]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge branch 'fsnotify' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include "internal.h"
37
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
41 };
42
43 static const struct address_space_operations def_blk_aops;
44
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 {
47 return container_of(inode, struct bdev_inode, vfs_inode);
48 }
49
50 struct block_device *I_BDEV(struct inode *inode)
51 {
52 return &BDEV_I(inode)->bdev;
53 }
54 EXPORT_SYMBOL(I_BDEV);
55
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
57 {
58 struct va_format vaf;
59 va_list args;
60
61 va_start(args, fmt);
62 vaf.fmt = fmt;
63 vaf.va = &args;
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
65 va_end(args);
66 }
67
68 static void bdev_write_inode(struct block_device *bdev)
69 {
70 struct inode *inode = bdev->bd_inode;
71 int ret;
72
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
77 if (ret) {
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
82 }
83 spin_lock(&inode->i_lock);
84 }
85 spin_unlock(&inode->i_lock);
86 }
87
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
90 {
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
92
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
94 return;
95
96 invalidate_bh_lrus();
97 truncate_inode_pages(mapping, 0);
98 }
99 EXPORT_SYMBOL(kill_bdev);
100
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
103 {
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
105
106 if (mapping->nrpages == 0)
107 return;
108
109 invalidate_bh_lrus();
110 lru_add_drain_all(); /* make sure all lru add caches are flushed */
111 invalidate_mapping_pages(mapping, 0, -1);
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
230
231 ret = bio_iov_iter_get_pages(&bio, iter);
232 if (unlikely(ret))
233 return ret;
234 ret = bio.bi_iter.bi_size;
235
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
239 should_dirty = true;
240 } else {
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
243 }
244
245 qc = submit_bio(&bio);
246 for (;;) {
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
249 break;
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
252 io_schedule();
253 }
254 __set_current_state(TASK_RUNNING);
255
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
260 }
261
262 if (vecs != inline_vecs)
263 kfree(vecs);
264
265 if (unlikely(bio.bi_error))
266 return bio.bi_error;
267 return ret;
268 }
269
270 struct blkdev_dio {
271 union {
272 struct kiocb *iocb;
273 struct task_struct *waiter;
274 };
275 size_t size;
276 atomic_t ref;
277 bool multi_bio : 1;
278 bool should_dirty : 1;
279 bool is_sync : 1;
280 struct bio bio;
281 };
282
283 static struct bio_set *blkdev_dio_pool __read_mostly;
284
285 static void blkdev_bio_end_io(struct bio *bio)
286 {
287 struct blkdev_dio *dio = bio->bi_private;
288 bool should_dirty = dio->should_dirty;
289
290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
291 if (bio->bi_error && !dio->bio.bi_error)
292 dio->bio.bi_error = bio->bi_error;
293 } else {
294 if (!dio->is_sync) {
295 struct kiocb *iocb = dio->iocb;
296 ssize_t ret = dio->bio.bi_error;
297
298 if (likely(!ret)) {
299 ret = dio->size;
300 iocb->ki_pos += ret;
301 }
302
303 dio->iocb->ki_complete(iocb, ret, 0);
304 bio_put(&dio->bio);
305 } else {
306 struct task_struct *waiter = dio->waiter;
307
308 WRITE_ONCE(dio->waiter, NULL);
309 wake_up_process(waiter);
310 }
311 }
312
313 if (should_dirty) {
314 bio_check_pages_dirty(bio);
315 } else {
316 struct bio_vec *bvec;
317 int i;
318
319 bio_for_each_segment_all(bvec, bio, i)
320 put_page(bvec->bv_page);
321 bio_put(bio);
322 }
323 }
324
325 static ssize_t
326 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
327 {
328 struct file *file = iocb->ki_filp;
329 struct inode *inode = bdev_file_inode(file);
330 struct block_device *bdev = I_BDEV(inode);
331 struct blk_plug plug;
332 struct blkdev_dio *dio;
333 struct bio *bio;
334 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
335 loff_t pos = iocb->ki_pos;
336 blk_qc_t qc = BLK_QC_T_NONE;
337 int ret;
338
339 if ((pos | iov_iter_alignment(iter)) &
340 (bdev_logical_block_size(bdev) - 1))
341 return -EINVAL;
342
343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
344 bio_get(bio); /* extra ref for the completion handler */
345
346 dio = container_of(bio, struct blkdev_dio, bio);
347 dio->is_sync = is_sync = is_sync_kiocb(iocb);
348 if (dio->is_sync)
349 dio->waiter = current;
350 else
351 dio->iocb = iocb;
352
353 dio->size = 0;
354 dio->multi_bio = false;
355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
356
357 blk_start_plug(&plug);
358 for (;;) {
359 bio->bi_bdev = bdev;
360 bio->bi_iter.bi_sector = pos >> 9;
361 bio->bi_private = dio;
362 bio->bi_end_io = blkdev_bio_end_io;
363
364 ret = bio_iov_iter_get_pages(bio, iter);
365 if (unlikely(ret)) {
366 bio->bi_error = ret;
367 bio_endio(bio);
368 break;
369 }
370
371 if (is_read) {
372 bio->bi_opf = REQ_OP_READ;
373 if (dio->should_dirty)
374 bio_set_pages_dirty(bio);
375 } else {
376 bio->bi_opf = dio_bio_write_op(iocb);
377 task_io_account_write(bio->bi_iter.bi_size);
378 }
379
380 dio->size += bio->bi_iter.bi_size;
381 pos += bio->bi_iter.bi_size;
382
383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
384 if (!nr_pages) {
385 qc = submit_bio(bio);
386 break;
387 }
388
389 if (!dio->multi_bio) {
390 dio->multi_bio = true;
391 atomic_set(&dio->ref, 2);
392 } else {
393 atomic_inc(&dio->ref);
394 }
395
396 submit_bio(bio);
397 bio = bio_alloc(GFP_KERNEL, nr_pages);
398 }
399 blk_finish_plug(&plug);
400
401 if (!is_sync)
402 return -EIOCBQUEUED;
403
404 for (;;) {
405 set_current_state(TASK_UNINTERRUPTIBLE);
406 if (!READ_ONCE(dio->waiter))
407 break;
408
409 if (!(iocb->ki_flags & IOCB_HIPRI) ||
410 !blk_mq_poll(bdev_get_queue(bdev), qc))
411 io_schedule();
412 }
413 __set_current_state(TASK_RUNNING);
414
415 ret = dio->bio.bi_error;
416 if (likely(!ret))
417 ret = dio->size;
418
419 bio_put(&dio->bio);
420 return ret;
421 }
422
423 static ssize_t
424 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
425 {
426 int nr_pages;
427
428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
429 if (!nr_pages)
430 return 0;
431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
433
434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
435 }
436
437 static __init int blkdev_init(void)
438 {
439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
440 if (!blkdev_dio_pool)
441 return -ENOMEM;
442 return 0;
443 }
444 module_init(blkdev_init);
445
446 int __sync_blockdev(struct block_device *bdev, int wait)
447 {
448 if (!bdev)
449 return 0;
450 if (!wait)
451 return filemap_flush(bdev->bd_inode->i_mapping);
452 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
453 }
454
455 /*
456 * Write out and wait upon all the dirty data associated with a block
457 * device via its mapping. Does not take the superblock lock.
458 */
459 int sync_blockdev(struct block_device *bdev)
460 {
461 return __sync_blockdev(bdev, 1);
462 }
463 EXPORT_SYMBOL(sync_blockdev);
464
465 /*
466 * Write out and wait upon all dirty data associated with this
467 * device. Filesystem data as well as the underlying block
468 * device. Takes the superblock lock.
469 */
470 int fsync_bdev(struct block_device *bdev)
471 {
472 struct super_block *sb = get_super(bdev);
473 if (sb) {
474 int res = sync_filesystem(sb);
475 drop_super(sb);
476 return res;
477 }
478 return sync_blockdev(bdev);
479 }
480 EXPORT_SYMBOL(fsync_bdev);
481
482 /**
483 * freeze_bdev -- lock a filesystem and force it into a consistent state
484 * @bdev: blockdevice to lock
485 *
486 * If a superblock is found on this device, we take the s_umount semaphore
487 * on it to make sure nobody unmounts until the snapshot creation is done.
488 * The reference counter (bd_fsfreeze_count) guarantees that only the last
489 * unfreeze process can unfreeze the frozen filesystem actually when multiple
490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
492 * actually.
493 */
494 struct super_block *freeze_bdev(struct block_device *bdev)
495 {
496 struct super_block *sb;
497 int error = 0;
498
499 mutex_lock(&bdev->bd_fsfreeze_mutex);
500 if (++bdev->bd_fsfreeze_count > 1) {
501 /*
502 * We don't even need to grab a reference - the first call
503 * to freeze_bdev grab an active reference and only the last
504 * thaw_bdev drops it.
505 */
506 sb = get_super(bdev);
507 if (sb)
508 drop_super(sb);
509 mutex_unlock(&bdev->bd_fsfreeze_mutex);
510 return sb;
511 }
512
513 sb = get_active_super(bdev);
514 if (!sb)
515 goto out;
516 if (sb->s_op->freeze_super)
517 error = sb->s_op->freeze_super(sb);
518 else
519 error = freeze_super(sb);
520 if (error) {
521 deactivate_super(sb);
522 bdev->bd_fsfreeze_count--;
523 mutex_unlock(&bdev->bd_fsfreeze_mutex);
524 return ERR_PTR(error);
525 }
526 deactivate_super(sb);
527 out:
528 sync_blockdev(bdev);
529 mutex_unlock(&bdev->bd_fsfreeze_mutex);
530 return sb; /* thaw_bdev releases s->s_umount */
531 }
532 EXPORT_SYMBOL(freeze_bdev);
533
534 /**
535 * thaw_bdev -- unlock filesystem
536 * @bdev: blockdevice to unlock
537 * @sb: associated superblock
538 *
539 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
540 */
541 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
542 {
543 int error = -EINVAL;
544
545 mutex_lock(&bdev->bd_fsfreeze_mutex);
546 if (!bdev->bd_fsfreeze_count)
547 goto out;
548
549 error = 0;
550 if (--bdev->bd_fsfreeze_count > 0)
551 goto out;
552
553 if (!sb)
554 goto out;
555
556 if (sb->s_op->thaw_super)
557 error = sb->s_op->thaw_super(sb);
558 else
559 error = thaw_super(sb);
560 if (error)
561 bdev->bd_fsfreeze_count++;
562 out:
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return error;
565 }
566 EXPORT_SYMBOL(thaw_bdev);
567
568 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
569 {
570 return block_write_full_page(page, blkdev_get_block, wbc);
571 }
572
573 static int blkdev_readpage(struct file * file, struct page * page)
574 {
575 return block_read_full_page(page, blkdev_get_block);
576 }
577
578 static int blkdev_readpages(struct file *file, struct address_space *mapping,
579 struct list_head *pages, unsigned nr_pages)
580 {
581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
582 }
583
584 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
585 loff_t pos, unsigned len, unsigned flags,
586 struct page **pagep, void **fsdata)
587 {
588 return block_write_begin(mapping, pos, len, flags, pagep,
589 blkdev_get_block);
590 }
591
592 static int blkdev_write_end(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned copied,
594 struct page *page, void *fsdata)
595 {
596 int ret;
597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
598
599 unlock_page(page);
600 put_page(page);
601
602 return ret;
603 }
604
605 /*
606 * private llseek:
607 * for a block special file file_inode(file)->i_size is zero
608 * so we compute the size by hand (just as in block_read/write above)
609 */
610 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
611 {
612 struct inode *bd_inode = bdev_file_inode(file);
613 loff_t retval;
614
615 inode_lock(bd_inode);
616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
617 inode_unlock(bd_inode);
618 return retval;
619 }
620
621 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
622 {
623 struct inode *bd_inode = bdev_file_inode(filp);
624 struct block_device *bdev = I_BDEV(bd_inode);
625 int error;
626
627 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
628 if (error)
629 return error;
630
631 /*
632 * There is no need to serialise calls to blkdev_issue_flush with
633 * i_mutex and doing so causes performance issues with concurrent
634 * O_SYNC writers to a block device.
635 */
636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
637 if (error == -EOPNOTSUPP)
638 error = 0;
639
640 return error;
641 }
642 EXPORT_SYMBOL(blkdev_fsync);
643
644 /**
645 * bdev_read_page() - Start reading a page from a block device
646 * @bdev: The device to read the page from
647 * @sector: The offset on the device to read the page to (need not be aligned)
648 * @page: The page to read
649 *
650 * On entry, the page should be locked. It will be unlocked when the page
651 * has been read. If the block driver implements rw_page synchronously,
652 * that will be true on exit from this function, but it need not be.
653 *
654 * Errors returned by this function are usually "soft", eg out of memory, or
655 * queue full; callers should try a different route to read this page rather
656 * than propagate an error back up the stack.
657 *
658 * Return: negative errno if an error occurs, 0 if submission was successful.
659 */
660 int bdev_read_page(struct block_device *bdev, sector_t sector,
661 struct page *page)
662 {
663 const struct block_device_operations *ops = bdev->bd_disk->fops;
664 int result = -EOPNOTSUPP;
665
666 if (!ops->rw_page || bdev_get_integrity(bdev))
667 return result;
668
669 result = blk_queue_enter(bdev->bd_queue, false);
670 if (result)
671 return result;
672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
673 blk_queue_exit(bdev->bd_queue);
674 return result;
675 }
676 EXPORT_SYMBOL_GPL(bdev_read_page);
677
678 /**
679 * bdev_write_page() - Start writing a page to a block device
680 * @bdev: The device to write the page to
681 * @sector: The offset on the device to write the page to (need not be aligned)
682 * @page: The page to write
683 * @wbc: The writeback_control for the write
684 *
685 * On entry, the page should be locked and not currently under writeback.
686 * On exit, if the write started successfully, the page will be unlocked and
687 * under writeback. If the write failed already (eg the driver failed to
688 * queue the page to the device), the page will still be locked. If the
689 * caller is a ->writepage implementation, it will need to unlock the page.
690 *
691 * Errors returned by this function are usually "soft", eg out of memory, or
692 * queue full; callers should try a different route to write this page rather
693 * than propagate an error back up the stack.
694 *
695 * Return: negative errno if an error occurs, 0 if submission was successful.
696 */
697 int bdev_write_page(struct block_device *bdev, sector_t sector,
698 struct page *page, struct writeback_control *wbc)
699 {
700 int result;
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702
703 if (!ops->rw_page || bdev_get_integrity(bdev))
704 return -EOPNOTSUPP;
705 result = blk_queue_enter(bdev->bd_queue, false);
706 if (result)
707 return result;
708
709 set_page_writeback(page);
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
711 if (result)
712 end_page_writeback(page);
713 else
714 unlock_page(page);
715 blk_queue_exit(bdev->bd_queue);
716 return result;
717 }
718 EXPORT_SYMBOL_GPL(bdev_write_page);
719
720 /**
721 * bdev_direct_access() - Get the address for directly-accessibly memory
722 * @bdev: The device containing the memory
723 * @dax: control and output parameters for ->direct_access
724 *
725 * If a block device is made up of directly addressable memory, this function
726 * will tell the caller the PFN and the address of the memory. The address
727 * may be directly dereferenced within the kernel without the need to call
728 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
729 * page tables.
730 *
731 * Return: negative errno if an error occurs, otherwise the number of bytes
732 * accessible at this address.
733 */
734 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
735 {
736 sector_t sector = dax->sector;
737 long avail, size = dax->size;
738 const struct block_device_operations *ops = bdev->bd_disk->fops;
739
740 /*
741 * The device driver is allowed to sleep, in order to make the
742 * memory directly accessible.
743 */
744 might_sleep();
745
746 if (size < 0)
747 return size;
748 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
749 return -EOPNOTSUPP;
750 if ((sector + DIV_ROUND_UP(size, 512)) >
751 part_nr_sects_read(bdev->bd_part))
752 return -ERANGE;
753 sector += get_start_sect(bdev);
754 if (sector % (PAGE_SIZE / 512))
755 return -EINVAL;
756 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
757 if (!avail)
758 return -ERANGE;
759 if (avail > 0 && avail & ~PAGE_MASK)
760 return -ENXIO;
761 return min(avail, size);
762 }
763 EXPORT_SYMBOL_GPL(bdev_direct_access);
764
765 /**
766 * bdev_dax_supported() - Check if the device supports dax for filesystem
767 * @sb: The superblock of the device
768 * @blocksize: The block size of the device
769 *
770 * This is a library function for filesystems to check if the block device
771 * can be mounted with dax option.
772 *
773 * Return: negative errno if unsupported, 0 if supported.
774 */
775 int bdev_dax_supported(struct super_block *sb, int blocksize)
776 {
777 struct blk_dax_ctl dax = {
778 .sector = 0,
779 .size = PAGE_SIZE,
780 };
781 int err;
782
783 if (blocksize != PAGE_SIZE) {
784 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
785 return -EINVAL;
786 }
787
788 err = bdev_direct_access(sb->s_bdev, &dax);
789 if (err < 0) {
790 switch (err) {
791 case -EOPNOTSUPP:
792 vfs_msg(sb, KERN_ERR,
793 "error: device does not support dax");
794 break;
795 case -EINVAL:
796 vfs_msg(sb, KERN_ERR,
797 "error: unaligned partition for dax");
798 break;
799 default:
800 vfs_msg(sb, KERN_ERR,
801 "error: dax access failed (%d)", err);
802 }
803 return err;
804 }
805
806 return 0;
807 }
808 EXPORT_SYMBOL_GPL(bdev_dax_supported);
809
810 /**
811 * bdev_dax_capable() - Return if the raw device is capable for dax
812 * @bdev: The device for raw block device access
813 */
814 bool bdev_dax_capable(struct block_device *bdev)
815 {
816 struct blk_dax_ctl dax = {
817 .size = PAGE_SIZE,
818 };
819
820 if (!IS_ENABLED(CONFIG_FS_DAX))
821 return false;
822
823 dax.sector = 0;
824 if (bdev_direct_access(bdev, &dax) < 0)
825 return false;
826
827 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
828 if (bdev_direct_access(bdev, &dax) < 0)
829 return false;
830
831 return true;
832 }
833
834 /*
835 * pseudo-fs
836 */
837
838 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
839 static struct kmem_cache * bdev_cachep __read_mostly;
840
841 static struct inode *bdev_alloc_inode(struct super_block *sb)
842 {
843 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
844 if (!ei)
845 return NULL;
846 return &ei->vfs_inode;
847 }
848
849 static void bdev_i_callback(struct rcu_head *head)
850 {
851 struct inode *inode = container_of(head, struct inode, i_rcu);
852 struct bdev_inode *bdi = BDEV_I(inode);
853
854 kmem_cache_free(bdev_cachep, bdi);
855 }
856
857 static void bdev_destroy_inode(struct inode *inode)
858 {
859 call_rcu(&inode->i_rcu, bdev_i_callback);
860 }
861
862 static void init_once(void *foo)
863 {
864 struct bdev_inode *ei = (struct bdev_inode *) foo;
865 struct block_device *bdev = &ei->bdev;
866
867 memset(bdev, 0, sizeof(*bdev));
868 mutex_init(&bdev->bd_mutex);
869 INIT_LIST_HEAD(&bdev->bd_list);
870 #ifdef CONFIG_SYSFS
871 INIT_LIST_HEAD(&bdev->bd_holder_disks);
872 #endif
873 bdev->bd_bdi = &noop_backing_dev_info;
874 inode_init_once(&ei->vfs_inode);
875 /* Initialize mutex for freeze. */
876 mutex_init(&bdev->bd_fsfreeze_mutex);
877 }
878
879 static void bdev_evict_inode(struct inode *inode)
880 {
881 struct block_device *bdev = &BDEV_I(inode)->bdev;
882 truncate_inode_pages_final(&inode->i_data);
883 invalidate_inode_buffers(inode); /* is it needed here? */
884 clear_inode(inode);
885 spin_lock(&bdev_lock);
886 list_del_init(&bdev->bd_list);
887 spin_unlock(&bdev_lock);
888 /* Detach inode from wb early as bdi_put() may free bdi->wb */
889 inode_detach_wb(inode);
890 if (bdev->bd_bdi != &noop_backing_dev_info) {
891 bdi_put(bdev->bd_bdi);
892 bdev->bd_bdi = &noop_backing_dev_info;
893 }
894 }
895
896 static const struct super_operations bdev_sops = {
897 .statfs = simple_statfs,
898 .alloc_inode = bdev_alloc_inode,
899 .destroy_inode = bdev_destroy_inode,
900 .drop_inode = generic_delete_inode,
901 .evict_inode = bdev_evict_inode,
902 };
903
904 static struct dentry *bd_mount(struct file_system_type *fs_type,
905 int flags, const char *dev_name, void *data)
906 {
907 struct dentry *dent;
908 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
909 if (!IS_ERR(dent))
910 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
911 return dent;
912 }
913
914 static struct file_system_type bd_type = {
915 .name = "bdev",
916 .mount = bd_mount,
917 .kill_sb = kill_anon_super,
918 };
919
920 struct super_block *blockdev_superblock __read_mostly;
921 EXPORT_SYMBOL_GPL(blockdev_superblock);
922
923 void __init bdev_cache_init(void)
924 {
925 int err;
926 static struct vfsmount *bd_mnt;
927
928 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
929 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
930 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
931 init_once);
932 err = register_filesystem(&bd_type);
933 if (err)
934 panic("Cannot register bdev pseudo-fs");
935 bd_mnt = kern_mount(&bd_type);
936 if (IS_ERR(bd_mnt))
937 panic("Cannot create bdev pseudo-fs");
938 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
939 }
940
941 /*
942 * Most likely _very_ bad one - but then it's hardly critical for small
943 * /dev and can be fixed when somebody will need really large one.
944 * Keep in mind that it will be fed through icache hash function too.
945 */
946 static inline unsigned long hash(dev_t dev)
947 {
948 return MAJOR(dev)+MINOR(dev);
949 }
950
951 static int bdev_test(struct inode *inode, void *data)
952 {
953 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
954 }
955
956 static int bdev_set(struct inode *inode, void *data)
957 {
958 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
959 return 0;
960 }
961
962 static LIST_HEAD(all_bdevs);
963
964 /*
965 * If there is a bdev inode for this device, unhash it so that it gets evicted
966 * as soon as last inode reference is dropped.
967 */
968 void bdev_unhash_inode(dev_t dev)
969 {
970 struct inode *inode;
971
972 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
973 if (inode) {
974 remove_inode_hash(inode);
975 iput(inode);
976 }
977 }
978
979 struct block_device *bdget(dev_t dev)
980 {
981 struct block_device *bdev;
982 struct inode *inode;
983
984 inode = iget5_locked(blockdev_superblock, hash(dev),
985 bdev_test, bdev_set, &dev);
986
987 if (!inode)
988 return NULL;
989
990 bdev = &BDEV_I(inode)->bdev;
991
992 if (inode->i_state & I_NEW) {
993 bdev->bd_contains = NULL;
994 bdev->bd_super = NULL;
995 bdev->bd_inode = inode;
996 bdev->bd_block_size = i_blocksize(inode);
997 bdev->bd_part_count = 0;
998 bdev->bd_invalidated = 0;
999 inode->i_mode = S_IFBLK;
1000 inode->i_rdev = dev;
1001 inode->i_bdev = bdev;
1002 inode->i_data.a_ops = &def_blk_aops;
1003 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
1004 spin_lock(&bdev_lock);
1005 list_add(&bdev->bd_list, &all_bdevs);
1006 spin_unlock(&bdev_lock);
1007 unlock_new_inode(inode);
1008 }
1009 return bdev;
1010 }
1011
1012 EXPORT_SYMBOL(bdget);
1013
1014 /**
1015 * bdgrab -- Grab a reference to an already referenced block device
1016 * @bdev: Block device to grab a reference to.
1017 */
1018 struct block_device *bdgrab(struct block_device *bdev)
1019 {
1020 ihold(bdev->bd_inode);
1021 return bdev;
1022 }
1023 EXPORT_SYMBOL(bdgrab);
1024
1025 long nr_blockdev_pages(void)
1026 {
1027 struct block_device *bdev;
1028 long ret = 0;
1029 spin_lock(&bdev_lock);
1030 list_for_each_entry(bdev, &all_bdevs, bd_list) {
1031 ret += bdev->bd_inode->i_mapping->nrpages;
1032 }
1033 spin_unlock(&bdev_lock);
1034 return ret;
1035 }
1036
1037 void bdput(struct block_device *bdev)
1038 {
1039 iput(bdev->bd_inode);
1040 }
1041
1042 EXPORT_SYMBOL(bdput);
1043
1044 static struct block_device *bd_acquire(struct inode *inode)
1045 {
1046 struct block_device *bdev;
1047
1048 spin_lock(&bdev_lock);
1049 bdev = inode->i_bdev;
1050 if (bdev && !inode_unhashed(bdev->bd_inode)) {
1051 bdgrab(bdev);
1052 spin_unlock(&bdev_lock);
1053 return bdev;
1054 }
1055 spin_unlock(&bdev_lock);
1056
1057 /*
1058 * i_bdev references block device inode that was already shut down
1059 * (corresponding device got removed). Remove the reference and look
1060 * up block device inode again just in case new device got
1061 * reestablished under the same device number.
1062 */
1063 if (bdev)
1064 bd_forget(inode);
1065
1066 bdev = bdget(inode->i_rdev);
1067 if (bdev) {
1068 spin_lock(&bdev_lock);
1069 if (!inode->i_bdev) {
1070 /*
1071 * We take an additional reference to bd_inode,
1072 * and it's released in clear_inode() of inode.
1073 * So, we can access it via ->i_mapping always
1074 * without igrab().
1075 */
1076 bdgrab(bdev);
1077 inode->i_bdev = bdev;
1078 inode->i_mapping = bdev->bd_inode->i_mapping;
1079 }
1080 spin_unlock(&bdev_lock);
1081 }
1082 return bdev;
1083 }
1084
1085 /* Call when you free inode */
1086
1087 void bd_forget(struct inode *inode)
1088 {
1089 struct block_device *bdev = NULL;
1090
1091 spin_lock(&bdev_lock);
1092 if (!sb_is_blkdev_sb(inode->i_sb))
1093 bdev = inode->i_bdev;
1094 inode->i_bdev = NULL;
1095 inode->i_mapping = &inode->i_data;
1096 spin_unlock(&bdev_lock);
1097
1098 if (bdev)
1099 bdput(bdev);
1100 }
1101
1102 /**
1103 * bd_may_claim - test whether a block device can be claimed
1104 * @bdev: block device of interest
1105 * @whole: whole block device containing @bdev, may equal @bdev
1106 * @holder: holder trying to claim @bdev
1107 *
1108 * Test whether @bdev can be claimed by @holder.
1109 *
1110 * CONTEXT:
1111 * spin_lock(&bdev_lock).
1112 *
1113 * RETURNS:
1114 * %true if @bdev can be claimed, %false otherwise.
1115 */
1116 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1117 void *holder)
1118 {
1119 if (bdev->bd_holder == holder)
1120 return true; /* already a holder */
1121 else if (bdev->bd_holder != NULL)
1122 return false; /* held by someone else */
1123 else if (whole == bdev)
1124 return true; /* is a whole device which isn't held */
1125
1126 else if (whole->bd_holder == bd_may_claim)
1127 return true; /* is a partition of a device that is being partitioned */
1128 else if (whole->bd_holder != NULL)
1129 return false; /* is a partition of a held device */
1130 else
1131 return true; /* is a partition of an un-held device */
1132 }
1133
1134 /**
1135 * bd_prepare_to_claim - prepare to claim a block device
1136 * @bdev: block device of interest
1137 * @whole: the whole device containing @bdev, may equal @bdev
1138 * @holder: holder trying to claim @bdev
1139 *
1140 * Prepare to claim @bdev. This function fails if @bdev is already
1141 * claimed by another holder and waits if another claiming is in
1142 * progress. This function doesn't actually claim. On successful
1143 * return, the caller has ownership of bd_claiming and bd_holder[s].
1144 *
1145 * CONTEXT:
1146 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1147 * it multiple times.
1148 *
1149 * RETURNS:
1150 * 0 if @bdev can be claimed, -EBUSY otherwise.
1151 */
1152 static int bd_prepare_to_claim(struct block_device *bdev,
1153 struct block_device *whole, void *holder)
1154 {
1155 retry:
1156 /* if someone else claimed, fail */
1157 if (!bd_may_claim(bdev, whole, holder))
1158 return -EBUSY;
1159
1160 /* if claiming is already in progress, wait for it to finish */
1161 if (whole->bd_claiming) {
1162 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1163 DEFINE_WAIT(wait);
1164
1165 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1166 spin_unlock(&bdev_lock);
1167 schedule();
1168 finish_wait(wq, &wait);
1169 spin_lock(&bdev_lock);
1170 goto retry;
1171 }
1172
1173 /* yay, all mine */
1174 return 0;
1175 }
1176
1177 /**
1178 * bd_start_claiming - start claiming a block device
1179 * @bdev: block device of interest
1180 * @holder: holder trying to claim @bdev
1181 *
1182 * @bdev is about to be opened exclusively. Check @bdev can be opened
1183 * exclusively and mark that an exclusive open is in progress. Each
1184 * successful call to this function must be matched with a call to
1185 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1186 * fail).
1187 *
1188 * This function is used to gain exclusive access to the block device
1189 * without actually causing other exclusive open attempts to fail. It
1190 * should be used when the open sequence itself requires exclusive
1191 * access but may subsequently fail.
1192 *
1193 * CONTEXT:
1194 * Might sleep.
1195 *
1196 * RETURNS:
1197 * Pointer to the block device containing @bdev on success, ERR_PTR()
1198 * value on failure.
1199 */
1200 static struct block_device *bd_start_claiming(struct block_device *bdev,
1201 void *holder)
1202 {
1203 struct gendisk *disk;
1204 struct block_device *whole;
1205 int partno, err;
1206
1207 might_sleep();
1208
1209 /*
1210 * @bdev might not have been initialized properly yet, look up
1211 * and grab the outer block device the hard way.
1212 */
1213 disk = get_gendisk(bdev->bd_dev, &partno);
1214 if (!disk)
1215 return ERR_PTR(-ENXIO);
1216
1217 /*
1218 * Normally, @bdev should equal what's returned from bdget_disk()
1219 * if partno is 0; however, some drivers (floppy) use multiple
1220 * bdev's for the same physical device and @bdev may be one of the
1221 * aliases. Keep @bdev if partno is 0. This means claimer
1222 * tracking is broken for those devices but it has always been that
1223 * way.
1224 */
1225 if (partno)
1226 whole = bdget_disk(disk, 0);
1227 else
1228 whole = bdgrab(bdev);
1229
1230 module_put(disk->fops->owner);
1231 put_disk(disk);
1232 if (!whole)
1233 return ERR_PTR(-ENOMEM);
1234
1235 /* prepare to claim, if successful, mark claiming in progress */
1236 spin_lock(&bdev_lock);
1237
1238 err = bd_prepare_to_claim(bdev, whole, holder);
1239 if (err == 0) {
1240 whole->bd_claiming = holder;
1241 spin_unlock(&bdev_lock);
1242 return whole;
1243 } else {
1244 spin_unlock(&bdev_lock);
1245 bdput(whole);
1246 return ERR_PTR(err);
1247 }
1248 }
1249
1250 #ifdef CONFIG_SYSFS
1251 struct bd_holder_disk {
1252 struct list_head list;
1253 struct gendisk *disk;
1254 int refcnt;
1255 };
1256
1257 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1258 struct gendisk *disk)
1259 {
1260 struct bd_holder_disk *holder;
1261
1262 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1263 if (holder->disk == disk)
1264 return holder;
1265 return NULL;
1266 }
1267
1268 static int add_symlink(struct kobject *from, struct kobject *to)
1269 {
1270 return sysfs_create_link(from, to, kobject_name(to));
1271 }
1272
1273 static void del_symlink(struct kobject *from, struct kobject *to)
1274 {
1275 sysfs_remove_link(from, kobject_name(to));
1276 }
1277
1278 /**
1279 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1280 * @bdev: the claimed slave bdev
1281 * @disk: the holding disk
1282 *
1283 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1284 *
1285 * This functions creates the following sysfs symlinks.
1286 *
1287 * - from "slaves" directory of the holder @disk to the claimed @bdev
1288 * - from "holders" directory of the @bdev to the holder @disk
1289 *
1290 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1291 * passed to bd_link_disk_holder(), then:
1292 *
1293 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1294 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1295 *
1296 * The caller must have claimed @bdev before calling this function and
1297 * ensure that both @bdev and @disk are valid during the creation and
1298 * lifetime of these symlinks.
1299 *
1300 * CONTEXT:
1301 * Might sleep.
1302 *
1303 * RETURNS:
1304 * 0 on success, -errno on failure.
1305 */
1306 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1307 {
1308 struct bd_holder_disk *holder;
1309 int ret = 0;
1310
1311 mutex_lock(&bdev->bd_mutex);
1312
1313 WARN_ON_ONCE(!bdev->bd_holder);
1314
1315 /* FIXME: remove the following once add_disk() handles errors */
1316 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1317 goto out_unlock;
1318
1319 holder = bd_find_holder_disk(bdev, disk);
1320 if (holder) {
1321 holder->refcnt++;
1322 goto out_unlock;
1323 }
1324
1325 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1326 if (!holder) {
1327 ret = -ENOMEM;
1328 goto out_unlock;
1329 }
1330
1331 INIT_LIST_HEAD(&holder->list);
1332 holder->disk = disk;
1333 holder->refcnt = 1;
1334
1335 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1336 if (ret)
1337 goto out_free;
1338
1339 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1340 if (ret)
1341 goto out_del;
1342 /*
1343 * bdev could be deleted beneath us which would implicitly destroy
1344 * the holder directory. Hold on to it.
1345 */
1346 kobject_get(bdev->bd_part->holder_dir);
1347
1348 list_add(&holder->list, &bdev->bd_holder_disks);
1349 goto out_unlock;
1350
1351 out_del:
1352 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1353 out_free:
1354 kfree(holder);
1355 out_unlock:
1356 mutex_unlock(&bdev->bd_mutex);
1357 return ret;
1358 }
1359 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1360
1361 /**
1362 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1363 * @bdev: the calimed slave bdev
1364 * @disk: the holding disk
1365 *
1366 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1367 *
1368 * CONTEXT:
1369 * Might sleep.
1370 */
1371 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1372 {
1373 struct bd_holder_disk *holder;
1374
1375 mutex_lock(&bdev->bd_mutex);
1376
1377 holder = bd_find_holder_disk(bdev, disk);
1378
1379 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1380 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1381 del_symlink(bdev->bd_part->holder_dir,
1382 &disk_to_dev(disk)->kobj);
1383 kobject_put(bdev->bd_part->holder_dir);
1384 list_del_init(&holder->list);
1385 kfree(holder);
1386 }
1387
1388 mutex_unlock(&bdev->bd_mutex);
1389 }
1390 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1391 #endif
1392
1393 /**
1394 * flush_disk - invalidates all buffer-cache entries on a disk
1395 *
1396 * @bdev: struct block device to be flushed
1397 * @kill_dirty: flag to guide handling of dirty inodes
1398 *
1399 * Invalidates all buffer-cache entries on a disk. It should be called
1400 * when a disk has been changed -- either by a media change or online
1401 * resize.
1402 */
1403 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1404 {
1405 if (__invalidate_device(bdev, kill_dirty)) {
1406 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1407 "resized disk %s\n",
1408 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1409 }
1410
1411 if (!bdev->bd_disk)
1412 return;
1413 if (disk_part_scan_enabled(bdev->bd_disk))
1414 bdev->bd_invalidated = 1;
1415 }
1416
1417 /**
1418 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1419 * @disk: struct gendisk to check
1420 * @bdev: struct bdev to adjust.
1421 *
1422 * This routine checks to see if the bdev size does not match the disk size
1423 * and adjusts it if it differs.
1424 */
1425 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1426 {
1427 loff_t disk_size, bdev_size;
1428
1429 disk_size = (loff_t)get_capacity(disk) << 9;
1430 bdev_size = i_size_read(bdev->bd_inode);
1431 if (disk_size != bdev_size) {
1432 printk(KERN_INFO
1433 "%s: detected capacity change from %lld to %lld\n",
1434 disk->disk_name, bdev_size, disk_size);
1435 i_size_write(bdev->bd_inode, disk_size);
1436 flush_disk(bdev, false);
1437 }
1438 }
1439 EXPORT_SYMBOL(check_disk_size_change);
1440
1441 /**
1442 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1443 * @disk: struct gendisk to be revalidated
1444 *
1445 * This routine is a wrapper for lower-level driver's revalidate_disk
1446 * call-backs. It is used to do common pre and post operations needed
1447 * for all revalidate_disk operations.
1448 */
1449 int revalidate_disk(struct gendisk *disk)
1450 {
1451 struct block_device *bdev;
1452 int ret = 0;
1453
1454 if (disk->fops->revalidate_disk)
1455 ret = disk->fops->revalidate_disk(disk);
1456 bdev = bdget_disk(disk, 0);
1457 if (!bdev)
1458 return ret;
1459
1460 mutex_lock(&bdev->bd_mutex);
1461 check_disk_size_change(disk, bdev);
1462 bdev->bd_invalidated = 0;
1463 mutex_unlock(&bdev->bd_mutex);
1464 bdput(bdev);
1465 return ret;
1466 }
1467 EXPORT_SYMBOL(revalidate_disk);
1468
1469 /*
1470 * This routine checks whether a removable media has been changed,
1471 * and invalidates all buffer-cache-entries in that case. This
1472 * is a relatively slow routine, so we have to try to minimize using
1473 * it. Thus it is called only upon a 'mount' or 'open'. This
1474 * is the best way of combining speed and utility, I think.
1475 * People changing diskettes in the middle of an operation deserve
1476 * to lose :-)
1477 */
1478 int check_disk_change(struct block_device *bdev)
1479 {
1480 struct gendisk *disk = bdev->bd_disk;
1481 const struct block_device_operations *bdops = disk->fops;
1482 unsigned int events;
1483
1484 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1485 DISK_EVENT_EJECT_REQUEST);
1486 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1487 return 0;
1488
1489 flush_disk(bdev, true);
1490 if (bdops->revalidate_disk)
1491 bdops->revalidate_disk(bdev->bd_disk);
1492 return 1;
1493 }
1494
1495 EXPORT_SYMBOL(check_disk_change);
1496
1497 void bd_set_size(struct block_device *bdev, loff_t size)
1498 {
1499 unsigned bsize = bdev_logical_block_size(bdev);
1500
1501 inode_lock(bdev->bd_inode);
1502 i_size_write(bdev->bd_inode, size);
1503 inode_unlock(bdev->bd_inode);
1504 while (bsize < PAGE_SIZE) {
1505 if (size & bsize)
1506 break;
1507 bsize <<= 1;
1508 }
1509 bdev->bd_block_size = bsize;
1510 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1511 }
1512 EXPORT_SYMBOL(bd_set_size);
1513
1514 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1515
1516 /*
1517 * bd_mutex locking:
1518 *
1519 * mutex_lock(part->bd_mutex)
1520 * mutex_lock_nested(whole->bd_mutex, 1)
1521 */
1522
1523 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1524 {
1525 struct gendisk *disk;
1526 struct module *owner;
1527 int ret;
1528 int partno;
1529 int perm = 0;
1530
1531 if (mode & FMODE_READ)
1532 perm |= MAY_READ;
1533 if (mode & FMODE_WRITE)
1534 perm |= MAY_WRITE;
1535 /*
1536 * hooks: /n/, see "layering violations".
1537 */
1538 if (!for_part) {
1539 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1540 if (ret != 0) {
1541 bdput(bdev);
1542 return ret;
1543 }
1544 }
1545
1546 restart:
1547
1548 ret = -ENXIO;
1549 disk = get_gendisk(bdev->bd_dev, &partno);
1550 if (!disk)
1551 goto out;
1552 owner = disk->fops->owner;
1553
1554 disk_block_events(disk);
1555 mutex_lock_nested(&bdev->bd_mutex, for_part);
1556 if (!bdev->bd_openers) {
1557 bdev->bd_disk = disk;
1558 bdev->bd_queue = disk->queue;
1559 bdev->bd_contains = bdev;
1560
1561 if (!partno) {
1562 ret = -ENXIO;
1563 bdev->bd_part = disk_get_part(disk, partno);
1564 if (!bdev->bd_part)
1565 goto out_clear;
1566
1567 ret = 0;
1568 if (disk->fops->open) {
1569 ret = disk->fops->open(bdev, mode);
1570 if (ret == -ERESTARTSYS) {
1571 /* Lost a race with 'disk' being
1572 * deleted, try again.
1573 * See md.c
1574 */
1575 disk_put_part(bdev->bd_part);
1576 bdev->bd_part = NULL;
1577 bdev->bd_disk = NULL;
1578 bdev->bd_queue = NULL;
1579 mutex_unlock(&bdev->bd_mutex);
1580 disk_unblock_events(disk);
1581 put_disk(disk);
1582 module_put(owner);
1583 goto restart;
1584 }
1585 }
1586
1587 if (!ret)
1588 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1589
1590 /*
1591 * If the device is invalidated, rescan partition
1592 * if open succeeded or failed with -ENOMEDIUM.
1593 * The latter is necessary to prevent ghost
1594 * partitions on a removed medium.
1595 */
1596 if (bdev->bd_invalidated) {
1597 if (!ret)
1598 rescan_partitions(disk, bdev);
1599 else if (ret == -ENOMEDIUM)
1600 invalidate_partitions(disk, bdev);
1601 }
1602
1603 if (ret)
1604 goto out_clear;
1605 } else {
1606 struct block_device *whole;
1607 whole = bdget_disk(disk, 0);
1608 ret = -ENOMEM;
1609 if (!whole)
1610 goto out_clear;
1611 BUG_ON(for_part);
1612 ret = __blkdev_get(whole, mode, 1);
1613 if (ret)
1614 goto out_clear;
1615 bdev->bd_contains = whole;
1616 bdev->bd_part = disk_get_part(disk, partno);
1617 if (!(disk->flags & GENHD_FL_UP) ||
1618 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1619 ret = -ENXIO;
1620 goto out_clear;
1621 }
1622 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1623 }
1624
1625 if (bdev->bd_bdi == &noop_backing_dev_info)
1626 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1627 } else {
1628 if (bdev->bd_contains == bdev) {
1629 ret = 0;
1630 if (bdev->bd_disk->fops->open)
1631 ret = bdev->bd_disk->fops->open(bdev, mode);
1632 /* the same as first opener case, read comment there */
1633 if (bdev->bd_invalidated) {
1634 if (!ret)
1635 rescan_partitions(bdev->bd_disk, bdev);
1636 else if (ret == -ENOMEDIUM)
1637 invalidate_partitions(bdev->bd_disk, bdev);
1638 }
1639 if (ret)
1640 goto out_unlock_bdev;
1641 }
1642 /* only one opener holds refs to the module and disk */
1643 put_disk(disk);
1644 module_put(owner);
1645 }
1646 bdev->bd_openers++;
1647 if (for_part)
1648 bdev->bd_part_count++;
1649 mutex_unlock(&bdev->bd_mutex);
1650 disk_unblock_events(disk);
1651 return 0;
1652
1653 out_clear:
1654 disk_put_part(bdev->bd_part);
1655 bdev->bd_disk = NULL;
1656 bdev->bd_part = NULL;
1657 bdev->bd_queue = NULL;
1658 if (bdev != bdev->bd_contains)
1659 __blkdev_put(bdev->bd_contains, mode, 1);
1660 bdev->bd_contains = NULL;
1661 out_unlock_bdev:
1662 mutex_unlock(&bdev->bd_mutex);
1663 disk_unblock_events(disk);
1664 put_disk(disk);
1665 module_put(owner);
1666 out:
1667 bdput(bdev);
1668
1669 return ret;
1670 }
1671
1672 /**
1673 * blkdev_get - open a block device
1674 * @bdev: block_device to open
1675 * @mode: FMODE_* mask
1676 * @holder: exclusive holder identifier
1677 *
1678 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1679 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1680 * @holder is invalid. Exclusive opens may nest for the same @holder.
1681 *
1682 * On success, the reference count of @bdev is unchanged. On failure,
1683 * @bdev is put.
1684 *
1685 * CONTEXT:
1686 * Might sleep.
1687 *
1688 * RETURNS:
1689 * 0 on success, -errno on failure.
1690 */
1691 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1692 {
1693 struct block_device *whole = NULL;
1694 int res;
1695
1696 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1697
1698 if ((mode & FMODE_EXCL) && holder) {
1699 whole = bd_start_claiming(bdev, holder);
1700 if (IS_ERR(whole)) {
1701 bdput(bdev);
1702 return PTR_ERR(whole);
1703 }
1704 }
1705
1706 res = __blkdev_get(bdev, mode, 0);
1707
1708 if (whole) {
1709 struct gendisk *disk = whole->bd_disk;
1710
1711 /* finish claiming */
1712 mutex_lock(&bdev->bd_mutex);
1713 spin_lock(&bdev_lock);
1714
1715 if (!res) {
1716 BUG_ON(!bd_may_claim(bdev, whole, holder));
1717 /*
1718 * Note that for a whole device bd_holders
1719 * will be incremented twice, and bd_holder
1720 * will be set to bd_may_claim before being
1721 * set to holder
1722 */
1723 whole->bd_holders++;
1724 whole->bd_holder = bd_may_claim;
1725 bdev->bd_holders++;
1726 bdev->bd_holder = holder;
1727 }
1728
1729 /* tell others that we're done */
1730 BUG_ON(whole->bd_claiming != holder);
1731 whole->bd_claiming = NULL;
1732 wake_up_bit(&whole->bd_claiming, 0);
1733
1734 spin_unlock(&bdev_lock);
1735
1736 /*
1737 * Block event polling for write claims if requested. Any
1738 * write holder makes the write_holder state stick until
1739 * all are released. This is good enough and tracking
1740 * individual writeable reference is too fragile given the
1741 * way @mode is used in blkdev_get/put().
1742 */
1743 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1744 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1745 bdev->bd_write_holder = true;
1746 disk_block_events(disk);
1747 }
1748
1749 mutex_unlock(&bdev->bd_mutex);
1750 bdput(whole);
1751 }
1752
1753 return res;
1754 }
1755 EXPORT_SYMBOL(blkdev_get);
1756
1757 /**
1758 * blkdev_get_by_path - open a block device by name
1759 * @path: path to the block device to open
1760 * @mode: FMODE_* mask
1761 * @holder: exclusive holder identifier
1762 *
1763 * Open the blockdevice described by the device file at @path. @mode
1764 * and @holder are identical to blkdev_get().
1765 *
1766 * On success, the returned block_device has reference count of one.
1767 *
1768 * CONTEXT:
1769 * Might sleep.
1770 *
1771 * RETURNS:
1772 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1773 */
1774 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1775 void *holder)
1776 {
1777 struct block_device *bdev;
1778 int err;
1779
1780 bdev = lookup_bdev(path);
1781 if (IS_ERR(bdev))
1782 return bdev;
1783
1784 err = blkdev_get(bdev, mode, holder);
1785 if (err)
1786 return ERR_PTR(err);
1787
1788 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1789 blkdev_put(bdev, mode);
1790 return ERR_PTR(-EACCES);
1791 }
1792
1793 return bdev;
1794 }
1795 EXPORT_SYMBOL(blkdev_get_by_path);
1796
1797 /**
1798 * blkdev_get_by_dev - open a block device by device number
1799 * @dev: device number of block device to open
1800 * @mode: FMODE_* mask
1801 * @holder: exclusive holder identifier
1802 *
1803 * Open the blockdevice described by device number @dev. @mode and
1804 * @holder are identical to blkdev_get().
1805 *
1806 * Use it ONLY if you really do not have anything better - i.e. when
1807 * you are behind a truly sucky interface and all you are given is a
1808 * device number. _Never_ to be used for internal purposes. If you
1809 * ever need it - reconsider your API.
1810 *
1811 * On success, the returned block_device has reference count of one.
1812 *
1813 * CONTEXT:
1814 * Might sleep.
1815 *
1816 * RETURNS:
1817 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1818 */
1819 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1820 {
1821 struct block_device *bdev;
1822 int err;
1823
1824 bdev = bdget(dev);
1825 if (!bdev)
1826 return ERR_PTR(-ENOMEM);
1827
1828 err = blkdev_get(bdev, mode, holder);
1829 if (err)
1830 return ERR_PTR(err);
1831
1832 return bdev;
1833 }
1834 EXPORT_SYMBOL(blkdev_get_by_dev);
1835
1836 static int blkdev_open(struct inode * inode, struct file * filp)
1837 {
1838 struct block_device *bdev;
1839
1840 /*
1841 * Preserve backwards compatibility and allow large file access
1842 * even if userspace doesn't ask for it explicitly. Some mkfs
1843 * binary needs it. We might want to drop this workaround
1844 * during an unstable branch.
1845 */
1846 filp->f_flags |= O_LARGEFILE;
1847
1848 if (filp->f_flags & O_NDELAY)
1849 filp->f_mode |= FMODE_NDELAY;
1850 if (filp->f_flags & O_EXCL)
1851 filp->f_mode |= FMODE_EXCL;
1852 if ((filp->f_flags & O_ACCMODE) == 3)
1853 filp->f_mode |= FMODE_WRITE_IOCTL;
1854
1855 bdev = bd_acquire(inode);
1856 if (bdev == NULL)
1857 return -ENOMEM;
1858
1859 filp->f_mapping = bdev->bd_inode->i_mapping;
1860
1861 return blkdev_get(bdev, filp->f_mode, filp);
1862 }
1863
1864 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1865 {
1866 struct gendisk *disk = bdev->bd_disk;
1867 struct block_device *victim = NULL;
1868
1869 mutex_lock_nested(&bdev->bd_mutex, for_part);
1870 if (for_part)
1871 bdev->bd_part_count--;
1872
1873 if (!--bdev->bd_openers) {
1874 WARN_ON_ONCE(bdev->bd_holders);
1875 sync_blockdev(bdev);
1876 kill_bdev(bdev);
1877
1878 bdev_write_inode(bdev);
1879 }
1880 if (bdev->bd_contains == bdev) {
1881 if (disk->fops->release)
1882 disk->fops->release(disk, mode);
1883 }
1884 if (!bdev->bd_openers) {
1885 struct module *owner = disk->fops->owner;
1886
1887 disk_put_part(bdev->bd_part);
1888 bdev->bd_part = NULL;
1889 bdev->bd_disk = NULL;
1890 if (bdev != bdev->bd_contains)
1891 victim = bdev->bd_contains;
1892 bdev->bd_contains = NULL;
1893
1894 put_disk(disk);
1895 module_put(owner);
1896 }
1897 mutex_unlock(&bdev->bd_mutex);
1898 bdput(bdev);
1899 if (victim)
1900 __blkdev_put(victim, mode, 1);
1901 }
1902
1903 void blkdev_put(struct block_device *bdev, fmode_t mode)
1904 {
1905 mutex_lock(&bdev->bd_mutex);
1906
1907 if (mode & FMODE_EXCL) {
1908 bool bdev_free;
1909
1910 /*
1911 * Release a claim on the device. The holder fields
1912 * are protected with bdev_lock. bd_mutex is to
1913 * synchronize disk_holder unlinking.
1914 */
1915 spin_lock(&bdev_lock);
1916
1917 WARN_ON_ONCE(--bdev->bd_holders < 0);
1918 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1919
1920 /* bd_contains might point to self, check in a separate step */
1921 if ((bdev_free = !bdev->bd_holders))
1922 bdev->bd_holder = NULL;
1923 if (!bdev->bd_contains->bd_holders)
1924 bdev->bd_contains->bd_holder = NULL;
1925
1926 spin_unlock(&bdev_lock);
1927
1928 /*
1929 * If this was the last claim, remove holder link and
1930 * unblock evpoll if it was a write holder.
1931 */
1932 if (bdev_free && bdev->bd_write_holder) {
1933 disk_unblock_events(bdev->bd_disk);
1934 bdev->bd_write_holder = false;
1935 }
1936 }
1937
1938 /*
1939 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1940 * event. This is to ensure detection of media removal commanded
1941 * from userland - e.g. eject(1).
1942 */
1943 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1944
1945 mutex_unlock(&bdev->bd_mutex);
1946
1947 __blkdev_put(bdev, mode, 0);
1948 }
1949 EXPORT_SYMBOL(blkdev_put);
1950
1951 static int blkdev_close(struct inode * inode, struct file * filp)
1952 {
1953 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1954 blkdev_put(bdev, filp->f_mode);
1955 return 0;
1956 }
1957
1958 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1959 {
1960 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1961 fmode_t mode = file->f_mode;
1962
1963 /*
1964 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1965 * to updated it before every ioctl.
1966 */
1967 if (file->f_flags & O_NDELAY)
1968 mode |= FMODE_NDELAY;
1969 else
1970 mode &= ~FMODE_NDELAY;
1971
1972 return blkdev_ioctl(bdev, mode, cmd, arg);
1973 }
1974
1975 /*
1976 * Write data to the block device. Only intended for the block device itself
1977 * and the raw driver which basically is a fake block device.
1978 *
1979 * Does not take i_mutex for the write and thus is not for general purpose
1980 * use.
1981 */
1982 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1983 {
1984 struct file *file = iocb->ki_filp;
1985 struct inode *bd_inode = bdev_file_inode(file);
1986 loff_t size = i_size_read(bd_inode);
1987 struct blk_plug plug;
1988 ssize_t ret;
1989
1990 if (bdev_read_only(I_BDEV(bd_inode)))
1991 return -EPERM;
1992
1993 if (!iov_iter_count(from))
1994 return 0;
1995
1996 if (iocb->ki_pos >= size)
1997 return -ENOSPC;
1998
1999 iov_iter_truncate(from, size - iocb->ki_pos);
2000
2001 blk_start_plug(&plug);
2002 ret = __generic_file_write_iter(iocb, from);
2003 if (ret > 0)
2004 ret = generic_write_sync(iocb, ret);
2005 blk_finish_plug(&plug);
2006 return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2009
2010 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2011 {
2012 struct file *file = iocb->ki_filp;
2013 struct inode *bd_inode = bdev_file_inode(file);
2014 loff_t size = i_size_read(bd_inode);
2015 loff_t pos = iocb->ki_pos;
2016
2017 if (pos >= size)
2018 return 0;
2019
2020 size -= pos;
2021 iov_iter_truncate(to, size);
2022 return generic_file_read_iter(iocb, to);
2023 }
2024 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2025
2026 /*
2027 * Try to release a page associated with block device when the system
2028 * is under memory pressure.
2029 */
2030 static int blkdev_releasepage(struct page *page, gfp_t wait)
2031 {
2032 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2033
2034 if (super && super->s_op->bdev_try_to_free_page)
2035 return super->s_op->bdev_try_to_free_page(super, page, wait);
2036
2037 return try_to_free_buffers(page);
2038 }
2039
2040 static int blkdev_writepages(struct address_space *mapping,
2041 struct writeback_control *wbc)
2042 {
2043 if (dax_mapping(mapping)) {
2044 struct block_device *bdev = I_BDEV(mapping->host);
2045
2046 return dax_writeback_mapping_range(mapping, bdev, wbc);
2047 }
2048 return generic_writepages(mapping, wbc);
2049 }
2050
2051 static const struct address_space_operations def_blk_aops = {
2052 .readpage = blkdev_readpage,
2053 .readpages = blkdev_readpages,
2054 .writepage = blkdev_writepage,
2055 .write_begin = blkdev_write_begin,
2056 .write_end = blkdev_write_end,
2057 .writepages = blkdev_writepages,
2058 .releasepage = blkdev_releasepage,
2059 .direct_IO = blkdev_direct_IO,
2060 .is_dirty_writeback = buffer_check_dirty_writeback,
2061 };
2062
2063 #define BLKDEV_FALLOC_FL_SUPPORTED \
2064 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2065 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2066
2067 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2068 loff_t len)
2069 {
2070 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2071 struct address_space *mapping;
2072 loff_t end = start + len - 1;
2073 loff_t isize;
2074 int error;
2075
2076 /* Fail if we don't recognize the flags. */
2077 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2078 return -EOPNOTSUPP;
2079
2080 /* Don't go off the end of the device. */
2081 isize = i_size_read(bdev->bd_inode);
2082 if (start >= isize)
2083 return -EINVAL;
2084 if (end >= isize) {
2085 if (mode & FALLOC_FL_KEEP_SIZE) {
2086 len = isize - start;
2087 end = start + len - 1;
2088 } else
2089 return -EINVAL;
2090 }
2091
2092 /*
2093 * Don't allow IO that isn't aligned to logical block size.
2094 */
2095 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2096 return -EINVAL;
2097
2098 /* Invalidate the page cache, including dirty pages. */
2099 mapping = bdev->bd_inode->i_mapping;
2100 truncate_inode_pages_range(mapping, start, end);
2101
2102 switch (mode) {
2103 case FALLOC_FL_ZERO_RANGE:
2104 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2105 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2106 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2107 break;
2108 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2109 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2110 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2111 break;
2112 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2113 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2114 GFP_KERNEL, 0);
2115 break;
2116 default:
2117 return -EOPNOTSUPP;
2118 }
2119 if (error)
2120 return error;
2121
2122 /*
2123 * Invalidate again; if someone wandered in and dirtied a page,
2124 * the caller will be given -EBUSY. The third argument is
2125 * inclusive, so the rounding here is safe.
2126 */
2127 return invalidate_inode_pages2_range(mapping,
2128 start >> PAGE_SHIFT,
2129 end >> PAGE_SHIFT);
2130 }
2131
2132 const struct file_operations def_blk_fops = {
2133 .open = blkdev_open,
2134 .release = blkdev_close,
2135 .llseek = block_llseek,
2136 .read_iter = blkdev_read_iter,
2137 .write_iter = blkdev_write_iter,
2138 .mmap = generic_file_mmap,
2139 .fsync = blkdev_fsync,
2140 .unlocked_ioctl = block_ioctl,
2141 #ifdef CONFIG_COMPAT
2142 .compat_ioctl = compat_blkdev_ioctl,
2143 #endif
2144 .splice_read = generic_file_splice_read,
2145 .splice_write = iter_file_splice_write,
2146 .fallocate = blkdev_fallocate,
2147 };
2148
2149 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2150 {
2151 int res;
2152 mm_segment_t old_fs = get_fs();
2153 set_fs(KERNEL_DS);
2154 res = blkdev_ioctl(bdev, 0, cmd, arg);
2155 set_fs(old_fs);
2156 return res;
2157 }
2158
2159 EXPORT_SYMBOL(ioctl_by_bdev);
2160
2161 /**
2162 * lookup_bdev - lookup a struct block_device by name
2163 * @pathname: special file representing the block device
2164 *
2165 * Get a reference to the blockdevice at @pathname in the current
2166 * namespace if possible and return it. Return ERR_PTR(error)
2167 * otherwise.
2168 */
2169 struct block_device *lookup_bdev(const char *pathname)
2170 {
2171 struct block_device *bdev;
2172 struct inode *inode;
2173 struct path path;
2174 int error;
2175
2176 if (!pathname || !*pathname)
2177 return ERR_PTR(-EINVAL);
2178
2179 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2180 if (error)
2181 return ERR_PTR(error);
2182
2183 inode = d_backing_inode(path.dentry);
2184 error = -ENOTBLK;
2185 if (!S_ISBLK(inode->i_mode))
2186 goto fail;
2187 error = -EACCES;
2188 if (!may_open_dev(&path))
2189 goto fail;
2190 error = -ENOMEM;
2191 bdev = bd_acquire(inode);
2192 if (!bdev)
2193 goto fail;
2194 out:
2195 path_put(&path);
2196 return bdev;
2197 fail:
2198 bdev = ERR_PTR(error);
2199 goto out;
2200 }
2201 EXPORT_SYMBOL(lookup_bdev);
2202
2203 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2204 {
2205 struct super_block *sb = get_super(bdev);
2206 int res = 0;
2207
2208 if (sb) {
2209 /*
2210 * no need to lock the super, get_super holds the
2211 * read mutex so the filesystem cannot go away
2212 * under us (->put_super runs with the write lock
2213 * hold).
2214 */
2215 shrink_dcache_sb(sb);
2216 res = invalidate_inodes(sb, kill_dirty);
2217 drop_super(sb);
2218 }
2219 invalidate_bdev(bdev);
2220 return res;
2221 }
2222 EXPORT_SYMBOL(__invalidate_device);
2223
2224 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2225 {
2226 struct inode *inode, *old_inode = NULL;
2227
2228 spin_lock(&blockdev_superblock->s_inode_list_lock);
2229 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2230 struct address_space *mapping = inode->i_mapping;
2231 struct block_device *bdev;
2232
2233 spin_lock(&inode->i_lock);
2234 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2235 mapping->nrpages == 0) {
2236 spin_unlock(&inode->i_lock);
2237 continue;
2238 }
2239 __iget(inode);
2240 spin_unlock(&inode->i_lock);
2241 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2242 /*
2243 * We hold a reference to 'inode' so it couldn't have been
2244 * removed from s_inodes list while we dropped the
2245 * s_inode_list_lock We cannot iput the inode now as we can
2246 * be holding the last reference and we cannot iput it under
2247 * s_inode_list_lock. So we keep the reference and iput it
2248 * later.
2249 */
2250 iput(old_inode);
2251 old_inode = inode;
2252 bdev = I_BDEV(inode);
2253
2254 mutex_lock(&bdev->bd_mutex);
2255 if (bdev->bd_openers)
2256 func(bdev, arg);
2257 mutex_unlock(&bdev->bd_mutex);
2258
2259 spin_lock(&blockdev_superblock->s_inode_list_lock);
2260 }
2261 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2262 iput(old_inode);
2263 }