]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Only TCG needs TLB handling
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
611 }
612
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
617 {
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
628 }
629
630 bool tcg_enabled(void)
631 {
632 return code_gen_buffer != NULL;
633 }
634
635 void cpu_exec_init_all(void)
636 {
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
641 }
642
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
645 static int cpu_common_post_load(void *opaque, int version_id)
646 {
647 CPUArchState *env = opaque;
648
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
653
654 return 0;
655 }
656
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669 #endif
670
671 CPUArchState *qemu_get_cpu(int cpu)
672 {
673 CPUArchState *env = first_cpu;
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682 }
683
684 void cpu_exec_init(CPUArchState *env)
685 {
686 CPUArchState **penv;
687 int cpu_index;
688
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
715 }
716
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
720 {
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730 }
731
732 void tb_free(TranslationBlock *tb)
733 {
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741 }
742
743 static inline void invalidate_page_bitmap(PageDesc *p)
744 {
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750 }
751
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754 static void page_flush_tb_1 (int level, void **lp)
755 {
756 int i;
757
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
766 }
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773 }
774
775 static void page_flush_tb(void)
776 {
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
780 }
781 }
782
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
786 {
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
797 nb_tbs = 0;
798
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
802
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
805
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
810 }
811
812 #ifdef DEBUG_TB_CHECK
813
814 static void tb_invalidate_check(target_ulong address)
815 {
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
826 }
827 }
828 }
829 }
830
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
833 {
834 TranslationBlock *tb;
835 int i, flags1, flags2;
836
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
844 }
845 }
846 }
847 }
848
849 #endif
850
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854 {
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864 }
865
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867 {
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881 }
882
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884 {
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909 }
910
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
914 {
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
916 }
917
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
919 {
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
925
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
944 tb_invalidated_flag = 1;
945
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
970
971 tb_phys_invalidate_count++;
972 }
973
974 static inline void set_bits(uint8_t *tab, int start, int len)
975 {
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027 }
1028
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1032 {
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1038
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1057
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1063 }
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1066 }
1067
1068 /*
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1074 */
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077 {
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083 }
1084
1085 /*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1094 {
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1144 }
1145 }
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1153
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1158 }
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
1173 }
1174 tb = tb_next;
1175 }
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1182 }
1183 }
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1193 }
1194 #endif
1195 }
1196
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1199 {
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1209 }
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1222 }
1223 }
1224
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1228 {
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1262
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1267 }
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1281 }
1282 #endif
1283 }
1284 #endif
1285
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1289 {
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1294
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1303
1304 #if defined(TARGET_HAS_SMC) || 1
1305
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1311
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1324 }
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1331 }
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1338 }
1339 #endif
1340
1341 #endif /* TARGET_HAS_SMC */
1342 }
1343
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1348 {
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1360
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1367
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1377
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1382 }
1383
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1387 {
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1397 }
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
1412 }
1413 return &tbs[m_max];
1414 }
1415
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419 {
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1448
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455 }
1456
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1458 {
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461 }
1462
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468 }
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1471 {
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1474
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1479 }
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1483 }
1484
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486 {
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1489 }
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1492
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1495
1496 {
1497 }
1498
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1501 {
1502 return -ENOSYS;
1503 }
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1508 {
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1511
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
1519 wp = g_malloc(sizeof(*wp));
1520
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1524
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1530
1531 tlb_flush_page(env, addr);
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1536 }
1537
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1541 {
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1544
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1550 }
1551 }
1552 return -ENOENT;
1553 }
1554
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1557 {
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1559
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
1562 g_free(watchpoint);
1563 }
1564
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1567 {
1568 CPUWatchpoint *wp, *next;
1569
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1573 }
1574 }
1575 #endif
1576
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1580 {
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1583
1584 bp = g_malloc(sizeof(*bp));
1585
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1594
1595 breakpoint_invalidate(env, pc);
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1603 }
1604
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1610
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
1616 }
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1621 }
1622
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1625 {
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1628
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
1631 g_free(breakpoint);
1632 #endif
1633 }
1634
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1637 {
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1640
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1644 }
1645 #endif
1646 }
1647
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1651 {
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
1662 }
1663 #endif
1664 }
1665
1666 static void cpu_unlink_tb(CPUArchState *env)
1667 {
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1674
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1682 }
1683 spin_unlock(&interrupt_lock);
1684 }
1685
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1689 {
1690 int old_mask;
1691
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1694
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1702 }
1703
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
1710 } else {
1711 cpu_unlink_tb(env);
1712 }
1713 }
1714
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
1717 #else /* CONFIG_USER_ONLY */
1718
1719 void cpu_interrupt(CPUArchState *env, int mask)
1720 {
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723 }
1724 #endif /* CONFIG_USER_ONLY */
1725
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1727 {
1728 env->interrupt_request &= ~mask;
1729 }
1730
1731 void cpu_exit(CPUArchState *env)
1732 {
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735 }
1736
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1738 {
1739 va_list ap;
1740 va_list ap2;
1741
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1763 }
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773 #endif
1774 abort();
1775 }
1776
1777 CPUArchState *cpu_copy(CPUArchState *env)
1778 {
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1786
1787 memcpy(new_env, env, sizeof(CPUArchState));
1788
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806 #endif
1807
1808 return new_env;
1809 }
1810
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1813 {
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1825 }
1826
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1829 {
1830 uintptr_t start1;
1831
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1840 }
1841 cpu_tlb_reset_dirty_all(start1, length);
1842
1843 }
1844
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1848 {
1849 uintptr_t length;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1858
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1861 }
1862 }
1863
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1865 {
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1869 }
1870
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1877 {
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1880
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1889 }
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1899 }
1900
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1910 }
1911 }
1912 }
1913
1914 return iotlb;
1915 }
1916
1917 #else
1918 /*
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1921 */
1922
1923 struct walk_memory_regions_data
1924 {
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1929 };
1930
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1933 {
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1938 }
1939 }
1940
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1943
1944 return 0;
1945 }
1946
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1949 {
1950 abi_ulong pa;
1951 int i, rc;
1952
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1955 }
1956
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1961
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1986 {
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1989
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1994
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2000 }
2001 }
2002
2003 return walk_memory_regions_end(&data, 0, 0);
2004 }
2005
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2008 {
2009 FILE *f = (FILE *)priv;
2010
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2017
2018 return (0);
2019 }
2020
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2023 {
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2027 }
2028
2029 int page_get_flags(target_ulong address)
2030 {
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2037 }
2038
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2043 {
2044 target_ulong addr, len;
2045
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2053
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2059 }
2060
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2065
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2072 }
2073 p->flags = flags;
2074 }
2075 }
2076
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2078 {
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2082
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2089
2090 if (len == 0) {
2091 return 0;
2092 }
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2096 }
2097
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2100
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2109
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2120 }
2121 return 0;
2122 }
2123 }
2124 return 0;
2125 }
2126
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2130 {
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2134
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2144 }
2145
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2151
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2157
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2164 }
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2167
2168 mmap_unlock();
2169 return 1;
2170 }
2171 mmap_unlock();
2172 return 0;
2173 }
2174 #endif /* defined(CONFIG_USER_ONLY) */
2175
2176 #if !defined(CONFIG_USER_ONLY)
2177
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2189 {
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2192
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2197 }
2198 }
2199
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2201 {
2202 unsigned i;
2203 PhysPageEntry *p;
2204
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2207 }
2208
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2215 }
2216 }
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2219 }
2220
2221 static void destroy_all_mappings(void)
2222 {
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2225 }
2226
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2228 {
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2233 }
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2236 }
2237
2238 static void phys_sections_clear(void)
2239 {
2240 phys_sections_nb = 0;
2241 }
2242
2243 /* register physical memory.
2244 For RAM, 'size' must be a multiple of the target page size.
2245 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2246 io memory page. The address used when calling the IO function is
2247 the offset from the start of the region, plus region_offset. Both
2248 start_addr and region_offset are rounded down to a page boundary
2249 before calculating this offset. This should not be a problem unless
2250 the low bits of start_addr and region_offset differ. */
2251 static void register_subpage(MemoryRegionSection *section)
2252 {
2253 subpage_t *subpage;
2254 target_phys_addr_t base = section->offset_within_address_space
2255 & TARGET_PAGE_MASK;
2256 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2257 MemoryRegionSection subsection = {
2258 .offset_within_address_space = base,
2259 .size = TARGET_PAGE_SIZE,
2260 };
2261 target_phys_addr_t start, end;
2262
2263 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2264
2265 if (!(existing->mr->subpage)) {
2266 subpage = subpage_init(base);
2267 subsection.mr = &subpage->iomem;
2268 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2269 phys_section_add(&subsection));
2270 } else {
2271 subpage = container_of(existing->mr, subpage_t, iomem);
2272 }
2273 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2274 end = start + section->size;
2275 subpage_register(subpage, start, end, phys_section_add(section));
2276 }
2277
2278
2279 static void register_multipage(MemoryRegionSection *section)
2280 {
2281 target_phys_addr_t start_addr = section->offset_within_address_space;
2282 ram_addr_t size = section->size;
2283 target_phys_addr_t addr;
2284 uint16_t section_index = phys_section_add(section);
2285
2286 assert(size);
2287
2288 addr = start_addr;
2289 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2290 section_index);
2291 }
2292
2293 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2294 bool readonly)
2295 {
2296 MemoryRegionSection now = *section, remain = *section;
2297
2298 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2299 || (now.size < TARGET_PAGE_SIZE)) {
2300 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2301 - now.offset_within_address_space,
2302 now.size);
2303 register_subpage(&now);
2304 remain.size -= now.size;
2305 remain.offset_within_address_space += now.size;
2306 remain.offset_within_region += now.size;
2307 }
2308 now = remain;
2309 now.size &= TARGET_PAGE_MASK;
2310 if (now.size) {
2311 register_multipage(&now);
2312 remain.size -= now.size;
2313 remain.offset_within_address_space += now.size;
2314 remain.offset_within_region += now.size;
2315 }
2316 now = remain;
2317 if (now.size) {
2318 register_subpage(&now);
2319 }
2320 }
2321
2322
2323 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2324 {
2325 if (kvm_enabled())
2326 kvm_coalesce_mmio_region(addr, size);
2327 }
2328
2329 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2330 {
2331 if (kvm_enabled())
2332 kvm_uncoalesce_mmio_region(addr, size);
2333 }
2334
2335 void qemu_flush_coalesced_mmio_buffer(void)
2336 {
2337 if (kvm_enabled())
2338 kvm_flush_coalesced_mmio_buffer();
2339 }
2340
2341 #if defined(__linux__) && !defined(TARGET_S390X)
2342
2343 #include <sys/vfs.h>
2344
2345 #define HUGETLBFS_MAGIC 0x958458f6
2346
2347 static long gethugepagesize(const char *path)
2348 {
2349 struct statfs fs;
2350 int ret;
2351
2352 do {
2353 ret = statfs(path, &fs);
2354 } while (ret != 0 && errno == EINTR);
2355
2356 if (ret != 0) {
2357 perror(path);
2358 return 0;
2359 }
2360
2361 if (fs.f_type != HUGETLBFS_MAGIC)
2362 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2363
2364 return fs.f_bsize;
2365 }
2366
2367 static void *file_ram_alloc(RAMBlock *block,
2368 ram_addr_t memory,
2369 const char *path)
2370 {
2371 char *filename;
2372 void *area;
2373 int fd;
2374 #ifdef MAP_POPULATE
2375 int flags;
2376 #endif
2377 unsigned long hpagesize;
2378
2379 hpagesize = gethugepagesize(path);
2380 if (!hpagesize) {
2381 return NULL;
2382 }
2383
2384 if (memory < hpagesize) {
2385 return NULL;
2386 }
2387
2388 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2389 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2390 return NULL;
2391 }
2392
2393 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2394 return NULL;
2395 }
2396
2397 fd = mkstemp(filename);
2398 if (fd < 0) {
2399 perror("unable to create backing store for hugepages");
2400 free(filename);
2401 return NULL;
2402 }
2403 unlink(filename);
2404 free(filename);
2405
2406 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2407
2408 /*
2409 * ftruncate is not supported by hugetlbfs in older
2410 * hosts, so don't bother bailing out on errors.
2411 * If anything goes wrong with it under other filesystems,
2412 * mmap will fail.
2413 */
2414 if (ftruncate(fd, memory))
2415 perror("ftruncate");
2416
2417 #ifdef MAP_POPULATE
2418 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2419 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2420 * to sidestep this quirk.
2421 */
2422 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2423 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2424 #else
2425 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2426 #endif
2427 if (area == MAP_FAILED) {
2428 perror("file_ram_alloc: can't mmap RAM pages");
2429 close(fd);
2430 return (NULL);
2431 }
2432 block->fd = fd;
2433 return area;
2434 }
2435 #endif
2436
2437 static ram_addr_t find_ram_offset(ram_addr_t size)
2438 {
2439 RAMBlock *block, *next_block;
2440 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2441
2442 if (QLIST_EMPTY(&ram_list.blocks))
2443 return 0;
2444
2445 QLIST_FOREACH(block, &ram_list.blocks, next) {
2446 ram_addr_t end, next = RAM_ADDR_MAX;
2447
2448 end = block->offset + block->length;
2449
2450 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2451 if (next_block->offset >= end) {
2452 next = MIN(next, next_block->offset);
2453 }
2454 }
2455 if (next - end >= size && next - end < mingap) {
2456 offset = end;
2457 mingap = next - end;
2458 }
2459 }
2460
2461 if (offset == RAM_ADDR_MAX) {
2462 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2463 (uint64_t)size);
2464 abort();
2465 }
2466
2467 return offset;
2468 }
2469
2470 static ram_addr_t last_ram_offset(void)
2471 {
2472 RAMBlock *block;
2473 ram_addr_t last = 0;
2474
2475 QLIST_FOREACH(block, &ram_list.blocks, next)
2476 last = MAX(last, block->offset + block->length);
2477
2478 return last;
2479 }
2480
2481 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2482 {
2483 RAMBlock *new_block, *block;
2484
2485 new_block = NULL;
2486 QLIST_FOREACH(block, &ram_list.blocks, next) {
2487 if (block->offset == addr) {
2488 new_block = block;
2489 break;
2490 }
2491 }
2492 assert(new_block);
2493 assert(!new_block->idstr[0]);
2494
2495 if (dev) {
2496 char *id = qdev_get_dev_path(dev);
2497 if (id) {
2498 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2499 g_free(id);
2500 }
2501 }
2502 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2503
2504 QLIST_FOREACH(block, &ram_list.blocks, next) {
2505 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2506 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2507 new_block->idstr);
2508 abort();
2509 }
2510 }
2511 }
2512
2513 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2514 MemoryRegion *mr)
2515 {
2516 RAMBlock *new_block;
2517
2518 size = TARGET_PAGE_ALIGN(size);
2519 new_block = g_malloc0(sizeof(*new_block));
2520
2521 new_block->mr = mr;
2522 new_block->offset = find_ram_offset(size);
2523 if (host) {
2524 new_block->host = host;
2525 new_block->flags |= RAM_PREALLOC_MASK;
2526 } else {
2527 if (mem_path) {
2528 #if defined (__linux__) && !defined(TARGET_S390X)
2529 new_block->host = file_ram_alloc(new_block, size, mem_path);
2530 if (!new_block->host) {
2531 new_block->host = qemu_vmalloc(size);
2532 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2533 }
2534 #else
2535 fprintf(stderr, "-mem-path option unsupported\n");
2536 exit(1);
2537 #endif
2538 } else {
2539 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2540 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2541 an system defined value, which is at least 256GB. Larger systems
2542 have larger values. We put the guest between the end of data
2543 segment (system break) and this value. We use 32GB as a base to
2544 have enough room for the system break to grow. */
2545 new_block->host = mmap((void*)0x800000000, size,
2546 PROT_EXEC|PROT_READ|PROT_WRITE,
2547 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2548 if (new_block->host == MAP_FAILED) {
2549 fprintf(stderr, "Allocating RAM failed\n");
2550 abort();
2551 }
2552 #else
2553 if (xen_enabled()) {
2554 xen_ram_alloc(new_block->offset, size, mr);
2555 } else {
2556 new_block->host = qemu_vmalloc(size);
2557 }
2558 #endif
2559 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2560 }
2561 }
2562 new_block->length = size;
2563
2564 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2565
2566 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2567 last_ram_offset() >> TARGET_PAGE_BITS);
2568 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2569 0xff, size >> TARGET_PAGE_BITS);
2570
2571 if (kvm_enabled())
2572 kvm_setup_guest_memory(new_block->host, size);
2573
2574 return new_block->offset;
2575 }
2576
2577 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2578 {
2579 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2580 }
2581
2582 void qemu_ram_free_from_ptr(ram_addr_t addr)
2583 {
2584 RAMBlock *block;
2585
2586 QLIST_FOREACH(block, &ram_list.blocks, next) {
2587 if (addr == block->offset) {
2588 QLIST_REMOVE(block, next);
2589 g_free(block);
2590 return;
2591 }
2592 }
2593 }
2594
2595 void qemu_ram_free(ram_addr_t addr)
2596 {
2597 RAMBlock *block;
2598
2599 QLIST_FOREACH(block, &ram_list.blocks, next) {
2600 if (addr == block->offset) {
2601 QLIST_REMOVE(block, next);
2602 if (block->flags & RAM_PREALLOC_MASK) {
2603 ;
2604 } else if (mem_path) {
2605 #if defined (__linux__) && !defined(TARGET_S390X)
2606 if (block->fd) {
2607 munmap(block->host, block->length);
2608 close(block->fd);
2609 } else {
2610 qemu_vfree(block->host);
2611 }
2612 #else
2613 abort();
2614 #endif
2615 } else {
2616 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2617 munmap(block->host, block->length);
2618 #else
2619 if (xen_enabled()) {
2620 xen_invalidate_map_cache_entry(block->host);
2621 } else {
2622 qemu_vfree(block->host);
2623 }
2624 #endif
2625 }
2626 g_free(block);
2627 return;
2628 }
2629 }
2630
2631 }
2632
2633 #ifndef _WIN32
2634 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2635 {
2636 RAMBlock *block;
2637 ram_addr_t offset;
2638 int flags;
2639 void *area, *vaddr;
2640
2641 QLIST_FOREACH(block, &ram_list.blocks, next) {
2642 offset = addr - block->offset;
2643 if (offset < block->length) {
2644 vaddr = block->host + offset;
2645 if (block->flags & RAM_PREALLOC_MASK) {
2646 ;
2647 } else {
2648 flags = MAP_FIXED;
2649 munmap(vaddr, length);
2650 if (mem_path) {
2651 #if defined(__linux__) && !defined(TARGET_S390X)
2652 if (block->fd) {
2653 #ifdef MAP_POPULATE
2654 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2655 MAP_PRIVATE;
2656 #else
2657 flags |= MAP_PRIVATE;
2658 #endif
2659 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2660 flags, block->fd, offset);
2661 } else {
2662 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2663 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2664 flags, -1, 0);
2665 }
2666 #else
2667 abort();
2668 #endif
2669 } else {
2670 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2671 flags |= MAP_SHARED | MAP_ANONYMOUS;
2672 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2673 flags, -1, 0);
2674 #else
2675 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2676 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2677 flags, -1, 0);
2678 #endif
2679 }
2680 if (area != vaddr) {
2681 fprintf(stderr, "Could not remap addr: "
2682 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2683 length, addr);
2684 exit(1);
2685 }
2686 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2687 }
2688 return;
2689 }
2690 }
2691 }
2692 #endif /* !_WIN32 */
2693
2694 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2695 With the exception of the softmmu code in this file, this should
2696 only be used for local memory (e.g. video ram) that the device owns,
2697 and knows it isn't going to access beyond the end of the block.
2698
2699 It should not be used for general purpose DMA.
2700 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2701 */
2702 void *qemu_get_ram_ptr(ram_addr_t addr)
2703 {
2704 RAMBlock *block;
2705
2706 QLIST_FOREACH(block, &ram_list.blocks, next) {
2707 if (addr - block->offset < block->length) {
2708 /* Move this entry to to start of the list. */
2709 if (block != QLIST_FIRST(&ram_list.blocks)) {
2710 QLIST_REMOVE(block, next);
2711 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2712 }
2713 if (xen_enabled()) {
2714 /* We need to check if the requested address is in the RAM
2715 * because we don't want to map the entire memory in QEMU.
2716 * In that case just map until the end of the page.
2717 */
2718 if (block->offset == 0) {
2719 return xen_map_cache(addr, 0, 0);
2720 } else if (block->host == NULL) {
2721 block->host =
2722 xen_map_cache(block->offset, block->length, 1);
2723 }
2724 }
2725 return block->host + (addr - block->offset);
2726 }
2727 }
2728
2729 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2730 abort();
2731
2732 return NULL;
2733 }
2734
2735 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2736 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2737 */
2738 void *qemu_safe_ram_ptr(ram_addr_t addr)
2739 {
2740 RAMBlock *block;
2741
2742 QLIST_FOREACH(block, &ram_list.blocks, next) {
2743 if (addr - block->offset < block->length) {
2744 if (xen_enabled()) {
2745 /* We need to check if the requested address is in the RAM
2746 * because we don't want to map the entire memory in QEMU.
2747 * In that case just map until the end of the page.
2748 */
2749 if (block->offset == 0) {
2750 return xen_map_cache(addr, 0, 0);
2751 } else if (block->host == NULL) {
2752 block->host =
2753 xen_map_cache(block->offset, block->length, 1);
2754 }
2755 }
2756 return block->host + (addr - block->offset);
2757 }
2758 }
2759
2760 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2761 abort();
2762
2763 return NULL;
2764 }
2765
2766 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2767 * but takes a size argument */
2768 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2769 {
2770 if (*size == 0) {
2771 return NULL;
2772 }
2773 if (xen_enabled()) {
2774 return xen_map_cache(addr, *size, 1);
2775 } else {
2776 RAMBlock *block;
2777
2778 QLIST_FOREACH(block, &ram_list.blocks, next) {
2779 if (addr - block->offset < block->length) {
2780 if (addr - block->offset + *size > block->length)
2781 *size = block->length - addr + block->offset;
2782 return block->host + (addr - block->offset);
2783 }
2784 }
2785
2786 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2787 abort();
2788 }
2789 }
2790
2791 void qemu_put_ram_ptr(void *addr)
2792 {
2793 trace_qemu_put_ram_ptr(addr);
2794 }
2795
2796 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2797 {
2798 RAMBlock *block;
2799 uint8_t *host = ptr;
2800
2801 if (xen_enabled()) {
2802 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2803 return 0;
2804 }
2805
2806 QLIST_FOREACH(block, &ram_list.blocks, next) {
2807 /* This case append when the block is not mapped. */
2808 if (block->host == NULL) {
2809 continue;
2810 }
2811 if (host - block->host < block->length) {
2812 *ram_addr = block->offset + (host - block->host);
2813 return 0;
2814 }
2815 }
2816
2817 return -1;
2818 }
2819
2820 /* Some of the softmmu routines need to translate from a host pointer
2821 (typically a TLB entry) back to a ram offset. */
2822 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2823 {
2824 ram_addr_t ram_addr;
2825
2826 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2827 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2828 abort();
2829 }
2830 return ram_addr;
2831 }
2832
2833 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2834 unsigned size)
2835 {
2836 #ifdef DEBUG_UNASSIGNED
2837 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2838 #endif
2839 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2840 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2841 #endif
2842 return 0;
2843 }
2844
2845 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2846 uint64_t val, unsigned size)
2847 {
2848 #ifdef DEBUG_UNASSIGNED
2849 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2850 #endif
2851 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2852 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2853 #endif
2854 }
2855
2856 static const MemoryRegionOps unassigned_mem_ops = {
2857 .read = unassigned_mem_read,
2858 .write = unassigned_mem_write,
2859 .endianness = DEVICE_NATIVE_ENDIAN,
2860 };
2861
2862 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2863 unsigned size)
2864 {
2865 abort();
2866 }
2867
2868 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2869 uint64_t value, unsigned size)
2870 {
2871 abort();
2872 }
2873
2874 static const MemoryRegionOps error_mem_ops = {
2875 .read = error_mem_read,
2876 .write = error_mem_write,
2877 .endianness = DEVICE_NATIVE_ENDIAN,
2878 };
2879
2880 static const MemoryRegionOps rom_mem_ops = {
2881 .read = error_mem_read,
2882 .write = unassigned_mem_write,
2883 .endianness = DEVICE_NATIVE_ENDIAN,
2884 };
2885
2886 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2887 uint64_t val, unsigned size)
2888 {
2889 int dirty_flags;
2890 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2891 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2892 #if !defined(CONFIG_USER_ONLY)
2893 tb_invalidate_phys_page_fast(ram_addr, size);
2894 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2895 #endif
2896 }
2897 switch (size) {
2898 case 1:
2899 stb_p(qemu_get_ram_ptr(ram_addr), val);
2900 break;
2901 case 2:
2902 stw_p(qemu_get_ram_ptr(ram_addr), val);
2903 break;
2904 case 4:
2905 stl_p(qemu_get_ram_ptr(ram_addr), val);
2906 break;
2907 default:
2908 abort();
2909 }
2910 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2911 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2912 /* we remove the notdirty callback only if the code has been
2913 flushed */
2914 if (dirty_flags == 0xff)
2915 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2916 }
2917
2918 static const MemoryRegionOps notdirty_mem_ops = {
2919 .read = error_mem_read,
2920 .write = notdirty_mem_write,
2921 .endianness = DEVICE_NATIVE_ENDIAN,
2922 };
2923
2924 /* Generate a debug exception if a watchpoint has been hit. */
2925 static void check_watchpoint(int offset, int len_mask, int flags)
2926 {
2927 CPUArchState *env = cpu_single_env;
2928 target_ulong pc, cs_base;
2929 TranslationBlock *tb;
2930 target_ulong vaddr;
2931 CPUWatchpoint *wp;
2932 int cpu_flags;
2933
2934 if (env->watchpoint_hit) {
2935 /* We re-entered the check after replacing the TB. Now raise
2936 * the debug interrupt so that is will trigger after the
2937 * current instruction. */
2938 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2939 return;
2940 }
2941 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2942 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2943 if ((vaddr == (wp->vaddr & len_mask) ||
2944 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2945 wp->flags |= BP_WATCHPOINT_HIT;
2946 if (!env->watchpoint_hit) {
2947 env->watchpoint_hit = wp;
2948 tb = tb_find_pc(env->mem_io_pc);
2949 if (!tb) {
2950 cpu_abort(env, "check_watchpoint: could not find TB for "
2951 "pc=%p", (void *)env->mem_io_pc);
2952 }
2953 cpu_restore_state(tb, env, env->mem_io_pc);
2954 tb_phys_invalidate(tb, -1);
2955 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2956 env->exception_index = EXCP_DEBUG;
2957 cpu_loop_exit(env);
2958 } else {
2959 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2960 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2961 cpu_resume_from_signal(env, NULL);
2962 }
2963 }
2964 } else {
2965 wp->flags &= ~BP_WATCHPOINT_HIT;
2966 }
2967 }
2968 }
2969
2970 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2971 so these check for a hit then pass through to the normal out-of-line
2972 phys routines. */
2973 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2974 unsigned size)
2975 {
2976 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2977 switch (size) {
2978 case 1: return ldub_phys(addr);
2979 case 2: return lduw_phys(addr);
2980 case 4: return ldl_phys(addr);
2981 default: abort();
2982 }
2983 }
2984
2985 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2986 uint64_t val, unsigned size)
2987 {
2988 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2989 switch (size) {
2990 case 1:
2991 stb_phys(addr, val);
2992 break;
2993 case 2:
2994 stw_phys(addr, val);
2995 break;
2996 case 4:
2997 stl_phys(addr, val);
2998 break;
2999 default: abort();
3000 }
3001 }
3002
3003 static const MemoryRegionOps watch_mem_ops = {
3004 .read = watch_mem_read,
3005 .write = watch_mem_write,
3006 .endianness = DEVICE_NATIVE_ENDIAN,
3007 };
3008
3009 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3010 unsigned len)
3011 {
3012 subpage_t *mmio = opaque;
3013 unsigned int idx = SUBPAGE_IDX(addr);
3014 MemoryRegionSection *section;
3015 #if defined(DEBUG_SUBPAGE)
3016 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3017 mmio, len, addr, idx);
3018 #endif
3019
3020 section = &phys_sections[mmio->sub_section[idx]];
3021 addr += mmio->base;
3022 addr -= section->offset_within_address_space;
3023 addr += section->offset_within_region;
3024 return io_mem_read(section->mr, addr, len);
3025 }
3026
3027 static void subpage_write(void *opaque, target_phys_addr_t addr,
3028 uint64_t value, unsigned len)
3029 {
3030 subpage_t *mmio = opaque;
3031 unsigned int idx = SUBPAGE_IDX(addr);
3032 MemoryRegionSection *section;
3033 #if defined(DEBUG_SUBPAGE)
3034 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3035 " idx %d value %"PRIx64"\n",
3036 __func__, mmio, len, addr, idx, value);
3037 #endif
3038
3039 section = &phys_sections[mmio->sub_section[idx]];
3040 addr += mmio->base;
3041 addr -= section->offset_within_address_space;
3042 addr += section->offset_within_region;
3043 io_mem_write(section->mr, addr, value, len);
3044 }
3045
3046 static const MemoryRegionOps subpage_ops = {
3047 .read = subpage_read,
3048 .write = subpage_write,
3049 .endianness = DEVICE_NATIVE_ENDIAN,
3050 };
3051
3052 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3053 unsigned size)
3054 {
3055 ram_addr_t raddr = addr;
3056 void *ptr = qemu_get_ram_ptr(raddr);
3057 switch (size) {
3058 case 1: return ldub_p(ptr);
3059 case 2: return lduw_p(ptr);
3060 case 4: return ldl_p(ptr);
3061 default: abort();
3062 }
3063 }
3064
3065 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3066 uint64_t value, unsigned size)
3067 {
3068 ram_addr_t raddr = addr;
3069 void *ptr = qemu_get_ram_ptr(raddr);
3070 switch (size) {
3071 case 1: return stb_p(ptr, value);
3072 case 2: return stw_p(ptr, value);
3073 case 4: return stl_p(ptr, value);
3074 default: abort();
3075 }
3076 }
3077
3078 static const MemoryRegionOps subpage_ram_ops = {
3079 .read = subpage_ram_read,
3080 .write = subpage_ram_write,
3081 .endianness = DEVICE_NATIVE_ENDIAN,
3082 };
3083
3084 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3085 uint16_t section)
3086 {
3087 int idx, eidx;
3088
3089 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3090 return -1;
3091 idx = SUBPAGE_IDX(start);
3092 eidx = SUBPAGE_IDX(end);
3093 #if defined(DEBUG_SUBPAGE)
3094 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3095 mmio, start, end, idx, eidx, memory);
3096 #endif
3097 if (memory_region_is_ram(phys_sections[section].mr)) {
3098 MemoryRegionSection new_section = phys_sections[section];
3099 new_section.mr = &io_mem_subpage_ram;
3100 section = phys_section_add(&new_section);
3101 }
3102 for (; idx <= eidx; idx++) {
3103 mmio->sub_section[idx] = section;
3104 }
3105
3106 return 0;
3107 }
3108
3109 static subpage_t *subpage_init(target_phys_addr_t base)
3110 {
3111 subpage_t *mmio;
3112
3113 mmio = g_malloc0(sizeof(subpage_t));
3114
3115 mmio->base = base;
3116 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3117 "subpage", TARGET_PAGE_SIZE);
3118 mmio->iomem.subpage = true;
3119 #if defined(DEBUG_SUBPAGE)
3120 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3121 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3122 #endif
3123 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3124
3125 return mmio;
3126 }
3127
3128 static uint16_t dummy_section(MemoryRegion *mr)
3129 {
3130 MemoryRegionSection section = {
3131 .mr = mr,
3132 .offset_within_address_space = 0,
3133 .offset_within_region = 0,
3134 .size = UINT64_MAX,
3135 };
3136
3137 return phys_section_add(&section);
3138 }
3139
3140 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3141 {
3142 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3143 }
3144
3145 static void io_mem_init(void)
3146 {
3147 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3148 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3149 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3150 "unassigned", UINT64_MAX);
3151 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3152 "notdirty", UINT64_MAX);
3153 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3154 "subpage-ram", UINT64_MAX);
3155 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3156 "watch", UINT64_MAX);
3157 }
3158
3159 static void core_begin(MemoryListener *listener)
3160 {
3161 destroy_all_mappings();
3162 phys_sections_clear();
3163 phys_map.ptr = PHYS_MAP_NODE_NIL;
3164 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3165 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3166 phys_section_rom = dummy_section(&io_mem_rom);
3167 phys_section_watch = dummy_section(&io_mem_watch);
3168 }
3169
3170 static void core_commit(MemoryListener *listener)
3171 {
3172 CPUArchState *env;
3173
3174 /* since each CPU stores ram addresses in its TLB cache, we must
3175 reset the modified entries */
3176 /* XXX: slow ! */
3177 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3178 tlb_flush(env, 1);
3179 }
3180 }
3181
3182 static void core_region_add(MemoryListener *listener,
3183 MemoryRegionSection *section)
3184 {
3185 cpu_register_physical_memory_log(section, section->readonly);
3186 }
3187
3188 static void core_region_del(MemoryListener *listener,
3189 MemoryRegionSection *section)
3190 {
3191 }
3192
3193 static void core_region_nop(MemoryListener *listener,
3194 MemoryRegionSection *section)
3195 {
3196 cpu_register_physical_memory_log(section, section->readonly);
3197 }
3198
3199 static void core_log_start(MemoryListener *listener,
3200 MemoryRegionSection *section)
3201 {
3202 }
3203
3204 static void core_log_stop(MemoryListener *listener,
3205 MemoryRegionSection *section)
3206 {
3207 }
3208
3209 static void core_log_sync(MemoryListener *listener,
3210 MemoryRegionSection *section)
3211 {
3212 }
3213
3214 static void core_log_global_start(MemoryListener *listener)
3215 {
3216 cpu_physical_memory_set_dirty_tracking(1);
3217 }
3218
3219 static void core_log_global_stop(MemoryListener *listener)
3220 {
3221 cpu_physical_memory_set_dirty_tracking(0);
3222 }
3223
3224 static void core_eventfd_add(MemoryListener *listener,
3225 MemoryRegionSection *section,
3226 bool match_data, uint64_t data, int fd)
3227 {
3228 }
3229
3230 static void core_eventfd_del(MemoryListener *listener,
3231 MemoryRegionSection *section,
3232 bool match_data, uint64_t data, int fd)
3233 {
3234 }
3235
3236 static void io_begin(MemoryListener *listener)
3237 {
3238 }
3239
3240 static void io_commit(MemoryListener *listener)
3241 {
3242 }
3243
3244 static void io_region_add(MemoryListener *listener,
3245 MemoryRegionSection *section)
3246 {
3247 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3248
3249 mrio->mr = section->mr;
3250 mrio->offset = section->offset_within_region;
3251 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3252 section->offset_within_address_space, section->size);
3253 ioport_register(&mrio->iorange);
3254 }
3255
3256 static void io_region_del(MemoryListener *listener,
3257 MemoryRegionSection *section)
3258 {
3259 isa_unassign_ioport(section->offset_within_address_space, section->size);
3260 }
3261
3262 static void io_region_nop(MemoryListener *listener,
3263 MemoryRegionSection *section)
3264 {
3265 }
3266
3267 static void io_log_start(MemoryListener *listener,
3268 MemoryRegionSection *section)
3269 {
3270 }
3271
3272 static void io_log_stop(MemoryListener *listener,
3273 MemoryRegionSection *section)
3274 {
3275 }
3276
3277 static void io_log_sync(MemoryListener *listener,
3278 MemoryRegionSection *section)
3279 {
3280 }
3281
3282 static void io_log_global_start(MemoryListener *listener)
3283 {
3284 }
3285
3286 static void io_log_global_stop(MemoryListener *listener)
3287 {
3288 }
3289
3290 static void io_eventfd_add(MemoryListener *listener,
3291 MemoryRegionSection *section,
3292 bool match_data, uint64_t data, int fd)
3293 {
3294 }
3295
3296 static void io_eventfd_del(MemoryListener *listener,
3297 MemoryRegionSection *section,
3298 bool match_data, uint64_t data, int fd)
3299 {
3300 }
3301
3302 static MemoryListener core_memory_listener = {
3303 .begin = core_begin,
3304 .commit = core_commit,
3305 .region_add = core_region_add,
3306 .region_del = core_region_del,
3307 .region_nop = core_region_nop,
3308 .log_start = core_log_start,
3309 .log_stop = core_log_stop,
3310 .log_sync = core_log_sync,
3311 .log_global_start = core_log_global_start,
3312 .log_global_stop = core_log_global_stop,
3313 .eventfd_add = core_eventfd_add,
3314 .eventfd_del = core_eventfd_del,
3315 .priority = 0,
3316 };
3317
3318 static MemoryListener io_memory_listener = {
3319 .begin = io_begin,
3320 .commit = io_commit,
3321 .region_add = io_region_add,
3322 .region_del = io_region_del,
3323 .region_nop = io_region_nop,
3324 .log_start = io_log_start,
3325 .log_stop = io_log_stop,
3326 .log_sync = io_log_sync,
3327 .log_global_start = io_log_global_start,
3328 .log_global_stop = io_log_global_stop,
3329 .eventfd_add = io_eventfd_add,
3330 .eventfd_del = io_eventfd_del,
3331 .priority = 0,
3332 };
3333
3334 static void memory_map_init(void)
3335 {
3336 system_memory = g_malloc(sizeof(*system_memory));
3337 memory_region_init(system_memory, "system", INT64_MAX);
3338 set_system_memory_map(system_memory);
3339
3340 system_io = g_malloc(sizeof(*system_io));
3341 memory_region_init(system_io, "io", 65536);
3342 set_system_io_map(system_io);
3343
3344 memory_listener_register(&core_memory_listener, system_memory);
3345 memory_listener_register(&io_memory_listener, system_io);
3346 }
3347
3348 MemoryRegion *get_system_memory(void)
3349 {
3350 return system_memory;
3351 }
3352
3353 MemoryRegion *get_system_io(void)
3354 {
3355 return system_io;
3356 }
3357
3358 #endif /* !defined(CONFIG_USER_ONLY) */
3359
3360 /* physical memory access (slow version, mainly for debug) */
3361 #if defined(CONFIG_USER_ONLY)
3362 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3363 uint8_t *buf, int len, int is_write)
3364 {
3365 int l, flags;
3366 target_ulong page;
3367 void * p;
3368
3369 while (len > 0) {
3370 page = addr & TARGET_PAGE_MASK;
3371 l = (page + TARGET_PAGE_SIZE) - addr;
3372 if (l > len)
3373 l = len;
3374 flags = page_get_flags(page);
3375 if (!(flags & PAGE_VALID))
3376 return -1;
3377 if (is_write) {
3378 if (!(flags & PAGE_WRITE))
3379 return -1;
3380 /* XXX: this code should not depend on lock_user */
3381 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3382 return -1;
3383 memcpy(p, buf, l);
3384 unlock_user(p, addr, l);
3385 } else {
3386 if (!(flags & PAGE_READ))
3387 return -1;
3388 /* XXX: this code should not depend on lock_user */
3389 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3390 return -1;
3391 memcpy(buf, p, l);
3392 unlock_user(p, addr, 0);
3393 }
3394 len -= l;
3395 buf += l;
3396 addr += l;
3397 }
3398 return 0;
3399 }
3400
3401 #else
3402 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3403 int len, int is_write)
3404 {
3405 int l;
3406 uint8_t *ptr;
3407 uint32_t val;
3408 target_phys_addr_t page;
3409 MemoryRegionSection *section;
3410
3411 while (len > 0) {
3412 page = addr & TARGET_PAGE_MASK;
3413 l = (page + TARGET_PAGE_SIZE) - addr;
3414 if (l > len)
3415 l = len;
3416 section = phys_page_find(page >> TARGET_PAGE_BITS);
3417
3418 if (is_write) {
3419 if (!memory_region_is_ram(section->mr)) {
3420 target_phys_addr_t addr1;
3421 addr1 = memory_region_section_addr(section, addr);
3422 /* XXX: could force cpu_single_env to NULL to avoid
3423 potential bugs */
3424 if (l >= 4 && ((addr1 & 3) == 0)) {
3425 /* 32 bit write access */
3426 val = ldl_p(buf);
3427 io_mem_write(section->mr, addr1, val, 4);
3428 l = 4;
3429 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3430 /* 16 bit write access */
3431 val = lduw_p(buf);
3432 io_mem_write(section->mr, addr1, val, 2);
3433 l = 2;
3434 } else {
3435 /* 8 bit write access */
3436 val = ldub_p(buf);
3437 io_mem_write(section->mr, addr1, val, 1);
3438 l = 1;
3439 }
3440 } else if (!section->readonly) {
3441 ram_addr_t addr1;
3442 addr1 = memory_region_get_ram_addr(section->mr)
3443 + memory_region_section_addr(section, addr);
3444 /* RAM case */
3445 ptr = qemu_get_ram_ptr(addr1);
3446 memcpy(ptr, buf, l);
3447 if (!cpu_physical_memory_is_dirty(addr1)) {
3448 /* invalidate code */
3449 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3450 /* set dirty bit */
3451 cpu_physical_memory_set_dirty_flags(
3452 addr1, (0xff & ~CODE_DIRTY_FLAG));
3453 }
3454 qemu_put_ram_ptr(ptr);
3455 }
3456 } else {
3457 if (!(memory_region_is_ram(section->mr) ||
3458 memory_region_is_romd(section->mr))) {
3459 target_phys_addr_t addr1;
3460 /* I/O case */
3461 addr1 = memory_region_section_addr(section, addr);
3462 if (l >= 4 && ((addr1 & 3) == 0)) {
3463 /* 32 bit read access */
3464 val = io_mem_read(section->mr, addr1, 4);
3465 stl_p(buf, val);
3466 l = 4;
3467 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3468 /* 16 bit read access */
3469 val = io_mem_read(section->mr, addr1, 2);
3470 stw_p(buf, val);
3471 l = 2;
3472 } else {
3473 /* 8 bit read access */
3474 val = io_mem_read(section->mr, addr1, 1);
3475 stb_p(buf, val);
3476 l = 1;
3477 }
3478 } else {
3479 /* RAM case */
3480 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3481 + memory_region_section_addr(section,
3482 addr));
3483 memcpy(buf, ptr, l);
3484 qemu_put_ram_ptr(ptr);
3485 }
3486 }
3487 len -= l;
3488 buf += l;
3489 addr += l;
3490 }
3491 }
3492
3493 /* used for ROM loading : can write in RAM and ROM */
3494 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3495 const uint8_t *buf, int len)
3496 {
3497 int l;
3498 uint8_t *ptr;
3499 target_phys_addr_t page;
3500 MemoryRegionSection *section;
3501
3502 while (len > 0) {
3503 page = addr & TARGET_PAGE_MASK;
3504 l = (page + TARGET_PAGE_SIZE) - addr;
3505 if (l > len)
3506 l = len;
3507 section = phys_page_find(page >> TARGET_PAGE_BITS);
3508
3509 if (!(memory_region_is_ram(section->mr) ||
3510 memory_region_is_romd(section->mr))) {
3511 /* do nothing */
3512 } else {
3513 unsigned long addr1;
3514 addr1 = memory_region_get_ram_addr(section->mr)
3515 + memory_region_section_addr(section, addr);
3516 /* ROM/RAM case */
3517 ptr = qemu_get_ram_ptr(addr1);
3518 memcpy(ptr, buf, l);
3519 qemu_put_ram_ptr(ptr);
3520 }
3521 len -= l;
3522 buf += l;
3523 addr += l;
3524 }
3525 }
3526
3527 typedef struct {
3528 void *buffer;
3529 target_phys_addr_t addr;
3530 target_phys_addr_t len;
3531 } BounceBuffer;
3532
3533 static BounceBuffer bounce;
3534
3535 typedef struct MapClient {
3536 void *opaque;
3537 void (*callback)(void *opaque);
3538 QLIST_ENTRY(MapClient) link;
3539 } MapClient;
3540
3541 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3542 = QLIST_HEAD_INITIALIZER(map_client_list);
3543
3544 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3545 {
3546 MapClient *client = g_malloc(sizeof(*client));
3547
3548 client->opaque = opaque;
3549 client->callback = callback;
3550 QLIST_INSERT_HEAD(&map_client_list, client, link);
3551 return client;
3552 }
3553
3554 void cpu_unregister_map_client(void *_client)
3555 {
3556 MapClient *client = (MapClient *)_client;
3557
3558 QLIST_REMOVE(client, link);
3559 g_free(client);
3560 }
3561
3562 static void cpu_notify_map_clients(void)
3563 {
3564 MapClient *client;
3565
3566 while (!QLIST_EMPTY(&map_client_list)) {
3567 client = QLIST_FIRST(&map_client_list);
3568 client->callback(client->opaque);
3569 cpu_unregister_map_client(client);
3570 }
3571 }
3572
3573 /* Map a physical memory region into a host virtual address.
3574 * May map a subset of the requested range, given by and returned in *plen.
3575 * May return NULL if resources needed to perform the mapping are exhausted.
3576 * Use only for reads OR writes - not for read-modify-write operations.
3577 * Use cpu_register_map_client() to know when retrying the map operation is
3578 * likely to succeed.
3579 */
3580 void *cpu_physical_memory_map(target_phys_addr_t addr,
3581 target_phys_addr_t *plen,
3582 int is_write)
3583 {
3584 target_phys_addr_t len = *plen;
3585 target_phys_addr_t todo = 0;
3586 int l;
3587 target_phys_addr_t page;
3588 MemoryRegionSection *section;
3589 ram_addr_t raddr = RAM_ADDR_MAX;
3590 ram_addr_t rlen;
3591 void *ret;
3592
3593 while (len > 0) {
3594 page = addr & TARGET_PAGE_MASK;
3595 l = (page + TARGET_PAGE_SIZE) - addr;
3596 if (l > len)
3597 l = len;
3598 section = phys_page_find(page >> TARGET_PAGE_BITS);
3599
3600 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3601 if (todo || bounce.buffer) {
3602 break;
3603 }
3604 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3605 bounce.addr = addr;
3606 bounce.len = l;
3607 if (!is_write) {
3608 cpu_physical_memory_read(addr, bounce.buffer, l);
3609 }
3610
3611 *plen = l;
3612 return bounce.buffer;
3613 }
3614 if (!todo) {
3615 raddr = memory_region_get_ram_addr(section->mr)
3616 + memory_region_section_addr(section, addr);
3617 }
3618
3619 len -= l;
3620 addr += l;
3621 todo += l;
3622 }
3623 rlen = todo;
3624 ret = qemu_ram_ptr_length(raddr, &rlen);
3625 *plen = rlen;
3626 return ret;
3627 }
3628
3629 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3630 * Will also mark the memory as dirty if is_write == 1. access_len gives
3631 * the amount of memory that was actually read or written by the caller.
3632 */
3633 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3634 int is_write, target_phys_addr_t access_len)
3635 {
3636 if (buffer != bounce.buffer) {
3637 if (is_write) {
3638 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3639 while (access_len) {
3640 unsigned l;
3641 l = TARGET_PAGE_SIZE;
3642 if (l > access_len)
3643 l = access_len;
3644 if (!cpu_physical_memory_is_dirty(addr1)) {
3645 /* invalidate code */
3646 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3647 /* set dirty bit */
3648 cpu_physical_memory_set_dirty_flags(
3649 addr1, (0xff & ~CODE_DIRTY_FLAG));
3650 }
3651 addr1 += l;
3652 access_len -= l;
3653 }
3654 }
3655 if (xen_enabled()) {
3656 xen_invalidate_map_cache_entry(buffer);
3657 }
3658 return;
3659 }
3660 if (is_write) {
3661 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3662 }
3663 qemu_vfree(bounce.buffer);
3664 bounce.buffer = NULL;
3665 cpu_notify_map_clients();
3666 }
3667
3668 /* warning: addr must be aligned */
3669 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3670 enum device_endian endian)
3671 {
3672 uint8_t *ptr;
3673 uint32_t val;
3674 MemoryRegionSection *section;
3675
3676 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3677
3678 if (!(memory_region_is_ram(section->mr) ||
3679 memory_region_is_romd(section->mr))) {
3680 /* I/O case */
3681 addr = memory_region_section_addr(section, addr);
3682 val = io_mem_read(section->mr, addr, 4);
3683 #if defined(TARGET_WORDS_BIGENDIAN)
3684 if (endian == DEVICE_LITTLE_ENDIAN) {
3685 val = bswap32(val);
3686 }
3687 #else
3688 if (endian == DEVICE_BIG_ENDIAN) {
3689 val = bswap32(val);
3690 }
3691 #endif
3692 } else {
3693 /* RAM case */
3694 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3695 & TARGET_PAGE_MASK)
3696 + memory_region_section_addr(section, addr));
3697 switch (endian) {
3698 case DEVICE_LITTLE_ENDIAN:
3699 val = ldl_le_p(ptr);
3700 break;
3701 case DEVICE_BIG_ENDIAN:
3702 val = ldl_be_p(ptr);
3703 break;
3704 default:
3705 val = ldl_p(ptr);
3706 break;
3707 }
3708 }
3709 return val;
3710 }
3711
3712 uint32_t ldl_phys(target_phys_addr_t addr)
3713 {
3714 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3715 }
3716
3717 uint32_t ldl_le_phys(target_phys_addr_t addr)
3718 {
3719 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3720 }
3721
3722 uint32_t ldl_be_phys(target_phys_addr_t addr)
3723 {
3724 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3725 }
3726
3727 /* warning: addr must be aligned */
3728 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3729 enum device_endian endian)
3730 {
3731 uint8_t *ptr;
3732 uint64_t val;
3733 MemoryRegionSection *section;
3734
3735 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3736
3737 if (!(memory_region_is_ram(section->mr) ||
3738 memory_region_is_romd(section->mr))) {
3739 /* I/O case */
3740 addr = memory_region_section_addr(section, addr);
3741
3742 /* XXX This is broken when device endian != cpu endian.
3743 Fix and add "endian" variable check */
3744 #ifdef TARGET_WORDS_BIGENDIAN
3745 val = io_mem_read(section->mr, addr, 4) << 32;
3746 val |= io_mem_read(section->mr, addr + 4, 4);
3747 #else
3748 val = io_mem_read(section->mr, addr, 4);
3749 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3750 #endif
3751 } else {
3752 /* RAM case */
3753 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3754 & TARGET_PAGE_MASK)
3755 + memory_region_section_addr(section, addr));
3756 switch (endian) {
3757 case DEVICE_LITTLE_ENDIAN:
3758 val = ldq_le_p(ptr);
3759 break;
3760 case DEVICE_BIG_ENDIAN:
3761 val = ldq_be_p(ptr);
3762 break;
3763 default:
3764 val = ldq_p(ptr);
3765 break;
3766 }
3767 }
3768 return val;
3769 }
3770
3771 uint64_t ldq_phys(target_phys_addr_t addr)
3772 {
3773 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3774 }
3775
3776 uint64_t ldq_le_phys(target_phys_addr_t addr)
3777 {
3778 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3779 }
3780
3781 uint64_t ldq_be_phys(target_phys_addr_t addr)
3782 {
3783 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3784 }
3785
3786 /* XXX: optimize */
3787 uint32_t ldub_phys(target_phys_addr_t addr)
3788 {
3789 uint8_t val;
3790 cpu_physical_memory_read(addr, &val, 1);
3791 return val;
3792 }
3793
3794 /* warning: addr must be aligned */
3795 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3796 enum device_endian endian)
3797 {
3798 uint8_t *ptr;
3799 uint64_t val;
3800 MemoryRegionSection *section;
3801
3802 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3803
3804 if (!(memory_region_is_ram(section->mr) ||
3805 memory_region_is_romd(section->mr))) {
3806 /* I/O case */
3807 addr = memory_region_section_addr(section, addr);
3808 val = io_mem_read(section->mr, addr, 2);
3809 #if defined(TARGET_WORDS_BIGENDIAN)
3810 if (endian == DEVICE_LITTLE_ENDIAN) {
3811 val = bswap16(val);
3812 }
3813 #else
3814 if (endian == DEVICE_BIG_ENDIAN) {
3815 val = bswap16(val);
3816 }
3817 #endif
3818 } else {
3819 /* RAM case */
3820 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3821 & TARGET_PAGE_MASK)
3822 + memory_region_section_addr(section, addr));
3823 switch (endian) {
3824 case DEVICE_LITTLE_ENDIAN:
3825 val = lduw_le_p(ptr);
3826 break;
3827 case DEVICE_BIG_ENDIAN:
3828 val = lduw_be_p(ptr);
3829 break;
3830 default:
3831 val = lduw_p(ptr);
3832 break;
3833 }
3834 }
3835 return val;
3836 }
3837
3838 uint32_t lduw_phys(target_phys_addr_t addr)
3839 {
3840 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3841 }
3842
3843 uint32_t lduw_le_phys(target_phys_addr_t addr)
3844 {
3845 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3846 }
3847
3848 uint32_t lduw_be_phys(target_phys_addr_t addr)
3849 {
3850 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3851 }
3852
3853 /* warning: addr must be aligned. The ram page is not masked as dirty
3854 and the code inside is not invalidated. It is useful if the dirty
3855 bits are used to track modified PTEs */
3856 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3857 {
3858 uint8_t *ptr;
3859 MemoryRegionSection *section;
3860
3861 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3862
3863 if (!memory_region_is_ram(section->mr) || section->readonly) {
3864 addr = memory_region_section_addr(section, addr);
3865 if (memory_region_is_ram(section->mr)) {
3866 section = &phys_sections[phys_section_rom];
3867 }
3868 io_mem_write(section->mr, addr, val, 4);
3869 } else {
3870 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3871 & TARGET_PAGE_MASK)
3872 + memory_region_section_addr(section, addr);
3873 ptr = qemu_get_ram_ptr(addr1);
3874 stl_p(ptr, val);
3875
3876 if (unlikely(in_migration)) {
3877 if (!cpu_physical_memory_is_dirty(addr1)) {
3878 /* invalidate code */
3879 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3880 /* set dirty bit */
3881 cpu_physical_memory_set_dirty_flags(
3882 addr1, (0xff & ~CODE_DIRTY_FLAG));
3883 }
3884 }
3885 }
3886 }
3887
3888 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3889 {
3890 uint8_t *ptr;
3891 MemoryRegionSection *section;
3892
3893 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3894
3895 if (!memory_region_is_ram(section->mr) || section->readonly) {
3896 addr = memory_region_section_addr(section, addr);
3897 if (memory_region_is_ram(section->mr)) {
3898 section = &phys_sections[phys_section_rom];
3899 }
3900 #ifdef TARGET_WORDS_BIGENDIAN
3901 io_mem_write(section->mr, addr, val >> 32, 4);
3902 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3903 #else
3904 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3905 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3906 #endif
3907 } else {
3908 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3909 & TARGET_PAGE_MASK)
3910 + memory_region_section_addr(section, addr));
3911 stq_p(ptr, val);
3912 }
3913 }
3914
3915 /* warning: addr must be aligned */
3916 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3917 enum device_endian endian)
3918 {
3919 uint8_t *ptr;
3920 MemoryRegionSection *section;
3921
3922 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3923
3924 if (!memory_region_is_ram(section->mr) || section->readonly) {
3925 addr = memory_region_section_addr(section, addr);
3926 if (memory_region_is_ram(section->mr)) {
3927 section = &phys_sections[phys_section_rom];
3928 }
3929 #if defined(TARGET_WORDS_BIGENDIAN)
3930 if (endian == DEVICE_LITTLE_ENDIAN) {
3931 val = bswap32(val);
3932 }
3933 #else
3934 if (endian == DEVICE_BIG_ENDIAN) {
3935 val = bswap32(val);
3936 }
3937 #endif
3938 io_mem_write(section->mr, addr, val, 4);
3939 } else {
3940 unsigned long addr1;
3941 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3942 + memory_region_section_addr(section, addr);
3943 /* RAM case */
3944 ptr = qemu_get_ram_ptr(addr1);
3945 switch (endian) {
3946 case DEVICE_LITTLE_ENDIAN:
3947 stl_le_p(ptr, val);
3948 break;
3949 case DEVICE_BIG_ENDIAN:
3950 stl_be_p(ptr, val);
3951 break;
3952 default:
3953 stl_p(ptr, val);
3954 break;
3955 }
3956 if (!cpu_physical_memory_is_dirty(addr1)) {
3957 /* invalidate code */
3958 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3959 /* set dirty bit */
3960 cpu_physical_memory_set_dirty_flags(addr1,
3961 (0xff & ~CODE_DIRTY_FLAG));
3962 }
3963 }
3964 }
3965
3966 void stl_phys(target_phys_addr_t addr, uint32_t val)
3967 {
3968 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3969 }
3970
3971 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3972 {
3973 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3974 }
3975
3976 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3977 {
3978 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3979 }
3980
3981 /* XXX: optimize */
3982 void stb_phys(target_phys_addr_t addr, uint32_t val)
3983 {
3984 uint8_t v = val;
3985 cpu_physical_memory_write(addr, &v, 1);
3986 }
3987
3988 /* warning: addr must be aligned */
3989 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3990 enum device_endian endian)
3991 {
3992 uint8_t *ptr;
3993 MemoryRegionSection *section;
3994
3995 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3996
3997 if (!memory_region_is_ram(section->mr) || section->readonly) {
3998 addr = memory_region_section_addr(section, addr);
3999 if (memory_region_is_ram(section->mr)) {
4000 section = &phys_sections[phys_section_rom];
4001 }
4002 #if defined(TARGET_WORDS_BIGENDIAN)
4003 if (endian == DEVICE_LITTLE_ENDIAN) {
4004 val = bswap16(val);
4005 }
4006 #else
4007 if (endian == DEVICE_BIG_ENDIAN) {
4008 val = bswap16(val);
4009 }
4010 #endif
4011 io_mem_write(section->mr, addr, val, 2);
4012 } else {
4013 unsigned long addr1;
4014 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4015 + memory_region_section_addr(section, addr);
4016 /* RAM case */
4017 ptr = qemu_get_ram_ptr(addr1);
4018 switch (endian) {
4019 case DEVICE_LITTLE_ENDIAN:
4020 stw_le_p(ptr, val);
4021 break;
4022 case DEVICE_BIG_ENDIAN:
4023 stw_be_p(ptr, val);
4024 break;
4025 default:
4026 stw_p(ptr, val);
4027 break;
4028 }
4029 if (!cpu_physical_memory_is_dirty(addr1)) {
4030 /* invalidate code */
4031 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4032 /* set dirty bit */
4033 cpu_physical_memory_set_dirty_flags(addr1,
4034 (0xff & ~CODE_DIRTY_FLAG));
4035 }
4036 }
4037 }
4038
4039 void stw_phys(target_phys_addr_t addr, uint32_t val)
4040 {
4041 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4042 }
4043
4044 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4045 {
4046 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4047 }
4048
4049 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4050 {
4051 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4052 }
4053
4054 /* XXX: optimize */
4055 void stq_phys(target_phys_addr_t addr, uint64_t val)
4056 {
4057 val = tswap64(val);
4058 cpu_physical_memory_write(addr, &val, 8);
4059 }
4060
4061 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4062 {
4063 val = cpu_to_le64(val);
4064 cpu_physical_memory_write(addr, &val, 8);
4065 }
4066
4067 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4068 {
4069 val = cpu_to_be64(val);
4070 cpu_physical_memory_write(addr, &val, 8);
4071 }
4072
4073 /* virtual memory access for debug (includes writing to ROM) */
4074 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4075 uint8_t *buf, int len, int is_write)
4076 {
4077 int l;
4078 target_phys_addr_t phys_addr;
4079 target_ulong page;
4080
4081 while (len > 0) {
4082 page = addr & TARGET_PAGE_MASK;
4083 phys_addr = cpu_get_phys_page_debug(env, page);
4084 /* if no physical page mapped, return an error */
4085 if (phys_addr == -1)
4086 return -1;
4087 l = (page + TARGET_PAGE_SIZE) - addr;
4088 if (l > len)
4089 l = len;
4090 phys_addr += (addr & ~TARGET_PAGE_MASK);
4091 if (is_write)
4092 cpu_physical_memory_write_rom(phys_addr, buf, l);
4093 else
4094 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4095 len -= l;
4096 buf += l;
4097 addr += l;
4098 }
4099 return 0;
4100 }
4101 #endif
4102
4103 /* in deterministic execution mode, instructions doing device I/Os
4104 must be at the end of the TB */
4105 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4106 {
4107 TranslationBlock *tb;
4108 uint32_t n, cflags;
4109 target_ulong pc, cs_base;
4110 uint64_t flags;
4111
4112 tb = tb_find_pc(retaddr);
4113 if (!tb) {
4114 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4115 (void *)retaddr);
4116 }
4117 n = env->icount_decr.u16.low + tb->icount;
4118 cpu_restore_state(tb, env, retaddr);
4119 /* Calculate how many instructions had been executed before the fault
4120 occurred. */
4121 n = n - env->icount_decr.u16.low;
4122 /* Generate a new TB ending on the I/O insn. */
4123 n++;
4124 /* On MIPS and SH, delay slot instructions can only be restarted if
4125 they were already the first instruction in the TB. If this is not
4126 the first instruction in a TB then re-execute the preceding
4127 branch. */
4128 #if defined(TARGET_MIPS)
4129 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4130 env->active_tc.PC -= 4;
4131 env->icount_decr.u16.low++;
4132 env->hflags &= ~MIPS_HFLAG_BMASK;
4133 }
4134 #elif defined(TARGET_SH4)
4135 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4136 && n > 1) {
4137 env->pc -= 2;
4138 env->icount_decr.u16.low++;
4139 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4140 }
4141 #endif
4142 /* This should never happen. */
4143 if (n > CF_COUNT_MASK)
4144 cpu_abort(env, "TB too big during recompile");
4145
4146 cflags = n | CF_LAST_IO;
4147 pc = tb->pc;
4148 cs_base = tb->cs_base;
4149 flags = tb->flags;
4150 tb_phys_invalidate(tb, -1);
4151 /* FIXME: In theory this could raise an exception. In practice
4152 we have already translated the block once so it's probably ok. */
4153 tb_gen_code(env, pc, cs_base, flags, cflags);
4154 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4155 the first in the TB) then we end up generating a whole new TB and
4156 repeating the fault, which is horribly inefficient.
4157 Better would be to execute just this insn uncached, or generate a
4158 second new TB. */
4159 cpu_resume_from_signal(env, NULL);
4160 }
4161
4162 #if !defined(CONFIG_USER_ONLY)
4163
4164 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4165 {
4166 int i, target_code_size, max_target_code_size;
4167 int direct_jmp_count, direct_jmp2_count, cross_page;
4168 TranslationBlock *tb;
4169
4170 target_code_size = 0;
4171 max_target_code_size = 0;
4172 cross_page = 0;
4173 direct_jmp_count = 0;
4174 direct_jmp2_count = 0;
4175 for(i = 0; i < nb_tbs; i++) {
4176 tb = &tbs[i];
4177 target_code_size += tb->size;
4178 if (tb->size > max_target_code_size)
4179 max_target_code_size = tb->size;
4180 if (tb->page_addr[1] != -1)
4181 cross_page++;
4182 if (tb->tb_next_offset[0] != 0xffff) {
4183 direct_jmp_count++;
4184 if (tb->tb_next_offset[1] != 0xffff) {
4185 direct_jmp2_count++;
4186 }
4187 }
4188 }
4189 /* XXX: avoid using doubles ? */
4190 cpu_fprintf(f, "Translation buffer state:\n");
4191 cpu_fprintf(f, "gen code size %td/%ld\n",
4192 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4193 cpu_fprintf(f, "TB count %d/%d\n",
4194 nb_tbs, code_gen_max_blocks);
4195 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4196 nb_tbs ? target_code_size / nb_tbs : 0,
4197 max_target_code_size);
4198 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4199 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4200 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4201 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4202 cross_page,
4203 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4204 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4205 direct_jmp_count,
4206 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4207 direct_jmp2_count,
4208 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4209 cpu_fprintf(f, "\nStatistics:\n");
4210 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4211 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4212 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4213 tcg_dump_info(f, cpu_fprintf);
4214 }
4215
4216 /*
4217 * A helper function for the _utterly broken_ virtio device model to find out if
4218 * it's running on a big endian machine. Don't do this at home kids!
4219 */
4220 bool virtio_is_big_endian(void);
4221 bool virtio_is_big_endian(void)
4222 {
4223 #if defined(TARGET_WORDS_BIGENDIAN)
4224 return true;
4225 #else
4226 return false;
4227 #endif
4228 }
4229
4230 #endif
4231
4232 #ifndef CONFIG_USER_ONLY
4233 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4234 {
4235 MemoryRegionSection *section;
4236
4237 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4238
4239 return !(memory_region_is_ram(section->mr) ||
4240 memory_region_is_romd(section->mr));
4241 }
4242 #endif