]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/buffer.c
Merge tag 'leds_for_4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszews...
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 bh->b_end_io = handler;
59 bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 }
163
164 /*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 set_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
247 }
248 out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251 out:
252 return ret;
253 }
254
255 /*
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 */
258 static void free_more_memory(void)
259 {
260 struct zoneref *z;
261 int nid;
262
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
265
266 for_each_online_node(nid) {
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
273 }
274 }
275
276 /*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 {
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331 still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
335 }
336
337 /*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 {
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mapping_set_error(page->mapping, -EIO);
356 set_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
379
380 still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
384 }
385 EXPORT_SYMBOL(end_buffer_async_write);
386
387 /*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408 static void mark_buffer_async_read(struct buffer_head *bh)
409 {
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412 }
413
414 static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
416 {
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
419 }
420
421 void mark_buffer_async_write(struct buffer_head *bh)
422 {
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 }
425 EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428 /*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477 /*
478 * The buffer's backing address_space's private_lock must be held
479 */
480 static void __remove_assoc_queue(struct buffer_head *bh)
481 {
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
487 }
488
489 int inode_has_buffers(struct inode *inode)
490 {
491 return !list_empty(&inode->i_data.private_list);
492 }
493
494 /*
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
498 *
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
503 */
504 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505 {
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
509
510 spin_lock(lock);
511 repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
523 }
524 }
525 spin_unlock(lock);
526 return err;
527 }
528
529 static void do_thaw_one(struct super_block *sb, void *unused)
530 {
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
533 }
534
535 static void do_thaw_all(struct work_struct *work)
536 {
537 iterate_supers(do_thaw_one, NULL);
538 kfree(work);
539 printk(KERN_WARNING "Emergency Thaw complete\n");
540 }
541
542 /**
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 *
545 * Used for emergency unfreeze of all filesystems via SysRq
546 */
547 void emergency_thaw_all(void)
548 {
549 struct work_struct *work;
550
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
555 }
556 }
557
558 /**
559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
560 * @mapping: the mapping which wants those buffers written
561 *
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
564 *
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
568 */
569 int sync_mapping_buffers(struct address_space *mapping)
570 {
571 struct address_space *buffer_mapping = mapping->private_data;
572
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
575
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
578 }
579 EXPORT_SYMBOL(sync_mapping_buffers);
580
581 /*
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 */
587 void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
589 {
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
594 put_bh(bh);
595 }
596 }
597
598 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599 {
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
602
603 mark_buffer_dirty(bh);
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
606 } else {
607 BUG_ON(mapping->private_data != buffer_mapping);
608 }
609 if (!bh->b_assoc_map) {
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
613 bh->b_assoc_map = mapping;
614 spin_unlock(&buffer_mapping->private_lock);
615 }
616 }
617 EXPORT_SYMBOL(mark_buffer_dirty_inode);
618
619 /*
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
622 *
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
625 *
626 * The caller must hold lock_page_memcg().
627 */
628 static void __set_page_dirty(struct page *page, struct address_space *mapping,
629 int warn)
630 {
631 unsigned long flags;
632
633 spin_lock_irqsave(&mapping->tree_lock, flags);
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
636 account_page_dirtied(page, mapping);
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
639 }
640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
641 }
642
643 /*
644 * Add a page to the dirty page list.
645 *
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
648 *
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
653 *
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
660 *
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
664 *
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
667 */
668 int __set_page_dirty_buffers(struct page *page)
669 {
670 int newly_dirty;
671 struct address_space *mapping = page_mapping(page);
672
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
675
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
680
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
685 }
686 /*
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
689 */
690 lock_page_memcg(page);
691 newly_dirty = !TestSetPageDirty(page);
692 spin_unlock(&mapping->private_lock);
693
694 if (newly_dirty)
695 __set_page_dirty(page, mapping, 1);
696
697 unlock_page_memcg(page);
698
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701
702 return newly_dirty;
703 }
704 EXPORT_SYMBOL(__set_page_dirty_buffers);
705
706 /*
707 * Write out and wait upon a list of buffers.
708 *
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
713 *
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
717 *
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
724 */
725 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726 {
727 struct buffer_head *bh;
728 struct list_head tmp;
729 struct address_space *mapping;
730 int err = 0, err2;
731 struct blk_plug plug;
732
733 INIT_LIST_HEAD(&tmp);
734 blk_start_plug(&plug);
735
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
739 mapping = bh->b_assoc_map;
740 __remove_assoc_queue(bh);
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
746 bh->b_assoc_map = mapping;
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
750 /*
751 * Ensure any pending I/O completes so that
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
756 */
757 write_dirty_buffer(bh, REQ_SYNC);
758
759 /*
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
764 */
765 brelse(bh);
766 spin_lock(lock);
767 }
768 }
769 }
770
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
774
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
777 get_bh(bh);
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
785 &mapping->private_list);
786 bh->b_assoc_map = mapping;
787 }
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802 }
803
804 /*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813 void invalidate_inode_buffers(struct inode *inode)
814 {
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->private_data;
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825 }
826 EXPORT_SYMBOL(invalidate_inode_buffers);
827
828 /*
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
831 *
832 * Returns true if all buffers were removed.
833 */
834 int remove_inode_buffers(struct inode *inode)
835 {
836 int ret = 1;
837
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->private_data;
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
849 }
850 __remove_assoc_queue(bh);
851 }
852 spin_unlock(&buffer_mapping->private_lock);
853 }
854 return ret;
855 }
856
857 /*
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
862 *
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
865 */
866 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
868 {
869 struct buffer_head *bh, *head;
870 long offset;
871
872 try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
879
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
888 }
889 return head;
890 /*
891 * In case anything failed, we just free everything we got.
892 */
893 no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 /*
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
907 */
908 if (!retry)
909 return NULL;
910
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
916 */
917 free_more_memory();
918 goto try_again;
919 }
920 EXPORT_SYMBOL_GPL(alloc_page_buffers);
921
922 static inline void
923 link_dev_buffers(struct page *page, struct buffer_head *head)
924 {
925 struct buffer_head *bh, *tail;
926
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
934 }
935
936 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937 {
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
940
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
944 }
945 return retval;
946 }
947
948 /*
949 * Initialise the state of a blockdev page's buffers.
950 */
951 static sector_t
952 init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
954 {
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
967 if (block < end_block)
968 set_buffer_mapped(bh);
969 }
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
973
974 /*
975 * Caller needs to validate requested block against end of device.
976 */
977 return end_block;
978 }
979
980 /*
981 * Create the page-cache page that contains the requested block.
982 *
983 * This is used purely for blockdev mappings.
984 */
985 static int
986 grow_dev_page(struct block_device *bdev, sector_t block,
987 pgoff_t index, int size, int sizebits, gfp_t gfp)
988 {
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
994 gfp_t gfp_mask;
995
996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
997
998 /*
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1003 */
1004 gfp_mask |= __GFP_NOFAIL;
1005
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 if (!page)
1008 return ret;
1009
1010 BUG_ON(!PageLocked(page));
1011
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
1015 end_block = init_page_buffers(page, bdev,
1016 (sector_t)index << sizebits,
1017 size);
1018 goto done;
1019 }
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1022 }
1023
1024 /*
1025 * Allocate some buffers for this page
1026 */
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1030
1031 /*
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1035 */
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1040 spin_unlock(&inode->i_mapping->private_lock);
1041 done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1043 failed:
1044 unlock_page(page);
1045 put_page(page);
1046 return ret;
1047 }
1048
1049 /*
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053 static int
1054 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055 {
1056 pgoff_t index;
1057 int sizebits;
1058
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1063
1064 index = block >> sizebits;
1065
1066 /*
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1069 */
1070 if (unlikely(index != block >> sizebits)) {
1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072 "device %pg\n",
1073 __func__, (unsigned long long)block,
1074 bdev);
1075 return -EIO;
1076 }
1077
1078 /* Create a page with the proper size buffers.. */
1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080 }
1081
1082 static struct buffer_head *
1083 __getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1085 {
1086 /* Size must be multiple of hard sectorsize */
1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
1106 ret = grow_buffers(bdev, block, size, gfp);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1111 }
1112 }
1113
1114 /*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137 /**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153 trace_block_dirty_buffer(bh);
1154
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 struct address_space *mapping = NULL;
1170
1171 lock_page_memcg(page);
1172 if (!TestSetPageDirty(page)) {
1173 mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1176 }
1177 unlock_page_memcg(page);
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 }
1181 }
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184 /*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191 void __brelse(struct buffer_head * buf)
1192 {
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 }
1199 EXPORT_SYMBOL(__brelse);
1200
1201 /*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205 void __bforget(struct buffer_head *bh)
1206 {
1207 clear_buffer_dirty(bh);
1208 if (bh->b_assoc_map) {
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
1213 bh->b_assoc_map = NULL;
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217 }
1218 EXPORT_SYMBOL(__bforget);
1219
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 {
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
1229 submit_bh(REQ_OP_READ, 0, bh);
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236 }
1237
1238 /*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
1252 #define BH_LRU_SIZE 16
1253
1254 struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256 };
1257
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock() local_irq_disable()
1262 #define bh_lru_unlock() local_irq_enable()
1263 #else
1264 #define bh_lru_lock() preempt_disable()
1265 #define bh_lru_unlock() preempt_enable()
1266 #endif
1267
1268 static inline void check_irqs_on(void)
1269 {
1270 #ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272 #endif
1273 }
1274
1275 /*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280 struct buffer_head *evictee = NULL;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314 }
1315
1316 /*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
1319 static struct buffer_head *
1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1337 }
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347 }
1348
1349 /*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1366
1367 return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370
1371 /*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 */
1379 struct buffer_head *
1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1382 {
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1389 }
1390 EXPORT_SYMBOL(__getblk_gfp);
1391
1392 /*
1393 * Do async read-ahead on a buffer..
1394 */
1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 brelse(bh);
1401 }
1402 }
1403 EXPORT_SYMBOL(__breadahead);
1404
1405 /**
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1411 *
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1416 */
1417 struct buffer_head *
1418 __bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1420 {
1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423 if (likely(bh) && !buffer_uptodate(bh))
1424 bh = __bread_slow(bh);
1425 return bh;
1426 }
1427 EXPORT_SYMBOL(__bread_gfp);
1428
1429 /*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434 static void invalidate_bh_lru(void *arg)
1435 {
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444 }
1445
1446 static bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1450
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457 }
1458
1459 void invalidate_bh_lrus(void)
1460 {
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465 void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467 {
1468 bh->b_page = page;
1469 BUG_ON(offset >= PAGE_SIZE);
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477 }
1478 EXPORT_SYMBOL(set_bh_page);
1479
1480 /*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489 static void discard_buffer(struct buffer_head * bh)
1490 {
1491 unsigned long b_state, b_state_old;
1492
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1504 unlock_buffer(bh);
1505 }
1506
1507 /**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523 void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1525 {
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1528 unsigned int stop = length + offset;
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
1534 /*
1535 * Check for overflow
1536 */
1537 BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
1566 try_to_release_page(page, 0);
1567 out:
1568 return;
1569 }
1570 EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573 /*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578 void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580 {
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605 }
1606 EXPORT_SYMBOL(create_empty_buffers);
1607
1608 /**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1613 *
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1624 * writeout I/O going on against recently-freed buffers. We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to. That happens here.
1627 */
1628 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629 {
1630 struct inode *bd_inode = bdev->bd_inode;
1631 struct address_space *bd_mapping = bd_inode->i_mapping;
1632 struct pagevec pvec;
1633 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634 pgoff_t end;
1635 int i;
1636 struct buffer_head *bh;
1637 struct buffer_head *head;
1638
1639 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 pagevec_init(&pvec, 0);
1641 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643 for (i = 0; i < pagevec_count(&pvec); i++) {
1644 struct page *page = pvec.pages[i];
1645
1646 index = page->index;
1647 if (index > end)
1648 break;
1649 if (!page_has_buffers(page))
1650 continue;
1651 /*
1652 * We use page lock instead of bd_mapping->private_lock
1653 * to pin buffers here since we can afford to sleep and
1654 * it scales better than a global spinlock lock.
1655 */
1656 lock_page(page);
1657 /* Recheck when the page is locked which pins bhs */
1658 if (!page_has_buffers(page))
1659 goto unlock_page;
1660 head = page_buffers(page);
1661 bh = head;
1662 do {
1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 goto next;
1665 if (bh->b_blocknr >= block + len)
1666 break;
1667 clear_buffer_dirty(bh);
1668 wait_on_buffer(bh);
1669 clear_buffer_req(bh);
1670 next:
1671 bh = bh->b_this_page;
1672 } while (bh != head);
1673 unlock_page:
1674 unlock_page(page);
1675 }
1676 pagevec_release(&pvec);
1677 cond_resched();
1678 index++;
1679 }
1680 }
1681 EXPORT_SYMBOL(clean_bdev_aliases);
1682
1683 /*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691 static inline int block_size_bits(unsigned int blocksize)
1692 {
1693 return ilog2(blocksize);
1694 }
1695
1696 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697 {
1698 BUG_ON(!PageLocked(page));
1699
1700 if (!page_has_buffers(page))
1701 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702 return page_buffers(page);
1703 }
1704
1705 /*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 * Mapped Uptodate Meaning
1709 *
1710 * No No "unknown" - must do get_block()
1711 * No Yes "hole" - zero-filled
1712 * Yes No "allocated" - allocated on disk, not read in
1713 * Yes Yes "valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718 /*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time. We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer. This only can happen if someone has written the buffer
1727 * directly, with submit_bh(). At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1733 */
1734 int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc,
1736 bh_end_io_t *handler)
1737 {
1738 int err;
1739 sector_t block;
1740 sector_t last_block;
1741 struct buffer_head *bh, *head;
1742 unsigned int blocksize, bbits;
1743 int nr_underway = 0;
1744 int write_flags = wbc_to_write_flags(wbc);
1745
1746 head = create_page_buffers(page, inode,
1747 (1 << BH_Dirty)|(1 << BH_Uptodate));
1748
1749 /*
1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1751 * here, and the (potentially unmapped) buffers may become dirty at
1752 * any time. If a buffer becomes dirty here after we've inspected it
1753 * then we just miss that fact, and the page stays dirty.
1754 *
1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 * handle that here by just cleaning them.
1757 */
1758
1759 bh = head;
1760 blocksize = bh->b_size;
1761 bbits = block_size_bits(blocksize);
1762
1763 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764 last_block = (i_size_read(inode) - 1) >> bbits;
1765
1766 /*
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1769 */
1770 do {
1771 if (block > last_block) {
1772 /*
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1776 */
1777 /*
1778 * The buffer was zeroed by block_write_full_page()
1779 */
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783 buffer_dirty(bh)) {
1784 WARN_ON(bh->b_size != blocksize);
1785 err = get_block(inode, block, bh, 1);
1786 if (err)
1787 goto recover;
1788 clear_buffer_delay(bh);
1789 if (buffer_new(bh)) {
1790 /* blockdev mappings never come here */
1791 clear_buffer_new(bh);
1792 clean_bdev_bh_alias(bh);
1793 }
1794 }
1795 bh = bh->b_this_page;
1796 block++;
1797 } while (bh != head);
1798
1799 do {
1800 if (!buffer_mapped(bh))
1801 continue;
1802 /*
1803 * If it's a fully non-blocking write attempt and we cannot
1804 * lock the buffer then redirty the page. Note that this can
1805 * potentially cause a busy-wait loop from writeback threads
1806 * and kswapd activity, but those code paths have their own
1807 * higher-level throttling.
1808 */
1809 if (wbc->sync_mode != WB_SYNC_NONE) {
1810 lock_buffer(bh);
1811 } else if (!trylock_buffer(bh)) {
1812 redirty_page_for_writepage(wbc, page);
1813 continue;
1814 }
1815 if (test_clear_buffer_dirty(bh)) {
1816 mark_buffer_async_write_endio(bh, handler);
1817 } else {
1818 unlock_buffer(bh);
1819 }
1820 } while ((bh = bh->b_this_page) != head);
1821
1822 /*
1823 * The page and its buffers are protected by PageWriteback(), so we can
1824 * drop the bh refcounts early.
1825 */
1826 BUG_ON(PageWriteback(page));
1827 set_page_writeback(page);
1828
1829 do {
1830 struct buffer_head *next = bh->b_this_page;
1831 if (buffer_async_write(bh)) {
1832 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1833 inode->i_write_hint, wbc);
1834 nr_underway++;
1835 }
1836 bh = next;
1837 } while (bh != head);
1838 unlock_page(page);
1839
1840 err = 0;
1841 done:
1842 if (nr_underway == 0) {
1843 /*
1844 * The page was marked dirty, but the buffers were
1845 * clean. Someone wrote them back by hand with
1846 * ll_rw_block/submit_bh. A rare case.
1847 */
1848 end_page_writeback(page);
1849
1850 /*
1851 * The page and buffer_heads can be released at any time from
1852 * here on.
1853 */
1854 }
1855 return err;
1856
1857 recover:
1858 /*
1859 * ENOSPC, or some other error. We may already have added some
1860 * blocks to the file, so we need to write these out to avoid
1861 * exposing stale data.
1862 * The page is currently locked and not marked for writeback
1863 */
1864 bh = head;
1865 /* Recovery: lock and submit the mapped buffers */
1866 do {
1867 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1868 !buffer_delay(bh)) {
1869 lock_buffer(bh);
1870 mark_buffer_async_write_endio(bh, handler);
1871 } else {
1872 /*
1873 * The buffer may have been set dirty during
1874 * attachment to a dirty page.
1875 */
1876 clear_buffer_dirty(bh);
1877 }
1878 } while ((bh = bh->b_this_page) != head);
1879 SetPageError(page);
1880 BUG_ON(PageWriteback(page));
1881 mapping_set_error(page->mapping, err);
1882 set_page_writeback(page);
1883 do {
1884 struct buffer_head *next = bh->b_this_page;
1885 if (buffer_async_write(bh)) {
1886 clear_buffer_dirty(bh);
1887 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1888 inode->i_write_hint, wbc);
1889 nr_underway++;
1890 }
1891 bh = next;
1892 } while (bh != head);
1893 unlock_page(page);
1894 goto done;
1895 }
1896 EXPORT_SYMBOL(__block_write_full_page);
1897
1898 /*
1899 * If a page has any new buffers, zero them out here, and mark them uptodate
1900 * and dirty so they'll be written out (in order to prevent uninitialised
1901 * block data from leaking). And clear the new bit.
1902 */
1903 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1904 {
1905 unsigned int block_start, block_end;
1906 struct buffer_head *head, *bh;
1907
1908 BUG_ON(!PageLocked(page));
1909 if (!page_has_buffers(page))
1910 return;
1911
1912 bh = head = page_buffers(page);
1913 block_start = 0;
1914 do {
1915 block_end = block_start + bh->b_size;
1916
1917 if (buffer_new(bh)) {
1918 if (block_end > from && block_start < to) {
1919 if (!PageUptodate(page)) {
1920 unsigned start, size;
1921
1922 start = max(from, block_start);
1923 size = min(to, block_end) - start;
1924
1925 zero_user(page, start, size);
1926 set_buffer_uptodate(bh);
1927 }
1928
1929 clear_buffer_new(bh);
1930 mark_buffer_dirty(bh);
1931 }
1932 }
1933
1934 block_start = block_end;
1935 bh = bh->b_this_page;
1936 } while (bh != head);
1937 }
1938 EXPORT_SYMBOL(page_zero_new_buffers);
1939
1940 static void
1941 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1942 struct iomap *iomap)
1943 {
1944 loff_t offset = block << inode->i_blkbits;
1945
1946 bh->b_bdev = iomap->bdev;
1947
1948 /*
1949 * Block points to offset in file we need to map, iomap contains
1950 * the offset at which the map starts. If the map ends before the
1951 * current block, then do not map the buffer and let the caller
1952 * handle it.
1953 */
1954 BUG_ON(offset >= iomap->offset + iomap->length);
1955
1956 switch (iomap->type) {
1957 case IOMAP_HOLE:
1958 /*
1959 * If the buffer is not up to date or beyond the current EOF,
1960 * we need to mark it as new to ensure sub-block zeroing is
1961 * executed if necessary.
1962 */
1963 if (!buffer_uptodate(bh) ||
1964 (offset >= i_size_read(inode)))
1965 set_buffer_new(bh);
1966 break;
1967 case IOMAP_DELALLOC:
1968 if (!buffer_uptodate(bh) ||
1969 (offset >= i_size_read(inode)))
1970 set_buffer_new(bh);
1971 set_buffer_uptodate(bh);
1972 set_buffer_mapped(bh);
1973 set_buffer_delay(bh);
1974 break;
1975 case IOMAP_UNWRITTEN:
1976 /*
1977 * For unwritten regions, we always need to ensure that
1978 * sub-block writes cause the regions in the block we are not
1979 * writing to are zeroed. Set the buffer as new to ensure this.
1980 */
1981 set_buffer_new(bh);
1982 set_buffer_unwritten(bh);
1983 /* FALLTHRU */
1984 case IOMAP_MAPPED:
1985 if (offset >= i_size_read(inode))
1986 set_buffer_new(bh);
1987 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1988 ((offset - iomap->offset) >> inode->i_blkbits);
1989 set_buffer_mapped(bh);
1990 break;
1991 }
1992 }
1993
1994 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1995 get_block_t *get_block, struct iomap *iomap)
1996 {
1997 unsigned from = pos & (PAGE_SIZE - 1);
1998 unsigned to = from + len;
1999 struct inode *inode = page->mapping->host;
2000 unsigned block_start, block_end;
2001 sector_t block;
2002 int err = 0;
2003 unsigned blocksize, bbits;
2004 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2005
2006 BUG_ON(!PageLocked(page));
2007 BUG_ON(from > PAGE_SIZE);
2008 BUG_ON(to > PAGE_SIZE);
2009 BUG_ON(from > to);
2010
2011 head = create_page_buffers(page, inode, 0);
2012 blocksize = head->b_size;
2013 bbits = block_size_bits(blocksize);
2014
2015 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2016
2017 for(bh = head, block_start = 0; bh != head || !block_start;
2018 block++, block_start=block_end, bh = bh->b_this_page) {
2019 block_end = block_start + blocksize;
2020 if (block_end <= from || block_start >= to) {
2021 if (PageUptodate(page)) {
2022 if (!buffer_uptodate(bh))
2023 set_buffer_uptodate(bh);
2024 }
2025 continue;
2026 }
2027 if (buffer_new(bh))
2028 clear_buffer_new(bh);
2029 if (!buffer_mapped(bh)) {
2030 WARN_ON(bh->b_size != blocksize);
2031 if (get_block) {
2032 err = get_block(inode, block, bh, 1);
2033 if (err)
2034 break;
2035 } else {
2036 iomap_to_bh(inode, block, bh, iomap);
2037 }
2038
2039 if (buffer_new(bh)) {
2040 clean_bdev_bh_alias(bh);
2041 if (PageUptodate(page)) {
2042 clear_buffer_new(bh);
2043 set_buffer_uptodate(bh);
2044 mark_buffer_dirty(bh);
2045 continue;
2046 }
2047 if (block_end > to || block_start < from)
2048 zero_user_segments(page,
2049 to, block_end,
2050 block_start, from);
2051 continue;
2052 }
2053 }
2054 if (PageUptodate(page)) {
2055 if (!buffer_uptodate(bh))
2056 set_buffer_uptodate(bh);
2057 continue;
2058 }
2059 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2060 !buffer_unwritten(bh) &&
2061 (block_start < from || block_end > to)) {
2062 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2063 *wait_bh++=bh;
2064 }
2065 }
2066 /*
2067 * If we issued read requests - let them complete.
2068 */
2069 while(wait_bh > wait) {
2070 wait_on_buffer(*--wait_bh);
2071 if (!buffer_uptodate(*wait_bh))
2072 err = -EIO;
2073 }
2074 if (unlikely(err))
2075 page_zero_new_buffers(page, from, to);
2076 return err;
2077 }
2078
2079 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2080 get_block_t *get_block)
2081 {
2082 return __block_write_begin_int(page, pos, len, get_block, NULL);
2083 }
2084 EXPORT_SYMBOL(__block_write_begin);
2085
2086 static int __block_commit_write(struct inode *inode, struct page *page,
2087 unsigned from, unsigned to)
2088 {
2089 unsigned block_start, block_end;
2090 int partial = 0;
2091 unsigned blocksize;
2092 struct buffer_head *bh, *head;
2093
2094 bh = head = page_buffers(page);
2095 blocksize = bh->b_size;
2096
2097 block_start = 0;
2098 do {
2099 block_end = block_start + blocksize;
2100 if (block_end <= from || block_start >= to) {
2101 if (!buffer_uptodate(bh))
2102 partial = 1;
2103 } else {
2104 set_buffer_uptodate(bh);
2105 mark_buffer_dirty(bh);
2106 }
2107 clear_buffer_new(bh);
2108
2109 block_start = block_end;
2110 bh = bh->b_this_page;
2111 } while (bh != head);
2112
2113 /*
2114 * If this is a partial write which happened to make all buffers
2115 * uptodate then we can optimize away a bogus readpage() for
2116 * the next read(). Here we 'discover' whether the page went
2117 * uptodate as a result of this (potentially partial) write.
2118 */
2119 if (!partial)
2120 SetPageUptodate(page);
2121 return 0;
2122 }
2123
2124 /*
2125 * block_write_begin takes care of the basic task of block allocation and
2126 * bringing partial write blocks uptodate first.
2127 *
2128 * The filesystem needs to handle block truncation upon failure.
2129 */
2130 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2131 unsigned flags, struct page **pagep, get_block_t *get_block)
2132 {
2133 pgoff_t index = pos >> PAGE_SHIFT;
2134 struct page *page;
2135 int status;
2136
2137 page = grab_cache_page_write_begin(mapping, index, flags);
2138 if (!page)
2139 return -ENOMEM;
2140
2141 status = __block_write_begin(page, pos, len, get_block);
2142 if (unlikely(status)) {
2143 unlock_page(page);
2144 put_page(page);
2145 page = NULL;
2146 }
2147
2148 *pagep = page;
2149 return status;
2150 }
2151 EXPORT_SYMBOL(block_write_begin);
2152
2153 int block_write_end(struct file *file, struct address_space *mapping,
2154 loff_t pos, unsigned len, unsigned copied,
2155 struct page *page, void *fsdata)
2156 {
2157 struct inode *inode = mapping->host;
2158 unsigned start;
2159
2160 start = pos & (PAGE_SIZE - 1);
2161
2162 if (unlikely(copied < len)) {
2163 /*
2164 * The buffers that were written will now be uptodate, so we
2165 * don't have to worry about a readpage reading them and
2166 * overwriting a partial write. However if we have encountered
2167 * a short write and only partially written into a buffer, it
2168 * will not be marked uptodate, so a readpage might come in and
2169 * destroy our partial write.
2170 *
2171 * Do the simplest thing, and just treat any short write to a
2172 * non uptodate page as a zero-length write, and force the
2173 * caller to redo the whole thing.
2174 */
2175 if (!PageUptodate(page))
2176 copied = 0;
2177
2178 page_zero_new_buffers(page, start+copied, start+len);
2179 }
2180 flush_dcache_page(page);
2181
2182 /* This could be a short (even 0-length) commit */
2183 __block_commit_write(inode, page, start, start+copied);
2184
2185 return copied;
2186 }
2187 EXPORT_SYMBOL(block_write_end);
2188
2189 int generic_write_end(struct file *file, struct address_space *mapping,
2190 loff_t pos, unsigned len, unsigned copied,
2191 struct page *page, void *fsdata)
2192 {
2193 struct inode *inode = mapping->host;
2194 loff_t old_size = inode->i_size;
2195 int i_size_changed = 0;
2196
2197 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2198
2199 /*
2200 * No need to use i_size_read() here, the i_size
2201 * cannot change under us because we hold i_mutex.
2202 *
2203 * But it's important to update i_size while still holding page lock:
2204 * page writeout could otherwise come in and zero beyond i_size.
2205 */
2206 if (pos+copied > inode->i_size) {
2207 i_size_write(inode, pos+copied);
2208 i_size_changed = 1;
2209 }
2210
2211 unlock_page(page);
2212 put_page(page);
2213
2214 if (old_size < pos)
2215 pagecache_isize_extended(inode, old_size, pos);
2216 /*
2217 * Don't mark the inode dirty under page lock. First, it unnecessarily
2218 * makes the holding time of page lock longer. Second, it forces lock
2219 * ordering of page lock and transaction start for journaling
2220 * filesystems.
2221 */
2222 if (i_size_changed)
2223 mark_inode_dirty(inode);
2224
2225 return copied;
2226 }
2227 EXPORT_SYMBOL(generic_write_end);
2228
2229 /*
2230 * block_is_partially_uptodate checks whether buffers within a page are
2231 * uptodate or not.
2232 *
2233 * Returns true if all buffers which correspond to a file portion
2234 * we want to read are uptodate.
2235 */
2236 int block_is_partially_uptodate(struct page *page, unsigned long from,
2237 unsigned long count)
2238 {
2239 unsigned block_start, block_end, blocksize;
2240 unsigned to;
2241 struct buffer_head *bh, *head;
2242 int ret = 1;
2243
2244 if (!page_has_buffers(page))
2245 return 0;
2246
2247 head = page_buffers(page);
2248 blocksize = head->b_size;
2249 to = min_t(unsigned, PAGE_SIZE - from, count);
2250 to = from + to;
2251 if (from < blocksize && to > PAGE_SIZE - blocksize)
2252 return 0;
2253
2254 bh = head;
2255 block_start = 0;
2256 do {
2257 block_end = block_start + blocksize;
2258 if (block_end > from && block_start < to) {
2259 if (!buffer_uptodate(bh)) {
2260 ret = 0;
2261 break;
2262 }
2263 if (block_end >= to)
2264 break;
2265 }
2266 block_start = block_end;
2267 bh = bh->b_this_page;
2268 } while (bh != head);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL(block_is_partially_uptodate);
2273
2274 /*
2275 * Generic "read page" function for block devices that have the normal
2276 * get_block functionality. This is most of the block device filesystems.
2277 * Reads the page asynchronously --- the unlock_buffer() and
2278 * set/clear_buffer_uptodate() functions propagate buffer state into the
2279 * page struct once IO has completed.
2280 */
2281 int block_read_full_page(struct page *page, get_block_t *get_block)
2282 {
2283 struct inode *inode = page->mapping->host;
2284 sector_t iblock, lblock;
2285 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2286 unsigned int blocksize, bbits;
2287 int nr, i;
2288 int fully_mapped = 1;
2289
2290 head = create_page_buffers(page, inode, 0);
2291 blocksize = head->b_size;
2292 bbits = block_size_bits(blocksize);
2293
2294 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2295 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2296 bh = head;
2297 nr = 0;
2298 i = 0;
2299
2300 do {
2301 if (buffer_uptodate(bh))
2302 continue;
2303
2304 if (!buffer_mapped(bh)) {
2305 int err = 0;
2306
2307 fully_mapped = 0;
2308 if (iblock < lblock) {
2309 WARN_ON(bh->b_size != blocksize);
2310 err = get_block(inode, iblock, bh, 0);
2311 if (err)
2312 SetPageError(page);
2313 }
2314 if (!buffer_mapped(bh)) {
2315 zero_user(page, i * blocksize, blocksize);
2316 if (!err)
2317 set_buffer_uptodate(bh);
2318 continue;
2319 }
2320 /*
2321 * get_block() might have updated the buffer
2322 * synchronously
2323 */
2324 if (buffer_uptodate(bh))
2325 continue;
2326 }
2327 arr[nr++] = bh;
2328 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2329
2330 if (fully_mapped)
2331 SetPageMappedToDisk(page);
2332
2333 if (!nr) {
2334 /*
2335 * All buffers are uptodate - we can set the page uptodate
2336 * as well. But not if get_block() returned an error.
2337 */
2338 if (!PageError(page))
2339 SetPageUptodate(page);
2340 unlock_page(page);
2341 return 0;
2342 }
2343
2344 /* Stage two: lock the buffers */
2345 for (i = 0; i < nr; i++) {
2346 bh = arr[i];
2347 lock_buffer(bh);
2348 mark_buffer_async_read(bh);
2349 }
2350
2351 /*
2352 * Stage 3: start the IO. Check for uptodateness
2353 * inside the buffer lock in case another process reading
2354 * the underlying blockdev brought it uptodate (the sct fix).
2355 */
2356 for (i = 0; i < nr; i++) {
2357 bh = arr[i];
2358 if (buffer_uptodate(bh))
2359 end_buffer_async_read(bh, 1);
2360 else
2361 submit_bh(REQ_OP_READ, 0, bh);
2362 }
2363 return 0;
2364 }
2365 EXPORT_SYMBOL(block_read_full_page);
2366
2367 /* utility function for filesystems that need to do work on expanding
2368 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2369 * deal with the hole.
2370 */
2371 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2372 {
2373 struct address_space *mapping = inode->i_mapping;
2374 struct page *page;
2375 void *fsdata;
2376 int err;
2377
2378 err = inode_newsize_ok(inode, size);
2379 if (err)
2380 goto out;
2381
2382 err = pagecache_write_begin(NULL, mapping, size, 0,
2383 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2384 if (err)
2385 goto out;
2386
2387 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2388 BUG_ON(err > 0);
2389
2390 out:
2391 return err;
2392 }
2393 EXPORT_SYMBOL(generic_cont_expand_simple);
2394
2395 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2396 loff_t pos, loff_t *bytes)
2397 {
2398 struct inode *inode = mapping->host;
2399 unsigned int blocksize = i_blocksize(inode);
2400 struct page *page;
2401 void *fsdata;
2402 pgoff_t index, curidx;
2403 loff_t curpos;
2404 unsigned zerofrom, offset, len;
2405 int err = 0;
2406
2407 index = pos >> PAGE_SHIFT;
2408 offset = pos & ~PAGE_MASK;
2409
2410 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2411 zerofrom = curpos & ~PAGE_MASK;
2412 if (zerofrom & (blocksize-1)) {
2413 *bytes |= (blocksize-1);
2414 (*bytes)++;
2415 }
2416 len = PAGE_SIZE - zerofrom;
2417
2418 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2419 &page, &fsdata);
2420 if (err)
2421 goto out;
2422 zero_user(page, zerofrom, len);
2423 err = pagecache_write_end(file, mapping, curpos, len, len,
2424 page, fsdata);
2425 if (err < 0)
2426 goto out;
2427 BUG_ON(err != len);
2428 err = 0;
2429
2430 balance_dirty_pages_ratelimited(mapping);
2431
2432 if (unlikely(fatal_signal_pending(current))) {
2433 err = -EINTR;
2434 goto out;
2435 }
2436 }
2437
2438 /* page covers the boundary, find the boundary offset */
2439 if (index == curidx) {
2440 zerofrom = curpos & ~PAGE_MASK;
2441 /* if we will expand the thing last block will be filled */
2442 if (offset <= zerofrom) {
2443 goto out;
2444 }
2445 if (zerofrom & (blocksize-1)) {
2446 *bytes |= (blocksize-1);
2447 (*bytes)++;
2448 }
2449 len = offset - zerofrom;
2450
2451 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2452 &page, &fsdata);
2453 if (err)
2454 goto out;
2455 zero_user(page, zerofrom, len);
2456 err = pagecache_write_end(file, mapping, curpos, len, len,
2457 page, fsdata);
2458 if (err < 0)
2459 goto out;
2460 BUG_ON(err != len);
2461 err = 0;
2462 }
2463 out:
2464 return err;
2465 }
2466
2467 /*
2468 * For moronic filesystems that do not allow holes in file.
2469 * We may have to extend the file.
2470 */
2471 int cont_write_begin(struct file *file, struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned flags,
2473 struct page **pagep, void **fsdata,
2474 get_block_t *get_block, loff_t *bytes)
2475 {
2476 struct inode *inode = mapping->host;
2477 unsigned int blocksize = i_blocksize(inode);
2478 unsigned int zerofrom;
2479 int err;
2480
2481 err = cont_expand_zero(file, mapping, pos, bytes);
2482 if (err)
2483 return err;
2484
2485 zerofrom = *bytes & ~PAGE_MASK;
2486 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2487 *bytes |= (blocksize-1);
2488 (*bytes)++;
2489 }
2490
2491 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2492 }
2493 EXPORT_SYMBOL(cont_write_begin);
2494
2495 int block_commit_write(struct page *page, unsigned from, unsigned to)
2496 {
2497 struct inode *inode = page->mapping->host;
2498 __block_commit_write(inode,page,from,to);
2499 return 0;
2500 }
2501 EXPORT_SYMBOL(block_commit_write);
2502
2503 /*
2504 * block_page_mkwrite() is not allowed to change the file size as it gets
2505 * called from a page fault handler when a page is first dirtied. Hence we must
2506 * be careful to check for EOF conditions here. We set the page up correctly
2507 * for a written page which means we get ENOSPC checking when writing into
2508 * holes and correct delalloc and unwritten extent mapping on filesystems that
2509 * support these features.
2510 *
2511 * We are not allowed to take the i_mutex here so we have to play games to
2512 * protect against truncate races as the page could now be beyond EOF. Because
2513 * truncate writes the inode size before removing pages, once we have the
2514 * page lock we can determine safely if the page is beyond EOF. If it is not
2515 * beyond EOF, then the page is guaranteed safe against truncation until we
2516 * unlock the page.
2517 *
2518 * Direct callers of this function should protect against filesystem freezing
2519 * using sb_start_pagefault() - sb_end_pagefault() functions.
2520 */
2521 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2522 get_block_t get_block)
2523 {
2524 struct page *page = vmf->page;
2525 struct inode *inode = file_inode(vma->vm_file);
2526 unsigned long end;
2527 loff_t size;
2528 int ret;
2529
2530 lock_page(page);
2531 size = i_size_read(inode);
2532 if ((page->mapping != inode->i_mapping) ||
2533 (page_offset(page) > size)) {
2534 /* We overload EFAULT to mean page got truncated */
2535 ret = -EFAULT;
2536 goto out_unlock;
2537 }
2538
2539 /* page is wholly or partially inside EOF */
2540 if (((page->index + 1) << PAGE_SHIFT) > size)
2541 end = size & ~PAGE_MASK;
2542 else
2543 end = PAGE_SIZE;
2544
2545 ret = __block_write_begin(page, 0, end, get_block);
2546 if (!ret)
2547 ret = block_commit_write(page, 0, end);
2548
2549 if (unlikely(ret < 0))
2550 goto out_unlock;
2551 set_page_dirty(page);
2552 wait_for_stable_page(page);
2553 return 0;
2554 out_unlock:
2555 unlock_page(page);
2556 return ret;
2557 }
2558 EXPORT_SYMBOL(block_page_mkwrite);
2559
2560 /*
2561 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2562 * immediately, while under the page lock. So it needs a special end_io
2563 * handler which does not touch the bh after unlocking it.
2564 */
2565 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2566 {
2567 __end_buffer_read_notouch(bh, uptodate);
2568 }
2569
2570 /*
2571 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2572 * the page (converting it to circular linked list and taking care of page
2573 * dirty races).
2574 */
2575 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2576 {
2577 struct buffer_head *bh;
2578
2579 BUG_ON(!PageLocked(page));
2580
2581 spin_lock(&page->mapping->private_lock);
2582 bh = head;
2583 do {
2584 if (PageDirty(page))
2585 set_buffer_dirty(bh);
2586 if (!bh->b_this_page)
2587 bh->b_this_page = head;
2588 bh = bh->b_this_page;
2589 } while (bh != head);
2590 attach_page_buffers(page, head);
2591 spin_unlock(&page->mapping->private_lock);
2592 }
2593
2594 /*
2595 * On entry, the page is fully not uptodate.
2596 * On exit the page is fully uptodate in the areas outside (from,to)
2597 * The filesystem needs to handle block truncation upon failure.
2598 */
2599 int nobh_write_begin(struct address_space *mapping,
2600 loff_t pos, unsigned len, unsigned flags,
2601 struct page **pagep, void **fsdata,
2602 get_block_t *get_block)
2603 {
2604 struct inode *inode = mapping->host;
2605 const unsigned blkbits = inode->i_blkbits;
2606 const unsigned blocksize = 1 << blkbits;
2607 struct buffer_head *head, *bh;
2608 struct page *page;
2609 pgoff_t index;
2610 unsigned from, to;
2611 unsigned block_in_page;
2612 unsigned block_start, block_end;
2613 sector_t block_in_file;
2614 int nr_reads = 0;
2615 int ret = 0;
2616 int is_mapped_to_disk = 1;
2617
2618 index = pos >> PAGE_SHIFT;
2619 from = pos & (PAGE_SIZE - 1);
2620 to = from + len;
2621
2622 page = grab_cache_page_write_begin(mapping, index, flags);
2623 if (!page)
2624 return -ENOMEM;
2625 *pagep = page;
2626 *fsdata = NULL;
2627
2628 if (page_has_buffers(page)) {
2629 ret = __block_write_begin(page, pos, len, get_block);
2630 if (unlikely(ret))
2631 goto out_release;
2632 return ret;
2633 }
2634
2635 if (PageMappedToDisk(page))
2636 return 0;
2637
2638 /*
2639 * Allocate buffers so that we can keep track of state, and potentially
2640 * attach them to the page if an error occurs. In the common case of
2641 * no error, they will just be freed again without ever being attached
2642 * to the page (which is all OK, because we're under the page lock).
2643 *
2644 * Be careful: the buffer linked list is a NULL terminated one, rather
2645 * than the circular one we're used to.
2646 */
2647 head = alloc_page_buffers(page, blocksize, 0);
2648 if (!head) {
2649 ret = -ENOMEM;
2650 goto out_release;
2651 }
2652
2653 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2654
2655 /*
2656 * We loop across all blocks in the page, whether or not they are
2657 * part of the affected region. This is so we can discover if the
2658 * page is fully mapped-to-disk.
2659 */
2660 for (block_start = 0, block_in_page = 0, bh = head;
2661 block_start < PAGE_SIZE;
2662 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2663 int create;
2664
2665 block_end = block_start + blocksize;
2666 bh->b_state = 0;
2667 create = 1;
2668 if (block_start >= to)
2669 create = 0;
2670 ret = get_block(inode, block_in_file + block_in_page,
2671 bh, create);
2672 if (ret)
2673 goto failed;
2674 if (!buffer_mapped(bh))
2675 is_mapped_to_disk = 0;
2676 if (buffer_new(bh))
2677 clean_bdev_bh_alias(bh);
2678 if (PageUptodate(page)) {
2679 set_buffer_uptodate(bh);
2680 continue;
2681 }
2682 if (buffer_new(bh) || !buffer_mapped(bh)) {
2683 zero_user_segments(page, block_start, from,
2684 to, block_end);
2685 continue;
2686 }
2687 if (buffer_uptodate(bh))
2688 continue; /* reiserfs does this */
2689 if (block_start < from || block_end > to) {
2690 lock_buffer(bh);
2691 bh->b_end_io = end_buffer_read_nobh;
2692 submit_bh(REQ_OP_READ, 0, bh);
2693 nr_reads++;
2694 }
2695 }
2696
2697 if (nr_reads) {
2698 /*
2699 * The page is locked, so these buffers are protected from
2700 * any VM or truncate activity. Hence we don't need to care
2701 * for the buffer_head refcounts.
2702 */
2703 for (bh = head; bh; bh = bh->b_this_page) {
2704 wait_on_buffer(bh);
2705 if (!buffer_uptodate(bh))
2706 ret = -EIO;
2707 }
2708 if (ret)
2709 goto failed;
2710 }
2711
2712 if (is_mapped_to_disk)
2713 SetPageMappedToDisk(page);
2714
2715 *fsdata = head; /* to be released by nobh_write_end */
2716
2717 return 0;
2718
2719 failed:
2720 BUG_ON(!ret);
2721 /*
2722 * Error recovery is a bit difficult. We need to zero out blocks that
2723 * were newly allocated, and dirty them to ensure they get written out.
2724 * Buffers need to be attached to the page at this point, otherwise
2725 * the handling of potential IO errors during writeout would be hard
2726 * (could try doing synchronous writeout, but what if that fails too?)
2727 */
2728 attach_nobh_buffers(page, head);
2729 page_zero_new_buffers(page, from, to);
2730
2731 out_release:
2732 unlock_page(page);
2733 put_page(page);
2734 *pagep = NULL;
2735
2736 return ret;
2737 }
2738 EXPORT_SYMBOL(nobh_write_begin);
2739
2740 int nobh_write_end(struct file *file, struct address_space *mapping,
2741 loff_t pos, unsigned len, unsigned copied,
2742 struct page *page, void *fsdata)
2743 {
2744 struct inode *inode = page->mapping->host;
2745 struct buffer_head *head = fsdata;
2746 struct buffer_head *bh;
2747 BUG_ON(fsdata != NULL && page_has_buffers(page));
2748
2749 if (unlikely(copied < len) && head)
2750 attach_nobh_buffers(page, head);
2751 if (page_has_buffers(page))
2752 return generic_write_end(file, mapping, pos, len,
2753 copied, page, fsdata);
2754
2755 SetPageUptodate(page);
2756 set_page_dirty(page);
2757 if (pos+copied > inode->i_size) {
2758 i_size_write(inode, pos+copied);
2759 mark_inode_dirty(inode);
2760 }
2761
2762 unlock_page(page);
2763 put_page(page);
2764
2765 while (head) {
2766 bh = head;
2767 head = head->b_this_page;
2768 free_buffer_head(bh);
2769 }
2770
2771 return copied;
2772 }
2773 EXPORT_SYMBOL(nobh_write_end);
2774
2775 /*
2776 * nobh_writepage() - based on block_full_write_page() except
2777 * that it tries to operate without attaching bufferheads to
2778 * the page.
2779 */
2780 int nobh_writepage(struct page *page, get_block_t *get_block,
2781 struct writeback_control *wbc)
2782 {
2783 struct inode * const inode = page->mapping->host;
2784 loff_t i_size = i_size_read(inode);
2785 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2786 unsigned offset;
2787 int ret;
2788
2789 /* Is the page fully inside i_size? */
2790 if (page->index < end_index)
2791 goto out;
2792
2793 /* Is the page fully outside i_size? (truncate in progress) */
2794 offset = i_size & (PAGE_SIZE-1);
2795 if (page->index >= end_index+1 || !offset) {
2796 /*
2797 * The page may have dirty, unmapped buffers. For example,
2798 * they may have been added in ext3_writepage(). Make them
2799 * freeable here, so the page does not leak.
2800 */
2801 #if 0
2802 /* Not really sure about this - do we need this ? */
2803 if (page->mapping->a_ops->invalidatepage)
2804 page->mapping->a_ops->invalidatepage(page, offset);
2805 #endif
2806 unlock_page(page);
2807 return 0; /* don't care */
2808 }
2809
2810 /*
2811 * The page straddles i_size. It must be zeroed out on each and every
2812 * writepage invocation because it may be mmapped. "A file is mapped
2813 * in multiples of the page size. For a file that is not a multiple of
2814 * the page size, the remaining memory is zeroed when mapped, and
2815 * writes to that region are not written out to the file."
2816 */
2817 zero_user_segment(page, offset, PAGE_SIZE);
2818 out:
2819 ret = mpage_writepage(page, get_block, wbc);
2820 if (ret == -EAGAIN)
2821 ret = __block_write_full_page(inode, page, get_block, wbc,
2822 end_buffer_async_write);
2823 return ret;
2824 }
2825 EXPORT_SYMBOL(nobh_writepage);
2826
2827 int nobh_truncate_page(struct address_space *mapping,
2828 loff_t from, get_block_t *get_block)
2829 {
2830 pgoff_t index = from >> PAGE_SHIFT;
2831 unsigned offset = from & (PAGE_SIZE-1);
2832 unsigned blocksize;
2833 sector_t iblock;
2834 unsigned length, pos;
2835 struct inode *inode = mapping->host;
2836 struct page *page;
2837 struct buffer_head map_bh;
2838 int err;
2839
2840 blocksize = i_blocksize(inode);
2841 length = offset & (blocksize - 1);
2842
2843 /* Block boundary? Nothing to do */
2844 if (!length)
2845 return 0;
2846
2847 length = blocksize - length;
2848 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2849
2850 page = grab_cache_page(mapping, index);
2851 err = -ENOMEM;
2852 if (!page)
2853 goto out;
2854
2855 if (page_has_buffers(page)) {
2856 has_buffers:
2857 unlock_page(page);
2858 put_page(page);
2859 return block_truncate_page(mapping, from, get_block);
2860 }
2861
2862 /* Find the buffer that contains "offset" */
2863 pos = blocksize;
2864 while (offset >= pos) {
2865 iblock++;
2866 pos += blocksize;
2867 }
2868
2869 map_bh.b_size = blocksize;
2870 map_bh.b_state = 0;
2871 err = get_block(inode, iblock, &map_bh, 0);
2872 if (err)
2873 goto unlock;
2874 /* unmapped? It's a hole - nothing to do */
2875 if (!buffer_mapped(&map_bh))
2876 goto unlock;
2877
2878 /* Ok, it's mapped. Make sure it's up-to-date */
2879 if (!PageUptodate(page)) {
2880 err = mapping->a_ops->readpage(NULL, page);
2881 if (err) {
2882 put_page(page);
2883 goto out;
2884 }
2885 lock_page(page);
2886 if (!PageUptodate(page)) {
2887 err = -EIO;
2888 goto unlock;
2889 }
2890 if (page_has_buffers(page))
2891 goto has_buffers;
2892 }
2893 zero_user(page, offset, length);
2894 set_page_dirty(page);
2895 err = 0;
2896
2897 unlock:
2898 unlock_page(page);
2899 put_page(page);
2900 out:
2901 return err;
2902 }
2903 EXPORT_SYMBOL(nobh_truncate_page);
2904
2905 int block_truncate_page(struct address_space *mapping,
2906 loff_t from, get_block_t *get_block)
2907 {
2908 pgoff_t index = from >> PAGE_SHIFT;
2909 unsigned offset = from & (PAGE_SIZE-1);
2910 unsigned blocksize;
2911 sector_t iblock;
2912 unsigned length, pos;
2913 struct inode *inode = mapping->host;
2914 struct page *page;
2915 struct buffer_head *bh;
2916 int err;
2917
2918 blocksize = i_blocksize(inode);
2919 length = offset & (blocksize - 1);
2920
2921 /* Block boundary? Nothing to do */
2922 if (!length)
2923 return 0;
2924
2925 length = blocksize - length;
2926 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2927
2928 page = grab_cache_page(mapping, index);
2929 err = -ENOMEM;
2930 if (!page)
2931 goto out;
2932
2933 if (!page_has_buffers(page))
2934 create_empty_buffers(page, blocksize, 0);
2935
2936 /* Find the buffer that contains "offset" */
2937 bh = page_buffers(page);
2938 pos = blocksize;
2939 while (offset >= pos) {
2940 bh = bh->b_this_page;
2941 iblock++;
2942 pos += blocksize;
2943 }
2944
2945 err = 0;
2946 if (!buffer_mapped(bh)) {
2947 WARN_ON(bh->b_size != blocksize);
2948 err = get_block(inode, iblock, bh, 0);
2949 if (err)
2950 goto unlock;
2951 /* unmapped? It's a hole - nothing to do */
2952 if (!buffer_mapped(bh))
2953 goto unlock;
2954 }
2955
2956 /* Ok, it's mapped. Make sure it's up-to-date */
2957 if (PageUptodate(page))
2958 set_buffer_uptodate(bh);
2959
2960 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2961 err = -EIO;
2962 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2963 wait_on_buffer(bh);
2964 /* Uhhuh. Read error. Complain and punt. */
2965 if (!buffer_uptodate(bh))
2966 goto unlock;
2967 }
2968
2969 zero_user(page, offset, length);
2970 mark_buffer_dirty(bh);
2971 err = 0;
2972
2973 unlock:
2974 unlock_page(page);
2975 put_page(page);
2976 out:
2977 return err;
2978 }
2979 EXPORT_SYMBOL(block_truncate_page);
2980
2981 /*
2982 * The generic ->writepage function for buffer-backed address_spaces
2983 */
2984 int block_write_full_page(struct page *page, get_block_t *get_block,
2985 struct writeback_control *wbc)
2986 {
2987 struct inode * const inode = page->mapping->host;
2988 loff_t i_size = i_size_read(inode);
2989 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2990 unsigned offset;
2991
2992 /* Is the page fully inside i_size? */
2993 if (page->index < end_index)
2994 return __block_write_full_page(inode, page, get_block, wbc,
2995 end_buffer_async_write);
2996
2997 /* Is the page fully outside i_size? (truncate in progress) */
2998 offset = i_size & (PAGE_SIZE-1);
2999 if (page->index >= end_index+1 || !offset) {
3000 /*
3001 * The page may have dirty, unmapped buffers. For example,
3002 * they may have been added in ext3_writepage(). Make them
3003 * freeable here, so the page does not leak.
3004 */
3005 do_invalidatepage(page, 0, PAGE_SIZE);
3006 unlock_page(page);
3007 return 0; /* don't care */
3008 }
3009
3010 /*
3011 * The page straddles i_size. It must be zeroed out on each and every
3012 * writepage invocation because it may be mmapped. "A file is mapped
3013 * in multiples of the page size. For a file that is not a multiple of
3014 * the page size, the remaining memory is zeroed when mapped, and
3015 * writes to that region are not written out to the file."
3016 */
3017 zero_user_segment(page, offset, PAGE_SIZE);
3018 return __block_write_full_page(inode, page, get_block, wbc,
3019 end_buffer_async_write);
3020 }
3021 EXPORT_SYMBOL(block_write_full_page);
3022
3023 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3024 get_block_t *get_block)
3025 {
3026 struct buffer_head tmp;
3027 struct inode *inode = mapping->host;
3028 tmp.b_state = 0;
3029 tmp.b_blocknr = 0;
3030 tmp.b_size = i_blocksize(inode);
3031 get_block(inode, block, &tmp, 0);
3032 return tmp.b_blocknr;
3033 }
3034 EXPORT_SYMBOL(generic_block_bmap);
3035
3036 static void end_bio_bh_io_sync(struct bio *bio)
3037 {
3038 struct buffer_head *bh = bio->bi_private;
3039
3040 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3041 set_bit(BH_Quiet, &bh->b_state);
3042
3043 bh->b_end_io(bh, !bio->bi_status);
3044 bio_put(bio);
3045 }
3046
3047 /*
3048 * This allows us to do IO even on the odd last sectors
3049 * of a device, even if the block size is some multiple
3050 * of the physical sector size.
3051 *
3052 * We'll just truncate the bio to the size of the device,
3053 * and clear the end of the buffer head manually.
3054 *
3055 * Truly out-of-range accesses will turn into actual IO
3056 * errors, this only handles the "we need to be able to
3057 * do IO at the final sector" case.
3058 */
3059 void guard_bio_eod(int op, struct bio *bio)
3060 {
3061 sector_t maxsector;
3062 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3063 unsigned truncated_bytes;
3064
3065 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3066 if (!maxsector)
3067 return;
3068
3069 /*
3070 * If the *whole* IO is past the end of the device,
3071 * let it through, and the IO layer will turn it into
3072 * an EIO.
3073 */
3074 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3075 return;
3076
3077 maxsector -= bio->bi_iter.bi_sector;
3078 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3079 return;
3080
3081 /* Uhhuh. We've got a bio that straddles the device size! */
3082 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3083
3084 /* Truncate the bio.. */
3085 bio->bi_iter.bi_size -= truncated_bytes;
3086 bvec->bv_len -= truncated_bytes;
3087
3088 /* ..and clear the end of the buffer for reads */
3089 if (op == REQ_OP_READ) {
3090 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3091 truncated_bytes);
3092 }
3093 }
3094
3095 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3096 enum rw_hint write_hint, struct writeback_control *wbc)
3097 {
3098 struct bio *bio;
3099
3100 BUG_ON(!buffer_locked(bh));
3101 BUG_ON(!buffer_mapped(bh));
3102 BUG_ON(!bh->b_end_io);
3103 BUG_ON(buffer_delay(bh));
3104 BUG_ON(buffer_unwritten(bh));
3105
3106 /*
3107 * Only clear out a write error when rewriting
3108 */
3109 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3110 clear_buffer_write_io_error(bh);
3111
3112 /*
3113 * from here on down, it's all bio -- do the initial mapping,
3114 * submit_bio -> generic_make_request may further map this bio around
3115 */
3116 bio = bio_alloc(GFP_NOIO, 1);
3117
3118 if (wbc) {
3119 wbc_init_bio(wbc, bio);
3120 wbc_account_io(wbc, bh->b_page, bh->b_size);
3121 }
3122
3123 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3124 bio->bi_bdev = bh->b_bdev;
3125 bio->bi_write_hint = write_hint;
3126
3127 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3129
3130 bio->bi_end_io = end_bio_bh_io_sync;
3131 bio->bi_private = bh;
3132
3133 /* Take care of bh's that straddle the end of the device */
3134 guard_bio_eod(op, bio);
3135
3136 if (buffer_meta(bh))
3137 op_flags |= REQ_META;
3138 if (buffer_prio(bh))
3139 op_flags |= REQ_PRIO;
3140 bio_set_op_attrs(bio, op, op_flags);
3141
3142 submit_bio(bio);
3143 return 0;
3144 }
3145
3146 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3147 {
3148 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3149 }
3150 EXPORT_SYMBOL(submit_bh);
3151
3152 /**
3153 * ll_rw_block: low-level access to block devices (DEPRECATED)
3154 * @op: whether to %READ or %WRITE
3155 * @op_flags: req_flag_bits
3156 * @nr: number of &struct buffer_heads in the array
3157 * @bhs: array of pointers to &struct buffer_head
3158 *
3159 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3160 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3161 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3162 * %REQ_RAHEAD.
3163 *
3164 * This function drops any buffer that it cannot get a lock on (with the
3165 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3166 * request, and any buffer that appears to be up-to-date when doing read
3167 * request. Further it marks as clean buffers that are processed for
3168 * writing (the buffer cache won't assume that they are actually clean
3169 * until the buffer gets unlocked).
3170 *
3171 * ll_rw_block sets b_end_io to simple completion handler that marks
3172 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3173 * any waiters.
3174 *
3175 * All of the buffers must be for the same device, and must also be a
3176 * multiple of the current approved size for the device.
3177 */
3178 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3179 {
3180 int i;
3181
3182 for (i = 0; i < nr; i++) {
3183 struct buffer_head *bh = bhs[i];
3184
3185 if (!trylock_buffer(bh))
3186 continue;
3187 if (op == WRITE) {
3188 if (test_clear_buffer_dirty(bh)) {
3189 bh->b_end_io = end_buffer_write_sync;
3190 get_bh(bh);
3191 submit_bh(op, op_flags, bh);
3192 continue;
3193 }
3194 } else {
3195 if (!buffer_uptodate(bh)) {
3196 bh->b_end_io = end_buffer_read_sync;
3197 get_bh(bh);
3198 submit_bh(op, op_flags, bh);
3199 continue;
3200 }
3201 }
3202 unlock_buffer(bh);
3203 }
3204 }
3205 EXPORT_SYMBOL(ll_rw_block);
3206
3207 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3208 {
3209 lock_buffer(bh);
3210 if (!test_clear_buffer_dirty(bh)) {
3211 unlock_buffer(bh);
3212 return;
3213 }
3214 bh->b_end_io = end_buffer_write_sync;
3215 get_bh(bh);
3216 submit_bh(REQ_OP_WRITE, op_flags, bh);
3217 }
3218 EXPORT_SYMBOL(write_dirty_buffer);
3219
3220 /*
3221 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3222 * and then start new I/O and then wait upon it. The caller must have a ref on
3223 * the buffer_head.
3224 */
3225 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3226 {
3227 int ret = 0;
3228
3229 WARN_ON(atomic_read(&bh->b_count) < 1);
3230 lock_buffer(bh);
3231 if (test_clear_buffer_dirty(bh)) {
3232 get_bh(bh);
3233 bh->b_end_io = end_buffer_write_sync;
3234 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3235 wait_on_buffer(bh);
3236 if (!ret && !buffer_uptodate(bh))
3237 ret = -EIO;
3238 } else {
3239 unlock_buffer(bh);
3240 }
3241 return ret;
3242 }
3243 EXPORT_SYMBOL(__sync_dirty_buffer);
3244
3245 int sync_dirty_buffer(struct buffer_head *bh)
3246 {
3247 return __sync_dirty_buffer(bh, REQ_SYNC);
3248 }
3249 EXPORT_SYMBOL(sync_dirty_buffer);
3250
3251 /*
3252 * try_to_free_buffers() checks if all the buffers on this particular page
3253 * are unused, and releases them if so.
3254 *
3255 * Exclusion against try_to_free_buffers may be obtained by either
3256 * locking the page or by holding its mapping's private_lock.
3257 *
3258 * If the page is dirty but all the buffers are clean then we need to
3259 * be sure to mark the page clean as well. This is because the page
3260 * may be against a block device, and a later reattachment of buffers
3261 * to a dirty page will set *all* buffers dirty. Which would corrupt
3262 * filesystem data on the same device.
3263 *
3264 * The same applies to regular filesystem pages: if all the buffers are
3265 * clean then we set the page clean and proceed. To do that, we require
3266 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3267 * private_lock.
3268 *
3269 * try_to_free_buffers() is non-blocking.
3270 */
3271 static inline int buffer_busy(struct buffer_head *bh)
3272 {
3273 return atomic_read(&bh->b_count) |
3274 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3275 }
3276
3277 static int
3278 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3279 {
3280 struct buffer_head *head = page_buffers(page);
3281 struct buffer_head *bh;
3282
3283 bh = head;
3284 do {
3285 if (buffer_write_io_error(bh) && page->mapping)
3286 mapping_set_error(page->mapping, -EIO);
3287 if (buffer_busy(bh))
3288 goto failed;
3289 bh = bh->b_this_page;
3290 } while (bh != head);
3291
3292 do {
3293 struct buffer_head *next = bh->b_this_page;
3294
3295 if (bh->b_assoc_map)
3296 __remove_assoc_queue(bh);
3297 bh = next;
3298 } while (bh != head);
3299 *buffers_to_free = head;
3300 __clear_page_buffers(page);
3301 return 1;
3302 failed:
3303 return 0;
3304 }
3305
3306 int try_to_free_buffers(struct page *page)
3307 {
3308 struct address_space * const mapping = page->mapping;
3309 struct buffer_head *buffers_to_free = NULL;
3310 int ret = 0;
3311
3312 BUG_ON(!PageLocked(page));
3313 if (PageWriteback(page))
3314 return 0;
3315
3316 if (mapping == NULL) { /* can this still happen? */
3317 ret = drop_buffers(page, &buffers_to_free);
3318 goto out;
3319 }
3320
3321 spin_lock(&mapping->private_lock);
3322 ret = drop_buffers(page, &buffers_to_free);
3323
3324 /*
3325 * If the filesystem writes its buffers by hand (eg ext3)
3326 * then we can have clean buffers against a dirty page. We
3327 * clean the page here; otherwise the VM will never notice
3328 * that the filesystem did any IO at all.
3329 *
3330 * Also, during truncate, discard_buffer will have marked all
3331 * the page's buffers clean. We discover that here and clean
3332 * the page also.
3333 *
3334 * private_lock must be held over this entire operation in order
3335 * to synchronise against __set_page_dirty_buffers and prevent the
3336 * dirty bit from being lost.
3337 */
3338 if (ret)
3339 cancel_dirty_page(page);
3340 spin_unlock(&mapping->private_lock);
3341 out:
3342 if (buffers_to_free) {
3343 struct buffer_head *bh = buffers_to_free;
3344
3345 do {
3346 struct buffer_head *next = bh->b_this_page;
3347 free_buffer_head(bh);
3348 bh = next;
3349 } while (bh != buffers_to_free);
3350 }
3351 return ret;
3352 }
3353 EXPORT_SYMBOL(try_to_free_buffers);
3354
3355 /*
3356 * There are no bdflush tunables left. But distributions are
3357 * still running obsolete flush daemons, so we terminate them here.
3358 *
3359 * Use of bdflush() is deprecated and will be removed in a future kernel.
3360 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3361 */
3362 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3363 {
3364 static int msg_count;
3365
3366 if (!capable(CAP_SYS_ADMIN))
3367 return -EPERM;
3368
3369 if (msg_count < 5) {
3370 msg_count++;
3371 printk(KERN_INFO
3372 "warning: process `%s' used the obsolete bdflush"
3373 " system call\n", current->comm);
3374 printk(KERN_INFO "Fix your initscripts?\n");
3375 }
3376
3377 if (func == 1)
3378 do_exit(0);
3379 return 0;
3380 }
3381
3382 /*
3383 * Buffer-head allocation
3384 */
3385 static struct kmem_cache *bh_cachep __read_mostly;
3386
3387 /*
3388 * Once the number of bh's in the machine exceeds this level, we start
3389 * stripping them in writeback.
3390 */
3391 static unsigned long max_buffer_heads;
3392
3393 int buffer_heads_over_limit;
3394
3395 struct bh_accounting {
3396 int nr; /* Number of live bh's */
3397 int ratelimit; /* Limit cacheline bouncing */
3398 };
3399
3400 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3401
3402 static void recalc_bh_state(void)
3403 {
3404 int i;
3405 int tot = 0;
3406
3407 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3408 return;
3409 __this_cpu_write(bh_accounting.ratelimit, 0);
3410 for_each_online_cpu(i)
3411 tot += per_cpu(bh_accounting, i).nr;
3412 buffer_heads_over_limit = (tot > max_buffer_heads);
3413 }
3414
3415 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3416 {
3417 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3418 if (ret) {
3419 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3420 preempt_disable();
3421 __this_cpu_inc(bh_accounting.nr);
3422 recalc_bh_state();
3423 preempt_enable();
3424 }
3425 return ret;
3426 }
3427 EXPORT_SYMBOL(alloc_buffer_head);
3428
3429 void free_buffer_head(struct buffer_head *bh)
3430 {
3431 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3432 kmem_cache_free(bh_cachep, bh);
3433 preempt_disable();
3434 __this_cpu_dec(bh_accounting.nr);
3435 recalc_bh_state();
3436 preempt_enable();
3437 }
3438 EXPORT_SYMBOL(free_buffer_head);
3439
3440 static int buffer_exit_cpu_dead(unsigned int cpu)
3441 {
3442 int i;
3443 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3444
3445 for (i = 0; i < BH_LRU_SIZE; i++) {
3446 brelse(b->bhs[i]);
3447 b->bhs[i] = NULL;
3448 }
3449 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3450 per_cpu(bh_accounting, cpu).nr = 0;
3451 return 0;
3452 }
3453
3454 /**
3455 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3456 * @bh: struct buffer_head
3457 *
3458 * Return true if the buffer is up-to-date and false,
3459 * with the buffer locked, if not.
3460 */
3461 int bh_uptodate_or_lock(struct buffer_head *bh)
3462 {
3463 if (!buffer_uptodate(bh)) {
3464 lock_buffer(bh);
3465 if (!buffer_uptodate(bh))
3466 return 0;
3467 unlock_buffer(bh);
3468 }
3469 return 1;
3470 }
3471 EXPORT_SYMBOL(bh_uptodate_or_lock);
3472
3473 /**
3474 * bh_submit_read - Submit a locked buffer for reading
3475 * @bh: struct buffer_head
3476 *
3477 * Returns zero on success and -EIO on error.
3478 */
3479 int bh_submit_read(struct buffer_head *bh)
3480 {
3481 BUG_ON(!buffer_locked(bh));
3482
3483 if (buffer_uptodate(bh)) {
3484 unlock_buffer(bh);
3485 return 0;
3486 }
3487
3488 get_bh(bh);
3489 bh->b_end_io = end_buffer_read_sync;
3490 submit_bh(REQ_OP_READ, 0, bh);
3491 wait_on_buffer(bh);
3492 if (buffer_uptodate(bh))
3493 return 0;
3494 return -EIO;
3495 }
3496 EXPORT_SYMBOL(bh_submit_read);
3497
3498 void __init buffer_init(void)
3499 {
3500 unsigned long nrpages;
3501 int ret;
3502
3503 bh_cachep = kmem_cache_create("buffer_head",
3504 sizeof(struct buffer_head), 0,
3505 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3506 SLAB_MEM_SPREAD),
3507 NULL);
3508
3509 /*
3510 * Limit the bh occupancy to 10% of ZONE_NORMAL
3511 */
3512 nrpages = (nr_free_buffer_pages() * 10) / 100;
3513 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3514 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3515 NULL, buffer_exit_cpu_dead);
3516 WARN_ON(ret < 0);
3517 }