]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'qgroup' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 #undef SCRAMBLE_DELAYED_REFS
38
39 /*
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
43 *
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 */
53 enum {
54 CHUNK_ALLOC_NO_FORCE = 0,
55 CHUNK_ALLOC_LIMITED = 1,
56 CHUNK_ALLOC_FORCE = 2,
57 };
58
59 /*
60 * Control how reservations are dealt with.
61 *
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64 * ENOSPC accounting
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
67 */
68 enum {
69 RESERVE_FREE = 0,
70 RESERVE_ALLOC = 1,
71 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 };
73
74 static int update_block_group(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 alloc_bytes,
98 u64 flags, int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164 spin_unlock(&info->block_group_cache_lock);
165
166 return 0;
167 }
168
169 /*
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
172 */
173 static struct btrfs_block_group_cache *
174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 int contains)
176 {
177 struct btrfs_block_group_cache *cache, *ret = NULL;
178 struct rb_node *n;
179 u64 end, start;
180
181 spin_lock(&info->block_group_cache_lock);
182 n = info->block_group_cache_tree.rb_node;
183
184 while (n) {
185 cache = rb_entry(n, struct btrfs_block_group_cache,
186 cache_node);
187 end = cache->key.objectid + cache->key.offset - 1;
188 start = cache->key.objectid;
189
190 if (bytenr < start) {
191 if (!contains && (!ret || start < ret->key.objectid))
192 ret = cache;
193 n = n->rb_left;
194 } else if (bytenr > start) {
195 if (contains && bytenr <= end) {
196 ret = cache;
197 break;
198 }
199 n = n->rb_right;
200 } else {
201 ret = cache;
202 break;
203 }
204 }
205 if (ret)
206 btrfs_get_block_group(ret);
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210 }
211
212 static int add_excluded_extent(struct btrfs_root *root,
213 u64 start, u64 num_bytes)
214 {
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&root->fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 set_extent_bits(&root->fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 return 0;
221 }
222
223 static void free_excluded_extents(struct btrfs_root *root,
224 struct btrfs_block_group_cache *cache)
225 {
226 u64 start, end;
227
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
231 clear_extent_bits(&root->fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 clear_extent_bits(&root->fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 }
236
237 static int exclude_super_stripes(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(root, cache->key.objectid,
249 stripe_len);
250 BUG_ON(ret); /* -ENOMEM */
251 }
252
253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 bytenr = btrfs_sb_offset(i);
255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 cache->key.objectid, bytenr,
257 0, &logical, &nr, &stripe_len);
258 BUG_ON(ret); /* -ENOMEM */
259
260 while (nr--) {
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, logical[nr],
263 stripe_len);
264 BUG_ON(ret); /* -ENOMEM */
265 }
266
267 kfree(logical);
268 }
269 return 0;
270 }
271
272 static struct btrfs_caching_control *
273 get_caching_control(struct btrfs_block_group_cache *cache)
274 {
275 struct btrfs_caching_control *ctl;
276
277 spin_lock(&cache->lock);
278 if (cache->cached != BTRFS_CACHE_STARTED) {
279 spin_unlock(&cache->lock);
280 return NULL;
281 }
282
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache->caching_ctl) {
285 spin_unlock(&cache->lock);
286 return NULL;
287 }
288
289 ctl = cache->caching_ctl;
290 atomic_inc(&ctl->count);
291 spin_unlock(&cache->lock);
292 return ctl;
293 }
294
295 static void put_caching_control(struct btrfs_caching_control *ctl)
296 {
297 if (atomic_dec_and_test(&ctl->count))
298 kfree(ctl);
299 }
300
301 /*
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
305 */
306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 struct btrfs_fs_info *info, u64 start, u64 end)
308 {
309 u64 extent_start, extent_end, size, total_added = 0;
310 int ret;
311
312 while (start < end) {
313 ret = find_first_extent_bit(info->pinned_extents, start,
314 &extent_start, &extent_end,
315 EXTENT_DIRTY | EXTENT_UPTODATE);
316 if (ret)
317 break;
318
319 if (extent_start <= start) {
320 start = extent_end + 1;
321 } else if (extent_start > start && extent_start < end) {
322 size = extent_start - start;
323 total_added += size;
324 ret = btrfs_add_free_space(block_group, start,
325 size);
326 BUG_ON(ret); /* -ENOMEM or logic error */
327 start = extent_end + 1;
328 } else {
329 break;
330 }
331 }
332
333 if (start < end) {
334 size = end - start;
335 total_added += size;
336 ret = btrfs_add_free_space(block_group, start, size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 }
339
340 return total_added;
341 }
342
343 static noinline void caching_thread(struct btrfs_work *work)
344 {
345 struct btrfs_block_group_cache *block_group;
346 struct btrfs_fs_info *fs_info;
347 struct btrfs_caching_control *caching_ctl;
348 struct btrfs_root *extent_root;
349 struct btrfs_path *path;
350 struct extent_buffer *leaf;
351 struct btrfs_key key;
352 u64 total_found = 0;
353 u64 last = 0;
354 u32 nritems;
355 int ret = 0;
356
357 caching_ctl = container_of(work, struct btrfs_caching_control, work);
358 block_group = caching_ctl->block_group;
359 fs_info = block_group->fs_info;
360 extent_root = fs_info->extent_root;
361
362 path = btrfs_alloc_path();
363 if (!path)
364 goto out;
365
366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367
368 /*
369 * We don't want to deadlock with somebody trying to allocate a new
370 * extent for the extent root while also trying to search the extent
371 * root to add free space. So we skip locking and search the commit
372 * root, since its read-only
373 */
374 path->skip_locking = 1;
375 path->search_commit_root = 1;
376 path->reada = 1;
377
378 key.objectid = last;
379 key.offset = 0;
380 key.type = BTRFS_EXTENT_ITEM_KEY;
381 again:
382 mutex_lock(&caching_ctl->mutex);
383 /* need to make sure the commit_root doesn't disappear */
384 down_read(&fs_info->extent_commit_sem);
385
386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 if (ret < 0)
388 goto err;
389
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392
393 while (1) {
394 if (btrfs_fs_closing(fs_info) > 1) {
395 last = (u64)-1;
396 break;
397 }
398
399 if (path->slots[0] < nritems) {
400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
401 } else {
402 ret = find_next_key(path, 0, &key);
403 if (ret)
404 break;
405
406 if (need_resched() ||
407 btrfs_next_leaf(extent_root, path)) {
408 caching_ctl->progress = last;
409 btrfs_release_path(path);
410 up_read(&fs_info->extent_commit_sem);
411 mutex_unlock(&caching_ctl->mutex);
412 cond_resched();
413 goto again;
414 }
415 leaf = path->nodes[0];
416 nritems = btrfs_header_nritems(leaf);
417 continue;
418 }
419
420 if (key.objectid < block_group->key.objectid) {
421 path->slots[0]++;
422 continue;
423 }
424
425 if (key.objectid >= block_group->key.objectid +
426 block_group->key.offset)
427 break;
428
429 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
430 total_found += add_new_free_space(block_group,
431 fs_info, last,
432 key.objectid);
433 last = key.objectid + key.offset;
434
435 if (total_found > (1024 * 1024 * 2)) {
436 total_found = 0;
437 wake_up(&caching_ctl->wait);
438 }
439 }
440 path->slots[0]++;
441 }
442 ret = 0;
443
444 total_found += add_new_free_space(block_group, fs_info, last,
445 block_group->key.objectid +
446 block_group->key.offset);
447 caching_ctl->progress = (u64)-1;
448
449 spin_lock(&block_group->lock);
450 block_group->caching_ctl = NULL;
451 block_group->cached = BTRFS_CACHE_FINISHED;
452 spin_unlock(&block_group->lock);
453
454 err:
455 btrfs_free_path(path);
456 up_read(&fs_info->extent_commit_sem);
457
458 free_excluded_extents(extent_root, block_group);
459
460 mutex_unlock(&caching_ctl->mutex);
461 out:
462 wake_up(&caching_ctl->wait);
463
464 put_caching_control(caching_ctl);
465 btrfs_put_block_group(block_group);
466 }
467
468 static int cache_block_group(struct btrfs_block_group_cache *cache,
469 struct btrfs_trans_handle *trans,
470 struct btrfs_root *root,
471 int load_cache_only)
472 {
473 DEFINE_WAIT(wait);
474 struct btrfs_fs_info *fs_info = cache->fs_info;
475 struct btrfs_caching_control *caching_ctl;
476 int ret = 0;
477
478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
479 if (!caching_ctl)
480 return -ENOMEM;
481
482 INIT_LIST_HEAD(&caching_ctl->list);
483 mutex_init(&caching_ctl->mutex);
484 init_waitqueue_head(&caching_ctl->wait);
485 caching_ctl->block_group = cache;
486 caching_ctl->progress = cache->key.objectid;
487 atomic_set(&caching_ctl->count, 1);
488 caching_ctl->work.func = caching_thread;
489
490 spin_lock(&cache->lock);
491 /*
492 * This should be a rare occasion, but this could happen I think in the
493 * case where one thread starts to load the space cache info, and then
494 * some other thread starts a transaction commit which tries to do an
495 * allocation while the other thread is still loading the space cache
496 * info. The previous loop should have kept us from choosing this block
497 * group, but if we've moved to the state where we will wait on caching
498 * block groups we need to first check if we're doing a fast load here,
499 * so we can wait for it to finish, otherwise we could end up allocating
500 * from a block group who's cache gets evicted for one reason or
501 * another.
502 */
503 while (cache->cached == BTRFS_CACHE_FAST) {
504 struct btrfs_caching_control *ctl;
505
506 ctl = cache->caching_ctl;
507 atomic_inc(&ctl->count);
508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
509 spin_unlock(&cache->lock);
510
511 schedule();
512
513 finish_wait(&ctl->wait, &wait);
514 put_caching_control(ctl);
515 spin_lock(&cache->lock);
516 }
517
518 if (cache->cached != BTRFS_CACHE_NO) {
519 spin_unlock(&cache->lock);
520 kfree(caching_ctl);
521 return 0;
522 }
523 WARN_ON(cache->caching_ctl);
524 cache->caching_ctl = caching_ctl;
525 cache->cached = BTRFS_CACHE_FAST;
526 spin_unlock(&cache->lock);
527
528 /*
529 * We can't do the read from on-disk cache during a commit since we need
530 * to have the normal tree locking. Also if we are currently trying to
531 * allocate blocks for the tree root we can't do the fast caching since
532 * we likely hold important locks.
533 */
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 struct btrfs_fs_info *fs_info = root->fs_info;
2223 int ret;
2224 int count = 0;
2225 int must_insert_reserved = 0;
2226
2227 delayed_refs = &trans->transaction->delayed_refs;
2228 while (1) {
2229 if (!locked_ref) {
2230 /* pick a new head ref from the cluster list */
2231 if (list_empty(cluster))
2232 break;
2233
2234 locked_ref = list_entry(cluster->next,
2235 struct btrfs_delayed_ref_head, cluster);
2236
2237 /* grab the lock that says we are going to process
2238 * all the refs for this head */
2239 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2240
2241 /*
2242 * we may have dropped the spin lock to get the head
2243 * mutex lock, and that might have given someone else
2244 * time to free the head. If that's true, it has been
2245 * removed from our list and we can move on.
2246 */
2247 if (ret == -EAGAIN) {
2248 locked_ref = NULL;
2249 count++;
2250 continue;
2251 }
2252 }
2253
2254 /*
2255 * locked_ref is the head node, so we have to go one
2256 * node back for any delayed ref updates
2257 */
2258 ref = select_delayed_ref(locked_ref);
2259
2260 if (ref && ref->seq &&
2261 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2262 /*
2263 * there are still refs with lower seq numbers in the
2264 * process of being added. Don't run this ref yet.
2265 */
2266 list_del_init(&locked_ref->cluster);
2267 mutex_unlock(&locked_ref->mutex);
2268 locked_ref = NULL;
2269 delayed_refs->num_heads_ready++;
2270 spin_unlock(&delayed_refs->lock);
2271 cond_resched();
2272 spin_lock(&delayed_refs->lock);
2273 continue;
2274 }
2275
2276 /*
2277 * record the must insert reserved flag before we
2278 * drop the spin lock.
2279 */
2280 must_insert_reserved = locked_ref->must_insert_reserved;
2281 locked_ref->must_insert_reserved = 0;
2282
2283 extent_op = locked_ref->extent_op;
2284 locked_ref->extent_op = NULL;
2285
2286 if (!ref) {
2287 /* All delayed refs have been processed, Go ahead
2288 * and send the head node to run_one_delayed_ref,
2289 * so that any accounting fixes can happen
2290 */
2291 ref = &locked_ref->node;
2292
2293 if (extent_op && must_insert_reserved) {
2294 kfree(extent_op);
2295 extent_op = NULL;
2296 }
2297
2298 if (extent_op) {
2299 spin_unlock(&delayed_refs->lock);
2300
2301 ret = run_delayed_extent_op(trans, root,
2302 ref, extent_op);
2303 kfree(extent_op);
2304
2305 if (ret) {
2306 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2307 spin_lock(&delayed_refs->lock);
2308 return ret;
2309 }
2310
2311 goto next;
2312 }
2313
2314 list_del_init(&locked_ref->cluster);
2315 locked_ref = NULL;
2316 }
2317
2318 ref->in_tree = 0;
2319 rb_erase(&ref->rb_node, &delayed_refs->root);
2320 delayed_refs->num_entries--;
2321 /*
2322 * we modified num_entries, but as we're currently running
2323 * delayed refs, skip
2324 * wake_up(&delayed_refs->seq_wait);
2325 * here.
2326 */
2327 spin_unlock(&delayed_refs->lock);
2328
2329 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2330 must_insert_reserved);
2331
2332 btrfs_put_delayed_ref(ref);
2333 kfree(extent_op);
2334 count++;
2335
2336 if (ret) {
2337 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2338 spin_lock(&delayed_refs->lock);
2339 return ret;
2340 }
2341
2342 next:
2343 do_chunk_alloc(trans, fs_info->extent_root,
2344 2 * 1024 * 1024,
2345 btrfs_get_alloc_profile(root, 0),
2346 CHUNK_ALLOC_NO_FORCE);
2347 cond_resched();
2348 spin_lock(&delayed_refs->lock);
2349 }
2350 return count;
2351 }
2352
2353 static void wait_for_more_refs(struct btrfs_fs_info *fs_info,
2354 struct btrfs_delayed_ref_root *delayed_refs,
2355 unsigned long num_refs,
2356 struct list_head *first_seq)
2357 {
2358 spin_unlock(&delayed_refs->lock);
2359 pr_debug("waiting for more refs (num %ld, first %p)\n",
2360 num_refs, first_seq);
2361 wait_event(fs_info->tree_mod_seq_wait,
2362 num_refs != delayed_refs->num_entries ||
2363 fs_info->tree_mod_seq_list.next != first_seq);
2364 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2365 delayed_refs->num_entries, fs_info->tree_mod_seq_list.next);
2366 spin_lock(&delayed_refs->lock);
2367 }
2368
2369 #ifdef SCRAMBLE_DELAYED_REFS
2370 /*
2371 * Normally delayed refs get processed in ascending bytenr order. This
2372 * correlates in most cases to the order added. To expose dependencies on this
2373 * order, we start to process the tree in the middle instead of the beginning
2374 */
2375 static u64 find_middle(struct rb_root *root)
2376 {
2377 struct rb_node *n = root->rb_node;
2378 struct btrfs_delayed_ref_node *entry;
2379 int alt = 1;
2380 u64 middle;
2381 u64 first = 0, last = 0;
2382
2383 n = rb_first(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 first = entry->bytenr;
2387 }
2388 n = rb_last(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 last = entry->bytenr;
2392 }
2393 n = root->rb_node;
2394
2395 while (n) {
2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2397 WARN_ON(!entry->in_tree);
2398
2399 middle = entry->bytenr;
2400
2401 if (alt)
2402 n = n->rb_left;
2403 else
2404 n = n->rb_right;
2405
2406 alt = 1 - alt;
2407 }
2408 return middle;
2409 }
2410 #endif
2411
2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2413 struct btrfs_fs_info *fs_info)
2414 {
2415 struct qgroup_update *qgroup_update;
2416 int ret = 0;
2417
2418 if (list_empty(&trans->qgroup_ref_list) !=
2419 !trans->delayed_ref_elem.seq) {
2420 /* list without seq or seq without list */
2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2422 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2423 trans->delayed_ref_elem.seq);
2424 BUG();
2425 }
2426
2427 if (!trans->delayed_ref_elem.seq)
2428 return 0;
2429
2430 while (!list_empty(&trans->qgroup_ref_list)) {
2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2432 struct qgroup_update, list);
2433 list_del(&qgroup_update->list);
2434 if (!ret)
2435 ret = btrfs_qgroup_account_ref(
2436 trans, fs_info, qgroup_update->node,
2437 qgroup_update->extent_op);
2438 kfree(qgroup_update);
2439 }
2440
2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2442
2443 return ret;
2444 }
2445
2446 /*
2447 * this starts processing the delayed reference count updates and
2448 * extent insertions we have queued up so far. count can be
2449 * 0, which means to process everything in the tree at the start
2450 * of the run (but not newly added entries), or it can be some target
2451 * number you'd like to process.
2452 *
2453 * Returns 0 on success or if called with an aborted transaction
2454 * Returns <0 on error and aborts the transaction
2455 */
2456 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root, unsigned long count)
2458 {
2459 struct rb_node *node;
2460 struct btrfs_delayed_ref_root *delayed_refs;
2461 struct btrfs_delayed_ref_node *ref;
2462 struct list_head cluster;
2463 struct list_head *first_seq = NULL;
2464 int ret;
2465 u64 delayed_start;
2466 int run_all = count == (unsigned long)-1;
2467 int run_most = 0;
2468 unsigned long num_refs = 0;
2469 int consider_waiting;
2470
2471 /* We'll clean this up in btrfs_cleanup_transaction */
2472 if (trans->aborted)
2473 return 0;
2474
2475 if (root == root->fs_info->extent_root)
2476 root = root->fs_info->tree_root;
2477
2478 do_chunk_alloc(trans, root->fs_info->extent_root,
2479 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2480 CHUNK_ALLOC_NO_FORCE);
2481
2482 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
2485 INIT_LIST_HEAD(&cluster);
2486 again:
2487 consider_waiting = 0;
2488 spin_lock(&delayed_refs->lock);
2489
2490 #ifdef SCRAMBLE_DELAYED_REFS
2491 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2492 #endif
2493
2494 if (count == 0) {
2495 count = delayed_refs->num_entries * 2;
2496 run_most = 1;
2497 }
2498 while (1) {
2499 if (!(run_all || run_most) &&
2500 delayed_refs->num_heads_ready < 64)
2501 break;
2502
2503 /*
2504 * go find something we can process in the rbtree. We start at
2505 * the beginning of the tree, and then build a cluster
2506 * of refs to process starting at the first one we are able to
2507 * lock
2508 */
2509 delayed_start = delayed_refs->run_delayed_start;
2510 ret = btrfs_find_ref_cluster(trans, &cluster,
2511 delayed_refs->run_delayed_start);
2512 if (ret)
2513 break;
2514
2515 if (delayed_start >= delayed_refs->run_delayed_start) {
2516 if (consider_waiting == 0) {
2517 /*
2518 * btrfs_find_ref_cluster looped. let's do one
2519 * more cycle. if we don't run any delayed ref
2520 * during that cycle (because we can't because
2521 * all of them are blocked) and if the number of
2522 * refs doesn't change, we avoid busy waiting.
2523 */
2524 consider_waiting = 1;
2525 num_refs = delayed_refs->num_entries;
2526 first_seq = root->fs_info->tree_mod_seq_list.next;
2527 } else {
2528 wait_for_more_refs(root->fs_info, delayed_refs,
2529 num_refs, first_seq);
2530 /*
2531 * after waiting, things have changed. we
2532 * dropped the lock and someone else might have
2533 * run some refs, built new clusters and so on.
2534 * therefore, we restart staleness detection.
2535 */
2536 consider_waiting = 0;
2537 }
2538 }
2539
2540 ret = run_clustered_refs(trans, root, &cluster);
2541 if (ret < 0) {
2542 spin_unlock(&delayed_refs->lock);
2543 btrfs_abort_transaction(trans, root, ret);
2544 return ret;
2545 }
2546
2547 count -= min_t(unsigned long, ret, count);
2548
2549 if (count == 0)
2550 break;
2551
2552 if (ret || delayed_refs->run_delayed_start == 0) {
2553 /* refs were run, let's reset staleness detection */
2554 consider_waiting = 0;
2555 }
2556 }
2557
2558 if (run_all) {
2559 node = rb_first(&delayed_refs->root);
2560 if (!node)
2561 goto out;
2562 count = (unsigned long)-1;
2563
2564 while (node) {
2565 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2566 rb_node);
2567 if (btrfs_delayed_ref_is_head(ref)) {
2568 struct btrfs_delayed_ref_head *head;
2569
2570 head = btrfs_delayed_node_to_head(ref);
2571 atomic_inc(&ref->refs);
2572
2573 spin_unlock(&delayed_refs->lock);
2574 /*
2575 * Mutex was contended, block until it's
2576 * released and try again
2577 */
2578 mutex_lock(&head->mutex);
2579 mutex_unlock(&head->mutex);
2580
2581 btrfs_put_delayed_ref(ref);
2582 cond_resched();
2583 goto again;
2584 }
2585 node = rb_next(node);
2586 }
2587 spin_unlock(&delayed_refs->lock);
2588 schedule_timeout(1);
2589 goto again;
2590 }
2591 out:
2592 spin_unlock(&delayed_refs->lock);
2593 assert_qgroups_uptodate(trans);
2594 return 0;
2595 }
2596
2597 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2598 struct btrfs_root *root,
2599 u64 bytenr, u64 num_bytes, u64 flags,
2600 int is_data)
2601 {
2602 struct btrfs_delayed_extent_op *extent_op;
2603 int ret;
2604
2605 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2606 if (!extent_op)
2607 return -ENOMEM;
2608
2609 extent_op->flags_to_set = flags;
2610 extent_op->update_flags = 1;
2611 extent_op->update_key = 0;
2612 extent_op->is_data = is_data ? 1 : 0;
2613
2614 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2615 num_bytes, extent_op);
2616 if (ret)
2617 kfree(extent_op);
2618 return ret;
2619 }
2620
2621 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root,
2623 struct btrfs_path *path,
2624 u64 objectid, u64 offset, u64 bytenr)
2625 {
2626 struct btrfs_delayed_ref_head *head;
2627 struct btrfs_delayed_ref_node *ref;
2628 struct btrfs_delayed_data_ref *data_ref;
2629 struct btrfs_delayed_ref_root *delayed_refs;
2630 struct rb_node *node;
2631 int ret = 0;
2632
2633 ret = -ENOENT;
2634 delayed_refs = &trans->transaction->delayed_refs;
2635 spin_lock(&delayed_refs->lock);
2636 head = btrfs_find_delayed_ref_head(trans, bytenr);
2637 if (!head)
2638 goto out;
2639
2640 if (!mutex_trylock(&head->mutex)) {
2641 atomic_inc(&head->node.refs);
2642 spin_unlock(&delayed_refs->lock);
2643
2644 btrfs_release_path(path);
2645
2646 /*
2647 * Mutex was contended, block until it's released and let
2648 * caller try again
2649 */
2650 mutex_lock(&head->mutex);
2651 mutex_unlock(&head->mutex);
2652 btrfs_put_delayed_ref(&head->node);
2653 return -EAGAIN;
2654 }
2655
2656 node = rb_prev(&head->node.rb_node);
2657 if (!node)
2658 goto out_unlock;
2659
2660 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2661
2662 if (ref->bytenr != bytenr)
2663 goto out_unlock;
2664
2665 ret = 1;
2666 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2667 goto out_unlock;
2668
2669 data_ref = btrfs_delayed_node_to_data_ref(ref);
2670
2671 node = rb_prev(node);
2672 if (node) {
2673 int seq = ref->seq;
2674
2675 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2676 if (ref->bytenr == bytenr && ref->seq == seq)
2677 goto out_unlock;
2678 }
2679
2680 if (data_ref->root != root->root_key.objectid ||
2681 data_ref->objectid != objectid || data_ref->offset != offset)
2682 goto out_unlock;
2683
2684 ret = 0;
2685 out_unlock:
2686 mutex_unlock(&head->mutex);
2687 out:
2688 spin_unlock(&delayed_refs->lock);
2689 return ret;
2690 }
2691
2692 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2693 struct btrfs_root *root,
2694 struct btrfs_path *path,
2695 u64 objectid, u64 offset, u64 bytenr)
2696 {
2697 struct btrfs_root *extent_root = root->fs_info->extent_root;
2698 struct extent_buffer *leaf;
2699 struct btrfs_extent_data_ref *ref;
2700 struct btrfs_extent_inline_ref *iref;
2701 struct btrfs_extent_item *ei;
2702 struct btrfs_key key;
2703 u32 item_size;
2704 int ret;
2705
2706 key.objectid = bytenr;
2707 key.offset = (u64)-1;
2708 key.type = BTRFS_EXTENT_ITEM_KEY;
2709
2710 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2711 if (ret < 0)
2712 goto out;
2713 BUG_ON(ret == 0); /* Corruption */
2714
2715 ret = -ENOENT;
2716 if (path->slots[0] == 0)
2717 goto out;
2718
2719 path->slots[0]--;
2720 leaf = path->nodes[0];
2721 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2722
2723 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2724 goto out;
2725
2726 ret = 1;
2727 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2729 if (item_size < sizeof(*ei)) {
2730 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2731 goto out;
2732 }
2733 #endif
2734 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2735
2736 if (item_size != sizeof(*ei) +
2737 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2738 goto out;
2739
2740 if (btrfs_extent_generation(leaf, ei) <=
2741 btrfs_root_last_snapshot(&root->root_item))
2742 goto out;
2743
2744 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2745 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2746 BTRFS_EXTENT_DATA_REF_KEY)
2747 goto out;
2748
2749 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2750 if (btrfs_extent_refs(leaf, ei) !=
2751 btrfs_extent_data_ref_count(leaf, ref) ||
2752 btrfs_extent_data_ref_root(leaf, ref) !=
2753 root->root_key.objectid ||
2754 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2755 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2756 goto out;
2757
2758 ret = 0;
2759 out:
2760 return ret;
2761 }
2762
2763 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root,
2765 u64 objectid, u64 offset, u64 bytenr)
2766 {
2767 struct btrfs_path *path;
2768 int ret;
2769 int ret2;
2770
2771 path = btrfs_alloc_path();
2772 if (!path)
2773 return -ENOENT;
2774
2775 do {
2776 ret = check_committed_ref(trans, root, path, objectid,
2777 offset, bytenr);
2778 if (ret && ret != -ENOENT)
2779 goto out;
2780
2781 ret2 = check_delayed_ref(trans, root, path, objectid,
2782 offset, bytenr);
2783 } while (ret2 == -EAGAIN);
2784
2785 if (ret2 && ret2 != -ENOENT) {
2786 ret = ret2;
2787 goto out;
2788 }
2789
2790 if (ret != -ENOENT || ret2 != -ENOENT)
2791 ret = 0;
2792 out:
2793 btrfs_free_path(path);
2794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2795 WARN_ON(ret > 0);
2796 return ret;
2797 }
2798
2799 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2800 struct btrfs_root *root,
2801 struct extent_buffer *buf,
2802 int full_backref, int inc, int for_cow)
2803 {
2804 u64 bytenr;
2805 u64 num_bytes;
2806 u64 parent;
2807 u64 ref_root;
2808 u32 nritems;
2809 struct btrfs_key key;
2810 struct btrfs_file_extent_item *fi;
2811 int i;
2812 int level;
2813 int ret = 0;
2814 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2815 u64, u64, u64, u64, u64, u64, int);
2816
2817 ref_root = btrfs_header_owner(buf);
2818 nritems = btrfs_header_nritems(buf);
2819 level = btrfs_header_level(buf);
2820
2821 if (!root->ref_cows && level == 0)
2822 return 0;
2823
2824 if (inc)
2825 process_func = btrfs_inc_extent_ref;
2826 else
2827 process_func = btrfs_free_extent;
2828
2829 if (full_backref)
2830 parent = buf->start;
2831 else
2832 parent = 0;
2833
2834 for (i = 0; i < nritems; i++) {
2835 if (level == 0) {
2836 btrfs_item_key_to_cpu(buf, &key, i);
2837 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2838 continue;
2839 fi = btrfs_item_ptr(buf, i,
2840 struct btrfs_file_extent_item);
2841 if (btrfs_file_extent_type(buf, fi) ==
2842 BTRFS_FILE_EXTENT_INLINE)
2843 continue;
2844 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2845 if (bytenr == 0)
2846 continue;
2847
2848 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2849 key.offset -= btrfs_file_extent_offset(buf, fi);
2850 ret = process_func(trans, root, bytenr, num_bytes,
2851 parent, ref_root, key.objectid,
2852 key.offset, for_cow);
2853 if (ret)
2854 goto fail;
2855 } else {
2856 bytenr = btrfs_node_blockptr(buf, i);
2857 num_bytes = btrfs_level_size(root, level - 1);
2858 ret = process_func(trans, root, bytenr, num_bytes,
2859 parent, ref_root, level - 1, 0,
2860 for_cow);
2861 if (ret)
2862 goto fail;
2863 }
2864 }
2865 return 0;
2866 fail:
2867 return ret;
2868 }
2869
2870 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2871 struct extent_buffer *buf, int full_backref, int for_cow)
2872 {
2873 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2874 }
2875
2876 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2877 struct extent_buffer *buf, int full_backref, int for_cow)
2878 {
2879 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2880 }
2881
2882 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2883 struct btrfs_root *root,
2884 struct btrfs_path *path,
2885 struct btrfs_block_group_cache *cache)
2886 {
2887 int ret;
2888 struct btrfs_root *extent_root = root->fs_info->extent_root;
2889 unsigned long bi;
2890 struct extent_buffer *leaf;
2891
2892 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2893 if (ret < 0)
2894 goto fail;
2895 BUG_ON(ret); /* Corruption */
2896
2897 leaf = path->nodes[0];
2898 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2899 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2900 btrfs_mark_buffer_dirty(leaf);
2901 btrfs_release_path(path);
2902 fail:
2903 if (ret) {
2904 btrfs_abort_transaction(trans, root, ret);
2905 return ret;
2906 }
2907 return 0;
2908
2909 }
2910
2911 static struct btrfs_block_group_cache *
2912 next_block_group(struct btrfs_root *root,
2913 struct btrfs_block_group_cache *cache)
2914 {
2915 struct rb_node *node;
2916 spin_lock(&root->fs_info->block_group_cache_lock);
2917 node = rb_next(&cache->cache_node);
2918 btrfs_put_block_group(cache);
2919 if (node) {
2920 cache = rb_entry(node, struct btrfs_block_group_cache,
2921 cache_node);
2922 btrfs_get_block_group(cache);
2923 } else
2924 cache = NULL;
2925 spin_unlock(&root->fs_info->block_group_cache_lock);
2926 return cache;
2927 }
2928
2929 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2930 struct btrfs_trans_handle *trans,
2931 struct btrfs_path *path)
2932 {
2933 struct btrfs_root *root = block_group->fs_info->tree_root;
2934 struct inode *inode = NULL;
2935 u64 alloc_hint = 0;
2936 int dcs = BTRFS_DC_ERROR;
2937 int num_pages = 0;
2938 int retries = 0;
2939 int ret = 0;
2940
2941 /*
2942 * If this block group is smaller than 100 megs don't bother caching the
2943 * block group.
2944 */
2945 if (block_group->key.offset < (100 * 1024 * 1024)) {
2946 spin_lock(&block_group->lock);
2947 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2948 spin_unlock(&block_group->lock);
2949 return 0;
2950 }
2951
2952 again:
2953 inode = lookup_free_space_inode(root, block_group, path);
2954 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2955 ret = PTR_ERR(inode);
2956 btrfs_release_path(path);
2957 goto out;
2958 }
2959
2960 if (IS_ERR(inode)) {
2961 BUG_ON(retries);
2962 retries++;
2963
2964 if (block_group->ro)
2965 goto out_free;
2966
2967 ret = create_free_space_inode(root, trans, block_group, path);
2968 if (ret)
2969 goto out_free;
2970 goto again;
2971 }
2972
2973 /* We've already setup this transaction, go ahead and exit */
2974 if (block_group->cache_generation == trans->transid &&
2975 i_size_read(inode)) {
2976 dcs = BTRFS_DC_SETUP;
2977 goto out_put;
2978 }
2979
2980 /*
2981 * We want to set the generation to 0, that way if anything goes wrong
2982 * from here on out we know not to trust this cache when we load up next
2983 * time.
2984 */
2985 BTRFS_I(inode)->generation = 0;
2986 ret = btrfs_update_inode(trans, root, inode);
2987 WARN_ON(ret);
2988
2989 if (i_size_read(inode) > 0) {
2990 ret = btrfs_truncate_free_space_cache(root, trans, path,
2991 inode);
2992 if (ret)
2993 goto out_put;
2994 }
2995
2996 spin_lock(&block_group->lock);
2997 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2998 !btrfs_test_opt(root, SPACE_CACHE)) {
2999 /*
3000 * don't bother trying to write stuff out _if_
3001 * a) we're not cached,
3002 * b) we're with nospace_cache mount option.
3003 */
3004 dcs = BTRFS_DC_WRITTEN;
3005 spin_unlock(&block_group->lock);
3006 goto out_put;
3007 }
3008 spin_unlock(&block_group->lock);
3009
3010 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
3011 if (!num_pages)
3012 num_pages = 1;
3013
3014 /*
3015 * Just to make absolutely sure we have enough space, we're going to
3016 * preallocate 12 pages worth of space for each block group. In
3017 * practice we ought to use at most 8, but we need extra space so we can
3018 * add our header and have a terminator between the extents and the
3019 * bitmaps.
3020 */
3021 num_pages *= 16;
3022 num_pages *= PAGE_CACHE_SIZE;
3023
3024 ret = btrfs_check_data_free_space(inode, num_pages);
3025 if (ret)
3026 goto out_put;
3027
3028 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3029 num_pages, num_pages,
3030 &alloc_hint);
3031 if (!ret)
3032 dcs = BTRFS_DC_SETUP;
3033 btrfs_free_reserved_data_space(inode, num_pages);
3034
3035 out_put:
3036 iput(inode);
3037 out_free:
3038 btrfs_release_path(path);
3039 out:
3040 spin_lock(&block_group->lock);
3041 if (!ret && dcs == BTRFS_DC_SETUP)
3042 block_group->cache_generation = trans->transid;
3043 block_group->disk_cache_state = dcs;
3044 spin_unlock(&block_group->lock);
3045
3046 return ret;
3047 }
3048
3049 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root)
3051 {
3052 struct btrfs_block_group_cache *cache;
3053 int err = 0;
3054 struct btrfs_path *path;
3055 u64 last = 0;
3056
3057 path = btrfs_alloc_path();
3058 if (!path)
3059 return -ENOMEM;
3060
3061 again:
3062 while (1) {
3063 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3064 while (cache) {
3065 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3066 break;
3067 cache = next_block_group(root, cache);
3068 }
3069 if (!cache) {
3070 if (last == 0)
3071 break;
3072 last = 0;
3073 continue;
3074 }
3075 err = cache_save_setup(cache, trans, path);
3076 last = cache->key.objectid + cache->key.offset;
3077 btrfs_put_block_group(cache);
3078 }
3079
3080 while (1) {
3081 if (last == 0) {
3082 err = btrfs_run_delayed_refs(trans, root,
3083 (unsigned long)-1);
3084 if (err) /* File system offline */
3085 goto out;
3086 }
3087
3088 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3089 while (cache) {
3090 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3091 btrfs_put_block_group(cache);
3092 goto again;
3093 }
3094
3095 if (cache->dirty)
3096 break;
3097 cache = next_block_group(root, cache);
3098 }
3099 if (!cache) {
3100 if (last == 0)
3101 break;
3102 last = 0;
3103 continue;
3104 }
3105
3106 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3107 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3108 cache->dirty = 0;
3109 last = cache->key.objectid + cache->key.offset;
3110
3111 err = write_one_cache_group(trans, root, path, cache);
3112 if (err) /* File system offline */
3113 goto out;
3114
3115 btrfs_put_block_group(cache);
3116 }
3117
3118 while (1) {
3119 /*
3120 * I don't think this is needed since we're just marking our
3121 * preallocated extent as written, but just in case it can't
3122 * hurt.
3123 */
3124 if (last == 0) {
3125 err = btrfs_run_delayed_refs(trans, root,
3126 (unsigned long)-1);
3127 if (err) /* File system offline */
3128 goto out;
3129 }
3130
3131 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3132 while (cache) {
3133 /*
3134 * Really this shouldn't happen, but it could if we
3135 * couldn't write the entire preallocated extent and
3136 * splitting the extent resulted in a new block.
3137 */
3138 if (cache->dirty) {
3139 btrfs_put_block_group(cache);
3140 goto again;
3141 }
3142 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3143 break;
3144 cache = next_block_group(root, cache);
3145 }
3146 if (!cache) {
3147 if (last == 0)
3148 break;
3149 last = 0;
3150 continue;
3151 }
3152
3153 err = btrfs_write_out_cache(root, trans, cache, path);
3154
3155 /*
3156 * If we didn't have an error then the cache state is still
3157 * NEED_WRITE, so we can set it to WRITTEN.
3158 */
3159 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3160 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3161 last = cache->key.objectid + cache->key.offset;
3162 btrfs_put_block_group(cache);
3163 }
3164 out:
3165
3166 btrfs_free_path(path);
3167 return err;
3168 }
3169
3170 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3171 {
3172 struct btrfs_block_group_cache *block_group;
3173 int readonly = 0;
3174
3175 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3176 if (!block_group || block_group->ro)
3177 readonly = 1;
3178 if (block_group)
3179 btrfs_put_block_group(block_group);
3180 return readonly;
3181 }
3182
3183 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3184 u64 total_bytes, u64 bytes_used,
3185 struct btrfs_space_info **space_info)
3186 {
3187 struct btrfs_space_info *found;
3188 int i;
3189 int factor;
3190
3191 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3192 BTRFS_BLOCK_GROUP_RAID10))
3193 factor = 2;
3194 else
3195 factor = 1;
3196
3197 found = __find_space_info(info, flags);
3198 if (found) {
3199 spin_lock(&found->lock);
3200 found->total_bytes += total_bytes;
3201 found->disk_total += total_bytes * factor;
3202 found->bytes_used += bytes_used;
3203 found->disk_used += bytes_used * factor;
3204 found->full = 0;
3205 spin_unlock(&found->lock);
3206 *space_info = found;
3207 return 0;
3208 }
3209 found = kzalloc(sizeof(*found), GFP_NOFS);
3210 if (!found)
3211 return -ENOMEM;
3212
3213 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3214 INIT_LIST_HEAD(&found->block_groups[i]);
3215 init_rwsem(&found->groups_sem);
3216 spin_lock_init(&found->lock);
3217 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3218 found->total_bytes = total_bytes;
3219 found->disk_total = total_bytes * factor;
3220 found->bytes_used = bytes_used;
3221 found->disk_used = bytes_used * factor;
3222 found->bytes_pinned = 0;
3223 found->bytes_reserved = 0;
3224 found->bytes_readonly = 0;
3225 found->bytes_may_use = 0;
3226 found->full = 0;
3227 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3228 found->chunk_alloc = 0;
3229 found->flush = 0;
3230 init_waitqueue_head(&found->wait);
3231 *space_info = found;
3232 list_add_rcu(&found->list, &info->space_info);
3233 if (flags & BTRFS_BLOCK_GROUP_DATA)
3234 info->data_sinfo = found;
3235 return 0;
3236 }
3237
3238 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3239 {
3240 u64 extra_flags = chunk_to_extended(flags) &
3241 BTRFS_EXTENDED_PROFILE_MASK;
3242
3243 if (flags & BTRFS_BLOCK_GROUP_DATA)
3244 fs_info->avail_data_alloc_bits |= extra_flags;
3245 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3246 fs_info->avail_metadata_alloc_bits |= extra_flags;
3247 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3248 fs_info->avail_system_alloc_bits |= extra_flags;
3249 }
3250
3251 /*
3252 * returns target flags in extended format or 0 if restripe for this
3253 * chunk_type is not in progress
3254 *
3255 * should be called with either volume_mutex or balance_lock held
3256 */
3257 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3258 {
3259 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3260 u64 target = 0;
3261
3262 if (!bctl)
3263 return 0;
3264
3265 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3266 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3267 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3268 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3269 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3270 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3271 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3272 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3273 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3274 }
3275
3276 return target;
3277 }
3278
3279 /*
3280 * @flags: available profiles in extended format (see ctree.h)
3281 *
3282 * Returns reduced profile in chunk format. If profile changing is in
3283 * progress (either running or paused) picks the target profile (if it's
3284 * already available), otherwise falls back to plain reducing.
3285 */
3286 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3287 {
3288 /*
3289 * we add in the count of missing devices because we want
3290 * to make sure that any RAID levels on a degraded FS
3291 * continue to be honored.
3292 */
3293 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3294 root->fs_info->fs_devices->missing_devices;
3295 u64 target;
3296
3297 /*
3298 * see if restripe for this chunk_type is in progress, if so
3299 * try to reduce to the target profile
3300 */
3301 spin_lock(&root->fs_info->balance_lock);
3302 target = get_restripe_target(root->fs_info, flags);
3303 if (target) {
3304 /* pick target profile only if it's already available */
3305 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3306 spin_unlock(&root->fs_info->balance_lock);
3307 return extended_to_chunk(target);
3308 }
3309 }
3310 spin_unlock(&root->fs_info->balance_lock);
3311
3312 if (num_devices == 1)
3313 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3314 if (num_devices < 4)
3315 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3316
3317 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3318 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3319 BTRFS_BLOCK_GROUP_RAID10))) {
3320 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3321 }
3322
3323 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3324 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3325 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3326 }
3327
3328 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3329 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3330 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3331 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3332 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3333 }
3334
3335 return extended_to_chunk(flags);
3336 }
3337
3338 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3339 {
3340 if (flags & BTRFS_BLOCK_GROUP_DATA)
3341 flags |= root->fs_info->avail_data_alloc_bits;
3342 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3343 flags |= root->fs_info->avail_system_alloc_bits;
3344 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3345 flags |= root->fs_info->avail_metadata_alloc_bits;
3346
3347 return btrfs_reduce_alloc_profile(root, flags);
3348 }
3349
3350 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3351 {
3352 u64 flags;
3353
3354 if (data)
3355 flags = BTRFS_BLOCK_GROUP_DATA;
3356 else if (root == root->fs_info->chunk_root)
3357 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3358 else
3359 flags = BTRFS_BLOCK_GROUP_METADATA;
3360
3361 return get_alloc_profile(root, flags);
3362 }
3363
3364 /*
3365 * This will check the space that the inode allocates from to make sure we have
3366 * enough space for bytes.
3367 */
3368 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3369 {
3370 struct btrfs_space_info *data_sinfo;
3371 struct btrfs_root *root = BTRFS_I(inode)->root;
3372 struct btrfs_fs_info *fs_info = root->fs_info;
3373 u64 used;
3374 int ret = 0, committed = 0, alloc_chunk = 1;
3375
3376 /* make sure bytes are sectorsize aligned */
3377 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3378
3379 if (root == root->fs_info->tree_root ||
3380 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3381 alloc_chunk = 0;
3382 committed = 1;
3383 }
3384
3385 data_sinfo = fs_info->data_sinfo;
3386 if (!data_sinfo)
3387 goto alloc;
3388
3389 again:
3390 /* make sure we have enough space to handle the data first */
3391 spin_lock(&data_sinfo->lock);
3392 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3393 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3394 data_sinfo->bytes_may_use;
3395
3396 if (used + bytes > data_sinfo->total_bytes) {
3397 struct btrfs_trans_handle *trans;
3398
3399 /*
3400 * if we don't have enough free bytes in this space then we need
3401 * to alloc a new chunk.
3402 */
3403 if (!data_sinfo->full && alloc_chunk) {
3404 u64 alloc_target;
3405
3406 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3407 spin_unlock(&data_sinfo->lock);
3408 alloc:
3409 alloc_target = btrfs_get_alloc_profile(root, 1);
3410 trans = btrfs_join_transaction(root);
3411 if (IS_ERR(trans))
3412 return PTR_ERR(trans);
3413
3414 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3415 bytes + 2 * 1024 * 1024,
3416 alloc_target,
3417 CHUNK_ALLOC_NO_FORCE);
3418 btrfs_end_transaction(trans, root);
3419 if (ret < 0) {
3420 if (ret != -ENOSPC)
3421 return ret;
3422 else
3423 goto commit_trans;
3424 }
3425
3426 if (!data_sinfo)
3427 data_sinfo = fs_info->data_sinfo;
3428
3429 goto again;
3430 }
3431
3432 /*
3433 * If we have less pinned bytes than we want to allocate then
3434 * don't bother committing the transaction, it won't help us.
3435 */
3436 if (data_sinfo->bytes_pinned < bytes)
3437 committed = 1;
3438 spin_unlock(&data_sinfo->lock);
3439
3440 /* commit the current transaction and try again */
3441 commit_trans:
3442 if (!committed &&
3443 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3444 committed = 1;
3445 trans = btrfs_join_transaction(root);
3446 if (IS_ERR(trans))
3447 return PTR_ERR(trans);
3448 ret = btrfs_commit_transaction(trans, root);
3449 if (ret)
3450 return ret;
3451 goto again;
3452 }
3453
3454 return -ENOSPC;
3455 }
3456 data_sinfo->bytes_may_use += bytes;
3457 trace_btrfs_space_reservation(root->fs_info, "space_info",
3458 data_sinfo->flags, bytes, 1);
3459 spin_unlock(&data_sinfo->lock);
3460
3461 return 0;
3462 }
3463
3464 /*
3465 * Called if we need to clear a data reservation for this inode.
3466 */
3467 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3468 {
3469 struct btrfs_root *root = BTRFS_I(inode)->root;
3470 struct btrfs_space_info *data_sinfo;
3471
3472 /* make sure bytes are sectorsize aligned */
3473 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3474
3475 data_sinfo = root->fs_info->data_sinfo;
3476 spin_lock(&data_sinfo->lock);
3477 data_sinfo->bytes_may_use -= bytes;
3478 trace_btrfs_space_reservation(root->fs_info, "space_info",
3479 data_sinfo->flags, bytes, 0);
3480 spin_unlock(&data_sinfo->lock);
3481 }
3482
3483 static void force_metadata_allocation(struct btrfs_fs_info *info)
3484 {
3485 struct list_head *head = &info->space_info;
3486 struct btrfs_space_info *found;
3487
3488 rcu_read_lock();
3489 list_for_each_entry_rcu(found, head, list) {
3490 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3491 found->force_alloc = CHUNK_ALLOC_FORCE;
3492 }
3493 rcu_read_unlock();
3494 }
3495
3496 static int should_alloc_chunk(struct btrfs_root *root,
3497 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3498 int force)
3499 {
3500 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3501 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3502 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3503 u64 thresh;
3504
3505 if (force == CHUNK_ALLOC_FORCE)
3506 return 1;
3507
3508 /*
3509 * We need to take into account the global rsv because for all intents
3510 * and purposes it's used space. Don't worry about locking the
3511 * global_rsv, it doesn't change except when the transaction commits.
3512 */
3513 num_allocated += global_rsv->size;
3514
3515 /*
3516 * in limited mode, we want to have some free space up to
3517 * about 1% of the FS size.
3518 */
3519 if (force == CHUNK_ALLOC_LIMITED) {
3520 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3521 thresh = max_t(u64, 64 * 1024 * 1024,
3522 div_factor_fine(thresh, 1));
3523
3524 if (num_bytes - num_allocated < thresh)
3525 return 1;
3526 }
3527 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3528
3529 /* 256MB or 2% of the FS */
3530 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3531 /* system chunks need a much small threshold */
3532 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3533 thresh = 32 * 1024 * 1024;
3534
3535 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3536 return 0;
3537 return 1;
3538 }
3539
3540 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3541 {
3542 u64 num_dev;
3543
3544 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3545 type & BTRFS_BLOCK_GROUP_RAID0)
3546 num_dev = root->fs_info->fs_devices->rw_devices;
3547 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3548 num_dev = 2;
3549 else
3550 num_dev = 1; /* DUP or single */
3551
3552 /* metadata for updaing devices and chunk tree */
3553 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3554 }
3555
3556 static void check_system_chunk(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root, u64 type)
3558 {
3559 struct btrfs_space_info *info;
3560 u64 left;
3561 u64 thresh;
3562
3563 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3564 spin_lock(&info->lock);
3565 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3566 info->bytes_reserved - info->bytes_readonly;
3567 spin_unlock(&info->lock);
3568
3569 thresh = get_system_chunk_thresh(root, type);
3570 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3571 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3572 left, thresh, type);
3573 dump_space_info(info, 0, 0);
3574 }
3575
3576 if (left < thresh) {
3577 u64 flags;
3578
3579 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3580 btrfs_alloc_chunk(trans, root, flags);
3581 }
3582 }
3583
3584 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *extent_root, u64 alloc_bytes,
3586 u64 flags, int force)
3587 {
3588 struct btrfs_space_info *space_info;
3589 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3590 int wait_for_alloc = 0;
3591 int ret = 0;
3592
3593 space_info = __find_space_info(extent_root->fs_info, flags);
3594 if (!space_info) {
3595 ret = update_space_info(extent_root->fs_info, flags,
3596 0, 0, &space_info);
3597 BUG_ON(ret); /* -ENOMEM */
3598 }
3599 BUG_ON(!space_info); /* Logic error */
3600
3601 again:
3602 spin_lock(&space_info->lock);
3603 if (force < space_info->force_alloc)
3604 force = space_info->force_alloc;
3605 if (space_info->full) {
3606 spin_unlock(&space_info->lock);
3607 return 0;
3608 }
3609
3610 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3611 spin_unlock(&space_info->lock);
3612 return 0;
3613 } else if (space_info->chunk_alloc) {
3614 wait_for_alloc = 1;
3615 } else {
3616 space_info->chunk_alloc = 1;
3617 }
3618
3619 spin_unlock(&space_info->lock);
3620
3621 mutex_lock(&fs_info->chunk_mutex);
3622
3623 /*
3624 * The chunk_mutex is held throughout the entirety of a chunk
3625 * allocation, so once we've acquired the chunk_mutex we know that the
3626 * other guy is done and we need to recheck and see if we should
3627 * allocate.
3628 */
3629 if (wait_for_alloc) {
3630 mutex_unlock(&fs_info->chunk_mutex);
3631 wait_for_alloc = 0;
3632 goto again;
3633 }
3634
3635 /*
3636 * If we have mixed data/metadata chunks we want to make sure we keep
3637 * allocating mixed chunks instead of individual chunks.
3638 */
3639 if (btrfs_mixed_space_info(space_info))
3640 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3641
3642 /*
3643 * if we're doing a data chunk, go ahead and make sure that
3644 * we keep a reasonable number of metadata chunks allocated in the
3645 * FS as well.
3646 */
3647 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3648 fs_info->data_chunk_allocations++;
3649 if (!(fs_info->data_chunk_allocations %
3650 fs_info->metadata_ratio))
3651 force_metadata_allocation(fs_info);
3652 }
3653
3654 /*
3655 * Check if we have enough space in SYSTEM chunk because we may need
3656 * to update devices.
3657 */
3658 check_system_chunk(trans, extent_root, flags);
3659
3660 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3661 if (ret < 0 && ret != -ENOSPC)
3662 goto out;
3663
3664 spin_lock(&space_info->lock);
3665 if (ret)
3666 space_info->full = 1;
3667 else
3668 ret = 1;
3669
3670 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3671 space_info->chunk_alloc = 0;
3672 spin_unlock(&space_info->lock);
3673 out:
3674 mutex_unlock(&fs_info->chunk_mutex);
3675 return ret;
3676 }
3677
3678 /*
3679 * shrink metadata reservation for delalloc
3680 */
3681 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3682 bool wait_ordered)
3683 {
3684 struct btrfs_block_rsv *block_rsv;
3685 struct btrfs_space_info *space_info;
3686 struct btrfs_trans_handle *trans;
3687 u64 delalloc_bytes;
3688 u64 max_reclaim;
3689 long time_left;
3690 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3691 int loops = 0;
3692
3693 trans = (struct btrfs_trans_handle *)current->journal_info;
3694 block_rsv = &root->fs_info->delalloc_block_rsv;
3695 space_info = block_rsv->space_info;
3696
3697 smp_mb();
3698 delalloc_bytes = root->fs_info->delalloc_bytes;
3699 if (delalloc_bytes == 0) {
3700 if (trans)
3701 return;
3702 btrfs_wait_ordered_extents(root, 0, 0);
3703 return;
3704 }
3705
3706 while (delalloc_bytes && loops < 3) {
3707 max_reclaim = min(delalloc_bytes, to_reclaim);
3708 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3709 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3710 WB_REASON_FS_FREE_SPACE);
3711
3712 spin_lock(&space_info->lock);
3713 if (space_info->bytes_used + space_info->bytes_reserved +
3714 space_info->bytes_pinned + space_info->bytes_readonly +
3715 space_info->bytes_may_use + orig <=
3716 space_info->total_bytes) {
3717 spin_unlock(&space_info->lock);
3718 break;
3719 }
3720 spin_unlock(&space_info->lock);
3721
3722 loops++;
3723 if (wait_ordered && !trans) {
3724 btrfs_wait_ordered_extents(root, 0, 0);
3725 } else {
3726 time_left = schedule_timeout_killable(1);
3727 if (time_left)
3728 break;
3729 }
3730 smp_mb();
3731 delalloc_bytes = root->fs_info->delalloc_bytes;
3732 }
3733 }
3734
3735 /**
3736 * maybe_commit_transaction - possibly commit the transaction if its ok to
3737 * @root - the root we're allocating for
3738 * @bytes - the number of bytes we want to reserve
3739 * @force - force the commit
3740 *
3741 * This will check to make sure that committing the transaction will actually
3742 * get us somewhere and then commit the transaction if it does. Otherwise it
3743 * will return -ENOSPC.
3744 */
3745 static int may_commit_transaction(struct btrfs_root *root,
3746 struct btrfs_space_info *space_info,
3747 u64 bytes, int force)
3748 {
3749 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3750 struct btrfs_trans_handle *trans;
3751
3752 trans = (struct btrfs_trans_handle *)current->journal_info;
3753 if (trans)
3754 return -EAGAIN;
3755
3756 if (force)
3757 goto commit;
3758
3759 /* See if there is enough pinned space to make this reservation */
3760 spin_lock(&space_info->lock);
3761 if (space_info->bytes_pinned >= bytes) {
3762 spin_unlock(&space_info->lock);
3763 goto commit;
3764 }
3765 spin_unlock(&space_info->lock);
3766
3767 /*
3768 * See if there is some space in the delayed insertion reservation for
3769 * this reservation.
3770 */
3771 if (space_info != delayed_rsv->space_info)
3772 return -ENOSPC;
3773
3774 spin_lock(&space_info->lock);
3775 spin_lock(&delayed_rsv->lock);
3776 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3777 spin_unlock(&delayed_rsv->lock);
3778 spin_unlock(&space_info->lock);
3779 return -ENOSPC;
3780 }
3781 spin_unlock(&delayed_rsv->lock);
3782 spin_unlock(&space_info->lock);
3783
3784 commit:
3785 trans = btrfs_join_transaction(root);
3786 if (IS_ERR(trans))
3787 return -ENOSPC;
3788
3789 return btrfs_commit_transaction(trans, root);
3790 }
3791
3792 enum flush_state {
3793 FLUSH_DELALLOC = 1,
3794 FLUSH_DELALLOC_WAIT = 2,
3795 FLUSH_DELAYED_ITEMS_NR = 3,
3796 FLUSH_DELAYED_ITEMS = 4,
3797 COMMIT_TRANS = 5,
3798 };
3799
3800 static int flush_space(struct btrfs_root *root,
3801 struct btrfs_space_info *space_info, u64 num_bytes,
3802 u64 orig_bytes, int state)
3803 {
3804 struct btrfs_trans_handle *trans;
3805 int nr;
3806 int ret = 0;
3807
3808 switch (state) {
3809 case FLUSH_DELALLOC:
3810 case FLUSH_DELALLOC_WAIT:
3811 shrink_delalloc(root, num_bytes, orig_bytes,
3812 state == FLUSH_DELALLOC_WAIT);
3813 break;
3814 case FLUSH_DELAYED_ITEMS_NR:
3815 case FLUSH_DELAYED_ITEMS:
3816 if (state == FLUSH_DELAYED_ITEMS_NR) {
3817 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3818
3819 nr = (int)div64_u64(num_bytes, bytes);
3820 if (!nr)
3821 nr = 1;
3822 nr *= 2;
3823 } else {
3824 nr = -1;
3825 }
3826 trans = btrfs_join_transaction(root);
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3829 break;
3830 }
3831 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3832 btrfs_end_transaction(trans, root);
3833 break;
3834 case COMMIT_TRANS:
3835 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3836 break;
3837 default:
3838 ret = -ENOSPC;
3839 break;
3840 }
3841
3842 return ret;
3843 }
3844 /**
3845 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3846 * @root - the root we're allocating for
3847 * @block_rsv - the block_rsv we're allocating for
3848 * @orig_bytes - the number of bytes we want
3849 * @flush - wether or not we can flush to make our reservation
3850 *
3851 * This will reserve orgi_bytes number of bytes from the space info associated
3852 * with the block_rsv. If there is not enough space it will make an attempt to
3853 * flush out space to make room. It will do this by flushing delalloc if
3854 * possible or committing the transaction. If flush is 0 then no attempts to
3855 * regain reservations will be made and this will fail if there is not enough
3856 * space already.
3857 */
3858 static int reserve_metadata_bytes(struct btrfs_root *root,
3859 struct btrfs_block_rsv *block_rsv,
3860 u64 orig_bytes, int flush)
3861 {
3862 struct btrfs_space_info *space_info = block_rsv->space_info;
3863 u64 used;
3864 u64 num_bytes = orig_bytes;
3865 int flush_state = FLUSH_DELALLOC;
3866 int ret = 0;
3867 bool flushing = false;
3868 bool committed = false;
3869
3870 again:
3871 ret = 0;
3872 spin_lock(&space_info->lock);
3873 /*
3874 * We only want to wait if somebody other than us is flushing and we are
3875 * actually alloed to flush.
3876 */
3877 while (flush && !flushing && space_info->flush) {
3878 spin_unlock(&space_info->lock);
3879 /*
3880 * If we have a trans handle we can't wait because the flusher
3881 * may have to commit the transaction, which would mean we would
3882 * deadlock since we are waiting for the flusher to finish, but
3883 * hold the current transaction open.
3884 */
3885 if (current->journal_info)
3886 return -EAGAIN;
3887 ret = wait_event_killable(space_info->wait, !space_info->flush);
3888 /* Must have been killed, return */
3889 if (ret)
3890 return -EINTR;
3891
3892 spin_lock(&space_info->lock);
3893 }
3894
3895 ret = -ENOSPC;
3896 used = space_info->bytes_used + space_info->bytes_reserved +
3897 space_info->bytes_pinned + space_info->bytes_readonly +
3898 space_info->bytes_may_use;
3899
3900 /*
3901 * The idea here is that we've not already over-reserved the block group
3902 * then we can go ahead and save our reservation first and then start
3903 * flushing if we need to. Otherwise if we've already overcommitted
3904 * lets start flushing stuff first and then come back and try to make
3905 * our reservation.
3906 */
3907 if (used <= space_info->total_bytes) {
3908 if (used + orig_bytes <= space_info->total_bytes) {
3909 space_info->bytes_may_use += orig_bytes;
3910 trace_btrfs_space_reservation(root->fs_info,
3911 "space_info", space_info->flags, orig_bytes, 1);
3912 ret = 0;
3913 } else {
3914 /*
3915 * Ok set num_bytes to orig_bytes since we aren't
3916 * overocmmitted, this way we only try and reclaim what
3917 * we need.
3918 */
3919 num_bytes = orig_bytes;
3920 }
3921 } else {
3922 /*
3923 * Ok we're over committed, set num_bytes to the overcommitted
3924 * amount plus the amount of bytes that we need for this
3925 * reservation.
3926 */
3927 num_bytes = used - space_info->total_bytes +
3928 (orig_bytes * 2);
3929 }
3930
3931 if (ret) {
3932 u64 profile = btrfs_get_alloc_profile(root, 0);
3933 u64 avail;
3934
3935 /*
3936 * If we have a lot of space that's pinned, don't bother doing
3937 * the overcommit dance yet and just commit the transaction.
3938 */
3939 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3940 do_div(avail, 10);
3941 if (space_info->bytes_pinned >= avail && flush && !committed) {
3942 space_info->flush = 1;
3943 flushing = true;
3944 spin_unlock(&space_info->lock);
3945 ret = may_commit_transaction(root, space_info,
3946 orig_bytes, 1);
3947 if (ret)
3948 goto out;
3949 committed = true;
3950 goto again;
3951 }
3952
3953 spin_lock(&root->fs_info->free_chunk_lock);
3954 avail = root->fs_info->free_chunk_space;
3955
3956 /*
3957 * If we have dup, raid1 or raid10 then only half of the free
3958 * space is actually useable.
3959 */
3960 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3961 BTRFS_BLOCK_GROUP_RAID1 |
3962 BTRFS_BLOCK_GROUP_RAID10))
3963 avail >>= 1;
3964
3965 /*
3966 * If we aren't flushing don't let us overcommit too much, say
3967 * 1/8th of the space. If we can flush, let it overcommit up to
3968 * 1/2 of the space.
3969 */
3970 if (flush)
3971 avail >>= 3;
3972 else
3973 avail >>= 1;
3974 spin_unlock(&root->fs_info->free_chunk_lock);
3975
3976 if (used + num_bytes < space_info->total_bytes + avail) {
3977 space_info->bytes_may_use += orig_bytes;
3978 trace_btrfs_space_reservation(root->fs_info,
3979 "space_info", space_info->flags, orig_bytes, 1);
3980 ret = 0;
3981 }
3982 }
3983
3984 /*
3985 * Couldn't make our reservation, save our place so while we're trying
3986 * to reclaim space we can actually use it instead of somebody else
3987 * stealing it from us.
3988 */
3989 if (ret && flush) {
3990 flushing = true;
3991 space_info->flush = 1;
3992 }
3993
3994 spin_unlock(&space_info->lock);
3995
3996 if (!ret || !flush)
3997 goto out;
3998
3999 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4000 flush_state);
4001 flush_state++;
4002 if (!ret)
4003 goto again;
4004 else if (flush_state <= COMMIT_TRANS)
4005 goto again;
4006
4007 out:
4008 if (flushing) {
4009 spin_lock(&space_info->lock);
4010 space_info->flush = 0;
4011 wake_up_all(&space_info->wait);
4012 spin_unlock(&space_info->lock);
4013 }
4014 return ret;
4015 }
4016
4017 static struct btrfs_block_rsv *get_block_rsv(
4018 const struct btrfs_trans_handle *trans,
4019 const struct btrfs_root *root)
4020 {
4021 struct btrfs_block_rsv *block_rsv = NULL;
4022
4023 if (root->ref_cows)
4024 block_rsv = trans->block_rsv;
4025
4026 if (root == root->fs_info->csum_root && trans->adding_csums)
4027 block_rsv = trans->block_rsv;
4028
4029 if (!block_rsv)
4030 block_rsv = root->block_rsv;
4031
4032 if (!block_rsv)
4033 block_rsv = &root->fs_info->empty_block_rsv;
4034
4035 return block_rsv;
4036 }
4037
4038 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4039 u64 num_bytes)
4040 {
4041 int ret = -ENOSPC;
4042 spin_lock(&block_rsv->lock);
4043 if (block_rsv->reserved >= num_bytes) {
4044 block_rsv->reserved -= num_bytes;
4045 if (block_rsv->reserved < block_rsv->size)
4046 block_rsv->full = 0;
4047 ret = 0;
4048 }
4049 spin_unlock(&block_rsv->lock);
4050 return ret;
4051 }
4052
4053 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4054 u64 num_bytes, int update_size)
4055 {
4056 spin_lock(&block_rsv->lock);
4057 block_rsv->reserved += num_bytes;
4058 if (update_size)
4059 block_rsv->size += num_bytes;
4060 else if (block_rsv->reserved >= block_rsv->size)
4061 block_rsv->full = 1;
4062 spin_unlock(&block_rsv->lock);
4063 }
4064
4065 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4066 struct btrfs_block_rsv *block_rsv,
4067 struct btrfs_block_rsv *dest, u64 num_bytes)
4068 {
4069 struct btrfs_space_info *space_info = block_rsv->space_info;
4070
4071 spin_lock(&block_rsv->lock);
4072 if (num_bytes == (u64)-1)
4073 num_bytes = block_rsv->size;
4074 block_rsv->size -= num_bytes;
4075 if (block_rsv->reserved >= block_rsv->size) {
4076 num_bytes = block_rsv->reserved - block_rsv->size;
4077 block_rsv->reserved = block_rsv->size;
4078 block_rsv->full = 1;
4079 } else {
4080 num_bytes = 0;
4081 }
4082 spin_unlock(&block_rsv->lock);
4083
4084 if (num_bytes > 0) {
4085 if (dest) {
4086 spin_lock(&dest->lock);
4087 if (!dest->full) {
4088 u64 bytes_to_add;
4089
4090 bytes_to_add = dest->size - dest->reserved;
4091 bytes_to_add = min(num_bytes, bytes_to_add);
4092 dest->reserved += bytes_to_add;
4093 if (dest->reserved >= dest->size)
4094 dest->full = 1;
4095 num_bytes -= bytes_to_add;
4096 }
4097 spin_unlock(&dest->lock);
4098 }
4099 if (num_bytes) {
4100 spin_lock(&space_info->lock);
4101 space_info->bytes_may_use -= num_bytes;
4102 trace_btrfs_space_reservation(fs_info, "space_info",
4103 space_info->flags, num_bytes, 0);
4104 space_info->reservation_progress++;
4105 spin_unlock(&space_info->lock);
4106 }
4107 }
4108 }
4109
4110 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4111 struct btrfs_block_rsv *dst, u64 num_bytes)
4112 {
4113 int ret;
4114
4115 ret = block_rsv_use_bytes(src, num_bytes);
4116 if (ret)
4117 return ret;
4118
4119 block_rsv_add_bytes(dst, num_bytes, 1);
4120 return 0;
4121 }
4122
4123 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4124 {
4125 memset(rsv, 0, sizeof(*rsv));
4126 spin_lock_init(&rsv->lock);
4127 }
4128
4129 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4130 {
4131 struct btrfs_block_rsv *block_rsv;
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4133
4134 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4135 if (!block_rsv)
4136 return NULL;
4137
4138 btrfs_init_block_rsv(block_rsv);
4139 block_rsv->space_info = __find_space_info(fs_info,
4140 BTRFS_BLOCK_GROUP_METADATA);
4141 return block_rsv;
4142 }
4143
4144 void btrfs_free_block_rsv(struct btrfs_root *root,
4145 struct btrfs_block_rsv *rsv)
4146 {
4147 btrfs_block_rsv_release(root, rsv, (u64)-1);
4148 kfree(rsv);
4149 }
4150
4151 static inline int __block_rsv_add(struct btrfs_root *root,
4152 struct btrfs_block_rsv *block_rsv,
4153 u64 num_bytes, int flush)
4154 {
4155 int ret;
4156
4157 if (num_bytes == 0)
4158 return 0;
4159
4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4161 if (!ret) {
4162 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4163 return 0;
4164 }
4165
4166 return ret;
4167 }
4168
4169 int btrfs_block_rsv_add(struct btrfs_root *root,
4170 struct btrfs_block_rsv *block_rsv,
4171 u64 num_bytes)
4172 {
4173 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4174 }
4175
4176 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4177 struct btrfs_block_rsv *block_rsv,
4178 u64 num_bytes)
4179 {
4180 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4181 }
4182
4183 int btrfs_block_rsv_check(struct btrfs_root *root,
4184 struct btrfs_block_rsv *block_rsv, int min_factor)
4185 {
4186 u64 num_bytes = 0;
4187 int ret = -ENOSPC;
4188
4189 if (!block_rsv)
4190 return 0;
4191
4192 spin_lock(&block_rsv->lock);
4193 num_bytes = div_factor(block_rsv->size, min_factor);
4194 if (block_rsv->reserved >= num_bytes)
4195 ret = 0;
4196 spin_unlock(&block_rsv->lock);
4197
4198 return ret;
4199 }
4200
4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4202 struct btrfs_block_rsv *block_rsv,
4203 u64 min_reserved, int flush)
4204 {
4205 u64 num_bytes = 0;
4206 int ret = -ENOSPC;
4207
4208 if (!block_rsv)
4209 return 0;
4210
4211 spin_lock(&block_rsv->lock);
4212 num_bytes = min_reserved;
4213 if (block_rsv->reserved >= num_bytes)
4214 ret = 0;
4215 else
4216 num_bytes -= block_rsv->reserved;
4217 spin_unlock(&block_rsv->lock);
4218
4219 if (!ret)
4220 return 0;
4221
4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4223 if (!ret) {
4224 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4225 return 0;
4226 }
4227
4228 return ret;
4229 }
4230
4231 int btrfs_block_rsv_refill(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv,
4233 u64 min_reserved)
4234 {
4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4236 }
4237
4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4239 struct btrfs_block_rsv *block_rsv,
4240 u64 min_reserved)
4241 {
4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4243 }
4244
4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4246 struct btrfs_block_rsv *dst_rsv,
4247 u64 num_bytes)
4248 {
4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4250 }
4251
4252 void btrfs_block_rsv_release(struct btrfs_root *root,
4253 struct btrfs_block_rsv *block_rsv,
4254 u64 num_bytes)
4255 {
4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4257 if (global_rsv->full || global_rsv == block_rsv ||
4258 block_rsv->space_info != global_rsv->space_info)
4259 global_rsv = NULL;
4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4261 num_bytes);
4262 }
4263
4264 /*
4265 * helper to calculate size of global block reservation.
4266 * the desired value is sum of space used by extent tree,
4267 * checksum tree and root tree
4268 */
4269 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4270 {
4271 struct btrfs_space_info *sinfo;
4272 u64 num_bytes;
4273 u64 meta_used;
4274 u64 data_used;
4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4276
4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4278 spin_lock(&sinfo->lock);
4279 data_used = sinfo->bytes_used;
4280 spin_unlock(&sinfo->lock);
4281
4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4283 spin_lock(&sinfo->lock);
4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4285 data_used = 0;
4286 meta_used = sinfo->bytes_used;
4287 spin_unlock(&sinfo->lock);
4288
4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4290 csum_size * 2;
4291 num_bytes += div64_u64(data_used + meta_used, 50);
4292
4293 if (num_bytes * 3 > meta_used)
4294 num_bytes = div64_u64(meta_used, 3);
4295
4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4297 }
4298
4299 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4300 {
4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4302 struct btrfs_space_info *sinfo = block_rsv->space_info;
4303 u64 num_bytes;
4304
4305 num_bytes = calc_global_metadata_size(fs_info);
4306
4307 spin_lock(&sinfo->lock);
4308 spin_lock(&block_rsv->lock);
4309
4310 block_rsv->size = num_bytes;
4311
4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4313 sinfo->bytes_reserved + sinfo->bytes_readonly +
4314 sinfo->bytes_may_use;
4315
4316 if (sinfo->total_bytes > num_bytes) {
4317 num_bytes = sinfo->total_bytes - num_bytes;
4318 block_rsv->reserved += num_bytes;
4319 sinfo->bytes_may_use += num_bytes;
4320 trace_btrfs_space_reservation(fs_info, "space_info",
4321 sinfo->flags, num_bytes, 1);
4322 }
4323
4324 if (block_rsv->reserved >= block_rsv->size) {
4325 num_bytes = block_rsv->reserved - block_rsv->size;
4326 sinfo->bytes_may_use -= num_bytes;
4327 trace_btrfs_space_reservation(fs_info, "space_info",
4328 sinfo->flags, num_bytes, 0);
4329 sinfo->reservation_progress++;
4330 block_rsv->reserved = block_rsv->size;
4331 block_rsv->full = 1;
4332 }
4333
4334 spin_unlock(&block_rsv->lock);
4335 spin_unlock(&sinfo->lock);
4336 }
4337
4338 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4339 {
4340 struct btrfs_space_info *space_info;
4341
4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4343 fs_info->chunk_block_rsv.space_info = space_info;
4344
4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4346 fs_info->global_block_rsv.space_info = space_info;
4347 fs_info->delalloc_block_rsv.space_info = space_info;
4348 fs_info->trans_block_rsv.space_info = space_info;
4349 fs_info->empty_block_rsv.space_info = space_info;
4350 fs_info->delayed_block_rsv.space_info = space_info;
4351
4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4357
4358 update_global_block_rsv(fs_info);
4359 }
4360
4361 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4362 {
4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4364 (u64)-1);
4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4367 WARN_ON(fs_info->trans_block_rsv.size > 0);
4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4369 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4371 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4373 }
4374
4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root)
4377 {
4378 if (!trans->block_rsv)
4379 return;
4380
4381 if (!trans->bytes_reserved)
4382 return;
4383
4384 trace_btrfs_space_reservation(root->fs_info, "transaction",
4385 trans->transid, trans->bytes_reserved, 0);
4386 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4387 trans->bytes_reserved = 0;
4388 }
4389
4390 /* Can only return 0 or -ENOSPC */
4391 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4392 struct inode *inode)
4393 {
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4396 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4397
4398 /*
4399 * We need to hold space in order to delete our orphan item once we've
4400 * added it, so this takes the reservation so we can release it later
4401 * when we are truly done with the orphan item.
4402 */
4403 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4404 trace_btrfs_space_reservation(root->fs_info, "orphan",
4405 btrfs_ino(inode), num_bytes, 1);
4406 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4407 }
4408
4409 void btrfs_orphan_release_metadata(struct inode *inode)
4410 {
4411 struct btrfs_root *root = BTRFS_I(inode)->root;
4412 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4413 trace_btrfs_space_reservation(root->fs_info, "orphan",
4414 btrfs_ino(inode), num_bytes, 0);
4415 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4416 }
4417
4418 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4419 struct btrfs_pending_snapshot *pending)
4420 {
4421 struct btrfs_root *root = pending->root;
4422 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4423 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4424 /*
4425 * two for root back/forward refs, two for directory entries
4426 * and one for root of the snapshot.
4427 */
4428 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4429 dst_rsv->space_info = src_rsv->space_info;
4430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4431 }
4432
4433 /**
4434 * drop_outstanding_extent - drop an outstanding extent
4435 * @inode: the inode we're dropping the extent for
4436 *
4437 * This is called when we are freeing up an outstanding extent, either called
4438 * after an error or after an extent is written. This will return the number of
4439 * reserved extents that need to be freed. This must be called with
4440 * BTRFS_I(inode)->lock held.
4441 */
4442 static unsigned drop_outstanding_extent(struct inode *inode)
4443 {
4444 unsigned drop_inode_space = 0;
4445 unsigned dropped_extents = 0;
4446
4447 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4448 BTRFS_I(inode)->outstanding_extents--;
4449
4450 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4452 &BTRFS_I(inode)->runtime_flags))
4453 drop_inode_space = 1;
4454
4455 /*
4456 * If we have more or the same amount of outsanding extents than we have
4457 * reserved then we need to leave the reserved extents count alone.
4458 */
4459 if (BTRFS_I(inode)->outstanding_extents >=
4460 BTRFS_I(inode)->reserved_extents)
4461 return drop_inode_space;
4462
4463 dropped_extents = BTRFS_I(inode)->reserved_extents -
4464 BTRFS_I(inode)->outstanding_extents;
4465 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4466 return dropped_extents + drop_inode_space;
4467 }
4468
4469 /**
4470 * calc_csum_metadata_size - return the amount of metada space that must be
4471 * reserved/free'd for the given bytes.
4472 * @inode: the inode we're manipulating
4473 * @num_bytes: the number of bytes in question
4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4475 *
4476 * This adjusts the number of csum_bytes in the inode and then returns the
4477 * correct amount of metadata that must either be reserved or freed. We
4478 * calculate how many checksums we can fit into one leaf and then divide the
4479 * number of bytes that will need to be checksumed by this value to figure out
4480 * how many checksums will be required. If we are adding bytes then the number
4481 * may go up and we will return the number of additional bytes that must be
4482 * reserved. If it is going down we will return the number of bytes that must
4483 * be freed.
4484 *
4485 * This must be called with BTRFS_I(inode)->lock held.
4486 */
4487 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4488 int reserve)
4489 {
4490 struct btrfs_root *root = BTRFS_I(inode)->root;
4491 u64 csum_size;
4492 int num_csums_per_leaf;
4493 int num_csums;
4494 int old_csums;
4495
4496 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4497 BTRFS_I(inode)->csum_bytes == 0)
4498 return 0;
4499
4500 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4501 if (reserve)
4502 BTRFS_I(inode)->csum_bytes += num_bytes;
4503 else
4504 BTRFS_I(inode)->csum_bytes -= num_bytes;
4505 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4506 num_csums_per_leaf = (int)div64_u64(csum_size,
4507 sizeof(struct btrfs_csum_item) +
4508 sizeof(struct btrfs_disk_key));
4509 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4510 num_csums = num_csums + num_csums_per_leaf - 1;
4511 num_csums = num_csums / num_csums_per_leaf;
4512
4513 old_csums = old_csums + num_csums_per_leaf - 1;
4514 old_csums = old_csums / num_csums_per_leaf;
4515
4516 /* No change, no need to reserve more */
4517 if (old_csums == num_csums)
4518 return 0;
4519
4520 if (reserve)
4521 return btrfs_calc_trans_metadata_size(root,
4522 num_csums - old_csums);
4523
4524 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4525 }
4526
4527 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4528 {
4529 struct btrfs_root *root = BTRFS_I(inode)->root;
4530 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4531 u64 to_reserve = 0;
4532 u64 csum_bytes;
4533 unsigned nr_extents = 0;
4534 int extra_reserve = 0;
4535 int flush = 1;
4536 int ret;
4537
4538 /* Need to be holding the i_mutex here if we aren't free space cache */
4539 if (btrfs_is_free_space_inode(inode))
4540 flush = 0;
4541
4542 if (flush && btrfs_transaction_in_commit(root->fs_info))
4543 schedule_timeout(1);
4544
4545 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4546 num_bytes = ALIGN(num_bytes, root->sectorsize);
4547
4548 spin_lock(&BTRFS_I(inode)->lock);
4549 BTRFS_I(inode)->outstanding_extents++;
4550
4551 if (BTRFS_I(inode)->outstanding_extents >
4552 BTRFS_I(inode)->reserved_extents)
4553 nr_extents = BTRFS_I(inode)->outstanding_extents -
4554 BTRFS_I(inode)->reserved_extents;
4555
4556 /*
4557 * Add an item to reserve for updating the inode when we complete the
4558 * delalloc io.
4559 */
4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4561 &BTRFS_I(inode)->runtime_flags)) {
4562 nr_extents++;
4563 extra_reserve = 1;
4564 }
4565
4566 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4567 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4568 csum_bytes = BTRFS_I(inode)->csum_bytes;
4569 spin_unlock(&BTRFS_I(inode)->lock);
4570
4571 if (root->fs_info->quota_enabled) {
4572 ret = btrfs_qgroup_reserve(root, num_bytes +
4573 nr_extents * root->leafsize);
4574 if (ret)
4575 return ret;
4576 }
4577
4578 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4579 if (ret) {
4580 u64 to_free = 0;
4581 unsigned dropped;
4582
4583 spin_lock(&BTRFS_I(inode)->lock);
4584 dropped = drop_outstanding_extent(inode);
4585 /*
4586 * If the inodes csum_bytes is the same as the original
4587 * csum_bytes then we know we haven't raced with any free()ers
4588 * so we can just reduce our inodes csum bytes and carry on.
4589 * Otherwise we have to do the normal free thing to account for
4590 * the case that the free side didn't free up its reserve
4591 * because of this outstanding reservation.
4592 */
4593 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4594 calc_csum_metadata_size(inode, num_bytes, 0);
4595 else
4596 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4597 spin_unlock(&BTRFS_I(inode)->lock);
4598 if (dropped)
4599 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4600
4601 if (to_free) {
4602 btrfs_block_rsv_release(root, block_rsv, to_free);
4603 trace_btrfs_space_reservation(root->fs_info,
4604 "delalloc",
4605 btrfs_ino(inode),
4606 to_free, 0);
4607 }
4608 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4609 return ret;
4610 }
4611
4612 spin_lock(&BTRFS_I(inode)->lock);
4613 if (extra_reserve) {
4614 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4615 &BTRFS_I(inode)->runtime_flags);
4616 nr_extents--;
4617 }
4618 BTRFS_I(inode)->reserved_extents += nr_extents;
4619 spin_unlock(&BTRFS_I(inode)->lock);
4620 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4621
4622 if (to_reserve)
4623 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4624 btrfs_ino(inode), to_reserve, 1);
4625 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4626
4627 return 0;
4628 }
4629
4630 /**
4631 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4632 * @inode: the inode to release the reservation for
4633 * @num_bytes: the number of bytes we're releasing
4634 *
4635 * This will release the metadata reservation for an inode. This can be called
4636 * once we complete IO for a given set of bytes to release their metadata
4637 * reservations.
4638 */
4639 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4640 {
4641 struct btrfs_root *root = BTRFS_I(inode)->root;
4642 u64 to_free = 0;
4643 unsigned dropped;
4644
4645 num_bytes = ALIGN(num_bytes, root->sectorsize);
4646 spin_lock(&BTRFS_I(inode)->lock);
4647 dropped = drop_outstanding_extent(inode);
4648
4649 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4650 spin_unlock(&BTRFS_I(inode)->lock);
4651 if (dropped > 0)
4652 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4653
4654 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4655 btrfs_ino(inode), to_free, 0);
4656 if (root->fs_info->quota_enabled) {
4657 btrfs_qgroup_free(root, num_bytes +
4658 dropped * root->leafsize);
4659 }
4660
4661 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4662 to_free);
4663 }
4664
4665 /**
4666 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4667 * @inode: inode we're writing to
4668 * @num_bytes: the number of bytes we want to allocate
4669 *
4670 * This will do the following things
4671 *
4672 * o reserve space in the data space info for num_bytes
4673 * o reserve space in the metadata space info based on number of outstanding
4674 * extents and how much csums will be needed
4675 * o add to the inodes ->delalloc_bytes
4676 * o add it to the fs_info's delalloc inodes list.
4677 *
4678 * This will return 0 for success and -ENOSPC if there is no space left.
4679 */
4680 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4681 {
4682 int ret;
4683
4684 ret = btrfs_check_data_free_space(inode, num_bytes);
4685 if (ret)
4686 return ret;
4687
4688 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4689 if (ret) {
4690 btrfs_free_reserved_data_space(inode, num_bytes);
4691 return ret;
4692 }
4693
4694 return 0;
4695 }
4696
4697 /**
4698 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4699 * @inode: inode we're releasing space for
4700 * @num_bytes: the number of bytes we want to free up
4701 *
4702 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4703 * called in the case that we don't need the metadata AND data reservations
4704 * anymore. So if there is an error or we insert an inline extent.
4705 *
4706 * This function will release the metadata space that was not used and will
4707 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4708 * list if there are no delalloc bytes left.
4709 */
4710 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4711 {
4712 btrfs_delalloc_release_metadata(inode, num_bytes);
4713 btrfs_free_reserved_data_space(inode, num_bytes);
4714 }
4715
4716 static int update_block_group(struct btrfs_trans_handle *trans,
4717 struct btrfs_root *root,
4718 u64 bytenr, u64 num_bytes, int alloc)
4719 {
4720 struct btrfs_block_group_cache *cache = NULL;
4721 struct btrfs_fs_info *info = root->fs_info;
4722 u64 total = num_bytes;
4723 u64 old_val;
4724 u64 byte_in_group;
4725 int factor;
4726
4727 /* block accounting for super block */
4728 spin_lock(&info->delalloc_lock);
4729 old_val = btrfs_super_bytes_used(info->super_copy);
4730 if (alloc)
4731 old_val += num_bytes;
4732 else
4733 old_val -= num_bytes;
4734 btrfs_set_super_bytes_used(info->super_copy, old_val);
4735 spin_unlock(&info->delalloc_lock);
4736
4737 while (total) {
4738 cache = btrfs_lookup_block_group(info, bytenr);
4739 if (!cache)
4740 return -ENOENT;
4741 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4742 BTRFS_BLOCK_GROUP_RAID1 |
4743 BTRFS_BLOCK_GROUP_RAID10))
4744 factor = 2;
4745 else
4746 factor = 1;
4747 /*
4748 * If this block group has free space cache written out, we
4749 * need to make sure to load it if we are removing space. This
4750 * is because we need the unpinning stage to actually add the
4751 * space back to the block group, otherwise we will leak space.
4752 */
4753 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4754 cache_block_group(cache, trans, NULL, 1);
4755
4756 byte_in_group = bytenr - cache->key.objectid;
4757 WARN_ON(byte_in_group > cache->key.offset);
4758
4759 spin_lock(&cache->space_info->lock);
4760 spin_lock(&cache->lock);
4761
4762 if (btrfs_test_opt(root, SPACE_CACHE) &&
4763 cache->disk_cache_state < BTRFS_DC_CLEAR)
4764 cache->disk_cache_state = BTRFS_DC_CLEAR;
4765
4766 cache->dirty = 1;
4767 old_val = btrfs_block_group_used(&cache->item);
4768 num_bytes = min(total, cache->key.offset - byte_in_group);
4769 if (alloc) {
4770 old_val += num_bytes;
4771 btrfs_set_block_group_used(&cache->item, old_val);
4772 cache->reserved -= num_bytes;
4773 cache->space_info->bytes_reserved -= num_bytes;
4774 cache->space_info->bytes_used += num_bytes;
4775 cache->space_info->disk_used += num_bytes * factor;
4776 spin_unlock(&cache->lock);
4777 spin_unlock(&cache->space_info->lock);
4778 } else {
4779 old_val -= num_bytes;
4780 btrfs_set_block_group_used(&cache->item, old_val);
4781 cache->pinned += num_bytes;
4782 cache->space_info->bytes_pinned += num_bytes;
4783 cache->space_info->bytes_used -= num_bytes;
4784 cache->space_info->disk_used -= num_bytes * factor;
4785 spin_unlock(&cache->lock);
4786 spin_unlock(&cache->space_info->lock);
4787
4788 set_extent_dirty(info->pinned_extents,
4789 bytenr, bytenr + num_bytes - 1,
4790 GFP_NOFS | __GFP_NOFAIL);
4791 }
4792 btrfs_put_block_group(cache);
4793 total -= num_bytes;
4794 bytenr += num_bytes;
4795 }
4796 return 0;
4797 }
4798
4799 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4800 {
4801 struct btrfs_block_group_cache *cache;
4802 u64 bytenr;
4803
4804 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4805 if (!cache)
4806 return 0;
4807
4808 bytenr = cache->key.objectid;
4809 btrfs_put_block_group(cache);
4810
4811 return bytenr;
4812 }
4813
4814 static int pin_down_extent(struct btrfs_root *root,
4815 struct btrfs_block_group_cache *cache,
4816 u64 bytenr, u64 num_bytes, int reserved)
4817 {
4818 spin_lock(&cache->space_info->lock);
4819 spin_lock(&cache->lock);
4820 cache->pinned += num_bytes;
4821 cache->space_info->bytes_pinned += num_bytes;
4822 if (reserved) {
4823 cache->reserved -= num_bytes;
4824 cache->space_info->bytes_reserved -= num_bytes;
4825 }
4826 spin_unlock(&cache->lock);
4827 spin_unlock(&cache->space_info->lock);
4828
4829 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4830 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4831 return 0;
4832 }
4833
4834 /*
4835 * this function must be called within transaction
4836 */
4837 int btrfs_pin_extent(struct btrfs_root *root,
4838 u64 bytenr, u64 num_bytes, int reserved)
4839 {
4840 struct btrfs_block_group_cache *cache;
4841
4842 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4843 BUG_ON(!cache); /* Logic error */
4844
4845 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4846
4847 btrfs_put_block_group(cache);
4848 return 0;
4849 }
4850
4851 /*
4852 * this function must be called within transaction
4853 */
4854 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4855 struct btrfs_root *root,
4856 u64 bytenr, u64 num_bytes)
4857 {
4858 struct btrfs_block_group_cache *cache;
4859
4860 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4861 BUG_ON(!cache); /* Logic error */
4862
4863 /*
4864 * pull in the free space cache (if any) so that our pin
4865 * removes the free space from the cache. We have load_only set
4866 * to one because the slow code to read in the free extents does check
4867 * the pinned extents.
4868 */
4869 cache_block_group(cache, trans, root, 1);
4870
4871 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4872
4873 /* remove us from the free space cache (if we're there at all) */
4874 btrfs_remove_free_space(cache, bytenr, num_bytes);
4875 btrfs_put_block_group(cache);
4876 return 0;
4877 }
4878
4879 /**
4880 * btrfs_update_reserved_bytes - update the block_group and space info counters
4881 * @cache: The cache we are manipulating
4882 * @num_bytes: The number of bytes in question
4883 * @reserve: One of the reservation enums
4884 *
4885 * This is called by the allocator when it reserves space, or by somebody who is
4886 * freeing space that was never actually used on disk. For example if you
4887 * reserve some space for a new leaf in transaction A and before transaction A
4888 * commits you free that leaf, you call this with reserve set to 0 in order to
4889 * clear the reservation.
4890 *
4891 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4892 * ENOSPC accounting. For data we handle the reservation through clearing the
4893 * delalloc bits in the io_tree. We have to do this since we could end up
4894 * allocating less disk space for the amount of data we have reserved in the
4895 * case of compression.
4896 *
4897 * If this is a reservation and the block group has become read only we cannot
4898 * make the reservation and return -EAGAIN, otherwise this function always
4899 * succeeds.
4900 */
4901 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4902 u64 num_bytes, int reserve)
4903 {
4904 struct btrfs_space_info *space_info = cache->space_info;
4905 int ret = 0;
4906
4907 spin_lock(&space_info->lock);
4908 spin_lock(&cache->lock);
4909 if (reserve != RESERVE_FREE) {
4910 if (cache->ro) {
4911 ret = -EAGAIN;
4912 } else {
4913 cache->reserved += num_bytes;
4914 space_info->bytes_reserved += num_bytes;
4915 if (reserve == RESERVE_ALLOC) {
4916 trace_btrfs_space_reservation(cache->fs_info,
4917 "space_info", space_info->flags,
4918 num_bytes, 0);
4919 space_info->bytes_may_use -= num_bytes;
4920 }
4921 }
4922 } else {
4923 if (cache->ro)
4924 space_info->bytes_readonly += num_bytes;
4925 cache->reserved -= num_bytes;
4926 space_info->bytes_reserved -= num_bytes;
4927 space_info->reservation_progress++;
4928 }
4929 spin_unlock(&cache->lock);
4930 spin_unlock(&space_info->lock);
4931 return ret;
4932 }
4933
4934 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *root)
4936 {
4937 struct btrfs_fs_info *fs_info = root->fs_info;
4938 struct btrfs_caching_control *next;
4939 struct btrfs_caching_control *caching_ctl;
4940 struct btrfs_block_group_cache *cache;
4941
4942 down_write(&fs_info->extent_commit_sem);
4943
4944 list_for_each_entry_safe(caching_ctl, next,
4945 &fs_info->caching_block_groups, list) {
4946 cache = caching_ctl->block_group;
4947 if (block_group_cache_done(cache)) {
4948 cache->last_byte_to_unpin = (u64)-1;
4949 list_del_init(&caching_ctl->list);
4950 put_caching_control(caching_ctl);
4951 } else {
4952 cache->last_byte_to_unpin = caching_ctl->progress;
4953 }
4954 }
4955
4956 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4957 fs_info->pinned_extents = &fs_info->freed_extents[1];
4958 else
4959 fs_info->pinned_extents = &fs_info->freed_extents[0];
4960
4961 up_write(&fs_info->extent_commit_sem);
4962
4963 update_global_block_rsv(fs_info);
4964 }
4965
4966 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4967 {
4968 struct btrfs_fs_info *fs_info = root->fs_info;
4969 struct btrfs_block_group_cache *cache = NULL;
4970 u64 len;
4971
4972 while (start <= end) {
4973 if (!cache ||
4974 start >= cache->key.objectid + cache->key.offset) {
4975 if (cache)
4976 btrfs_put_block_group(cache);
4977 cache = btrfs_lookup_block_group(fs_info, start);
4978 BUG_ON(!cache); /* Logic error */
4979 }
4980
4981 len = cache->key.objectid + cache->key.offset - start;
4982 len = min(len, end + 1 - start);
4983
4984 if (start < cache->last_byte_to_unpin) {
4985 len = min(len, cache->last_byte_to_unpin - start);
4986 btrfs_add_free_space(cache, start, len);
4987 }
4988
4989 start += len;
4990
4991 spin_lock(&cache->space_info->lock);
4992 spin_lock(&cache->lock);
4993 cache->pinned -= len;
4994 cache->space_info->bytes_pinned -= len;
4995 if (cache->ro)
4996 cache->space_info->bytes_readonly += len;
4997 spin_unlock(&cache->lock);
4998 spin_unlock(&cache->space_info->lock);
4999 }
5000
5001 if (cache)
5002 btrfs_put_block_group(cache);
5003 return 0;
5004 }
5005
5006 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5007 struct btrfs_root *root)
5008 {
5009 struct btrfs_fs_info *fs_info = root->fs_info;
5010 struct extent_io_tree *unpin;
5011 u64 start;
5012 u64 end;
5013 int ret;
5014
5015 if (trans->aborted)
5016 return 0;
5017
5018 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5019 unpin = &fs_info->freed_extents[1];
5020 else
5021 unpin = &fs_info->freed_extents[0];
5022
5023 while (1) {
5024 ret = find_first_extent_bit(unpin, 0, &start, &end,
5025 EXTENT_DIRTY);
5026 if (ret)
5027 break;
5028
5029 if (btrfs_test_opt(root, DISCARD))
5030 ret = btrfs_discard_extent(root, start,
5031 end + 1 - start, NULL);
5032
5033 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5034 unpin_extent_range(root, start, end);
5035 cond_resched();
5036 }
5037
5038 return 0;
5039 }
5040
5041 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5042 struct btrfs_root *root,
5043 u64 bytenr, u64 num_bytes, u64 parent,
5044 u64 root_objectid, u64 owner_objectid,
5045 u64 owner_offset, int refs_to_drop,
5046 struct btrfs_delayed_extent_op *extent_op)
5047 {
5048 struct btrfs_key key;
5049 struct btrfs_path *path;
5050 struct btrfs_fs_info *info = root->fs_info;
5051 struct btrfs_root *extent_root = info->extent_root;
5052 struct extent_buffer *leaf;
5053 struct btrfs_extent_item *ei;
5054 struct btrfs_extent_inline_ref *iref;
5055 int ret;
5056 int is_data;
5057 int extent_slot = 0;
5058 int found_extent = 0;
5059 int num_to_del = 1;
5060 u32 item_size;
5061 u64 refs;
5062
5063 path = btrfs_alloc_path();
5064 if (!path)
5065 return -ENOMEM;
5066
5067 path->reada = 1;
5068 path->leave_spinning = 1;
5069
5070 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5071 BUG_ON(!is_data && refs_to_drop != 1);
5072
5073 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5074 bytenr, num_bytes, parent,
5075 root_objectid, owner_objectid,
5076 owner_offset);
5077 if (ret == 0) {
5078 extent_slot = path->slots[0];
5079 while (extent_slot >= 0) {
5080 btrfs_item_key_to_cpu(path->nodes[0], &key,
5081 extent_slot);
5082 if (key.objectid != bytenr)
5083 break;
5084 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5085 key.offset == num_bytes) {
5086 found_extent = 1;
5087 break;
5088 }
5089 if (path->slots[0] - extent_slot > 5)
5090 break;
5091 extent_slot--;
5092 }
5093 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5094 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5095 if (found_extent && item_size < sizeof(*ei))
5096 found_extent = 0;
5097 #endif
5098 if (!found_extent) {
5099 BUG_ON(iref);
5100 ret = remove_extent_backref(trans, extent_root, path,
5101 NULL, refs_to_drop,
5102 is_data);
5103 if (ret)
5104 goto abort;
5105 btrfs_release_path(path);
5106 path->leave_spinning = 1;
5107
5108 key.objectid = bytenr;
5109 key.type = BTRFS_EXTENT_ITEM_KEY;
5110 key.offset = num_bytes;
5111
5112 ret = btrfs_search_slot(trans, extent_root,
5113 &key, path, -1, 1);
5114 if (ret) {
5115 printk(KERN_ERR "umm, got %d back from search"
5116 ", was looking for %llu\n", ret,
5117 (unsigned long long)bytenr);
5118 if (ret > 0)
5119 btrfs_print_leaf(extent_root,
5120 path->nodes[0]);
5121 }
5122 if (ret < 0)
5123 goto abort;
5124 extent_slot = path->slots[0];
5125 }
5126 } else if (ret == -ENOENT) {
5127 btrfs_print_leaf(extent_root, path->nodes[0]);
5128 WARN_ON(1);
5129 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5130 "parent %llu root %llu owner %llu offset %llu\n",
5131 (unsigned long long)bytenr,
5132 (unsigned long long)parent,
5133 (unsigned long long)root_objectid,
5134 (unsigned long long)owner_objectid,
5135 (unsigned long long)owner_offset);
5136 } else {
5137 goto abort;
5138 }
5139
5140 leaf = path->nodes[0];
5141 item_size = btrfs_item_size_nr(leaf, extent_slot);
5142 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5143 if (item_size < sizeof(*ei)) {
5144 BUG_ON(found_extent || extent_slot != path->slots[0]);
5145 ret = convert_extent_item_v0(trans, extent_root, path,
5146 owner_objectid, 0);
5147 if (ret < 0)
5148 goto abort;
5149
5150 btrfs_release_path(path);
5151 path->leave_spinning = 1;
5152
5153 key.objectid = bytenr;
5154 key.type = BTRFS_EXTENT_ITEM_KEY;
5155 key.offset = num_bytes;
5156
5157 ret = btrfs_search_slot(trans, extent_root, &key, path,
5158 -1, 1);
5159 if (ret) {
5160 printk(KERN_ERR "umm, got %d back from search"
5161 ", was looking for %llu\n", ret,
5162 (unsigned long long)bytenr);
5163 btrfs_print_leaf(extent_root, path->nodes[0]);
5164 }
5165 if (ret < 0)
5166 goto abort;
5167 extent_slot = path->slots[0];
5168 leaf = path->nodes[0];
5169 item_size = btrfs_item_size_nr(leaf, extent_slot);
5170 }
5171 #endif
5172 BUG_ON(item_size < sizeof(*ei));
5173 ei = btrfs_item_ptr(leaf, extent_slot,
5174 struct btrfs_extent_item);
5175 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5176 struct btrfs_tree_block_info *bi;
5177 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5178 bi = (struct btrfs_tree_block_info *)(ei + 1);
5179 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5180 }
5181
5182 refs = btrfs_extent_refs(leaf, ei);
5183 BUG_ON(refs < refs_to_drop);
5184 refs -= refs_to_drop;
5185
5186 if (refs > 0) {
5187 if (extent_op)
5188 __run_delayed_extent_op(extent_op, leaf, ei);
5189 /*
5190 * In the case of inline back ref, reference count will
5191 * be updated by remove_extent_backref
5192 */
5193 if (iref) {
5194 BUG_ON(!found_extent);
5195 } else {
5196 btrfs_set_extent_refs(leaf, ei, refs);
5197 btrfs_mark_buffer_dirty(leaf);
5198 }
5199 if (found_extent) {
5200 ret = remove_extent_backref(trans, extent_root, path,
5201 iref, refs_to_drop,
5202 is_data);
5203 if (ret)
5204 goto abort;
5205 }
5206 } else {
5207 if (found_extent) {
5208 BUG_ON(is_data && refs_to_drop !=
5209 extent_data_ref_count(root, path, iref));
5210 if (iref) {
5211 BUG_ON(path->slots[0] != extent_slot);
5212 } else {
5213 BUG_ON(path->slots[0] != extent_slot + 1);
5214 path->slots[0] = extent_slot;
5215 num_to_del = 2;
5216 }
5217 }
5218
5219 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5220 num_to_del);
5221 if (ret)
5222 goto abort;
5223 btrfs_release_path(path);
5224
5225 if (is_data) {
5226 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5227 if (ret)
5228 goto abort;
5229 }
5230
5231 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5232 if (ret)
5233 goto abort;
5234 }
5235 out:
5236 btrfs_free_path(path);
5237 return ret;
5238
5239 abort:
5240 btrfs_abort_transaction(trans, extent_root, ret);
5241 goto out;
5242 }
5243
5244 /*
5245 * when we free an block, it is possible (and likely) that we free the last
5246 * delayed ref for that extent as well. This searches the delayed ref tree for
5247 * a given extent, and if there are no other delayed refs to be processed, it
5248 * removes it from the tree.
5249 */
5250 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5251 struct btrfs_root *root, u64 bytenr)
5252 {
5253 struct btrfs_delayed_ref_head *head;
5254 struct btrfs_delayed_ref_root *delayed_refs;
5255 struct btrfs_delayed_ref_node *ref;
5256 struct rb_node *node;
5257 int ret = 0;
5258
5259 delayed_refs = &trans->transaction->delayed_refs;
5260 spin_lock(&delayed_refs->lock);
5261 head = btrfs_find_delayed_ref_head(trans, bytenr);
5262 if (!head)
5263 goto out;
5264
5265 node = rb_prev(&head->node.rb_node);
5266 if (!node)
5267 goto out;
5268
5269 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5270
5271 /* there are still entries for this ref, we can't drop it */
5272 if (ref->bytenr == bytenr)
5273 goto out;
5274
5275 if (head->extent_op) {
5276 if (!head->must_insert_reserved)
5277 goto out;
5278 kfree(head->extent_op);
5279 head->extent_op = NULL;
5280 }
5281
5282 /*
5283 * waiting for the lock here would deadlock. If someone else has it
5284 * locked they are already in the process of dropping it anyway
5285 */
5286 if (!mutex_trylock(&head->mutex))
5287 goto out;
5288
5289 /*
5290 * at this point we have a head with no other entries. Go
5291 * ahead and process it.
5292 */
5293 head->node.in_tree = 0;
5294 rb_erase(&head->node.rb_node, &delayed_refs->root);
5295
5296 delayed_refs->num_entries--;
5297 if (waitqueue_active(&root->fs_info->tree_mod_seq_wait))
5298 wake_up(&root->fs_info->tree_mod_seq_wait);
5299
5300 /*
5301 * we don't take a ref on the node because we're removing it from the
5302 * tree, so we just steal the ref the tree was holding.
5303 */
5304 delayed_refs->num_heads--;
5305 if (list_empty(&head->cluster))
5306 delayed_refs->num_heads_ready--;
5307
5308 list_del_init(&head->cluster);
5309 spin_unlock(&delayed_refs->lock);
5310
5311 BUG_ON(head->extent_op);
5312 if (head->must_insert_reserved)
5313 ret = 1;
5314
5315 mutex_unlock(&head->mutex);
5316 btrfs_put_delayed_ref(&head->node);
5317 return ret;
5318 out:
5319 spin_unlock(&delayed_refs->lock);
5320 return 0;
5321 }
5322
5323 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5324 struct btrfs_root *root,
5325 struct extent_buffer *buf,
5326 u64 parent, int last_ref)
5327 {
5328 struct btrfs_block_group_cache *cache = NULL;
5329 int ret;
5330
5331 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5332 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5333 buf->start, buf->len,
5334 parent, root->root_key.objectid,
5335 btrfs_header_level(buf),
5336 BTRFS_DROP_DELAYED_REF, NULL, 0);
5337 BUG_ON(ret); /* -ENOMEM */
5338 }
5339
5340 if (!last_ref)
5341 return;
5342
5343 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5344
5345 if (btrfs_header_generation(buf) == trans->transid) {
5346 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5347 ret = check_ref_cleanup(trans, root, buf->start);
5348 if (!ret)
5349 goto out;
5350 }
5351
5352 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5353 pin_down_extent(root, cache, buf->start, buf->len, 1);
5354 goto out;
5355 }
5356
5357 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5358
5359 btrfs_add_free_space(cache, buf->start, buf->len);
5360 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5361 }
5362 out:
5363 /*
5364 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5365 * anymore.
5366 */
5367 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5368 btrfs_put_block_group(cache);
5369 }
5370
5371 /* Can return -ENOMEM */
5372 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5373 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5374 u64 owner, u64 offset, int for_cow)
5375 {
5376 int ret;
5377 struct btrfs_fs_info *fs_info = root->fs_info;
5378
5379 /*
5380 * tree log blocks never actually go into the extent allocation
5381 * tree, just update pinning info and exit early.
5382 */
5383 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5384 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5385 /* unlocks the pinned mutex */
5386 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5387 ret = 0;
5388 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5389 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5390 num_bytes,
5391 parent, root_objectid, (int)owner,
5392 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5393 } else {
5394 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5395 num_bytes,
5396 parent, root_objectid, owner,
5397 offset, BTRFS_DROP_DELAYED_REF,
5398 NULL, for_cow);
5399 }
5400 return ret;
5401 }
5402
5403 static u64 stripe_align(struct btrfs_root *root, u64 val)
5404 {
5405 u64 mask = ((u64)root->stripesize - 1);
5406 u64 ret = (val + mask) & ~mask;
5407 return ret;
5408 }
5409
5410 /*
5411 * when we wait for progress in the block group caching, its because
5412 * our allocation attempt failed at least once. So, we must sleep
5413 * and let some progress happen before we try again.
5414 *
5415 * This function will sleep at least once waiting for new free space to
5416 * show up, and then it will check the block group free space numbers
5417 * for our min num_bytes. Another option is to have it go ahead
5418 * and look in the rbtree for a free extent of a given size, but this
5419 * is a good start.
5420 */
5421 static noinline int
5422 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5423 u64 num_bytes)
5424 {
5425 struct btrfs_caching_control *caching_ctl;
5426 DEFINE_WAIT(wait);
5427
5428 caching_ctl = get_caching_control(cache);
5429 if (!caching_ctl)
5430 return 0;
5431
5432 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5433 (cache->free_space_ctl->free_space >= num_bytes));
5434
5435 put_caching_control(caching_ctl);
5436 return 0;
5437 }
5438
5439 static noinline int
5440 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5441 {
5442 struct btrfs_caching_control *caching_ctl;
5443 DEFINE_WAIT(wait);
5444
5445 caching_ctl = get_caching_control(cache);
5446 if (!caching_ctl)
5447 return 0;
5448
5449 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5450
5451 put_caching_control(caching_ctl);
5452 return 0;
5453 }
5454
5455 static int __get_block_group_index(u64 flags)
5456 {
5457 int index;
5458
5459 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5460 index = 0;
5461 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5462 index = 1;
5463 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5464 index = 2;
5465 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5466 index = 3;
5467 else
5468 index = 4;
5469
5470 return index;
5471 }
5472
5473 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5474 {
5475 return __get_block_group_index(cache->flags);
5476 }
5477
5478 enum btrfs_loop_type {
5479 LOOP_CACHING_NOWAIT = 0,
5480 LOOP_CACHING_WAIT = 1,
5481 LOOP_ALLOC_CHUNK = 2,
5482 LOOP_NO_EMPTY_SIZE = 3,
5483 };
5484
5485 /*
5486 * walks the btree of allocated extents and find a hole of a given size.
5487 * The key ins is changed to record the hole:
5488 * ins->objectid == block start
5489 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5490 * ins->offset == number of blocks
5491 * Any available blocks before search_start are skipped.
5492 */
5493 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5494 struct btrfs_root *orig_root,
5495 u64 num_bytes, u64 empty_size,
5496 u64 hint_byte, struct btrfs_key *ins,
5497 u64 data)
5498 {
5499 int ret = 0;
5500 struct btrfs_root *root = orig_root->fs_info->extent_root;
5501 struct btrfs_free_cluster *last_ptr = NULL;
5502 struct btrfs_block_group_cache *block_group = NULL;
5503 struct btrfs_block_group_cache *used_block_group;
5504 u64 search_start = 0;
5505 int empty_cluster = 2 * 1024 * 1024;
5506 int allowed_chunk_alloc = 0;
5507 int done_chunk_alloc = 0;
5508 struct btrfs_space_info *space_info;
5509 int loop = 0;
5510 int index = 0;
5511 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5512 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5513 bool found_uncached_bg = false;
5514 bool failed_cluster_refill = false;
5515 bool failed_alloc = false;
5516 bool use_cluster = true;
5517 bool have_caching_bg = false;
5518
5519 WARN_ON(num_bytes < root->sectorsize);
5520 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5521 ins->objectid = 0;
5522 ins->offset = 0;
5523
5524 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5525
5526 space_info = __find_space_info(root->fs_info, data);
5527 if (!space_info) {
5528 printk(KERN_ERR "No space info for %llu\n", data);
5529 return -ENOSPC;
5530 }
5531
5532 /*
5533 * If the space info is for both data and metadata it means we have a
5534 * small filesystem and we can't use the clustering stuff.
5535 */
5536 if (btrfs_mixed_space_info(space_info))
5537 use_cluster = false;
5538
5539 if (orig_root->ref_cows || empty_size)
5540 allowed_chunk_alloc = 1;
5541
5542 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5543 last_ptr = &root->fs_info->meta_alloc_cluster;
5544 if (!btrfs_test_opt(root, SSD))
5545 empty_cluster = 64 * 1024;
5546 }
5547
5548 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5549 btrfs_test_opt(root, SSD)) {
5550 last_ptr = &root->fs_info->data_alloc_cluster;
5551 }
5552
5553 if (last_ptr) {
5554 spin_lock(&last_ptr->lock);
5555 if (last_ptr->block_group)
5556 hint_byte = last_ptr->window_start;
5557 spin_unlock(&last_ptr->lock);
5558 }
5559
5560 search_start = max(search_start, first_logical_byte(root, 0));
5561 search_start = max(search_start, hint_byte);
5562
5563 if (!last_ptr)
5564 empty_cluster = 0;
5565
5566 if (search_start == hint_byte) {
5567 block_group = btrfs_lookup_block_group(root->fs_info,
5568 search_start);
5569 used_block_group = block_group;
5570 /*
5571 * we don't want to use the block group if it doesn't match our
5572 * allocation bits, or if its not cached.
5573 *
5574 * However if we are re-searching with an ideal block group
5575 * picked out then we don't care that the block group is cached.
5576 */
5577 if (block_group && block_group_bits(block_group, data) &&
5578 block_group->cached != BTRFS_CACHE_NO) {
5579 down_read(&space_info->groups_sem);
5580 if (list_empty(&block_group->list) ||
5581 block_group->ro) {
5582 /*
5583 * someone is removing this block group,
5584 * we can't jump into the have_block_group
5585 * target because our list pointers are not
5586 * valid
5587 */
5588 btrfs_put_block_group(block_group);
5589 up_read(&space_info->groups_sem);
5590 } else {
5591 index = get_block_group_index(block_group);
5592 goto have_block_group;
5593 }
5594 } else if (block_group) {
5595 btrfs_put_block_group(block_group);
5596 }
5597 }
5598 search:
5599 have_caching_bg = false;
5600 down_read(&space_info->groups_sem);
5601 list_for_each_entry(block_group, &space_info->block_groups[index],
5602 list) {
5603 u64 offset;
5604 int cached;
5605
5606 used_block_group = block_group;
5607 btrfs_get_block_group(block_group);
5608 search_start = block_group->key.objectid;
5609
5610 /*
5611 * this can happen if we end up cycling through all the
5612 * raid types, but we want to make sure we only allocate
5613 * for the proper type.
5614 */
5615 if (!block_group_bits(block_group, data)) {
5616 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5617 BTRFS_BLOCK_GROUP_RAID1 |
5618 BTRFS_BLOCK_GROUP_RAID10;
5619
5620 /*
5621 * if they asked for extra copies and this block group
5622 * doesn't provide them, bail. This does allow us to
5623 * fill raid0 from raid1.
5624 */
5625 if ((data & extra) && !(block_group->flags & extra))
5626 goto loop;
5627 }
5628
5629 have_block_group:
5630 cached = block_group_cache_done(block_group);
5631 if (unlikely(!cached)) {
5632 found_uncached_bg = true;
5633 ret = cache_block_group(block_group, trans,
5634 orig_root, 0);
5635 BUG_ON(ret < 0);
5636 ret = 0;
5637 }
5638
5639 if (unlikely(block_group->ro))
5640 goto loop;
5641
5642 /*
5643 * Ok we want to try and use the cluster allocator, so
5644 * lets look there
5645 */
5646 if (last_ptr) {
5647 /*
5648 * the refill lock keeps out other
5649 * people trying to start a new cluster
5650 */
5651 spin_lock(&last_ptr->refill_lock);
5652 used_block_group = last_ptr->block_group;
5653 if (used_block_group != block_group &&
5654 (!used_block_group ||
5655 used_block_group->ro ||
5656 !block_group_bits(used_block_group, data))) {
5657 used_block_group = block_group;
5658 goto refill_cluster;
5659 }
5660
5661 if (used_block_group != block_group)
5662 btrfs_get_block_group(used_block_group);
5663
5664 offset = btrfs_alloc_from_cluster(used_block_group,
5665 last_ptr, num_bytes, used_block_group->key.objectid);
5666 if (offset) {
5667 /* we have a block, we're done */
5668 spin_unlock(&last_ptr->refill_lock);
5669 trace_btrfs_reserve_extent_cluster(root,
5670 block_group, search_start, num_bytes);
5671 goto checks;
5672 }
5673
5674 WARN_ON(last_ptr->block_group != used_block_group);
5675 if (used_block_group != block_group) {
5676 btrfs_put_block_group(used_block_group);
5677 used_block_group = block_group;
5678 }
5679 refill_cluster:
5680 BUG_ON(used_block_group != block_group);
5681 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5682 * set up a new clusters, so lets just skip it
5683 * and let the allocator find whatever block
5684 * it can find. If we reach this point, we
5685 * will have tried the cluster allocator
5686 * plenty of times and not have found
5687 * anything, so we are likely way too
5688 * fragmented for the clustering stuff to find
5689 * anything.
5690 *
5691 * However, if the cluster is taken from the
5692 * current block group, release the cluster
5693 * first, so that we stand a better chance of
5694 * succeeding in the unclustered
5695 * allocation. */
5696 if (loop >= LOOP_NO_EMPTY_SIZE &&
5697 last_ptr->block_group != block_group) {
5698 spin_unlock(&last_ptr->refill_lock);
5699 goto unclustered_alloc;
5700 }
5701
5702 /*
5703 * this cluster didn't work out, free it and
5704 * start over
5705 */
5706 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5707
5708 if (loop >= LOOP_NO_EMPTY_SIZE) {
5709 spin_unlock(&last_ptr->refill_lock);
5710 goto unclustered_alloc;
5711 }
5712
5713 /* allocate a cluster in this block group */
5714 ret = btrfs_find_space_cluster(trans, root,
5715 block_group, last_ptr,
5716 search_start, num_bytes,
5717 empty_cluster + empty_size);
5718 if (ret == 0) {
5719 /*
5720 * now pull our allocation out of this
5721 * cluster
5722 */
5723 offset = btrfs_alloc_from_cluster(block_group,
5724 last_ptr, num_bytes,
5725 search_start);
5726 if (offset) {
5727 /* we found one, proceed */
5728 spin_unlock(&last_ptr->refill_lock);
5729 trace_btrfs_reserve_extent_cluster(root,
5730 block_group, search_start,
5731 num_bytes);
5732 goto checks;
5733 }
5734 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5735 && !failed_cluster_refill) {
5736 spin_unlock(&last_ptr->refill_lock);
5737
5738 failed_cluster_refill = true;
5739 wait_block_group_cache_progress(block_group,
5740 num_bytes + empty_cluster + empty_size);
5741 goto have_block_group;
5742 }
5743
5744 /*
5745 * at this point we either didn't find a cluster
5746 * or we weren't able to allocate a block from our
5747 * cluster. Free the cluster we've been trying
5748 * to use, and go to the next block group
5749 */
5750 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5751 spin_unlock(&last_ptr->refill_lock);
5752 goto loop;
5753 }
5754
5755 unclustered_alloc:
5756 spin_lock(&block_group->free_space_ctl->tree_lock);
5757 if (cached &&
5758 block_group->free_space_ctl->free_space <
5759 num_bytes + empty_cluster + empty_size) {
5760 spin_unlock(&block_group->free_space_ctl->tree_lock);
5761 goto loop;
5762 }
5763 spin_unlock(&block_group->free_space_ctl->tree_lock);
5764
5765 offset = btrfs_find_space_for_alloc(block_group, search_start,
5766 num_bytes, empty_size);
5767 /*
5768 * If we didn't find a chunk, and we haven't failed on this
5769 * block group before, and this block group is in the middle of
5770 * caching and we are ok with waiting, then go ahead and wait
5771 * for progress to be made, and set failed_alloc to true.
5772 *
5773 * If failed_alloc is true then we've already waited on this
5774 * block group once and should move on to the next block group.
5775 */
5776 if (!offset && !failed_alloc && !cached &&
5777 loop > LOOP_CACHING_NOWAIT) {
5778 wait_block_group_cache_progress(block_group,
5779 num_bytes + empty_size);
5780 failed_alloc = true;
5781 goto have_block_group;
5782 } else if (!offset) {
5783 if (!cached)
5784 have_caching_bg = true;
5785 goto loop;
5786 }
5787 checks:
5788 search_start = stripe_align(root, offset);
5789
5790 /* move on to the next group */
5791 if (search_start + num_bytes >
5792 used_block_group->key.objectid + used_block_group->key.offset) {
5793 btrfs_add_free_space(used_block_group, offset, num_bytes);
5794 goto loop;
5795 }
5796
5797 if (offset < search_start)
5798 btrfs_add_free_space(used_block_group, offset,
5799 search_start - offset);
5800 BUG_ON(offset > search_start);
5801
5802 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5803 alloc_type);
5804 if (ret == -EAGAIN) {
5805 btrfs_add_free_space(used_block_group, offset, num_bytes);
5806 goto loop;
5807 }
5808
5809 /* we are all good, lets return */
5810 ins->objectid = search_start;
5811 ins->offset = num_bytes;
5812
5813 trace_btrfs_reserve_extent(orig_root, block_group,
5814 search_start, num_bytes);
5815 if (offset < search_start)
5816 btrfs_add_free_space(used_block_group, offset,
5817 search_start - offset);
5818 BUG_ON(offset > search_start);
5819 if (used_block_group != block_group)
5820 btrfs_put_block_group(used_block_group);
5821 btrfs_put_block_group(block_group);
5822 break;
5823 loop:
5824 failed_cluster_refill = false;
5825 failed_alloc = false;
5826 BUG_ON(index != get_block_group_index(block_group));
5827 if (used_block_group != block_group)
5828 btrfs_put_block_group(used_block_group);
5829 btrfs_put_block_group(block_group);
5830 }
5831 up_read(&space_info->groups_sem);
5832
5833 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5834 goto search;
5835
5836 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5837 goto search;
5838
5839 /*
5840 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5841 * caching kthreads as we move along
5842 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5843 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5844 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5845 * again
5846 */
5847 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5848 index = 0;
5849 loop++;
5850 if (loop == LOOP_ALLOC_CHUNK) {
5851 if (allowed_chunk_alloc) {
5852 ret = do_chunk_alloc(trans, root, num_bytes +
5853 2 * 1024 * 1024, data,
5854 CHUNK_ALLOC_LIMITED);
5855 /*
5856 * Do not bail out on ENOSPC since we
5857 * can do more things.
5858 */
5859 if (ret < 0 && ret != -ENOSPC) {
5860 btrfs_abort_transaction(trans,
5861 root, ret);
5862 goto out;
5863 }
5864 allowed_chunk_alloc = 0;
5865 if (ret == 1)
5866 done_chunk_alloc = 1;
5867 } else if (!done_chunk_alloc &&
5868 space_info->force_alloc ==
5869 CHUNK_ALLOC_NO_FORCE) {
5870 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5871 }
5872
5873 /*
5874 * We didn't allocate a chunk, go ahead and drop the
5875 * empty size and loop again.
5876 */
5877 if (!done_chunk_alloc)
5878 loop = LOOP_NO_EMPTY_SIZE;
5879 }
5880
5881 if (loop == LOOP_NO_EMPTY_SIZE) {
5882 empty_size = 0;
5883 empty_cluster = 0;
5884 }
5885
5886 goto search;
5887 } else if (!ins->objectid) {
5888 ret = -ENOSPC;
5889 } else if (ins->objectid) {
5890 ret = 0;
5891 }
5892 out:
5893
5894 return ret;
5895 }
5896
5897 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5898 int dump_block_groups)
5899 {
5900 struct btrfs_block_group_cache *cache;
5901 int index = 0;
5902
5903 spin_lock(&info->lock);
5904 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5905 (unsigned long long)info->flags,
5906 (unsigned long long)(info->total_bytes - info->bytes_used -
5907 info->bytes_pinned - info->bytes_reserved -
5908 info->bytes_readonly),
5909 (info->full) ? "" : "not ");
5910 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5911 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5912 (unsigned long long)info->total_bytes,
5913 (unsigned long long)info->bytes_used,
5914 (unsigned long long)info->bytes_pinned,
5915 (unsigned long long)info->bytes_reserved,
5916 (unsigned long long)info->bytes_may_use,
5917 (unsigned long long)info->bytes_readonly);
5918 spin_unlock(&info->lock);
5919
5920 if (!dump_block_groups)
5921 return;
5922
5923 down_read(&info->groups_sem);
5924 again:
5925 list_for_each_entry(cache, &info->block_groups[index], list) {
5926 spin_lock(&cache->lock);
5927 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5928 (unsigned long long)cache->key.objectid,
5929 (unsigned long long)cache->key.offset,
5930 (unsigned long long)btrfs_block_group_used(&cache->item),
5931 (unsigned long long)cache->pinned,
5932 (unsigned long long)cache->reserved,
5933 cache->ro ? "[readonly]" : "");
5934 btrfs_dump_free_space(cache, bytes);
5935 spin_unlock(&cache->lock);
5936 }
5937 if (++index < BTRFS_NR_RAID_TYPES)
5938 goto again;
5939 up_read(&info->groups_sem);
5940 }
5941
5942 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5943 struct btrfs_root *root,
5944 u64 num_bytes, u64 min_alloc_size,
5945 u64 empty_size, u64 hint_byte,
5946 struct btrfs_key *ins, u64 data)
5947 {
5948 bool final_tried = false;
5949 int ret;
5950
5951 data = btrfs_get_alloc_profile(root, data);
5952 again:
5953 /*
5954 * the only place that sets empty_size is btrfs_realloc_node, which
5955 * is not called recursively on allocations
5956 */
5957 if (empty_size || root->ref_cows) {
5958 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5959 num_bytes + 2 * 1024 * 1024, data,
5960 CHUNK_ALLOC_NO_FORCE);
5961 if (ret < 0 && ret != -ENOSPC) {
5962 btrfs_abort_transaction(trans, root, ret);
5963 return ret;
5964 }
5965 }
5966
5967 WARN_ON(num_bytes < root->sectorsize);
5968 ret = find_free_extent(trans, root, num_bytes, empty_size,
5969 hint_byte, ins, data);
5970
5971 if (ret == -ENOSPC) {
5972 if (!final_tried) {
5973 num_bytes = num_bytes >> 1;
5974 num_bytes = num_bytes & ~(root->sectorsize - 1);
5975 num_bytes = max(num_bytes, min_alloc_size);
5976 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5977 num_bytes, data, CHUNK_ALLOC_FORCE);
5978 if (ret < 0 && ret != -ENOSPC) {
5979 btrfs_abort_transaction(trans, root, ret);
5980 return ret;
5981 }
5982 if (num_bytes == min_alloc_size)
5983 final_tried = true;
5984 goto again;
5985 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5986 struct btrfs_space_info *sinfo;
5987
5988 sinfo = __find_space_info(root->fs_info, data);
5989 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5990 "wanted %llu\n", (unsigned long long)data,
5991 (unsigned long long)num_bytes);
5992 if (sinfo)
5993 dump_space_info(sinfo, num_bytes, 1);
5994 }
5995 }
5996
5997 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5998
5999 return ret;
6000 }
6001
6002 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6003 u64 start, u64 len, int pin)
6004 {
6005 struct btrfs_block_group_cache *cache;
6006 int ret = 0;
6007
6008 cache = btrfs_lookup_block_group(root->fs_info, start);
6009 if (!cache) {
6010 printk(KERN_ERR "Unable to find block group for %llu\n",
6011 (unsigned long long)start);
6012 return -ENOSPC;
6013 }
6014
6015 if (btrfs_test_opt(root, DISCARD))
6016 ret = btrfs_discard_extent(root, start, len, NULL);
6017
6018 if (pin)
6019 pin_down_extent(root, cache, start, len, 1);
6020 else {
6021 btrfs_add_free_space(cache, start, len);
6022 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6023 }
6024 btrfs_put_block_group(cache);
6025
6026 trace_btrfs_reserved_extent_free(root, start, len);
6027
6028 return ret;
6029 }
6030
6031 int btrfs_free_reserved_extent(struct btrfs_root *root,
6032 u64 start, u64 len)
6033 {
6034 return __btrfs_free_reserved_extent(root, start, len, 0);
6035 }
6036
6037 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6038 u64 start, u64 len)
6039 {
6040 return __btrfs_free_reserved_extent(root, start, len, 1);
6041 }
6042
6043 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6044 struct btrfs_root *root,
6045 u64 parent, u64 root_objectid,
6046 u64 flags, u64 owner, u64 offset,
6047 struct btrfs_key *ins, int ref_mod)
6048 {
6049 int ret;
6050 struct btrfs_fs_info *fs_info = root->fs_info;
6051 struct btrfs_extent_item *extent_item;
6052 struct btrfs_extent_inline_ref *iref;
6053 struct btrfs_path *path;
6054 struct extent_buffer *leaf;
6055 int type;
6056 u32 size;
6057
6058 if (parent > 0)
6059 type = BTRFS_SHARED_DATA_REF_KEY;
6060 else
6061 type = BTRFS_EXTENT_DATA_REF_KEY;
6062
6063 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6064
6065 path = btrfs_alloc_path();
6066 if (!path)
6067 return -ENOMEM;
6068
6069 path->leave_spinning = 1;
6070 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6071 ins, size);
6072 if (ret) {
6073 btrfs_free_path(path);
6074 return ret;
6075 }
6076
6077 leaf = path->nodes[0];
6078 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6079 struct btrfs_extent_item);
6080 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6081 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6082 btrfs_set_extent_flags(leaf, extent_item,
6083 flags | BTRFS_EXTENT_FLAG_DATA);
6084
6085 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6086 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6087 if (parent > 0) {
6088 struct btrfs_shared_data_ref *ref;
6089 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6090 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6091 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6092 } else {
6093 struct btrfs_extent_data_ref *ref;
6094 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6095 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6096 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6097 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6098 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6099 }
6100
6101 btrfs_mark_buffer_dirty(path->nodes[0]);
6102 btrfs_free_path(path);
6103
6104 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6105 if (ret) { /* -ENOENT, logic error */
6106 printk(KERN_ERR "btrfs update block group failed for %llu "
6107 "%llu\n", (unsigned long long)ins->objectid,
6108 (unsigned long long)ins->offset);
6109 BUG();
6110 }
6111 return ret;
6112 }
6113
6114 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6115 struct btrfs_root *root,
6116 u64 parent, u64 root_objectid,
6117 u64 flags, struct btrfs_disk_key *key,
6118 int level, struct btrfs_key *ins)
6119 {
6120 int ret;
6121 struct btrfs_fs_info *fs_info = root->fs_info;
6122 struct btrfs_extent_item *extent_item;
6123 struct btrfs_tree_block_info *block_info;
6124 struct btrfs_extent_inline_ref *iref;
6125 struct btrfs_path *path;
6126 struct extent_buffer *leaf;
6127 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6128
6129 path = btrfs_alloc_path();
6130 if (!path)
6131 return -ENOMEM;
6132
6133 path->leave_spinning = 1;
6134 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6135 ins, size);
6136 if (ret) {
6137 btrfs_free_path(path);
6138 return ret;
6139 }
6140
6141 leaf = path->nodes[0];
6142 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6143 struct btrfs_extent_item);
6144 btrfs_set_extent_refs(leaf, extent_item, 1);
6145 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6146 btrfs_set_extent_flags(leaf, extent_item,
6147 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6148 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6149
6150 btrfs_set_tree_block_key(leaf, block_info, key);
6151 btrfs_set_tree_block_level(leaf, block_info, level);
6152
6153 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6154 if (parent > 0) {
6155 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6156 btrfs_set_extent_inline_ref_type(leaf, iref,
6157 BTRFS_SHARED_BLOCK_REF_KEY);
6158 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6159 } else {
6160 btrfs_set_extent_inline_ref_type(leaf, iref,
6161 BTRFS_TREE_BLOCK_REF_KEY);
6162 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6163 }
6164
6165 btrfs_mark_buffer_dirty(leaf);
6166 btrfs_free_path(path);
6167
6168 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6169 if (ret) { /* -ENOENT, logic error */
6170 printk(KERN_ERR "btrfs update block group failed for %llu "
6171 "%llu\n", (unsigned long long)ins->objectid,
6172 (unsigned long long)ins->offset);
6173 BUG();
6174 }
6175 return ret;
6176 }
6177
6178 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6179 struct btrfs_root *root,
6180 u64 root_objectid, u64 owner,
6181 u64 offset, struct btrfs_key *ins)
6182 {
6183 int ret;
6184
6185 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6186
6187 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6188 ins->offset, 0,
6189 root_objectid, owner, offset,
6190 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6191 return ret;
6192 }
6193
6194 /*
6195 * this is used by the tree logging recovery code. It records that
6196 * an extent has been allocated and makes sure to clear the free
6197 * space cache bits as well
6198 */
6199 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6200 struct btrfs_root *root,
6201 u64 root_objectid, u64 owner, u64 offset,
6202 struct btrfs_key *ins)
6203 {
6204 int ret;
6205 struct btrfs_block_group_cache *block_group;
6206 struct btrfs_caching_control *caching_ctl;
6207 u64 start = ins->objectid;
6208 u64 num_bytes = ins->offset;
6209
6210 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6211 cache_block_group(block_group, trans, NULL, 0);
6212 caching_ctl = get_caching_control(block_group);
6213
6214 if (!caching_ctl) {
6215 BUG_ON(!block_group_cache_done(block_group));
6216 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6217 BUG_ON(ret); /* -ENOMEM */
6218 } else {
6219 mutex_lock(&caching_ctl->mutex);
6220
6221 if (start >= caching_ctl->progress) {
6222 ret = add_excluded_extent(root, start, num_bytes);
6223 BUG_ON(ret); /* -ENOMEM */
6224 } else if (start + num_bytes <= caching_ctl->progress) {
6225 ret = btrfs_remove_free_space(block_group,
6226 start, num_bytes);
6227 BUG_ON(ret); /* -ENOMEM */
6228 } else {
6229 num_bytes = caching_ctl->progress - start;
6230 ret = btrfs_remove_free_space(block_group,
6231 start, num_bytes);
6232 BUG_ON(ret); /* -ENOMEM */
6233
6234 start = caching_ctl->progress;
6235 num_bytes = ins->objectid + ins->offset -
6236 caching_ctl->progress;
6237 ret = add_excluded_extent(root, start, num_bytes);
6238 BUG_ON(ret); /* -ENOMEM */
6239 }
6240
6241 mutex_unlock(&caching_ctl->mutex);
6242 put_caching_control(caching_ctl);
6243 }
6244
6245 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6246 RESERVE_ALLOC_NO_ACCOUNT);
6247 BUG_ON(ret); /* logic error */
6248 btrfs_put_block_group(block_group);
6249 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6250 0, owner, offset, ins, 1);
6251 return ret;
6252 }
6253
6254 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6255 struct btrfs_root *root,
6256 u64 bytenr, u32 blocksize,
6257 int level)
6258 {
6259 struct extent_buffer *buf;
6260
6261 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6262 if (!buf)
6263 return ERR_PTR(-ENOMEM);
6264 btrfs_set_header_generation(buf, trans->transid);
6265 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6266 btrfs_tree_lock(buf);
6267 clean_tree_block(trans, root, buf);
6268 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6269
6270 btrfs_set_lock_blocking(buf);
6271 btrfs_set_buffer_uptodate(buf);
6272
6273 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6274 /*
6275 * we allow two log transactions at a time, use different
6276 * EXENT bit to differentiate dirty pages.
6277 */
6278 if (root->log_transid % 2 == 0)
6279 set_extent_dirty(&root->dirty_log_pages, buf->start,
6280 buf->start + buf->len - 1, GFP_NOFS);
6281 else
6282 set_extent_new(&root->dirty_log_pages, buf->start,
6283 buf->start + buf->len - 1, GFP_NOFS);
6284 } else {
6285 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6286 buf->start + buf->len - 1, GFP_NOFS);
6287 }
6288 trans->blocks_used++;
6289 /* this returns a buffer locked for blocking */
6290 return buf;
6291 }
6292
6293 static struct btrfs_block_rsv *
6294 use_block_rsv(struct btrfs_trans_handle *trans,
6295 struct btrfs_root *root, u32 blocksize)
6296 {
6297 struct btrfs_block_rsv *block_rsv;
6298 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6299 int ret;
6300
6301 block_rsv = get_block_rsv(trans, root);
6302
6303 if (block_rsv->size == 0) {
6304 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6305 /*
6306 * If we couldn't reserve metadata bytes try and use some from
6307 * the global reserve.
6308 */
6309 if (ret && block_rsv != global_rsv) {
6310 ret = block_rsv_use_bytes(global_rsv, blocksize);
6311 if (!ret)
6312 return global_rsv;
6313 return ERR_PTR(ret);
6314 } else if (ret) {
6315 return ERR_PTR(ret);
6316 }
6317 return block_rsv;
6318 }
6319
6320 ret = block_rsv_use_bytes(block_rsv, blocksize);
6321 if (!ret)
6322 return block_rsv;
6323 if (ret) {
6324 static DEFINE_RATELIMIT_STATE(_rs,
6325 DEFAULT_RATELIMIT_INTERVAL,
6326 /*DEFAULT_RATELIMIT_BURST*/ 2);
6327 if (__ratelimit(&_rs)) {
6328 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6329 WARN_ON(1);
6330 }
6331 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6332 if (!ret) {
6333 return block_rsv;
6334 } else if (ret && block_rsv != global_rsv) {
6335 ret = block_rsv_use_bytes(global_rsv, blocksize);
6336 if (!ret)
6337 return global_rsv;
6338 }
6339 }
6340
6341 return ERR_PTR(-ENOSPC);
6342 }
6343
6344 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6345 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6346 {
6347 block_rsv_add_bytes(block_rsv, blocksize, 0);
6348 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6349 }
6350
6351 /*
6352 * finds a free extent and does all the dirty work required for allocation
6353 * returns the key for the extent through ins, and a tree buffer for
6354 * the first block of the extent through buf.
6355 *
6356 * returns the tree buffer or NULL.
6357 */
6358 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6359 struct btrfs_root *root, u32 blocksize,
6360 u64 parent, u64 root_objectid,
6361 struct btrfs_disk_key *key, int level,
6362 u64 hint, u64 empty_size)
6363 {
6364 struct btrfs_key ins;
6365 struct btrfs_block_rsv *block_rsv;
6366 struct extent_buffer *buf;
6367 u64 flags = 0;
6368 int ret;
6369
6370
6371 block_rsv = use_block_rsv(trans, root, blocksize);
6372 if (IS_ERR(block_rsv))
6373 return ERR_CAST(block_rsv);
6374
6375 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6376 empty_size, hint, &ins, 0);
6377 if (ret) {
6378 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6379 return ERR_PTR(ret);
6380 }
6381
6382 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6383 blocksize, level);
6384 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6385
6386 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6387 if (parent == 0)
6388 parent = ins.objectid;
6389 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6390 } else
6391 BUG_ON(parent > 0);
6392
6393 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6394 struct btrfs_delayed_extent_op *extent_op;
6395 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6396 BUG_ON(!extent_op); /* -ENOMEM */
6397 if (key)
6398 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6399 else
6400 memset(&extent_op->key, 0, sizeof(extent_op->key));
6401 extent_op->flags_to_set = flags;
6402 extent_op->update_key = 1;
6403 extent_op->update_flags = 1;
6404 extent_op->is_data = 0;
6405
6406 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6407 ins.objectid,
6408 ins.offset, parent, root_objectid,
6409 level, BTRFS_ADD_DELAYED_EXTENT,
6410 extent_op, 0);
6411 BUG_ON(ret); /* -ENOMEM */
6412 }
6413 return buf;
6414 }
6415
6416 struct walk_control {
6417 u64 refs[BTRFS_MAX_LEVEL];
6418 u64 flags[BTRFS_MAX_LEVEL];
6419 struct btrfs_key update_progress;
6420 int stage;
6421 int level;
6422 int shared_level;
6423 int update_ref;
6424 int keep_locks;
6425 int reada_slot;
6426 int reada_count;
6427 int for_reloc;
6428 };
6429
6430 #define DROP_REFERENCE 1
6431 #define UPDATE_BACKREF 2
6432
6433 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6434 struct btrfs_root *root,
6435 struct walk_control *wc,
6436 struct btrfs_path *path)
6437 {
6438 u64 bytenr;
6439 u64 generation;
6440 u64 refs;
6441 u64 flags;
6442 u32 nritems;
6443 u32 blocksize;
6444 struct btrfs_key key;
6445 struct extent_buffer *eb;
6446 int ret;
6447 int slot;
6448 int nread = 0;
6449
6450 if (path->slots[wc->level] < wc->reada_slot) {
6451 wc->reada_count = wc->reada_count * 2 / 3;
6452 wc->reada_count = max(wc->reada_count, 2);
6453 } else {
6454 wc->reada_count = wc->reada_count * 3 / 2;
6455 wc->reada_count = min_t(int, wc->reada_count,
6456 BTRFS_NODEPTRS_PER_BLOCK(root));
6457 }
6458
6459 eb = path->nodes[wc->level];
6460 nritems = btrfs_header_nritems(eb);
6461 blocksize = btrfs_level_size(root, wc->level - 1);
6462
6463 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6464 if (nread >= wc->reada_count)
6465 break;
6466
6467 cond_resched();
6468 bytenr = btrfs_node_blockptr(eb, slot);
6469 generation = btrfs_node_ptr_generation(eb, slot);
6470
6471 if (slot == path->slots[wc->level])
6472 goto reada;
6473
6474 if (wc->stage == UPDATE_BACKREF &&
6475 generation <= root->root_key.offset)
6476 continue;
6477
6478 /* We don't lock the tree block, it's OK to be racy here */
6479 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6480 &refs, &flags);
6481 /* We don't care about errors in readahead. */
6482 if (ret < 0)
6483 continue;
6484 BUG_ON(refs == 0);
6485
6486 if (wc->stage == DROP_REFERENCE) {
6487 if (refs == 1)
6488 goto reada;
6489
6490 if (wc->level == 1 &&
6491 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6492 continue;
6493 if (!wc->update_ref ||
6494 generation <= root->root_key.offset)
6495 continue;
6496 btrfs_node_key_to_cpu(eb, &key, slot);
6497 ret = btrfs_comp_cpu_keys(&key,
6498 &wc->update_progress);
6499 if (ret < 0)
6500 continue;
6501 } else {
6502 if (wc->level == 1 &&
6503 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6504 continue;
6505 }
6506 reada:
6507 ret = readahead_tree_block(root, bytenr, blocksize,
6508 generation);
6509 if (ret)
6510 break;
6511 nread++;
6512 }
6513 wc->reada_slot = slot;
6514 }
6515
6516 /*
6517 * hepler to process tree block while walking down the tree.
6518 *
6519 * when wc->stage == UPDATE_BACKREF, this function updates
6520 * back refs for pointers in the block.
6521 *
6522 * NOTE: return value 1 means we should stop walking down.
6523 */
6524 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6525 struct btrfs_root *root,
6526 struct btrfs_path *path,
6527 struct walk_control *wc, int lookup_info)
6528 {
6529 int level = wc->level;
6530 struct extent_buffer *eb = path->nodes[level];
6531 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6532 int ret;
6533
6534 if (wc->stage == UPDATE_BACKREF &&
6535 btrfs_header_owner(eb) != root->root_key.objectid)
6536 return 1;
6537
6538 /*
6539 * when reference count of tree block is 1, it won't increase
6540 * again. once full backref flag is set, we never clear it.
6541 */
6542 if (lookup_info &&
6543 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6544 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6545 BUG_ON(!path->locks[level]);
6546 ret = btrfs_lookup_extent_info(trans, root,
6547 eb->start, eb->len,
6548 &wc->refs[level],
6549 &wc->flags[level]);
6550 BUG_ON(ret == -ENOMEM);
6551 if (ret)
6552 return ret;
6553 BUG_ON(wc->refs[level] == 0);
6554 }
6555
6556 if (wc->stage == DROP_REFERENCE) {
6557 if (wc->refs[level] > 1)
6558 return 1;
6559
6560 if (path->locks[level] && !wc->keep_locks) {
6561 btrfs_tree_unlock_rw(eb, path->locks[level]);
6562 path->locks[level] = 0;
6563 }
6564 return 0;
6565 }
6566
6567 /* wc->stage == UPDATE_BACKREF */
6568 if (!(wc->flags[level] & flag)) {
6569 BUG_ON(!path->locks[level]);
6570 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6571 BUG_ON(ret); /* -ENOMEM */
6572 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6573 BUG_ON(ret); /* -ENOMEM */
6574 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6575 eb->len, flag, 0);
6576 BUG_ON(ret); /* -ENOMEM */
6577 wc->flags[level] |= flag;
6578 }
6579
6580 /*
6581 * the block is shared by multiple trees, so it's not good to
6582 * keep the tree lock
6583 */
6584 if (path->locks[level] && level > 0) {
6585 btrfs_tree_unlock_rw(eb, path->locks[level]);
6586 path->locks[level] = 0;
6587 }
6588 return 0;
6589 }
6590
6591 /*
6592 * hepler to process tree block pointer.
6593 *
6594 * when wc->stage == DROP_REFERENCE, this function checks
6595 * reference count of the block pointed to. if the block
6596 * is shared and we need update back refs for the subtree
6597 * rooted at the block, this function changes wc->stage to
6598 * UPDATE_BACKREF. if the block is shared and there is no
6599 * need to update back, this function drops the reference
6600 * to the block.
6601 *
6602 * NOTE: return value 1 means we should stop walking down.
6603 */
6604 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6605 struct btrfs_root *root,
6606 struct btrfs_path *path,
6607 struct walk_control *wc, int *lookup_info)
6608 {
6609 u64 bytenr;
6610 u64 generation;
6611 u64 parent;
6612 u32 blocksize;
6613 struct btrfs_key key;
6614 struct extent_buffer *next;
6615 int level = wc->level;
6616 int reada = 0;
6617 int ret = 0;
6618
6619 generation = btrfs_node_ptr_generation(path->nodes[level],
6620 path->slots[level]);
6621 /*
6622 * if the lower level block was created before the snapshot
6623 * was created, we know there is no need to update back refs
6624 * for the subtree
6625 */
6626 if (wc->stage == UPDATE_BACKREF &&
6627 generation <= root->root_key.offset) {
6628 *lookup_info = 1;
6629 return 1;
6630 }
6631
6632 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6633 blocksize = btrfs_level_size(root, level - 1);
6634
6635 next = btrfs_find_tree_block(root, bytenr, blocksize);
6636 if (!next) {
6637 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6638 if (!next)
6639 return -ENOMEM;
6640 reada = 1;
6641 }
6642 btrfs_tree_lock(next);
6643 btrfs_set_lock_blocking(next);
6644
6645 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6646 &wc->refs[level - 1],
6647 &wc->flags[level - 1]);
6648 if (ret < 0) {
6649 btrfs_tree_unlock(next);
6650 return ret;
6651 }
6652
6653 BUG_ON(wc->refs[level - 1] == 0);
6654 *lookup_info = 0;
6655
6656 if (wc->stage == DROP_REFERENCE) {
6657 if (wc->refs[level - 1] > 1) {
6658 if (level == 1 &&
6659 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6660 goto skip;
6661
6662 if (!wc->update_ref ||
6663 generation <= root->root_key.offset)
6664 goto skip;
6665
6666 btrfs_node_key_to_cpu(path->nodes[level], &key,
6667 path->slots[level]);
6668 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6669 if (ret < 0)
6670 goto skip;
6671
6672 wc->stage = UPDATE_BACKREF;
6673 wc->shared_level = level - 1;
6674 }
6675 } else {
6676 if (level == 1 &&
6677 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6678 goto skip;
6679 }
6680
6681 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6682 btrfs_tree_unlock(next);
6683 free_extent_buffer(next);
6684 next = NULL;
6685 *lookup_info = 1;
6686 }
6687
6688 if (!next) {
6689 if (reada && level == 1)
6690 reada_walk_down(trans, root, wc, path);
6691 next = read_tree_block(root, bytenr, blocksize, generation);
6692 if (!next)
6693 return -EIO;
6694 btrfs_tree_lock(next);
6695 btrfs_set_lock_blocking(next);
6696 }
6697
6698 level--;
6699 BUG_ON(level != btrfs_header_level(next));
6700 path->nodes[level] = next;
6701 path->slots[level] = 0;
6702 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6703 wc->level = level;
6704 if (wc->level == 1)
6705 wc->reada_slot = 0;
6706 return 0;
6707 skip:
6708 wc->refs[level - 1] = 0;
6709 wc->flags[level - 1] = 0;
6710 if (wc->stage == DROP_REFERENCE) {
6711 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6712 parent = path->nodes[level]->start;
6713 } else {
6714 BUG_ON(root->root_key.objectid !=
6715 btrfs_header_owner(path->nodes[level]));
6716 parent = 0;
6717 }
6718
6719 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6720 root->root_key.objectid, level - 1, 0, 0);
6721 BUG_ON(ret); /* -ENOMEM */
6722 }
6723 btrfs_tree_unlock(next);
6724 free_extent_buffer(next);
6725 *lookup_info = 1;
6726 return 1;
6727 }
6728
6729 /*
6730 * hepler to process tree block while walking up the tree.
6731 *
6732 * when wc->stage == DROP_REFERENCE, this function drops
6733 * reference count on the block.
6734 *
6735 * when wc->stage == UPDATE_BACKREF, this function changes
6736 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6737 * to UPDATE_BACKREF previously while processing the block.
6738 *
6739 * NOTE: return value 1 means we should stop walking up.
6740 */
6741 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6742 struct btrfs_root *root,
6743 struct btrfs_path *path,
6744 struct walk_control *wc)
6745 {
6746 int ret;
6747 int level = wc->level;
6748 struct extent_buffer *eb = path->nodes[level];
6749 u64 parent = 0;
6750
6751 if (wc->stage == UPDATE_BACKREF) {
6752 BUG_ON(wc->shared_level < level);
6753 if (level < wc->shared_level)
6754 goto out;
6755
6756 ret = find_next_key(path, level + 1, &wc->update_progress);
6757 if (ret > 0)
6758 wc->update_ref = 0;
6759
6760 wc->stage = DROP_REFERENCE;
6761 wc->shared_level = -1;
6762 path->slots[level] = 0;
6763
6764 /*
6765 * check reference count again if the block isn't locked.
6766 * we should start walking down the tree again if reference
6767 * count is one.
6768 */
6769 if (!path->locks[level]) {
6770 BUG_ON(level == 0);
6771 btrfs_tree_lock(eb);
6772 btrfs_set_lock_blocking(eb);
6773 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6774
6775 ret = btrfs_lookup_extent_info(trans, root,
6776 eb->start, eb->len,
6777 &wc->refs[level],
6778 &wc->flags[level]);
6779 if (ret < 0) {
6780 btrfs_tree_unlock_rw(eb, path->locks[level]);
6781 return ret;
6782 }
6783 BUG_ON(wc->refs[level] == 0);
6784 if (wc->refs[level] == 1) {
6785 btrfs_tree_unlock_rw(eb, path->locks[level]);
6786 return 1;
6787 }
6788 }
6789 }
6790
6791 /* wc->stage == DROP_REFERENCE */
6792 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6793
6794 if (wc->refs[level] == 1) {
6795 if (level == 0) {
6796 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6797 ret = btrfs_dec_ref(trans, root, eb, 1,
6798 wc->for_reloc);
6799 else
6800 ret = btrfs_dec_ref(trans, root, eb, 0,
6801 wc->for_reloc);
6802 BUG_ON(ret); /* -ENOMEM */
6803 }
6804 /* make block locked assertion in clean_tree_block happy */
6805 if (!path->locks[level] &&
6806 btrfs_header_generation(eb) == trans->transid) {
6807 btrfs_tree_lock(eb);
6808 btrfs_set_lock_blocking(eb);
6809 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6810 }
6811 clean_tree_block(trans, root, eb);
6812 }
6813
6814 if (eb == root->node) {
6815 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6816 parent = eb->start;
6817 else
6818 BUG_ON(root->root_key.objectid !=
6819 btrfs_header_owner(eb));
6820 } else {
6821 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6822 parent = path->nodes[level + 1]->start;
6823 else
6824 BUG_ON(root->root_key.objectid !=
6825 btrfs_header_owner(path->nodes[level + 1]));
6826 }
6827
6828 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6829 out:
6830 wc->refs[level] = 0;
6831 wc->flags[level] = 0;
6832 return 0;
6833 }
6834
6835 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6836 struct btrfs_root *root,
6837 struct btrfs_path *path,
6838 struct walk_control *wc)
6839 {
6840 int level = wc->level;
6841 int lookup_info = 1;
6842 int ret;
6843
6844 while (level >= 0) {
6845 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6846 if (ret > 0)
6847 break;
6848
6849 if (level == 0)
6850 break;
6851
6852 if (path->slots[level] >=
6853 btrfs_header_nritems(path->nodes[level]))
6854 break;
6855
6856 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6857 if (ret > 0) {
6858 path->slots[level]++;
6859 continue;
6860 } else if (ret < 0)
6861 return ret;
6862 level = wc->level;
6863 }
6864 return 0;
6865 }
6866
6867 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6868 struct btrfs_root *root,
6869 struct btrfs_path *path,
6870 struct walk_control *wc, int max_level)
6871 {
6872 int level = wc->level;
6873 int ret;
6874
6875 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6876 while (level < max_level && path->nodes[level]) {
6877 wc->level = level;
6878 if (path->slots[level] + 1 <
6879 btrfs_header_nritems(path->nodes[level])) {
6880 path->slots[level]++;
6881 return 0;
6882 } else {
6883 ret = walk_up_proc(trans, root, path, wc);
6884 if (ret > 0)
6885 return 0;
6886
6887 if (path->locks[level]) {
6888 btrfs_tree_unlock_rw(path->nodes[level],
6889 path->locks[level]);
6890 path->locks[level] = 0;
6891 }
6892 free_extent_buffer(path->nodes[level]);
6893 path->nodes[level] = NULL;
6894 level++;
6895 }
6896 }
6897 return 1;
6898 }
6899
6900 /*
6901 * drop a subvolume tree.
6902 *
6903 * this function traverses the tree freeing any blocks that only
6904 * referenced by the tree.
6905 *
6906 * when a shared tree block is found. this function decreases its
6907 * reference count by one. if update_ref is true, this function
6908 * also make sure backrefs for the shared block and all lower level
6909 * blocks are properly updated.
6910 */
6911 int btrfs_drop_snapshot(struct btrfs_root *root,
6912 struct btrfs_block_rsv *block_rsv, int update_ref,
6913 int for_reloc)
6914 {
6915 struct btrfs_path *path;
6916 struct btrfs_trans_handle *trans;
6917 struct btrfs_root *tree_root = root->fs_info->tree_root;
6918 struct btrfs_root_item *root_item = &root->root_item;
6919 struct walk_control *wc;
6920 struct btrfs_key key;
6921 int err = 0;
6922 int ret;
6923 int level;
6924
6925 path = btrfs_alloc_path();
6926 if (!path) {
6927 err = -ENOMEM;
6928 goto out;
6929 }
6930
6931 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6932 if (!wc) {
6933 btrfs_free_path(path);
6934 err = -ENOMEM;
6935 goto out;
6936 }
6937
6938 trans = btrfs_start_transaction(tree_root, 0);
6939 if (IS_ERR(trans)) {
6940 err = PTR_ERR(trans);
6941 goto out_free;
6942 }
6943
6944 if (block_rsv)
6945 trans->block_rsv = block_rsv;
6946
6947 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6948 level = btrfs_header_level(root->node);
6949 path->nodes[level] = btrfs_lock_root_node(root);
6950 btrfs_set_lock_blocking(path->nodes[level]);
6951 path->slots[level] = 0;
6952 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6953 memset(&wc->update_progress, 0,
6954 sizeof(wc->update_progress));
6955 } else {
6956 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6957 memcpy(&wc->update_progress, &key,
6958 sizeof(wc->update_progress));
6959
6960 level = root_item->drop_level;
6961 BUG_ON(level == 0);
6962 path->lowest_level = level;
6963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6964 path->lowest_level = 0;
6965 if (ret < 0) {
6966 err = ret;
6967 goto out_end_trans;
6968 }
6969 WARN_ON(ret > 0);
6970
6971 /*
6972 * unlock our path, this is safe because only this
6973 * function is allowed to delete this snapshot
6974 */
6975 btrfs_unlock_up_safe(path, 0);
6976
6977 level = btrfs_header_level(root->node);
6978 while (1) {
6979 btrfs_tree_lock(path->nodes[level]);
6980 btrfs_set_lock_blocking(path->nodes[level]);
6981
6982 ret = btrfs_lookup_extent_info(trans, root,
6983 path->nodes[level]->start,
6984 path->nodes[level]->len,
6985 &wc->refs[level],
6986 &wc->flags[level]);
6987 if (ret < 0) {
6988 err = ret;
6989 goto out_end_trans;
6990 }
6991 BUG_ON(wc->refs[level] == 0);
6992
6993 if (level == root_item->drop_level)
6994 break;
6995
6996 btrfs_tree_unlock(path->nodes[level]);
6997 WARN_ON(wc->refs[level] != 1);
6998 level--;
6999 }
7000 }
7001
7002 wc->level = level;
7003 wc->shared_level = -1;
7004 wc->stage = DROP_REFERENCE;
7005 wc->update_ref = update_ref;
7006 wc->keep_locks = 0;
7007 wc->for_reloc = for_reloc;
7008 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7009
7010 while (1) {
7011 ret = walk_down_tree(trans, root, path, wc);
7012 if (ret < 0) {
7013 err = ret;
7014 break;
7015 }
7016
7017 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7018 if (ret < 0) {
7019 err = ret;
7020 break;
7021 }
7022
7023 if (ret > 0) {
7024 BUG_ON(wc->stage != DROP_REFERENCE);
7025 break;
7026 }
7027
7028 if (wc->stage == DROP_REFERENCE) {
7029 level = wc->level;
7030 btrfs_node_key(path->nodes[level],
7031 &root_item->drop_progress,
7032 path->slots[level]);
7033 root_item->drop_level = level;
7034 }
7035
7036 BUG_ON(wc->level == 0);
7037 if (btrfs_should_end_transaction(trans, tree_root)) {
7038 ret = btrfs_update_root(trans, tree_root,
7039 &root->root_key,
7040 root_item);
7041 if (ret) {
7042 btrfs_abort_transaction(trans, tree_root, ret);
7043 err = ret;
7044 goto out_end_trans;
7045 }
7046
7047 btrfs_end_transaction_throttle(trans, tree_root);
7048 trans = btrfs_start_transaction(tree_root, 0);
7049 if (IS_ERR(trans)) {
7050 err = PTR_ERR(trans);
7051 goto out_free;
7052 }
7053 if (block_rsv)
7054 trans->block_rsv = block_rsv;
7055 }
7056 }
7057 btrfs_release_path(path);
7058 if (err)
7059 goto out_end_trans;
7060
7061 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7062 if (ret) {
7063 btrfs_abort_transaction(trans, tree_root, ret);
7064 goto out_end_trans;
7065 }
7066
7067 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7068 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7069 NULL, NULL);
7070 if (ret < 0) {
7071 btrfs_abort_transaction(trans, tree_root, ret);
7072 err = ret;
7073 goto out_end_trans;
7074 } else if (ret > 0) {
7075 /* if we fail to delete the orphan item this time
7076 * around, it'll get picked up the next time.
7077 *
7078 * The most common failure here is just -ENOENT.
7079 */
7080 btrfs_del_orphan_item(trans, tree_root,
7081 root->root_key.objectid);
7082 }
7083 }
7084
7085 if (root->in_radix) {
7086 btrfs_free_fs_root(tree_root->fs_info, root);
7087 } else {
7088 free_extent_buffer(root->node);
7089 free_extent_buffer(root->commit_root);
7090 kfree(root);
7091 }
7092 out_end_trans:
7093 btrfs_end_transaction_throttle(trans, tree_root);
7094 out_free:
7095 kfree(wc);
7096 btrfs_free_path(path);
7097 out:
7098 if (err)
7099 btrfs_std_error(root->fs_info, err);
7100 return err;
7101 }
7102
7103 /*
7104 * drop subtree rooted at tree block 'node'.
7105 *
7106 * NOTE: this function will unlock and release tree block 'node'
7107 * only used by relocation code
7108 */
7109 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7110 struct btrfs_root *root,
7111 struct extent_buffer *node,
7112 struct extent_buffer *parent)
7113 {
7114 struct btrfs_path *path;
7115 struct walk_control *wc;
7116 int level;
7117 int parent_level;
7118 int ret = 0;
7119 int wret;
7120
7121 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7122
7123 path = btrfs_alloc_path();
7124 if (!path)
7125 return -ENOMEM;
7126
7127 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7128 if (!wc) {
7129 btrfs_free_path(path);
7130 return -ENOMEM;
7131 }
7132
7133 btrfs_assert_tree_locked(parent);
7134 parent_level = btrfs_header_level(parent);
7135 extent_buffer_get(parent);
7136 path->nodes[parent_level] = parent;
7137 path->slots[parent_level] = btrfs_header_nritems(parent);
7138
7139 btrfs_assert_tree_locked(node);
7140 level = btrfs_header_level(node);
7141 path->nodes[level] = node;
7142 path->slots[level] = 0;
7143 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7144
7145 wc->refs[parent_level] = 1;
7146 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7147 wc->level = level;
7148 wc->shared_level = -1;
7149 wc->stage = DROP_REFERENCE;
7150 wc->update_ref = 0;
7151 wc->keep_locks = 1;
7152 wc->for_reloc = 1;
7153 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7154
7155 while (1) {
7156 wret = walk_down_tree(trans, root, path, wc);
7157 if (wret < 0) {
7158 ret = wret;
7159 break;
7160 }
7161
7162 wret = walk_up_tree(trans, root, path, wc, parent_level);
7163 if (wret < 0)
7164 ret = wret;
7165 if (wret != 0)
7166 break;
7167 }
7168
7169 kfree(wc);
7170 btrfs_free_path(path);
7171 return ret;
7172 }
7173
7174 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7175 {
7176 u64 num_devices;
7177 u64 stripped;
7178
7179 /*
7180 * if restripe for this chunk_type is on pick target profile and
7181 * return, otherwise do the usual balance
7182 */
7183 stripped = get_restripe_target(root->fs_info, flags);
7184 if (stripped)
7185 return extended_to_chunk(stripped);
7186
7187 /*
7188 * we add in the count of missing devices because we want
7189 * to make sure that any RAID levels on a degraded FS
7190 * continue to be honored.
7191 */
7192 num_devices = root->fs_info->fs_devices->rw_devices +
7193 root->fs_info->fs_devices->missing_devices;
7194
7195 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7196 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7197
7198 if (num_devices == 1) {
7199 stripped |= BTRFS_BLOCK_GROUP_DUP;
7200 stripped = flags & ~stripped;
7201
7202 /* turn raid0 into single device chunks */
7203 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7204 return stripped;
7205
7206 /* turn mirroring into duplication */
7207 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7208 BTRFS_BLOCK_GROUP_RAID10))
7209 return stripped | BTRFS_BLOCK_GROUP_DUP;
7210 } else {
7211 /* they already had raid on here, just return */
7212 if (flags & stripped)
7213 return flags;
7214
7215 stripped |= BTRFS_BLOCK_GROUP_DUP;
7216 stripped = flags & ~stripped;
7217
7218 /* switch duplicated blocks with raid1 */
7219 if (flags & BTRFS_BLOCK_GROUP_DUP)
7220 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7221
7222 /* this is drive concat, leave it alone */
7223 }
7224
7225 return flags;
7226 }
7227
7228 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7229 {
7230 struct btrfs_space_info *sinfo = cache->space_info;
7231 u64 num_bytes;
7232 u64 min_allocable_bytes;
7233 int ret = -ENOSPC;
7234
7235
7236 /*
7237 * We need some metadata space and system metadata space for
7238 * allocating chunks in some corner cases until we force to set
7239 * it to be readonly.
7240 */
7241 if ((sinfo->flags &
7242 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7243 !force)
7244 min_allocable_bytes = 1 * 1024 * 1024;
7245 else
7246 min_allocable_bytes = 0;
7247
7248 spin_lock(&sinfo->lock);
7249 spin_lock(&cache->lock);
7250
7251 if (cache->ro) {
7252 ret = 0;
7253 goto out;
7254 }
7255
7256 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7257 cache->bytes_super - btrfs_block_group_used(&cache->item);
7258
7259 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7260 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7261 min_allocable_bytes <= sinfo->total_bytes) {
7262 sinfo->bytes_readonly += num_bytes;
7263 cache->ro = 1;
7264 ret = 0;
7265 }
7266 out:
7267 spin_unlock(&cache->lock);
7268 spin_unlock(&sinfo->lock);
7269 return ret;
7270 }
7271
7272 int btrfs_set_block_group_ro(struct btrfs_root *root,
7273 struct btrfs_block_group_cache *cache)
7274
7275 {
7276 struct btrfs_trans_handle *trans;
7277 u64 alloc_flags;
7278 int ret;
7279
7280 BUG_ON(cache->ro);
7281
7282 trans = btrfs_join_transaction(root);
7283 if (IS_ERR(trans))
7284 return PTR_ERR(trans);
7285
7286 alloc_flags = update_block_group_flags(root, cache->flags);
7287 if (alloc_flags != cache->flags) {
7288 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7289 CHUNK_ALLOC_FORCE);
7290 if (ret < 0)
7291 goto out;
7292 }
7293
7294 ret = set_block_group_ro(cache, 0);
7295 if (!ret)
7296 goto out;
7297 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7298 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7299 CHUNK_ALLOC_FORCE);
7300 if (ret < 0)
7301 goto out;
7302 ret = set_block_group_ro(cache, 0);
7303 out:
7304 btrfs_end_transaction(trans, root);
7305 return ret;
7306 }
7307
7308 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7309 struct btrfs_root *root, u64 type)
7310 {
7311 u64 alloc_flags = get_alloc_profile(root, type);
7312 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7313 CHUNK_ALLOC_FORCE);
7314 }
7315
7316 /*
7317 * helper to account the unused space of all the readonly block group in the
7318 * list. takes mirrors into account.
7319 */
7320 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7321 {
7322 struct btrfs_block_group_cache *block_group;
7323 u64 free_bytes = 0;
7324 int factor;
7325
7326 list_for_each_entry(block_group, groups_list, list) {
7327 spin_lock(&block_group->lock);
7328
7329 if (!block_group->ro) {
7330 spin_unlock(&block_group->lock);
7331 continue;
7332 }
7333
7334 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7335 BTRFS_BLOCK_GROUP_RAID10 |
7336 BTRFS_BLOCK_GROUP_DUP))
7337 factor = 2;
7338 else
7339 factor = 1;
7340
7341 free_bytes += (block_group->key.offset -
7342 btrfs_block_group_used(&block_group->item)) *
7343 factor;
7344
7345 spin_unlock(&block_group->lock);
7346 }
7347
7348 return free_bytes;
7349 }
7350
7351 /*
7352 * helper to account the unused space of all the readonly block group in the
7353 * space_info. takes mirrors into account.
7354 */
7355 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7356 {
7357 int i;
7358 u64 free_bytes = 0;
7359
7360 spin_lock(&sinfo->lock);
7361
7362 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7363 if (!list_empty(&sinfo->block_groups[i]))
7364 free_bytes += __btrfs_get_ro_block_group_free_space(
7365 &sinfo->block_groups[i]);
7366
7367 spin_unlock(&sinfo->lock);
7368
7369 return free_bytes;
7370 }
7371
7372 void btrfs_set_block_group_rw(struct btrfs_root *root,
7373 struct btrfs_block_group_cache *cache)
7374 {
7375 struct btrfs_space_info *sinfo = cache->space_info;
7376 u64 num_bytes;
7377
7378 BUG_ON(!cache->ro);
7379
7380 spin_lock(&sinfo->lock);
7381 spin_lock(&cache->lock);
7382 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7383 cache->bytes_super - btrfs_block_group_used(&cache->item);
7384 sinfo->bytes_readonly -= num_bytes;
7385 cache->ro = 0;
7386 spin_unlock(&cache->lock);
7387 spin_unlock(&sinfo->lock);
7388 }
7389
7390 /*
7391 * checks to see if its even possible to relocate this block group.
7392 *
7393 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7394 * ok to go ahead and try.
7395 */
7396 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7397 {
7398 struct btrfs_block_group_cache *block_group;
7399 struct btrfs_space_info *space_info;
7400 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7401 struct btrfs_device *device;
7402 u64 min_free;
7403 u64 dev_min = 1;
7404 u64 dev_nr = 0;
7405 u64 target;
7406 int index;
7407 int full = 0;
7408 int ret = 0;
7409
7410 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7411
7412 /* odd, couldn't find the block group, leave it alone */
7413 if (!block_group)
7414 return -1;
7415
7416 min_free = btrfs_block_group_used(&block_group->item);
7417
7418 /* no bytes used, we're good */
7419 if (!min_free)
7420 goto out;
7421
7422 space_info = block_group->space_info;
7423 spin_lock(&space_info->lock);
7424
7425 full = space_info->full;
7426
7427 /*
7428 * if this is the last block group we have in this space, we can't
7429 * relocate it unless we're able to allocate a new chunk below.
7430 *
7431 * Otherwise, we need to make sure we have room in the space to handle
7432 * all of the extents from this block group. If we can, we're good
7433 */
7434 if ((space_info->total_bytes != block_group->key.offset) &&
7435 (space_info->bytes_used + space_info->bytes_reserved +
7436 space_info->bytes_pinned + space_info->bytes_readonly +
7437 min_free < space_info->total_bytes)) {
7438 spin_unlock(&space_info->lock);
7439 goto out;
7440 }
7441 spin_unlock(&space_info->lock);
7442
7443 /*
7444 * ok we don't have enough space, but maybe we have free space on our
7445 * devices to allocate new chunks for relocation, so loop through our
7446 * alloc devices and guess if we have enough space. if this block
7447 * group is going to be restriped, run checks against the target
7448 * profile instead of the current one.
7449 */
7450 ret = -1;
7451
7452 /*
7453 * index:
7454 * 0: raid10
7455 * 1: raid1
7456 * 2: dup
7457 * 3: raid0
7458 * 4: single
7459 */
7460 target = get_restripe_target(root->fs_info, block_group->flags);
7461 if (target) {
7462 index = __get_block_group_index(extended_to_chunk(target));
7463 } else {
7464 /*
7465 * this is just a balance, so if we were marked as full
7466 * we know there is no space for a new chunk
7467 */
7468 if (full)
7469 goto out;
7470
7471 index = get_block_group_index(block_group);
7472 }
7473
7474 if (index == 0) {
7475 dev_min = 4;
7476 /* Divide by 2 */
7477 min_free >>= 1;
7478 } else if (index == 1) {
7479 dev_min = 2;
7480 } else if (index == 2) {
7481 /* Multiply by 2 */
7482 min_free <<= 1;
7483 } else if (index == 3) {
7484 dev_min = fs_devices->rw_devices;
7485 do_div(min_free, dev_min);
7486 }
7487
7488 mutex_lock(&root->fs_info->chunk_mutex);
7489 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7490 u64 dev_offset;
7491
7492 /*
7493 * check to make sure we can actually find a chunk with enough
7494 * space to fit our block group in.
7495 */
7496 if (device->total_bytes > device->bytes_used + min_free) {
7497 ret = find_free_dev_extent(device, min_free,
7498 &dev_offset, NULL);
7499 if (!ret)
7500 dev_nr++;
7501
7502 if (dev_nr >= dev_min)
7503 break;
7504
7505 ret = -1;
7506 }
7507 }
7508 mutex_unlock(&root->fs_info->chunk_mutex);
7509 out:
7510 btrfs_put_block_group(block_group);
7511 return ret;
7512 }
7513
7514 static int find_first_block_group(struct btrfs_root *root,
7515 struct btrfs_path *path, struct btrfs_key *key)
7516 {
7517 int ret = 0;
7518 struct btrfs_key found_key;
7519 struct extent_buffer *leaf;
7520 int slot;
7521
7522 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7523 if (ret < 0)
7524 goto out;
7525
7526 while (1) {
7527 slot = path->slots[0];
7528 leaf = path->nodes[0];
7529 if (slot >= btrfs_header_nritems(leaf)) {
7530 ret = btrfs_next_leaf(root, path);
7531 if (ret == 0)
7532 continue;
7533 if (ret < 0)
7534 goto out;
7535 break;
7536 }
7537 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7538
7539 if (found_key.objectid >= key->objectid &&
7540 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7541 ret = 0;
7542 goto out;
7543 }
7544 path->slots[0]++;
7545 }
7546 out:
7547 return ret;
7548 }
7549
7550 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7551 {
7552 struct btrfs_block_group_cache *block_group;
7553 u64 last = 0;
7554
7555 while (1) {
7556 struct inode *inode;
7557
7558 block_group = btrfs_lookup_first_block_group(info, last);
7559 while (block_group) {
7560 spin_lock(&block_group->lock);
7561 if (block_group->iref)
7562 break;
7563 spin_unlock(&block_group->lock);
7564 block_group = next_block_group(info->tree_root,
7565 block_group);
7566 }
7567 if (!block_group) {
7568 if (last == 0)
7569 break;
7570 last = 0;
7571 continue;
7572 }
7573
7574 inode = block_group->inode;
7575 block_group->iref = 0;
7576 block_group->inode = NULL;
7577 spin_unlock(&block_group->lock);
7578 iput(inode);
7579 last = block_group->key.objectid + block_group->key.offset;
7580 btrfs_put_block_group(block_group);
7581 }
7582 }
7583
7584 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7585 {
7586 struct btrfs_block_group_cache *block_group;
7587 struct btrfs_space_info *space_info;
7588 struct btrfs_caching_control *caching_ctl;
7589 struct rb_node *n;
7590
7591 down_write(&info->extent_commit_sem);
7592 while (!list_empty(&info->caching_block_groups)) {
7593 caching_ctl = list_entry(info->caching_block_groups.next,
7594 struct btrfs_caching_control, list);
7595 list_del(&caching_ctl->list);
7596 put_caching_control(caching_ctl);
7597 }
7598 up_write(&info->extent_commit_sem);
7599
7600 spin_lock(&info->block_group_cache_lock);
7601 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7602 block_group = rb_entry(n, struct btrfs_block_group_cache,
7603 cache_node);
7604 rb_erase(&block_group->cache_node,
7605 &info->block_group_cache_tree);
7606 spin_unlock(&info->block_group_cache_lock);
7607
7608 down_write(&block_group->space_info->groups_sem);
7609 list_del(&block_group->list);
7610 up_write(&block_group->space_info->groups_sem);
7611
7612 if (block_group->cached == BTRFS_CACHE_STARTED)
7613 wait_block_group_cache_done(block_group);
7614
7615 /*
7616 * We haven't cached this block group, which means we could
7617 * possibly have excluded extents on this block group.
7618 */
7619 if (block_group->cached == BTRFS_CACHE_NO)
7620 free_excluded_extents(info->extent_root, block_group);
7621
7622 btrfs_remove_free_space_cache(block_group);
7623 btrfs_put_block_group(block_group);
7624
7625 spin_lock(&info->block_group_cache_lock);
7626 }
7627 spin_unlock(&info->block_group_cache_lock);
7628
7629 /* now that all the block groups are freed, go through and
7630 * free all the space_info structs. This is only called during
7631 * the final stages of unmount, and so we know nobody is
7632 * using them. We call synchronize_rcu() once before we start,
7633 * just to be on the safe side.
7634 */
7635 synchronize_rcu();
7636
7637 release_global_block_rsv(info);
7638
7639 while(!list_empty(&info->space_info)) {
7640 space_info = list_entry(info->space_info.next,
7641 struct btrfs_space_info,
7642 list);
7643 if (space_info->bytes_pinned > 0 ||
7644 space_info->bytes_reserved > 0 ||
7645 space_info->bytes_may_use > 0) {
7646 WARN_ON(1);
7647 dump_space_info(space_info, 0, 0);
7648 }
7649 list_del(&space_info->list);
7650 kfree(space_info);
7651 }
7652 return 0;
7653 }
7654
7655 static void __link_block_group(struct btrfs_space_info *space_info,
7656 struct btrfs_block_group_cache *cache)
7657 {
7658 int index = get_block_group_index(cache);
7659
7660 down_write(&space_info->groups_sem);
7661 list_add_tail(&cache->list, &space_info->block_groups[index]);
7662 up_write(&space_info->groups_sem);
7663 }
7664
7665 int btrfs_read_block_groups(struct btrfs_root *root)
7666 {
7667 struct btrfs_path *path;
7668 int ret;
7669 struct btrfs_block_group_cache *cache;
7670 struct btrfs_fs_info *info = root->fs_info;
7671 struct btrfs_space_info *space_info;
7672 struct btrfs_key key;
7673 struct btrfs_key found_key;
7674 struct extent_buffer *leaf;
7675 int need_clear = 0;
7676 u64 cache_gen;
7677
7678 root = info->extent_root;
7679 key.objectid = 0;
7680 key.offset = 0;
7681 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7682 path = btrfs_alloc_path();
7683 if (!path)
7684 return -ENOMEM;
7685 path->reada = 1;
7686
7687 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7688 if (btrfs_test_opt(root, SPACE_CACHE) &&
7689 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7690 need_clear = 1;
7691 if (btrfs_test_opt(root, CLEAR_CACHE))
7692 need_clear = 1;
7693
7694 while (1) {
7695 ret = find_first_block_group(root, path, &key);
7696 if (ret > 0)
7697 break;
7698 if (ret != 0)
7699 goto error;
7700 leaf = path->nodes[0];
7701 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7702 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7703 if (!cache) {
7704 ret = -ENOMEM;
7705 goto error;
7706 }
7707 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7708 GFP_NOFS);
7709 if (!cache->free_space_ctl) {
7710 kfree(cache);
7711 ret = -ENOMEM;
7712 goto error;
7713 }
7714
7715 atomic_set(&cache->count, 1);
7716 spin_lock_init(&cache->lock);
7717 cache->fs_info = info;
7718 INIT_LIST_HEAD(&cache->list);
7719 INIT_LIST_HEAD(&cache->cluster_list);
7720
7721 if (need_clear) {
7722 /*
7723 * When we mount with old space cache, we need to
7724 * set BTRFS_DC_CLEAR and set dirty flag.
7725 *
7726 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7727 * truncate the old free space cache inode and
7728 * setup a new one.
7729 * b) Setting 'dirty flag' makes sure that we flush
7730 * the new space cache info onto disk.
7731 */
7732 cache->disk_cache_state = BTRFS_DC_CLEAR;
7733 if (btrfs_test_opt(root, SPACE_CACHE))
7734 cache->dirty = 1;
7735 }
7736
7737 read_extent_buffer(leaf, &cache->item,
7738 btrfs_item_ptr_offset(leaf, path->slots[0]),
7739 sizeof(cache->item));
7740 memcpy(&cache->key, &found_key, sizeof(found_key));
7741
7742 key.objectid = found_key.objectid + found_key.offset;
7743 btrfs_release_path(path);
7744 cache->flags = btrfs_block_group_flags(&cache->item);
7745 cache->sectorsize = root->sectorsize;
7746
7747 btrfs_init_free_space_ctl(cache);
7748
7749 /*
7750 * We need to exclude the super stripes now so that the space
7751 * info has super bytes accounted for, otherwise we'll think
7752 * we have more space than we actually do.
7753 */
7754 exclude_super_stripes(root, cache);
7755
7756 /*
7757 * check for two cases, either we are full, and therefore
7758 * don't need to bother with the caching work since we won't
7759 * find any space, or we are empty, and we can just add all
7760 * the space in and be done with it. This saves us _alot_ of
7761 * time, particularly in the full case.
7762 */
7763 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7764 cache->last_byte_to_unpin = (u64)-1;
7765 cache->cached = BTRFS_CACHE_FINISHED;
7766 free_excluded_extents(root, cache);
7767 } else if (btrfs_block_group_used(&cache->item) == 0) {
7768 cache->last_byte_to_unpin = (u64)-1;
7769 cache->cached = BTRFS_CACHE_FINISHED;
7770 add_new_free_space(cache, root->fs_info,
7771 found_key.objectid,
7772 found_key.objectid +
7773 found_key.offset);
7774 free_excluded_extents(root, cache);
7775 }
7776
7777 ret = update_space_info(info, cache->flags, found_key.offset,
7778 btrfs_block_group_used(&cache->item),
7779 &space_info);
7780 BUG_ON(ret); /* -ENOMEM */
7781 cache->space_info = space_info;
7782 spin_lock(&cache->space_info->lock);
7783 cache->space_info->bytes_readonly += cache->bytes_super;
7784 spin_unlock(&cache->space_info->lock);
7785
7786 __link_block_group(space_info, cache);
7787
7788 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7789 BUG_ON(ret); /* Logic error */
7790
7791 set_avail_alloc_bits(root->fs_info, cache->flags);
7792 if (btrfs_chunk_readonly(root, cache->key.objectid))
7793 set_block_group_ro(cache, 1);
7794 }
7795
7796 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7797 if (!(get_alloc_profile(root, space_info->flags) &
7798 (BTRFS_BLOCK_GROUP_RAID10 |
7799 BTRFS_BLOCK_GROUP_RAID1 |
7800 BTRFS_BLOCK_GROUP_DUP)))
7801 continue;
7802 /*
7803 * avoid allocating from un-mirrored block group if there are
7804 * mirrored block groups.
7805 */
7806 list_for_each_entry(cache, &space_info->block_groups[3], list)
7807 set_block_group_ro(cache, 1);
7808 list_for_each_entry(cache, &space_info->block_groups[4], list)
7809 set_block_group_ro(cache, 1);
7810 }
7811
7812 init_global_block_rsv(info);
7813 ret = 0;
7814 error:
7815 btrfs_free_path(path);
7816 return ret;
7817 }
7818
7819 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7820 struct btrfs_root *root, u64 bytes_used,
7821 u64 type, u64 chunk_objectid, u64 chunk_offset,
7822 u64 size)
7823 {
7824 int ret;
7825 struct btrfs_root *extent_root;
7826 struct btrfs_block_group_cache *cache;
7827
7828 extent_root = root->fs_info->extent_root;
7829
7830 root->fs_info->last_trans_log_full_commit = trans->transid;
7831
7832 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7833 if (!cache)
7834 return -ENOMEM;
7835 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7836 GFP_NOFS);
7837 if (!cache->free_space_ctl) {
7838 kfree(cache);
7839 return -ENOMEM;
7840 }
7841
7842 cache->key.objectid = chunk_offset;
7843 cache->key.offset = size;
7844 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7845 cache->sectorsize = root->sectorsize;
7846 cache->fs_info = root->fs_info;
7847
7848 atomic_set(&cache->count, 1);
7849 spin_lock_init(&cache->lock);
7850 INIT_LIST_HEAD(&cache->list);
7851 INIT_LIST_HEAD(&cache->cluster_list);
7852
7853 btrfs_init_free_space_ctl(cache);
7854
7855 btrfs_set_block_group_used(&cache->item, bytes_used);
7856 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7857 cache->flags = type;
7858 btrfs_set_block_group_flags(&cache->item, type);
7859
7860 cache->last_byte_to_unpin = (u64)-1;
7861 cache->cached = BTRFS_CACHE_FINISHED;
7862 exclude_super_stripes(root, cache);
7863
7864 add_new_free_space(cache, root->fs_info, chunk_offset,
7865 chunk_offset + size);
7866
7867 free_excluded_extents(root, cache);
7868
7869 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7870 &cache->space_info);
7871 BUG_ON(ret); /* -ENOMEM */
7872 update_global_block_rsv(root->fs_info);
7873
7874 spin_lock(&cache->space_info->lock);
7875 cache->space_info->bytes_readonly += cache->bytes_super;
7876 spin_unlock(&cache->space_info->lock);
7877
7878 __link_block_group(cache->space_info, cache);
7879
7880 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7881 BUG_ON(ret); /* Logic error */
7882
7883 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7884 sizeof(cache->item));
7885 if (ret) {
7886 btrfs_abort_transaction(trans, extent_root, ret);
7887 return ret;
7888 }
7889
7890 set_avail_alloc_bits(extent_root->fs_info, type);
7891
7892 return 0;
7893 }
7894
7895 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7896 {
7897 u64 extra_flags = chunk_to_extended(flags) &
7898 BTRFS_EXTENDED_PROFILE_MASK;
7899
7900 if (flags & BTRFS_BLOCK_GROUP_DATA)
7901 fs_info->avail_data_alloc_bits &= ~extra_flags;
7902 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7903 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7904 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7905 fs_info->avail_system_alloc_bits &= ~extra_flags;
7906 }
7907
7908 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7909 struct btrfs_root *root, u64 group_start)
7910 {
7911 struct btrfs_path *path;
7912 struct btrfs_block_group_cache *block_group;
7913 struct btrfs_free_cluster *cluster;
7914 struct btrfs_root *tree_root = root->fs_info->tree_root;
7915 struct btrfs_key key;
7916 struct inode *inode;
7917 int ret;
7918 int index;
7919 int factor;
7920
7921 root = root->fs_info->extent_root;
7922
7923 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7924 BUG_ON(!block_group);
7925 BUG_ON(!block_group->ro);
7926
7927 /*
7928 * Free the reserved super bytes from this block group before
7929 * remove it.
7930 */
7931 free_excluded_extents(root, block_group);
7932
7933 memcpy(&key, &block_group->key, sizeof(key));
7934 index = get_block_group_index(block_group);
7935 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7936 BTRFS_BLOCK_GROUP_RAID1 |
7937 BTRFS_BLOCK_GROUP_RAID10))
7938 factor = 2;
7939 else
7940 factor = 1;
7941
7942 /* make sure this block group isn't part of an allocation cluster */
7943 cluster = &root->fs_info->data_alloc_cluster;
7944 spin_lock(&cluster->refill_lock);
7945 btrfs_return_cluster_to_free_space(block_group, cluster);
7946 spin_unlock(&cluster->refill_lock);
7947
7948 /*
7949 * make sure this block group isn't part of a metadata
7950 * allocation cluster
7951 */
7952 cluster = &root->fs_info->meta_alloc_cluster;
7953 spin_lock(&cluster->refill_lock);
7954 btrfs_return_cluster_to_free_space(block_group, cluster);
7955 spin_unlock(&cluster->refill_lock);
7956
7957 path = btrfs_alloc_path();
7958 if (!path) {
7959 ret = -ENOMEM;
7960 goto out;
7961 }
7962
7963 inode = lookup_free_space_inode(tree_root, block_group, path);
7964 if (!IS_ERR(inode)) {
7965 ret = btrfs_orphan_add(trans, inode);
7966 if (ret) {
7967 btrfs_add_delayed_iput(inode);
7968 goto out;
7969 }
7970 clear_nlink(inode);
7971 /* One for the block groups ref */
7972 spin_lock(&block_group->lock);
7973 if (block_group->iref) {
7974 block_group->iref = 0;
7975 block_group->inode = NULL;
7976 spin_unlock(&block_group->lock);
7977 iput(inode);
7978 } else {
7979 spin_unlock(&block_group->lock);
7980 }
7981 /* One for our lookup ref */
7982 btrfs_add_delayed_iput(inode);
7983 }
7984
7985 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7986 key.offset = block_group->key.objectid;
7987 key.type = 0;
7988
7989 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7990 if (ret < 0)
7991 goto out;
7992 if (ret > 0)
7993 btrfs_release_path(path);
7994 if (ret == 0) {
7995 ret = btrfs_del_item(trans, tree_root, path);
7996 if (ret)
7997 goto out;
7998 btrfs_release_path(path);
7999 }
8000
8001 spin_lock(&root->fs_info->block_group_cache_lock);
8002 rb_erase(&block_group->cache_node,
8003 &root->fs_info->block_group_cache_tree);
8004 spin_unlock(&root->fs_info->block_group_cache_lock);
8005
8006 down_write(&block_group->space_info->groups_sem);
8007 /*
8008 * we must use list_del_init so people can check to see if they
8009 * are still on the list after taking the semaphore
8010 */
8011 list_del_init(&block_group->list);
8012 if (list_empty(&block_group->space_info->block_groups[index]))
8013 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8014 up_write(&block_group->space_info->groups_sem);
8015
8016 if (block_group->cached == BTRFS_CACHE_STARTED)
8017 wait_block_group_cache_done(block_group);
8018
8019 btrfs_remove_free_space_cache(block_group);
8020
8021 spin_lock(&block_group->space_info->lock);
8022 block_group->space_info->total_bytes -= block_group->key.offset;
8023 block_group->space_info->bytes_readonly -= block_group->key.offset;
8024 block_group->space_info->disk_total -= block_group->key.offset * factor;
8025 spin_unlock(&block_group->space_info->lock);
8026
8027 memcpy(&key, &block_group->key, sizeof(key));
8028
8029 btrfs_clear_space_info_full(root->fs_info);
8030
8031 btrfs_put_block_group(block_group);
8032 btrfs_put_block_group(block_group);
8033
8034 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8035 if (ret > 0)
8036 ret = -EIO;
8037 if (ret < 0)
8038 goto out;
8039
8040 ret = btrfs_del_item(trans, root, path);
8041 out:
8042 btrfs_free_path(path);
8043 return ret;
8044 }
8045
8046 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8047 {
8048 struct btrfs_space_info *space_info;
8049 struct btrfs_super_block *disk_super;
8050 u64 features;
8051 u64 flags;
8052 int mixed = 0;
8053 int ret;
8054
8055 disk_super = fs_info->super_copy;
8056 if (!btrfs_super_root(disk_super))
8057 return 1;
8058
8059 features = btrfs_super_incompat_flags(disk_super);
8060 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8061 mixed = 1;
8062
8063 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8064 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8065 if (ret)
8066 goto out;
8067
8068 if (mixed) {
8069 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8070 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8071 } else {
8072 flags = BTRFS_BLOCK_GROUP_METADATA;
8073 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8074 if (ret)
8075 goto out;
8076
8077 flags = BTRFS_BLOCK_GROUP_DATA;
8078 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8079 }
8080 out:
8081 return ret;
8082 }
8083
8084 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8085 {
8086 return unpin_extent_range(root, start, end);
8087 }
8088
8089 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8090 u64 num_bytes, u64 *actual_bytes)
8091 {
8092 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8093 }
8094
8095 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8096 {
8097 struct btrfs_fs_info *fs_info = root->fs_info;
8098 struct btrfs_block_group_cache *cache = NULL;
8099 u64 group_trimmed;
8100 u64 start;
8101 u64 end;
8102 u64 trimmed = 0;
8103 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8104 int ret = 0;
8105
8106 /*
8107 * try to trim all FS space, our block group may start from non-zero.
8108 */
8109 if (range->len == total_bytes)
8110 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8111 else
8112 cache = btrfs_lookup_block_group(fs_info, range->start);
8113
8114 while (cache) {
8115 if (cache->key.objectid >= (range->start + range->len)) {
8116 btrfs_put_block_group(cache);
8117 break;
8118 }
8119
8120 start = max(range->start, cache->key.objectid);
8121 end = min(range->start + range->len,
8122 cache->key.objectid + cache->key.offset);
8123
8124 if (end - start >= range->minlen) {
8125 if (!block_group_cache_done(cache)) {
8126 ret = cache_block_group(cache, NULL, root, 0);
8127 if (!ret)
8128 wait_block_group_cache_done(cache);
8129 }
8130 ret = btrfs_trim_block_group(cache,
8131 &group_trimmed,
8132 start,
8133 end,
8134 range->minlen);
8135
8136 trimmed += group_trimmed;
8137 if (ret) {
8138 btrfs_put_block_group(cache);
8139 break;
8140 }
8141 }
8142
8143 cache = next_block_group(fs_info->tree_root, cache);
8144 }
8145
8146 range->len = trimmed;
8147 return ret;
8148 }