]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/super.c
btrfs: Add datasum mount option.
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66
67 static const char *btrfs_decode_error(int errno)
68 {
69 char *errstr = "unknown";
70
71 switch (errno) {
72 case -EIO:
73 errstr = "IO failure";
74 break;
75 case -ENOMEM:
76 errstr = "Out of memory";
77 break;
78 case -EROFS:
79 errstr = "Readonly filesystem";
80 break;
81 case -EEXIST:
82 errstr = "Object already exists";
83 break;
84 case -ENOSPC:
85 errstr = "No space left";
86 break;
87 case -ENOENT:
88 errstr = "No such entry";
89 break;
90 }
91
92 return errstr;
93 }
94
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 /*
98 * today we only save the error info into ram. Long term we'll
99 * also send it down to the disk
100 */
101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 struct super_block *sb = fs_info->sb;
108
109 if (sb->s_flags & MS_RDONLY)
110 return;
111
112 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 sb->s_flags |= MS_RDONLY;
114 btrfs_info(fs_info, "forced readonly");
115 /*
116 * Note that a running device replace operation is not
117 * canceled here although there is no way to update
118 * the progress. It would add the risk of a deadlock,
119 * therefore the canceling is ommited. The only penalty
120 * is that some I/O remains active until the procedure
121 * completes. The next time when the filesystem is
122 * mounted writeable again, the device replace
123 * operation continues.
124 */
125 }
126 }
127
128 #ifdef CONFIG_PRINTK
129 /*
130 * __btrfs_std_error decodes expected errors from the caller and
131 * invokes the approciate error response.
132 */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 unsigned int line, int errno, const char *fmt, ...)
135 {
136 struct super_block *sb = fs_info->sb;
137 const char *errstr;
138
139 /*
140 * Special case: if the error is EROFS, and we're already
141 * under MS_RDONLY, then it is safe here.
142 */
143 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144 return;
145
146 errstr = btrfs_decode_error(errno);
147 if (fmt) {
148 struct va_format vaf;
149 va_list args;
150
151 va_start(args, fmt);
152 vaf.fmt = fmt;
153 vaf.va = &args;
154
155 printk(KERN_CRIT
156 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
157 sb->s_id, function, line, errno, errstr, &vaf);
158 va_end(args);
159 } else {
160 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
161 sb->s_id, function, line, errno, errstr);
162 }
163
164 /* Don't go through full error handling during mount */
165 save_error_info(fs_info);
166 if (sb->s_flags & MS_BORN)
167 btrfs_handle_error(fs_info);
168 }
169
170 static const char * const logtypes[] = {
171 "emergency",
172 "alert",
173 "critical",
174 "error",
175 "warning",
176 "notice",
177 "info",
178 "debug",
179 };
180
181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 struct super_block *sb = fs_info->sb;
184 char lvl[4];
185 struct va_format vaf;
186 va_list args;
187 const char *type = logtypes[4];
188 int kern_level;
189
190 va_start(args, fmt);
191
192 kern_level = printk_get_level(fmt);
193 if (kern_level) {
194 size_t size = printk_skip_level(fmt) - fmt;
195 memcpy(lvl, fmt, size);
196 lvl[size] = '\0';
197 fmt += size;
198 type = logtypes[kern_level - '0'];
199 } else
200 *lvl = '\0';
201
202 vaf.fmt = fmt;
203 vaf.va = &args;
204
205 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
206
207 va_end(args);
208 }
209
210 #else
211
212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
213 unsigned int line, int errno, const char *fmt, ...)
214 {
215 struct super_block *sb = fs_info->sb;
216
217 /*
218 * Special case: if the error is EROFS, and we're already
219 * under MS_RDONLY, then it is safe here.
220 */
221 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
222 return;
223
224 /* Don't go through full error handling during mount */
225 if (sb->s_flags & MS_BORN) {
226 save_error_info(fs_info);
227 btrfs_handle_error(fs_info);
228 }
229 }
230 #endif
231
232 /*
233 * We only mark the transaction aborted and then set the file system read-only.
234 * This will prevent new transactions from starting or trying to join this
235 * one.
236 *
237 * This means that error recovery at the call site is limited to freeing
238 * any local memory allocations and passing the error code up without
239 * further cleanup. The transaction should complete as it normally would
240 * in the call path but will return -EIO.
241 *
242 * We'll complete the cleanup in btrfs_end_transaction and
243 * btrfs_commit_transaction.
244 */
245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root, const char *function,
247 unsigned int line, int errno)
248 {
249 /*
250 * Report first abort since mount
251 */
252 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
253 &root->fs_info->fs_state)) {
254 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
255 errno);
256 }
257 trans->aborted = errno;
258 /* Nothing used. The other threads that have joined this
259 * transaction may be able to continue. */
260 if (!trans->blocks_used) {
261 const char *errstr;
262
263 errstr = btrfs_decode_error(errno);
264 btrfs_warn(root->fs_info,
265 "%s:%d: Aborting unused transaction(%s).",
266 function, line, errstr);
267 return;
268 }
269 ACCESS_ONCE(trans->transaction->aborted) = errno;
270 /* Wake up anybody who may be waiting on this transaction */
271 wake_up(&root->fs_info->transaction_wait);
272 wake_up(&root->fs_info->transaction_blocked_wait);
273 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
274 }
275 /*
276 * __btrfs_panic decodes unexpected, fatal errors from the caller,
277 * issues an alert, and either panics or BUGs, depending on mount options.
278 */
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 unsigned int line, int errno, const char *fmt, ...)
281 {
282 char *s_id = "<unknown>";
283 const char *errstr;
284 struct va_format vaf = { .fmt = fmt };
285 va_list args;
286
287 if (fs_info)
288 s_id = fs_info->sb->s_id;
289
290 va_start(args, fmt);
291 vaf.va = &args;
292
293 errstr = btrfs_decode_error(errno);
294 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 s_id, function, line, &vaf, errno, errstr);
297
298 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 function, line, &vaf, errno, errstr);
300 va_end(args);
301 /* Caller calls BUG() */
302 }
303
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 (void)close_ctree(btrfs_sb(sb)->tree_root);
307 /* FIXME: need to fix VFS to return error? */
308 /* AV: return it _where_? ->put_super() can be triggered by any number
309 * of async events, up to and including delivery of SIGKILL to the
310 * last process that kept it busy. Or segfault in the aforementioned
311 * process... Whom would you report that to?
312 */
313 }
314
315 enum {
316 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
322 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
323 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
324 Opt_check_integrity, Opt_check_integrity_including_extent_data,
325 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
326 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
327 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
328 Opt_datasum,
329 Opt_err,
330 };
331
332 static match_table_t tokens = {
333 {Opt_degraded, "degraded"},
334 {Opt_subvol, "subvol=%s"},
335 {Opt_subvolid, "subvolid=%s"},
336 {Opt_device, "device=%s"},
337 {Opt_nodatasum, "nodatasum"},
338 {Opt_datasum, "datasum"},
339 {Opt_nodatacow, "nodatacow"},
340 {Opt_datacow, "datacow"},
341 {Opt_nobarrier, "nobarrier"},
342 {Opt_barrier, "barrier"},
343 {Opt_max_inline, "max_inline=%s"},
344 {Opt_alloc_start, "alloc_start=%s"},
345 {Opt_thread_pool, "thread_pool=%d"},
346 {Opt_compress, "compress"},
347 {Opt_compress_type, "compress=%s"},
348 {Opt_compress_force, "compress-force"},
349 {Opt_compress_force_type, "compress-force=%s"},
350 {Opt_ssd, "ssd"},
351 {Opt_ssd_spread, "ssd_spread"},
352 {Opt_nossd, "nossd"},
353 {Opt_acl, "acl"},
354 {Opt_noacl, "noacl"},
355 {Opt_notreelog, "notreelog"},
356 {Opt_flushoncommit, "flushoncommit"},
357 {Opt_noflushoncommit, "noflushoncommit"},
358 {Opt_ratio, "metadata_ratio=%d"},
359 {Opt_discard, "discard"},
360 {Opt_nodiscard, "nodiscard"},
361 {Opt_space_cache, "space_cache"},
362 {Opt_clear_cache, "clear_cache"},
363 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
364 {Opt_enospc_debug, "enospc_debug"},
365 {Opt_noenospc_debug, "noenospc_debug"},
366 {Opt_subvolrootid, "subvolrootid=%d"},
367 {Opt_defrag, "autodefrag"},
368 {Opt_nodefrag, "noautodefrag"},
369 {Opt_inode_cache, "inode_cache"},
370 {Opt_no_space_cache, "nospace_cache"},
371 {Opt_recovery, "recovery"},
372 {Opt_skip_balance, "skip_balance"},
373 {Opt_check_integrity, "check_int"},
374 {Opt_check_integrity_including_extent_data, "check_int_data"},
375 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
376 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
377 {Opt_fatal_errors, "fatal_errors=%s"},
378 {Opt_commit_interval, "commit=%d"},
379 {Opt_err, NULL},
380 };
381
382 /*
383 * Regular mount options parser. Everything that is needed only when
384 * reading in a new superblock is parsed here.
385 * XXX JDM: This needs to be cleaned up for remount.
386 */
387 int btrfs_parse_options(struct btrfs_root *root, char *options)
388 {
389 struct btrfs_fs_info *info = root->fs_info;
390 substring_t args[MAX_OPT_ARGS];
391 char *p, *num, *orig = NULL;
392 u64 cache_gen;
393 int intarg;
394 int ret = 0;
395 char *compress_type;
396 bool compress_force = false;
397
398 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
399 if (cache_gen)
400 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
401
402 if (!options)
403 goto out;
404
405 /*
406 * strsep changes the string, duplicate it because parse_options
407 * gets called twice
408 */
409 options = kstrdup(options, GFP_NOFS);
410 if (!options)
411 return -ENOMEM;
412
413 orig = options;
414
415 while ((p = strsep(&options, ",")) != NULL) {
416 int token;
417 if (!*p)
418 continue;
419
420 token = match_token(p, tokens, args);
421 switch (token) {
422 case Opt_degraded:
423 btrfs_info(root->fs_info, "allowing degraded mounts");
424 btrfs_set_opt(info->mount_opt, DEGRADED);
425 break;
426 case Opt_subvol:
427 case Opt_subvolid:
428 case Opt_subvolrootid:
429 case Opt_device:
430 /*
431 * These are parsed by btrfs_parse_early_options
432 * and can be happily ignored here.
433 */
434 break;
435 case Opt_nodatasum:
436 btrfs_info(root->fs_info, "setting nodatasum");
437 btrfs_set_opt(info->mount_opt, NODATASUM);
438 break;
439 case Opt_datasum:
440 if (btrfs_test_opt(root, NODATACOW))
441 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
442 else
443 btrfs_info(root->fs_info, "setting datasum");
444 btrfs_clear_opt(info->mount_opt, NODATACOW);
445 btrfs_clear_opt(info->mount_opt, NODATASUM);
446 break;
447 case Opt_nodatacow:
448 if (!btrfs_test_opt(root, COMPRESS) ||
449 !btrfs_test_opt(root, FORCE_COMPRESS)) {
450 btrfs_info(root->fs_info,
451 "setting nodatacow, compression disabled");
452 } else {
453 btrfs_info(root->fs_info, "setting nodatacow");
454 }
455 btrfs_clear_opt(info->mount_opt, COMPRESS);
456 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
457 btrfs_set_opt(info->mount_opt, NODATACOW);
458 btrfs_set_opt(info->mount_opt, NODATASUM);
459 break;
460 case Opt_datacow:
461 if (btrfs_test_opt(root, NODATACOW))
462 btrfs_info(root->fs_info, "setting datacow");
463 btrfs_clear_opt(info->mount_opt, NODATACOW);
464 break;
465 case Opt_compress_force:
466 case Opt_compress_force_type:
467 compress_force = true;
468 /* Fallthrough */
469 case Opt_compress:
470 case Opt_compress_type:
471 if (token == Opt_compress ||
472 token == Opt_compress_force ||
473 strcmp(args[0].from, "zlib") == 0) {
474 compress_type = "zlib";
475 info->compress_type = BTRFS_COMPRESS_ZLIB;
476 btrfs_set_opt(info->mount_opt, COMPRESS);
477 btrfs_clear_opt(info->mount_opt, NODATACOW);
478 btrfs_clear_opt(info->mount_opt, NODATASUM);
479 } else if (strcmp(args[0].from, "lzo") == 0) {
480 compress_type = "lzo";
481 info->compress_type = BTRFS_COMPRESS_LZO;
482 btrfs_set_opt(info->mount_opt, COMPRESS);
483 btrfs_clear_opt(info->mount_opt, NODATACOW);
484 btrfs_clear_opt(info->mount_opt, NODATASUM);
485 btrfs_set_fs_incompat(info, COMPRESS_LZO);
486 } else if (strncmp(args[0].from, "no", 2) == 0) {
487 compress_type = "no";
488 btrfs_clear_opt(info->mount_opt, COMPRESS);
489 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
490 compress_force = false;
491 } else {
492 ret = -EINVAL;
493 goto out;
494 }
495
496 if (compress_force) {
497 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
498 btrfs_info(root->fs_info, "force %s compression",
499 compress_type);
500 } else if (btrfs_test_opt(root, COMPRESS)) {
501 pr_info("btrfs: use %s compression\n",
502 compress_type);
503 }
504 break;
505 case Opt_ssd:
506 btrfs_info(root->fs_info, "use ssd allocation scheme");
507 btrfs_set_opt(info->mount_opt, SSD);
508 break;
509 case Opt_ssd_spread:
510 btrfs_info(root->fs_info, "use spread ssd allocation scheme");
511 btrfs_set_opt(info->mount_opt, SSD);
512 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
513 break;
514 case Opt_nossd:
515 btrfs_info(root->fs_info, "not using ssd allocation scheme");
516 btrfs_set_opt(info->mount_opt, NOSSD);
517 btrfs_clear_opt(info->mount_opt, SSD);
518 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
519 break;
520 case Opt_barrier:
521 if (btrfs_test_opt(root, NOBARRIER))
522 btrfs_info(root->fs_info, "turning on barriers");
523 btrfs_clear_opt(info->mount_opt, NOBARRIER);
524 break;
525 case Opt_nobarrier:
526 btrfs_info(root->fs_info, "turning off barriers");
527 btrfs_set_opt(info->mount_opt, NOBARRIER);
528 break;
529 case Opt_thread_pool:
530 ret = match_int(&args[0], &intarg);
531 if (ret) {
532 goto out;
533 } else if (intarg > 0) {
534 info->thread_pool_size = intarg;
535 } else {
536 ret = -EINVAL;
537 goto out;
538 }
539 break;
540 case Opt_max_inline:
541 num = match_strdup(&args[0]);
542 if (num) {
543 info->max_inline = memparse(num, NULL);
544 kfree(num);
545
546 if (info->max_inline) {
547 info->max_inline = max_t(u64,
548 info->max_inline,
549 root->sectorsize);
550 }
551 btrfs_info(root->fs_info, "max_inline at %llu",
552 info->max_inline);
553 } else {
554 ret = -ENOMEM;
555 goto out;
556 }
557 break;
558 case Opt_alloc_start:
559 num = match_strdup(&args[0]);
560 if (num) {
561 mutex_lock(&info->chunk_mutex);
562 info->alloc_start = memparse(num, NULL);
563 mutex_unlock(&info->chunk_mutex);
564 kfree(num);
565 btrfs_info(root->fs_info, "allocations start at %llu",
566 info->alloc_start);
567 } else {
568 ret = -ENOMEM;
569 goto out;
570 }
571 break;
572 case Opt_acl:
573 root->fs_info->sb->s_flags |= MS_POSIXACL;
574 break;
575 case Opt_noacl:
576 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
577 break;
578 case Opt_notreelog:
579 btrfs_info(root->fs_info, "disabling tree log");
580 btrfs_set_opt(info->mount_opt, NOTREELOG);
581 break;
582 case Opt_flushoncommit:
583 btrfs_info(root->fs_info, "turning on flush-on-commit");
584 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
585 break;
586 case Opt_noflushoncommit:
587 if (btrfs_test_opt(root, FLUSHONCOMMIT))
588 btrfs_info(root->fs_info, "turning off flush-on-commit");
589 btrfs_clear_opt(info->mount_opt, FLUSHONCOMMIT);
590 break;
591 case Opt_ratio:
592 ret = match_int(&args[0], &intarg);
593 if (ret) {
594 goto out;
595 } else if (intarg >= 0) {
596 info->metadata_ratio = intarg;
597 btrfs_info(root->fs_info, "metadata ratio %d",
598 info->metadata_ratio);
599 } else {
600 ret = -EINVAL;
601 goto out;
602 }
603 break;
604 case Opt_discard:
605 btrfs_set_opt(info->mount_opt, DISCARD);
606 break;
607 case Opt_nodiscard:
608 btrfs_clear_opt(info->mount_opt, DISCARD);
609 break;
610 case Opt_space_cache:
611 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
612 break;
613 case Opt_rescan_uuid_tree:
614 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
615 break;
616 case Opt_no_space_cache:
617 btrfs_info(root->fs_info, "disabling disk space caching");
618 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
619 break;
620 case Opt_inode_cache:
621 btrfs_info(root->fs_info, "enabling inode map caching");
622 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
623 break;
624 case Opt_clear_cache:
625 btrfs_info(root->fs_info, "force clearing of disk cache");
626 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
627 break;
628 case Opt_user_subvol_rm_allowed:
629 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
630 break;
631 case Opt_enospc_debug:
632 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
633 break;
634 case Opt_noenospc_debug:
635 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
636 break;
637 case Opt_defrag:
638 btrfs_info(root->fs_info, "enabling auto defrag");
639 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
640 break;
641 case Opt_nodefrag:
642 if (btrfs_test_opt(root, AUTO_DEFRAG))
643 btrfs_info(root->fs_info, "disabling auto defrag");
644 btrfs_clear_opt(info->mount_opt, AUTO_DEFRAG);
645 break;
646 case Opt_recovery:
647 btrfs_info(root->fs_info, "enabling auto recovery");
648 btrfs_set_opt(info->mount_opt, RECOVERY);
649 break;
650 case Opt_skip_balance:
651 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
652 break;
653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
654 case Opt_check_integrity_including_extent_data:
655 btrfs_info(root->fs_info,
656 "enabling check integrity including extent data");
657 btrfs_set_opt(info->mount_opt,
658 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
659 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
660 break;
661 case Opt_check_integrity:
662 btrfs_info(root->fs_info, "enabling check integrity");
663 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
664 break;
665 case Opt_check_integrity_print_mask:
666 ret = match_int(&args[0], &intarg);
667 if (ret) {
668 goto out;
669 } else if (intarg >= 0) {
670 info->check_integrity_print_mask = intarg;
671 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
672 info->check_integrity_print_mask);
673 } else {
674 ret = -EINVAL;
675 goto out;
676 }
677 break;
678 #else
679 case Opt_check_integrity_including_extent_data:
680 case Opt_check_integrity:
681 case Opt_check_integrity_print_mask:
682 btrfs_err(root->fs_info,
683 "support for check_integrity* not compiled in!");
684 ret = -EINVAL;
685 goto out;
686 #endif
687 case Opt_fatal_errors:
688 if (strcmp(args[0].from, "panic") == 0)
689 btrfs_set_opt(info->mount_opt,
690 PANIC_ON_FATAL_ERROR);
691 else if (strcmp(args[0].from, "bug") == 0)
692 btrfs_clear_opt(info->mount_opt,
693 PANIC_ON_FATAL_ERROR);
694 else {
695 ret = -EINVAL;
696 goto out;
697 }
698 break;
699 case Opt_commit_interval:
700 intarg = 0;
701 ret = match_int(&args[0], &intarg);
702 if (ret < 0) {
703 btrfs_err(root->fs_info, "invalid commit interval");
704 ret = -EINVAL;
705 goto out;
706 }
707 if (intarg > 0) {
708 if (intarg > 300) {
709 btrfs_warn(root->fs_info, "excessive commit interval %d",
710 intarg);
711 }
712 info->commit_interval = intarg;
713 } else {
714 btrfs_info(root->fs_info, "using default commit interval %ds",
715 BTRFS_DEFAULT_COMMIT_INTERVAL);
716 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
717 }
718 break;
719 case Opt_err:
720 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
721 ret = -EINVAL;
722 goto out;
723 default:
724 break;
725 }
726 }
727 out:
728 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
729 btrfs_info(root->fs_info, "disk space caching is enabled");
730 kfree(orig);
731 return ret;
732 }
733
734 /*
735 * Parse mount options that are required early in the mount process.
736 *
737 * All other options will be parsed on much later in the mount process and
738 * only when we need to allocate a new super block.
739 */
740 static int btrfs_parse_early_options(const char *options, fmode_t flags,
741 void *holder, char **subvol_name, u64 *subvol_objectid,
742 struct btrfs_fs_devices **fs_devices)
743 {
744 substring_t args[MAX_OPT_ARGS];
745 char *device_name, *opts, *orig, *p;
746 char *num = NULL;
747 int error = 0;
748
749 if (!options)
750 return 0;
751
752 /*
753 * strsep changes the string, duplicate it because parse_options
754 * gets called twice
755 */
756 opts = kstrdup(options, GFP_KERNEL);
757 if (!opts)
758 return -ENOMEM;
759 orig = opts;
760
761 while ((p = strsep(&opts, ",")) != NULL) {
762 int token;
763 if (!*p)
764 continue;
765
766 token = match_token(p, tokens, args);
767 switch (token) {
768 case Opt_subvol:
769 kfree(*subvol_name);
770 *subvol_name = match_strdup(&args[0]);
771 if (!*subvol_name) {
772 error = -ENOMEM;
773 goto out;
774 }
775 break;
776 case Opt_subvolid:
777 num = match_strdup(&args[0]);
778 if (num) {
779 *subvol_objectid = memparse(num, NULL);
780 kfree(num);
781 /* we want the original fs_tree */
782 if (!*subvol_objectid)
783 *subvol_objectid =
784 BTRFS_FS_TREE_OBJECTID;
785 } else {
786 error = -EINVAL;
787 goto out;
788 }
789 break;
790 case Opt_subvolrootid:
791 printk(KERN_WARNING
792 "BTRFS: 'subvolrootid' mount option is deprecated and has "
793 "no effect\n");
794 break;
795 case Opt_device:
796 device_name = match_strdup(&args[0]);
797 if (!device_name) {
798 error = -ENOMEM;
799 goto out;
800 }
801 error = btrfs_scan_one_device(device_name,
802 flags, holder, fs_devices);
803 kfree(device_name);
804 if (error)
805 goto out;
806 break;
807 default:
808 break;
809 }
810 }
811
812 out:
813 kfree(orig);
814 return error;
815 }
816
817 static struct dentry *get_default_root(struct super_block *sb,
818 u64 subvol_objectid)
819 {
820 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
821 struct btrfs_root *root = fs_info->tree_root;
822 struct btrfs_root *new_root;
823 struct btrfs_dir_item *di;
824 struct btrfs_path *path;
825 struct btrfs_key location;
826 struct inode *inode;
827 u64 dir_id;
828 int new = 0;
829
830 /*
831 * We have a specific subvol we want to mount, just setup location and
832 * go look up the root.
833 */
834 if (subvol_objectid) {
835 location.objectid = subvol_objectid;
836 location.type = BTRFS_ROOT_ITEM_KEY;
837 location.offset = (u64)-1;
838 goto find_root;
839 }
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return ERR_PTR(-ENOMEM);
844 path->leave_spinning = 1;
845
846 /*
847 * Find the "default" dir item which points to the root item that we
848 * will mount by default if we haven't been given a specific subvolume
849 * to mount.
850 */
851 dir_id = btrfs_super_root_dir(fs_info->super_copy);
852 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
853 if (IS_ERR(di)) {
854 btrfs_free_path(path);
855 return ERR_CAST(di);
856 }
857 if (!di) {
858 /*
859 * Ok the default dir item isn't there. This is weird since
860 * it's always been there, but don't freak out, just try and
861 * mount to root most subvolume.
862 */
863 btrfs_free_path(path);
864 dir_id = BTRFS_FIRST_FREE_OBJECTID;
865 new_root = fs_info->fs_root;
866 goto setup_root;
867 }
868
869 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
870 btrfs_free_path(path);
871
872 find_root:
873 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
874 if (IS_ERR(new_root))
875 return ERR_CAST(new_root);
876
877 dir_id = btrfs_root_dirid(&new_root->root_item);
878 setup_root:
879 location.objectid = dir_id;
880 location.type = BTRFS_INODE_ITEM_KEY;
881 location.offset = 0;
882
883 inode = btrfs_iget(sb, &location, new_root, &new);
884 if (IS_ERR(inode))
885 return ERR_CAST(inode);
886
887 /*
888 * If we're just mounting the root most subvol put the inode and return
889 * a reference to the dentry. We will have already gotten a reference
890 * to the inode in btrfs_fill_super so we're good to go.
891 */
892 if (!new && sb->s_root->d_inode == inode) {
893 iput(inode);
894 return dget(sb->s_root);
895 }
896
897 return d_obtain_alias(inode);
898 }
899
900 static int btrfs_fill_super(struct super_block *sb,
901 struct btrfs_fs_devices *fs_devices,
902 void *data, int silent)
903 {
904 struct inode *inode;
905 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
906 struct btrfs_key key;
907 int err;
908
909 sb->s_maxbytes = MAX_LFS_FILESIZE;
910 sb->s_magic = BTRFS_SUPER_MAGIC;
911 sb->s_op = &btrfs_super_ops;
912 sb->s_d_op = &btrfs_dentry_operations;
913 sb->s_export_op = &btrfs_export_ops;
914 sb->s_xattr = btrfs_xattr_handlers;
915 sb->s_time_gran = 1;
916 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
917 sb->s_flags |= MS_POSIXACL;
918 #endif
919 sb->s_flags |= MS_I_VERSION;
920 err = open_ctree(sb, fs_devices, (char *)data);
921 if (err) {
922 printk(KERN_ERR "BTRFS: open_ctree failed\n");
923 return err;
924 }
925
926 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
927 key.type = BTRFS_INODE_ITEM_KEY;
928 key.offset = 0;
929 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
930 if (IS_ERR(inode)) {
931 err = PTR_ERR(inode);
932 goto fail_close;
933 }
934
935 sb->s_root = d_make_root(inode);
936 if (!sb->s_root) {
937 err = -ENOMEM;
938 goto fail_close;
939 }
940
941 save_mount_options(sb, data);
942 cleancache_init_fs(sb);
943 sb->s_flags |= MS_ACTIVE;
944 return 0;
945
946 fail_close:
947 close_ctree(fs_info->tree_root);
948 return err;
949 }
950
951 int btrfs_sync_fs(struct super_block *sb, int wait)
952 {
953 struct btrfs_trans_handle *trans;
954 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
955 struct btrfs_root *root = fs_info->tree_root;
956
957 trace_btrfs_sync_fs(wait);
958
959 if (!wait) {
960 filemap_flush(fs_info->btree_inode->i_mapping);
961 return 0;
962 }
963
964 btrfs_wait_ordered_roots(fs_info, -1);
965
966 trans = btrfs_attach_transaction_barrier(root);
967 if (IS_ERR(trans)) {
968 /* no transaction, don't bother */
969 if (PTR_ERR(trans) == -ENOENT)
970 return 0;
971 return PTR_ERR(trans);
972 }
973 return btrfs_commit_transaction(trans, root);
974 }
975
976 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
977 {
978 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
979 struct btrfs_root *root = info->tree_root;
980 char *compress_type;
981
982 if (btrfs_test_opt(root, DEGRADED))
983 seq_puts(seq, ",degraded");
984 if (btrfs_test_opt(root, NODATASUM))
985 seq_puts(seq, ",nodatasum");
986 if (btrfs_test_opt(root, NODATACOW))
987 seq_puts(seq, ",nodatacow");
988 if (btrfs_test_opt(root, NOBARRIER))
989 seq_puts(seq, ",nobarrier");
990 if (info->max_inline != 8192 * 1024)
991 seq_printf(seq, ",max_inline=%llu", info->max_inline);
992 if (info->alloc_start != 0)
993 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
994 if (info->thread_pool_size != min_t(unsigned long,
995 num_online_cpus() + 2, 8))
996 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
997 if (btrfs_test_opt(root, COMPRESS)) {
998 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
999 compress_type = "zlib";
1000 else
1001 compress_type = "lzo";
1002 if (btrfs_test_opt(root, FORCE_COMPRESS))
1003 seq_printf(seq, ",compress-force=%s", compress_type);
1004 else
1005 seq_printf(seq, ",compress=%s", compress_type);
1006 }
1007 if (btrfs_test_opt(root, NOSSD))
1008 seq_puts(seq, ",nossd");
1009 if (btrfs_test_opt(root, SSD_SPREAD))
1010 seq_puts(seq, ",ssd_spread");
1011 else if (btrfs_test_opt(root, SSD))
1012 seq_puts(seq, ",ssd");
1013 if (btrfs_test_opt(root, NOTREELOG))
1014 seq_puts(seq, ",notreelog");
1015 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1016 seq_puts(seq, ",flushoncommit");
1017 if (btrfs_test_opt(root, DISCARD))
1018 seq_puts(seq, ",discard");
1019 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1020 seq_puts(seq, ",noacl");
1021 if (btrfs_test_opt(root, SPACE_CACHE))
1022 seq_puts(seq, ",space_cache");
1023 else
1024 seq_puts(seq, ",nospace_cache");
1025 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1026 seq_puts(seq, ",rescan_uuid_tree");
1027 if (btrfs_test_opt(root, CLEAR_CACHE))
1028 seq_puts(seq, ",clear_cache");
1029 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1030 seq_puts(seq, ",user_subvol_rm_allowed");
1031 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1032 seq_puts(seq, ",enospc_debug");
1033 if (btrfs_test_opt(root, AUTO_DEFRAG))
1034 seq_puts(seq, ",autodefrag");
1035 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1036 seq_puts(seq, ",inode_cache");
1037 if (btrfs_test_opt(root, SKIP_BALANCE))
1038 seq_puts(seq, ",skip_balance");
1039 if (btrfs_test_opt(root, RECOVERY))
1040 seq_puts(seq, ",recovery");
1041 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1042 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1043 seq_puts(seq, ",check_int_data");
1044 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1045 seq_puts(seq, ",check_int");
1046 if (info->check_integrity_print_mask)
1047 seq_printf(seq, ",check_int_print_mask=%d",
1048 info->check_integrity_print_mask);
1049 #endif
1050 if (info->metadata_ratio)
1051 seq_printf(seq, ",metadata_ratio=%d",
1052 info->metadata_ratio);
1053 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1054 seq_puts(seq, ",fatal_errors=panic");
1055 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1056 seq_printf(seq, ",commit=%d", info->commit_interval);
1057 return 0;
1058 }
1059
1060 static int btrfs_test_super(struct super_block *s, void *data)
1061 {
1062 struct btrfs_fs_info *p = data;
1063 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1064
1065 return fs_info->fs_devices == p->fs_devices;
1066 }
1067
1068 static int btrfs_set_super(struct super_block *s, void *data)
1069 {
1070 int err = set_anon_super(s, data);
1071 if (!err)
1072 s->s_fs_info = data;
1073 return err;
1074 }
1075
1076 /*
1077 * subvolumes are identified by ino 256
1078 */
1079 static inline int is_subvolume_inode(struct inode *inode)
1080 {
1081 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1082 return 1;
1083 return 0;
1084 }
1085
1086 /*
1087 * This will strip out the subvol=%s argument for an argument string and add
1088 * subvolid=0 to make sure we get the actual tree root for path walking to the
1089 * subvol we want.
1090 */
1091 static char *setup_root_args(char *args)
1092 {
1093 unsigned len = strlen(args) + 2 + 1;
1094 char *src, *dst, *buf;
1095
1096 /*
1097 * We need the same args as before, but with this substitution:
1098 * s!subvol=[^,]+!subvolid=0!
1099 *
1100 * Since the replacement string is up to 2 bytes longer than the
1101 * original, allocate strlen(args) + 2 + 1 bytes.
1102 */
1103
1104 src = strstr(args, "subvol=");
1105 /* This shouldn't happen, but just in case.. */
1106 if (!src)
1107 return NULL;
1108
1109 buf = dst = kmalloc(len, GFP_NOFS);
1110 if (!buf)
1111 return NULL;
1112
1113 /*
1114 * If the subvol= arg is not at the start of the string,
1115 * copy whatever precedes it into buf.
1116 */
1117 if (src != args) {
1118 *src++ = '\0';
1119 strcpy(buf, args);
1120 dst += strlen(args);
1121 }
1122
1123 strcpy(dst, "subvolid=0");
1124 dst += strlen("subvolid=0");
1125
1126 /*
1127 * If there is a "," after the original subvol=... string,
1128 * copy that suffix into our buffer. Otherwise, we're done.
1129 */
1130 src = strchr(src, ',');
1131 if (src)
1132 strcpy(dst, src);
1133
1134 return buf;
1135 }
1136
1137 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1138 const char *device_name, char *data)
1139 {
1140 struct dentry *root;
1141 struct vfsmount *mnt;
1142 char *newargs;
1143
1144 newargs = setup_root_args(data);
1145 if (!newargs)
1146 return ERR_PTR(-ENOMEM);
1147 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1148 newargs);
1149 kfree(newargs);
1150 if (IS_ERR(mnt))
1151 return ERR_CAST(mnt);
1152
1153 root = mount_subtree(mnt, subvol_name);
1154
1155 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1156 struct super_block *s = root->d_sb;
1157 dput(root);
1158 root = ERR_PTR(-EINVAL);
1159 deactivate_locked_super(s);
1160 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1161 subvol_name);
1162 }
1163
1164 return root;
1165 }
1166
1167 /*
1168 * Find a superblock for the given device / mount point.
1169 *
1170 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1171 * for multiple device setup. Make sure to keep it in sync.
1172 */
1173 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1174 const char *device_name, void *data)
1175 {
1176 struct block_device *bdev = NULL;
1177 struct super_block *s;
1178 struct dentry *root;
1179 struct btrfs_fs_devices *fs_devices = NULL;
1180 struct btrfs_fs_info *fs_info = NULL;
1181 fmode_t mode = FMODE_READ;
1182 char *subvol_name = NULL;
1183 u64 subvol_objectid = 0;
1184 int error = 0;
1185
1186 if (!(flags & MS_RDONLY))
1187 mode |= FMODE_WRITE;
1188
1189 error = btrfs_parse_early_options(data, mode, fs_type,
1190 &subvol_name, &subvol_objectid,
1191 &fs_devices);
1192 if (error) {
1193 kfree(subvol_name);
1194 return ERR_PTR(error);
1195 }
1196
1197 if (subvol_name) {
1198 root = mount_subvol(subvol_name, flags, device_name, data);
1199 kfree(subvol_name);
1200 return root;
1201 }
1202
1203 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1204 if (error)
1205 return ERR_PTR(error);
1206
1207 /*
1208 * Setup a dummy root and fs_info for test/set super. This is because
1209 * we don't actually fill this stuff out until open_ctree, but we need
1210 * it for searching for existing supers, so this lets us do that and
1211 * then open_ctree will properly initialize everything later.
1212 */
1213 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1214 if (!fs_info)
1215 return ERR_PTR(-ENOMEM);
1216
1217 fs_info->fs_devices = fs_devices;
1218
1219 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1220 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1221 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1222 error = -ENOMEM;
1223 goto error_fs_info;
1224 }
1225
1226 error = btrfs_open_devices(fs_devices, mode, fs_type);
1227 if (error)
1228 goto error_fs_info;
1229
1230 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1231 error = -EACCES;
1232 goto error_close_devices;
1233 }
1234
1235 bdev = fs_devices->latest_bdev;
1236 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1237 fs_info);
1238 if (IS_ERR(s)) {
1239 error = PTR_ERR(s);
1240 goto error_close_devices;
1241 }
1242
1243 if (s->s_root) {
1244 btrfs_close_devices(fs_devices);
1245 free_fs_info(fs_info);
1246 if ((flags ^ s->s_flags) & MS_RDONLY)
1247 error = -EBUSY;
1248 } else {
1249 char b[BDEVNAME_SIZE];
1250
1251 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1252 btrfs_sb(s)->bdev_holder = fs_type;
1253 error = btrfs_fill_super(s, fs_devices, data,
1254 flags & MS_SILENT ? 1 : 0);
1255 }
1256
1257 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1258 if (IS_ERR(root))
1259 deactivate_locked_super(s);
1260
1261 return root;
1262
1263 error_close_devices:
1264 btrfs_close_devices(fs_devices);
1265 error_fs_info:
1266 free_fs_info(fs_info);
1267 return ERR_PTR(error);
1268 }
1269
1270 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1271 {
1272 spin_lock_irq(&workers->lock);
1273 workers->max_workers = new_limit;
1274 spin_unlock_irq(&workers->lock);
1275 }
1276
1277 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1278 int new_pool_size, int old_pool_size)
1279 {
1280 if (new_pool_size == old_pool_size)
1281 return;
1282
1283 fs_info->thread_pool_size = new_pool_size;
1284
1285 btrfs_info(fs_info, "resize thread pool %d -> %d",
1286 old_pool_size, new_pool_size);
1287
1288 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1289 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1290 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1291 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1292 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1293 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1294 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1295 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1296 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1297 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1298 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1299 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1300 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1301 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1302 new_pool_size);
1303 }
1304
1305 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1306 {
1307 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1308 }
1309
1310 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1311 unsigned long old_opts, int flags)
1312 {
1313 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1314 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1315 (flags & MS_RDONLY))) {
1316 /* wait for any defraggers to finish */
1317 wait_event(fs_info->transaction_wait,
1318 (atomic_read(&fs_info->defrag_running) == 0));
1319 if (flags & MS_RDONLY)
1320 sync_filesystem(fs_info->sb);
1321 }
1322 }
1323
1324 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1325 unsigned long old_opts)
1326 {
1327 /*
1328 * We need cleanup all defragable inodes if the autodefragment is
1329 * close or the fs is R/O.
1330 */
1331 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1332 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1333 (fs_info->sb->s_flags & MS_RDONLY))) {
1334 btrfs_cleanup_defrag_inodes(fs_info);
1335 }
1336
1337 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1338 }
1339
1340 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1341 {
1342 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1343 struct btrfs_root *root = fs_info->tree_root;
1344 unsigned old_flags = sb->s_flags;
1345 unsigned long old_opts = fs_info->mount_opt;
1346 unsigned long old_compress_type = fs_info->compress_type;
1347 u64 old_max_inline = fs_info->max_inline;
1348 u64 old_alloc_start = fs_info->alloc_start;
1349 int old_thread_pool_size = fs_info->thread_pool_size;
1350 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1351 int ret;
1352
1353 btrfs_remount_prepare(fs_info);
1354
1355 ret = btrfs_parse_options(root, data);
1356 if (ret) {
1357 ret = -EINVAL;
1358 goto restore;
1359 }
1360
1361 btrfs_remount_begin(fs_info, old_opts, *flags);
1362 btrfs_resize_thread_pool(fs_info,
1363 fs_info->thread_pool_size, old_thread_pool_size);
1364
1365 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1366 goto out;
1367
1368 if (*flags & MS_RDONLY) {
1369 /*
1370 * this also happens on 'umount -rf' or on shutdown, when
1371 * the filesystem is busy.
1372 */
1373
1374 /* wait for the uuid_scan task to finish */
1375 down(&fs_info->uuid_tree_rescan_sem);
1376 /* avoid complains from lockdep et al. */
1377 up(&fs_info->uuid_tree_rescan_sem);
1378
1379 sb->s_flags |= MS_RDONLY;
1380
1381 btrfs_dev_replace_suspend_for_unmount(fs_info);
1382 btrfs_scrub_cancel(fs_info);
1383 btrfs_pause_balance(fs_info);
1384
1385 ret = btrfs_commit_super(root);
1386 if (ret)
1387 goto restore;
1388 } else {
1389 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1390 btrfs_err(fs_info,
1391 "Remounting read-write after error is not allowed");
1392 ret = -EINVAL;
1393 goto restore;
1394 }
1395 if (fs_info->fs_devices->rw_devices == 0) {
1396 ret = -EACCES;
1397 goto restore;
1398 }
1399
1400 if (fs_info->fs_devices->missing_devices >
1401 fs_info->num_tolerated_disk_barrier_failures &&
1402 !(*flags & MS_RDONLY)) {
1403 btrfs_warn(fs_info,
1404 "too many missing devices, writeable remount is not allowed");
1405 ret = -EACCES;
1406 goto restore;
1407 }
1408
1409 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1410 ret = -EINVAL;
1411 goto restore;
1412 }
1413
1414 ret = btrfs_cleanup_fs_roots(fs_info);
1415 if (ret)
1416 goto restore;
1417
1418 /* recover relocation */
1419 ret = btrfs_recover_relocation(root);
1420 if (ret)
1421 goto restore;
1422
1423 ret = btrfs_resume_balance_async(fs_info);
1424 if (ret)
1425 goto restore;
1426
1427 ret = btrfs_resume_dev_replace_async(fs_info);
1428 if (ret) {
1429 btrfs_warn(fs_info, "failed to resume dev_replace");
1430 goto restore;
1431 }
1432
1433 if (!fs_info->uuid_root) {
1434 btrfs_info(fs_info, "creating UUID tree");
1435 ret = btrfs_create_uuid_tree(fs_info);
1436 if (ret) {
1437 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1438 goto restore;
1439 }
1440 }
1441 sb->s_flags &= ~MS_RDONLY;
1442 }
1443 out:
1444 btrfs_remount_cleanup(fs_info, old_opts);
1445 return 0;
1446
1447 restore:
1448 /* We've hit an error - don't reset MS_RDONLY */
1449 if (sb->s_flags & MS_RDONLY)
1450 old_flags |= MS_RDONLY;
1451 sb->s_flags = old_flags;
1452 fs_info->mount_opt = old_opts;
1453 fs_info->compress_type = old_compress_type;
1454 fs_info->max_inline = old_max_inline;
1455 mutex_lock(&fs_info->chunk_mutex);
1456 fs_info->alloc_start = old_alloc_start;
1457 mutex_unlock(&fs_info->chunk_mutex);
1458 btrfs_resize_thread_pool(fs_info,
1459 old_thread_pool_size, fs_info->thread_pool_size);
1460 fs_info->metadata_ratio = old_metadata_ratio;
1461 btrfs_remount_cleanup(fs_info, old_opts);
1462 return ret;
1463 }
1464
1465 /* Used to sort the devices by max_avail(descending sort) */
1466 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1467 const void *dev_info2)
1468 {
1469 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1470 ((struct btrfs_device_info *)dev_info2)->max_avail)
1471 return -1;
1472 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1473 ((struct btrfs_device_info *)dev_info2)->max_avail)
1474 return 1;
1475 else
1476 return 0;
1477 }
1478
1479 /*
1480 * sort the devices by max_avail, in which max free extent size of each device
1481 * is stored.(Descending Sort)
1482 */
1483 static inline void btrfs_descending_sort_devices(
1484 struct btrfs_device_info *devices,
1485 size_t nr_devices)
1486 {
1487 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1488 btrfs_cmp_device_free_bytes, NULL);
1489 }
1490
1491 /*
1492 * The helper to calc the free space on the devices that can be used to store
1493 * file data.
1494 */
1495 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1496 {
1497 struct btrfs_fs_info *fs_info = root->fs_info;
1498 struct btrfs_device_info *devices_info;
1499 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1500 struct btrfs_device *device;
1501 u64 skip_space;
1502 u64 type;
1503 u64 avail_space;
1504 u64 used_space;
1505 u64 min_stripe_size;
1506 int min_stripes = 1, num_stripes = 1;
1507 int i = 0, nr_devices;
1508 int ret;
1509
1510 nr_devices = fs_info->fs_devices->open_devices;
1511 BUG_ON(!nr_devices);
1512
1513 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1514 GFP_NOFS);
1515 if (!devices_info)
1516 return -ENOMEM;
1517
1518 /* calc min stripe number for data space alloction */
1519 type = btrfs_get_alloc_profile(root, 1);
1520 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1521 min_stripes = 2;
1522 num_stripes = nr_devices;
1523 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1524 min_stripes = 2;
1525 num_stripes = 2;
1526 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1527 min_stripes = 4;
1528 num_stripes = 4;
1529 }
1530
1531 if (type & BTRFS_BLOCK_GROUP_DUP)
1532 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1533 else
1534 min_stripe_size = BTRFS_STRIPE_LEN;
1535
1536 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1537 if (!device->in_fs_metadata || !device->bdev ||
1538 device->is_tgtdev_for_dev_replace)
1539 continue;
1540
1541 avail_space = device->total_bytes - device->bytes_used;
1542
1543 /* align with stripe_len */
1544 do_div(avail_space, BTRFS_STRIPE_LEN);
1545 avail_space *= BTRFS_STRIPE_LEN;
1546
1547 /*
1548 * In order to avoid overwritting the superblock on the drive,
1549 * btrfs starts at an offset of at least 1MB when doing chunk
1550 * allocation.
1551 */
1552 skip_space = 1024 * 1024;
1553
1554 /* user can set the offset in fs_info->alloc_start. */
1555 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1556 device->total_bytes)
1557 skip_space = max(fs_info->alloc_start, skip_space);
1558
1559 /*
1560 * btrfs can not use the free space in [0, skip_space - 1],
1561 * we must subtract it from the total. In order to implement
1562 * it, we account the used space in this range first.
1563 */
1564 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1565 &used_space);
1566 if (ret) {
1567 kfree(devices_info);
1568 return ret;
1569 }
1570
1571 /* calc the free space in [0, skip_space - 1] */
1572 skip_space -= used_space;
1573
1574 /*
1575 * we can use the free space in [0, skip_space - 1], subtract
1576 * it from the total.
1577 */
1578 if (avail_space && avail_space >= skip_space)
1579 avail_space -= skip_space;
1580 else
1581 avail_space = 0;
1582
1583 if (avail_space < min_stripe_size)
1584 continue;
1585
1586 devices_info[i].dev = device;
1587 devices_info[i].max_avail = avail_space;
1588
1589 i++;
1590 }
1591
1592 nr_devices = i;
1593
1594 btrfs_descending_sort_devices(devices_info, nr_devices);
1595
1596 i = nr_devices - 1;
1597 avail_space = 0;
1598 while (nr_devices >= min_stripes) {
1599 if (num_stripes > nr_devices)
1600 num_stripes = nr_devices;
1601
1602 if (devices_info[i].max_avail >= min_stripe_size) {
1603 int j;
1604 u64 alloc_size;
1605
1606 avail_space += devices_info[i].max_avail * num_stripes;
1607 alloc_size = devices_info[i].max_avail;
1608 for (j = i + 1 - num_stripes; j <= i; j++)
1609 devices_info[j].max_avail -= alloc_size;
1610 }
1611 i--;
1612 nr_devices--;
1613 }
1614
1615 kfree(devices_info);
1616 *free_bytes = avail_space;
1617 return 0;
1618 }
1619
1620 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1621 {
1622 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1623 struct btrfs_super_block *disk_super = fs_info->super_copy;
1624 struct list_head *head = &fs_info->space_info;
1625 struct btrfs_space_info *found;
1626 u64 total_used = 0;
1627 u64 total_free_data = 0;
1628 int bits = dentry->d_sb->s_blocksize_bits;
1629 __be32 *fsid = (__be32 *)fs_info->fsid;
1630 int ret;
1631
1632 /* holding chunk_muext to avoid allocating new chunks */
1633 mutex_lock(&fs_info->chunk_mutex);
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(found, head, list) {
1636 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1637 total_free_data += found->disk_total - found->disk_used;
1638 total_free_data -=
1639 btrfs_account_ro_block_groups_free_space(found);
1640 }
1641
1642 total_used += found->disk_used;
1643 }
1644 rcu_read_unlock();
1645
1646 buf->f_namelen = BTRFS_NAME_LEN;
1647 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1648 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1649 buf->f_bsize = dentry->d_sb->s_blocksize;
1650 buf->f_type = BTRFS_SUPER_MAGIC;
1651 buf->f_bavail = total_free_data;
1652 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1653 if (ret) {
1654 mutex_unlock(&fs_info->chunk_mutex);
1655 return ret;
1656 }
1657 buf->f_bavail += total_free_data;
1658 buf->f_bavail = buf->f_bavail >> bits;
1659 mutex_unlock(&fs_info->chunk_mutex);
1660
1661 /* We treat it as constant endianness (it doesn't matter _which_)
1662 because we want the fsid to come out the same whether mounted
1663 on a big-endian or little-endian host */
1664 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1665 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1666 /* Mask in the root object ID too, to disambiguate subvols */
1667 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1668 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1669
1670 return 0;
1671 }
1672
1673 static void btrfs_kill_super(struct super_block *sb)
1674 {
1675 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1676 kill_anon_super(sb);
1677 free_fs_info(fs_info);
1678 }
1679
1680 static struct file_system_type btrfs_fs_type = {
1681 .owner = THIS_MODULE,
1682 .name = "btrfs",
1683 .mount = btrfs_mount,
1684 .kill_sb = btrfs_kill_super,
1685 .fs_flags = FS_REQUIRES_DEV,
1686 };
1687 MODULE_ALIAS_FS("btrfs");
1688
1689 /*
1690 * used by btrfsctl to scan devices when no FS is mounted
1691 */
1692 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1693 unsigned long arg)
1694 {
1695 struct btrfs_ioctl_vol_args *vol;
1696 struct btrfs_fs_devices *fs_devices;
1697 int ret = -ENOTTY;
1698
1699 if (!capable(CAP_SYS_ADMIN))
1700 return -EPERM;
1701
1702 vol = memdup_user((void __user *)arg, sizeof(*vol));
1703 if (IS_ERR(vol))
1704 return PTR_ERR(vol);
1705
1706 switch (cmd) {
1707 case BTRFS_IOC_SCAN_DEV:
1708 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1709 &btrfs_fs_type, &fs_devices);
1710 break;
1711 case BTRFS_IOC_DEVICES_READY:
1712 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1713 &btrfs_fs_type, &fs_devices);
1714 if (ret)
1715 break;
1716 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1717 break;
1718 }
1719
1720 kfree(vol);
1721 return ret;
1722 }
1723
1724 static int btrfs_freeze(struct super_block *sb)
1725 {
1726 struct btrfs_trans_handle *trans;
1727 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1728
1729 trans = btrfs_attach_transaction_barrier(root);
1730 if (IS_ERR(trans)) {
1731 /* no transaction, don't bother */
1732 if (PTR_ERR(trans) == -ENOENT)
1733 return 0;
1734 return PTR_ERR(trans);
1735 }
1736 return btrfs_commit_transaction(trans, root);
1737 }
1738
1739 static int btrfs_unfreeze(struct super_block *sb)
1740 {
1741 return 0;
1742 }
1743
1744 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1745 {
1746 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1747 struct btrfs_fs_devices *cur_devices;
1748 struct btrfs_device *dev, *first_dev = NULL;
1749 struct list_head *head;
1750 struct rcu_string *name;
1751
1752 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1753 cur_devices = fs_info->fs_devices;
1754 while (cur_devices) {
1755 head = &cur_devices->devices;
1756 list_for_each_entry(dev, head, dev_list) {
1757 if (dev->missing)
1758 continue;
1759 if (!first_dev || dev->devid < first_dev->devid)
1760 first_dev = dev;
1761 }
1762 cur_devices = cur_devices->seed;
1763 }
1764
1765 if (first_dev) {
1766 rcu_read_lock();
1767 name = rcu_dereference(first_dev->name);
1768 seq_escape(m, name->str, " \t\n\\");
1769 rcu_read_unlock();
1770 } else {
1771 WARN_ON(1);
1772 }
1773 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1774 return 0;
1775 }
1776
1777 static const struct super_operations btrfs_super_ops = {
1778 .drop_inode = btrfs_drop_inode,
1779 .evict_inode = btrfs_evict_inode,
1780 .put_super = btrfs_put_super,
1781 .sync_fs = btrfs_sync_fs,
1782 .show_options = btrfs_show_options,
1783 .show_devname = btrfs_show_devname,
1784 .write_inode = btrfs_write_inode,
1785 .alloc_inode = btrfs_alloc_inode,
1786 .destroy_inode = btrfs_destroy_inode,
1787 .statfs = btrfs_statfs,
1788 .remount_fs = btrfs_remount,
1789 .freeze_fs = btrfs_freeze,
1790 .unfreeze_fs = btrfs_unfreeze,
1791 };
1792
1793 static const struct file_operations btrfs_ctl_fops = {
1794 .unlocked_ioctl = btrfs_control_ioctl,
1795 .compat_ioctl = btrfs_control_ioctl,
1796 .owner = THIS_MODULE,
1797 .llseek = noop_llseek,
1798 };
1799
1800 static struct miscdevice btrfs_misc = {
1801 .minor = BTRFS_MINOR,
1802 .name = "btrfs-control",
1803 .fops = &btrfs_ctl_fops
1804 };
1805
1806 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1807 MODULE_ALIAS("devname:btrfs-control");
1808
1809 static int btrfs_interface_init(void)
1810 {
1811 return misc_register(&btrfs_misc);
1812 }
1813
1814 static void btrfs_interface_exit(void)
1815 {
1816 if (misc_deregister(&btrfs_misc) < 0)
1817 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1818 }
1819
1820 static void btrfs_print_info(void)
1821 {
1822 printk(KERN_INFO "Btrfs loaded"
1823 #ifdef CONFIG_BTRFS_DEBUG
1824 ", debug=on"
1825 #endif
1826 #ifdef CONFIG_BTRFS_ASSERT
1827 ", assert=on"
1828 #endif
1829 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1830 ", integrity-checker=on"
1831 #endif
1832 "\n");
1833 }
1834
1835 static int btrfs_run_sanity_tests(void)
1836 {
1837 int ret;
1838
1839 ret = btrfs_init_test_fs();
1840 if (ret)
1841 return ret;
1842
1843 ret = btrfs_test_free_space_cache();
1844 if (ret)
1845 goto out;
1846 ret = btrfs_test_extent_buffer_operations();
1847 if (ret)
1848 goto out;
1849 ret = btrfs_test_extent_io();
1850 if (ret)
1851 goto out;
1852 ret = btrfs_test_inodes();
1853 out:
1854 btrfs_destroy_test_fs();
1855 return ret;
1856 }
1857
1858 static int __init init_btrfs_fs(void)
1859 {
1860 int err;
1861
1862 err = btrfs_init_sysfs();
1863 if (err)
1864 return err;
1865
1866 btrfs_init_compress();
1867
1868 err = btrfs_init_cachep();
1869 if (err)
1870 goto free_compress;
1871
1872 err = extent_io_init();
1873 if (err)
1874 goto free_cachep;
1875
1876 err = extent_map_init();
1877 if (err)
1878 goto free_extent_io;
1879
1880 err = ordered_data_init();
1881 if (err)
1882 goto free_extent_map;
1883
1884 err = btrfs_delayed_inode_init();
1885 if (err)
1886 goto free_ordered_data;
1887
1888 err = btrfs_auto_defrag_init();
1889 if (err)
1890 goto free_delayed_inode;
1891
1892 err = btrfs_delayed_ref_init();
1893 if (err)
1894 goto free_auto_defrag;
1895
1896 err = btrfs_prelim_ref_init();
1897 if (err)
1898 goto free_prelim_ref;
1899
1900 err = btrfs_interface_init();
1901 if (err)
1902 goto free_delayed_ref;
1903
1904 btrfs_init_lockdep();
1905
1906 btrfs_print_info();
1907
1908 err = btrfs_run_sanity_tests();
1909 if (err)
1910 goto unregister_ioctl;
1911
1912 err = register_filesystem(&btrfs_fs_type);
1913 if (err)
1914 goto unregister_ioctl;
1915
1916 return 0;
1917
1918 unregister_ioctl:
1919 btrfs_interface_exit();
1920 free_prelim_ref:
1921 btrfs_prelim_ref_exit();
1922 free_delayed_ref:
1923 btrfs_delayed_ref_exit();
1924 free_auto_defrag:
1925 btrfs_auto_defrag_exit();
1926 free_delayed_inode:
1927 btrfs_delayed_inode_exit();
1928 free_ordered_data:
1929 ordered_data_exit();
1930 free_extent_map:
1931 extent_map_exit();
1932 free_extent_io:
1933 extent_io_exit();
1934 free_cachep:
1935 btrfs_destroy_cachep();
1936 free_compress:
1937 btrfs_exit_compress();
1938 btrfs_exit_sysfs();
1939 return err;
1940 }
1941
1942 static void __exit exit_btrfs_fs(void)
1943 {
1944 btrfs_destroy_cachep();
1945 btrfs_delayed_ref_exit();
1946 btrfs_auto_defrag_exit();
1947 btrfs_delayed_inode_exit();
1948 btrfs_prelim_ref_exit();
1949 ordered_data_exit();
1950 extent_map_exit();
1951 extent_io_exit();
1952 btrfs_interface_exit();
1953 unregister_filesystem(&btrfs_fs_type);
1954 btrfs_exit_sysfs();
1955 btrfs_cleanup_fs_uuids();
1956 btrfs_exit_compress();
1957 }
1958
1959 module_init(init_btrfs_fs)
1960 module_exit(exit_btrfs_fs)
1961
1962 MODULE_LICENSE("GPL");