)
3860 {
3861 complete(arg);
3862 }
3863
3864 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3865 {
3866 DECLARE_COMPLETION_ONSTACK(done);
3867 int status;
3868 struct spi_controller *ctlr = spi->controller;
3869 unsigned long flags;
3870
3871 status = __spi_validate(spi, message);
3872 if (status != 0)
3873 return status;
3874
3875 message->complete = spi_complete;
3876 message->context = &done;
3877 message->spi = spi;
3878
3879 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3880 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3881
3882 /* If we're not using the legacy transfer method then we will
3883 * try to transfer in the calling context so special case.
3884 * This code would be less tricky if we could remove the
3885 * support for driver implemented message queues.
3886 */
3887 if (ctlr->transfer == spi_queued_transfer) {
3888 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3889
3890 trace_spi_message_submit(message);
3891
3892 status = __spi_queued_transfer(spi, message, false);
3893
3894 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3895 } else {
3896 status = spi_async_locked(spi, message);
3897 }
3898
3899 if (status == 0) {
3900 /* Push out the messages in the calling context if we
3901 * can.
3902 */
3903 if (ctlr->transfer == spi_queued_transfer) {
3904 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3905 spi_sync_immediate);
3906 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3907 spi_sync_immediate);
3908 __spi_pump_messages(ctlr, false);
3909 }
3910
3911 wait_for_completion(&done);
3912 status = message->status;
3913 }
3914 message->context = NULL;
3915 return status;
3916 }
3917
3918 /**
3919 * spi_sync - blocking/synchronous SPI data transfers
3920 * @spi: device with which data will be exchanged
3921 * @message: describes the data transfers
3922 * Context: can sleep
3923 *
3924 * This call may only be used from a context that may sleep. The sleep
3925 * is non-interruptible, and has no timeout. Low-overhead controller
3926 * drivers may DMA directly into and out of the message buffers.
3927 *
3928 * Note that the SPI device's chip select is active during the message,
3929 * and then is normally disabled between messages. Drivers for some
3930 * frequently-used devices may want to minimize costs of selecting a chip,
3931 * by leaving it selected in anticipation that the next message will go
3932 * to the same chip. (That may increase power usage.)
3933 *
3934 * Also, the caller is guaranteeing that the memory associated with the
3935 * message will not be freed before this call returns.
3936 *
3937 * Return: zero on success, else a negative error code.
3938 */
3939 int spi_sync(struct spi_device *spi, struct spi_message *message)
3940 {
3941 int ret;
3942
3943 mutex_lock(&spi->controller->bus_lock_mutex);
3944 ret = __spi_sync(spi, message);
3945 mutex_unlock(&spi->controller->bus_lock_mutex);
3946
3947 return ret;
3948 }
3949 EXPORT_SYMBOL_GPL(spi_sync);
3950
3951 /**
3952 * spi_sync_locked - version of spi_sync with exclusive bus usage
3953 * @spi: device with which data will be exchanged
3954 * @message: describes the data transfers
3955 * Context: can sleep
3956 *
3957 * This call may only be used from a context that may sleep. The sleep
3958 * is non-interruptible, and has no timeout. Low-overhead controller
3959 * drivers may DMA directly into and out of the message buffers.
3960 *
3961 * This call should be used by drivers that require exclusive access to the
3962 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3963 * be released by a spi_bus_unlock call when the exclusive access is over.
3964 *
3965 * Return: zero on success, else a negative error code.
3966 */
3967 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3968 {
3969 return __spi_sync(spi, message);
3970 }
3971 EXPORT_SYMBOL_GPL(spi_sync_locked);
3972
3973 /**
3974 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3975 * @ctlr: SPI bus master that should be locked for exclusive bus access
3976 * Context: can sleep
3977 *
3978 * This call may only be used from a context that may sleep. The sleep
3979 * is non-interruptible, and has no timeout.
3980 *
3981 * This call should be used by drivers that require exclusive access to the
3982 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3983 * exclusive access is over. Data transfer must be done by spi_sync_locked
3984 * and spi_async_locked calls when the SPI bus lock is held.
3985 *
3986 * Return: always zero.
3987 */
3988 int spi_bus_lock(struct spi_controller *ctlr)
3989 {
3990 unsigned long flags;
3991
3992 mutex_lock(&ctlr->bus_lock_mutex);
3993
3994 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3995 ctlr->bus_lock_flag = 1;
3996 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3997
3998 /* mutex remains locked until spi_bus_unlock is called */
3999
4000 return 0;
4001 }
4002 EXPORT_SYMBOL_GPL(spi_bus_lock);
4003
4004 /**
4005 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4006 * @ctlr: SPI bus master that was locked for exclusive bus access
4007 * Context: can sleep
4008 *
4009 * This call may only be used from a context that may sleep. The sleep
4010 * is non-interruptible, and has no timeout.
4011 *
4012 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4013 * call.
4014 *
4015 * Return: always zero.
4016 */
4017 int spi_bus_unlock(struct spi_controller *ctlr)
4018 {
4019 ctlr->bus_lock_flag = 0;
4020
4021 mutex_unlock(&ctlr->bus_lock_mutex);
4022
4023 return 0;
4024 }
4025 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4026
4027 /* portable code must never pass more than 32 bytes */
4028 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4029
4030 static u8 *buf;
4031
4032 /**
4033 * spi_write_then_read - SPI synchronous write followed by read
4034 * @spi: device with which data will be exchanged
4035 * @txbuf: data to be written (need not be dma-safe)
4036 * @n_tx: size of txbuf, in bytes
4037 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4038 * @n_rx: size of rxbuf, in bytes
4039 * Context: can sleep
4040 *
4041 * This performs a half duplex MicroWire style transaction with the
4042 * device, sending txbuf and then reading rxbuf. The return value
4043 * is zero for success, else a negative errno status code.
4044 * This call may only be used from a context that may sleep.
4045 *
4046 * Parameters to this routine are always copied using a small buffer.
4047 * Performance-sensitive or bulk transfer code should instead use
4048 * spi_{async,sync}() calls with dma-safe buffers.
4049 *
4050 * Return: zero on success, else a negative error code.
4051 */
4052 int spi_write_then_read(struct spi_device *spi,
4053 const void *txbuf, unsigned n_tx,
4054 void *rxbuf, unsigned n_rx)
4055 {
4056 static DEFINE_MUTEX(lock);
4057
4058 int status;
4059 struct spi_message message;
4060 struct spi_transfer x[2];
4061 u8 *local_buf;
4062
4063 /* Use preallocated DMA-safe buffer if we can. We can't avoid
4064 * copying here, (as a pure convenience thing), but we can
4065 * keep heap costs out of the hot path unless someone else is
4066 * using the pre-allocated buffer or the transfer is too large.
4067 */
4068 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4069 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4070 GFP_KERNEL | GFP_DMA);
4071 if (!local_buf)
4072 return -ENOMEM;
4073 } else {
4074 local_buf = buf;
4075 }
4076
4077 spi_message_init(&message);
4078 memset(x, 0, sizeof(x));
4079 if (n_tx) {
4080 x[0].len = n_tx;
4081 spi_message_add_tail(&x[0], &message);
4082 }
4083 if (n_rx) {
4084 x[1].len = n_rx;
4085 spi_message_add_tail(&x[1], &message);
4086 }
4087
4088 memcpy(local_buf, txbuf, n_tx);
4089 x[0].tx_buf = local_buf;
4090 x[1].rx_buf = local_buf + n_tx;
4091
4092 /* do the i/o */
4093 status = spi_sync(spi, &message);
4094 if (status == 0)
4095 memcpy(rxbuf, x[1].rx_buf, n_rx);
4096
4097 if (x[0].tx_buf == buf)
4098 mutex_unlock(&lock);
4099 else
4100 kfree(local_buf);
4101
4102 return status;
4103 }
4104 EXPORT_SYMBOL_GPL(spi_write_then_read);
4105
4106 /*-------------------------------------------------------------------------*/
4107
4108 #if IS_ENABLED(CONFIG_OF)
4109 /* must call put_device() when done with returned spi_device device */
4110 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4111 {
4112 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4113
4114 return dev ? to_spi_device(dev) : NULL;
4115 }
4116 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4117 #endif /* IS_ENABLED(CONFIG_OF) */
4118
4119 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4120 /* the spi controllers are not using spi_bus, so we find it with another way */
4121 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4122 {
4123 struct device *dev;
4124
4125 dev = class_find_device_by_of_node(&spi_master_class, node);
4126 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4127 dev = class_find_device_by_of_node(&spi_slave_class, node);
4128 if (!dev)
4129 return NULL;
4130
4131 /* reference got in class_find_device */
4132 return container_of(dev, struct spi_controller, dev);
4133 }
4134
4135 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4136 void *arg)
4137 {
4138 struct of_reconfig_data *rd = arg;
4139 struct spi_controller *ctlr;
4140 struct spi_device *spi;
4141
4142 switch (of_reconfig_get_state_change(action, arg)) {
4143 case OF_RECONFIG_CHANGE_ADD:
4144 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4145 if (ctlr == NULL)
4146 return NOTIFY_OK; /* not for us */
4147
4148 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4149 put_device(&ctlr->dev);
4150 return NOTIFY_OK;
4151 }
4152
4153 spi = of_register_spi_device(ctlr, rd->dn);
4154 put_device(&ctlr->dev);
4155
4156 if (IS_ERR(spi)) {
4157 pr_err("%s: failed to create for '%pOF'\n",
4158 __func__, rd->dn);
4159 of_node_clear_flag(rd->dn, OF_POPULATED);
4160 return notifier_from_errno(PTR_ERR(spi));
4161 }
4162 break;
4163
4164 case OF_RECONFIG_CHANGE_REMOVE:
4165 /* already depopulated? */
4166 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4167 return NOTIFY_OK;
4168
4169 /* find our device by node */
4170 spi = of_find_spi_device_by_node(rd->dn);
4171 if (spi == NULL)
4172 return NOTIFY_OK; /* no? not meant for us */
4173
4174 /* unregister takes one ref away */
4175 spi_unregister_device(spi);
4176
4177 /* and put the reference of the find */
4178 put_device(&spi->dev);
4179 break;
4180 }
4181
4182 return NOTIFY_OK;
4183 }
4184
4185 static struct notifier_block spi_of_notifier = {
4186 .notifier_call = of_spi_notify,
4187 };
4188 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4189 extern struct notifier_block spi_of_notifier;
4190 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4191
4192 #if IS_ENABLED(CONFIG_ACPI)
4193 static int spi_acpi_controller_match(struct device *dev, const void *data)
4194 {
4195 return ACPI_COMPANION(dev->parent) == data;
4196 }
4197
4198 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4199 {
4200 struct device *dev;
4201
4202 dev = class_find_device(&spi_master_class, NULL, adev,
4203 spi_acpi_controller_match);
4204 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4205 dev = class_find_device(&spi_slave_class, NULL, adev,
4206 spi_acpi_controller_match);
4207 if (!dev)
4208 return NULL;
4209
4210 return container_of(dev, struct spi_controller, dev);
4211 }
4212
4213 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4214 {
4215 struct device *dev;
4216
4217 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4218 return to_spi_device(dev);
4219 }
4220
4221 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4222 void *arg)
4223 {
4224 struct acpi_device *adev = arg;
4225 struct spi_controller *ctlr;
4226 struct spi_device *spi;
4227
4228 switch (value) {
4229 case ACPI_RECONFIG_DEVICE_ADD:
4230 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4231 if (!ctlr)
4232 break;
4233
4234 acpi_register_spi_device(ctlr, adev);
4235 put_device(&ctlr->dev);
4236 break;
4237 case ACPI_RECONFIG_DEVICE_REMOVE:
4238 if (!acpi_device_enumerated(adev))
4239 break;
4240
4241 spi = acpi_spi_find_device_by_adev(adev);
4242 if (!spi)
4243 break;
4244
4245 spi_unregister_device(spi);
4246 put_device(&spi->dev);
4247 break;
4248 }
4249
4250 return NOTIFY_OK;
4251 }
4252
4253 static struct notifier_block spi_acpi_notifier = {
4254 .notifier_call = acpi_spi_notify,
4255 };
4256 #else
4257 extern struct notifier_block spi_acpi_notifier;
4258 #endif
4259
4260 static int __init spi_init(void)
4261 {
4262 int status;
4263
4264 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4265 if (!buf) {
4266 status = -ENOMEM;
4267 goto err0;
4268 }
4269
4270 status = bus_register(&spi_bus_type);
4271 if (status < 0)
4272 goto err1;
4273
4274 status = class_register(&spi_master_class);
4275 if (status < 0)
4276 goto err2;
4277
4278 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4279 status = class_register(&spi_slave_class);
4280 if (status < 0)
4281 goto err3;
4282 }
4283
4284 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4285 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4286 if (IS_ENABLED(CONFIG_ACPI))
4287 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4288
4289 return 0;
4290
4291 err3:
4292 class_unregister(&spi_master_class);
4293 err2:
4294 bus_unregister(&spi_bus_type);
4295 err1:
4296 kfree(buf);
4297 buf = NULL;
4298 err0:
4299 return status;
4300 }
4301
4302 /* board_info is normally registered in arch_initcall(),
4303 * but even essential drivers wait till later
4304 *
4305 * REVISIT only boardinfo really needs static linking. the rest (device and
4306 * driver registration) _could_ be dynamically linked (modular) ... costs
4307 * include needing to have boardinfo data structures be much more public.
4308 */
4309 postcore_initcall(spi_init);