]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include "internal.h"
37
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
41 };
42
43 static const struct address_space_operations def_blk_aops;
44
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 {
47 return container_of(inode, struct bdev_inode, vfs_inode);
48 }
49
50 struct block_device *I_BDEV(struct inode *inode)
51 {
52 return &BDEV_I(inode)->bdev;
53 }
54 EXPORT_SYMBOL(I_BDEV);
55
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
57 {
58 struct va_format vaf;
59 va_list args;
60
61 va_start(args, fmt);
62 vaf.fmt = fmt;
63 vaf.va = &args;
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
65 va_end(args);
66 }
67
68 static void bdev_write_inode(struct block_device *bdev)
69 {
70 struct inode *inode = bdev->bd_inode;
71 int ret;
72
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
77 if (ret) {
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
82 }
83 spin_lock(&inode->i_lock);
84 }
85 spin_unlock(&inode->i_lock);
86 }
87
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
90 {
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
92
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
94 return;
95
96 invalidate_bh_lrus();
97 truncate_inode_pages(mapping, 0);
98 }
99 EXPORT_SYMBOL(kill_bdev);
100
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
103 {
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
105
106 if (mapping->nrpages) {
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 }
111 /* 99% of the time, we don't need to flush the cleancache on the bdev.
112 * But, for the strange corners, lets be cautious
113 */
114 cleancache_invalidate_inode(mapping);
115 }
116 EXPORT_SYMBOL(invalidate_bdev);
117
118 int set_blocksize(struct block_device *bdev, int size)
119 {
120 /* Size must be a power of two, and between 512 and PAGE_SIZE */
121 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
122 return -EINVAL;
123
124 /* Size cannot be smaller than the size supported by the device */
125 if (size < bdev_logical_block_size(bdev))
126 return -EINVAL;
127
128 /* Don't change the size if it is same as current */
129 if (bdev->bd_block_size != size) {
130 sync_blockdev(bdev);
131 bdev->bd_block_size = size;
132 bdev->bd_inode->i_blkbits = blksize_bits(size);
133 kill_bdev(bdev);
134 }
135 return 0;
136 }
137
138 EXPORT_SYMBOL(set_blocksize);
139
140 int sb_set_blocksize(struct super_block *sb, int size)
141 {
142 if (set_blocksize(sb->s_bdev, size))
143 return 0;
144 /* If we get here, we know size is power of two
145 * and it's value is between 512 and PAGE_SIZE */
146 sb->s_blocksize = size;
147 sb->s_blocksize_bits = blksize_bits(size);
148 return sb->s_blocksize;
149 }
150
151 EXPORT_SYMBOL(sb_set_blocksize);
152
153 int sb_min_blocksize(struct super_block *sb, int size)
154 {
155 int minsize = bdev_logical_block_size(sb->s_bdev);
156 if (size < minsize)
157 size = minsize;
158 return sb_set_blocksize(sb, size);
159 }
160
161 EXPORT_SYMBOL(sb_min_blocksize);
162
163 static int
164 blkdev_get_block(struct inode *inode, sector_t iblock,
165 struct buffer_head *bh, int create)
166 {
167 bh->b_bdev = I_BDEV(inode);
168 bh->b_blocknr = iblock;
169 set_buffer_mapped(bh);
170 return 0;
171 }
172
173 static struct inode *bdev_file_inode(struct file *file)
174 {
175 return file->f_mapping->host;
176 }
177
178 static unsigned int dio_bio_write_op(struct kiocb *iocb)
179 {
180 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
181
182 /* avoid the need for a I/O completion work item */
183 if (iocb->ki_flags & IOCB_DSYNC)
184 op |= REQ_FUA;
185 return op;
186 }
187
188 #define DIO_INLINE_BIO_VECS 4
189
190 static void blkdev_bio_end_io_simple(struct bio *bio)
191 {
192 struct task_struct *waiter = bio->bi_private;
193
194 WRITE_ONCE(bio->bi_private, NULL);
195 wake_up_process(waiter);
196 }
197
198 static ssize_t
199 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
200 int nr_pages)
201 {
202 struct file *file = iocb->ki_filp;
203 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
204 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
205 loff_t pos = iocb->ki_pos;
206 bool should_dirty = false;
207 struct bio bio;
208 ssize_t ret;
209 blk_qc_t qc;
210 int i;
211
212 if ((pos | iov_iter_alignment(iter)) &
213 (bdev_logical_block_size(bdev) - 1))
214 return -EINVAL;
215
216 if (nr_pages <= DIO_INLINE_BIO_VECS)
217 vecs = inline_vecs;
218 else {
219 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
220 if (!vecs)
221 return -ENOMEM;
222 }
223
224 bio_init(&bio, vecs, nr_pages);
225 bio.bi_bdev = bdev;
226 bio.bi_iter.bi_sector = pos >> 9;
227 bio.bi_private = current;
228 bio.bi_end_io = blkdev_bio_end_io_simple;
229
230 ret = bio_iov_iter_get_pages(&bio, iter);
231 if (unlikely(ret))
232 return ret;
233 ret = bio.bi_iter.bi_size;
234
235 if (iov_iter_rw(iter) == READ) {
236 bio.bi_opf = REQ_OP_READ;
237 if (iter_is_iovec(iter))
238 should_dirty = true;
239 } else {
240 bio.bi_opf = dio_bio_write_op(iocb);
241 task_io_account_write(ret);
242 }
243
244 qc = submit_bio(&bio);
245 for (;;) {
246 set_current_state(TASK_UNINTERRUPTIBLE);
247 if (!READ_ONCE(bio.bi_private))
248 break;
249 if (!(iocb->ki_flags & IOCB_HIPRI) ||
250 !blk_mq_poll(bdev_get_queue(bdev), qc))
251 io_schedule();
252 }
253 __set_current_state(TASK_RUNNING);
254
255 bio_for_each_segment_all(bvec, &bio, i) {
256 if (should_dirty && !PageCompound(bvec->bv_page))
257 set_page_dirty_lock(bvec->bv_page);
258 put_page(bvec->bv_page);
259 }
260
261 if (vecs != inline_vecs)
262 kfree(vecs);
263
264 if (unlikely(bio.bi_error))
265 return bio.bi_error;
266 return ret;
267 }
268
269 struct blkdev_dio {
270 union {
271 struct kiocb *iocb;
272 struct task_struct *waiter;
273 };
274 size_t size;
275 atomic_t ref;
276 bool multi_bio : 1;
277 bool should_dirty : 1;
278 bool is_sync : 1;
279 struct bio bio;
280 };
281
282 static struct bio_set *blkdev_dio_pool __read_mostly;
283
284 static void blkdev_bio_end_io(struct bio *bio)
285 {
286 struct blkdev_dio *dio = bio->bi_private;
287 bool should_dirty = dio->should_dirty;
288
289 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
290 if (bio->bi_error && !dio->bio.bi_error)
291 dio->bio.bi_error = bio->bi_error;
292 } else {
293 if (!dio->is_sync) {
294 struct kiocb *iocb = dio->iocb;
295 ssize_t ret = dio->bio.bi_error;
296
297 if (likely(!ret)) {
298 ret = dio->size;
299 iocb->ki_pos += ret;
300 }
301
302 dio->iocb->ki_complete(iocb, ret, 0);
303 bio_put(&dio->bio);
304 } else {
305 struct task_struct *waiter = dio->waiter;
306
307 WRITE_ONCE(dio->waiter, NULL);
308 wake_up_process(waiter);
309 }
310 }
311
312 if (should_dirty) {
313 bio_check_pages_dirty(bio);
314 } else {
315 struct bio_vec *bvec;
316 int i;
317
318 bio_for_each_segment_all(bvec, bio, i)
319 put_page(bvec->bv_page);
320 bio_put(bio);
321 }
322 }
323
324 static ssize_t
325 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
326 {
327 struct file *file = iocb->ki_filp;
328 struct inode *inode = bdev_file_inode(file);
329 struct block_device *bdev = I_BDEV(inode);
330 struct blk_plug plug;
331 struct blkdev_dio *dio;
332 struct bio *bio;
333 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
334 loff_t pos = iocb->ki_pos;
335 blk_qc_t qc = BLK_QC_T_NONE;
336 int ret;
337
338 if ((pos | iov_iter_alignment(iter)) &
339 (bdev_logical_block_size(bdev) - 1))
340 return -EINVAL;
341
342 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
343 bio_get(bio); /* extra ref for the completion handler */
344
345 dio = container_of(bio, struct blkdev_dio, bio);
346 dio->is_sync = is_sync = is_sync_kiocb(iocb);
347 if (dio->is_sync)
348 dio->waiter = current;
349 else
350 dio->iocb = iocb;
351
352 dio->size = 0;
353 dio->multi_bio = false;
354 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
355
356 blk_start_plug(&plug);
357 for (;;) {
358 bio->bi_bdev = bdev;
359 bio->bi_iter.bi_sector = pos >> 9;
360 bio->bi_private = dio;
361 bio->bi_end_io = blkdev_bio_end_io;
362
363 ret = bio_iov_iter_get_pages(bio, iter);
364 if (unlikely(ret)) {
365 bio->bi_error = ret;
366 bio_endio(bio);
367 break;
368 }
369
370 if (is_read) {
371 bio->bi_opf = REQ_OP_READ;
372 if (dio->should_dirty)
373 bio_set_pages_dirty(bio);
374 } else {
375 bio->bi_opf = dio_bio_write_op(iocb);
376 task_io_account_write(bio->bi_iter.bi_size);
377 }
378
379 dio->size += bio->bi_iter.bi_size;
380 pos += bio->bi_iter.bi_size;
381
382 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
383 if (!nr_pages) {
384 qc = submit_bio(bio);
385 break;
386 }
387
388 if (!dio->multi_bio) {
389 dio->multi_bio = true;
390 atomic_set(&dio->ref, 2);
391 } else {
392 atomic_inc(&dio->ref);
393 }
394
395 submit_bio(bio);
396 bio = bio_alloc(GFP_KERNEL, nr_pages);
397 }
398 blk_finish_plug(&plug);
399
400 if (!is_sync)
401 return -EIOCBQUEUED;
402
403 for (;;) {
404 set_current_state(TASK_UNINTERRUPTIBLE);
405 if (!READ_ONCE(dio->waiter))
406 break;
407
408 if (!(iocb->ki_flags & IOCB_HIPRI) ||
409 !blk_mq_poll(bdev_get_queue(bdev), qc))
410 io_schedule();
411 }
412 __set_current_state(TASK_RUNNING);
413
414 ret = dio->bio.bi_error;
415 if (likely(!ret))
416 ret = dio->size;
417
418 bio_put(&dio->bio);
419 return ret;
420 }
421
422 static ssize_t
423 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
424 {
425 int nr_pages;
426
427 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
428 if (!nr_pages)
429 return 0;
430 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
431 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
432
433 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
434 }
435
436 static __init int blkdev_init(void)
437 {
438 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
439 if (!blkdev_dio_pool)
440 return -ENOMEM;
441 return 0;
442 }
443 module_init(blkdev_init);
444
445 int __sync_blockdev(struct block_device *bdev, int wait)
446 {
447 if (!bdev)
448 return 0;
449 if (!wait)
450 return filemap_flush(bdev->bd_inode->i_mapping);
451 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
452 }
453
454 /*
455 * Write out and wait upon all the dirty data associated with a block
456 * device via its mapping. Does not take the superblock lock.
457 */
458 int sync_blockdev(struct block_device *bdev)
459 {
460 return __sync_blockdev(bdev, 1);
461 }
462 EXPORT_SYMBOL(sync_blockdev);
463
464 /*
465 * Write out and wait upon all dirty data associated with this
466 * device. Filesystem data as well as the underlying block
467 * device. Takes the superblock lock.
468 */
469 int fsync_bdev(struct block_device *bdev)
470 {
471 struct super_block *sb = get_super(bdev);
472 if (sb) {
473 int res = sync_filesystem(sb);
474 drop_super(sb);
475 return res;
476 }
477 return sync_blockdev(bdev);
478 }
479 EXPORT_SYMBOL(fsync_bdev);
480
481 /**
482 * freeze_bdev -- lock a filesystem and force it into a consistent state
483 * @bdev: blockdevice to lock
484 *
485 * If a superblock is found on this device, we take the s_umount semaphore
486 * on it to make sure nobody unmounts until the snapshot creation is done.
487 * The reference counter (bd_fsfreeze_count) guarantees that only the last
488 * unfreeze process can unfreeze the frozen filesystem actually when multiple
489 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
490 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
491 * actually.
492 */
493 struct super_block *freeze_bdev(struct block_device *bdev)
494 {
495 struct super_block *sb;
496 int error = 0;
497
498 mutex_lock(&bdev->bd_fsfreeze_mutex);
499 if (++bdev->bd_fsfreeze_count > 1) {
500 /*
501 * We don't even need to grab a reference - the first call
502 * to freeze_bdev grab an active reference and only the last
503 * thaw_bdev drops it.
504 */
505 sb = get_super(bdev);
506 if (sb)
507 drop_super(sb);
508 mutex_unlock(&bdev->bd_fsfreeze_mutex);
509 return sb;
510 }
511
512 sb = get_active_super(bdev);
513 if (!sb)
514 goto out;
515 if (sb->s_op->freeze_super)
516 error = sb->s_op->freeze_super(sb);
517 else
518 error = freeze_super(sb);
519 if (error) {
520 deactivate_super(sb);
521 bdev->bd_fsfreeze_count--;
522 mutex_unlock(&bdev->bd_fsfreeze_mutex);
523 return ERR_PTR(error);
524 }
525 deactivate_super(sb);
526 out:
527 sync_blockdev(bdev);
528 mutex_unlock(&bdev->bd_fsfreeze_mutex);
529 return sb; /* thaw_bdev releases s->s_umount */
530 }
531 EXPORT_SYMBOL(freeze_bdev);
532
533 /**
534 * thaw_bdev -- unlock filesystem
535 * @bdev: blockdevice to unlock
536 * @sb: associated superblock
537 *
538 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
539 */
540 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
541 {
542 int error = -EINVAL;
543
544 mutex_lock(&bdev->bd_fsfreeze_mutex);
545 if (!bdev->bd_fsfreeze_count)
546 goto out;
547
548 error = 0;
549 if (--bdev->bd_fsfreeze_count > 0)
550 goto out;
551
552 if (!sb)
553 goto out;
554
555 if (sb->s_op->thaw_super)
556 error = sb->s_op->thaw_super(sb);
557 else
558 error = thaw_super(sb);
559 if (error)
560 bdev->bd_fsfreeze_count++;
561 out:
562 mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 return error;
564 }
565 EXPORT_SYMBOL(thaw_bdev);
566
567 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
568 {
569 return block_write_full_page(page, blkdev_get_block, wbc);
570 }
571
572 static int blkdev_readpage(struct file * file, struct page * page)
573 {
574 return block_read_full_page(page, blkdev_get_block);
575 }
576
577 static int blkdev_readpages(struct file *file, struct address_space *mapping,
578 struct list_head *pages, unsigned nr_pages)
579 {
580 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
581 }
582
583 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
584 loff_t pos, unsigned len, unsigned flags,
585 struct page **pagep, void **fsdata)
586 {
587 return block_write_begin(mapping, pos, len, flags, pagep,
588 blkdev_get_block);
589 }
590
591 static int blkdev_write_end(struct file *file, struct address_space *mapping,
592 loff_t pos, unsigned len, unsigned copied,
593 struct page *page, void *fsdata)
594 {
595 int ret;
596 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
597
598 unlock_page(page);
599 put_page(page);
600
601 return ret;
602 }
603
604 /*
605 * private llseek:
606 * for a block special file file_inode(file)->i_size is zero
607 * so we compute the size by hand (just as in block_read/write above)
608 */
609 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
610 {
611 struct inode *bd_inode = bdev_file_inode(file);
612 loff_t retval;
613
614 inode_lock(bd_inode);
615 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
616 inode_unlock(bd_inode);
617 return retval;
618 }
619
620 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
621 {
622 struct inode *bd_inode = bdev_file_inode(filp);
623 struct block_device *bdev = I_BDEV(bd_inode);
624 int error;
625
626 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
627 if (error)
628 return error;
629
630 /*
631 * There is no need to serialise calls to blkdev_issue_flush with
632 * i_mutex and doing so causes performance issues with concurrent
633 * O_SYNC writers to a block device.
634 */
635 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
636 if (error == -EOPNOTSUPP)
637 error = 0;
638
639 return error;
640 }
641 EXPORT_SYMBOL(blkdev_fsync);
642
643 /**
644 * bdev_read_page() - Start reading a page from a block device
645 * @bdev: The device to read the page from
646 * @sector: The offset on the device to read the page to (need not be aligned)
647 * @page: The page to read
648 *
649 * On entry, the page should be locked. It will be unlocked when the page
650 * has been read. If the block driver implements rw_page synchronously,
651 * that will be true on exit from this function, but it need not be.
652 *
653 * Errors returned by this function are usually "soft", eg out of memory, or
654 * queue full; callers should try a different route to read this page rather
655 * than propagate an error back up the stack.
656 *
657 * Return: negative errno if an error occurs, 0 if submission was successful.
658 */
659 int bdev_read_page(struct block_device *bdev, sector_t sector,
660 struct page *page)
661 {
662 const struct block_device_operations *ops = bdev->bd_disk->fops;
663 int result = -EOPNOTSUPP;
664
665 if (!ops->rw_page || bdev_get_integrity(bdev))
666 return result;
667
668 result = blk_queue_enter(bdev->bd_queue, false);
669 if (result)
670 return result;
671 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
672 blk_queue_exit(bdev->bd_queue);
673 return result;
674 }
675 EXPORT_SYMBOL_GPL(bdev_read_page);
676
677 /**
678 * bdev_write_page() - Start writing a page to a block device
679 * @bdev: The device to write the page to
680 * @sector: The offset on the device to write the page to (need not be aligned)
681 * @page: The page to write
682 * @wbc: The writeback_control for the write
683 *
684 * On entry, the page should be locked and not currently under writeback.
685 * On exit, if the write started successfully, the page will be unlocked and
686 * under writeback. If the write failed already (eg the driver failed to
687 * queue the page to the device), the page will still be locked. If the
688 * caller is a ->writepage implementation, it will need to unlock the page.
689 *
690 * Errors returned by this function are usually "soft", eg out of memory, or
691 * queue full; callers should try a different route to write this page rather
692 * than propagate an error back up the stack.
693 *
694 * Return: negative errno if an error occurs, 0 if submission was successful.
695 */
696 int bdev_write_page(struct block_device *bdev, sector_t sector,
697 struct page *page, struct writeback_control *wbc)
698 {
699 int result;
700 const struct block_device_operations *ops = bdev->bd_disk->fops;
701
702 if (!ops->rw_page || bdev_get_integrity(bdev))
703 return -EOPNOTSUPP;
704 result = blk_queue_enter(bdev->bd_queue, false);
705 if (result)
706 return result;
707
708 set_page_writeback(page);
709 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
710 if (result)
711 end_page_writeback(page);
712 else
713 unlock_page(page);
714 blk_queue_exit(bdev->bd_queue);
715 return result;
716 }
717 EXPORT_SYMBOL_GPL(bdev_write_page);
718
719 /**
720 * bdev_direct_access() - Get the address for directly-accessibly memory
721 * @bdev: The device containing the memory
722 * @dax: control and output parameters for ->direct_access
723 *
724 * If a block device is made up of directly addressable memory, this function
725 * will tell the caller the PFN and the address of the memory. The address
726 * may be directly dereferenced within the kernel without the need to call
727 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
728 * page tables.
729 *
730 * Return: negative errno if an error occurs, otherwise the number of bytes
731 * accessible at this address.
732 */
733 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
734 {
735 sector_t sector = dax->sector;
736 long avail, size = dax->size;
737 const struct block_device_operations *ops = bdev->bd_disk->fops;
738
739 /*
740 * The device driver is allowed to sleep, in order to make the
741 * memory directly accessible.
742 */
743 might_sleep();
744
745 if (size < 0)
746 return size;
747 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
748 return -EOPNOTSUPP;
749 if ((sector + DIV_ROUND_UP(size, 512)) >
750 part_nr_sects_read(bdev->bd_part))
751 return -ERANGE;
752 sector += get_start_sect(bdev);
753 if (sector % (PAGE_SIZE / 512))
754 return -EINVAL;
755 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
756 if (!avail)
757 return -ERANGE;
758 if (avail > 0 && avail & ~PAGE_MASK)
759 return -ENXIO;
760 return min(avail, size);
761 }
762 EXPORT_SYMBOL_GPL(bdev_direct_access);
763
764 /**
765 * bdev_dax_supported() - Check if the device supports dax for filesystem
766 * @sb: The superblock of the device
767 * @blocksize: The block size of the device
768 *
769 * This is a library function for filesystems to check if the block device
770 * can be mounted with dax option.
771 *
772 * Return: negative errno if unsupported, 0 if supported.
773 */
774 int bdev_dax_supported(struct super_block *sb, int blocksize)
775 {
776 struct blk_dax_ctl dax = {
777 .sector = 0,
778 .size = PAGE_SIZE,
779 };
780 int err;
781
782 if (blocksize != PAGE_SIZE) {
783 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
784 return -EINVAL;
785 }
786
787 err = bdev_direct_access(sb->s_bdev, &dax);
788 if (err < 0) {
789 switch (err) {
790 case -EOPNOTSUPP:
791 vfs_msg(sb, KERN_ERR,
792 "error: device does not support dax");
793 break;
794 case -EINVAL:
795 vfs_msg(sb, KERN_ERR,
796 "error: unaligned partition for dax");
797 break;
798 default:
799 vfs_msg(sb, KERN_ERR,
800 "error: dax access failed (%d)", err);
801 }
802 return err;
803 }
804
805 return 0;
806 }
807 EXPORT_SYMBOL_GPL(bdev_dax_supported);
808
809 /**
810 * bdev_dax_capable() - Return if the raw device is capable for dax
811 * @bdev: The device for raw block device access
812 */
813 bool bdev_dax_capable(struct block_device *bdev)
814 {
815 struct blk_dax_ctl dax = {
816 .size = PAGE_SIZE,
817 };
818
819 if (!IS_ENABLED(CONFIG_FS_DAX))
820 return false;
821
822 dax.sector = 0;
823 if (bdev_direct_access(bdev, &dax) < 0)
824 return false;
825
826 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
827 if (bdev_direct_access(bdev, &dax) < 0)
828 return false;
829
830 return true;
831 }
832
833 /*
834 * pseudo-fs
835 */
836
837 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
838 static struct kmem_cache * bdev_cachep __read_mostly;
839
840 static struct inode *bdev_alloc_inode(struct super_block *sb)
841 {
842 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
843 if (!ei)
844 return NULL;
845 return &ei->vfs_inode;
846 }
847
848 static void bdev_i_callback(struct rcu_head *head)
849 {
850 struct inode *inode = container_of(head, struct inode, i_rcu);
851 struct bdev_inode *bdi = BDEV_I(inode);
852
853 kmem_cache_free(bdev_cachep, bdi);
854 }
855
856 static void bdev_destroy_inode(struct inode *inode)
857 {
858 call_rcu(&inode->i_rcu, bdev_i_callback);
859 }
860
861 static void init_once(void *foo)
862 {
863 struct bdev_inode *ei = (struct bdev_inode *) foo;
864 struct block_device *bdev = &ei->bdev;
865
866 memset(bdev, 0, sizeof(*bdev));
867 mutex_init(&bdev->bd_mutex);
868 INIT_LIST_HEAD(&bdev->bd_list);
869 #ifdef CONFIG_SYSFS
870 INIT_LIST_HEAD(&bdev->bd_holder_disks);
871 #endif
872 bdev->bd_bdi = &noop_backing_dev_info;
873 inode_init_once(&ei->vfs_inode);
874 /* Initialize mutex for freeze. */
875 mutex_init(&bdev->bd_fsfreeze_mutex);
876 }
877
878 static void bdev_evict_inode(struct inode *inode)
879 {
880 struct block_device *bdev = &BDEV_I(inode)->bdev;
881 truncate_inode_pages_final(&inode->i_data);
882 invalidate_inode_buffers(inode); /* is it needed here? */
883 clear_inode(inode);
884 spin_lock(&bdev_lock);
885 list_del_init(&bdev->bd_list);
886 spin_unlock(&bdev_lock);
887 /* Detach inode from wb early as bdi_put() may free bdi->wb */
888 inode_detach_wb(inode);
889 if (bdev->bd_bdi != &noop_backing_dev_info) {
890 bdi_put(bdev->bd_bdi);
891 bdev->bd_bdi = &noop_backing_dev_info;
892 }
893 }
894
895 static const struct super_operations bdev_sops = {
896 .statfs = simple_statfs,
897 .alloc_inode = bdev_alloc_inode,
898 .destroy_inode = bdev_destroy_inode,
899 .drop_inode = generic_delete_inode,
900 .evict_inode = bdev_evict_inode,
901 };
902
903 static struct dentry *bd_mount(struct file_system_type *fs_type,
904 int flags, const char *dev_name, void *data)
905 {
906 struct dentry *dent;
907 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
908 if (!IS_ERR(dent))
909 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
910 return dent;
911 }
912
913 static struct file_system_type bd_type = {
914 .name = "bdev",
915 .mount = bd_mount,
916 .kill_sb = kill_anon_super,
917 };
918
919 struct super_block *blockdev_superblock __read_mostly;
920 EXPORT_SYMBOL_GPL(blockdev_superblock);
921
922 void __init bdev_cache_init(void)
923 {
924 int err;
925 static struct vfsmount *bd_mnt;
926
927 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
928 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
929 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
930 init_once);
931 err = register_filesystem(&bd_type);
932 if (err)
933 panic("Cannot register bdev pseudo-fs");
934 bd_mnt = kern_mount(&bd_type);
935 if (IS_ERR(bd_mnt))
936 panic("Cannot create bdev pseudo-fs");
937 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
938 }
939
940 /*
941 * Most likely _very_ bad one - but then it's hardly critical for small
942 * /dev and can be fixed when somebody will need really large one.
943 * Keep in mind that it will be fed through icache hash function too.
944 */
945 static inline unsigned long hash(dev_t dev)
946 {
947 return MAJOR(dev)+MINOR(dev);
948 }
949
950 static int bdev_test(struct inode *inode, void *data)
951 {
952 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
953 }
954
955 static int bdev_set(struct inode *inode, void *data)
956 {
957 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
958 return 0;
959 }
960
961 static LIST_HEAD(all_bdevs);
962
963 /*
964 * If there is a bdev inode for this device, unhash it so that it gets evicted
965 * as soon as last inode reference is dropped.
966 */
967 void bdev_unhash_inode(dev_t dev)
968 {
969 struct inode *inode;
970
971 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
972 if (inode) {
973 remove_inode_hash(inode);
974 iput(inode);
975 }
976 }
977
978 struct block_device *bdget(dev_t dev)
979 {
980 struct block_device *bdev;
981 struct inode *inode;
982
983 inode = iget5_locked(blockdev_superblock, hash(dev),
984 bdev_test, bdev_set, &dev);
985
986 if (!inode)
987 return NULL;
988
989 bdev = &BDEV_I(inode)->bdev;
990
991 if (inode->i_state & I_NEW) {
992 bdev->bd_contains = NULL;
993 bdev->bd_super = NULL;
994 bdev->bd_inode = inode;
995 bdev->bd_block_size = i_blocksize(inode);
996 bdev->bd_part_count = 0;
997 bdev->bd_invalidated = 0;
998 inode->i_mode = S_IFBLK;
999 inode->i_rdev = dev;
1000 inode->i_bdev = bdev;
1001 inode->i_data.a_ops = &def_blk_aops;
1002 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
1003 spin_lock(&bdev_lock);
1004 list_add(&bdev->bd_list, &all_bdevs);
1005 spin_unlock(&bdev_lock);
1006 unlock_new_inode(inode);
1007 }
1008 return bdev;
1009 }
1010
1011 EXPORT_SYMBOL(bdget);
1012
1013 /**
1014 * bdgrab -- Grab a reference to an already referenced block device
1015 * @bdev: Block device to grab a reference to.
1016 */
1017 struct block_device *bdgrab(struct block_device *bdev)
1018 {
1019 ihold(bdev->bd_inode);
1020 return bdev;
1021 }
1022 EXPORT_SYMBOL(bdgrab);
1023
1024 long nr_blockdev_pages(void)
1025 {
1026 struct block_device *bdev;
1027 long ret = 0;
1028 spin_lock(&bdev_lock);
1029 list_for_each_entry(bdev, &all_bdevs, bd_list) {
1030 ret += bdev->bd_inode->i_mapping->nrpages;
1031 }
1032 spin_unlock(&bdev_lock);
1033 return ret;
1034 }
1035
1036 void bdput(struct block_device *bdev)
1037 {
1038 iput(bdev->bd_inode);
1039 }
1040
1041 EXPORT_SYMBOL(bdput);
1042
1043 static struct block_device *bd_acquire(struct inode *inode)
1044 {
1045 struct block_device *bdev;
1046
1047 spin_lock(&bdev_lock);
1048 bdev = inode->i_bdev;
1049 if (bdev && !inode_unhashed(bdev->bd_inode)) {
1050 bdgrab(bdev);
1051 spin_unlock(&bdev_lock);
1052 return bdev;
1053 }
1054 spin_unlock(&bdev_lock);
1055
1056 /*
1057 * i_bdev references block device inode that was already shut down
1058 * (corresponding device got removed). Remove the reference and look
1059 * up block device inode again just in case new device got
1060 * reestablished under the same device number.
1061 */
1062 if (bdev)
1063 bd_forget(inode);
1064
1065 bdev = bdget(inode->i_rdev);
1066 if (bdev) {
1067 spin_lock(&bdev_lock);
1068 if (!inode->i_bdev) {
1069 /*
1070 * We take an additional reference to bd_inode,
1071 * and it's released in clear_inode() of inode.
1072 * So, we can access it via ->i_mapping always
1073 * without igrab().
1074 */
1075 bdgrab(bdev);
1076 inode->i_bdev = bdev;
1077 inode->i_mapping = bdev->bd_inode->i_mapping;
1078 }
1079 spin_unlock(&bdev_lock);
1080 }
1081 return bdev;
1082 }
1083
1084 /* Call when you free inode */
1085
1086 void bd_forget(struct inode *inode)
1087 {
1088 struct block_device *bdev = NULL;
1089
1090 spin_lock(&bdev_lock);
1091 if (!sb_is_blkdev_sb(inode->i_sb))
1092 bdev = inode->i_bdev;
1093 inode->i_bdev = NULL;
1094 inode->i_mapping = &inode->i_data;
1095 spin_unlock(&bdev_lock);
1096
1097 if (bdev)
1098 bdput(bdev);
1099 }
1100
1101 /**
1102 * bd_may_claim - test whether a block device can be claimed
1103 * @bdev: block device of interest
1104 * @whole: whole block device containing @bdev, may equal @bdev
1105 * @holder: holder trying to claim @bdev
1106 *
1107 * Test whether @bdev can be claimed by @holder.
1108 *
1109 * CONTEXT:
1110 * spin_lock(&bdev_lock).
1111 *
1112 * RETURNS:
1113 * %true if @bdev can be claimed, %false otherwise.
1114 */
1115 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1116 void *holder)
1117 {
1118 if (bdev->bd_holder == holder)
1119 return true; /* already a holder */
1120 else if (bdev->bd_holder != NULL)
1121 return false; /* held by someone else */
1122 else if (whole == bdev)
1123 return true; /* is a whole device which isn't held */
1124
1125 else if (whole->bd_holder == bd_may_claim)
1126 return true; /* is a partition of a device that is being partitioned */
1127 else if (whole->bd_holder != NULL)
1128 return false; /* is a partition of a held device */
1129 else
1130 return true; /* is a partition of an un-held device */
1131 }
1132
1133 /**
1134 * bd_prepare_to_claim - prepare to claim a block device
1135 * @bdev: block device of interest
1136 * @whole: the whole device containing @bdev, may equal @bdev
1137 * @holder: holder trying to claim @bdev
1138 *
1139 * Prepare to claim @bdev. This function fails if @bdev is already
1140 * claimed by another holder and waits if another claiming is in
1141 * progress. This function doesn't actually claim. On successful
1142 * return, the caller has ownership of bd_claiming and bd_holder[s].
1143 *
1144 * CONTEXT:
1145 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1146 * it multiple times.
1147 *
1148 * RETURNS:
1149 * 0 if @bdev can be claimed, -EBUSY otherwise.
1150 */
1151 static int bd_prepare_to_claim(struct block_device *bdev,
1152 struct block_device *whole, void *holder)
1153 {
1154 retry:
1155 /* if someone else claimed, fail */
1156 if (!bd_may_claim(bdev, whole, holder))
1157 return -EBUSY;
1158
1159 /* if claiming is already in progress, wait for it to finish */
1160 if (whole->bd_claiming) {
1161 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1162 DEFINE_WAIT(wait);
1163
1164 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1165 spin_unlock(&bdev_lock);
1166 schedule();
1167 finish_wait(wq, &wait);
1168 spin_lock(&bdev_lock);
1169 goto retry;
1170 }
1171
1172 /* yay, all mine */
1173 return 0;
1174 }
1175
1176 /**
1177 * bd_start_claiming - start claiming a block device
1178 * @bdev: block device of interest
1179 * @holder: holder trying to claim @bdev
1180 *
1181 * @bdev is about to be opened exclusively. Check @bdev can be opened
1182 * exclusively and mark that an exclusive open is in progress. Each
1183 * successful call to this function must be matched with a call to
1184 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1185 * fail).
1186 *
1187 * This function is used to gain exclusive access to the block device
1188 * without actually causing other exclusive open attempts to fail. It
1189 * should be used when the open sequence itself requires exclusive
1190 * access but may subsequently fail.
1191 *
1192 * CONTEXT:
1193 * Might sleep.
1194 *
1195 * RETURNS:
1196 * Pointer to the block device containing @bdev on success, ERR_PTR()
1197 * value on failure.
1198 */
1199 static struct block_device *bd_start_claiming(struct block_device *bdev,
1200 void *holder)
1201 {
1202 struct gendisk *disk;
1203 struct block_device *whole;
1204 int partno, err;
1205
1206 might_sleep();
1207
1208 /*
1209 * @bdev might not have been initialized properly yet, look up
1210 * and grab the outer block device the hard way.
1211 */
1212 disk = get_gendisk(bdev->bd_dev, &partno);
1213 if (!disk)
1214 return ERR_PTR(-ENXIO);
1215
1216 /*
1217 * Normally, @bdev should equal what's returned from bdget_disk()
1218 * if partno is 0; however, some drivers (floppy) use multiple
1219 * bdev's for the same physical device and @bdev may be one of the
1220 * aliases. Keep @bdev if partno is 0. This means claimer
1221 * tracking is broken for those devices but it has always been that
1222 * way.
1223 */
1224 if (partno)
1225 whole = bdget_disk(disk, 0);
1226 else
1227 whole = bdgrab(bdev);
1228
1229 module_put(disk->fops->owner);
1230 put_disk(disk);
1231 if (!whole)
1232 return ERR_PTR(-ENOMEM);
1233
1234 /* prepare to claim, if successful, mark claiming in progress */
1235 spin_lock(&bdev_lock);
1236
1237 err = bd_prepare_to_claim(bdev, whole, holder);
1238 if (err == 0) {
1239 whole->bd_claiming = holder;
1240 spin_unlock(&bdev_lock);
1241 return whole;
1242 } else {
1243 spin_unlock(&bdev_lock);
1244 bdput(whole);
1245 return ERR_PTR(err);
1246 }
1247 }
1248
1249 #ifdef CONFIG_SYSFS
1250 struct bd_holder_disk {
1251 struct list_head list;
1252 struct gendisk *disk;
1253 int refcnt;
1254 };
1255
1256 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1257 struct gendisk *disk)
1258 {
1259 struct bd_holder_disk *holder;
1260
1261 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1262 if (holder->disk == disk)
1263 return holder;
1264 return NULL;
1265 }
1266
1267 static int add_symlink(struct kobject *from, struct kobject *to)
1268 {
1269 return sysfs_create_link(from, to, kobject_name(to));
1270 }
1271
1272 static void del_symlink(struct kobject *from, struct kobject *to)
1273 {
1274 sysfs_remove_link(from, kobject_name(to));
1275 }
1276
1277 /**
1278 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1279 * @bdev: the claimed slave bdev
1280 * @disk: the holding disk
1281 *
1282 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1283 *
1284 * This functions creates the following sysfs symlinks.
1285 *
1286 * - from "slaves" directory of the holder @disk to the claimed @bdev
1287 * - from "holders" directory of the @bdev to the holder @disk
1288 *
1289 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1290 * passed to bd_link_disk_holder(), then:
1291 *
1292 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1293 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1294 *
1295 * The caller must have claimed @bdev before calling this function and
1296 * ensure that both @bdev and @disk are valid during the creation and
1297 * lifetime of these symlinks.
1298 *
1299 * CONTEXT:
1300 * Might sleep.
1301 *
1302 * RETURNS:
1303 * 0 on success, -errno on failure.
1304 */
1305 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1306 {
1307 struct bd_holder_disk *holder;
1308 int ret = 0;
1309
1310 mutex_lock(&bdev->bd_mutex);
1311
1312 WARN_ON_ONCE(!bdev->bd_holder);
1313
1314 /* FIXME: remove the following once add_disk() handles errors */
1315 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1316 goto out_unlock;
1317
1318 holder = bd_find_holder_disk(bdev, disk);
1319 if (holder) {
1320 holder->refcnt++;
1321 goto out_unlock;
1322 }
1323
1324 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1325 if (!holder) {
1326 ret = -ENOMEM;
1327 goto out_unlock;
1328 }
1329
1330 INIT_LIST_HEAD(&holder->list);
1331 holder->disk = disk;
1332 holder->refcnt = 1;
1333
1334 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1335 if (ret)
1336 goto out_free;
1337
1338 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1339 if (ret)
1340 goto out_del;
1341 /*
1342 * bdev could be deleted beneath us which would implicitly destroy
1343 * the holder directory. Hold on to it.
1344 */
1345 kobject_get(bdev->bd_part->holder_dir);
1346
1347 list_add(&holder->list, &bdev->bd_holder_disks);
1348 goto out_unlock;
1349
1350 out_del:
1351 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1352 out_free:
1353 kfree(holder);
1354 out_unlock:
1355 mutex_unlock(&bdev->bd_mutex);
1356 return ret;
1357 }
1358 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1359
1360 /**
1361 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1362 * @bdev: the calimed slave bdev
1363 * @disk: the holding disk
1364 *
1365 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1366 *
1367 * CONTEXT:
1368 * Might sleep.
1369 */
1370 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1371 {
1372 struct bd_holder_disk *holder;
1373
1374 mutex_lock(&bdev->bd_mutex);
1375
1376 holder = bd_find_holder_disk(bdev, disk);
1377
1378 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1379 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1380 del_symlink(bdev->bd_part->holder_dir,
1381 &disk_to_dev(disk)->kobj);
1382 kobject_put(bdev->bd_part->holder_dir);
1383 list_del_init(&holder->list);
1384 kfree(holder);
1385 }
1386
1387 mutex_unlock(&bdev->bd_mutex);
1388 }
1389 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1390 #endif
1391
1392 /**
1393 * flush_disk - invalidates all buffer-cache entries on a disk
1394 *
1395 * @bdev: struct block device to be flushed
1396 * @kill_dirty: flag to guide handling of dirty inodes
1397 *
1398 * Invalidates all buffer-cache entries on a disk. It should be called
1399 * when a disk has been changed -- either by a media change or online
1400 * resize.
1401 */
1402 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1403 {
1404 if (__invalidate_device(bdev, kill_dirty)) {
1405 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1406 "resized disk %s\n",
1407 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1408 }
1409
1410 if (!bdev->bd_disk)
1411 return;
1412 if (disk_part_scan_enabled(bdev->bd_disk))
1413 bdev->bd_invalidated = 1;
1414 }
1415
1416 /**
1417 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1418 * @disk: struct gendisk to check
1419 * @bdev: struct bdev to adjust.
1420 *
1421 * This routine checks to see if the bdev size does not match the disk size
1422 * and adjusts it if it differs.
1423 */
1424 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1425 {
1426 loff_t disk_size, bdev_size;
1427
1428 disk_size = (loff_t)get_capacity(disk) << 9;
1429 bdev_size = i_size_read(bdev->bd_inode);
1430 if (disk_size != bdev_size) {
1431 printk(KERN_INFO
1432 "%s: detected capacity change from %lld to %lld\n",
1433 disk->disk_name, bdev_size, disk_size);
1434 i_size_write(bdev->bd_inode, disk_size);
1435 flush_disk(bdev, false);
1436 }
1437 }
1438 EXPORT_SYMBOL(check_disk_size_change);
1439
1440 /**
1441 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1442 * @disk: struct gendisk to be revalidated
1443 *
1444 * This routine is a wrapper for lower-level driver's revalidate_disk
1445 * call-backs. It is used to do common pre and post operations needed
1446 * for all revalidate_disk operations.
1447 */
1448 int revalidate_disk(struct gendisk *disk)
1449 {
1450 struct block_device *bdev;
1451 int ret = 0;
1452
1453 if (disk->fops->revalidate_disk)
1454 ret = disk->fops->revalidate_disk(disk);
1455 bdev = bdget_disk(disk, 0);
1456 if (!bdev)
1457 return ret;
1458
1459 mutex_lock(&bdev->bd_mutex);
1460 check_disk_size_change(disk, bdev);
1461 bdev->bd_invalidated = 0;
1462 mutex_unlock(&bdev->bd_mutex);
1463 bdput(bdev);
1464 return ret;
1465 }
1466 EXPORT_SYMBOL(revalidate_disk);
1467
1468 /*
1469 * This routine checks whether a removable media has been changed,
1470 * and invalidates all buffer-cache-entries in that case. This
1471 * is a relatively slow routine, so we have to try to minimize using
1472 * it. Thus it is called only upon a 'mount' or 'open'. This
1473 * is the best way of combining speed and utility, I think.
1474 * People changing diskettes in the middle of an operation deserve
1475 * to lose :-)
1476 */
1477 int check_disk_change(struct block_device *bdev)
1478 {
1479 struct gendisk *disk = bdev->bd_disk;
1480 const struct block_device_operations *bdops = disk->fops;
1481 unsigned int events;
1482
1483 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1484 DISK_EVENT_EJECT_REQUEST);
1485 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1486 return 0;
1487
1488 flush_disk(bdev, true);
1489 if (bdops->revalidate_disk)
1490 bdops->revalidate_disk(bdev->bd_disk);
1491 return 1;
1492 }
1493
1494 EXPORT_SYMBOL(check_disk_change);
1495
1496 void bd_set_size(struct block_device *bdev, loff_t size)
1497 {
1498 unsigned bsize = bdev_logical_block_size(bdev);
1499
1500 inode_lock(bdev->bd_inode);
1501 i_size_write(bdev->bd_inode, size);
1502 inode_unlock(bdev->bd_inode);
1503 while (bsize < PAGE_SIZE) {
1504 if (size & bsize)
1505 break;
1506 bsize <<= 1;
1507 }
1508 bdev->bd_block_size = bsize;
1509 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1510 }
1511 EXPORT_SYMBOL(bd_set_size);
1512
1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1514
1515 /*
1516 * bd_mutex locking:
1517 *
1518 * mutex_lock(part->bd_mutex)
1519 * mutex_lock_nested(whole->bd_mutex, 1)
1520 */
1521
1522 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1523 {
1524 struct gendisk *disk;
1525 struct module *owner;
1526 int ret;
1527 int partno;
1528 int perm = 0;
1529
1530 if (mode & FMODE_READ)
1531 perm |= MAY_READ;
1532 if (mode & FMODE_WRITE)
1533 perm |= MAY_WRITE;
1534 /*
1535 * hooks: /n/, see "layering violations".
1536 */
1537 if (!for_part) {
1538 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1539 if (ret != 0) {
1540 bdput(bdev);
1541 return ret;
1542 }
1543 }
1544
1545 restart:
1546
1547 ret = -ENXIO;
1548 disk = get_gendisk(bdev->bd_dev, &partno);
1549 if (!disk)
1550 goto out;
1551 owner = disk->fops->owner;
1552
1553 disk_block_events(disk);
1554 mutex_lock_nested(&bdev->bd_mutex, for_part);
1555 if (!bdev->bd_openers) {
1556 bdev->bd_disk = disk;
1557 bdev->bd_queue = disk->queue;
1558 bdev->bd_contains = bdev;
1559
1560 if (!partno) {
1561 ret = -ENXIO;
1562 bdev->bd_part = disk_get_part(disk, partno);
1563 if (!bdev->bd_part)
1564 goto out_clear;
1565
1566 ret = 0;
1567 if (disk->fops->open) {
1568 ret = disk->fops->open(bdev, mode);
1569 if (ret == -ERESTARTSYS) {
1570 /* Lost a race with 'disk' being
1571 * deleted, try again.
1572 * See md.c
1573 */
1574 disk_put_part(bdev->bd_part);
1575 bdev->bd_part = NULL;
1576 bdev->bd_disk = NULL;
1577 bdev->bd_queue = NULL;
1578 mutex_unlock(&bdev->bd_mutex);
1579 disk_unblock_events(disk);
1580 put_disk(disk);
1581 module_put(owner);
1582 goto restart;
1583 }
1584 }
1585
1586 if (!ret)
1587 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1588
1589 /*
1590 * If the device is invalidated, rescan partition
1591 * if open succeeded or failed with -ENOMEDIUM.
1592 * The latter is necessary to prevent ghost
1593 * partitions on a removed medium.
1594 */
1595 if (bdev->bd_invalidated) {
1596 if (!ret)
1597 rescan_partitions(disk, bdev);
1598 else if (ret == -ENOMEDIUM)
1599 invalidate_partitions(disk, bdev);
1600 }
1601
1602 if (ret)
1603 goto out_clear;
1604 } else {
1605 struct block_device *whole;
1606 whole = bdget_disk(disk, 0);
1607 ret = -ENOMEM;
1608 if (!whole)
1609 goto out_clear;
1610 BUG_ON(for_part);
1611 ret = __blkdev_get(whole, mode, 1);
1612 if (ret)
1613 goto out_clear;
1614 bdev->bd_contains = whole;
1615 bdev->bd_part = disk_get_part(disk, partno);
1616 if (!(disk->flags & GENHD_FL_UP) ||
1617 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1618 ret = -ENXIO;
1619 goto out_clear;
1620 }
1621 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1622 }
1623
1624 if (bdev->bd_bdi == &noop_backing_dev_info)
1625 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1626 } else {
1627 if (bdev->bd_contains == bdev) {
1628 ret = 0;
1629 if (bdev->bd_disk->fops->open)
1630 ret = bdev->bd_disk->fops->open(bdev, mode);
1631 /* the same as first opener case, read comment there */
1632 if (bdev->bd_invalidated) {
1633 if (!ret)
1634 rescan_partitions(bdev->bd_disk, bdev);
1635 else if (ret == -ENOMEDIUM)
1636 invalidate_partitions(bdev->bd_disk, bdev);
1637 }
1638 if (ret)
1639 goto out_unlock_bdev;
1640 }
1641 /* only one opener holds refs to the module and disk */
1642 put_disk(disk);
1643 module_put(owner);
1644 }
1645 bdev->bd_openers++;
1646 if (for_part)
1647 bdev->bd_part_count++;
1648 mutex_unlock(&bdev->bd_mutex);
1649 disk_unblock_events(disk);
1650 return 0;
1651
1652 out_clear:
1653 disk_put_part(bdev->bd_part);
1654 bdev->bd_disk = NULL;
1655 bdev->bd_part = NULL;
1656 bdev->bd_queue = NULL;
1657 if (bdev != bdev->bd_contains)
1658 __blkdev_put(bdev->bd_contains, mode, 1);
1659 bdev->bd_contains = NULL;
1660 out_unlock_bdev:
1661 mutex_unlock(&bdev->bd_mutex);
1662 disk_unblock_events(disk);
1663 put_disk(disk);
1664 module_put(owner);
1665 out:
1666 bdput(bdev);
1667
1668 return ret;
1669 }
1670
1671 /**
1672 * blkdev_get - open a block device
1673 * @bdev: block_device to open
1674 * @mode: FMODE_* mask
1675 * @holder: exclusive holder identifier
1676 *
1677 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1678 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1679 * @holder is invalid. Exclusive opens may nest for the same @holder.
1680 *
1681 * On success, the reference count of @bdev is unchanged. On failure,
1682 * @bdev is put.
1683 *
1684 * CONTEXT:
1685 * Might sleep.
1686 *
1687 * RETURNS:
1688 * 0 on success, -errno on failure.
1689 */
1690 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1691 {
1692 struct block_device *whole = NULL;
1693 int res;
1694
1695 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1696
1697 if ((mode & FMODE_EXCL) && holder) {
1698 whole = bd_start_claiming(bdev, holder);
1699 if (IS_ERR(whole)) {
1700 bdput(bdev);
1701 return PTR_ERR(whole);
1702 }
1703 }
1704
1705 res = __blkdev_get(bdev, mode, 0);
1706
1707 if (whole) {
1708 struct gendisk *disk = whole->bd_disk;
1709
1710 /* finish claiming */
1711 mutex_lock(&bdev->bd_mutex);
1712 spin_lock(&bdev_lock);
1713
1714 if (!res) {
1715 BUG_ON(!bd_may_claim(bdev, whole, holder));
1716 /*
1717 * Note that for a whole device bd_holders
1718 * will be incremented twice, and bd_holder
1719 * will be set to bd_may_claim before being
1720 * set to holder
1721 */
1722 whole->bd_holders++;
1723 whole->bd_holder = bd_may_claim;
1724 bdev->bd_holders++;
1725 bdev->bd_holder = holder;
1726 }
1727
1728 /* tell others that we're done */
1729 BUG_ON(whole->bd_claiming != holder);
1730 whole->bd_claiming = NULL;
1731 wake_up_bit(&whole->bd_claiming, 0);
1732
1733 spin_unlock(&bdev_lock);
1734
1735 /*
1736 * Block event polling for write claims if requested. Any
1737 * write holder makes the write_holder state stick until
1738 * all are released. This is good enough and tracking
1739 * individual writeable reference is too fragile given the
1740 * way @mode is used in blkdev_get/put().
1741 */
1742 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1743 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1744 bdev->bd_write_holder = true;
1745 disk_block_events(disk);
1746 }
1747
1748 mutex_unlock(&bdev->bd_mutex);
1749 bdput(whole);
1750 }
1751
1752 return res;
1753 }
1754 EXPORT_SYMBOL(blkdev_get);
1755
1756 /**
1757 * blkdev_get_by_path - open a block device by name
1758 * @path: path to the block device to open
1759 * @mode: FMODE_* mask
1760 * @holder: exclusive holder identifier
1761 *
1762 * Open the blockdevice described by the device file at @path. @mode
1763 * and @holder are identical to blkdev_get().
1764 *
1765 * On success, the returned block_device has reference count of one.
1766 *
1767 * CONTEXT:
1768 * Might sleep.
1769 *
1770 * RETURNS:
1771 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1772 */
1773 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1774 void *holder)
1775 {
1776 struct block_device *bdev;
1777 int err;
1778
1779 bdev = lookup_bdev(path);
1780 if (IS_ERR(bdev))
1781 return bdev;
1782
1783 err = blkdev_get(bdev, mode, holder);
1784 if (err)
1785 return ERR_PTR(err);
1786
1787 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1788 blkdev_put(bdev, mode);
1789 return ERR_PTR(-EACCES);
1790 }
1791
1792 return bdev;
1793 }
1794 EXPORT_SYMBOL(blkdev_get_by_path);
1795
1796 /**
1797 * blkdev_get_by_dev - open a block device by device number
1798 * @dev: device number of block device to open
1799 * @mode: FMODE_* mask
1800 * @holder: exclusive holder identifier
1801 *
1802 * Open the blockdevice described by device number @dev. @mode and
1803 * @holder are identical to blkdev_get().
1804 *
1805 * Use it ONLY if you really do not have anything better - i.e. when
1806 * you are behind a truly sucky interface and all you are given is a
1807 * device number. _Never_ to be used for internal purposes. If you
1808 * ever need it - reconsider your API.
1809 *
1810 * On success, the returned block_device has reference count of one.
1811 *
1812 * CONTEXT:
1813 * Might sleep.
1814 *
1815 * RETURNS:
1816 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1817 */
1818 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1819 {
1820 struct block_device *bdev;
1821 int err;
1822
1823 bdev = bdget(dev);
1824 if (!bdev)
1825 return ERR_PTR(-ENOMEM);
1826
1827 err = blkdev_get(bdev, mode, holder);
1828 if (err)
1829 return ERR_PTR(err);
1830
1831 return bdev;
1832 }
1833 EXPORT_SYMBOL(blkdev_get_by_dev);
1834
1835 static int blkdev_open(struct inode * inode, struct file * filp)
1836 {
1837 struct block_device *bdev;
1838
1839 /*
1840 * Preserve backwards compatibility and allow large file access
1841 * even if userspace doesn't ask for it explicitly. Some mkfs
1842 * binary needs it. We might want to drop this workaround
1843 * during an unstable branch.
1844 */
1845 filp->f_flags |= O_LARGEFILE;
1846
1847 if (filp->f_flags & O_NDELAY)
1848 filp->f_mode |= FMODE_NDELAY;
1849 if (filp->f_flags & O_EXCL)
1850 filp->f_mode |= FMODE_EXCL;
1851 if ((filp->f_flags & O_ACCMODE) == 3)
1852 filp->f_mode |= FMODE_WRITE_IOCTL;
1853
1854 bdev = bd_acquire(inode);
1855 if (bdev == NULL)
1856 return -ENOMEM;
1857
1858 filp->f_mapping = bdev->bd_inode->i_mapping;
1859
1860 return blkdev_get(bdev, filp->f_mode, filp);
1861 }
1862
1863 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1864 {
1865 struct gendisk *disk = bdev->bd_disk;
1866 struct block_device *victim = NULL;
1867
1868 mutex_lock_nested(&bdev->bd_mutex, for_part);
1869 if (for_part)
1870 bdev->bd_part_count--;
1871
1872 if (!--bdev->bd_openers) {
1873 WARN_ON_ONCE(bdev->bd_holders);
1874 sync_blockdev(bdev);
1875 kill_bdev(bdev);
1876
1877 bdev_write_inode(bdev);
1878 }
1879 if (bdev->bd_contains == bdev) {
1880 if (disk->fops->release)
1881 disk->fops->release(disk, mode);
1882 }
1883 if (!bdev->bd_openers) {
1884 struct module *owner = disk->fops->owner;
1885
1886 disk_put_part(bdev->bd_part);
1887 bdev->bd_part = NULL;
1888 bdev->bd_disk = NULL;
1889 if (bdev != bdev->bd_contains)
1890 victim = bdev->bd_contains;
1891 bdev->bd_contains = NULL;
1892
1893 put_disk(disk);
1894 module_put(owner);
1895 }
1896 mutex_unlock(&bdev->bd_mutex);
1897 bdput(bdev);
1898 if (victim)
1899 __blkdev_put(victim, mode, 1);
1900 }
1901
1902 void blkdev_put(struct block_device *bdev, fmode_t mode)
1903 {
1904 mutex_lock(&bdev->bd_mutex);
1905
1906 if (mode & FMODE_EXCL) {
1907 bool bdev_free;
1908
1909 /*
1910 * Release a claim on the device. The holder fields
1911 * are protected with bdev_lock. bd_mutex is to
1912 * synchronize disk_holder unlinking.
1913 */
1914 spin_lock(&bdev_lock);
1915
1916 WARN_ON_ONCE(--bdev->bd_holders < 0);
1917 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1918
1919 /* bd_contains might point to self, check in a separate step */
1920 if ((bdev_free = !bdev->bd_holders))
1921 bdev->bd_holder = NULL;
1922 if (!bdev->bd_contains->bd_holders)
1923 bdev->bd_contains->bd_holder = NULL;
1924
1925 spin_unlock(&bdev_lock);
1926
1927 /*
1928 * If this was the last claim, remove holder link and
1929 * unblock evpoll if it was a write holder.
1930 */
1931 if (bdev_free && bdev->bd_write_holder) {
1932 disk_unblock_events(bdev->bd_disk);
1933 bdev->bd_write_holder = false;
1934 }
1935 }
1936
1937 /*
1938 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1939 * event. This is to ensure detection of media removal commanded
1940 * from userland - e.g. eject(1).
1941 */
1942 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1943
1944 mutex_unlock(&bdev->bd_mutex);
1945
1946 __blkdev_put(bdev, mode, 0);
1947 }
1948 EXPORT_SYMBOL(blkdev_put);
1949
1950 static int blkdev_close(struct inode * inode, struct file * filp)
1951 {
1952 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1953 blkdev_put(bdev, filp->f_mode);
1954 return 0;
1955 }
1956
1957 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1958 {
1959 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1960 fmode_t mode = file->f_mode;
1961
1962 /*
1963 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1964 * to updated it before every ioctl.
1965 */
1966 if (file->f_flags & O_NDELAY)
1967 mode |= FMODE_NDELAY;
1968 else
1969 mode &= ~FMODE_NDELAY;
1970
1971 return blkdev_ioctl(bdev, mode, cmd, arg);
1972 }
1973
1974 /*
1975 * Write data to the block device. Only intended for the block device itself
1976 * and the raw driver which basically is a fake block device.
1977 *
1978 * Does not take i_mutex for the write and thus is not for general purpose
1979 * use.
1980 */
1981 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1982 {
1983 struct file *file = iocb->ki_filp;
1984 struct inode *bd_inode = bdev_file_inode(file);
1985 loff_t size = i_size_read(bd_inode);
1986 struct blk_plug plug;
1987 ssize_t ret;
1988
1989 if (bdev_read_only(I_BDEV(bd_inode)))
1990 return -EPERM;
1991
1992 if (!iov_iter_count(from))
1993 return 0;
1994
1995 if (iocb->ki_pos >= size)
1996 return -ENOSPC;
1997
1998 iov_iter_truncate(from, size - iocb->ki_pos);
1999
2000 blk_start_plug(&plug);
2001 ret = __generic_file_write_iter(iocb, from);
2002 if (ret > 0)
2003 ret = generic_write_sync(iocb, ret);
2004 blk_finish_plug(&plug);
2005 return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2008
2009 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2010 {
2011 struct file *file = iocb->ki_filp;
2012 struct inode *bd_inode = bdev_file_inode(file);
2013 loff_t size = i_size_read(bd_inode);
2014 loff_t pos = iocb->ki_pos;
2015
2016 if (pos >= size)
2017 return 0;
2018
2019 size -= pos;
2020 iov_iter_truncate(to, size);
2021 return generic_file_read_iter(iocb, to);
2022 }
2023 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2024
2025 /*
2026 * Try to release a page associated with block device when the system
2027 * is under memory pressure.
2028 */
2029 static int blkdev_releasepage(struct page *page, gfp_t wait)
2030 {
2031 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2032
2033 if (super && super->s_op->bdev_try_to_free_page)
2034 return super->s_op->bdev_try_to_free_page(super, page, wait);
2035
2036 return try_to_free_buffers(page);
2037 }
2038
2039 static int blkdev_writepages(struct address_space *mapping,
2040 struct writeback_control *wbc)
2041 {
2042 if (dax_mapping(mapping)) {
2043 struct block_device *bdev = I_BDEV(mapping->host);
2044
2045 return dax_writeback_mapping_range(mapping, bdev, wbc);
2046 }
2047 return generic_writepages(mapping, wbc);
2048 }
2049
2050 static const struct address_space_operations def_blk_aops = {
2051 .readpage = blkdev_readpage,
2052 .readpages = blkdev_readpages,
2053 .writepage = blkdev_writepage,
2054 .write_begin = blkdev_write_begin,
2055 .write_end = blkdev_write_end,
2056 .writepages = blkdev_writepages,
2057 .releasepage = blkdev_releasepage,
2058 .direct_IO = blkdev_direct_IO,
2059 .is_dirty_writeback = buffer_check_dirty_writeback,
2060 };
2061
2062 #define BLKDEV_FALLOC_FL_SUPPORTED \
2063 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2064 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2065
2066 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2067 loff_t len)
2068 {
2069 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2070 struct address_space *mapping;
2071 loff_t end = start + len - 1;
2072 loff_t isize;
2073 int error;
2074
2075 /* Fail if we don't recognize the flags. */
2076 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2077 return -EOPNOTSUPP;
2078
2079 /* Don't go off the end of the device. */
2080 isize = i_size_read(bdev->bd_inode);
2081 if (start >= isize)
2082 return -EINVAL;
2083 if (end >= isize) {
2084 if (mode & FALLOC_FL_KEEP_SIZE) {
2085 len = isize - start;
2086 end = start + len - 1;
2087 } else
2088 return -EINVAL;
2089 }
2090
2091 /*
2092 * Don't allow IO that isn't aligned to logical block size.
2093 */
2094 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2095 return -EINVAL;
2096
2097 /* Invalidate the page cache, including dirty pages. */
2098 mapping = bdev->bd_inode->i_mapping;
2099 truncate_inode_pages_range(mapping, start, end);
2100
2101 switch (mode) {
2102 case FALLOC_FL_ZERO_RANGE:
2103 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2104 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2105 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2106 break;
2107 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2108 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2109 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2110 break;
2111 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2112 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2113 GFP_KERNEL, 0);
2114 break;
2115 default:
2116 return -EOPNOTSUPP;
2117 }
2118 if (error)
2119 return error;
2120
2121 /*
2122 * Invalidate again; if someone wandered in and dirtied a page,
2123 * the caller will be given -EBUSY. The third argument is
2124 * inclusive, so the rounding here is safe.
2125 */
2126 return invalidate_inode_pages2_range(mapping,
2127 start >> PAGE_SHIFT,
2128 end >> PAGE_SHIFT);
2129 }
2130
2131 const struct file_operations def_blk_fops = {
2132 .open = blkdev_open,
2133 .release = blkdev_close,
2134 .llseek = block_llseek,
2135 .read_iter = blkdev_read_iter,
2136 .write_iter = blkdev_write_iter,
2137 .mmap = generic_file_mmap,
2138 .fsync = blkdev_fsync,
2139 .unlocked_ioctl = block_ioctl,
2140 #ifdef CONFIG_COMPAT
2141 .compat_ioctl = compat_blkdev_ioctl,
2142 #endif
2143 .splice_read = generic_file_splice_read,
2144 .splice_write = iter_file_splice_write,
2145 .fallocate = blkdev_fallocate,
2146 };
2147
2148 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2149 {
2150 int res;
2151 mm_segment_t old_fs = get_fs();
2152 set_fs(KERNEL_DS);
2153 res = blkdev_ioctl(bdev, 0, cmd, arg);
2154 set_fs(old_fs);
2155 return res;
2156 }
2157
2158 EXPORT_SYMBOL(ioctl_by_bdev);
2159
2160 /**
2161 * lookup_bdev - lookup a struct block_device by name
2162 * @pathname: special file representing the block device
2163 *
2164 * Get a reference to the blockdevice at @pathname in the current
2165 * namespace if possible and return it. Return ERR_PTR(error)
2166 * otherwise.
2167 */
2168 struct block_device *lookup_bdev(const char *pathname)
2169 {
2170 struct block_device *bdev;
2171 struct inode *inode;
2172 struct path path;
2173 int error;
2174
2175 if (!pathname || !*pathname)
2176 return ERR_PTR(-EINVAL);
2177
2178 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2179 if (error)
2180 return ERR_PTR(error);
2181
2182 inode = d_backing_inode(path.dentry);
2183 error = -ENOTBLK;
2184 if (!S_ISBLK(inode->i_mode))
2185 goto fail;
2186 error = -EACCES;
2187 if (!may_open_dev(&path))
2188 goto fail;
2189 error = -ENOMEM;
2190 bdev = bd_acquire(inode);
2191 if (!bdev)
2192 goto fail;
2193 out:
2194 path_put(&path);
2195 return bdev;
2196 fail:
2197 bdev = ERR_PTR(error);
2198 goto out;
2199 }
2200 EXPORT_SYMBOL(lookup_bdev);
2201
2202 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2203 {
2204 struct super_block *sb = get_super(bdev);
2205 int res = 0;
2206
2207 if (sb) {
2208 /*
2209 * no need to lock the super, get_super holds the
2210 * read mutex so the filesystem cannot go away
2211 * under us (->put_super runs with the write lock
2212 * hold).
2213 */
2214 shrink_dcache_sb(sb);
2215 res = invalidate_inodes(sb, kill_dirty);
2216 drop_super(sb);
2217 }
2218 invalidate_bdev(bdev);
2219 return res;
2220 }
2221 EXPORT_SYMBOL(__invalidate_device);
2222
2223 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2224 {
2225 struct inode *inode, *old_inode = NULL;
2226
2227 spin_lock(&blockdev_superblock->s_inode_list_lock);
2228 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2229 struct address_space *mapping = inode->i_mapping;
2230 struct block_device *bdev;
2231
2232 spin_lock(&inode->i_lock);
2233 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2234 mapping->nrpages == 0) {
2235 spin_unlock(&inode->i_lock);
2236 continue;
2237 }
2238 __iget(inode);
2239 spin_unlock(&inode->i_lock);
2240 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2241 /*
2242 * We hold a reference to 'inode' so it couldn't have been
2243 * removed from s_inodes list while we dropped the
2244 * s_inode_list_lock We cannot iput the inode now as we can
2245 * be holding the last reference and we cannot iput it under
2246 * s_inode_list_lock. So we keep the reference and iput it
2247 * later.
2248 */
2249 iput(old_inode);
2250 old_inode = inode;
2251 bdev = I_BDEV(inode);
2252
2253 mutex_lock(&bdev->bd_mutex);
2254 if (bdev->bd_openers)
2255 func(bdev, arg);
2256 mutex_unlock(&bdev->bd_mutex);
2257
2258 spin_lock(&blockdev_superblock->s_inode_list_lock);
2259 }
2260 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2261 iput(old_inode);
2262 }