]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/inode.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
256 return 0;
257 }
258
259 struct async_extent {
260 u64 start;
261 u64 ram_size;
262 u64 compressed_size;
263 struct page **pages;
264 unsigned long nr_pages;
265 struct list_head list;
266 };
267
268 struct async_cow {
269 struct inode *inode;
270 struct btrfs_root *root;
271 struct page *locked_page;
272 u64 start;
273 u64 end;
274 struct list_head extents;
275 struct btrfs_work work;
276 };
277
278 static noinline int add_async_extent(struct async_cow *cow,
279 u64 start, u64 ram_size,
280 u64 compressed_size,
281 struct page **pages,
282 unsigned long nr_pages)
283 {
284 struct async_extent *async_extent;
285
286 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
287 async_extent->start = start;
288 async_extent->ram_size = ram_size;
289 async_extent->compressed_size = compressed_size;
290 async_extent->pages = pages;
291 async_extent->nr_pages = nr_pages;
292 list_add_tail(&async_extent->list, &cow->extents);
293 return 0;
294 }
295
296 /*
297 * we create compressed extents in two phases. The first
298 * phase compresses a range of pages that have already been
299 * locked (both pages and state bits are locked).
300 *
301 * This is done inside an ordered work queue, and the compression
302 * is spread across many cpus. The actual IO submission is step
303 * two, and the ordered work queue takes care of making sure that
304 * happens in the same order things were put onto the queue by
305 * writepages and friends.
306 *
307 * If this code finds it can't get good compression, it puts an
308 * entry onto the work queue to write the uncompressed bytes. This
309 * makes sure that both compressed inodes and uncompressed inodes
310 * are written in the same order that pdflush sent them down.
311 */
312 static noinline int compress_file_range(struct inode *inode,
313 struct page *locked_page,
314 u64 start, u64 end,
315 struct async_cow *async_cow,
316 int *num_added)
317 {
318 struct btrfs_root *root = BTRFS_I(inode)->root;
319 struct btrfs_trans_handle *trans;
320 u64 num_bytes;
321 u64 orig_start;
322 u64 disk_num_bytes;
323 u64 blocksize = root->sectorsize;
324 u64 actual_end;
325 u64 isize = i_size_read(inode);
326 int ret = 0;
327 struct page **pages = NULL;
328 unsigned long nr_pages;
329 unsigned long nr_pages_ret = 0;
330 unsigned long total_compressed = 0;
331 unsigned long total_in = 0;
332 unsigned long max_compressed = 128 * 1024;
333 unsigned long max_uncompressed = 128 * 1024;
334 int i;
335 int will_compress;
336
337 orig_start = start;
338
339 actual_end = min_t(u64, isize, end + 1);
340 again:
341 will_compress = 0;
342 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
343 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
344
345 /*
346 * we don't want to send crud past the end of i_size through
347 * compression, that's just a waste of CPU time. So, if the
348 * end of the file is before the start of our current
349 * requested range of bytes, we bail out to the uncompressed
350 * cleanup code that can deal with all of this.
351 *
352 * It isn't really the fastest way to fix things, but this is a
353 * very uncommon corner.
354 */
355 if (actual_end <= start)
356 goto cleanup_and_bail_uncompressed;
357
358 total_compressed = actual_end - start;
359
360 /* we want to make sure that amount of ram required to uncompress
361 * an extent is reasonable, so we limit the total size in ram
362 * of a compressed extent to 128k. This is a crucial number
363 * because it also controls how easily we can spread reads across
364 * cpus for decompression.
365 *
366 * We also want to make sure the amount of IO required to do
367 * a random read is reasonably small, so we limit the size of
368 * a compressed extent to 128k.
369 */
370 total_compressed = min(total_compressed, max_uncompressed);
371 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
372 num_bytes = max(blocksize, num_bytes);
373 disk_num_bytes = num_bytes;
374 total_in = 0;
375 ret = 0;
376
377 /*
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
381 */
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
389 total_compressed, pages,
390 nr_pages, &nr_pages_ret,
391 &total_in,
392 &total_compressed,
393 max_compressed);
394
395 if (!ret) {
396 unsigned long offset = total_compressed &
397 (PAGE_CACHE_SIZE - 1);
398 struct page *page = pages[nr_pages_ret - 1];
399 char *kaddr;
400
401 /* zero the tail end of the last page, we might be
402 * sending it down to disk
403 */
404 if (offset) {
405 kaddr = kmap_atomic(page, KM_USER0);
406 memset(kaddr + offset, 0,
407 PAGE_CACHE_SIZE - offset);
408 kunmap_atomic(kaddr, KM_USER0);
409 }
410 will_compress = 1;
411 }
412 }
413 if (start == 0) {
414 trans = btrfs_join_transaction(root, 1);
415 BUG_ON(!trans);
416 btrfs_set_trans_block_group(trans, inode);
417
418 /* lets try to make an inline extent */
419 if (ret || total_in < (actual_end - start)) {
420 /* we didn't compress the entire range, try
421 * to make an uncompressed inline extent.
422 */
423 ret = cow_file_range_inline(trans, root, inode,
424 start, end, 0, NULL);
425 } else {
426 /* try making a compressed inline extent */
427 ret = cow_file_range_inline(trans, root, inode,
428 start, end,
429 total_compressed, pages);
430 }
431 if (ret == 0) {
432 /*
433 * inline extent creation worked, we don't need
434 * to create any more async work items. Unlock
435 * and free up our temp pages.
436 */
437 extent_clear_unlock_delalloc(inode,
438 &BTRFS_I(inode)->io_tree,
439 start, end, NULL,
440 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
441 EXTENT_CLEAR_DELALLOC |
442 EXTENT_CLEAR_ACCOUNTING |
443 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
444
445 btrfs_end_transaction(trans, root);
446 goto free_pages_out;
447 }
448 btrfs_end_transaction(trans, root);
449 }
450
451 if (will_compress) {
452 /*
453 * we aren't doing an inline extent round the compressed size
454 * up to a block size boundary so the allocator does sane
455 * things
456 */
457 total_compressed = (total_compressed + blocksize - 1) &
458 ~(blocksize - 1);
459
460 /*
461 * one last check to make sure the compression is really a
462 * win, compare the page count read with the blocks on disk
463 */
464 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
465 ~(PAGE_CACHE_SIZE - 1);
466 if (total_compressed >= total_in) {
467 will_compress = 0;
468 } else {
469 disk_num_bytes = total_compressed;
470 num_bytes = total_in;
471 }
472 }
473 if (!will_compress && pages) {
474 /*
475 * the compression code ran but failed to make things smaller,
476 * free any pages it allocated and our page pointer array
477 */
478 for (i = 0; i < nr_pages_ret; i++) {
479 WARN_ON(pages[i]->mapping);
480 page_cache_release(pages[i]);
481 }
482 kfree(pages);
483 pages = NULL;
484 total_compressed = 0;
485 nr_pages_ret = 0;
486
487 /* flag the file so we don't compress in the future */
488 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
489 !(BTRFS_I(inode)->force_compress)) {
490 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
491 }
492 }
493 if (will_compress) {
494 *num_added += 1;
495
496 /* the async work queues will take care of doing actual
497 * allocation on disk for these compressed pages,
498 * and will submit them to the elevator.
499 */
500 add_async_extent(async_cow, start, num_bytes,
501 total_compressed, pages, nr_pages_ret);
502
503 if (start + num_bytes < end && start + num_bytes < actual_end) {
504 start += num_bytes;
505 pages = NULL;
506 cond_resched();
507 goto again;
508 }
509 } else {
510 cleanup_and_bail_uncompressed:
511 /*
512 * No compression, but we still need to write the pages in
513 * the file we've been given so far. redirty the locked
514 * page if it corresponds to our extent and set things up
515 * for the async work queue to run cow_file_range to do
516 * the normal delalloc dance
517 */
518 if (page_offset(locked_page) >= start &&
519 page_offset(locked_page) <= end) {
520 __set_page_dirty_nobuffers(locked_page);
521 /* unlocked later on in the async handlers */
522 }
523 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
524 *num_added += 1;
525 }
526
527 out:
528 return 0;
529
530 free_pages_out:
531 for (i = 0; i < nr_pages_ret; i++) {
532 WARN_ON(pages[i]->mapping);
533 page_cache_release(pages[i]);
534 }
535 kfree(pages);
536
537 goto out;
538 }
539
540 /*
541 * phase two of compressed writeback. This is the ordered portion
542 * of the code, which only gets called in the order the work was
543 * queued. We walk all the async extents created by compress_file_range
544 * and send them down to the disk.
545 */
546 static noinline int submit_compressed_extents(struct inode *inode,
547 struct async_cow *async_cow)
548 {
549 struct async_extent *async_extent;
550 u64 alloc_hint = 0;
551 struct btrfs_trans_handle *trans;
552 struct btrfs_key ins;
553 struct extent_map *em;
554 struct btrfs_root *root = BTRFS_I(inode)->root;
555 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
556 struct extent_io_tree *io_tree;
557 int ret = 0;
558
559 if (list_empty(&async_cow->extents))
560 return 0;
561
562
563 while (!list_empty(&async_cow->extents)) {
564 async_extent = list_entry(async_cow->extents.next,
565 struct async_extent, list);
566 list_del(&async_extent->list);
567
568 io_tree = &BTRFS_I(inode)->io_tree;
569
570 retry:
571 /* did the compression code fall back to uncompressed IO? */
572 if (!async_extent->pages) {
573 int page_started = 0;
574 unsigned long nr_written = 0;
575
576 lock_extent(io_tree, async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1, GFP_NOFS);
579
580 /* allocate blocks */
581 ret = cow_file_range(inode, async_cow->locked_page,
582 async_extent->start,
583 async_extent->start +
584 async_extent->ram_size - 1,
585 &page_started, &nr_written, 0);
586
587 /*
588 * if page_started, cow_file_range inserted an
589 * inline extent and took care of all the unlocking
590 * and IO for us. Otherwise, we need to submit
591 * all those pages down to the drive.
592 */
593 if (!page_started && !ret)
594 extent_write_locked_range(io_tree,
595 inode, async_extent->start,
596 async_extent->start +
597 async_extent->ram_size - 1,
598 btrfs_get_extent,
599 WB_SYNC_ALL);
600 kfree(async_extent);
601 cond_resched();
602 continue;
603 }
604
605 lock_extent(io_tree, async_extent->start,
606 async_extent->start + async_extent->ram_size - 1,
607 GFP_NOFS);
608
609 trans = btrfs_join_transaction(root, 1);
610 ret = btrfs_reserve_extent(trans, root,
611 async_extent->compressed_size,
612 async_extent->compressed_size,
613 0, alloc_hint,
614 (u64)-1, &ins, 1);
615 btrfs_end_transaction(trans, root);
616
617 if (ret) {
618 int i;
619 for (i = 0; i < async_extent->nr_pages; i++) {
620 WARN_ON(async_extent->pages[i]->mapping);
621 page_cache_release(async_extent->pages[i]);
622 }
623 kfree(async_extent->pages);
624 async_extent->nr_pages = 0;
625 async_extent->pages = NULL;
626 unlock_extent(io_tree, async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1, GFP_NOFS);
629 goto retry;
630 }
631
632 /*
633 * here we're doing allocation and writeback of the
634 * compressed pages
635 */
636 btrfs_drop_extent_cache(inode, async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1, 0);
639
640 em = alloc_extent_map(GFP_NOFS);
641 em->start = async_extent->start;
642 em->len = async_extent->ram_size;
643 em->orig_start = em->start;
644
645 em->block_start = ins.objectid;
646 em->block_len = ins.offset;
647 em->bdev = root->fs_info->fs_devices->latest_bdev;
648 set_bit(EXTENT_FLAG_PINNED, &em->flags);
649 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
650
651 while (1) {
652 write_lock(&em_tree->lock);
653 ret = add_extent_mapping(em_tree, em);
654 write_unlock(&em_tree->lock);
655 if (ret != -EEXIST) {
656 free_extent_map(em);
657 break;
658 }
659 btrfs_drop_extent_cache(inode, async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1, 0);
662 }
663
664 ret = btrfs_add_ordered_extent(inode, async_extent->start,
665 ins.objectid,
666 async_extent->ram_size,
667 ins.offset,
668 BTRFS_ORDERED_COMPRESSED);
669 BUG_ON(ret);
670
671 /*
672 * clear dirty, set writeback and unlock the pages.
673 */
674 extent_clear_unlock_delalloc(inode,
675 &BTRFS_I(inode)->io_tree,
676 async_extent->start,
677 async_extent->start +
678 async_extent->ram_size - 1,
679 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
680 EXTENT_CLEAR_UNLOCK |
681 EXTENT_CLEAR_DELALLOC |
682 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
683
684 ret = btrfs_submit_compressed_write(inode,
685 async_extent->start,
686 async_extent->ram_size,
687 ins.objectid,
688 ins.offset, async_extent->pages,
689 async_extent->nr_pages);
690
691 BUG_ON(ret);
692 alloc_hint = ins.objectid + ins.offset;
693 kfree(async_extent);
694 cond_resched();
695 }
696
697 return 0;
698 }
699
700 /*
701 * when extent_io.c finds a delayed allocation range in the file,
702 * the call backs end up in this code. The basic idea is to
703 * allocate extents on disk for the range, and create ordered data structs
704 * in ram to track those extents.
705 *
706 * locked_page is the page that writepage had locked already. We use
707 * it to make sure we don't do extra locks or unlocks.
708 *
709 * *page_started is set to one if we unlock locked_page and do everything
710 * required to start IO on it. It may be clean and already done with
711 * IO when we return.
712 */
713 static noinline int cow_file_range(struct inode *inode,
714 struct page *locked_page,
715 u64 start, u64 end, int *page_started,
716 unsigned long *nr_written,
717 int unlock)
718 {
719 struct btrfs_root *root = BTRFS_I(inode)->root;
720 struct btrfs_trans_handle *trans;
721 u64 alloc_hint = 0;
722 u64 num_bytes;
723 unsigned long ram_size;
724 u64 disk_num_bytes;
725 u64 cur_alloc_size;
726 u64 blocksize = root->sectorsize;
727 u64 actual_end;
728 u64 isize = i_size_read(inode);
729 struct btrfs_key ins;
730 struct extent_map *em;
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 int ret = 0;
733
734 trans = btrfs_join_transaction(root, 1);
735 BUG_ON(!trans);
736 btrfs_set_trans_block_group(trans, inode);
737
738 actual_end = min_t(u64, isize, end + 1);
739
740 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
741 num_bytes = max(blocksize, num_bytes);
742 disk_num_bytes = num_bytes;
743 ret = 0;
744
745 if (start == 0) {
746 /* lets try to make an inline extent */
747 ret = cow_file_range_inline(trans, root, inode,
748 start, end, 0, NULL);
749 if (ret == 0) {
750 extent_clear_unlock_delalloc(inode,
751 &BTRFS_I(inode)->io_tree,
752 start, end, NULL,
753 EXTENT_CLEAR_UNLOCK_PAGE |
754 EXTENT_CLEAR_UNLOCK |
755 EXTENT_CLEAR_DELALLOC |
756 EXTENT_CLEAR_ACCOUNTING |
757 EXTENT_CLEAR_DIRTY |
758 EXTENT_SET_WRITEBACK |
759 EXTENT_END_WRITEBACK);
760
761 *nr_written = *nr_written +
762 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
763 *page_started = 1;
764 ret = 0;
765 goto out;
766 }
767 }
768
769 BUG_ON(disk_num_bytes >
770 btrfs_super_total_bytes(&root->fs_info->super_copy));
771
772
773 read_lock(&BTRFS_I(inode)->extent_tree.lock);
774 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
775 start, num_bytes);
776 if (em) {
777 /*
778 * if block start isn't an actual block number then find the
779 * first block in this inode and use that as a hint. If that
780 * block is also bogus then just don't worry about it.
781 */
782 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
783 free_extent_map(em);
784 em = search_extent_mapping(em_tree, 0, 0);
785 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
786 alloc_hint = em->block_start;
787 if (em)
788 free_extent_map(em);
789 } else {
790 alloc_hint = em->block_start;
791 free_extent_map(em);
792 }
793 }
794 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
795 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
796
797 while (disk_num_bytes > 0) {
798 unsigned long op;
799
800 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
801 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
802 root->sectorsize, 0, alloc_hint,
803 (u64)-1, &ins, 1);
804 BUG_ON(ret);
805
806 em = alloc_extent_map(GFP_NOFS);
807 em->start = start;
808 em->orig_start = em->start;
809 ram_size = ins.offset;
810 em->len = ins.offset;
811
812 em->block_start = ins.objectid;
813 em->block_len = ins.offset;
814 em->bdev = root->fs_info->fs_devices->latest_bdev;
815 set_bit(EXTENT_FLAG_PINNED, &em->flags);
816
817 while (1) {
818 write_lock(&em_tree->lock);
819 ret = add_extent_mapping(em_tree, em);
820 write_unlock(&em_tree->lock);
821 if (ret != -EEXIST) {
822 free_extent_map(em);
823 break;
824 }
825 btrfs_drop_extent_cache(inode, start,
826 start + ram_size - 1, 0);
827 }
828
829 cur_alloc_size = ins.offset;
830 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
831 ram_size, cur_alloc_size, 0);
832 BUG_ON(ret);
833
834 if (root->root_key.objectid ==
835 BTRFS_DATA_RELOC_TREE_OBJECTID) {
836 ret = btrfs_reloc_clone_csums(inode, start,
837 cur_alloc_size);
838 BUG_ON(ret);
839 }
840
841 if (disk_num_bytes < cur_alloc_size)
842 break;
843
844 /* we're not doing compressed IO, don't unlock the first
845 * page (which the caller expects to stay locked), don't
846 * clear any dirty bits and don't set any writeback bits
847 *
848 * Do set the Private2 bit so we know this page was properly
849 * setup for writepage
850 */
851 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
852 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
853 EXTENT_SET_PRIVATE2;
854
855 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
856 start, start + ram_size - 1,
857 locked_page, op);
858 disk_num_bytes -= cur_alloc_size;
859 num_bytes -= cur_alloc_size;
860 alloc_hint = ins.objectid + ins.offset;
861 start += cur_alloc_size;
862 }
863 out:
864 ret = 0;
865 btrfs_end_transaction(trans, root);
866
867 return ret;
868 }
869
870 /*
871 * work queue call back to started compression on a file and pages
872 */
873 static noinline void async_cow_start(struct btrfs_work *work)
874 {
875 struct async_cow *async_cow;
876 int num_added = 0;
877 async_cow = container_of(work, struct async_cow, work);
878
879 compress_file_range(async_cow->inode, async_cow->locked_page,
880 async_cow->start, async_cow->end, async_cow,
881 &num_added);
882 if (num_added == 0)
883 async_cow->inode = NULL;
884 }
885
886 /*
887 * work queue call back to submit previously compressed pages
888 */
889 static noinline void async_cow_submit(struct btrfs_work *work)
890 {
891 struct async_cow *async_cow;
892 struct btrfs_root *root;
893 unsigned long nr_pages;
894
895 async_cow = container_of(work, struct async_cow, work);
896
897 root = async_cow->root;
898 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
899 PAGE_CACHE_SHIFT;
900
901 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
902
903 if (atomic_read(&root->fs_info->async_delalloc_pages) <
904 5 * 1042 * 1024 &&
905 waitqueue_active(&root->fs_info->async_submit_wait))
906 wake_up(&root->fs_info->async_submit_wait);
907
908 if (async_cow->inode)
909 submit_compressed_extents(async_cow->inode, async_cow);
910 }
911
912 static noinline void async_cow_free(struct btrfs_work *work)
913 {
914 struct async_cow *async_cow;
915 async_cow = container_of(work, struct async_cow, work);
916 kfree(async_cow);
917 }
918
919 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written)
922 {
923 struct async_cow *async_cow;
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 unsigned long nr_pages;
926 u64 cur_end;
927 int limit = 10 * 1024 * 1042;
928
929 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
930 1, 0, NULL, GFP_NOFS);
931 while (start < end) {
932 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
933 async_cow->inode = inode;
934 async_cow->root = root;
935 async_cow->locked_page = locked_page;
936 async_cow->start = start;
937
938 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
939 cur_end = end;
940 else
941 cur_end = min(end, start + 512 * 1024 - 1);
942
943 async_cow->end = cur_end;
944 INIT_LIST_HEAD(&async_cow->extents);
945
946 async_cow->work.func = async_cow_start;
947 async_cow->work.ordered_func = async_cow_submit;
948 async_cow->work.ordered_free = async_cow_free;
949 async_cow->work.flags = 0;
950
951 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
952 PAGE_CACHE_SHIFT;
953 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
954
955 btrfs_queue_worker(&root->fs_info->delalloc_workers,
956 &async_cow->work);
957
958 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
959 wait_event(root->fs_info->async_submit_wait,
960 (atomic_read(&root->fs_info->async_delalloc_pages) <
961 limit));
962 }
963
964 while (atomic_read(&root->fs_info->async_submit_draining) &&
965 atomic_read(&root->fs_info->async_delalloc_pages)) {
966 wait_event(root->fs_info->async_submit_wait,
967 (atomic_read(&root->fs_info->async_delalloc_pages) ==
968 0));
969 }
970
971 *nr_written += nr_pages;
972 start = cur_end + 1;
973 }
974 *page_started = 1;
975 return 0;
976 }
977
978 static noinline int csum_exist_in_range(struct btrfs_root *root,
979 u64 bytenr, u64 num_bytes)
980 {
981 int ret;
982 struct btrfs_ordered_sum *sums;
983 LIST_HEAD(list);
984
985 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
986 bytenr + num_bytes - 1, &list);
987 if (ret == 0 && list_empty(&list))
988 return 0;
989
990 while (!list_empty(&list)) {
991 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
992 list_del(&sums->list);
993 kfree(sums);
994 }
995 return 1;
996 }
997
998 /*
999 * when nowcow writeback call back. This checks for snapshots or COW copies
1000 * of the extents that exist in the file, and COWs the file as required.
1001 *
1002 * If no cow copies or snapshots exist, we write directly to the existing
1003 * blocks on disk
1004 */
1005 static noinline int run_delalloc_nocow(struct inode *inode,
1006 struct page *locked_page,
1007 u64 start, u64 end, int *page_started, int force,
1008 unsigned long *nr_written)
1009 {
1010 struct btrfs_root *root = BTRFS_I(inode)->root;
1011 struct btrfs_trans_handle *trans;
1012 struct extent_buffer *leaf;
1013 struct btrfs_path *path;
1014 struct btrfs_file_extent_item *fi;
1015 struct btrfs_key found_key;
1016 u64 cow_start;
1017 u64 cur_offset;
1018 u64 extent_end;
1019 u64 extent_offset;
1020 u64 disk_bytenr;
1021 u64 num_bytes;
1022 int extent_type;
1023 int ret;
1024 int type;
1025 int nocow;
1026 int check_prev = 1;
1027
1028 path = btrfs_alloc_path();
1029 BUG_ON(!path);
1030 trans = btrfs_join_transaction(root, 1);
1031 BUG_ON(!trans);
1032
1033 cow_start = (u64)-1;
1034 cur_offset = start;
1035 while (1) {
1036 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1037 cur_offset, 0);
1038 BUG_ON(ret < 0);
1039 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1040 leaf = path->nodes[0];
1041 btrfs_item_key_to_cpu(leaf, &found_key,
1042 path->slots[0] - 1);
1043 if (found_key.objectid == inode->i_ino &&
1044 found_key.type == BTRFS_EXTENT_DATA_KEY)
1045 path->slots[0]--;
1046 }
1047 check_prev = 0;
1048 next_slot:
1049 leaf = path->nodes[0];
1050 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1051 ret = btrfs_next_leaf(root, path);
1052 if (ret < 0)
1053 BUG_ON(1);
1054 if (ret > 0)
1055 break;
1056 leaf = path->nodes[0];
1057 }
1058
1059 nocow = 0;
1060 disk_bytenr = 0;
1061 num_bytes = 0;
1062 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1063
1064 if (found_key.objectid > inode->i_ino ||
1065 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1066 found_key.offset > end)
1067 break;
1068
1069 if (found_key.offset > cur_offset) {
1070 extent_end = found_key.offset;
1071 extent_type = 0;
1072 goto out_check;
1073 }
1074
1075 fi = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_file_extent_item);
1077 extent_type = btrfs_file_extent_type(leaf, fi);
1078
1079 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1080 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1081 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1082 extent_offset = btrfs_file_extent_offset(leaf, fi);
1083 extent_end = found_key.offset +
1084 btrfs_file_extent_num_bytes(leaf, fi);
1085 if (extent_end <= start) {
1086 path->slots[0]++;
1087 goto next_slot;
1088 }
1089 if (disk_bytenr == 0)
1090 goto out_check;
1091 if (btrfs_file_extent_compression(leaf, fi) ||
1092 btrfs_file_extent_encryption(leaf, fi) ||
1093 btrfs_file_extent_other_encoding(leaf, fi))
1094 goto out_check;
1095 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1096 goto out_check;
1097 if (btrfs_extent_readonly(root, disk_bytenr))
1098 goto out_check;
1099 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1100 found_key.offset -
1101 extent_offset, disk_bytenr))
1102 goto out_check;
1103 disk_bytenr += extent_offset;
1104 disk_bytenr += cur_offset - found_key.offset;
1105 num_bytes = min(end + 1, extent_end) - cur_offset;
1106 /*
1107 * force cow if csum exists in the range.
1108 * this ensure that csum for a given extent are
1109 * either valid or do not exist.
1110 */
1111 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1112 goto out_check;
1113 nocow = 1;
1114 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1115 extent_end = found_key.offset +
1116 btrfs_file_extent_inline_len(leaf, fi);
1117 extent_end = ALIGN(extent_end, root->sectorsize);
1118 } else {
1119 BUG_ON(1);
1120 }
1121 out_check:
1122 if (extent_end <= start) {
1123 path->slots[0]++;
1124 goto next_slot;
1125 }
1126 if (!nocow) {
1127 if (cow_start == (u64)-1)
1128 cow_start = cur_offset;
1129 cur_offset = extent_end;
1130 if (cur_offset > end)
1131 break;
1132 path->slots[0]++;
1133 goto next_slot;
1134 }
1135
1136 btrfs_release_path(root, path);
1137 if (cow_start != (u64)-1) {
1138 ret = cow_file_range(inode, locked_page, cow_start,
1139 found_key.offset - 1, page_started,
1140 nr_written, 1);
1141 BUG_ON(ret);
1142 cow_start = (u64)-1;
1143 }
1144
1145 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1146 struct extent_map *em;
1147 struct extent_map_tree *em_tree;
1148 em_tree = &BTRFS_I(inode)->extent_tree;
1149 em = alloc_extent_map(GFP_NOFS);
1150 em->start = cur_offset;
1151 em->orig_start = em->start;
1152 em->len = num_bytes;
1153 em->block_len = num_bytes;
1154 em->block_start = disk_bytenr;
1155 em->bdev = root->fs_info->fs_devices->latest_bdev;
1156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1157 while (1) {
1158 write_lock(&em_tree->lock);
1159 ret = add_extent_mapping(em_tree, em);
1160 write_unlock(&em_tree->lock);
1161 if (ret != -EEXIST) {
1162 free_extent_map(em);
1163 break;
1164 }
1165 btrfs_drop_extent_cache(inode, em->start,
1166 em->start + em->len - 1, 0);
1167 }
1168 type = BTRFS_ORDERED_PREALLOC;
1169 } else {
1170 type = BTRFS_ORDERED_NOCOW;
1171 }
1172
1173 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1174 num_bytes, num_bytes, type);
1175 BUG_ON(ret);
1176
1177 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1178 cur_offset, cur_offset + num_bytes - 1,
1179 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1181 EXTENT_SET_PRIVATE2);
1182 cur_offset = extent_end;
1183 if (cur_offset > end)
1184 break;
1185 }
1186 btrfs_release_path(root, path);
1187
1188 if (cur_offset <= end && cow_start == (u64)-1)
1189 cow_start = cur_offset;
1190 if (cow_start != (u64)-1) {
1191 ret = cow_file_range(inode, locked_page, cow_start, end,
1192 page_started, nr_written, 1);
1193 BUG_ON(ret);
1194 }
1195
1196 ret = btrfs_end_transaction(trans, root);
1197 BUG_ON(ret);
1198 btrfs_free_path(path);
1199 return 0;
1200 }
1201
1202 /*
1203 * extent_io.c call back to do delayed allocation processing
1204 */
1205 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1206 u64 start, u64 end, int *page_started,
1207 unsigned long *nr_written)
1208 {
1209 int ret;
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211
1212 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1213 ret = run_delalloc_nocow(inode, locked_page, start, end,
1214 page_started, 1, nr_written);
1215 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1216 ret = run_delalloc_nocow(inode, locked_page, start, end,
1217 page_started, 0, nr_written);
1218 else if (!btrfs_test_opt(root, COMPRESS) &&
1219 !(BTRFS_I(inode)->force_compress))
1220 ret = cow_file_range(inode, locked_page, start, end,
1221 page_started, nr_written, 1);
1222 else
1223 ret = cow_file_range_async(inode, locked_page, start, end,
1224 page_started, nr_written);
1225 return ret;
1226 }
1227
1228 static int btrfs_split_extent_hook(struct inode *inode,
1229 struct extent_state *orig, u64 split)
1230 {
1231 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 u64 size;
1233
1234 if (!(orig->state & EXTENT_DELALLOC))
1235 return 0;
1236
1237 size = orig->end - orig->start + 1;
1238 if (size > root->fs_info->max_extent) {
1239 u64 num_extents;
1240 u64 new_size;
1241
1242 new_size = orig->end - split + 1;
1243 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1244 root->fs_info->max_extent);
1245
1246 /*
1247 * if we break a large extent up then leave oustanding_extents
1248 * be, since we've already accounted for the large extent.
1249 */
1250 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1251 root->fs_info->max_extent) < num_extents)
1252 return 0;
1253 }
1254
1255 spin_lock(&BTRFS_I(inode)->accounting_lock);
1256 BTRFS_I(inode)->outstanding_extents++;
1257 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1264 * extents so we can keep track of new extents that are just merged onto old
1265 * extents, such as when we are doing sequential writes, so we can properly
1266 * account for the metadata space we'll need.
1267 */
1268 static int btrfs_merge_extent_hook(struct inode *inode,
1269 struct extent_state *new,
1270 struct extent_state *other)
1271 {
1272 struct btrfs_root *root = BTRFS_I(inode)->root;
1273 u64 new_size, old_size;
1274 u64 num_extents;
1275
1276 /* not delalloc, ignore it */
1277 if (!(other->state & EXTENT_DELALLOC))
1278 return 0;
1279
1280 old_size = other->end - other->start + 1;
1281 if (new->start < other->start)
1282 new_size = other->end - new->start + 1;
1283 else
1284 new_size = new->end - other->start + 1;
1285
1286 /* we're not bigger than the max, unreserve the space and go */
1287 if (new_size <= root->fs_info->max_extent) {
1288 spin_lock(&BTRFS_I(inode)->accounting_lock);
1289 BTRFS_I(inode)->outstanding_extents--;
1290 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1291 return 0;
1292 }
1293
1294 /*
1295 * If we grew by another max_extent, just return, we want to keep that
1296 * reserved amount.
1297 */
1298 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1299 root->fs_info->max_extent);
1300 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1301 root->fs_info->max_extent) > num_extents)
1302 return 0;
1303
1304 spin_lock(&BTRFS_I(inode)->accounting_lock);
1305 BTRFS_I(inode)->outstanding_extents--;
1306 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * extent_io.c set_bit_hook, used to track delayed allocation
1313 * bytes in this file, and to maintain the list of inodes that
1314 * have pending delalloc work to be done.
1315 */
1316 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1317 unsigned long old, unsigned long bits)
1318 {
1319
1320 /*
1321 * set_bit and clear bit hooks normally require _irqsave/restore
1322 * but in this case, we are only testeing for the DELALLOC
1323 * bit, which is only set or cleared with irqs on
1324 */
1325 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1326 struct btrfs_root *root = BTRFS_I(inode)->root;
1327
1328 spin_lock(&BTRFS_I(inode)->accounting_lock);
1329 BTRFS_I(inode)->outstanding_extents++;
1330 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1331 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1332 spin_lock(&root->fs_info->delalloc_lock);
1333 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1334 root->fs_info->delalloc_bytes += end - start + 1;
1335 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1336 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1337 &root->fs_info->delalloc_inodes);
1338 }
1339 spin_unlock(&root->fs_info->delalloc_lock);
1340 }
1341 return 0;
1342 }
1343
1344 /*
1345 * extent_io.c clear_bit_hook, see set_bit_hook for why
1346 */
1347 static int btrfs_clear_bit_hook(struct inode *inode,
1348 struct extent_state *state, unsigned long bits)
1349 {
1350 /*
1351 * set_bit and clear bit hooks normally require _irqsave/restore
1352 * but in this case, we are only testeing for the DELALLOC
1353 * bit, which is only set or cleared with irqs on
1354 */
1355 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1356 struct btrfs_root *root = BTRFS_I(inode)->root;
1357
1358 if (bits & EXTENT_DO_ACCOUNTING) {
1359 spin_lock(&BTRFS_I(inode)->accounting_lock);
1360 BTRFS_I(inode)->outstanding_extents--;
1361 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1362 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1363 }
1364
1365 spin_lock(&root->fs_info->delalloc_lock);
1366 if (state->end - state->start + 1 >
1367 root->fs_info->delalloc_bytes) {
1368 printk(KERN_INFO "btrfs warning: delalloc account "
1369 "%llu %llu\n",
1370 (unsigned long long)
1371 state->end - state->start + 1,
1372 (unsigned long long)
1373 root->fs_info->delalloc_bytes);
1374 btrfs_delalloc_free_space(root, inode, (u64)-1);
1375 root->fs_info->delalloc_bytes = 0;
1376 BTRFS_I(inode)->delalloc_bytes = 0;
1377 } else {
1378 btrfs_delalloc_free_space(root, inode,
1379 state->end -
1380 state->start + 1);
1381 root->fs_info->delalloc_bytes -= state->end -
1382 state->start + 1;
1383 BTRFS_I(inode)->delalloc_bytes -= state->end -
1384 state->start + 1;
1385 }
1386 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1387 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1388 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1389 }
1390 spin_unlock(&root->fs_info->delalloc_lock);
1391 }
1392 return 0;
1393 }
1394
1395 /*
1396 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1397 * we don't create bios that span stripes or chunks
1398 */
1399 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1400 size_t size, struct bio *bio,
1401 unsigned long bio_flags)
1402 {
1403 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1404 struct btrfs_mapping_tree *map_tree;
1405 u64 logical = (u64)bio->bi_sector << 9;
1406 u64 length = 0;
1407 u64 map_length;
1408 int ret;
1409
1410 if (bio_flags & EXTENT_BIO_COMPRESSED)
1411 return 0;
1412
1413 length = bio->bi_size;
1414 map_tree = &root->fs_info->mapping_tree;
1415 map_length = length;
1416 ret = btrfs_map_block(map_tree, READ, logical,
1417 &map_length, NULL, 0);
1418
1419 if (map_length < length + size)
1420 return 1;
1421 return 0;
1422 }
1423
1424 /*
1425 * in order to insert checksums into the metadata in large chunks,
1426 * we wait until bio submission time. All the pages in the bio are
1427 * checksummed and sums are attached onto the ordered extent record.
1428 *
1429 * At IO completion time the cums attached on the ordered extent record
1430 * are inserted into the btree
1431 */
1432 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1433 struct bio *bio, int mirror_num,
1434 unsigned long bio_flags)
1435 {
1436 struct btrfs_root *root = BTRFS_I(inode)->root;
1437 int ret = 0;
1438
1439 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1440 BUG_ON(ret);
1441 return 0;
1442 }
1443
1444 /*
1445 * in order to insert checksums into the metadata in large chunks,
1446 * we wait until bio submission time. All the pages in the bio are
1447 * checksummed and sums are attached onto the ordered extent record.
1448 *
1449 * At IO completion time the cums attached on the ordered extent record
1450 * are inserted into the btree
1451 */
1452 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1453 int mirror_num, unsigned long bio_flags)
1454 {
1455 struct btrfs_root *root = BTRFS_I(inode)->root;
1456 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1457 }
1458
1459 /*
1460 * extent_io.c submission hook. This does the right thing for csum calculation
1461 * on write, or reading the csums from the tree before a read
1462 */
1463 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1464 int mirror_num, unsigned long bio_flags)
1465 {
1466 struct btrfs_root *root = BTRFS_I(inode)->root;
1467 int ret = 0;
1468 int skip_sum;
1469
1470 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1471
1472 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1473 BUG_ON(ret);
1474
1475 if (!(rw & (1 << BIO_RW))) {
1476 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1477 return btrfs_submit_compressed_read(inode, bio,
1478 mirror_num, bio_flags);
1479 } else if (!skip_sum)
1480 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1481 goto mapit;
1482 } else if (!skip_sum) {
1483 /* csum items have already been cloned */
1484 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1485 goto mapit;
1486 /* we're doing a write, do the async checksumming */
1487 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1488 inode, rw, bio, mirror_num,
1489 bio_flags, __btrfs_submit_bio_start,
1490 __btrfs_submit_bio_done);
1491 }
1492
1493 mapit:
1494 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1495 }
1496
1497 /*
1498 * given a list of ordered sums record them in the inode. This happens
1499 * at IO completion time based on sums calculated at bio submission time.
1500 */
1501 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1502 struct inode *inode, u64 file_offset,
1503 struct list_head *list)
1504 {
1505 struct btrfs_ordered_sum *sum;
1506
1507 btrfs_set_trans_block_group(trans, inode);
1508
1509 list_for_each_entry(sum, list, list) {
1510 btrfs_csum_file_blocks(trans,
1511 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1512 }
1513 return 0;
1514 }
1515
1516 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1517 struct extent_state **cached_state)
1518 {
1519 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1520 WARN_ON(1);
1521 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1522 cached_state, GFP_NOFS);
1523 }
1524
1525 /* see btrfs_writepage_start_hook for details on why this is required */
1526 struct btrfs_writepage_fixup {
1527 struct page *page;
1528 struct btrfs_work work;
1529 };
1530
1531 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1532 {
1533 struct btrfs_writepage_fixup *fixup;
1534 struct btrfs_ordered_extent *ordered;
1535 struct extent_state *cached_state = NULL;
1536 struct page *page;
1537 struct inode *inode;
1538 u64 page_start;
1539 u64 page_end;
1540
1541 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1542 page = fixup->page;
1543 again:
1544 lock_page(page);
1545 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1546 ClearPageChecked(page);
1547 goto out_page;
1548 }
1549
1550 inode = page->mapping->host;
1551 page_start = page_offset(page);
1552 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1553
1554 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1555 &cached_state, GFP_NOFS);
1556
1557 /* already ordered? We're done */
1558 if (PagePrivate2(page))
1559 goto out;
1560
1561 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1562 if (ordered) {
1563 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1564 page_end, &cached_state, GFP_NOFS);
1565 unlock_page(page);
1566 btrfs_start_ordered_extent(inode, ordered, 1);
1567 goto again;
1568 }
1569
1570 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1571 ClearPageChecked(page);
1572 out:
1573 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1574 &cached_state, GFP_NOFS);
1575 out_page:
1576 unlock_page(page);
1577 page_cache_release(page);
1578 }
1579
1580 /*
1581 * There are a few paths in the higher layers of the kernel that directly
1582 * set the page dirty bit without asking the filesystem if it is a
1583 * good idea. This causes problems because we want to make sure COW
1584 * properly happens and the data=ordered rules are followed.
1585 *
1586 * In our case any range that doesn't have the ORDERED bit set
1587 * hasn't been properly setup for IO. We kick off an async process
1588 * to fix it up. The async helper will wait for ordered extents, set
1589 * the delalloc bit and make it safe to write the page.
1590 */
1591 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1592 {
1593 struct inode *inode = page->mapping->host;
1594 struct btrfs_writepage_fixup *fixup;
1595 struct btrfs_root *root = BTRFS_I(inode)->root;
1596
1597 /* this page is properly in the ordered list */
1598 if (TestClearPagePrivate2(page))
1599 return 0;
1600
1601 if (PageChecked(page))
1602 return -EAGAIN;
1603
1604 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1605 if (!fixup)
1606 return -EAGAIN;
1607
1608 SetPageChecked(page);
1609 page_cache_get(page);
1610 fixup->work.func = btrfs_writepage_fixup_worker;
1611 fixup->page = page;
1612 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1613 return -EAGAIN;
1614 }
1615
1616 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1617 struct inode *inode, u64 file_pos,
1618 u64 disk_bytenr, u64 disk_num_bytes,
1619 u64 num_bytes, u64 ram_bytes,
1620 u8 compression, u8 encryption,
1621 u16 other_encoding, int extent_type)
1622 {
1623 struct btrfs_root *root = BTRFS_I(inode)->root;
1624 struct btrfs_file_extent_item *fi;
1625 struct btrfs_path *path;
1626 struct extent_buffer *leaf;
1627 struct btrfs_key ins;
1628 u64 hint;
1629 int ret;
1630
1631 path = btrfs_alloc_path();
1632 BUG_ON(!path);
1633
1634 path->leave_spinning = 1;
1635
1636 /*
1637 * we may be replacing one extent in the tree with another.
1638 * The new extent is pinned in the extent map, and we don't want
1639 * to drop it from the cache until it is completely in the btree.
1640 *
1641 * So, tell btrfs_drop_extents to leave this extent in the cache.
1642 * the caller is expected to unpin it and allow it to be merged
1643 * with the others.
1644 */
1645 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1646 &hint, 0);
1647 BUG_ON(ret);
1648
1649 ins.objectid = inode->i_ino;
1650 ins.offset = file_pos;
1651 ins.type = BTRFS_EXTENT_DATA_KEY;
1652 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1653 BUG_ON(ret);
1654 leaf = path->nodes[0];
1655 fi = btrfs_item_ptr(leaf, path->slots[0],
1656 struct btrfs_file_extent_item);
1657 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1658 btrfs_set_file_extent_type(leaf, fi, extent_type);
1659 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1660 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1661 btrfs_set_file_extent_offset(leaf, fi, 0);
1662 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1663 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1664 btrfs_set_file_extent_compression(leaf, fi, compression);
1665 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1666 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1667
1668 btrfs_unlock_up_safe(path, 1);
1669 btrfs_set_lock_blocking(leaf);
1670
1671 btrfs_mark_buffer_dirty(leaf);
1672
1673 inode_add_bytes(inode, num_bytes);
1674
1675 ins.objectid = disk_bytenr;
1676 ins.offset = disk_num_bytes;
1677 ins.type = BTRFS_EXTENT_ITEM_KEY;
1678 ret = btrfs_alloc_reserved_file_extent(trans, root,
1679 root->root_key.objectid,
1680 inode->i_ino, file_pos, &ins);
1681 BUG_ON(ret);
1682 btrfs_free_path(path);
1683
1684 return 0;
1685 }
1686
1687 /*
1688 * helper function for btrfs_finish_ordered_io, this
1689 * just reads in some of the csum leaves to prime them into ram
1690 * before we start the transaction. It limits the amount of btree
1691 * reads required while inside the transaction.
1692 */
1693 /* as ordered data IO finishes, this gets called so we can finish
1694 * an ordered extent if the range of bytes in the file it covers are
1695 * fully written.
1696 */
1697 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1698 {
1699 struct btrfs_root *root = BTRFS_I(inode)->root;
1700 struct btrfs_trans_handle *trans;
1701 struct btrfs_ordered_extent *ordered_extent = NULL;
1702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1703 struct extent_state *cached_state = NULL;
1704 int compressed = 0;
1705 int ret;
1706
1707 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1708 end - start + 1);
1709 if (!ret)
1710 return 0;
1711 BUG_ON(!ordered_extent);
1712
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
1717 trans = btrfs_join_transaction(root, 1);
1718 ret = btrfs_update_inode(trans, root, inode);
1719 BUG_ON(ret);
1720 btrfs_end_transaction(trans, root);
1721 }
1722 goto out;
1723 }
1724
1725 lock_extent_bits(io_tree, ordered_extent->file_offset,
1726 ordered_extent->file_offset + ordered_extent->len - 1,
1727 0, &cached_state, GFP_NOFS);
1728
1729 trans = btrfs_join_transaction(root, 1);
1730
1731 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1732 compressed = 1;
1733 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1734 BUG_ON(compressed);
1735 ret = btrfs_mark_extent_written(trans, inode,
1736 ordered_extent->file_offset,
1737 ordered_extent->file_offset +
1738 ordered_extent->len);
1739 BUG_ON(ret);
1740 } else {
1741 ret = insert_reserved_file_extent(trans, inode,
1742 ordered_extent->file_offset,
1743 ordered_extent->start,
1744 ordered_extent->disk_len,
1745 ordered_extent->len,
1746 ordered_extent->len,
1747 compressed, 0, 0,
1748 BTRFS_FILE_EXTENT_REG);
1749 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1750 ordered_extent->file_offset,
1751 ordered_extent->len);
1752 BUG_ON(ret);
1753 }
1754 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1755 ordered_extent->file_offset +
1756 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1757
1758 add_pending_csums(trans, inode, ordered_extent->file_offset,
1759 &ordered_extent->list);
1760
1761 /* this also removes the ordered extent from the tree */
1762 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1763 ret = btrfs_update_inode(trans, root, inode);
1764 BUG_ON(ret);
1765 btrfs_end_transaction(trans, root);
1766 out:
1767 /* once for us */
1768 btrfs_put_ordered_extent(ordered_extent);
1769 /* once for the tree */
1770 btrfs_put_ordered_extent(ordered_extent);
1771
1772 return 0;
1773 }
1774
1775 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1776 struct extent_state *state, int uptodate)
1777 {
1778 ClearPagePrivate2(page);
1779 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1780 }
1781
1782 /*
1783 * When IO fails, either with EIO or csum verification fails, we
1784 * try other mirrors that might have a good copy of the data. This
1785 * io_failure_record is used to record state as we go through all the
1786 * mirrors. If another mirror has good data, the page is set up to date
1787 * and things continue. If a good mirror can't be found, the original
1788 * bio end_io callback is called to indicate things have failed.
1789 */
1790 struct io_failure_record {
1791 struct page *page;
1792 u64 start;
1793 u64 len;
1794 u64 logical;
1795 unsigned long bio_flags;
1796 int last_mirror;
1797 };
1798
1799 static int btrfs_io_failed_hook(struct bio *failed_bio,
1800 struct page *page, u64 start, u64 end,
1801 struct extent_state *state)
1802 {
1803 struct io_failure_record *failrec = NULL;
1804 u64 private;
1805 struct extent_map *em;
1806 struct inode *inode = page->mapping->host;
1807 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1809 struct bio *bio;
1810 int num_copies;
1811 int ret;
1812 int rw;
1813 u64 logical;
1814
1815 ret = get_state_private(failure_tree, start, &private);
1816 if (ret) {
1817 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1818 if (!failrec)
1819 return -ENOMEM;
1820 failrec->start = start;
1821 failrec->len = end - start + 1;
1822 failrec->last_mirror = 0;
1823 failrec->bio_flags = 0;
1824
1825 read_lock(&em_tree->lock);
1826 em = lookup_extent_mapping(em_tree, start, failrec->len);
1827 if (em->start > start || em->start + em->len < start) {
1828 free_extent_map(em);
1829 em = NULL;
1830 }
1831 read_unlock(&em_tree->lock);
1832
1833 if (!em || IS_ERR(em)) {
1834 kfree(failrec);
1835 return -EIO;
1836 }
1837 logical = start - em->start;
1838 logical = em->block_start + logical;
1839 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1840 logical = em->block_start;
1841 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1842 }
1843 failrec->logical = logical;
1844 free_extent_map(em);
1845 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1846 EXTENT_DIRTY, GFP_NOFS);
1847 set_state_private(failure_tree, start,
1848 (u64)(unsigned long)failrec);
1849 } else {
1850 failrec = (struct io_failure_record *)(unsigned long)private;
1851 }
1852 num_copies = btrfs_num_copies(
1853 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1854 failrec->logical, failrec->len);
1855 failrec->last_mirror++;
1856 if (!state) {
1857 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1858 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1859 failrec->start,
1860 EXTENT_LOCKED);
1861 if (state && state->start != failrec->start)
1862 state = NULL;
1863 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1864 }
1865 if (!state || failrec->last_mirror > num_copies) {
1866 set_state_private(failure_tree, failrec->start, 0);
1867 clear_extent_bits(failure_tree, failrec->start,
1868 failrec->start + failrec->len - 1,
1869 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1870 kfree(failrec);
1871 return -EIO;
1872 }
1873 bio = bio_alloc(GFP_NOFS, 1);
1874 bio->bi_private = state;
1875 bio->bi_end_io = failed_bio->bi_end_io;
1876 bio->bi_sector = failrec->logical >> 9;
1877 bio->bi_bdev = failed_bio->bi_bdev;
1878 bio->bi_size = 0;
1879
1880 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1881 if (failed_bio->bi_rw & (1 << BIO_RW))
1882 rw = WRITE;
1883 else
1884 rw = READ;
1885
1886 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1887 failrec->last_mirror,
1888 failrec->bio_flags);
1889 return 0;
1890 }
1891
1892 /*
1893 * each time an IO finishes, we do a fast check in the IO failure tree
1894 * to see if we need to process or clean up an io_failure_record
1895 */
1896 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1897 {
1898 u64 private;
1899 u64 private_failure;
1900 struct io_failure_record *failure;
1901 int ret;
1902
1903 private = 0;
1904 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1905 (u64)-1, 1, EXTENT_DIRTY)) {
1906 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1907 start, &private_failure);
1908 if (ret == 0) {
1909 failure = (struct io_failure_record *)(unsigned long)
1910 private_failure;
1911 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1912 failure->start, 0);
1913 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1914 failure->start,
1915 failure->start + failure->len - 1,
1916 EXTENT_DIRTY | EXTENT_LOCKED,
1917 GFP_NOFS);
1918 kfree(failure);
1919 }
1920 }
1921 return 0;
1922 }
1923
1924 /*
1925 * when reads are done, we need to check csums to verify the data is correct
1926 * if there's a match, we allow the bio to finish. If not, we go through
1927 * the io_failure_record routines to find good copies
1928 */
1929 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1930 struct extent_state *state)
1931 {
1932 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1933 struct inode *inode = page->mapping->host;
1934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1935 char *kaddr;
1936 u64 private = ~(u32)0;
1937 int ret;
1938 struct btrfs_root *root = BTRFS_I(inode)->root;
1939 u32 csum = ~(u32)0;
1940
1941 if (PageChecked(page)) {
1942 ClearPageChecked(page);
1943 goto good;
1944 }
1945
1946 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1947 return 0;
1948
1949 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1950 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1951 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1952 GFP_NOFS);
1953 return 0;
1954 }
1955
1956 if (state && state->start == start) {
1957 private = state->private;
1958 ret = 0;
1959 } else {
1960 ret = get_state_private(io_tree, start, &private);
1961 }
1962 kaddr = kmap_atomic(page, KM_USER0);
1963 if (ret)
1964 goto zeroit;
1965
1966 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1967 btrfs_csum_final(csum, (char *)&csum);
1968 if (csum != private)
1969 goto zeroit;
1970
1971 kunmap_atomic(kaddr, KM_USER0);
1972 good:
1973 /* if the io failure tree for this inode is non-empty,
1974 * check to see if we've recovered from a failed IO
1975 */
1976 btrfs_clean_io_failures(inode, start);
1977 return 0;
1978
1979 zeroit:
1980 if (printk_ratelimit()) {
1981 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1982 "private %llu\n", page->mapping->host->i_ino,
1983 (unsigned long long)start, csum,
1984 (unsigned long long)private);
1985 }
1986 memset(kaddr + offset, 1, end - start + 1);
1987 flush_dcache_page(page);
1988 kunmap_atomic(kaddr, KM_USER0);
1989 if (private == 0)
1990 return 0;
1991 return -EIO;
1992 }
1993
1994 struct delayed_iput {
1995 struct list_head list;
1996 struct inode *inode;
1997 };
1998
1999 void btrfs_add_delayed_iput(struct inode *inode)
2000 {
2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2002 struct delayed_iput *delayed;
2003
2004 if (atomic_add_unless(&inode->i_count, -1, 1))
2005 return;
2006
2007 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2008 delayed->inode = inode;
2009
2010 spin_lock(&fs_info->delayed_iput_lock);
2011 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2012 spin_unlock(&fs_info->delayed_iput_lock);
2013 }
2014
2015 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2016 {
2017 LIST_HEAD(list);
2018 struct btrfs_fs_info *fs_info = root->fs_info;
2019 struct delayed_iput *delayed;
2020 int empty;
2021
2022 spin_lock(&fs_info->delayed_iput_lock);
2023 empty = list_empty(&fs_info->delayed_iputs);
2024 spin_unlock(&fs_info->delayed_iput_lock);
2025 if (empty)
2026 return;
2027
2028 down_read(&root->fs_info->cleanup_work_sem);
2029 spin_lock(&fs_info->delayed_iput_lock);
2030 list_splice_init(&fs_info->delayed_iputs, &list);
2031 spin_unlock(&fs_info->delayed_iput_lock);
2032
2033 while (!list_empty(&list)) {
2034 delayed = list_entry(list.next, struct delayed_iput, list);
2035 list_del(&delayed->list);
2036 iput(delayed->inode);
2037 kfree(delayed);
2038 }
2039 up_read(&root->fs_info->cleanup_work_sem);
2040 }
2041
2042 /*
2043 * This creates an orphan entry for the given inode in case something goes
2044 * wrong in the middle of an unlink/truncate.
2045 */
2046 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2047 {
2048 struct btrfs_root *root = BTRFS_I(inode)->root;
2049 int ret = 0;
2050
2051 spin_lock(&root->list_lock);
2052
2053 /* already on the orphan list, we're good */
2054 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2055 spin_unlock(&root->list_lock);
2056 return 0;
2057 }
2058
2059 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2060
2061 spin_unlock(&root->list_lock);
2062
2063 /*
2064 * insert an orphan item to track this unlinked/truncated file
2065 */
2066 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2067
2068 return ret;
2069 }
2070
2071 /*
2072 * We have done the truncate/delete so we can go ahead and remove the orphan
2073 * item for this particular inode.
2074 */
2075 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2076 {
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 int ret = 0;
2079
2080 spin_lock(&root->list_lock);
2081
2082 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2083 spin_unlock(&root->list_lock);
2084 return 0;
2085 }
2086
2087 list_del_init(&BTRFS_I(inode)->i_orphan);
2088 if (!trans) {
2089 spin_unlock(&root->list_lock);
2090 return 0;
2091 }
2092
2093 spin_unlock(&root->list_lock);
2094
2095 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2096
2097 return ret;
2098 }
2099
2100 /*
2101 * this cleans up any orphans that may be left on the list from the last use
2102 * of this root.
2103 */
2104 void btrfs_orphan_cleanup(struct btrfs_root *root)
2105 {
2106 struct btrfs_path *path;
2107 struct extent_buffer *leaf;
2108 struct btrfs_item *item;
2109 struct btrfs_key key, found_key;
2110 struct btrfs_trans_handle *trans;
2111 struct inode *inode;
2112 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2113
2114 if (!xchg(&root->clean_orphans, 0))
2115 return;
2116
2117 path = btrfs_alloc_path();
2118 BUG_ON(!path);
2119 path->reada = -1;
2120
2121 key.objectid = BTRFS_ORPHAN_OBJECTID;
2122 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2123 key.offset = (u64)-1;
2124
2125 while (1) {
2126 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2127 if (ret < 0) {
2128 printk(KERN_ERR "Error searching slot for orphan: %d"
2129 "\n", ret);
2130 break;
2131 }
2132
2133 /*
2134 * if ret == 0 means we found what we were searching for, which
2135 * is weird, but possible, so only screw with path if we didnt
2136 * find the key and see if we have stuff that matches
2137 */
2138 if (ret > 0) {
2139 if (path->slots[0] == 0)
2140 break;
2141 path->slots[0]--;
2142 }
2143
2144 /* pull out the item */
2145 leaf = path->nodes[0];
2146 item = btrfs_item_nr(leaf, path->slots[0]);
2147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2148
2149 /* make sure the item matches what we want */
2150 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2151 break;
2152 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2153 break;
2154
2155 /* release the path since we're done with it */
2156 btrfs_release_path(root, path);
2157
2158 /*
2159 * this is where we are basically btrfs_lookup, without the
2160 * crossing root thing. we store the inode number in the
2161 * offset of the orphan item.
2162 */
2163 found_key.objectid = found_key.offset;
2164 found_key.type = BTRFS_INODE_ITEM_KEY;
2165 found_key.offset = 0;
2166 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2167 if (IS_ERR(inode))
2168 break;
2169
2170 /*
2171 * add this inode to the orphan list so btrfs_orphan_del does
2172 * the proper thing when we hit it
2173 */
2174 spin_lock(&root->list_lock);
2175 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2176 spin_unlock(&root->list_lock);
2177
2178 /*
2179 * if this is a bad inode, means we actually succeeded in
2180 * removing the inode, but not the orphan record, which means
2181 * we need to manually delete the orphan since iput will just
2182 * do a destroy_inode
2183 */
2184 if (is_bad_inode(inode)) {
2185 trans = btrfs_start_transaction(root, 1);
2186 btrfs_orphan_del(trans, inode);
2187 btrfs_end_transaction(trans, root);
2188 iput(inode);
2189 continue;
2190 }
2191
2192 /* if we have links, this was a truncate, lets do that */
2193 if (inode->i_nlink) {
2194 nr_truncate++;
2195 btrfs_truncate(inode);
2196 } else {
2197 nr_unlink++;
2198 }
2199
2200 /* this will do delete_inode and everything for us */
2201 iput(inode);
2202 }
2203
2204 if (nr_unlink)
2205 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2206 if (nr_truncate)
2207 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2208
2209 btrfs_free_path(path);
2210 }
2211
2212 /*
2213 * very simple check to peek ahead in the leaf looking for xattrs. If we
2214 * don't find any xattrs, we know there can't be any acls.
2215 *
2216 * slot is the slot the inode is in, objectid is the objectid of the inode
2217 */
2218 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2219 int slot, u64 objectid)
2220 {
2221 u32 nritems = btrfs_header_nritems(leaf);
2222 struct btrfs_key found_key;
2223 int scanned = 0;
2224
2225 slot++;
2226 while (slot < nritems) {
2227 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2228
2229 /* we found a different objectid, there must not be acls */
2230 if (found_key.objectid != objectid)
2231 return 0;
2232
2233 /* we found an xattr, assume we've got an acl */
2234 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2235 return 1;
2236
2237 /*
2238 * we found a key greater than an xattr key, there can't
2239 * be any acls later on
2240 */
2241 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2242 return 0;
2243
2244 slot++;
2245 scanned++;
2246
2247 /*
2248 * it goes inode, inode backrefs, xattrs, extents,
2249 * so if there are a ton of hard links to an inode there can
2250 * be a lot of backrefs. Don't waste time searching too hard,
2251 * this is just an optimization
2252 */
2253 if (scanned >= 8)
2254 break;
2255 }
2256 /* we hit the end of the leaf before we found an xattr or
2257 * something larger than an xattr. We have to assume the inode
2258 * has acls
2259 */
2260 return 1;
2261 }
2262
2263 /*
2264 * read an inode from the btree into the in-memory inode
2265 */
2266 static void btrfs_read_locked_inode(struct inode *inode)
2267 {
2268 struct btrfs_path *path;
2269 struct extent_buffer *leaf;
2270 struct btrfs_inode_item *inode_item;
2271 struct btrfs_timespec *tspec;
2272 struct btrfs_root *root = BTRFS_I(inode)->root;
2273 struct btrfs_key location;
2274 int maybe_acls;
2275 u64 alloc_group_block;
2276 u32 rdev;
2277 int ret;
2278
2279 path = btrfs_alloc_path();
2280 BUG_ON(!path);
2281 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2282
2283 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2284 if (ret)
2285 goto make_bad;
2286
2287 leaf = path->nodes[0];
2288 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2289 struct btrfs_inode_item);
2290
2291 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2292 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2293 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2294 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2295 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2296
2297 tspec = btrfs_inode_atime(inode_item);
2298 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2299 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2300
2301 tspec = btrfs_inode_mtime(inode_item);
2302 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2303 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2304
2305 tspec = btrfs_inode_ctime(inode_item);
2306 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2307 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2308
2309 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2310 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2311 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2312 inode->i_generation = BTRFS_I(inode)->generation;
2313 inode->i_rdev = 0;
2314 rdev = btrfs_inode_rdev(leaf, inode_item);
2315
2316 BTRFS_I(inode)->index_cnt = (u64)-1;
2317 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2318
2319 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2320
2321 /*
2322 * try to precache a NULL acl entry for files that don't have
2323 * any xattrs or acls
2324 */
2325 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2326 if (!maybe_acls)
2327 cache_no_acl(inode);
2328
2329 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2330 alloc_group_block, 0);
2331 btrfs_free_path(path);
2332 inode_item = NULL;
2333
2334 switch (inode->i_mode & S_IFMT) {
2335 case S_IFREG:
2336 inode->i_mapping->a_ops = &btrfs_aops;
2337 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2338 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2339 inode->i_fop = &btrfs_file_operations;
2340 inode->i_op = &btrfs_file_inode_operations;
2341 break;
2342 case S_IFDIR:
2343 inode->i_fop = &btrfs_dir_file_operations;
2344 if (root == root->fs_info->tree_root)
2345 inode->i_op = &btrfs_dir_ro_inode_operations;
2346 else
2347 inode->i_op = &btrfs_dir_inode_operations;
2348 break;
2349 case S_IFLNK:
2350 inode->i_op = &btrfs_symlink_inode_operations;
2351 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2352 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2353 break;
2354 default:
2355 inode->i_op = &btrfs_special_inode_operations;
2356 init_special_inode(inode, inode->i_mode, rdev);
2357 break;
2358 }
2359
2360 btrfs_update_iflags(inode);
2361 return;
2362
2363 make_bad:
2364 btrfs_free_path(path);
2365 make_bad_inode(inode);
2366 }
2367
2368 /*
2369 * given a leaf and an inode, copy the inode fields into the leaf
2370 */
2371 static void fill_inode_item(struct btrfs_trans_handle *trans,
2372 struct extent_buffer *leaf,
2373 struct btrfs_inode_item *item,
2374 struct inode *inode)
2375 {
2376 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2377 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2378 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2379 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2380 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2381
2382 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2383 inode->i_atime.tv_sec);
2384 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2385 inode->i_atime.tv_nsec);
2386
2387 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2388 inode->i_mtime.tv_sec);
2389 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2390 inode->i_mtime.tv_nsec);
2391
2392 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2393 inode->i_ctime.tv_sec);
2394 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2395 inode->i_ctime.tv_nsec);
2396
2397 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2398 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2399 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2400 btrfs_set_inode_transid(leaf, item, trans->transid);
2401 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2402 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2403 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2404 }
2405
2406 /*
2407 * copy everything in the in-memory inode into the btree.
2408 */
2409 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2410 struct btrfs_root *root, struct inode *inode)
2411 {
2412 struct btrfs_inode_item *inode_item;
2413 struct btrfs_path *path;
2414 struct extent_buffer *leaf;
2415 int ret;
2416
2417 path = btrfs_alloc_path();
2418 BUG_ON(!path);
2419 path->leave_spinning = 1;
2420 ret = btrfs_lookup_inode(trans, root, path,
2421 &BTRFS_I(inode)->location, 1);
2422 if (ret) {
2423 if (ret > 0)
2424 ret = -ENOENT;
2425 goto failed;
2426 }
2427
2428 btrfs_unlock_up_safe(path, 1);
2429 leaf = path->nodes[0];
2430 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2431 struct btrfs_inode_item);
2432
2433 fill_inode_item(trans, leaf, inode_item, inode);
2434 btrfs_mark_buffer_dirty(leaf);
2435 btrfs_set_inode_last_trans(trans, inode);
2436 ret = 0;
2437 failed:
2438 btrfs_free_path(path);
2439 return ret;
2440 }
2441
2442
2443 /*
2444 * unlink helper that gets used here in inode.c and in the tree logging
2445 * recovery code. It remove a link in a directory with a given name, and
2446 * also drops the back refs in the inode to the directory
2447 */
2448 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2449 struct btrfs_root *root,
2450 struct inode *dir, struct inode *inode,
2451 const char *name, int name_len)
2452 {
2453 struct btrfs_path *path;
2454 int ret = 0;
2455 struct extent_buffer *leaf;
2456 struct btrfs_dir_item *di;
2457 struct btrfs_key key;
2458 u64 index;
2459
2460 path = btrfs_alloc_path();
2461 if (!path) {
2462 ret = -ENOMEM;
2463 goto err;
2464 }
2465
2466 path->leave_spinning = 1;
2467 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2468 name, name_len, -1);
2469 if (IS_ERR(di)) {
2470 ret = PTR_ERR(di);
2471 goto err;
2472 }
2473 if (!di) {
2474 ret = -ENOENT;
2475 goto err;
2476 }
2477 leaf = path->nodes[0];
2478 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2479 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2480 if (ret)
2481 goto err;
2482 btrfs_release_path(root, path);
2483
2484 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2485 inode->i_ino,
2486 dir->i_ino, &index);
2487 if (ret) {
2488 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2489 "inode %lu parent %lu\n", name_len, name,
2490 inode->i_ino, dir->i_ino);
2491 goto err;
2492 }
2493
2494 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2495 index, name, name_len, -1);
2496 if (IS_ERR(di)) {
2497 ret = PTR_ERR(di);
2498 goto err;
2499 }
2500 if (!di) {
2501 ret = -ENOENT;
2502 goto err;
2503 }
2504 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2505 btrfs_release_path(root, path);
2506
2507 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2508 inode, dir->i_ino);
2509 BUG_ON(ret != 0 && ret != -ENOENT);
2510
2511 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2512 dir, index);
2513 BUG_ON(ret);
2514 err:
2515 btrfs_free_path(path);
2516 if (ret)
2517 goto out;
2518
2519 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2520 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2521 btrfs_update_inode(trans, root, dir);
2522 btrfs_drop_nlink(inode);
2523 ret = btrfs_update_inode(trans, root, inode);
2524 out:
2525 return ret;
2526 }
2527
2528 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2529 {
2530 struct btrfs_root *root;
2531 struct btrfs_trans_handle *trans;
2532 struct inode *inode = dentry->d_inode;
2533 int ret;
2534 unsigned long nr = 0;
2535
2536 root = BTRFS_I(dir)->root;
2537
2538 /*
2539 * 5 items for unlink inode
2540 * 1 for orphan
2541 */
2542 ret = btrfs_reserve_metadata_space(root, 6);
2543 if (ret)
2544 return ret;
2545
2546 trans = btrfs_start_transaction(root, 1);
2547 if (IS_ERR(trans)) {
2548 btrfs_unreserve_metadata_space(root, 6);
2549 return PTR_ERR(trans);
2550 }
2551
2552 btrfs_set_trans_block_group(trans, dir);
2553
2554 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2555
2556 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2557 dentry->d_name.name, dentry->d_name.len);
2558
2559 if (inode->i_nlink == 0)
2560 ret = btrfs_orphan_add(trans, inode);
2561
2562 nr = trans->blocks_used;
2563
2564 btrfs_end_transaction_throttle(trans, root);
2565 btrfs_unreserve_metadata_space(root, 6);
2566 btrfs_btree_balance_dirty(root, nr);
2567 return ret;
2568 }
2569
2570 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2571 struct btrfs_root *root,
2572 struct inode *dir, u64 objectid,
2573 const char *name, int name_len)
2574 {
2575 struct btrfs_path *path;
2576 struct extent_buffer *leaf;
2577 struct btrfs_dir_item *di;
2578 struct btrfs_key key;
2579 u64 index;
2580 int ret;
2581
2582 path = btrfs_alloc_path();
2583 if (!path)
2584 return -ENOMEM;
2585
2586 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2587 name, name_len, -1);
2588 BUG_ON(!di || IS_ERR(di));
2589
2590 leaf = path->nodes[0];
2591 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2592 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2593 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2594 BUG_ON(ret);
2595 btrfs_release_path(root, path);
2596
2597 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2598 objectid, root->root_key.objectid,
2599 dir->i_ino, &index, name, name_len);
2600 if (ret < 0) {
2601 BUG_ON(ret != -ENOENT);
2602 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2603 name, name_len);
2604 BUG_ON(!di || IS_ERR(di));
2605
2606 leaf = path->nodes[0];
2607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2608 btrfs_release_path(root, path);
2609 index = key.offset;
2610 }
2611
2612 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2613 index, name, name_len, -1);
2614 BUG_ON(!di || IS_ERR(di));
2615
2616 leaf = path->nodes[0];
2617 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2618 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2619 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2620 BUG_ON(ret);
2621 btrfs_release_path(root, path);
2622
2623 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2624 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2625 ret = btrfs_update_inode(trans, root, dir);
2626 BUG_ON(ret);
2627 dir->i_sb->s_dirt = 1;
2628
2629 btrfs_free_path(path);
2630 return 0;
2631 }
2632
2633 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2634 {
2635 struct inode *inode = dentry->d_inode;
2636 int err = 0;
2637 int ret;
2638 struct btrfs_root *root = BTRFS_I(dir)->root;
2639 struct btrfs_trans_handle *trans;
2640 unsigned long nr = 0;
2641
2642 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2643 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2644 return -ENOTEMPTY;
2645
2646 ret = btrfs_reserve_metadata_space(root, 5);
2647 if (ret)
2648 return ret;
2649
2650 trans = btrfs_start_transaction(root, 1);
2651 if (IS_ERR(trans)) {
2652 btrfs_unreserve_metadata_space(root, 5);
2653 return PTR_ERR(trans);
2654 }
2655
2656 btrfs_set_trans_block_group(trans, dir);
2657
2658 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2659 err = btrfs_unlink_subvol(trans, root, dir,
2660 BTRFS_I(inode)->location.objectid,
2661 dentry->d_name.name,
2662 dentry->d_name.len);
2663 goto out;
2664 }
2665
2666 err = btrfs_orphan_add(trans, inode);
2667 if (err)
2668 goto out;
2669
2670 /* now the directory is empty */
2671 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2672 dentry->d_name.name, dentry->d_name.len);
2673 if (!err)
2674 btrfs_i_size_write(inode, 0);
2675 out:
2676 nr = trans->blocks_used;
2677 ret = btrfs_end_transaction_throttle(trans, root);
2678 btrfs_unreserve_metadata_space(root, 5);
2679 btrfs_btree_balance_dirty(root, nr);
2680
2681 if (ret && !err)
2682 err = ret;
2683 return err;
2684 }
2685
2686 #if 0
2687 /*
2688 * when truncating bytes in a file, it is possible to avoid reading
2689 * the leaves that contain only checksum items. This can be the
2690 * majority of the IO required to delete a large file, but it must
2691 * be done carefully.
2692 *
2693 * The keys in the level just above the leaves are checked to make sure
2694 * the lowest key in a given leaf is a csum key, and starts at an offset
2695 * after the new size.
2696 *
2697 * Then the key for the next leaf is checked to make sure it also has
2698 * a checksum item for the same file. If it does, we know our target leaf
2699 * contains only checksum items, and it can be safely freed without reading
2700 * it.
2701 *
2702 * This is just an optimization targeted at large files. It may do
2703 * nothing. It will return 0 unless things went badly.
2704 */
2705 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2706 struct btrfs_root *root,
2707 struct btrfs_path *path,
2708 struct inode *inode, u64 new_size)
2709 {
2710 struct btrfs_key key;
2711 int ret;
2712 int nritems;
2713 struct btrfs_key found_key;
2714 struct btrfs_key other_key;
2715 struct btrfs_leaf_ref *ref;
2716 u64 leaf_gen;
2717 u64 leaf_start;
2718
2719 path->lowest_level = 1;
2720 key.objectid = inode->i_ino;
2721 key.type = BTRFS_CSUM_ITEM_KEY;
2722 key.offset = new_size;
2723 again:
2724 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2725 if (ret < 0)
2726 goto out;
2727
2728 if (path->nodes[1] == NULL) {
2729 ret = 0;
2730 goto out;
2731 }
2732 ret = 0;
2733 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2734 nritems = btrfs_header_nritems(path->nodes[1]);
2735
2736 if (!nritems)
2737 goto out;
2738
2739 if (path->slots[1] >= nritems)
2740 goto next_node;
2741
2742 /* did we find a key greater than anything we want to delete? */
2743 if (found_key.objectid > inode->i_ino ||
2744 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2745 goto out;
2746
2747 /* we check the next key in the node to make sure the leave contains
2748 * only checksum items. This comparison doesn't work if our
2749 * leaf is the last one in the node
2750 */
2751 if (path->slots[1] + 1 >= nritems) {
2752 next_node:
2753 /* search forward from the last key in the node, this
2754 * will bring us into the next node in the tree
2755 */
2756 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2757
2758 /* unlikely, but we inc below, so check to be safe */
2759 if (found_key.offset == (u64)-1)
2760 goto out;
2761
2762 /* search_forward needs a path with locks held, do the
2763 * search again for the original key. It is possible
2764 * this will race with a balance and return a path that
2765 * we could modify, but this drop is just an optimization
2766 * and is allowed to miss some leaves.
2767 */
2768 btrfs_release_path(root, path);
2769 found_key.offset++;
2770
2771 /* setup a max key for search_forward */
2772 other_key.offset = (u64)-1;
2773 other_key.type = key.type;
2774 other_key.objectid = key.objectid;
2775
2776 path->keep_locks = 1;
2777 ret = btrfs_search_forward(root, &found_key, &other_key,
2778 path, 0, 0);
2779 path->keep_locks = 0;
2780 if (ret || found_key.objectid != key.objectid ||
2781 found_key.type != key.type) {
2782 ret = 0;
2783 goto out;
2784 }
2785
2786 key.offset = found_key.offset;
2787 btrfs_release_path(root, path);
2788 cond_resched();
2789 goto again;
2790 }
2791
2792 /* we know there's one more slot after us in the tree,
2793 * read that key so we can verify it is also a checksum item
2794 */
2795 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2796
2797 if (found_key.objectid < inode->i_ino)
2798 goto next_key;
2799
2800 if (found_key.type != key.type || found_key.offset < new_size)
2801 goto next_key;
2802
2803 /*
2804 * if the key for the next leaf isn't a csum key from this objectid,
2805 * we can't be sure there aren't good items inside this leaf.
2806 * Bail out
2807 */
2808 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2809 goto out;
2810
2811 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2812 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2813 /*
2814 * it is safe to delete this leaf, it contains only
2815 * csum items from this inode at an offset >= new_size
2816 */
2817 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2818 BUG_ON(ret);
2819
2820 if (root->ref_cows && leaf_gen < trans->transid) {
2821 ref = btrfs_alloc_leaf_ref(root, 0);
2822 if (ref) {
2823 ref->root_gen = root->root_key.offset;
2824 ref->bytenr = leaf_start;
2825 ref->owner = 0;
2826 ref->generation = leaf_gen;
2827 ref->nritems = 0;
2828
2829 btrfs_sort_leaf_ref(ref);
2830
2831 ret = btrfs_add_leaf_ref(root, ref, 0);
2832 WARN_ON(ret);
2833 btrfs_free_leaf_ref(root, ref);
2834 } else {
2835 WARN_ON(1);
2836 }
2837 }
2838 next_key:
2839 btrfs_release_path(root, path);
2840
2841 if (other_key.objectid == inode->i_ino &&
2842 other_key.type == key.type && other_key.offset > key.offset) {
2843 key.offset = other_key.offset;
2844 cond_resched();
2845 goto again;
2846 }
2847 ret = 0;
2848 out:
2849 /* fixup any changes we've made to the path */
2850 path->lowest_level = 0;
2851 path->keep_locks = 0;
2852 btrfs_release_path(root, path);
2853 return ret;
2854 }
2855
2856 #endif
2857
2858 /*
2859 * this can truncate away extent items, csum items and directory items.
2860 * It starts at a high offset and removes keys until it can't find
2861 * any higher than new_size
2862 *
2863 * csum items that cross the new i_size are truncated to the new size
2864 * as well.
2865 *
2866 * min_type is the minimum key type to truncate down to. If set to 0, this
2867 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2868 */
2869 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root,
2871 struct inode *inode,
2872 u64 new_size, u32 min_type)
2873 {
2874 struct btrfs_path *path;
2875 struct extent_buffer *leaf;
2876 struct btrfs_file_extent_item *fi;
2877 struct btrfs_key key;
2878 struct btrfs_key found_key;
2879 u64 extent_start = 0;
2880 u64 extent_num_bytes = 0;
2881 u64 extent_offset = 0;
2882 u64 item_end = 0;
2883 u64 mask = root->sectorsize - 1;
2884 u32 found_type = (u8)-1;
2885 int found_extent;
2886 int del_item;
2887 int pending_del_nr = 0;
2888 int pending_del_slot = 0;
2889 int extent_type = -1;
2890 int encoding;
2891 int ret;
2892 int err = 0;
2893
2894 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2895
2896 if (root->ref_cows)
2897 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2898
2899 path = btrfs_alloc_path();
2900 BUG_ON(!path);
2901 path->reada = -1;
2902
2903 key.objectid = inode->i_ino;
2904 key.offset = (u64)-1;
2905 key.type = (u8)-1;
2906
2907 search_again:
2908 path->leave_spinning = 1;
2909 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2910 if (ret < 0) {
2911 err = ret;
2912 goto out;
2913 }
2914
2915 if (ret > 0) {
2916 /* there are no items in the tree for us to truncate, we're
2917 * done
2918 */
2919 if (path->slots[0] == 0)
2920 goto out;
2921 path->slots[0]--;
2922 }
2923
2924 while (1) {
2925 fi = NULL;
2926 leaf = path->nodes[0];
2927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2928 found_type = btrfs_key_type(&found_key);
2929 encoding = 0;
2930
2931 if (found_key.objectid != inode->i_ino)
2932 break;
2933
2934 if (found_type < min_type)
2935 break;
2936
2937 item_end = found_key.offset;
2938 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2939 fi = btrfs_item_ptr(leaf, path->slots[0],
2940 struct btrfs_file_extent_item);
2941 extent_type = btrfs_file_extent_type(leaf, fi);
2942 encoding = btrfs_file_extent_compression(leaf, fi);
2943 encoding |= btrfs_file_extent_encryption(leaf, fi);
2944 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2945
2946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2947 item_end +=
2948 btrfs_file_extent_num_bytes(leaf, fi);
2949 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2950 item_end += btrfs_file_extent_inline_len(leaf,
2951 fi);
2952 }
2953 item_end--;
2954 }
2955 if (found_type > min_type) {
2956 del_item = 1;
2957 } else {
2958 if (item_end < new_size)
2959 break;
2960 if (found_key.offset >= new_size)
2961 del_item = 1;
2962 else
2963 del_item = 0;
2964 }
2965 found_extent = 0;
2966 /* FIXME, shrink the extent if the ref count is only 1 */
2967 if (found_type != BTRFS_EXTENT_DATA_KEY)
2968 goto delete;
2969
2970 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2971 u64 num_dec;
2972 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2973 if (!del_item && !encoding) {
2974 u64 orig_num_bytes =
2975 btrfs_file_extent_num_bytes(leaf, fi);
2976 extent_num_bytes = new_size -
2977 found_key.offset + root->sectorsize - 1;
2978 extent_num_bytes = extent_num_bytes &
2979 ~((u64)root->sectorsize - 1);
2980 btrfs_set_file_extent_num_bytes(leaf, fi,
2981 extent_num_bytes);
2982 num_dec = (orig_num_bytes -
2983 extent_num_bytes);
2984 if (root->ref_cows && extent_start != 0)
2985 inode_sub_bytes(inode, num_dec);
2986 btrfs_mark_buffer_dirty(leaf);
2987 } else {
2988 extent_num_bytes =
2989 btrfs_file_extent_disk_num_bytes(leaf,
2990 fi);
2991 extent_offset = found_key.offset -
2992 btrfs_file_extent_offset(leaf, fi);
2993
2994 /* FIXME blocksize != 4096 */
2995 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2996 if (extent_start != 0) {
2997 found_extent = 1;
2998 if (root->ref_cows)
2999 inode_sub_bytes(inode, num_dec);
3000 }
3001 }
3002 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3003 /*
3004 * we can't truncate inline items that have had
3005 * special encodings
3006 */
3007 if (!del_item &&
3008 btrfs_file_extent_compression(leaf, fi) == 0 &&
3009 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3010 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3011 u32 size = new_size - found_key.offset;
3012
3013 if (root->ref_cows) {
3014 inode_sub_bytes(inode, item_end + 1 -
3015 new_size);
3016 }
3017 size =
3018 btrfs_file_extent_calc_inline_size(size);
3019 ret = btrfs_truncate_item(trans, root, path,
3020 size, 1);
3021 BUG_ON(ret);
3022 } else if (root->ref_cows) {
3023 inode_sub_bytes(inode, item_end + 1 -
3024 found_key.offset);
3025 }
3026 }
3027 delete:
3028 if (del_item) {
3029 if (!pending_del_nr) {
3030 /* no pending yet, add ourselves */
3031 pending_del_slot = path->slots[0];
3032 pending_del_nr = 1;
3033 } else if (pending_del_nr &&
3034 path->slots[0] + 1 == pending_del_slot) {
3035 /* hop on the pending chunk */
3036 pending_del_nr++;
3037 pending_del_slot = path->slots[0];
3038 } else {
3039 BUG();
3040 }
3041 } else {
3042 break;
3043 }
3044 if (found_extent && root->ref_cows) {
3045 btrfs_set_path_blocking(path);
3046 ret = btrfs_free_extent(trans, root, extent_start,
3047 extent_num_bytes, 0,
3048 btrfs_header_owner(leaf),
3049 inode->i_ino, extent_offset);
3050 BUG_ON(ret);
3051 }
3052
3053 if (found_type == BTRFS_INODE_ITEM_KEY)
3054 break;
3055
3056 if (path->slots[0] == 0 ||
3057 path->slots[0] != pending_del_slot) {
3058 if (root->ref_cows) {
3059 err = -EAGAIN;
3060 goto out;
3061 }
3062 if (pending_del_nr) {
3063 ret = btrfs_del_items(trans, root, path,
3064 pending_del_slot,
3065 pending_del_nr);
3066 BUG_ON(ret);
3067 pending_del_nr = 0;
3068 }
3069 btrfs_release_path(root, path);
3070 goto search_again;
3071 } else {
3072 path->slots[0]--;
3073 }
3074 }
3075 out:
3076 if (pending_del_nr) {
3077 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3078 pending_del_nr);
3079 }
3080 btrfs_free_path(path);
3081 return err;
3082 }
3083
3084 /*
3085 * taken from block_truncate_page, but does cow as it zeros out
3086 * any bytes left in the last page in the file.
3087 */
3088 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3089 {
3090 struct inode *inode = mapping->host;
3091 struct btrfs_root *root = BTRFS_I(inode)->root;
3092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093 struct btrfs_ordered_extent *ordered;
3094 struct extent_state *cached_state = NULL;
3095 char *kaddr;
3096 u32 blocksize = root->sectorsize;
3097 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3098 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3099 struct page *page;
3100 int ret = 0;
3101 u64 page_start;
3102 u64 page_end;
3103
3104 if ((offset & (blocksize - 1)) == 0)
3105 goto out;
3106 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3107 if (ret)
3108 goto out;
3109
3110 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3111 if (ret)
3112 goto out;
3113
3114 ret = -ENOMEM;
3115 again:
3116 page = grab_cache_page(mapping, index);
3117 if (!page) {
3118 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3119 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3120 goto out;
3121 }
3122
3123 page_start = page_offset(page);
3124 page_end = page_start + PAGE_CACHE_SIZE - 1;
3125
3126 if (!PageUptodate(page)) {
3127 ret = btrfs_readpage(NULL, page);
3128 lock_page(page);
3129 if (page->mapping != mapping) {
3130 unlock_page(page);
3131 page_cache_release(page);
3132 goto again;
3133 }
3134 if (!PageUptodate(page)) {
3135 ret = -EIO;
3136 goto out_unlock;
3137 }
3138 }
3139 wait_on_page_writeback(page);
3140
3141 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3142 GFP_NOFS);
3143 set_page_extent_mapped(page);
3144
3145 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3146 if (ordered) {
3147 unlock_extent_cached(io_tree, page_start, page_end,
3148 &cached_state, GFP_NOFS);
3149 unlock_page(page);
3150 page_cache_release(page);
3151 btrfs_start_ordered_extent(inode, ordered, 1);
3152 btrfs_put_ordered_extent(ordered);
3153 goto again;
3154 }
3155
3156 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3157 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3158 0, 0, &cached_state, GFP_NOFS);
3159
3160 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3161 &cached_state);
3162 if (ret) {
3163 unlock_extent_cached(io_tree, page_start, page_end,
3164 &cached_state, GFP_NOFS);
3165 goto out_unlock;
3166 }
3167
3168 ret = 0;
3169 if (offset != PAGE_CACHE_SIZE) {
3170 kaddr = kmap(page);
3171 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3172 flush_dcache_page(page);
3173 kunmap(page);
3174 }
3175 ClearPageChecked(page);
3176 set_page_dirty(page);
3177 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3178 GFP_NOFS);
3179
3180 out_unlock:
3181 if (ret)
3182 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3183 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3184 unlock_page(page);
3185 page_cache_release(page);
3186 out:
3187 return ret;
3188 }
3189
3190 int btrfs_cont_expand(struct inode *inode, loff_t size)
3191 {
3192 struct btrfs_trans_handle *trans;
3193 struct btrfs_root *root = BTRFS_I(inode)->root;
3194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3195 struct extent_map *em;
3196 struct extent_state *cached_state = NULL;
3197 u64 mask = root->sectorsize - 1;
3198 u64 hole_start = (inode->i_size + mask) & ~mask;
3199 u64 block_end = (size + mask) & ~mask;
3200 u64 last_byte;
3201 u64 cur_offset;
3202 u64 hole_size;
3203 int err = 0;
3204
3205 if (size <= hole_start)
3206 return 0;
3207
3208 while (1) {
3209 struct btrfs_ordered_extent *ordered;
3210 btrfs_wait_ordered_range(inode, hole_start,
3211 block_end - hole_start);
3212 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3213 &cached_state, GFP_NOFS);
3214 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3215 if (!ordered)
3216 break;
3217 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3218 &cached_state, GFP_NOFS);
3219 btrfs_put_ordered_extent(ordered);
3220 }
3221
3222 cur_offset = hole_start;
3223 while (1) {
3224 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3225 block_end - cur_offset, 0);
3226 BUG_ON(IS_ERR(em) || !em);
3227 last_byte = min(extent_map_end(em), block_end);
3228 last_byte = (last_byte + mask) & ~mask;
3229 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3230 u64 hint_byte = 0;
3231 hole_size = last_byte - cur_offset;
3232
3233 err = btrfs_reserve_metadata_space(root, 2);
3234 if (err)
3235 break;
3236
3237 trans = btrfs_start_transaction(root, 1);
3238 btrfs_set_trans_block_group(trans, inode);
3239
3240 err = btrfs_drop_extents(trans, inode, cur_offset,
3241 cur_offset + hole_size,
3242 &hint_byte, 1);
3243 BUG_ON(err);
3244
3245 err = btrfs_insert_file_extent(trans, root,
3246 inode->i_ino, cur_offset, 0,
3247 0, hole_size, 0, hole_size,
3248 0, 0, 0);
3249 BUG_ON(err);
3250
3251 btrfs_drop_extent_cache(inode, hole_start,
3252 last_byte - 1, 0);
3253
3254 btrfs_end_transaction(trans, root);
3255 btrfs_unreserve_metadata_space(root, 2);
3256 }
3257 free_extent_map(em);
3258 cur_offset = last_byte;
3259 if (cur_offset >= block_end)
3260 break;
3261 }
3262
3263 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3264 GFP_NOFS);
3265 return err;
3266 }
3267
3268 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3269 {
3270 struct btrfs_root *root = BTRFS_I(inode)->root;
3271 struct btrfs_trans_handle *trans;
3272 unsigned long nr;
3273 int ret;
3274
3275 if (attr->ia_size == inode->i_size)
3276 return 0;
3277
3278 if (attr->ia_size > inode->i_size) {
3279 unsigned long limit;
3280 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3281 if (attr->ia_size > inode->i_sb->s_maxbytes)
3282 return -EFBIG;
3283 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3284 send_sig(SIGXFSZ, current, 0);
3285 return -EFBIG;
3286 }
3287 }
3288
3289 ret = btrfs_reserve_metadata_space(root, 1);
3290 if (ret)
3291 return ret;
3292
3293 trans = btrfs_start_transaction(root, 1);
3294 btrfs_set_trans_block_group(trans, inode);
3295
3296 ret = btrfs_orphan_add(trans, inode);
3297 BUG_ON(ret);
3298
3299 nr = trans->blocks_used;
3300 btrfs_end_transaction(trans, root);
3301 btrfs_unreserve_metadata_space(root, 1);
3302 btrfs_btree_balance_dirty(root, nr);
3303
3304 if (attr->ia_size > inode->i_size) {
3305 ret = btrfs_cont_expand(inode, attr->ia_size);
3306 if (ret) {
3307 btrfs_truncate(inode);
3308 return ret;
3309 }
3310
3311 i_size_write(inode, attr->ia_size);
3312 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3313
3314 trans = btrfs_start_transaction(root, 1);
3315 btrfs_set_trans_block_group(trans, inode);
3316
3317 ret = btrfs_update_inode(trans, root, inode);
3318 BUG_ON(ret);
3319 if (inode->i_nlink > 0) {
3320 ret = btrfs_orphan_del(trans, inode);
3321 BUG_ON(ret);
3322 }
3323 nr = trans->blocks_used;
3324 btrfs_end_transaction(trans, root);
3325 btrfs_btree_balance_dirty(root, nr);
3326 return 0;
3327 }
3328
3329 /*
3330 * We're truncating a file that used to have good data down to
3331 * zero. Make sure it gets into the ordered flush list so that
3332 * any new writes get down to disk quickly.
3333 */
3334 if (attr->ia_size == 0)
3335 BTRFS_I(inode)->ordered_data_close = 1;
3336
3337 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3338 ret = vmtruncate(inode, attr->ia_size);
3339 BUG_ON(ret);
3340
3341 return 0;
3342 }
3343
3344 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3345 {
3346 struct inode *inode = dentry->d_inode;
3347 int err;
3348
3349 err = inode_change_ok(inode, attr);
3350 if (err)
3351 return err;
3352
3353 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3354 err = btrfs_setattr_size(inode, attr);
3355 if (err)
3356 return err;
3357 }
3358 attr->ia_valid &= ~ATTR_SIZE;
3359
3360 if (attr->ia_valid)
3361 err = inode_setattr(inode, attr);
3362
3363 if (!err && ((attr->ia_valid & ATTR_MODE)))
3364 err = btrfs_acl_chmod(inode);
3365 return err;
3366 }
3367
3368 void btrfs_delete_inode(struct inode *inode)
3369 {
3370 struct btrfs_trans_handle *trans;
3371 struct btrfs_root *root = BTRFS_I(inode)->root;
3372 unsigned long nr;
3373 int ret;
3374
3375 truncate_inode_pages(&inode->i_data, 0);
3376 if (is_bad_inode(inode)) {
3377 btrfs_orphan_del(NULL, inode);
3378 goto no_delete;
3379 }
3380 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3381
3382 if (root->fs_info->log_root_recovering) {
3383 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3384 goto no_delete;
3385 }
3386
3387 if (inode->i_nlink > 0) {
3388 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3389 goto no_delete;
3390 }
3391
3392 btrfs_i_size_write(inode, 0);
3393
3394 while (1) {
3395 trans = btrfs_start_transaction(root, 1);
3396 btrfs_set_trans_block_group(trans, inode);
3397 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3398
3399 if (ret != -EAGAIN)
3400 break;
3401
3402 nr = trans->blocks_used;
3403 btrfs_end_transaction(trans, root);
3404 trans = NULL;
3405 btrfs_btree_balance_dirty(root, nr);
3406 }
3407
3408 if (ret == 0) {
3409 ret = btrfs_orphan_del(trans, inode);
3410 BUG_ON(ret);
3411 }
3412
3413 nr = trans->blocks_used;
3414 btrfs_end_transaction(trans, root);
3415 btrfs_btree_balance_dirty(root, nr);
3416 no_delete:
3417 clear_inode(inode);
3418 return;
3419 }
3420
3421 /*
3422 * this returns the key found in the dir entry in the location pointer.
3423 * If no dir entries were found, location->objectid is 0.
3424 */
3425 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3426 struct btrfs_key *location)
3427 {
3428 const char *name = dentry->d_name.name;
3429 int namelen = dentry->d_name.len;
3430 struct btrfs_dir_item *di;
3431 struct btrfs_path *path;
3432 struct btrfs_root *root = BTRFS_I(dir)->root;
3433 int ret = 0;
3434
3435 path = btrfs_alloc_path();
3436 BUG_ON(!path);
3437
3438 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3439 namelen, 0);
3440 if (IS_ERR(di))
3441 ret = PTR_ERR(di);
3442
3443 if (!di || IS_ERR(di))
3444 goto out_err;
3445
3446 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3447 out:
3448 btrfs_free_path(path);
3449 return ret;
3450 out_err:
3451 location->objectid = 0;
3452 goto out;
3453 }
3454
3455 /*
3456 * when we hit a tree root in a directory, the btrfs part of the inode
3457 * needs to be changed to reflect the root directory of the tree root. This
3458 * is kind of like crossing a mount point.
3459 */
3460 static int fixup_tree_root_location(struct btrfs_root *root,
3461 struct inode *dir,
3462 struct dentry *dentry,
3463 struct btrfs_key *location,
3464 struct btrfs_root **sub_root)
3465 {
3466 struct btrfs_path *path;
3467 struct btrfs_root *new_root;
3468 struct btrfs_root_ref *ref;
3469 struct extent_buffer *leaf;
3470 int ret;
3471 int err = 0;
3472
3473 path = btrfs_alloc_path();
3474 if (!path) {
3475 err = -ENOMEM;
3476 goto out;
3477 }
3478
3479 err = -ENOENT;
3480 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3481 BTRFS_I(dir)->root->root_key.objectid,
3482 location->objectid);
3483 if (ret) {
3484 if (ret < 0)
3485 err = ret;
3486 goto out;
3487 }
3488
3489 leaf = path->nodes[0];
3490 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3491 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3492 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3493 goto out;
3494
3495 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3496 (unsigned long)(ref + 1),
3497 dentry->d_name.len);
3498 if (ret)
3499 goto out;
3500
3501 btrfs_release_path(root->fs_info->tree_root, path);
3502
3503 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3504 if (IS_ERR(new_root)) {
3505 err = PTR_ERR(new_root);
3506 goto out;
3507 }
3508
3509 if (btrfs_root_refs(&new_root->root_item) == 0) {
3510 err = -ENOENT;
3511 goto out;
3512 }
3513
3514 *sub_root = new_root;
3515 location->objectid = btrfs_root_dirid(&new_root->root_item);
3516 location->type = BTRFS_INODE_ITEM_KEY;
3517 location->offset = 0;
3518 err = 0;
3519 out:
3520 btrfs_free_path(path);
3521 return err;
3522 }
3523
3524 static void inode_tree_add(struct inode *inode)
3525 {
3526 struct btrfs_root *root = BTRFS_I(inode)->root;
3527 struct btrfs_inode *entry;
3528 struct rb_node **p;
3529 struct rb_node *parent;
3530 again:
3531 p = &root->inode_tree.rb_node;
3532 parent = NULL;
3533
3534 if (hlist_unhashed(&inode->i_hash))
3535 return;
3536
3537 spin_lock(&root->inode_lock);
3538 while (*p) {
3539 parent = *p;
3540 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3541
3542 if (inode->i_ino < entry->vfs_inode.i_ino)
3543 p = &parent->rb_left;
3544 else if (inode->i_ino > entry->vfs_inode.i_ino)
3545 p = &parent->rb_right;
3546 else {
3547 WARN_ON(!(entry->vfs_inode.i_state &
3548 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3549 rb_erase(parent, &root->inode_tree);
3550 RB_CLEAR_NODE(parent);
3551 spin_unlock(&root->inode_lock);
3552 goto again;
3553 }
3554 }
3555 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3556 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3557 spin_unlock(&root->inode_lock);
3558 }
3559
3560 static void inode_tree_del(struct inode *inode)
3561 {
3562 struct btrfs_root *root = BTRFS_I(inode)->root;
3563 int empty = 0;
3564
3565 spin_lock(&root->inode_lock);
3566 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3567 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3568 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3569 empty = RB_EMPTY_ROOT(&root->inode_tree);
3570 }
3571 spin_unlock(&root->inode_lock);
3572
3573 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3574 synchronize_srcu(&root->fs_info->subvol_srcu);
3575 spin_lock(&root->inode_lock);
3576 empty = RB_EMPTY_ROOT(&root->inode_tree);
3577 spin_unlock(&root->inode_lock);
3578 if (empty)
3579 btrfs_add_dead_root(root);
3580 }
3581 }
3582
3583 int btrfs_invalidate_inodes(struct btrfs_root *root)
3584 {
3585 struct rb_node *node;
3586 struct rb_node *prev;
3587 struct btrfs_inode *entry;
3588 struct inode *inode;
3589 u64 objectid = 0;
3590
3591 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3592
3593 spin_lock(&root->inode_lock);
3594 again:
3595 node = root->inode_tree.rb_node;
3596 prev = NULL;
3597 while (node) {
3598 prev = node;
3599 entry = rb_entry(node, struct btrfs_inode, rb_node);
3600
3601 if (objectid < entry->vfs_inode.i_ino)
3602 node = node->rb_left;
3603 else if (objectid > entry->vfs_inode.i_ino)
3604 node = node->rb_right;
3605 else
3606 break;
3607 }
3608 if (!node) {
3609 while (prev) {
3610 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3611 if (objectid <= entry->vfs_inode.i_ino) {
3612 node = prev;
3613 break;
3614 }
3615 prev = rb_next(prev);
3616 }
3617 }
3618 while (node) {
3619 entry = rb_entry(node, struct btrfs_inode, rb_node);
3620 objectid = entry->vfs_inode.i_ino + 1;
3621 inode = igrab(&entry->vfs_inode);
3622 if (inode) {
3623 spin_unlock(&root->inode_lock);
3624 if (atomic_read(&inode->i_count) > 1)
3625 d_prune_aliases(inode);
3626 /*
3627 * btrfs_drop_inode will remove it from
3628 * the inode cache when its usage count
3629 * hits zero.
3630 */
3631 iput(inode);
3632 cond_resched();
3633 spin_lock(&root->inode_lock);
3634 goto again;
3635 }
3636
3637 if (cond_resched_lock(&root->inode_lock))
3638 goto again;
3639
3640 node = rb_next(node);
3641 }
3642 spin_unlock(&root->inode_lock);
3643 return 0;
3644 }
3645
3646 static noinline void init_btrfs_i(struct inode *inode)
3647 {
3648 struct btrfs_inode *bi = BTRFS_I(inode);
3649
3650 bi->generation = 0;
3651 bi->sequence = 0;
3652 bi->last_trans = 0;
3653 bi->last_sub_trans = 0;
3654 bi->logged_trans = 0;
3655 bi->delalloc_bytes = 0;
3656 bi->reserved_bytes = 0;
3657 bi->disk_i_size = 0;
3658 bi->flags = 0;
3659 bi->index_cnt = (u64)-1;
3660 bi->last_unlink_trans = 0;
3661 bi->ordered_data_close = 0;
3662 bi->force_compress = 0;
3663 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3664 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3665 inode->i_mapping, GFP_NOFS);
3666 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3667 inode->i_mapping, GFP_NOFS);
3668 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3669 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3670 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3671 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3672 mutex_init(&BTRFS_I(inode)->log_mutex);
3673 }
3674
3675 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3676 {
3677 struct btrfs_iget_args *args = p;
3678 inode->i_ino = args->ino;
3679 init_btrfs_i(inode);
3680 BTRFS_I(inode)->root = args->root;
3681 btrfs_set_inode_space_info(args->root, inode);
3682 return 0;
3683 }
3684
3685 static int btrfs_find_actor(struct inode *inode, void *opaque)
3686 {
3687 struct btrfs_iget_args *args = opaque;
3688 return args->ino == inode->i_ino &&
3689 args->root == BTRFS_I(inode)->root;
3690 }
3691
3692 static struct inode *btrfs_iget_locked(struct super_block *s,
3693 u64 objectid,
3694 struct btrfs_root *root)
3695 {
3696 struct inode *inode;
3697 struct btrfs_iget_args args;
3698 args.ino = objectid;
3699 args.root = root;
3700
3701 inode = iget5_locked(s, objectid, btrfs_find_actor,
3702 btrfs_init_locked_inode,
3703 (void *)&args);
3704 return inode;
3705 }
3706
3707 /* Get an inode object given its location and corresponding root.
3708 * Returns in *is_new if the inode was read from disk
3709 */
3710 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3711 struct btrfs_root *root, int *new)
3712 {
3713 struct inode *inode;
3714
3715 inode = btrfs_iget_locked(s, location->objectid, root);
3716 if (!inode)
3717 return ERR_PTR(-ENOMEM);
3718
3719 if (inode->i_state & I_NEW) {
3720 BTRFS_I(inode)->root = root;
3721 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3722 btrfs_read_locked_inode(inode);
3723
3724 inode_tree_add(inode);
3725 unlock_new_inode(inode);
3726 if (new)
3727 *new = 1;
3728 }
3729
3730 return inode;
3731 }
3732
3733 static struct inode *new_simple_dir(struct super_block *s,
3734 struct btrfs_key *key,
3735 struct btrfs_root *root)
3736 {
3737 struct inode *inode = new_inode(s);
3738
3739 if (!inode)
3740 return ERR_PTR(-ENOMEM);
3741
3742 init_btrfs_i(inode);
3743
3744 BTRFS_I(inode)->root = root;
3745 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3746 BTRFS_I(inode)->dummy_inode = 1;
3747
3748 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3749 inode->i_op = &simple_dir_inode_operations;
3750 inode->i_fop = &simple_dir_operations;
3751 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3752 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3753
3754 return inode;
3755 }
3756
3757 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3758 {
3759 struct inode *inode;
3760 struct btrfs_root *root = BTRFS_I(dir)->root;
3761 struct btrfs_root *sub_root = root;
3762 struct btrfs_key location;
3763 int index;
3764 int ret;
3765
3766 dentry->d_op = &btrfs_dentry_operations;
3767
3768 if (dentry->d_name.len > BTRFS_NAME_LEN)
3769 return ERR_PTR(-ENAMETOOLONG);
3770
3771 ret = btrfs_inode_by_name(dir, dentry, &location);
3772
3773 if (ret < 0)
3774 return ERR_PTR(ret);
3775
3776 if (location.objectid == 0)
3777 return NULL;
3778
3779 if (location.type == BTRFS_INODE_ITEM_KEY) {
3780 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3781 return inode;
3782 }
3783
3784 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3785
3786 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3787 ret = fixup_tree_root_location(root, dir, dentry,
3788 &location, &sub_root);
3789 if (ret < 0) {
3790 if (ret != -ENOENT)
3791 inode = ERR_PTR(ret);
3792 else
3793 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3794 } else {
3795 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3796 }
3797 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3798
3799 if (root != sub_root) {
3800 down_read(&root->fs_info->cleanup_work_sem);
3801 if (!(inode->i_sb->s_flags & MS_RDONLY))
3802 btrfs_orphan_cleanup(sub_root);
3803 up_read(&root->fs_info->cleanup_work_sem);
3804 }
3805
3806 return inode;
3807 }
3808
3809 static int btrfs_dentry_delete(struct dentry *dentry)
3810 {
3811 struct btrfs_root *root;
3812
3813 if (!dentry->d_inode && !IS_ROOT(dentry))
3814 dentry = dentry->d_parent;
3815
3816 if (dentry->d_inode) {
3817 root = BTRFS_I(dentry->d_inode)->root;
3818 if (btrfs_root_refs(&root->root_item) == 0)
3819 return 1;
3820 }
3821 return 0;
3822 }
3823
3824 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3825 struct nameidata *nd)
3826 {
3827 struct inode *inode;
3828
3829 inode = btrfs_lookup_dentry(dir, dentry);
3830 if (IS_ERR(inode))
3831 return ERR_CAST(inode);
3832
3833 return d_splice_alias(inode, dentry);
3834 }
3835
3836 static unsigned char btrfs_filetype_table[] = {
3837 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3838 };
3839
3840 static int btrfs_real_readdir(struct file *filp, void *dirent,
3841 filldir_t filldir)
3842 {
3843 struct inode *inode = filp->f_dentry->d_inode;
3844 struct btrfs_root *root = BTRFS_I(inode)->root;
3845 struct btrfs_item *item;
3846 struct btrfs_dir_item *di;
3847 struct btrfs_key key;
3848 struct btrfs_key found_key;
3849 struct btrfs_path *path;
3850 int ret;
3851 u32 nritems;
3852 struct extent_buffer *leaf;
3853 int slot;
3854 int advance;
3855 unsigned char d_type;
3856 int over = 0;
3857 u32 di_cur;
3858 u32 di_total;
3859 u32 di_len;
3860 int key_type = BTRFS_DIR_INDEX_KEY;
3861 char tmp_name[32];
3862 char *name_ptr;
3863 int name_len;
3864
3865 /* FIXME, use a real flag for deciding about the key type */
3866 if (root->fs_info->tree_root == root)
3867 key_type = BTRFS_DIR_ITEM_KEY;
3868
3869 /* special case for "." */
3870 if (filp->f_pos == 0) {
3871 over = filldir(dirent, ".", 1,
3872 1, inode->i_ino,
3873 DT_DIR);
3874 if (over)
3875 return 0;
3876 filp->f_pos = 1;
3877 }
3878 /* special case for .., just use the back ref */
3879 if (filp->f_pos == 1) {
3880 u64 pino = parent_ino(filp->f_path.dentry);
3881 over = filldir(dirent, "..", 2,
3882 2, pino, DT_DIR);
3883 if (over)
3884 return 0;
3885 filp->f_pos = 2;
3886 }
3887 path = btrfs_alloc_path();
3888 path->reada = 2;
3889
3890 btrfs_set_key_type(&key, key_type);
3891 key.offset = filp->f_pos;
3892 key.objectid = inode->i_ino;
3893
3894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3895 if (ret < 0)
3896 goto err;
3897 advance = 0;
3898
3899 while (1) {
3900 leaf = path->nodes[0];
3901 nritems = btrfs_header_nritems(leaf);
3902 slot = path->slots[0];
3903 if (advance || slot >= nritems) {
3904 if (slot >= nritems - 1) {
3905 ret = btrfs_next_leaf(root, path);
3906 if (ret)
3907 break;
3908 leaf = path->nodes[0];
3909 nritems = btrfs_header_nritems(leaf);
3910 slot = path->slots[0];
3911 } else {
3912 slot++;
3913 path->slots[0]++;
3914 }
3915 }
3916
3917 advance = 1;
3918 item = btrfs_item_nr(leaf, slot);
3919 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3920
3921 if (found_key.objectid != key.objectid)
3922 break;
3923 if (btrfs_key_type(&found_key) != key_type)
3924 break;
3925 if (found_key.offset < filp->f_pos)
3926 continue;
3927
3928 filp->f_pos = found_key.offset;
3929
3930 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3931 di_cur = 0;
3932 di_total = btrfs_item_size(leaf, item);
3933
3934 while (di_cur < di_total) {
3935 struct btrfs_key location;
3936
3937 name_len = btrfs_dir_name_len(leaf, di);
3938 if (name_len <= sizeof(tmp_name)) {
3939 name_ptr = tmp_name;
3940 } else {
3941 name_ptr = kmalloc(name_len, GFP_NOFS);
3942 if (!name_ptr) {
3943 ret = -ENOMEM;
3944 goto err;
3945 }
3946 }
3947 read_extent_buffer(leaf, name_ptr,
3948 (unsigned long)(di + 1), name_len);
3949
3950 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3951 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3952
3953 /* is this a reference to our own snapshot? If so
3954 * skip it
3955 */
3956 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3957 location.objectid == root->root_key.objectid) {
3958 over = 0;
3959 goto skip;
3960 }
3961 over = filldir(dirent, name_ptr, name_len,
3962 found_key.offset, location.objectid,
3963 d_type);
3964
3965 skip:
3966 if (name_ptr != tmp_name)
3967 kfree(name_ptr);
3968
3969 if (over)
3970 goto nopos;
3971 di_len = btrfs_dir_name_len(leaf, di) +
3972 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3973 di_cur += di_len;
3974 di = (struct btrfs_dir_item *)((char *)di + di_len);
3975 }
3976 }
3977
3978 /* Reached end of directory/root. Bump pos past the last item. */
3979 if (key_type == BTRFS_DIR_INDEX_KEY)
3980 /*
3981 * 32-bit glibc will use getdents64, but then strtol -
3982 * so the last number we can serve is this.
3983 */
3984 filp->f_pos = 0x7fffffff;
3985 else
3986 filp->f_pos++;
3987 nopos:
3988 ret = 0;
3989 err:
3990 btrfs_free_path(path);
3991 return ret;
3992 }
3993
3994 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
3995 {
3996 struct btrfs_root *root = BTRFS_I(inode)->root;
3997 struct btrfs_trans_handle *trans;
3998 int ret = 0;
3999
4000 if (root->fs_info->btree_inode == inode)
4001 return 0;
4002
4003 if (wbc->sync_mode == WB_SYNC_ALL) {
4004 trans = btrfs_join_transaction(root, 1);
4005 btrfs_set_trans_block_group(trans, inode);
4006 ret = btrfs_commit_transaction(trans, root);
4007 }
4008 return ret;
4009 }
4010
4011 /*
4012 * This is somewhat expensive, updating the tree every time the
4013 * inode changes. But, it is most likely to find the inode in cache.
4014 * FIXME, needs more benchmarking...there are no reasons other than performance
4015 * to keep or drop this code.
4016 */
4017 void btrfs_dirty_inode(struct inode *inode)
4018 {
4019 struct btrfs_root *root = BTRFS_I(inode)->root;
4020 struct btrfs_trans_handle *trans;
4021
4022 trans = btrfs_join_transaction(root, 1);
4023 btrfs_set_trans_block_group(trans, inode);
4024 btrfs_update_inode(trans, root, inode);
4025 btrfs_end_transaction(trans, root);
4026 }
4027
4028 /*
4029 * find the highest existing sequence number in a directory
4030 * and then set the in-memory index_cnt variable to reflect
4031 * free sequence numbers
4032 */
4033 static int btrfs_set_inode_index_count(struct inode *inode)
4034 {
4035 struct btrfs_root *root = BTRFS_I(inode)->root;
4036 struct btrfs_key key, found_key;
4037 struct btrfs_path *path;
4038 struct extent_buffer *leaf;
4039 int ret;
4040
4041 key.objectid = inode->i_ino;
4042 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4043 key.offset = (u64)-1;
4044
4045 path = btrfs_alloc_path();
4046 if (!path)
4047 return -ENOMEM;
4048
4049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4050 if (ret < 0)
4051 goto out;
4052 /* FIXME: we should be able to handle this */
4053 if (ret == 0)
4054 goto out;
4055 ret = 0;
4056
4057 /*
4058 * MAGIC NUMBER EXPLANATION:
4059 * since we search a directory based on f_pos we have to start at 2
4060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4061 * else has to start at 2
4062 */
4063 if (path->slots[0] == 0) {
4064 BTRFS_I(inode)->index_cnt = 2;
4065 goto out;
4066 }
4067
4068 path->slots[0]--;
4069
4070 leaf = path->nodes[0];
4071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4072
4073 if (found_key.objectid != inode->i_ino ||
4074 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4075 BTRFS_I(inode)->index_cnt = 2;
4076 goto out;
4077 }
4078
4079 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4080 out:
4081 btrfs_free_path(path);
4082 return ret;
4083 }
4084
4085 /*
4086 * helper to find a free sequence number in a given directory. This current
4087 * code is very simple, later versions will do smarter things in the btree
4088 */
4089 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4090 {
4091 int ret = 0;
4092
4093 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4094 ret = btrfs_set_inode_index_count(dir);
4095 if (ret)
4096 return ret;
4097 }
4098
4099 *index = BTRFS_I(dir)->index_cnt;
4100 BTRFS_I(dir)->index_cnt++;
4101
4102 return ret;
4103 }
4104
4105 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4106 struct btrfs_root *root,
4107 struct inode *dir,
4108 const char *name, int name_len,
4109 u64 ref_objectid, u64 objectid,
4110 u64 alloc_hint, int mode, u64 *index)
4111 {
4112 struct inode *inode;
4113 struct btrfs_inode_item *inode_item;
4114 struct btrfs_key *location;
4115 struct btrfs_path *path;
4116 struct btrfs_inode_ref *ref;
4117 struct btrfs_key key[2];
4118 u32 sizes[2];
4119 unsigned long ptr;
4120 int ret;
4121 int owner;
4122
4123 path = btrfs_alloc_path();
4124 BUG_ON(!path);
4125
4126 inode = new_inode(root->fs_info->sb);
4127 if (!inode)
4128 return ERR_PTR(-ENOMEM);
4129
4130 if (dir) {
4131 ret = btrfs_set_inode_index(dir, index);
4132 if (ret) {
4133 iput(inode);
4134 return ERR_PTR(ret);
4135 }
4136 }
4137 /*
4138 * index_cnt is ignored for everything but a dir,
4139 * btrfs_get_inode_index_count has an explanation for the magic
4140 * number
4141 */
4142 init_btrfs_i(inode);
4143 BTRFS_I(inode)->index_cnt = 2;
4144 BTRFS_I(inode)->root = root;
4145 BTRFS_I(inode)->generation = trans->transid;
4146 btrfs_set_inode_space_info(root, inode);
4147
4148 if (mode & S_IFDIR)
4149 owner = 0;
4150 else
4151 owner = 1;
4152 BTRFS_I(inode)->block_group =
4153 btrfs_find_block_group(root, 0, alloc_hint, owner);
4154
4155 key[0].objectid = objectid;
4156 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4157 key[0].offset = 0;
4158
4159 key[1].objectid = objectid;
4160 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4161 key[1].offset = ref_objectid;
4162
4163 sizes[0] = sizeof(struct btrfs_inode_item);
4164 sizes[1] = name_len + sizeof(*ref);
4165
4166 path->leave_spinning = 1;
4167 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4168 if (ret != 0)
4169 goto fail;
4170
4171 inode->i_uid = current_fsuid();
4172
4173 if (dir && (dir->i_mode & S_ISGID)) {
4174 inode->i_gid = dir->i_gid;
4175 if (S_ISDIR(mode))
4176 mode |= S_ISGID;
4177 } else
4178 inode->i_gid = current_fsgid();
4179
4180 inode->i_mode = mode;
4181 inode->i_ino = objectid;
4182 inode_set_bytes(inode, 0);
4183 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4184 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4185 struct btrfs_inode_item);
4186 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4187
4188 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4189 struct btrfs_inode_ref);
4190 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4191 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4192 ptr = (unsigned long)(ref + 1);
4193 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4194
4195 btrfs_mark_buffer_dirty(path->nodes[0]);
4196 btrfs_free_path(path);
4197
4198 location = &BTRFS_I(inode)->location;
4199 location->objectid = objectid;
4200 location->offset = 0;
4201 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4202
4203 btrfs_inherit_iflags(inode, dir);
4204
4205 if ((mode & S_IFREG)) {
4206 if (btrfs_test_opt(root, NODATASUM))
4207 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4208 if (btrfs_test_opt(root, NODATACOW))
4209 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4210 }
4211
4212 insert_inode_hash(inode);
4213 inode_tree_add(inode);
4214 return inode;
4215 fail:
4216 if (dir)
4217 BTRFS_I(dir)->index_cnt--;
4218 btrfs_free_path(path);
4219 iput(inode);
4220 return ERR_PTR(ret);
4221 }
4222
4223 static inline u8 btrfs_inode_type(struct inode *inode)
4224 {
4225 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4226 }
4227
4228 /*
4229 * utility function to add 'inode' into 'parent_inode' with
4230 * a give name and a given sequence number.
4231 * if 'add_backref' is true, also insert a backref from the
4232 * inode to the parent directory.
4233 */
4234 int btrfs_add_link(struct btrfs_trans_handle *trans,
4235 struct inode *parent_inode, struct inode *inode,
4236 const char *name, int name_len, int add_backref, u64 index)
4237 {
4238 int ret = 0;
4239 struct btrfs_key key;
4240 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4241
4242 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4243 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4244 } else {
4245 key.objectid = inode->i_ino;
4246 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4247 key.offset = 0;
4248 }
4249
4250 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4251 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4252 key.objectid, root->root_key.objectid,
4253 parent_inode->i_ino,
4254 index, name, name_len);
4255 } else if (add_backref) {
4256 ret = btrfs_insert_inode_ref(trans, root,
4257 name, name_len, inode->i_ino,
4258 parent_inode->i_ino, index);
4259 }
4260
4261 if (ret == 0) {
4262 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4263 parent_inode->i_ino, &key,
4264 btrfs_inode_type(inode), index);
4265 BUG_ON(ret);
4266
4267 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4268 name_len * 2);
4269 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4270 ret = btrfs_update_inode(trans, root, parent_inode);
4271 }
4272 return ret;
4273 }
4274
4275 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4276 struct dentry *dentry, struct inode *inode,
4277 int backref, u64 index)
4278 {
4279 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4280 inode, dentry->d_name.name,
4281 dentry->d_name.len, backref, index);
4282 if (!err) {
4283 d_instantiate(dentry, inode);
4284 return 0;
4285 }
4286 if (err > 0)
4287 err = -EEXIST;
4288 return err;
4289 }
4290
4291 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4292 int mode, dev_t rdev)
4293 {
4294 struct btrfs_trans_handle *trans;
4295 struct btrfs_root *root = BTRFS_I(dir)->root;
4296 struct inode *inode = NULL;
4297 int err;
4298 int drop_inode = 0;
4299 u64 objectid;
4300 unsigned long nr = 0;
4301 u64 index = 0;
4302
4303 if (!new_valid_dev(rdev))
4304 return -EINVAL;
4305
4306 /*
4307 * 2 for inode item and ref
4308 * 2 for dir items
4309 * 1 for xattr if selinux is on
4310 */
4311 err = btrfs_reserve_metadata_space(root, 5);
4312 if (err)
4313 return err;
4314
4315 trans = btrfs_start_transaction(root, 1);
4316 if (!trans)
4317 goto fail;
4318 btrfs_set_trans_block_group(trans, dir);
4319
4320 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4321 if (err) {
4322 err = -ENOSPC;
4323 goto out_unlock;
4324 }
4325
4326 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4327 dentry->d_name.len,
4328 dentry->d_parent->d_inode->i_ino, objectid,
4329 BTRFS_I(dir)->block_group, mode, &index);
4330 err = PTR_ERR(inode);
4331 if (IS_ERR(inode))
4332 goto out_unlock;
4333
4334 err = btrfs_init_inode_security(trans, inode, dir);
4335 if (err) {
4336 drop_inode = 1;
4337 goto out_unlock;
4338 }
4339
4340 btrfs_set_trans_block_group(trans, inode);
4341 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4342 if (err)
4343 drop_inode = 1;
4344 else {
4345 inode->i_op = &btrfs_special_inode_operations;
4346 init_special_inode(inode, inode->i_mode, rdev);
4347 btrfs_update_inode(trans, root, inode);
4348 }
4349 btrfs_update_inode_block_group(trans, inode);
4350 btrfs_update_inode_block_group(trans, dir);
4351 out_unlock:
4352 nr = trans->blocks_used;
4353 btrfs_end_transaction_throttle(trans, root);
4354 fail:
4355 btrfs_unreserve_metadata_space(root, 5);
4356 if (drop_inode) {
4357 inode_dec_link_count(inode);
4358 iput(inode);
4359 }
4360 btrfs_btree_balance_dirty(root, nr);
4361 return err;
4362 }
4363
4364 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4365 int mode, struct nameidata *nd)
4366 {
4367 struct btrfs_trans_handle *trans;
4368 struct btrfs_root *root = BTRFS_I(dir)->root;
4369 struct inode *inode = NULL;
4370 int err;
4371 int drop_inode = 0;
4372 unsigned long nr = 0;
4373 u64 objectid;
4374 u64 index = 0;
4375
4376 /*
4377 * 2 for inode item and ref
4378 * 2 for dir items
4379 * 1 for xattr if selinux is on
4380 */
4381 err = btrfs_reserve_metadata_space(root, 5);
4382 if (err)
4383 return err;
4384
4385 trans = btrfs_start_transaction(root, 1);
4386 if (!trans)
4387 goto fail;
4388 btrfs_set_trans_block_group(trans, dir);
4389
4390 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4391 if (err) {
4392 err = -ENOSPC;
4393 goto out_unlock;
4394 }
4395
4396 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4397 dentry->d_name.len,
4398 dentry->d_parent->d_inode->i_ino,
4399 objectid, BTRFS_I(dir)->block_group, mode,
4400 &index);
4401 err = PTR_ERR(inode);
4402 if (IS_ERR(inode))
4403 goto out_unlock;
4404
4405 err = btrfs_init_inode_security(trans, inode, dir);
4406 if (err) {
4407 drop_inode = 1;
4408 goto out_unlock;
4409 }
4410
4411 btrfs_set_trans_block_group(trans, inode);
4412 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4413 if (err)
4414 drop_inode = 1;
4415 else {
4416 inode->i_mapping->a_ops = &btrfs_aops;
4417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4418 inode->i_fop = &btrfs_file_operations;
4419 inode->i_op = &btrfs_file_inode_operations;
4420 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4421 }
4422 btrfs_update_inode_block_group(trans, inode);
4423 btrfs_update_inode_block_group(trans, dir);
4424 out_unlock:
4425 nr = trans->blocks_used;
4426 btrfs_end_transaction_throttle(trans, root);
4427 fail:
4428 btrfs_unreserve_metadata_space(root, 5);
4429 if (drop_inode) {
4430 inode_dec_link_count(inode);
4431 iput(inode);
4432 }
4433 btrfs_btree_balance_dirty(root, nr);
4434 return err;
4435 }
4436
4437 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4438 struct dentry *dentry)
4439 {
4440 struct btrfs_trans_handle *trans;
4441 struct btrfs_root *root = BTRFS_I(dir)->root;
4442 struct inode *inode = old_dentry->d_inode;
4443 u64 index;
4444 unsigned long nr = 0;
4445 int err;
4446 int drop_inode = 0;
4447
4448 if (inode->i_nlink == 0)
4449 return -ENOENT;
4450
4451 /* do not allow sys_link's with other subvols of the same device */
4452 if (root->objectid != BTRFS_I(inode)->root->objectid)
4453 return -EPERM;
4454
4455 /*
4456 * 1 item for inode ref
4457 * 2 items for dir items
4458 */
4459 err = btrfs_reserve_metadata_space(root, 3);
4460 if (err)
4461 return err;
4462
4463 btrfs_inc_nlink(inode);
4464
4465 err = btrfs_set_inode_index(dir, &index);
4466 if (err)
4467 goto fail;
4468
4469 trans = btrfs_start_transaction(root, 1);
4470
4471 btrfs_set_trans_block_group(trans, dir);
4472 atomic_inc(&inode->i_count);
4473
4474 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4475
4476 if (err) {
4477 drop_inode = 1;
4478 } else {
4479 btrfs_update_inode_block_group(trans, dir);
4480 err = btrfs_update_inode(trans, root, inode);
4481 BUG_ON(err);
4482 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4483 }
4484
4485 nr = trans->blocks_used;
4486 btrfs_end_transaction_throttle(trans, root);
4487 fail:
4488 btrfs_unreserve_metadata_space(root, 3);
4489 if (drop_inode) {
4490 inode_dec_link_count(inode);
4491 iput(inode);
4492 }
4493 btrfs_btree_balance_dirty(root, nr);
4494 return err;
4495 }
4496
4497 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4498 {
4499 struct inode *inode = NULL;
4500 struct btrfs_trans_handle *trans;
4501 struct btrfs_root *root = BTRFS_I(dir)->root;
4502 int err = 0;
4503 int drop_on_err = 0;
4504 u64 objectid = 0;
4505 u64 index = 0;
4506 unsigned long nr = 1;
4507
4508 /*
4509 * 2 items for inode and ref
4510 * 2 items for dir items
4511 * 1 for xattr if selinux is on
4512 */
4513 err = btrfs_reserve_metadata_space(root, 5);
4514 if (err)
4515 return err;
4516
4517 trans = btrfs_start_transaction(root, 1);
4518 if (!trans) {
4519 err = -ENOMEM;
4520 goto out_unlock;
4521 }
4522 btrfs_set_trans_block_group(trans, dir);
4523
4524 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4525 if (err) {
4526 err = -ENOSPC;
4527 goto out_fail;
4528 }
4529
4530 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4531 dentry->d_name.len,
4532 dentry->d_parent->d_inode->i_ino, objectid,
4533 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4534 &index);
4535 if (IS_ERR(inode)) {
4536 err = PTR_ERR(inode);
4537 goto out_fail;
4538 }
4539
4540 drop_on_err = 1;
4541
4542 err = btrfs_init_inode_security(trans, inode, dir);
4543 if (err)
4544 goto out_fail;
4545
4546 inode->i_op = &btrfs_dir_inode_operations;
4547 inode->i_fop = &btrfs_dir_file_operations;
4548 btrfs_set_trans_block_group(trans, inode);
4549
4550 btrfs_i_size_write(inode, 0);
4551 err = btrfs_update_inode(trans, root, inode);
4552 if (err)
4553 goto out_fail;
4554
4555 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4556 inode, dentry->d_name.name,
4557 dentry->d_name.len, 0, index);
4558 if (err)
4559 goto out_fail;
4560
4561 d_instantiate(dentry, inode);
4562 drop_on_err = 0;
4563 btrfs_update_inode_block_group(trans, inode);
4564 btrfs_update_inode_block_group(trans, dir);
4565
4566 out_fail:
4567 nr = trans->blocks_used;
4568 btrfs_end_transaction_throttle(trans, root);
4569
4570 out_unlock:
4571 btrfs_unreserve_metadata_space(root, 5);
4572 if (drop_on_err)
4573 iput(inode);
4574 btrfs_btree_balance_dirty(root, nr);
4575 return err;
4576 }
4577
4578 /* helper for btfs_get_extent. Given an existing extent in the tree,
4579 * and an extent that you want to insert, deal with overlap and insert
4580 * the new extent into the tree.
4581 */
4582 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4583 struct extent_map *existing,
4584 struct extent_map *em,
4585 u64 map_start, u64 map_len)
4586 {
4587 u64 start_diff;
4588
4589 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4590 start_diff = map_start - em->start;
4591 em->start = map_start;
4592 em->len = map_len;
4593 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4594 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4595 em->block_start += start_diff;
4596 em->block_len -= start_diff;
4597 }
4598 return add_extent_mapping(em_tree, em);
4599 }
4600
4601 static noinline int uncompress_inline(struct btrfs_path *path,
4602 struct inode *inode, struct page *page,
4603 size_t pg_offset, u64 extent_offset,
4604 struct btrfs_file_extent_item *item)
4605 {
4606 int ret;
4607 struct extent_buffer *leaf = path->nodes[0];
4608 char *tmp;
4609 size_t max_size;
4610 unsigned long inline_size;
4611 unsigned long ptr;
4612
4613 WARN_ON(pg_offset != 0);
4614 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4615 inline_size = btrfs_file_extent_inline_item_len(leaf,
4616 btrfs_item_nr(leaf, path->slots[0]));
4617 tmp = kmalloc(inline_size, GFP_NOFS);
4618 ptr = btrfs_file_extent_inline_start(item);
4619
4620 read_extent_buffer(leaf, tmp, ptr, inline_size);
4621
4622 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4623 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4624 inline_size, max_size);
4625 if (ret) {
4626 char *kaddr = kmap_atomic(page, KM_USER0);
4627 unsigned long copy_size = min_t(u64,
4628 PAGE_CACHE_SIZE - pg_offset,
4629 max_size - extent_offset);
4630 memset(kaddr + pg_offset, 0, copy_size);
4631 kunmap_atomic(kaddr, KM_USER0);
4632 }
4633 kfree(tmp);
4634 return 0;
4635 }
4636
4637 /*
4638 * a bit scary, this does extent mapping from logical file offset to the disk.
4639 * the ugly parts come from merging extents from the disk with the in-ram
4640 * representation. This gets more complex because of the data=ordered code,
4641 * where the in-ram extents might be locked pending data=ordered completion.
4642 *
4643 * This also copies inline extents directly into the page.
4644 */
4645
4646 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4647 size_t pg_offset, u64 start, u64 len,
4648 int create)
4649 {
4650 int ret;
4651 int err = 0;
4652 u64 bytenr;
4653 u64 extent_start = 0;
4654 u64 extent_end = 0;
4655 u64 objectid = inode->i_ino;
4656 u32 found_type;
4657 struct btrfs_path *path = NULL;
4658 struct btrfs_root *root = BTRFS_I(inode)->root;
4659 struct btrfs_file_extent_item *item;
4660 struct extent_buffer *leaf;
4661 struct btrfs_key found_key;
4662 struct extent_map *em = NULL;
4663 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4664 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4665 struct btrfs_trans_handle *trans = NULL;
4666 int compressed;
4667
4668 again:
4669 read_lock(&em_tree->lock);
4670 em = lookup_extent_mapping(em_tree, start, len);
4671 if (em)
4672 em->bdev = root->fs_info->fs_devices->latest_bdev;
4673 read_unlock(&em_tree->lock);
4674
4675 if (em) {
4676 if (em->start > start || em->start + em->len <= start)
4677 free_extent_map(em);
4678 else if (em->block_start == EXTENT_MAP_INLINE && page)
4679 free_extent_map(em);
4680 else
4681 goto out;
4682 }
4683 em = alloc_extent_map(GFP_NOFS);
4684 if (!em) {
4685 err = -ENOMEM;
4686 goto out;
4687 }
4688 em->bdev = root->fs_info->fs_devices->latest_bdev;
4689 em->start = EXTENT_MAP_HOLE;
4690 em->orig_start = EXTENT_MAP_HOLE;
4691 em->len = (u64)-1;
4692 em->block_len = (u64)-1;
4693
4694 if (!path) {
4695 path = btrfs_alloc_path();
4696 BUG_ON(!path);
4697 }
4698
4699 ret = btrfs_lookup_file_extent(trans, root, path,
4700 objectid, start, trans != NULL);
4701 if (ret < 0) {
4702 err = ret;
4703 goto out;
4704 }
4705
4706 if (ret != 0) {
4707 if (path->slots[0] == 0)
4708 goto not_found;
4709 path->slots[0]--;
4710 }
4711
4712 leaf = path->nodes[0];
4713 item = btrfs_item_ptr(leaf, path->slots[0],
4714 struct btrfs_file_extent_item);
4715 /* are we inside the extent that was found? */
4716 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4717 found_type = btrfs_key_type(&found_key);
4718 if (found_key.objectid != objectid ||
4719 found_type != BTRFS_EXTENT_DATA_KEY) {
4720 goto not_found;
4721 }
4722
4723 found_type = btrfs_file_extent_type(leaf, item);
4724 extent_start = found_key.offset;
4725 compressed = btrfs_file_extent_compression(leaf, item);
4726 if (found_type == BTRFS_FILE_EXTENT_REG ||
4727 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4728 extent_end = extent_start +
4729 btrfs_file_extent_num_bytes(leaf, item);
4730 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4731 size_t size;
4732 size = btrfs_file_extent_inline_len(leaf, item);
4733 extent_end = (extent_start + size + root->sectorsize - 1) &
4734 ~((u64)root->sectorsize - 1);
4735 }
4736
4737 if (start >= extent_end) {
4738 path->slots[0]++;
4739 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4740 ret = btrfs_next_leaf(root, path);
4741 if (ret < 0) {
4742 err = ret;
4743 goto out;
4744 }
4745 if (ret > 0)
4746 goto not_found;
4747 leaf = path->nodes[0];
4748 }
4749 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4750 if (found_key.objectid != objectid ||
4751 found_key.type != BTRFS_EXTENT_DATA_KEY)
4752 goto not_found;
4753 if (start + len <= found_key.offset)
4754 goto not_found;
4755 em->start = start;
4756 em->len = found_key.offset - start;
4757 goto not_found_em;
4758 }
4759
4760 if (found_type == BTRFS_FILE_EXTENT_REG ||
4761 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4762 em->start = extent_start;
4763 em->len = extent_end - extent_start;
4764 em->orig_start = extent_start -
4765 btrfs_file_extent_offset(leaf, item);
4766 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4767 if (bytenr == 0) {
4768 em->block_start = EXTENT_MAP_HOLE;
4769 goto insert;
4770 }
4771 if (compressed) {
4772 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4773 em->block_start = bytenr;
4774 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4775 item);
4776 } else {
4777 bytenr += btrfs_file_extent_offset(leaf, item);
4778 em->block_start = bytenr;
4779 em->block_len = em->len;
4780 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4781 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4782 }
4783 goto insert;
4784 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4785 unsigned long ptr;
4786 char *map;
4787 size_t size;
4788 size_t extent_offset;
4789 size_t copy_size;
4790
4791 em->block_start = EXTENT_MAP_INLINE;
4792 if (!page || create) {
4793 em->start = extent_start;
4794 em->len = extent_end - extent_start;
4795 goto out;
4796 }
4797
4798 size = btrfs_file_extent_inline_len(leaf, item);
4799 extent_offset = page_offset(page) + pg_offset - extent_start;
4800 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4801 size - extent_offset);
4802 em->start = extent_start + extent_offset;
4803 em->len = (copy_size + root->sectorsize - 1) &
4804 ~((u64)root->sectorsize - 1);
4805 em->orig_start = EXTENT_MAP_INLINE;
4806 if (compressed)
4807 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4808 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4809 if (create == 0 && !PageUptodate(page)) {
4810 if (btrfs_file_extent_compression(leaf, item) ==
4811 BTRFS_COMPRESS_ZLIB) {
4812 ret = uncompress_inline(path, inode, page,
4813 pg_offset,
4814 extent_offset, item);
4815 BUG_ON(ret);
4816 } else {
4817 map = kmap(page);
4818 read_extent_buffer(leaf, map + pg_offset, ptr,
4819 copy_size);
4820 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4821 memset(map + pg_offset + copy_size, 0,
4822 PAGE_CACHE_SIZE - pg_offset -
4823 copy_size);
4824 }
4825 kunmap(page);
4826 }
4827 flush_dcache_page(page);
4828 } else if (create && PageUptodate(page)) {
4829 if (!trans) {
4830 kunmap(page);
4831 free_extent_map(em);
4832 em = NULL;
4833 btrfs_release_path(root, path);
4834 trans = btrfs_join_transaction(root, 1);
4835 goto again;
4836 }
4837 map = kmap(page);
4838 write_extent_buffer(leaf, map + pg_offset, ptr,
4839 copy_size);
4840 kunmap(page);
4841 btrfs_mark_buffer_dirty(leaf);
4842 }
4843 set_extent_uptodate(io_tree, em->start,
4844 extent_map_end(em) - 1, GFP_NOFS);
4845 goto insert;
4846 } else {
4847 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4848 WARN_ON(1);
4849 }
4850 not_found:
4851 em->start = start;
4852 em->len = len;
4853 not_found_em:
4854 em->block_start = EXTENT_MAP_HOLE;
4855 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4856 insert:
4857 btrfs_release_path(root, path);
4858 if (em->start > start || extent_map_end(em) <= start) {
4859 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4860 "[%llu %llu]\n", (unsigned long long)em->start,
4861 (unsigned long long)em->len,
4862 (unsigned long long)start,
4863 (unsigned long long)len);
4864 err = -EIO;
4865 goto out;
4866 }
4867
4868 err = 0;
4869 write_lock(&em_tree->lock);
4870 ret = add_extent_mapping(em_tree, em);
4871 /* it is possible that someone inserted the extent into the tree
4872 * while we had the lock dropped. It is also possible that
4873 * an overlapping map exists in the tree
4874 */
4875 if (ret == -EEXIST) {
4876 struct extent_map *existing;
4877
4878 ret = 0;
4879
4880 existing = lookup_extent_mapping(em_tree, start, len);
4881 if (existing && (existing->start > start ||
4882 existing->start + existing->len <= start)) {
4883 free_extent_map(existing);
4884 existing = NULL;
4885 }
4886 if (!existing) {
4887 existing = lookup_extent_mapping(em_tree, em->start,
4888 em->len);
4889 if (existing) {
4890 err = merge_extent_mapping(em_tree, existing,
4891 em, start,
4892 root->sectorsize);
4893 free_extent_map(existing);
4894 if (err) {
4895 free_extent_map(em);
4896 em = NULL;
4897 }
4898 } else {
4899 err = -EIO;
4900 free_extent_map(em);
4901 em = NULL;
4902 }
4903 } else {
4904 free_extent_map(em);
4905 em = existing;
4906 err = 0;
4907 }
4908 }
4909 write_unlock(&em_tree->lock);
4910 out:
4911 if (path)
4912 btrfs_free_path(path);
4913 if (trans) {
4914 ret = btrfs_end_transaction(trans, root);
4915 if (!err)
4916 err = ret;
4917 }
4918 if (err) {
4919 free_extent_map(em);
4920 return ERR_PTR(err);
4921 }
4922 return em;
4923 }
4924
4925 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4926 const struct iovec *iov, loff_t offset,
4927 unsigned long nr_segs)
4928 {
4929 return -EINVAL;
4930 }
4931
4932 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4933 __u64 start, __u64 len)
4934 {
4935 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4936 }
4937
4938 int btrfs_readpage(struct file *file, struct page *page)
4939 {
4940 struct extent_io_tree *tree;
4941 tree = &BTRFS_I(page->mapping->host)->io_tree;
4942 return extent_read_full_page(tree, page, btrfs_get_extent);
4943 }
4944
4945 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4946 {
4947 struct extent_io_tree *tree;
4948
4949
4950 if (current->flags & PF_MEMALLOC) {
4951 redirty_page_for_writepage(wbc, page);
4952 unlock_page(page);
4953 return 0;
4954 }
4955 tree = &BTRFS_I(page->mapping->host)->io_tree;
4956 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4957 }
4958
4959 int btrfs_writepages(struct address_space *mapping,
4960 struct writeback_control *wbc)
4961 {
4962 struct extent_io_tree *tree;
4963
4964 tree = &BTRFS_I(mapping->host)->io_tree;
4965 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4966 }
4967
4968 static int
4969 btrfs_readpages(struct file *file, struct address_space *mapping,
4970 struct list_head *pages, unsigned nr_pages)
4971 {
4972 struct extent_io_tree *tree;
4973 tree = &BTRFS_I(mapping->host)->io_tree;
4974 return extent_readpages(tree, mapping, pages, nr_pages,
4975 btrfs_get_extent);
4976 }
4977 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4978 {
4979 struct extent_io_tree *tree;
4980 struct extent_map_tree *map;
4981 int ret;
4982
4983 tree = &BTRFS_I(page->mapping->host)->io_tree;
4984 map = &BTRFS_I(page->mapping->host)->extent_tree;
4985 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4986 if (ret == 1) {
4987 ClearPagePrivate(page);
4988 set_page_private(page, 0);
4989 page_cache_release(page);
4990 }
4991 return ret;
4992 }
4993
4994 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4995 {
4996 if (PageWriteback(page) || PageDirty(page))
4997 return 0;
4998 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4999 }
5000
5001 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5002 {
5003 struct extent_io_tree *tree;
5004 struct btrfs_ordered_extent *ordered;
5005 struct extent_state *cached_state = NULL;
5006 u64 page_start = page_offset(page);
5007 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5008
5009
5010 /*
5011 * we have the page locked, so new writeback can't start,
5012 * and the dirty bit won't be cleared while we are here.
5013 *
5014 * Wait for IO on this page so that we can safely clear
5015 * the PagePrivate2 bit and do ordered accounting
5016 */
5017 wait_on_page_writeback(page);
5018
5019 tree = &BTRFS_I(page->mapping->host)->io_tree;
5020 if (offset) {
5021 btrfs_releasepage(page, GFP_NOFS);
5022 return;
5023 }
5024 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5025 GFP_NOFS);
5026 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5027 page_offset(page));
5028 if (ordered) {
5029 /*
5030 * IO on this page will never be started, so we need
5031 * to account for any ordered extents now
5032 */
5033 clear_extent_bit(tree, page_start, page_end,
5034 EXTENT_DIRTY | EXTENT_DELALLOC |
5035 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5036 &cached_state, GFP_NOFS);
5037 /*
5038 * whoever cleared the private bit is responsible
5039 * for the finish_ordered_io
5040 */
5041 if (TestClearPagePrivate2(page)) {
5042 btrfs_finish_ordered_io(page->mapping->host,
5043 page_start, page_end);
5044 }
5045 btrfs_put_ordered_extent(ordered);
5046 cached_state = NULL;
5047 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5048 GFP_NOFS);
5049 }
5050 clear_extent_bit(tree, page_start, page_end,
5051 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5052 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5053 __btrfs_releasepage(page, GFP_NOFS);
5054
5055 ClearPageChecked(page);
5056 if (PagePrivate(page)) {
5057 ClearPagePrivate(page);
5058 set_page_private(page, 0);
5059 page_cache_release(page);
5060 }
5061 }
5062
5063 /*
5064 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5065 * called from a page fault handler when a page is first dirtied. Hence we must
5066 * be careful to check for EOF conditions here. We set the page up correctly
5067 * for a written page which means we get ENOSPC checking when writing into
5068 * holes and correct delalloc and unwritten extent mapping on filesystems that
5069 * support these features.
5070 *
5071 * We are not allowed to take the i_mutex here so we have to play games to
5072 * protect against truncate races as the page could now be beyond EOF. Because
5073 * vmtruncate() writes the inode size before removing pages, once we have the
5074 * page lock we can determine safely if the page is beyond EOF. If it is not
5075 * beyond EOF, then the page is guaranteed safe against truncation until we
5076 * unlock the page.
5077 */
5078 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5079 {
5080 struct page *page = vmf->page;
5081 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5082 struct btrfs_root *root = BTRFS_I(inode)->root;
5083 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084 struct btrfs_ordered_extent *ordered;
5085 struct extent_state *cached_state = NULL;
5086 char *kaddr;
5087 unsigned long zero_start;
5088 loff_t size;
5089 int ret;
5090 u64 page_start;
5091 u64 page_end;
5092
5093 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5094 if (ret) {
5095 if (ret == -ENOMEM)
5096 ret = VM_FAULT_OOM;
5097 else /* -ENOSPC, -EIO, etc */
5098 ret = VM_FAULT_SIGBUS;
5099 goto out;
5100 }
5101
5102 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5103 if (ret) {
5104 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5105 ret = VM_FAULT_SIGBUS;
5106 goto out;
5107 }
5108
5109 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5110 again:
5111 lock_page(page);
5112 size = i_size_read(inode);
5113 page_start = page_offset(page);
5114 page_end = page_start + PAGE_CACHE_SIZE - 1;
5115
5116 if ((page->mapping != inode->i_mapping) ||
5117 (page_start >= size)) {
5118 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5119 /* page got truncated out from underneath us */
5120 goto out_unlock;
5121 }
5122 wait_on_page_writeback(page);
5123
5124 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5125 GFP_NOFS);
5126 set_page_extent_mapped(page);
5127
5128 /*
5129 * we can't set the delalloc bits if there are pending ordered
5130 * extents. Drop our locks and wait for them to finish
5131 */
5132 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5133 if (ordered) {
5134 unlock_extent_cached(io_tree, page_start, page_end,
5135 &cached_state, GFP_NOFS);
5136 unlock_page(page);
5137 btrfs_start_ordered_extent(inode, ordered, 1);
5138 btrfs_put_ordered_extent(ordered);
5139 goto again;
5140 }
5141
5142 /*
5143 * XXX - page_mkwrite gets called every time the page is dirtied, even
5144 * if it was already dirty, so for space accounting reasons we need to
5145 * clear any delalloc bits for the range we are fixing to save. There
5146 * is probably a better way to do this, but for now keep consistent with
5147 * prepare_pages in the normal write path.
5148 */
5149 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5150 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5151 0, 0, &cached_state, GFP_NOFS);
5152
5153 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5154 &cached_state);
5155 if (ret) {
5156 unlock_extent_cached(io_tree, page_start, page_end,
5157 &cached_state, GFP_NOFS);
5158 ret = VM_FAULT_SIGBUS;
5159 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5160 goto out_unlock;
5161 }
5162 ret = 0;
5163
5164 /* page is wholly or partially inside EOF */
5165 if (page_start + PAGE_CACHE_SIZE > size)
5166 zero_start = size & ~PAGE_CACHE_MASK;
5167 else
5168 zero_start = PAGE_CACHE_SIZE;
5169
5170 if (zero_start != PAGE_CACHE_SIZE) {
5171 kaddr = kmap(page);
5172 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5173 flush_dcache_page(page);
5174 kunmap(page);
5175 }
5176 ClearPageChecked(page);
5177 set_page_dirty(page);
5178 SetPageUptodate(page);
5179
5180 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5181 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5182
5183 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5184
5185 out_unlock:
5186 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5187 if (!ret)
5188 return VM_FAULT_LOCKED;
5189 unlock_page(page);
5190 out:
5191 return ret;
5192 }
5193
5194 static void btrfs_truncate(struct inode *inode)
5195 {
5196 struct btrfs_root *root = BTRFS_I(inode)->root;
5197 int ret;
5198 struct btrfs_trans_handle *trans;
5199 unsigned long nr;
5200 u64 mask = root->sectorsize - 1;
5201
5202 if (!S_ISREG(inode->i_mode)) {
5203 WARN_ON(1);
5204 return;
5205 }
5206
5207 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5208 if (ret)
5209 return;
5210
5211 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5212 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5213
5214 trans = btrfs_start_transaction(root, 1);
5215 btrfs_set_trans_block_group(trans, inode);
5216
5217 /*
5218 * setattr is responsible for setting the ordered_data_close flag,
5219 * but that is only tested during the last file release. That
5220 * could happen well after the next commit, leaving a great big
5221 * window where new writes may get lost if someone chooses to write
5222 * to this file after truncating to zero
5223 *
5224 * The inode doesn't have any dirty data here, and so if we commit
5225 * this is a noop. If someone immediately starts writing to the inode
5226 * it is very likely we'll catch some of their writes in this
5227 * transaction, and the commit will find this file on the ordered
5228 * data list with good things to send down.
5229 *
5230 * This is a best effort solution, there is still a window where
5231 * using truncate to replace the contents of the file will
5232 * end up with a zero length file after a crash.
5233 */
5234 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5235 btrfs_add_ordered_operation(trans, root, inode);
5236
5237 while (1) {
5238 ret = btrfs_truncate_inode_items(trans, root, inode,
5239 inode->i_size,
5240 BTRFS_EXTENT_DATA_KEY);
5241 if (ret != -EAGAIN)
5242 break;
5243
5244 ret = btrfs_update_inode(trans, root, inode);
5245 BUG_ON(ret);
5246
5247 nr = trans->blocks_used;
5248 btrfs_end_transaction(trans, root);
5249 btrfs_btree_balance_dirty(root, nr);
5250
5251 trans = btrfs_start_transaction(root, 1);
5252 btrfs_set_trans_block_group(trans, inode);
5253 }
5254
5255 if (ret == 0 && inode->i_nlink > 0) {
5256 ret = btrfs_orphan_del(trans, inode);
5257 BUG_ON(ret);
5258 }
5259
5260 ret = btrfs_update_inode(trans, root, inode);
5261 BUG_ON(ret);
5262
5263 nr = trans->blocks_used;
5264 ret = btrfs_end_transaction_throttle(trans, root);
5265 BUG_ON(ret);
5266 btrfs_btree_balance_dirty(root, nr);
5267 }
5268
5269 /*
5270 * create a new subvolume directory/inode (helper for the ioctl).
5271 */
5272 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5273 struct btrfs_root *new_root,
5274 u64 new_dirid, u64 alloc_hint)
5275 {
5276 struct inode *inode;
5277 int err;
5278 u64 index = 0;
5279
5280 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5281 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5282 if (IS_ERR(inode))
5283 return PTR_ERR(inode);
5284 inode->i_op = &btrfs_dir_inode_operations;
5285 inode->i_fop = &btrfs_dir_file_operations;
5286
5287 inode->i_nlink = 1;
5288 btrfs_i_size_write(inode, 0);
5289
5290 err = btrfs_update_inode(trans, new_root, inode);
5291 BUG_ON(err);
5292
5293 iput(inode);
5294 return 0;
5295 }
5296
5297 /* helper function for file defrag and space balancing. This
5298 * forces readahead on a given range of bytes in an inode
5299 */
5300 unsigned long btrfs_force_ra(struct address_space *mapping,
5301 struct file_ra_state *ra, struct file *file,
5302 pgoff_t offset, pgoff_t last_index)
5303 {
5304 pgoff_t req_size = last_index - offset + 1;
5305
5306 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5307 return offset + req_size;
5308 }
5309
5310 struct inode *btrfs_alloc_inode(struct super_block *sb)
5311 {
5312 struct btrfs_inode *ei;
5313
5314 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5315 if (!ei)
5316 return NULL;
5317 ei->last_trans = 0;
5318 ei->last_sub_trans = 0;
5319 ei->logged_trans = 0;
5320 ei->outstanding_extents = 0;
5321 ei->reserved_extents = 0;
5322 ei->root = NULL;
5323 spin_lock_init(&ei->accounting_lock);
5324 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5325 INIT_LIST_HEAD(&ei->i_orphan);
5326 INIT_LIST_HEAD(&ei->ordered_operations);
5327 return &ei->vfs_inode;
5328 }
5329
5330 void btrfs_destroy_inode(struct inode *inode)
5331 {
5332 struct btrfs_ordered_extent *ordered;
5333 struct btrfs_root *root = BTRFS_I(inode)->root;
5334
5335 WARN_ON(!list_empty(&inode->i_dentry));
5336 WARN_ON(inode->i_data.nrpages);
5337
5338 /*
5339 * This can happen where we create an inode, but somebody else also
5340 * created the same inode and we need to destroy the one we already
5341 * created.
5342 */
5343 if (!root)
5344 goto free;
5345
5346 /*
5347 * Make sure we're properly removed from the ordered operation
5348 * lists.
5349 */
5350 smp_mb();
5351 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5352 spin_lock(&root->fs_info->ordered_extent_lock);
5353 list_del_init(&BTRFS_I(inode)->ordered_operations);
5354 spin_unlock(&root->fs_info->ordered_extent_lock);
5355 }
5356
5357 spin_lock(&root->list_lock);
5358 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5359 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5360 inode->i_ino);
5361 list_del_init(&BTRFS_I(inode)->i_orphan);
5362 }
5363 spin_unlock(&root->list_lock);
5364
5365 while (1) {
5366 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5367 if (!ordered)
5368 break;
5369 else {
5370 printk(KERN_ERR "btrfs found ordered "
5371 "extent %llu %llu on inode cleanup\n",
5372 (unsigned long long)ordered->file_offset,
5373 (unsigned long long)ordered->len);
5374 btrfs_remove_ordered_extent(inode, ordered);
5375 btrfs_put_ordered_extent(ordered);
5376 btrfs_put_ordered_extent(ordered);
5377 }
5378 }
5379 inode_tree_del(inode);
5380 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5381 free:
5382 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5383 }
5384
5385 void btrfs_drop_inode(struct inode *inode)
5386 {
5387 struct btrfs_root *root = BTRFS_I(inode)->root;
5388
5389 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5390 generic_delete_inode(inode);
5391 else
5392 generic_drop_inode(inode);
5393 }
5394
5395 static void init_once(void *foo)
5396 {
5397 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5398
5399 inode_init_once(&ei->vfs_inode);
5400 }
5401
5402 void btrfs_destroy_cachep(void)
5403 {
5404 if (btrfs_inode_cachep)
5405 kmem_cache_destroy(btrfs_inode_cachep);
5406 if (btrfs_trans_handle_cachep)
5407 kmem_cache_destroy(btrfs_trans_handle_cachep);
5408 if (btrfs_transaction_cachep)
5409 kmem_cache_destroy(btrfs_transaction_cachep);
5410 if (btrfs_path_cachep)
5411 kmem_cache_destroy(btrfs_path_cachep);
5412 }
5413
5414 int btrfs_init_cachep(void)
5415 {
5416 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5417 sizeof(struct btrfs_inode), 0,
5418 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5419 if (!btrfs_inode_cachep)
5420 goto fail;
5421
5422 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5423 sizeof(struct btrfs_trans_handle), 0,
5424 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5425 if (!btrfs_trans_handle_cachep)
5426 goto fail;
5427
5428 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5429 sizeof(struct btrfs_transaction), 0,
5430 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5431 if (!btrfs_transaction_cachep)
5432 goto fail;
5433
5434 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5435 sizeof(struct btrfs_path), 0,
5436 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5437 if (!btrfs_path_cachep)
5438 goto fail;
5439
5440 return 0;
5441 fail:
5442 btrfs_destroy_cachep();
5443 return -ENOMEM;
5444 }
5445
5446 static int btrfs_getattr(struct vfsmount *mnt,
5447 struct dentry *dentry, struct kstat *stat)
5448 {
5449 struct inode *inode = dentry->d_inode;
5450 generic_fillattr(inode, stat);
5451 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5452 stat->blksize = PAGE_CACHE_SIZE;
5453 stat->blocks = (inode_get_bytes(inode) +
5454 BTRFS_I(inode)->delalloc_bytes) >> 9;
5455 return 0;
5456 }
5457
5458 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5459 struct inode *new_dir, struct dentry *new_dentry)
5460 {
5461 struct btrfs_trans_handle *trans;
5462 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5463 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5464 struct inode *new_inode = new_dentry->d_inode;
5465 struct inode *old_inode = old_dentry->d_inode;
5466 struct timespec ctime = CURRENT_TIME;
5467 u64 index = 0;
5468 u64 root_objectid;
5469 int ret;
5470
5471 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5472 return -EPERM;
5473
5474 /* we only allow rename subvolume link between subvolumes */
5475 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5476 return -EXDEV;
5477
5478 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5479 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5480 return -ENOTEMPTY;
5481
5482 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5483 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5484 return -ENOTEMPTY;
5485
5486 /*
5487 * We want to reserve the absolute worst case amount of items. So if
5488 * both inodes are subvols and we need to unlink them then that would
5489 * require 4 item modifications, but if they are both normal inodes it
5490 * would require 5 item modifications, so we'll assume their normal
5491 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5492 * should cover the worst case number of items we'll modify.
5493 */
5494 ret = btrfs_reserve_metadata_space(root, 11);
5495 if (ret)
5496 return ret;
5497
5498 /*
5499 * we're using rename to replace one file with another.
5500 * and the replacement file is large. Start IO on it now so
5501 * we don't add too much work to the end of the transaction
5502 */
5503 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5504 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5505 filemap_flush(old_inode->i_mapping);
5506
5507 /* close the racy window with snapshot create/destroy ioctl */
5508 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5509 down_read(&root->fs_info->subvol_sem);
5510
5511 trans = btrfs_start_transaction(root, 1);
5512 btrfs_set_trans_block_group(trans, new_dir);
5513
5514 if (dest != root)
5515 btrfs_record_root_in_trans(trans, dest);
5516
5517 ret = btrfs_set_inode_index(new_dir, &index);
5518 if (ret)
5519 goto out_fail;
5520
5521 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5522 /* force full log commit if subvolume involved. */
5523 root->fs_info->last_trans_log_full_commit = trans->transid;
5524 } else {
5525 ret = btrfs_insert_inode_ref(trans, dest,
5526 new_dentry->d_name.name,
5527 new_dentry->d_name.len,
5528 old_inode->i_ino,
5529 new_dir->i_ino, index);
5530 if (ret)
5531 goto out_fail;
5532 /*
5533 * this is an ugly little race, but the rename is required
5534 * to make sure that if we crash, the inode is either at the
5535 * old name or the new one. pinning the log transaction lets
5536 * us make sure we don't allow a log commit to come in after
5537 * we unlink the name but before we add the new name back in.
5538 */
5539 btrfs_pin_log_trans(root);
5540 }
5541 /*
5542 * make sure the inode gets flushed if it is replacing
5543 * something.
5544 */
5545 if (new_inode && new_inode->i_size &&
5546 old_inode && S_ISREG(old_inode->i_mode)) {
5547 btrfs_add_ordered_operation(trans, root, old_inode);
5548 }
5549
5550 old_dir->i_ctime = old_dir->i_mtime = ctime;
5551 new_dir->i_ctime = new_dir->i_mtime = ctime;
5552 old_inode->i_ctime = ctime;
5553
5554 if (old_dentry->d_parent != new_dentry->d_parent)
5555 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5556
5557 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5558 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5559 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5560 old_dentry->d_name.name,
5561 old_dentry->d_name.len);
5562 } else {
5563 btrfs_inc_nlink(old_dentry->d_inode);
5564 ret = btrfs_unlink_inode(trans, root, old_dir,
5565 old_dentry->d_inode,
5566 old_dentry->d_name.name,
5567 old_dentry->d_name.len);
5568 }
5569 BUG_ON(ret);
5570
5571 if (new_inode) {
5572 new_inode->i_ctime = CURRENT_TIME;
5573 if (unlikely(new_inode->i_ino ==
5574 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5575 root_objectid = BTRFS_I(new_inode)->location.objectid;
5576 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5577 root_objectid,
5578 new_dentry->d_name.name,
5579 new_dentry->d_name.len);
5580 BUG_ON(new_inode->i_nlink == 0);
5581 } else {
5582 ret = btrfs_unlink_inode(trans, dest, new_dir,
5583 new_dentry->d_inode,
5584 new_dentry->d_name.name,
5585 new_dentry->d_name.len);
5586 }
5587 BUG_ON(ret);
5588 if (new_inode->i_nlink == 0) {
5589 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5590 BUG_ON(ret);
5591 }
5592 }
5593
5594 ret = btrfs_add_link(trans, new_dir, old_inode,
5595 new_dentry->d_name.name,
5596 new_dentry->d_name.len, 0, index);
5597 BUG_ON(ret);
5598
5599 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5600 btrfs_log_new_name(trans, old_inode, old_dir,
5601 new_dentry->d_parent);
5602 btrfs_end_log_trans(root);
5603 }
5604 out_fail:
5605 btrfs_end_transaction_throttle(trans, root);
5606
5607 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5608 up_read(&root->fs_info->subvol_sem);
5609
5610 btrfs_unreserve_metadata_space(root, 11);
5611 return ret;
5612 }
5613
5614 /*
5615 * some fairly slow code that needs optimization. This walks the list
5616 * of all the inodes with pending delalloc and forces them to disk.
5617 */
5618 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5619 {
5620 struct list_head *head = &root->fs_info->delalloc_inodes;
5621 struct btrfs_inode *binode;
5622 struct inode *inode;
5623
5624 if (root->fs_info->sb->s_flags & MS_RDONLY)
5625 return -EROFS;
5626
5627 spin_lock(&root->fs_info->delalloc_lock);
5628 while (!list_empty(head)) {
5629 binode = list_entry(head->next, struct btrfs_inode,
5630 delalloc_inodes);
5631 inode = igrab(&binode->vfs_inode);
5632 if (!inode)
5633 list_del_init(&binode->delalloc_inodes);
5634 spin_unlock(&root->fs_info->delalloc_lock);
5635 if (inode) {
5636 filemap_flush(inode->i_mapping);
5637 if (delay_iput)
5638 btrfs_add_delayed_iput(inode);
5639 else
5640 iput(inode);
5641 }
5642 cond_resched();
5643 spin_lock(&root->fs_info->delalloc_lock);
5644 }
5645 spin_unlock(&root->fs_info->delalloc_lock);
5646
5647 /* the filemap_flush will queue IO into the worker threads, but
5648 * we have to make sure the IO is actually started and that
5649 * ordered extents get created before we return
5650 */
5651 atomic_inc(&root->fs_info->async_submit_draining);
5652 while (atomic_read(&root->fs_info->nr_async_submits) ||
5653 atomic_read(&root->fs_info->async_delalloc_pages)) {
5654 wait_event(root->fs_info->async_submit_wait,
5655 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5656 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5657 }
5658 atomic_dec(&root->fs_info->async_submit_draining);
5659 return 0;
5660 }
5661
5662 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5663 const char *symname)
5664 {
5665 struct btrfs_trans_handle *trans;
5666 struct btrfs_root *root = BTRFS_I(dir)->root;
5667 struct btrfs_path *path;
5668 struct btrfs_key key;
5669 struct inode *inode = NULL;
5670 int err;
5671 int drop_inode = 0;
5672 u64 objectid;
5673 u64 index = 0 ;
5674 int name_len;
5675 int datasize;
5676 unsigned long ptr;
5677 struct btrfs_file_extent_item *ei;
5678 struct extent_buffer *leaf;
5679 unsigned long nr = 0;
5680
5681 name_len = strlen(symname) + 1;
5682 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5683 return -ENAMETOOLONG;
5684
5685 /*
5686 * 2 items for inode item and ref
5687 * 2 items for dir items
5688 * 1 item for xattr if selinux is on
5689 */
5690 err = btrfs_reserve_metadata_space(root, 5);
5691 if (err)
5692 return err;
5693
5694 trans = btrfs_start_transaction(root, 1);
5695 if (!trans)
5696 goto out_fail;
5697 btrfs_set_trans_block_group(trans, dir);
5698
5699 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5700 if (err) {
5701 err = -ENOSPC;
5702 goto out_unlock;
5703 }
5704
5705 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5706 dentry->d_name.len,
5707 dentry->d_parent->d_inode->i_ino, objectid,
5708 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5709 &index);
5710 err = PTR_ERR(inode);
5711 if (IS_ERR(inode))
5712 goto out_unlock;
5713
5714 err = btrfs_init_inode_security(trans, inode, dir);
5715 if (err) {
5716 drop_inode = 1;
5717 goto out_unlock;
5718 }
5719
5720 btrfs_set_trans_block_group(trans, inode);
5721 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5722 if (err)
5723 drop_inode = 1;
5724 else {
5725 inode->i_mapping->a_ops = &btrfs_aops;
5726 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5727 inode->i_fop = &btrfs_file_operations;
5728 inode->i_op = &btrfs_file_inode_operations;
5729 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5730 }
5731 btrfs_update_inode_block_group(trans, inode);
5732 btrfs_update_inode_block_group(trans, dir);
5733 if (drop_inode)
5734 goto out_unlock;
5735
5736 path = btrfs_alloc_path();
5737 BUG_ON(!path);
5738 key.objectid = inode->i_ino;
5739 key.offset = 0;
5740 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5741 datasize = btrfs_file_extent_calc_inline_size(name_len);
5742 err = btrfs_insert_empty_item(trans, root, path, &key,
5743 datasize);
5744 if (err) {
5745 drop_inode = 1;
5746 goto out_unlock;
5747 }
5748 leaf = path->nodes[0];
5749 ei = btrfs_item_ptr(leaf, path->slots[0],
5750 struct btrfs_file_extent_item);
5751 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5752 btrfs_set_file_extent_type(leaf, ei,
5753 BTRFS_FILE_EXTENT_INLINE);
5754 btrfs_set_file_extent_encryption(leaf, ei, 0);
5755 btrfs_set_file_extent_compression(leaf, ei, 0);
5756 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5757 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5758
5759 ptr = btrfs_file_extent_inline_start(ei);
5760 write_extent_buffer(leaf, symname, ptr, name_len);
5761 btrfs_mark_buffer_dirty(leaf);
5762 btrfs_free_path(path);
5763
5764 inode->i_op = &btrfs_symlink_inode_operations;
5765 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5766 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5767 inode_set_bytes(inode, name_len);
5768 btrfs_i_size_write(inode, name_len - 1);
5769 err = btrfs_update_inode(trans, root, inode);
5770 if (err)
5771 drop_inode = 1;
5772
5773 out_unlock:
5774 nr = trans->blocks_used;
5775 btrfs_end_transaction_throttle(trans, root);
5776 out_fail:
5777 btrfs_unreserve_metadata_space(root, 5);
5778 if (drop_inode) {
5779 inode_dec_link_count(inode);
5780 iput(inode);
5781 }
5782 btrfs_btree_balance_dirty(root, nr);
5783 return err;
5784 }
5785
5786 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5787 u64 alloc_hint, int mode, loff_t actual_len)
5788 {
5789 struct btrfs_trans_handle *trans;
5790 struct btrfs_root *root = BTRFS_I(inode)->root;
5791 struct btrfs_key ins;
5792 u64 alloc_size;
5793 u64 cur_offset = start;
5794 u64 num_bytes = end - start;
5795 int ret = 0;
5796 u64 i_size;
5797
5798 while (num_bytes > 0) {
5799 alloc_size = min(num_bytes, root->fs_info->max_extent);
5800
5801 trans = btrfs_start_transaction(root, 1);
5802
5803 ret = btrfs_reserve_extent(trans, root, alloc_size,
5804 root->sectorsize, 0, alloc_hint,
5805 (u64)-1, &ins, 1);
5806 if (ret) {
5807 WARN_ON(1);
5808 goto stop_trans;
5809 }
5810
5811 ret = btrfs_reserve_metadata_space(root, 3);
5812 if (ret) {
5813 btrfs_free_reserved_extent(root, ins.objectid,
5814 ins.offset);
5815 goto stop_trans;
5816 }
5817
5818 ret = insert_reserved_file_extent(trans, inode,
5819 cur_offset, ins.objectid,
5820 ins.offset, ins.offset,
5821 ins.offset, 0, 0, 0,
5822 BTRFS_FILE_EXTENT_PREALLOC);
5823 BUG_ON(ret);
5824 btrfs_drop_extent_cache(inode, cur_offset,
5825 cur_offset + ins.offset -1, 0);
5826
5827 num_bytes -= ins.offset;
5828 cur_offset += ins.offset;
5829 alloc_hint = ins.objectid + ins.offset;
5830
5831 inode->i_ctime = CURRENT_TIME;
5832 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5834 (actual_len > inode->i_size) &&
5835 (cur_offset > inode->i_size)) {
5836
5837 if (cur_offset > actual_len)
5838 i_size = actual_len;
5839 else
5840 i_size = cur_offset;
5841 i_size_write(inode, i_size);
5842 btrfs_ordered_update_i_size(inode, i_size, NULL);
5843 }
5844
5845 ret = btrfs_update_inode(trans, root, inode);
5846 BUG_ON(ret);
5847
5848 btrfs_end_transaction(trans, root);
5849 btrfs_unreserve_metadata_space(root, 3);
5850 }
5851 return ret;
5852
5853 stop_trans:
5854 btrfs_end_transaction(trans, root);
5855 return ret;
5856
5857 }
5858
5859 static long btrfs_fallocate(struct inode *inode, int mode,
5860 loff_t offset, loff_t len)
5861 {
5862 struct extent_state *cached_state = NULL;
5863 u64 cur_offset;
5864 u64 last_byte;
5865 u64 alloc_start;
5866 u64 alloc_end;
5867 u64 alloc_hint = 0;
5868 u64 locked_end;
5869 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5870 struct extent_map *em;
5871 int ret;
5872
5873 alloc_start = offset & ~mask;
5874 alloc_end = (offset + len + mask) & ~mask;
5875
5876 /*
5877 * wait for ordered IO before we have any locks. We'll loop again
5878 * below with the locks held.
5879 */
5880 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5881
5882 mutex_lock(&inode->i_mutex);
5883 if (alloc_start > inode->i_size) {
5884 ret = btrfs_cont_expand(inode, alloc_start);
5885 if (ret)
5886 goto out;
5887 }
5888
5889 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5890 alloc_end - alloc_start);
5891 if (ret)
5892 goto out;
5893
5894 locked_end = alloc_end - 1;
5895 while (1) {
5896 struct btrfs_ordered_extent *ordered;
5897
5898 /* the extent lock is ordered inside the running
5899 * transaction
5900 */
5901 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5902 locked_end, 0, &cached_state, GFP_NOFS);
5903 ordered = btrfs_lookup_first_ordered_extent(inode,
5904 alloc_end - 1);
5905 if (ordered &&
5906 ordered->file_offset + ordered->len > alloc_start &&
5907 ordered->file_offset < alloc_end) {
5908 btrfs_put_ordered_extent(ordered);
5909 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5910 alloc_start, locked_end,
5911 &cached_state, GFP_NOFS);
5912 /*
5913 * we can't wait on the range with the transaction
5914 * running or with the extent lock held
5915 */
5916 btrfs_wait_ordered_range(inode, alloc_start,
5917 alloc_end - alloc_start);
5918 } else {
5919 if (ordered)
5920 btrfs_put_ordered_extent(ordered);
5921 break;
5922 }
5923 }
5924
5925 cur_offset = alloc_start;
5926 while (1) {
5927 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5928 alloc_end - cur_offset, 0);
5929 BUG_ON(IS_ERR(em) || !em);
5930 last_byte = min(extent_map_end(em), alloc_end);
5931 last_byte = (last_byte + mask) & ~mask;
5932 if (em->block_start == EXTENT_MAP_HOLE ||
5933 (cur_offset >= inode->i_size &&
5934 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5935 ret = prealloc_file_range(inode,
5936 cur_offset, last_byte,
5937 alloc_hint, mode, offset+len);
5938 if (ret < 0) {
5939 free_extent_map(em);
5940 break;
5941 }
5942 }
5943 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5944 alloc_hint = em->block_start;
5945 free_extent_map(em);
5946
5947 cur_offset = last_byte;
5948 if (cur_offset >= alloc_end) {
5949 ret = 0;
5950 break;
5951 }
5952 }
5953 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5954 &cached_state, GFP_NOFS);
5955
5956 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5957 alloc_end - alloc_start);
5958 out:
5959 mutex_unlock(&inode->i_mutex);
5960 return ret;
5961 }
5962
5963 static int btrfs_set_page_dirty(struct page *page)
5964 {
5965 return __set_page_dirty_nobuffers(page);
5966 }
5967
5968 static int btrfs_permission(struct inode *inode, int mask)
5969 {
5970 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5971 return -EACCES;
5972 return generic_permission(inode, mask, btrfs_check_acl);
5973 }
5974
5975 static const struct inode_operations btrfs_dir_inode_operations = {
5976 .getattr = btrfs_getattr,
5977 .lookup = btrfs_lookup,
5978 .create = btrfs_create,
5979 .unlink = btrfs_unlink,
5980 .link = btrfs_link,
5981 .mkdir = btrfs_mkdir,
5982 .rmdir = btrfs_rmdir,
5983 .rename = btrfs_rename,
5984 .symlink = btrfs_symlink,
5985 .setattr = btrfs_setattr,
5986 .mknod = btrfs_mknod,
5987 .setxattr = btrfs_setxattr,
5988 .getxattr = btrfs_getxattr,
5989 .listxattr = btrfs_listxattr,
5990 .removexattr = btrfs_removexattr,
5991 .permission = btrfs_permission,
5992 };
5993 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5994 .lookup = btrfs_lookup,
5995 .permission = btrfs_permission,
5996 };
5997
5998 static const struct file_operations btrfs_dir_file_operations = {
5999 .llseek = generic_file_llseek,
6000 .read = generic_read_dir,
6001 .readdir = btrfs_real_readdir,
6002 .unlocked_ioctl = btrfs_ioctl,
6003 #ifdef CONFIG_COMPAT
6004 .compat_ioctl = btrfs_ioctl,
6005 #endif
6006 .release = btrfs_release_file,
6007 .fsync = btrfs_sync_file,
6008 };
6009
6010 static struct extent_io_ops btrfs_extent_io_ops = {
6011 .fill_delalloc = run_delalloc_range,
6012 .submit_bio_hook = btrfs_submit_bio_hook,
6013 .merge_bio_hook = btrfs_merge_bio_hook,
6014 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6015 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6016 .writepage_start_hook = btrfs_writepage_start_hook,
6017 .readpage_io_failed_hook = btrfs_io_failed_hook,
6018 .set_bit_hook = btrfs_set_bit_hook,
6019 .clear_bit_hook = btrfs_clear_bit_hook,
6020 .merge_extent_hook = btrfs_merge_extent_hook,
6021 .split_extent_hook = btrfs_split_extent_hook,
6022 };
6023
6024 /*
6025 * btrfs doesn't support the bmap operation because swapfiles
6026 * use bmap to make a mapping of extents in the file. They assume
6027 * these extents won't change over the life of the file and they
6028 * use the bmap result to do IO directly to the drive.
6029 *
6030 * the btrfs bmap call would return logical addresses that aren't
6031 * suitable for IO and they also will change frequently as COW
6032 * operations happen. So, swapfile + btrfs == corruption.
6033 *
6034 * For now we're avoiding this by dropping bmap.
6035 */
6036 static const struct address_space_operations btrfs_aops = {
6037 .readpage = btrfs_readpage,
6038 .writepage = btrfs_writepage,
6039 .writepages = btrfs_writepages,
6040 .readpages = btrfs_readpages,
6041 .sync_page = block_sync_page,
6042 .direct_IO = btrfs_direct_IO,
6043 .invalidatepage = btrfs_invalidatepage,
6044 .releasepage = btrfs_releasepage,
6045 .set_page_dirty = btrfs_set_page_dirty,
6046 .error_remove_page = generic_error_remove_page,
6047 };
6048
6049 static const struct address_space_operations btrfs_symlink_aops = {
6050 .readpage = btrfs_readpage,
6051 .writepage = btrfs_writepage,
6052 .invalidatepage = btrfs_invalidatepage,
6053 .releasepage = btrfs_releasepage,
6054 };
6055
6056 static const struct inode_operations btrfs_file_inode_operations = {
6057 .truncate = btrfs_truncate,
6058 .getattr = btrfs_getattr,
6059 .setattr = btrfs_setattr,
6060 .setxattr = btrfs_setxattr,
6061 .getxattr = btrfs_getxattr,
6062 .listxattr = btrfs_listxattr,
6063 .removexattr = btrfs_removexattr,
6064 .permission = btrfs_permission,
6065 .fallocate = btrfs_fallocate,
6066 .fiemap = btrfs_fiemap,
6067 };
6068 static const struct inode_operations btrfs_special_inode_operations = {
6069 .getattr = btrfs_getattr,
6070 .setattr = btrfs_setattr,
6071 .permission = btrfs_permission,
6072 .setxattr = btrfs_setxattr,
6073 .getxattr = btrfs_getxattr,
6074 .listxattr = btrfs_listxattr,
6075 .removexattr = btrfs_removexattr,
6076 };
6077 static const struct inode_operations btrfs_symlink_inode_operations = {
6078 .readlink = generic_readlink,
6079 .follow_link = page_follow_link_light,
6080 .put_link = page_put_link,
6081 .permission = btrfs_permission,
6082 .setxattr = btrfs_setxattr,
6083 .getxattr = btrfs_getxattr,
6084 .listxattr = btrfs_listxattr,
6085 .removexattr = btrfs_removexattr,
6086 };
6087
6088 const struct dentry_operations btrfs_dentry_operations = {
6089 .d_delete = btrfs_dentry_delete,
6090 };