]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
btrfs: take an fs_info directly when the root is not used otherwise
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
97 }
98 }
99
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127 }
128
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131 {
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157 }
158
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161 {
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164 }
165
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168 {
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171 }
172
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175 {
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 return atomic_read(&trans->num_extwriters);
182 }
183
184 /*
185 * either allocate a new transaction or hop into the existing one
186 */
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189 {
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193 loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371 }
372
373
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376 {
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395 {
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415 }
416
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422 }
423
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
429 {
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 atomic_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445 }
446
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448 {
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460 }
461
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463 {
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473 }
474
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush)
478 {
479 struct btrfs_fs_info *fs_info = root->fs_info;
480
481 struct btrfs_trans_handle *h;
482 struct btrfs_transaction *cur_trans;
483 u64 num_bytes = 0;
484 u64 qgroup_reserved = 0;
485 bool reloc_reserved = false;
486 int ret;
487
488 /* Send isn't supposed to start transactions. */
489 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
490
491 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
492 return ERR_PTR(-EROFS);
493
494 if (current->journal_info) {
495 WARN_ON(type & TRANS_EXTWRITERS);
496 h = current->journal_info;
497 h->use_count++;
498 WARN_ON(h->use_count > 2);
499 h->orig_rsv = h->block_rsv;
500 h->block_rsv = NULL;
501 goto got_it;
502 }
503
504 /*
505 * Do the reservation before we join the transaction so we can do all
506 * the appropriate flushing if need be.
507 */
508 if (num_items > 0 && root != fs_info->chunk_root) {
509 qgroup_reserved = num_items * fs_info->nodesize;
510 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
511 if (ret)
512 return ERR_PTR(ret);
513
514 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
515 /*
516 * Do the reservation for the relocation root creation
517 */
518 if (need_reserve_reloc_root(root)) {
519 num_bytes += fs_info->nodesize;
520 reloc_reserved = true;
521 }
522
523 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
524 num_bytes, flush);
525 if (ret)
526 goto reserve_fail;
527 }
528 again:
529 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
530 if (!h) {
531 ret = -ENOMEM;
532 goto alloc_fail;
533 }
534
535 /*
536 * If we are JOIN_NOLOCK we're already committing a transaction and
537 * waiting on this guy, so we don't need to do the sb_start_intwrite
538 * because we're already holding a ref. We need this because we could
539 * have raced in and did an fsync() on a file which can kick a commit
540 * and then we deadlock with somebody doing a freeze.
541 *
542 * If we are ATTACH, it means we just want to catch the current
543 * transaction and commit it, so we needn't do sb_start_intwrite().
544 */
545 if (type & __TRANS_FREEZABLE)
546 sb_start_intwrite(fs_info->sb);
547
548 if (may_wait_transaction(fs_info, type))
549 wait_current_trans(fs_info);
550
551 do {
552 ret = join_transaction(fs_info, type);
553 if (ret == -EBUSY) {
554 wait_current_trans(fs_info);
555 if (unlikely(type == TRANS_ATTACH))
556 ret = -ENOENT;
557 }
558 } while (ret == -EBUSY);
559
560 if (ret < 0)
561 goto join_fail;
562
563 cur_trans = fs_info->running_transaction;
564
565 h->transid = cur_trans->transid;
566 h->transaction = cur_trans;
567 h->root = root;
568 h->use_count = 1;
569 h->fs_info = root->fs_info;
570
571 h->type = type;
572 h->can_flush_pending_bgs = true;
573 INIT_LIST_HEAD(&h->qgroup_ref_list);
574 INIT_LIST_HEAD(&h->new_bgs);
575
576 smp_mb();
577 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
578 may_wait_transaction(fs_info, type)) {
579 current->journal_info = h;
580 btrfs_commit_transaction(h, root);
581 goto again;
582 }
583
584 if (num_bytes) {
585 trace_btrfs_space_reservation(fs_info, "transaction",
586 h->transid, num_bytes, 1);
587 h->block_rsv = &fs_info->trans_block_rsv;
588 h->bytes_reserved = num_bytes;
589 h->reloc_reserved = reloc_reserved;
590 }
591
592 got_it:
593 btrfs_record_root_in_trans(h, root);
594
595 if (!current->journal_info && type != TRANS_USERSPACE)
596 current->journal_info = h;
597 return h;
598
599 join_fail:
600 if (type & __TRANS_FREEZABLE)
601 sb_end_intwrite(fs_info->sb);
602 kmem_cache_free(btrfs_trans_handle_cachep, h);
603 alloc_fail:
604 if (num_bytes)
605 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
606 num_bytes);
607 reserve_fail:
608 btrfs_qgroup_free_meta(root, qgroup_reserved);
609 return ERR_PTR(ret);
610 }
611
612 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
613 unsigned int num_items)
614 {
615 return start_transaction(root, num_items, TRANS_START,
616 BTRFS_RESERVE_FLUSH_ALL);
617 }
618 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
619 struct btrfs_root *root,
620 unsigned int num_items,
621 int min_factor)
622 {
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 struct btrfs_trans_handle *trans;
625 u64 num_bytes;
626 int ret;
627
628 trans = btrfs_start_transaction(root, num_items);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
630 return trans;
631
632 trans = btrfs_start_transaction(root, 0);
633 if (IS_ERR(trans))
634 return trans;
635
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
639 if (ret) {
640 btrfs_end_transaction(trans, root);
641 return ERR_PTR(ret);
642 }
643
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
648
649 return trans;
650 }
651
652 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
653 struct btrfs_root *root,
654 unsigned int num_items)
655 {
656 return start_transaction(root, num_items, TRANS_START,
657 BTRFS_RESERVE_FLUSH_LIMIT);
658 }
659
660 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
661 {
662 return start_transaction(root, 0, TRANS_JOIN,
663 BTRFS_RESERVE_NO_FLUSH);
664 }
665
666 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
667 {
668 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
669 BTRFS_RESERVE_NO_FLUSH);
670 }
671
672 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
673 {
674 return start_transaction(root, 0, TRANS_USERSPACE,
675 BTRFS_RESERVE_NO_FLUSH);
676 }
677
678 /*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692 {
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH);
695 }
696
697 /*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the differentia is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704 struct btrfs_trans_handle *
705 btrfs_attach_transaction_barrier(struct btrfs_root *root)
706 {
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH);
711 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715 }
716
717 /* wait for a transaction commit to be fully complete */
718 static noinline void wait_for_commit(struct btrfs_transaction *commit)
719 {
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721 }
722
723 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724 {
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 atomic_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 atomic_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777 out:
778 return ret;
779 }
780
781 void btrfs_throttle(struct btrfs_fs_info *fs_info)
782 {
783 if (!atomic_read(&fs_info->open_ioctl_trans))
784 wait_current_trans(fs_info);
785 }
786
787 static int should_end_transaction(struct btrfs_trans_handle *trans)
788 {
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790
791 if (fs_info->global_block_rsv.space_info->full &&
792 btrfs_check_space_for_delayed_refs(trans, fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796 }
797
798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
799 struct btrfs_root *root)
800 {
801 struct btrfs_fs_info *fs_info = root->fs_info;
802 struct btrfs_transaction *cur_trans = trans->transaction;
803 int updates;
804 int err;
805
806 smp_mb();
807 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
808 cur_trans->delayed_refs.flushing)
809 return 1;
810
811 updates = trans->delayed_ref_updates;
812 trans->delayed_ref_updates = 0;
813 if (updates) {
814 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
815 if (err) /* Error code will also eval true */
816 return err;
817 }
818
819 return should_end_transaction(trans);
820 }
821
822 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root, int throttle)
824 {
825 struct btrfs_transaction *cur_trans = trans->transaction;
826 struct btrfs_fs_info *info = root->fs_info;
827 u64 transid = trans->transid;
828 unsigned long cur = trans->delayed_ref_updates;
829 int lock = (trans->type != TRANS_JOIN_NOLOCK);
830 int err = 0;
831 int must_run_delayed_refs = 0;
832
833 if (trans->use_count > 1) {
834 trans->use_count--;
835 trans->block_rsv = trans->orig_rsv;
836 return 0;
837 }
838
839 btrfs_trans_release_metadata(trans, info);
840 trans->block_rsv = NULL;
841
842 if (!list_empty(&trans->new_bgs))
843 btrfs_create_pending_block_groups(trans, info);
844
845 trans->delayed_ref_updates = 0;
846 if (!trans->sync) {
847 must_run_delayed_refs =
848 btrfs_should_throttle_delayed_refs(trans, info);
849 cur = max_t(unsigned long, cur, 32);
850
851 /*
852 * don't make the caller wait if they are from a NOLOCK
853 * or ATTACH transaction, it will deadlock with commit
854 */
855 if (must_run_delayed_refs == 1 &&
856 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
857 must_run_delayed_refs = 2;
858 }
859
860 btrfs_trans_release_metadata(trans, info);
861 trans->block_rsv = NULL;
862
863 if (!list_empty(&trans->new_bgs))
864 btrfs_create_pending_block_groups(trans, info);
865
866 btrfs_trans_release_chunk_metadata(trans);
867
868 if (lock && !atomic_read(&info->open_ioctl_trans) &&
869 should_end_transaction(trans) &&
870 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
871 spin_lock(&info->trans_lock);
872 if (cur_trans->state == TRANS_STATE_RUNNING)
873 cur_trans->state = TRANS_STATE_BLOCKED;
874 spin_unlock(&info->trans_lock);
875 }
876
877 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
878 if (throttle)
879 return btrfs_commit_transaction(trans, root);
880 else
881 wake_up_process(info->transaction_kthread);
882 }
883
884 if (trans->type & __TRANS_FREEZABLE)
885 sb_end_intwrite(info->sb);
886
887 WARN_ON(cur_trans != info->running_transaction);
888 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
889 atomic_dec(&cur_trans->num_writers);
890 extwriter_counter_dec(cur_trans, trans->type);
891
892 /*
893 * Make sure counter is updated before we wake up waiters.
894 */
895 smp_mb();
896 if (waitqueue_active(&cur_trans->writer_wait))
897 wake_up(&cur_trans->writer_wait);
898 btrfs_put_transaction(cur_trans);
899
900 if (current->journal_info == trans)
901 current->journal_info = NULL;
902
903 if (throttle)
904 btrfs_run_delayed_iputs(info);
905
906 if (trans->aborted ||
907 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
908 wake_up_process(info->transaction_kthread);
909 err = -EIO;
910 }
911 assert_qgroups_uptodate(trans);
912
913 kmem_cache_free(btrfs_trans_handle_cachep, trans);
914 if (must_run_delayed_refs) {
915 btrfs_async_run_delayed_refs(info, cur, transid,
916 must_run_delayed_refs == 1);
917 }
918 return err;
919 }
920
921 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
922 struct btrfs_root *root)
923 {
924 return __btrfs_end_transaction(trans, root, 0);
925 }
926
927 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
928 struct btrfs_root *root)
929 {
930 return __btrfs_end_transaction(trans, root, 1);
931 }
932
933 /*
934 * when btree blocks are allocated, they have some corresponding bits set for
935 * them in one of two extent_io trees. This is used to make sure all of
936 * those extents are sent to disk but does not wait on them
937 */
938 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
939 struct extent_io_tree *dirty_pages, int mark)
940 {
941 int err = 0;
942 int werr = 0;
943 struct address_space *mapping = fs_info->btree_inode->i_mapping;
944 struct extent_state *cached_state = NULL;
945 u64 start = 0;
946 u64 end;
947
948 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
949 mark, &cached_state)) {
950 bool wait_writeback = false;
951
952 err = convert_extent_bit(dirty_pages, start, end,
953 EXTENT_NEED_WAIT,
954 mark, &cached_state);
955 /*
956 * convert_extent_bit can return -ENOMEM, which is most of the
957 * time a temporary error. So when it happens, ignore the error
958 * and wait for writeback of this range to finish - because we
959 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
960 * to btrfs_wait_marked_extents() would not know that writeback
961 * for this range started and therefore wouldn't wait for it to
962 * finish - we don't want to commit a superblock that points to
963 * btree nodes/leafs for which writeback hasn't finished yet
964 * (and without errors).
965 * We cleanup any entries left in the io tree when committing
966 * the transaction (through clear_btree_io_tree()).
967 */
968 if (err == -ENOMEM) {
969 err = 0;
970 wait_writeback = true;
971 }
972 if (!err)
973 err = filemap_fdatawrite_range(mapping, start, end);
974 if (err)
975 werr = err;
976 else if (wait_writeback)
977 werr = filemap_fdatawait_range(mapping, start, end);
978 free_extent_state(cached_state);
979 cached_state = NULL;
980 cond_resched();
981 start = end + 1;
982 }
983 return werr;
984 }
985
986 /*
987 * when btree blocks are allocated, they have some corresponding bits set for
988 * them in one of two extent_io trees. This is used to make sure all of
989 * those extents are on disk for transaction or log commit. We wait
990 * on all the pages and clear them from the dirty pages state tree
991 */
992 int btrfs_wait_marked_extents(struct btrfs_root *root,
993 struct extent_io_tree *dirty_pages, int mark)
994 {
995 int err = 0;
996 int werr = 0;
997 struct btrfs_fs_info *fs_info = root->fs_info;
998 struct address_space *mapping = fs_info->btree_inode->i_mapping;
999 struct extent_state *cached_state = NULL;
1000 u64 start = 0;
1001 u64 end;
1002 bool errors = false;
1003
1004 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1005 EXTENT_NEED_WAIT, &cached_state)) {
1006 /*
1007 * Ignore -ENOMEM errors returned by clear_extent_bit().
1008 * When committing the transaction, we'll remove any entries
1009 * left in the io tree. For a log commit, we don't remove them
1010 * after committing the log because the tree can be accessed
1011 * concurrently - we do it only at transaction commit time when
1012 * it's safe to do it (through clear_btree_io_tree()).
1013 */
1014 err = clear_extent_bit(dirty_pages, start, end,
1015 EXTENT_NEED_WAIT,
1016 0, 0, &cached_state, GFP_NOFS);
1017 if (err == -ENOMEM)
1018 err = 0;
1019 if (!err)
1020 err = filemap_fdatawait_range(mapping, start, end);
1021 if (err)
1022 werr = err;
1023 free_extent_state(cached_state);
1024 cached_state = NULL;
1025 cond_resched();
1026 start = end + 1;
1027 }
1028 if (err)
1029 werr = err;
1030
1031 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1032 if ((mark & EXTENT_DIRTY) &&
1033 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1034 errors = true;
1035
1036 if ((mark & EXTENT_NEW) &&
1037 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1038 errors = true;
1039 } else {
1040 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1041 errors = true;
1042 }
1043
1044 if (errors && !werr)
1045 werr = -EIO;
1046
1047 return werr;
1048 }
1049
1050 /*
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees. This is used to make sure all of
1053 * those extents are on disk for transaction or log commit
1054 */
1055 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1056 struct extent_io_tree *dirty_pages, int mark)
1057 {
1058 int ret;
1059 int ret2;
1060 struct blk_plug plug;
1061
1062 blk_start_plug(&plug);
1063 ret = btrfs_write_marked_extents(root->fs_info, dirty_pages, mark);
1064 blk_finish_plug(&plug);
1065 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1066
1067 if (ret)
1068 return ret;
1069 if (ret2)
1070 return ret2;
1071 return 0;
1072 }
1073
1074 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1075 struct btrfs_root *root)
1076 {
1077 int ret;
1078
1079 ret = btrfs_write_and_wait_marked_extents(root,
1080 &trans->transaction->dirty_pages,
1081 EXTENT_DIRTY);
1082 clear_btree_io_tree(&trans->transaction->dirty_pages);
1083
1084 return ret;
1085 }
1086
1087 /*
1088 * this is used to update the root pointer in the tree of tree roots.
1089 *
1090 * But, in the case of the extent allocation tree, updating the root
1091 * pointer may allocate blocks which may change the root of the extent
1092 * allocation tree.
1093 *
1094 * So, this loops and repeats and makes sure the cowonly root didn't
1095 * change while the root pointer was being updated in the metadata.
1096 */
1097 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root)
1099 {
1100 int ret;
1101 u64 old_root_bytenr;
1102 u64 old_root_used;
1103 struct btrfs_fs_info *fs_info = root->fs_info;
1104 struct btrfs_root *tree_root = fs_info->tree_root;
1105
1106 old_root_used = btrfs_root_used(&root->root_item);
1107
1108 while (1) {
1109 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1110 if (old_root_bytenr == root->node->start &&
1111 old_root_used == btrfs_root_used(&root->root_item))
1112 break;
1113
1114 btrfs_set_root_node(&root->root_item, root->node);
1115 ret = btrfs_update_root(trans, tree_root,
1116 &root->root_key,
1117 &root->root_item);
1118 if (ret)
1119 return ret;
1120
1121 old_root_used = btrfs_root_used(&root->root_item);
1122 }
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * update all the cowonly tree roots on disk
1129 *
1130 * The error handling in this function may not be obvious. Any of the
1131 * failures will cause the file system to go offline. We still need
1132 * to clean up the delayed refs.
1133 */
1134 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1135 struct btrfs_fs_info *fs_info)
1136 {
1137 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1138 struct list_head *io_bgs = &trans->transaction->io_bgs;
1139 struct list_head *next;
1140 struct extent_buffer *eb;
1141 int ret;
1142
1143 eb = btrfs_lock_root_node(fs_info->tree_root);
1144 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1145 0, &eb);
1146 btrfs_tree_unlock(eb);
1147 free_extent_buffer(eb);
1148
1149 if (ret)
1150 return ret;
1151
1152 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1153 if (ret)
1154 return ret;
1155
1156 ret = btrfs_run_dev_stats(trans, fs_info);
1157 if (ret)
1158 return ret;
1159 ret = btrfs_run_dev_replace(trans, fs_info);
1160 if (ret)
1161 return ret;
1162 ret = btrfs_run_qgroups(trans, fs_info);
1163 if (ret)
1164 return ret;
1165
1166 ret = btrfs_setup_space_cache(trans, fs_info);
1167 if (ret)
1168 return ret;
1169
1170 /* run_qgroups might have added some more refs */
1171 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1172 if (ret)
1173 return ret;
1174 again:
1175 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1176 struct btrfs_root *root;
1177 next = fs_info->dirty_cowonly_roots.next;
1178 list_del_init(next);
1179 root = list_entry(next, struct btrfs_root, dirty_list);
1180 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1181
1182 if (root != fs_info->extent_root)
1183 list_add_tail(&root->dirty_list,
1184 &trans->transaction->switch_commits);
1185 ret = update_cowonly_root(trans, root);
1186 if (ret)
1187 return ret;
1188 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1189 if (ret)
1190 return ret;
1191 }
1192
1193 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1194 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1195 if (ret)
1196 return ret;
1197 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 if (!list_empty(&fs_info->dirty_cowonly_roots))
1203 goto again;
1204
1205 list_add_tail(&fs_info->extent_root->dirty_list,
1206 &trans->transaction->switch_commits);
1207 btrfs_after_dev_replace_commit(fs_info);
1208
1209 return 0;
1210 }
1211
1212 /*
1213 * dead roots are old snapshots that need to be deleted. This allocates
1214 * a dirty root struct and adds it into the list of dead roots that need to
1215 * be deleted
1216 */
1217 void btrfs_add_dead_root(struct btrfs_root *root)
1218 {
1219 struct btrfs_fs_info *fs_info = root->fs_info;
1220
1221 spin_lock(&fs_info->trans_lock);
1222 if (list_empty(&root->root_list))
1223 list_add_tail(&root->root_list, &fs_info->dead_roots);
1224 spin_unlock(&fs_info->trans_lock);
1225 }
1226
1227 /*
1228 * update all the cowonly tree roots on disk
1229 */
1230 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1231 struct btrfs_fs_info *fs_info)
1232 {
1233 struct btrfs_root *gang[8];
1234 int i;
1235 int ret;
1236 int err = 0;
1237
1238 spin_lock(&fs_info->fs_roots_radix_lock);
1239 while (1) {
1240 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1241 (void **)gang, 0,
1242 ARRAY_SIZE(gang),
1243 BTRFS_ROOT_TRANS_TAG);
1244 if (ret == 0)
1245 break;
1246 for (i = 0; i < ret; i++) {
1247 struct btrfs_root *root = gang[i];
1248 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1249 (unsigned long)root->root_key.objectid,
1250 BTRFS_ROOT_TRANS_TAG);
1251 spin_unlock(&fs_info->fs_roots_radix_lock);
1252
1253 btrfs_free_log(trans, root);
1254 btrfs_update_reloc_root(trans, root);
1255 btrfs_orphan_commit_root(trans, root);
1256
1257 btrfs_save_ino_cache(root, trans);
1258
1259 /* see comments in should_cow_block() */
1260 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1261 smp_mb__after_atomic();
1262
1263 if (root->commit_root != root->node) {
1264 list_add_tail(&root->dirty_list,
1265 &trans->transaction->switch_commits);
1266 btrfs_set_root_node(&root->root_item,
1267 root->node);
1268 }
1269
1270 err = btrfs_update_root(trans, fs_info->tree_root,
1271 &root->root_key,
1272 &root->root_item);
1273 spin_lock(&fs_info->fs_roots_radix_lock);
1274 if (err)
1275 break;
1276 btrfs_qgroup_free_meta_all(root);
1277 }
1278 }
1279 spin_unlock(&fs_info->fs_roots_radix_lock);
1280 return err;
1281 }
1282
1283 /*
1284 * defrag a given btree.
1285 * Every leaf in the btree is read and defragged.
1286 */
1287 int btrfs_defrag_root(struct btrfs_root *root)
1288 {
1289 struct btrfs_fs_info *info = root->fs_info;
1290 struct btrfs_trans_handle *trans;
1291 int ret;
1292
1293 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1294 return 0;
1295
1296 while (1) {
1297 trans = btrfs_start_transaction(root, 0);
1298 if (IS_ERR(trans))
1299 return PTR_ERR(trans);
1300
1301 ret = btrfs_defrag_leaves(trans, root);
1302
1303 btrfs_end_transaction(trans, root);
1304 btrfs_btree_balance_dirty(info);
1305 cond_resched();
1306
1307 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1308 break;
1309
1310 if (btrfs_defrag_cancelled(info)) {
1311 btrfs_debug(info, "defrag_root cancelled");
1312 ret = -EAGAIN;
1313 break;
1314 }
1315 }
1316 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1317 return ret;
1318 }
1319
1320 /*
1321 * Do all special snapshot related qgroup dirty hack.
1322 *
1323 * Will do all needed qgroup inherit and dirty hack like switch commit
1324 * roots inside one transaction and write all btree into disk, to make
1325 * qgroup works.
1326 */
1327 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *src,
1329 struct btrfs_root *parent,
1330 struct btrfs_qgroup_inherit *inherit,
1331 u64 dst_objectid)
1332 {
1333 struct btrfs_fs_info *fs_info = src->fs_info;
1334 int ret;
1335
1336 /*
1337 * Save some performance in the case that qgroups are not
1338 * enabled. If this check races with the ioctl, rescan will
1339 * kick in anyway.
1340 */
1341 mutex_lock(&fs_info->qgroup_ioctl_lock);
1342 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1343 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1344 return 0;
1345 }
1346 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1347
1348 /*
1349 * We are going to commit transaction, see btrfs_commit_transaction()
1350 * comment for reason locking tree_log_mutex
1351 */
1352 mutex_lock(&fs_info->tree_log_mutex);
1353
1354 ret = commit_fs_roots(trans, fs_info);
1355 if (ret)
1356 goto out;
1357 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1358 if (ret < 0)
1359 goto out;
1360 ret = btrfs_qgroup_account_extents(trans, fs_info);
1361 if (ret < 0)
1362 goto out;
1363
1364 /* Now qgroup are all updated, we can inherit it to new qgroups */
1365 ret = btrfs_qgroup_inherit(trans, fs_info,
1366 src->root_key.objectid, dst_objectid,
1367 inherit);
1368 if (ret < 0)
1369 goto out;
1370
1371 /*
1372 * Now we do a simplified commit transaction, which will:
1373 * 1) commit all subvolume and extent tree
1374 * To ensure all subvolume and extent tree have a valid
1375 * commit_root to accounting later insert_dir_item()
1376 * 2) write all btree blocks onto disk
1377 * This is to make sure later btree modification will be cowed
1378 * Or commit_root can be populated and cause wrong qgroup numbers
1379 * In this simplified commit, we don't really care about other trees
1380 * like chunk and root tree, as they won't affect qgroup.
1381 * And we don't write super to avoid half committed status.
1382 */
1383 ret = commit_cowonly_roots(trans, fs_info);
1384 if (ret)
1385 goto out;
1386 switch_commit_roots(trans->transaction, fs_info);
1387 ret = btrfs_write_and_wait_transaction(trans, src);
1388 if (ret)
1389 btrfs_handle_fs_error(fs_info, ret,
1390 "Error while writing out transaction for qgroup");
1391
1392 out:
1393 mutex_unlock(&fs_info->tree_log_mutex);
1394
1395 /*
1396 * Force parent root to be updated, as we recorded it before so its
1397 * last_trans == cur_transid.
1398 * Or it won't be committed again onto disk after later
1399 * insert_dir_item()
1400 */
1401 if (!ret)
1402 record_root_in_trans(trans, parent, 1);
1403 return ret;
1404 }
1405
1406 /*
1407 * new snapshots need to be created at a very specific time in the
1408 * transaction commit. This does the actual creation.
1409 *
1410 * Note:
1411 * If the error which may affect the commitment of the current transaction
1412 * happens, we should return the error number. If the error which just affect
1413 * the creation of the pending snapshots, just return 0.
1414 */
1415 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1416 struct btrfs_fs_info *fs_info,
1417 struct btrfs_pending_snapshot *pending)
1418 {
1419 struct btrfs_key key;
1420 struct btrfs_root_item *new_root_item;
1421 struct btrfs_root *tree_root = fs_info->tree_root;
1422 struct btrfs_root *root = pending->root;
1423 struct btrfs_root *parent_root;
1424 struct btrfs_block_rsv *rsv;
1425 struct inode *parent_inode;
1426 struct btrfs_path *path;
1427 struct btrfs_dir_item *dir_item;
1428 struct dentry *dentry;
1429 struct extent_buffer *tmp;
1430 struct extent_buffer *old;
1431 struct timespec cur_time;
1432 int ret = 0;
1433 u64 to_reserve = 0;
1434 u64 index = 0;
1435 u64 objectid;
1436 u64 root_flags;
1437 uuid_le new_uuid;
1438
1439 ASSERT(pending->path);
1440 path = pending->path;
1441
1442 ASSERT(pending->root_item);
1443 new_root_item = pending->root_item;
1444
1445 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1446 if (pending->error)
1447 goto no_free_objectid;
1448
1449 /*
1450 * Make qgroup to skip current new snapshot's qgroupid, as it is
1451 * accounted by later btrfs_qgroup_inherit().
1452 */
1453 btrfs_set_skip_qgroup(trans, objectid);
1454
1455 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1456
1457 if (to_reserve > 0) {
1458 pending->error = btrfs_block_rsv_add(root,
1459 &pending->block_rsv,
1460 to_reserve,
1461 BTRFS_RESERVE_NO_FLUSH);
1462 if (pending->error)
1463 goto clear_skip_qgroup;
1464 }
1465
1466 key.objectid = objectid;
1467 key.offset = (u64)-1;
1468 key.type = BTRFS_ROOT_ITEM_KEY;
1469
1470 rsv = trans->block_rsv;
1471 trans->block_rsv = &pending->block_rsv;
1472 trans->bytes_reserved = trans->block_rsv->reserved;
1473 trace_btrfs_space_reservation(fs_info, "transaction",
1474 trans->transid,
1475 trans->bytes_reserved, 1);
1476 dentry = pending->dentry;
1477 parent_inode = pending->dir;
1478 parent_root = BTRFS_I(parent_inode)->root;
1479 record_root_in_trans(trans, parent_root, 0);
1480
1481 cur_time = current_time(parent_inode);
1482
1483 /*
1484 * insert the directory item
1485 */
1486 ret = btrfs_set_inode_index(parent_inode, &index);
1487 BUG_ON(ret); /* -ENOMEM */
1488
1489 /* check if there is a file/dir which has the same name. */
1490 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1491 btrfs_ino(parent_inode),
1492 dentry->d_name.name,
1493 dentry->d_name.len, 0);
1494 if (dir_item != NULL && !IS_ERR(dir_item)) {
1495 pending->error = -EEXIST;
1496 goto dir_item_existed;
1497 } else if (IS_ERR(dir_item)) {
1498 ret = PTR_ERR(dir_item);
1499 btrfs_abort_transaction(trans, ret);
1500 goto fail;
1501 }
1502 btrfs_release_path(path);
1503
1504 /*
1505 * pull in the delayed directory update
1506 * and the delayed inode item
1507 * otherwise we corrupt the FS during
1508 * snapshot
1509 */
1510 ret = btrfs_run_delayed_items(trans, fs_info);
1511 if (ret) { /* Transaction aborted */
1512 btrfs_abort_transaction(trans, ret);
1513 goto fail;
1514 }
1515
1516 record_root_in_trans(trans, root, 0);
1517 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1518 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1519 btrfs_check_and_init_root_item(new_root_item);
1520
1521 root_flags = btrfs_root_flags(new_root_item);
1522 if (pending->readonly)
1523 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1524 else
1525 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1526 btrfs_set_root_flags(new_root_item, root_flags);
1527
1528 btrfs_set_root_generation_v2(new_root_item,
1529 trans->transid);
1530 uuid_le_gen(&new_uuid);
1531 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1532 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1533 BTRFS_UUID_SIZE);
1534 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1535 memset(new_root_item->received_uuid, 0,
1536 sizeof(new_root_item->received_uuid));
1537 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1538 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1539 btrfs_set_root_stransid(new_root_item, 0);
1540 btrfs_set_root_rtransid(new_root_item, 0);
1541 }
1542 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1543 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1544 btrfs_set_root_otransid(new_root_item, trans->transid);
1545
1546 old = btrfs_lock_root_node(root);
1547 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1548 if (ret) {
1549 btrfs_tree_unlock(old);
1550 free_extent_buffer(old);
1551 btrfs_abort_transaction(trans, ret);
1552 goto fail;
1553 }
1554
1555 btrfs_set_lock_blocking(old);
1556
1557 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1558 /* clean up in any case */
1559 btrfs_tree_unlock(old);
1560 free_extent_buffer(old);
1561 if (ret) {
1562 btrfs_abort_transaction(trans, ret);
1563 goto fail;
1564 }
1565 /* see comments in should_cow_block() */
1566 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1567 smp_wmb();
1568
1569 btrfs_set_root_node(new_root_item, tmp);
1570 /* record when the snapshot was created in key.offset */
1571 key.offset = trans->transid;
1572 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1573 btrfs_tree_unlock(tmp);
1574 free_extent_buffer(tmp);
1575 if (ret) {
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 /*
1581 * insert root back/forward references
1582 */
1583 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1584 parent_root->root_key.objectid,
1585 btrfs_ino(parent_inode), index,
1586 dentry->d_name.name, dentry->d_name.len);
1587 if (ret) {
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591
1592 key.offset = (u64)-1;
1593 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1594 if (IS_ERR(pending->snap)) {
1595 ret = PTR_ERR(pending->snap);
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599
1600 ret = btrfs_reloc_post_snapshot(trans, pending);
1601 if (ret) {
1602 btrfs_abort_transaction(trans, ret);
1603 goto fail;
1604 }
1605
1606 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1607 if (ret) {
1608 btrfs_abort_transaction(trans, ret);
1609 goto fail;
1610 }
1611
1612 /*
1613 * Do special qgroup accounting for snapshot, as we do some qgroup
1614 * snapshot hack to do fast snapshot.
1615 * To co-operate with that hack, we do hack again.
1616 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1617 */
1618 ret = qgroup_account_snapshot(trans, root, parent_root,
1619 pending->inherit, objectid);
1620 if (ret < 0)
1621 goto fail;
1622
1623 ret = btrfs_insert_dir_item(trans, parent_root,
1624 dentry->d_name.name, dentry->d_name.len,
1625 parent_inode, &key,
1626 BTRFS_FT_DIR, index);
1627 /* We have check then name at the beginning, so it is impossible. */
1628 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1629 if (ret) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633
1634 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1635 dentry->d_name.len * 2);
1636 parent_inode->i_mtime = parent_inode->i_ctime =
1637 current_time(parent_inode);
1638 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1639 if (ret) {
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1644 BTRFS_UUID_KEY_SUBVOL, objectid);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1650 ret = btrfs_uuid_tree_add(trans, fs_info,
1651 new_root_item->received_uuid,
1652 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1653 objectid);
1654 if (ret && ret != -EEXIST) {
1655 btrfs_abort_transaction(trans, ret);
1656 goto fail;
1657 }
1658 }
1659
1660 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665
1666 fail:
1667 pending->error = ret;
1668 dir_item_existed:
1669 trans->block_rsv = rsv;
1670 trans->bytes_reserved = 0;
1671 clear_skip_qgroup:
1672 btrfs_clear_skip_qgroup(trans);
1673 no_free_objectid:
1674 kfree(new_root_item);
1675 pending->root_item = NULL;
1676 btrfs_free_path(path);
1677 pending->path = NULL;
1678
1679 return ret;
1680 }
1681
1682 /*
1683 * create all the snapshots we've scheduled for creation
1684 */
1685 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1686 struct btrfs_fs_info *fs_info)
1687 {
1688 struct btrfs_pending_snapshot *pending, *next;
1689 struct list_head *head = &trans->transaction->pending_snapshots;
1690 int ret = 0;
1691
1692 list_for_each_entry_safe(pending, next, head, list) {
1693 list_del(&pending->list);
1694 ret = create_pending_snapshot(trans, fs_info, pending);
1695 if (ret)
1696 break;
1697 }
1698 return ret;
1699 }
1700
1701 static void update_super_roots(struct btrfs_fs_info *fs_info)
1702 {
1703 struct btrfs_root_item *root_item;
1704 struct btrfs_super_block *super;
1705
1706 super = fs_info->super_copy;
1707
1708 root_item = &fs_info->chunk_root->root_item;
1709 super->chunk_root = root_item->bytenr;
1710 super->chunk_root_generation = root_item->generation;
1711 super->chunk_root_level = root_item->level;
1712
1713 root_item = &fs_info->tree_root->root_item;
1714 super->root = root_item->bytenr;
1715 super->generation = root_item->generation;
1716 super->root_level = root_item->level;
1717 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1718 super->cache_generation = root_item->generation;
1719 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1720 super->uuid_tree_generation = root_item->generation;
1721 }
1722
1723 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1724 {
1725 struct btrfs_transaction *trans;
1726 int ret = 0;
1727
1728 spin_lock(&info->trans_lock);
1729 trans = info->running_transaction;
1730 if (trans)
1731 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1732 spin_unlock(&info->trans_lock);
1733 return ret;
1734 }
1735
1736 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1737 {
1738 struct btrfs_transaction *trans;
1739 int ret = 0;
1740
1741 spin_lock(&info->trans_lock);
1742 trans = info->running_transaction;
1743 if (trans)
1744 ret = is_transaction_blocked(trans);
1745 spin_unlock(&info->trans_lock);
1746 return ret;
1747 }
1748
1749 /*
1750 * wait for the current transaction commit to start and block subsequent
1751 * transaction joins
1752 */
1753 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1754 struct btrfs_transaction *trans)
1755 {
1756 wait_event(fs_info->transaction_blocked_wait,
1757 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1758 }
1759
1760 /*
1761 * wait for the current transaction to start and then become unblocked.
1762 * caller holds ref.
1763 */
1764 static void wait_current_trans_commit_start_and_unblock(
1765 struct btrfs_fs_info *fs_info,
1766 struct btrfs_transaction *trans)
1767 {
1768 wait_event(fs_info->transaction_wait,
1769 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1770 }
1771
1772 /*
1773 * commit transactions asynchronously. once btrfs_commit_transaction_async
1774 * returns, any subsequent transaction will not be allowed to join.
1775 */
1776 struct btrfs_async_commit {
1777 struct btrfs_trans_handle *newtrans;
1778 struct btrfs_root *root;
1779 struct work_struct work;
1780 };
1781
1782 static void do_async_commit(struct work_struct *work)
1783 {
1784 struct btrfs_async_commit *ac =
1785 container_of(work, struct btrfs_async_commit, work);
1786
1787 /*
1788 * We've got freeze protection passed with the transaction.
1789 * Tell lockdep about it.
1790 */
1791 if (ac->newtrans->type & __TRANS_FREEZABLE)
1792 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1793
1794 current->journal_info = ac->newtrans;
1795
1796 btrfs_commit_transaction(ac->newtrans, ac->root);
1797 kfree(ac);
1798 }
1799
1800 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 int wait_for_unblock)
1803 {
1804 struct btrfs_fs_info *fs_info = root->fs_info;
1805 struct btrfs_async_commit *ac;
1806 struct btrfs_transaction *cur_trans;
1807
1808 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1809 if (!ac)
1810 return -ENOMEM;
1811
1812 INIT_WORK(&ac->work, do_async_commit);
1813 ac->root = root;
1814 ac->newtrans = btrfs_join_transaction(root);
1815 if (IS_ERR(ac->newtrans)) {
1816 int err = PTR_ERR(ac->newtrans);
1817 kfree(ac);
1818 return err;
1819 }
1820
1821 /* take transaction reference */
1822 cur_trans = trans->transaction;
1823 atomic_inc(&cur_trans->use_count);
1824
1825 btrfs_end_transaction(trans, root);
1826
1827 /*
1828 * Tell lockdep we've released the freeze rwsem, since the
1829 * async commit thread will be the one to unlock it.
1830 */
1831 if (ac->newtrans->type & __TRANS_FREEZABLE)
1832 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1833
1834 schedule_work(&ac->work);
1835
1836 /* wait for transaction to start and unblock */
1837 if (wait_for_unblock)
1838 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1839 else
1840 wait_current_trans_commit_start(fs_info, cur_trans);
1841
1842 if (current->journal_info == trans)
1843 current->journal_info = NULL;
1844
1845 btrfs_put_transaction(cur_trans);
1846 return 0;
1847 }
1848
1849
1850 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1851 struct btrfs_root *root, int err)
1852 {
1853 struct btrfs_fs_info *fs_info = root->fs_info;
1854 struct btrfs_transaction *cur_trans = trans->transaction;
1855 DEFINE_WAIT(wait);
1856
1857 WARN_ON(trans->use_count > 1);
1858
1859 btrfs_abort_transaction(trans, err);
1860
1861 spin_lock(&fs_info->trans_lock);
1862
1863 /*
1864 * If the transaction is removed from the list, it means this
1865 * transaction has been committed successfully, so it is impossible
1866 * to call the cleanup function.
1867 */
1868 BUG_ON(list_empty(&cur_trans->list));
1869
1870 list_del_init(&cur_trans->list);
1871 if (cur_trans == fs_info->running_transaction) {
1872 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1873 spin_unlock(&fs_info->trans_lock);
1874 wait_event(cur_trans->writer_wait,
1875 atomic_read(&cur_trans->num_writers) == 1);
1876
1877 spin_lock(&fs_info->trans_lock);
1878 }
1879 spin_unlock(&fs_info->trans_lock);
1880
1881 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1882
1883 spin_lock(&fs_info->trans_lock);
1884 if (cur_trans == fs_info->running_transaction)
1885 fs_info->running_transaction = NULL;
1886 spin_unlock(&fs_info->trans_lock);
1887
1888 if (trans->type & __TRANS_FREEZABLE)
1889 sb_end_intwrite(fs_info->sb);
1890 btrfs_put_transaction(cur_trans);
1891 btrfs_put_transaction(cur_trans);
1892
1893 trace_btrfs_transaction_commit(root);
1894
1895 if (current->journal_info == trans)
1896 current->journal_info = NULL;
1897 btrfs_scrub_cancel(fs_info);
1898
1899 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1900 }
1901
1902 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1903 {
1904 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1905 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1906 return 0;
1907 }
1908
1909 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1910 {
1911 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1912 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1913 }
1914
1915 static inline void
1916 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1917 {
1918 wait_event(cur_trans->pending_wait,
1919 atomic_read(&cur_trans->pending_ordered) == 0);
1920 }
1921
1922 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1923 struct btrfs_root *root)
1924 {
1925 struct btrfs_fs_info *fs_info = root->fs_info;
1926 struct btrfs_transaction *cur_trans = trans->transaction;
1927 struct btrfs_transaction *prev_trans = NULL;
1928 int ret;
1929
1930 /* Stop the commit early if ->aborted is set */
1931 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1932 ret = cur_trans->aborted;
1933 btrfs_end_transaction(trans, root);
1934 return ret;
1935 }
1936
1937 /* make a pass through all the delayed refs we have so far
1938 * any runnings procs may add more while we are here
1939 */
1940 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1941 if (ret) {
1942 btrfs_end_transaction(trans, root);
1943 return ret;
1944 }
1945
1946 btrfs_trans_release_metadata(trans, fs_info);
1947 trans->block_rsv = NULL;
1948
1949 cur_trans = trans->transaction;
1950
1951 /*
1952 * set the flushing flag so procs in this transaction have to
1953 * start sending their work down.
1954 */
1955 cur_trans->delayed_refs.flushing = 1;
1956 smp_wmb();
1957
1958 if (!list_empty(&trans->new_bgs))
1959 btrfs_create_pending_block_groups(trans, fs_info);
1960
1961 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1962 if (ret) {
1963 btrfs_end_transaction(trans, root);
1964 return ret;
1965 }
1966
1967 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1968 int run_it = 0;
1969
1970 /* this mutex is also taken before trying to set
1971 * block groups readonly. We need to make sure
1972 * that nobody has set a block group readonly
1973 * after a extents from that block group have been
1974 * allocated for cache files. btrfs_set_block_group_ro
1975 * will wait for the transaction to commit if it
1976 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1977 *
1978 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1979 * only one process starts all the block group IO. It wouldn't
1980 * hurt to have more than one go through, but there's no
1981 * real advantage to it either.
1982 */
1983 mutex_lock(&fs_info->ro_block_group_mutex);
1984 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1985 &cur_trans->flags))
1986 run_it = 1;
1987 mutex_unlock(&fs_info->ro_block_group_mutex);
1988
1989 if (run_it)
1990 ret = btrfs_start_dirty_block_groups(trans, fs_info);
1991 }
1992 if (ret) {
1993 btrfs_end_transaction(trans, root);
1994 return ret;
1995 }
1996
1997 spin_lock(&fs_info->trans_lock);
1998 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1999 spin_unlock(&fs_info->trans_lock);
2000 atomic_inc(&cur_trans->use_count);
2001 ret = btrfs_end_transaction(trans, root);
2002
2003 wait_for_commit(cur_trans);
2004
2005 if (unlikely(cur_trans->aborted))
2006 ret = cur_trans->aborted;
2007
2008 btrfs_put_transaction(cur_trans);
2009
2010 return ret;
2011 }
2012
2013 cur_trans->state = TRANS_STATE_COMMIT_START;
2014 wake_up(&fs_info->transaction_blocked_wait);
2015
2016 if (cur_trans->list.prev != &fs_info->trans_list) {
2017 prev_trans = list_entry(cur_trans->list.prev,
2018 struct btrfs_transaction, list);
2019 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2020 atomic_inc(&prev_trans->use_count);
2021 spin_unlock(&fs_info->trans_lock);
2022
2023 wait_for_commit(prev_trans);
2024 ret = prev_trans->aborted;
2025
2026 btrfs_put_transaction(prev_trans);
2027 if (ret)
2028 goto cleanup_transaction;
2029 } else {
2030 spin_unlock(&fs_info->trans_lock);
2031 }
2032 } else {
2033 spin_unlock(&fs_info->trans_lock);
2034 }
2035
2036 extwriter_counter_dec(cur_trans, trans->type);
2037
2038 ret = btrfs_start_delalloc_flush(fs_info);
2039 if (ret)
2040 goto cleanup_transaction;
2041
2042 ret = btrfs_run_delayed_items(trans, fs_info);
2043 if (ret)
2044 goto cleanup_transaction;
2045
2046 wait_event(cur_trans->writer_wait,
2047 extwriter_counter_read(cur_trans) == 0);
2048
2049 /* some pending stuffs might be added after the previous flush. */
2050 ret = btrfs_run_delayed_items(trans, fs_info);
2051 if (ret)
2052 goto cleanup_transaction;
2053
2054 btrfs_wait_delalloc_flush(fs_info);
2055
2056 btrfs_wait_pending_ordered(cur_trans);
2057
2058 btrfs_scrub_pause(fs_info);
2059 /*
2060 * Ok now we need to make sure to block out any other joins while we
2061 * commit the transaction. We could have started a join before setting
2062 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2063 */
2064 spin_lock(&fs_info->trans_lock);
2065 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2066 spin_unlock(&fs_info->trans_lock);
2067 wait_event(cur_trans->writer_wait,
2068 atomic_read(&cur_trans->num_writers) == 1);
2069
2070 /* ->aborted might be set after the previous check, so check it */
2071 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2072 ret = cur_trans->aborted;
2073 goto scrub_continue;
2074 }
2075 /*
2076 * the reloc mutex makes sure that we stop
2077 * the balancing code from coming in and moving
2078 * extents around in the middle of the commit
2079 */
2080 mutex_lock(&fs_info->reloc_mutex);
2081
2082 /*
2083 * We needn't worry about the delayed items because we will
2084 * deal with them in create_pending_snapshot(), which is the
2085 * core function of the snapshot creation.
2086 */
2087 ret = create_pending_snapshots(trans, fs_info);
2088 if (ret) {
2089 mutex_unlock(&fs_info->reloc_mutex);
2090 goto scrub_continue;
2091 }
2092
2093 /*
2094 * We insert the dir indexes of the snapshots and update the inode
2095 * of the snapshots' parents after the snapshot creation, so there
2096 * are some delayed items which are not dealt with. Now deal with
2097 * them.
2098 *
2099 * We needn't worry that this operation will corrupt the snapshots,
2100 * because all the tree which are snapshoted will be forced to COW
2101 * the nodes and leaves.
2102 */
2103 ret = btrfs_run_delayed_items(trans, fs_info);
2104 if (ret) {
2105 mutex_unlock(&fs_info->reloc_mutex);
2106 goto scrub_continue;
2107 }
2108
2109 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2110 if (ret) {
2111 mutex_unlock(&fs_info->reloc_mutex);
2112 goto scrub_continue;
2113 }
2114
2115 /* Reocrd old roots for later qgroup accounting */
2116 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2117 if (ret) {
2118 mutex_unlock(&fs_info->reloc_mutex);
2119 goto scrub_continue;
2120 }
2121
2122 /*
2123 * make sure none of the code above managed to slip in a
2124 * delayed item
2125 */
2126 btrfs_assert_delayed_root_empty(fs_info);
2127
2128 WARN_ON(cur_trans != trans->transaction);
2129
2130 /* btrfs_commit_tree_roots is responsible for getting the
2131 * various roots consistent with each other. Every pointer
2132 * in the tree of tree roots has to point to the most up to date
2133 * root for every subvolume and other tree. So, we have to keep
2134 * the tree logging code from jumping in and changing any
2135 * of the trees.
2136 *
2137 * At this point in the commit, there can't be any tree-log
2138 * writers, but a little lower down we drop the trans mutex
2139 * and let new people in. By holding the tree_log_mutex
2140 * from now until after the super is written, we avoid races
2141 * with the tree-log code.
2142 */
2143 mutex_lock(&fs_info->tree_log_mutex);
2144
2145 ret = commit_fs_roots(trans, fs_info);
2146 if (ret) {
2147 mutex_unlock(&fs_info->tree_log_mutex);
2148 mutex_unlock(&fs_info->reloc_mutex);
2149 goto scrub_continue;
2150 }
2151
2152 /*
2153 * Since the transaction is done, we can apply the pending changes
2154 * before the next transaction.
2155 */
2156 btrfs_apply_pending_changes(fs_info);
2157
2158 /* commit_fs_roots gets rid of all the tree log roots, it is now
2159 * safe to free the root of tree log roots
2160 */
2161 btrfs_free_log_root_tree(trans, fs_info);
2162
2163 /*
2164 * Since fs roots are all committed, we can get a quite accurate
2165 * new_roots. So let's do quota accounting.
2166 */
2167 ret = btrfs_qgroup_account_extents(trans, fs_info);
2168 if (ret < 0) {
2169 mutex_unlock(&fs_info->tree_log_mutex);
2170 mutex_unlock(&fs_info->reloc_mutex);
2171 goto scrub_continue;
2172 }
2173
2174 ret = commit_cowonly_roots(trans, fs_info);
2175 if (ret) {
2176 mutex_unlock(&fs_info->tree_log_mutex);
2177 mutex_unlock(&fs_info->reloc_mutex);
2178 goto scrub_continue;
2179 }
2180
2181 /*
2182 * The tasks which save the space cache and inode cache may also
2183 * update ->aborted, check it.
2184 */
2185 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2186 ret = cur_trans->aborted;
2187 mutex_unlock(&fs_info->tree_log_mutex);
2188 mutex_unlock(&fs_info->reloc_mutex);
2189 goto scrub_continue;
2190 }
2191
2192 btrfs_prepare_extent_commit(trans, fs_info);
2193
2194 cur_trans = fs_info->running_transaction;
2195
2196 btrfs_set_root_node(&fs_info->tree_root->root_item,
2197 fs_info->tree_root->node);
2198 list_add_tail(&fs_info->tree_root->dirty_list,
2199 &cur_trans->switch_commits);
2200
2201 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2202 fs_info->chunk_root->node);
2203 list_add_tail(&fs_info->chunk_root->dirty_list,
2204 &cur_trans->switch_commits);
2205
2206 switch_commit_roots(cur_trans, fs_info);
2207
2208 assert_qgroups_uptodate(trans);
2209 ASSERT(list_empty(&cur_trans->dirty_bgs));
2210 ASSERT(list_empty(&cur_trans->io_bgs));
2211 update_super_roots(fs_info);
2212
2213 btrfs_set_super_log_root(fs_info->super_copy, 0);
2214 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2215 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2216 sizeof(*fs_info->super_copy));
2217
2218 btrfs_update_commit_device_size(fs_info);
2219 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2220
2221 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2222 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2223
2224 btrfs_trans_release_chunk_metadata(trans);
2225
2226 spin_lock(&fs_info->trans_lock);
2227 cur_trans->state = TRANS_STATE_UNBLOCKED;
2228 fs_info->running_transaction = NULL;
2229 spin_unlock(&fs_info->trans_lock);
2230 mutex_unlock(&fs_info->reloc_mutex);
2231
2232 wake_up(&fs_info->transaction_wait);
2233
2234 ret = btrfs_write_and_wait_transaction(trans, root);
2235 if (ret) {
2236 btrfs_handle_fs_error(fs_info, ret,
2237 "Error while writing out transaction");
2238 mutex_unlock(&fs_info->tree_log_mutex);
2239 goto scrub_continue;
2240 }
2241
2242 ret = write_ctree_super(trans, fs_info, 0);
2243 if (ret) {
2244 mutex_unlock(&fs_info->tree_log_mutex);
2245 goto scrub_continue;
2246 }
2247
2248 /*
2249 * the super is written, we can safely allow the tree-loggers
2250 * to go about their business
2251 */
2252 mutex_unlock(&fs_info->tree_log_mutex);
2253
2254 btrfs_finish_extent_commit(trans, fs_info);
2255
2256 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2257 btrfs_clear_space_info_full(fs_info);
2258
2259 fs_info->last_trans_committed = cur_trans->transid;
2260 /*
2261 * We needn't acquire the lock here because there is no other task
2262 * which can change it.
2263 */
2264 cur_trans->state = TRANS_STATE_COMPLETED;
2265 wake_up(&cur_trans->commit_wait);
2266
2267 spin_lock(&fs_info->trans_lock);
2268 list_del_init(&cur_trans->list);
2269 spin_unlock(&fs_info->trans_lock);
2270
2271 btrfs_put_transaction(cur_trans);
2272 btrfs_put_transaction(cur_trans);
2273
2274 if (trans->type & __TRANS_FREEZABLE)
2275 sb_end_intwrite(fs_info->sb);
2276
2277 trace_btrfs_transaction_commit(root);
2278
2279 btrfs_scrub_continue(fs_info);
2280
2281 if (current->journal_info == trans)
2282 current->journal_info = NULL;
2283
2284 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2285
2286 /*
2287 * If fs has been frozen, we can not handle delayed iputs, otherwise
2288 * it'll result in deadlock about SB_FREEZE_FS.
2289 */
2290 if (current != fs_info->transaction_kthread &&
2291 current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2292 btrfs_run_delayed_iputs(fs_info);
2293
2294 return ret;
2295
2296 scrub_continue:
2297 btrfs_scrub_continue(fs_info);
2298 cleanup_transaction:
2299 btrfs_trans_release_metadata(trans, fs_info);
2300 btrfs_trans_release_chunk_metadata(trans);
2301 trans->block_rsv = NULL;
2302 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2303 if (current->journal_info == trans)
2304 current->journal_info = NULL;
2305 cleanup_transaction(trans, root, ret);
2306
2307 return ret;
2308 }
2309
2310 /*
2311 * return < 0 if error
2312 * 0 if there are no more dead_roots at the time of call
2313 * 1 there are more to be processed, call me again
2314 *
2315 * The return value indicates there are certainly more snapshots to delete, but
2316 * if there comes a new one during processing, it may return 0. We don't mind,
2317 * because btrfs_commit_super will poke cleaner thread and it will process it a
2318 * few seconds later.
2319 */
2320 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2321 {
2322 int ret;
2323 struct btrfs_fs_info *fs_info = root->fs_info;
2324
2325 spin_lock(&fs_info->trans_lock);
2326 if (list_empty(&fs_info->dead_roots)) {
2327 spin_unlock(&fs_info->trans_lock);
2328 return 0;
2329 }
2330 root = list_first_entry(&fs_info->dead_roots,
2331 struct btrfs_root, root_list);
2332 list_del_init(&root->root_list);
2333 spin_unlock(&fs_info->trans_lock);
2334
2335 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2336
2337 btrfs_kill_all_delayed_nodes(root);
2338
2339 if (btrfs_header_backref_rev(root->node) <
2340 BTRFS_MIXED_BACKREF_REV)
2341 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2342 else
2343 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2344
2345 return (ret < 0) ? 0 : 1;
2346 }
2347
2348 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2349 {
2350 unsigned long prev;
2351 unsigned long bit;
2352
2353 prev = xchg(&fs_info->pending_changes, 0);
2354 if (!prev)
2355 return;
2356
2357 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2358 if (prev & bit)
2359 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2360 prev &= ~bit;
2361
2362 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2363 if (prev & bit)
2364 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2365 prev &= ~bit;
2366
2367 bit = 1 << BTRFS_PENDING_COMMIT;
2368 if (prev & bit)
2369 btrfs_debug(fs_info, "pending commit done");
2370 prev &= ~bit;
2371
2372 if (prev)
2373 btrfs_warn(fs_info,
2374 "unknown pending changes left 0x%lx, ignoring", prev);
2375 }