]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/buffer.c
clk: clps711x: Terminate clk_div_table with sentinel element
[mirror_ubuntu-jammy-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378 still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413 {
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474 /*
475 * The buffer's backing address_space's private_lock must be held
476 */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486 return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506 repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561 {
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618 int newly_dirty;
619 struct address_space *mapping = page_mapping(page);
620
621 if (unlikely(!mapping))
622 return !TestSetPageDirty(page);
623
624 spin_lock(&mapping->private_lock);
625 if (page_has_buffers(page)) {
626 struct buffer_head *head = page_buffers(page);
627 struct buffer_head *bh = head;
628
629 do {
630 set_buffer_dirty(bh);
631 bh = bh->b_this_page;
632 } while (bh != head);
633 }
634 /*
635 * Lock out page's memcg migration to keep PageDirty
636 * synchronized with per-memcg dirty page counters.
637 */
638 lock_page_memcg(page);
639 newly_dirty = !TestSetPageDirty(page);
640 spin_unlock(&mapping->private_lock);
641
642 if (newly_dirty)
643 __set_page_dirty(page, mapping, 1);
644
645 unlock_page_memcg(page);
646
647 if (newly_dirty)
648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
650 return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654 /*
655 * Write out and wait upon a list of buffers.
656 *
657 * We have conflicting pressures: we want to make sure that all
658 * initially dirty buffers get waited on, but that any subsequently
659 * dirtied buffers don't. After all, we don't want fsync to last
660 * forever if somebody is actively writing to the file.
661 *
662 * Do this in two main stages: first we copy dirty buffers to a
663 * temporary inode list, queueing the writes as we go. Then we clean
664 * up, waiting for those writes to complete.
665 *
666 * During this second stage, any subsequent updates to the file may end
667 * up refiling the buffer on the original inode's dirty list again, so
668 * there is a chance we will end up with a buffer queued for write but
669 * not yet completed on that list. So, as a final cleanup we go through
670 * the osync code to catch these locked, dirty buffers without requeuing
671 * any newly dirty buffers for write.
672 */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675 struct buffer_head *bh;
676 struct list_head tmp;
677 struct address_space *mapping;
678 int err = 0, err2;
679 struct blk_plug plug;
680
681 INIT_LIST_HEAD(&tmp);
682 blk_start_plug(&plug);
683
684 spin_lock(lock);
685 while (!list_empty(list)) {
686 bh = BH_ENTRY(list->next);
687 mapping = bh->b_assoc_map;
688 __remove_assoc_queue(bh);
689 /* Avoid race with mark_buffer_dirty_inode() which does
690 * a lockless check and we rely on seeing the dirty bit */
691 smp_mb();
692 if (buffer_dirty(bh) || buffer_locked(bh)) {
693 list_add(&bh->b_assoc_buffers, &tmp);
694 bh->b_assoc_map = mapping;
695 if (buffer_dirty(bh)) {
696 get_bh(bh);
697 spin_unlock(lock);
698 /*
699 * Ensure any pending I/O completes so that
700 * write_dirty_buffer() actually writes the
701 * current contents - it is a noop if I/O is
702 * still in flight on potentially older
703 * contents.
704 */
705 write_dirty_buffer(bh, REQ_SYNC);
706
707 /*
708 * Kick off IO for the previous mapping. Note
709 * that we will not run the very last mapping,
710 * wait_on_buffer() will do that for us
711 * through sync_buffer().
712 */
713 brelse(bh);
714 spin_lock(lock);
715 }
716 }
717 }
718
719 spin_unlock(lock);
720 blk_finish_plug(&plug);
721 spin_lock(lock);
722
723 while (!list_empty(&tmp)) {
724 bh = BH_ENTRY(tmp.prev);
725 get_bh(bh);
726 mapping = bh->b_assoc_map;
727 __remove_assoc_queue(bh);
728 /* Avoid race with mark_buffer_dirty_inode() which does
729 * a lockless check and we rely on seeing the dirty bit */
730 smp_mb();
731 if (buffer_dirty(bh)) {
732 list_add(&bh->b_assoc_buffers,
733 &mapping->private_list);
734 bh->b_assoc_map = mapping;
735 }
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 }
743
744 spin_unlock(lock);
745 err2 = osync_buffers_list(lock, list);
746 if (err)
747 return err;
748 else
749 return err2;
750 }
751
752 /*
753 * Invalidate any and all dirty buffers on a given inode. We are
754 * probably unmounting the fs, but that doesn't mean we have already
755 * done a sync(). Just drop the buffers from the inode list.
756 *
757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
758 * assumes that all the buffers are against the blockdev. Not true
759 * for reiserfs.
760 */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763 if (inode_has_buffers(inode)) {
764 struct address_space *mapping = &inode->i_data;
765 struct list_head *list = &mapping->private_list;
766 struct address_space *buffer_mapping = mapping->private_data;
767
768 spin_lock(&buffer_mapping->private_lock);
769 while (!list_empty(list))
770 __remove_assoc_queue(BH_ENTRY(list->next));
771 spin_unlock(&buffer_mapping->private_lock);
772 }
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775
776 /*
777 * Remove any clean buffers from the inode's buffer list. This is called
778 * when we're trying to free the inode itself. Those buffers can pin it.
779 *
780 * Returns true if all buffers were removed.
781 */
782 int remove_inode_buffers(struct inode *inode)
783 {
784 int ret = 1;
785
786 if (inode_has_buffers(inode)) {
787 struct address_space *mapping = &inode->i_data;
788 struct list_head *list = &mapping->private_list;
789 struct address_space *buffer_mapping = mapping->private_data;
790
791 spin_lock(&buffer_mapping->private_lock);
792 while (!list_empty(list)) {
793 struct buffer_head *bh = BH_ENTRY(list->next);
794 if (buffer_dirty(bh)) {
795 ret = 0;
796 break;
797 }
798 __remove_assoc_queue(bh);
799 }
800 spin_unlock(&buffer_mapping->private_lock);
801 }
802 return ret;
803 }
804
805 /*
806 * Create the appropriate buffers when given a page for data area and
807 * the size of each buffer.. Use the bh->b_this_page linked list to
808 * follow the buffers created. Return NULL if unable to create more
809 * buffers.
810 *
811 * The retry flag is used to differentiate async IO (paging, swapping)
812 * which may not fail from ordinary buffer allocations.
813 */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815 bool retry)
816 {
817 struct buffer_head *bh, *head;
818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819 long offset;
820 struct mem_cgroup *memcg, *old_memcg;
821
822 if (retry)
823 gfp |= __GFP_NOFAIL;
824
825 /* The page lock pins the memcg */
826 memcg = page_memcg(page);
827 old_memcg = set_active_memcg(memcg);
828
829 head = NULL;
830 offset = PAGE_SIZE;
831 while ((offset -= size) >= 0) {
832 bh = alloc_buffer_head(gfp);
833 if (!bh)
834 goto no_grow;
835
836 bh->b_this_page = head;
837 bh->b_blocknr = -1;
838 head = bh;
839
840 bh->b_size = size;
841
842 /* Link the buffer to its page */
843 set_bh_page(bh, page, offset);
844 }
845 out:
846 set_active_memcg(old_memcg);
847 return head;
848 /*
849 * In case anything failed, we just free everything we got.
850 */
851 no_grow:
852 if (head) {
853 do {
854 bh = head;
855 head = head->b_this_page;
856 free_buffer_head(bh);
857 } while (head);
858 }
859
860 goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867 struct buffer_head *bh, *tail;
868
869 bh = head;
870 do {
871 tail = bh;
872 bh = bh->b_this_page;
873 } while (bh);
874 tail->b_this_page = head;
875 attach_page_private(page, head);
876 }
877
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880 sector_t retval = ~((sector_t)0);
881 loff_t sz = i_size_read(bdev->bd_inode);
882
883 if (sz) {
884 unsigned int sizebits = blksize_bits(size);
885 retval = (sz >> sizebits);
886 }
887 return retval;
888 }
889
890 /*
891 * Initialise the state of a blockdev page's buffers.
892 */
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895 sector_t block, int size)
896 {
897 struct buffer_head *head = page_buffers(page);
898 struct buffer_head *bh = head;
899 int uptodate = PageUptodate(page);
900 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
901
902 do {
903 if (!buffer_mapped(bh)) {
904 bh->b_end_io = NULL;
905 bh->b_private = NULL;
906 bh->b_bdev = bdev;
907 bh->b_blocknr = block;
908 if (uptodate)
909 set_buffer_uptodate(bh);
910 if (block < end_block)
911 set_buffer_mapped(bh);
912 }
913 block++;
914 bh = bh->b_this_page;
915 } while (bh != head);
916
917 /*
918 * Caller needs to validate requested block against end of device.
919 */
920 return end_block;
921 }
922
923 /*
924 * Create the page-cache page that contains the requested block.
925 *
926 * This is used purely for blockdev mappings.
927 */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930 pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932 struct inode *inode = bdev->bd_inode;
933 struct page *page;
934 struct buffer_head *bh;
935 sector_t end_block;
936 int ret = 0;
937 gfp_t gfp_mask;
938
939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940
941 /*
942 * XXX: __getblk_slow() can not really deal with failure and
943 * will endlessly loop on improvised global reclaim. Prefer
944 * looping in the allocator rather than here, at least that
945 * code knows what it's doing.
946 */
947 gfp_mask |= __GFP_NOFAIL;
948
949 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950
951 BUG_ON(!PageLocked(page));
952
953 if (page_has_buffers(page)) {
954 bh = page_buffers(page);
955 if (bh->b_size == size) {
956 end_block = init_page_buffers(page, bdev,
957 (sector_t)index << sizebits,
958 size);
959 goto done;
960 }
961 if (!try_to_free_buffers(page))
962 goto failed;
963 }
964
965 /*
966 * Allocate some buffers for this page
967 */
968 bh = alloc_page_buffers(page, size, true);
969
970 /*
971 * Link the page to the buffers and initialise them. Take the
972 * lock to be atomic wrt __find_get_block(), which does not
973 * run under the page lock.
974 */
975 spin_lock(&inode->i_mapping->private_lock);
976 link_dev_buffers(page, bh);
977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 size);
979 spin_unlock(&inode->i_mapping->private_lock);
980 done:
981 ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983 unlock_page(page);
984 put_page(page);
985 return ret;
986 }
987
988 /*
989 * Create buffers for the specified block device block's page. If
990 * that page was dirty, the buffers are set dirty also.
991 */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995 pgoff_t index;
996 int sizebits;
997
998 sizebits = PAGE_SHIFT - __ffs(size);
999 index = block >> sizebits;
1000
1001 /*
1002 * Check for a block which wants to lie outside our maximum possible
1003 * pagecache index. (this comparison is done using sector_t types).
1004 */
1005 if (unlikely(index != block >> sizebits)) {
1006 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1007 "device %pg\n",
1008 __func__, (unsigned long long)block,
1009 bdev);
1010 return -EIO;
1011 }
1012
1013 /* Create a page with the proper size buffers.. */
1014 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1015 }
1016
1017 static struct buffer_head *
1018 __getblk_slow(struct block_device *bdev, sector_t block,
1019 unsigned size, gfp_t gfp)
1020 {
1021 /* Size must be multiple of hard sectorsize */
1022 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1023 (size < 512 || size > PAGE_SIZE))) {
1024 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1025 size);
1026 printk(KERN_ERR "logical block size: %d\n",
1027 bdev_logical_block_size(bdev));
1028
1029 dump_stack();
1030 return NULL;
1031 }
1032
1033 for (;;) {
1034 struct buffer_head *bh;
1035 int ret;
1036
1037 bh = __find_get_block(bdev, block, size);
1038 if (bh)
1039 return bh;
1040
1041 ret = grow_buffers(bdev, block, size, gfp);
1042 if (ret < 0)
1043 return NULL;
1044 }
1045 }
1046
1047 /*
1048 * The relationship between dirty buffers and dirty pages:
1049 *
1050 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1051 * the page is tagged dirty in the page cache.
1052 *
1053 * At all times, the dirtiness of the buffers represents the dirtiness of
1054 * subsections of the page. If the page has buffers, the page dirty bit is
1055 * merely a hint about the true dirty state.
1056 *
1057 * When a page is set dirty in its entirety, all its buffers are marked dirty
1058 * (if the page has buffers).
1059 *
1060 * When a buffer is marked dirty, its page is dirtied, but the page's other
1061 * buffers are not.
1062 *
1063 * Also. When blockdev buffers are explicitly read with bread(), they
1064 * individually become uptodate. But their backing page remains not
1065 * uptodate - even if all of its buffers are uptodate. A subsequent
1066 * block_read_full_page() against that page will discover all the uptodate
1067 * buffers, will set the page uptodate and will perform no I/O.
1068 */
1069
1070 /**
1071 * mark_buffer_dirty - mark a buffer_head as needing writeout
1072 * @bh: the buffer_head to mark dirty
1073 *
1074 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1075 * its backing page dirty, then tag the page as dirty in the page cache
1076 * and then attach the address_space's inode to its superblock's dirty
1077 * inode list.
1078 *
1079 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1080 * i_pages lock and mapping->host->i_lock.
1081 */
1082 void mark_buffer_dirty(struct buffer_head *bh)
1083 {
1084 WARN_ON_ONCE(!buffer_uptodate(bh));
1085
1086 trace_block_dirty_buffer(bh);
1087
1088 /*
1089 * Very *carefully* optimize the it-is-already-dirty case.
1090 *
1091 * Don't let the final "is it dirty" escape to before we
1092 * perhaps modified the buffer.
1093 */
1094 if (buffer_dirty(bh)) {
1095 smp_mb();
1096 if (buffer_dirty(bh))
1097 return;
1098 }
1099
1100 if (!test_set_buffer_dirty(bh)) {
1101 struct page *page = bh->b_page;
1102 struct address_space *mapping = NULL;
1103
1104 lock_page_memcg(page);
1105 if (!TestSetPageDirty(page)) {
1106 mapping = page_mapping(page);
1107 if (mapping)
1108 __set_page_dirty(page, mapping, 0);
1109 }
1110 unlock_page_memcg(page);
1111 if (mapping)
1112 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1113 }
1114 }
1115 EXPORT_SYMBOL(mark_buffer_dirty);
1116
1117 void mark_buffer_write_io_error(struct buffer_head *bh)
1118 {
1119 struct super_block *sb;
1120
1121 set_buffer_write_io_error(bh);
1122 /* FIXME: do we need to set this in both places? */
1123 if (bh->b_page && bh->b_page->mapping)
1124 mapping_set_error(bh->b_page->mapping, -EIO);
1125 if (bh->b_assoc_map)
1126 mapping_set_error(bh->b_assoc_map, -EIO);
1127 rcu_read_lock();
1128 sb = READ_ONCE(bh->b_bdev->bd_super);
1129 if (sb)
1130 errseq_set(&sb->s_wb_err, -EIO);
1131 rcu_read_unlock();
1132 }
1133 EXPORT_SYMBOL(mark_buffer_write_io_error);
1134
1135 /*
1136 * Decrement a buffer_head's reference count. If all buffers against a page
1137 * have zero reference count, are clean and unlocked, and if the page is clean
1138 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1139 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1140 * a page but it ends up not being freed, and buffers may later be reattached).
1141 */
1142 void __brelse(struct buffer_head * buf)
1143 {
1144 if (atomic_read(&buf->b_count)) {
1145 put_bh(buf);
1146 return;
1147 }
1148 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1149 }
1150 EXPORT_SYMBOL(__brelse);
1151
1152 /*
1153 * bforget() is like brelse(), except it discards any
1154 * potentially dirty data.
1155 */
1156 void __bforget(struct buffer_head *bh)
1157 {
1158 clear_buffer_dirty(bh);
1159 if (bh->b_assoc_map) {
1160 struct address_space *buffer_mapping = bh->b_page->mapping;
1161
1162 spin_lock(&buffer_mapping->private_lock);
1163 list_del_init(&bh->b_assoc_buffers);
1164 bh->b_assoc_map = NULL;
1165 spin_unlock(&buffer_mapping->private_lock);
1166 }
1167 __brelse(bh);
1168 }
1169 EXPORT_SYMBOL(__bforget);
1170
1171 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1172 {
1173 lock_buffer(bh);
1174 if (buffer_uptodate(bh)) {
1175 unlock_buffer(bh);
1176 return bh;
1177 } else {
1178 get_bh(bh);
1179 bh->b_end_io = end_buffer_read_sync;
1180 submit_bh(REQ_OP_READ, 0, bh);
1181 wait_on_buffer(bh);
1182 if (buffer_uptodate(bh))
1183 return bh;
1184 }
1185 brelse(bh);
1186 return NULL;
1187 }
1188
1189 /*
1190 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1191 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1192 * refcount elevated by one when they're in an LRU. A buffer can only appear
1193 * once in a particular CPU's LRU. A single buffer can be present in multiple
1194 * CPU's LRUs at the same time.
1195 *
1196 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1197 * sb_find_get_block().
1198 *
1199 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1200 * a local interrupt disable for that.
1201 */
1202
1203 #define BH_LRU_SIZE 16
1204
1205 struct bh_lru {
1206 struct buffer_head *bhs[BH_LRU_SIZE];
1207 };
1208
1209 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1210
1211 #ifdef CONFIG_SMP
1212 #define bh_lru_lock() local_irq_disable()
1213 #define bh_lru_unlock() local_irq_enable()
1214 #else
1215 #define bh_lru_lock() preempt_disable()
1216 #define bh_lru_unlock() preempt_enable()
1217 #endif
1218
1219 static inline void check_irqs_on(void)
1220 {
1221 #ifdef irqs_disabled
1222 BUG_ON(irqs_disabled());
1223 #endif
1224 }
1225
1226 /*
1227 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1228 * inserted at the front, and the buffer_head at the back if any is evicted.
1229 * Or, if already in the LRU it is moved to the front.
1230 */
1231 static void bh_lru_install(struct buffer_head *bh)
1232 {
1233 struct buffer_head *evictee = bh;
1234 struct bh_lru *b;
1235 int i;
1236
1237 check_irqs_on();
1238 bh_lru_lock();
1239
1240 /*
1241 * the refcount of buffer_head in bh_lru prevents dropping the
1242 * attached page(i.e., try_to_free_buffers) so it could cause
1243 * failing page migration.
1244 * Skip putting upcoming bh into bh_lru until migration is done.
1245 */
1246 if (lru_cache_disabled()) {
1247 bh_lru_unlock();
1248 return;
1249 }
1250
1251 b = this_cpu_ptr(&bh_lrus);
1252 for (i = 0; i < BH_LRU_SIZE; i++) {
1253 swap(evictee, b->bhs[i]);
1254 if (evictee == bh) {
1255 bh_lru_unlock();
1256 return;
1257 }
1258 }
1259
1260 get_bh(bh);
1261 bh_lru_unlock();
1262 brelse(evictee);
1263 }
1264
1265 /*
1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1267 */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 struct buffer_head *ret = NULL;
1272 unsigned int i;
1273
1274 check_irqs_on();
1275 bh_lru_lock();
1276 for (i = 0; i < BH_LRU_SIZE; i++) {
1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278
1279 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1280 bh->b_size == size) {
1281 if (i) {
1282 while (i) {
1283 __this_cpu_write(bh_lrus.bhs[i],
1284 __this_cpu_read(bh_lrus.bhs[i - 1]));
1285 i--;
1286 }
1287 __this_cpu_write(bh_lrus.bhs[0], bh);
1288 }
1289 get_bh(bh);
1290 ret = bh;
1291 break;
1292 }
1293 }
1294 bh_lru_unlock();
1295 return ret;
1296 }
1297
1298 /*
1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1300 * it in the LRU and mark it as accessed. If it is not present then return
1301 * NULL
1302 */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307
1308 if (bh == NULL) {
1309 /* __find_get_block_slow will mark the page accessed */
1310 bh = __find_get_block_slow(bdev, block);
1311 if (bh)
1312 bh_lru_install(bh);
1313 } else
1314 touch_buffer(bh);
1315
1316 return bh;
1317 }
1318 EXPORT_SYMBOL(__find_get_block);
1319
1320 /*
1321 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322 * which corresponds to the passed block_device, block and size. The
1323 * returned buffer has its reference count incremented.
1324 *
1325 * __getblk_gfp() will lock up the machine if grow_dev_page's
1326 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1327 */
1328 struct buffer_head *
1329 __getblk_gfp(struct block_device *bdev, sector_t block,
1330 unsigned size, gfp_t gfp)
1331 {
1332 struct buffer_head *bh = __find_get_block(bdev, block, size);
1333
1334 might_sleep();
1335 if (bh == NULL)
1336 bh = __getblk_slow(bdev, block, size, gfp);
1337 return bh;
1338 }
1339 EXPORT_SYMBOL(__getblk_gfp);
1340
1341 /*
1342 * Do async read-ahead on a buffer..
1343 */
1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 struct buffer_head *bh = __getblk(bdev, block, size);
1347 if (likely(bh)) {
1348 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349 brelse(bh);
1350 }
1351 }
1352 EXPORT_SYMBOL(__breadahead);
1353
1354 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1355 gfp_t gfp)
1356 {
1357 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1358 if (likely(bh)) {
1359 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1360 brelse(bh);
1361 }
1362 }
1363 EXPORT_SYMBOL(__breadahead_gfp);
1364
1365 /**
1366 * __bread_gfp() - reads a specified block and returns the bh
1367 * @bdev: the block_device to read from
1368 * @block: number of block
1369 * @size: size (in bytes) to read
1370 * @gfp: page allocation flag
1371 *
1372 * Reads a specified block, and returns buffer head that contains it.
1373 * The page cache can be allocated from non-movable area
1374 * not to prevent page migration if you set gfp to zero.
1375 * It returns NULL if the block was unreadable.
1376 */
1377 struct buffer_head *
1378 __bread_gfp(struct block_device *bdev, sector_t block,
1379 unsigned size, gfp_t gfp)
1380 {
1381 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1382
1383 if (likely(bh) && !buffer_uptodate(bh))
1384 bh = __bread_slow(bh);
1385 return bh;
1386 }
1387 EXPORT_SYMBOL(__bread_gfp);
1388
1389 static void __invalidate_bh_lrus(struct bh_lru *b)
1390 {
1391 int i;
1392
1393 for (i = 0; i < BH_LRU_SIZE; i++) {
1394 brelse(b->bhs[i]);
1395 b->bhs[i] = NULL;
1396 }
1397 }
1398 /*
1399 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400 * This doesn't race because it runs in each cpu either in irq
1401 * or with preempt disabled.
1402 */
1403 static void invalidate_bh_lru(void *arg)
1404 {
1405 struct bh_lru *b = &get_cpu_var(bh_lrus);
1406
1407 __invalidate_bh_lrus(b);
1408 put_cpu_var(bh_lrus);
1409 }
1410
1411 bool has_bh_in_lru(int cpu, void *dummy)
1412 {
1413 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1414 int i;
1415
1416 for (i = 0; i < BH_LRU_SIZE; i++) {
1417 if (b->bhs[i])
1418 return true;
1419 }
1420
1421 return false;
1422 }
1423
1424 void invalidate_bh_lrus(void)
1425 {
1426 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1427 }
1428 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1429
1430 /*
1431 * It's called from workqueue context so we need a bh_lru_lock to close
1432 * the race with preemption/irq.
1433 */
1434 void invalidate_bh_lrus_cpu(void)
1435 {
1436 struct bh_lru *b;
1437
1438 bh_lru_lock();
1439 b = this_cpu_ptr(&bh_lrus);
1440 __invalidate_bh_lrus(b);
1441 bh_lru_unlock();
1442 }
1443
1444 void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1446 {
1447 bh->b_page = page;
1448 BUG_ON(offset >= PAGE_SIZE);
1449 if (PageHighMem(page))
1450 /*
1451 * This catches illegal uses and preserves the offset:
1452 */
1453 bh->b_data = (char *)(0 + offset);
1454 else
1455 bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458
1459 /*
1460 * Called when truncating a buffer on a page completely.
1461 */
1462
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466 1 << BH_Delay | 1 << BH_Unwritten)
1467
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470 unsigned long b_state, b_state_old;
1471
1472 lock_buffer(bh);
1473 clear_buffer_dirty(bh);
1474 bh->b_bdev = NULL;
1475 b_state = bh->b_state;
1476 for (;;) {
1477 b_state_old = cmpxchg(&bh->b_state, b_state,
1478 (b_state & ~BUFFER_FLAGS_DISCARD));
1479 if (b_state_old == b_state)
1480 break;
1481 b_state = b_state_old;
1482 }
1483 unlock_buffer(bh);
1484 }
1485
1486 /**
1487 * block_invalidatepage - invalidate part or all of a buffer-backed page
1488 *
1489 * @page: the page which is affected
1490 * @offset: start of the range to invalidate
1491 * @length: length of the range to invalidate
1492 *
1493 * block_invalidatepage() is called when all or part of the page has become
1494 * invalidated by a truncate operation.
1495 *
1496 * block_invalidatepage() does not have to release all buffers, but it must
1497 * ensure that no dirty buffer is left outside @offset and that no I/O
1498 * is underway against any of the blocks which are outside the truncation
1499 * point. Because the caller is about to free (and possibly reuse) those
1500 * blocks on-disk.
1501 */
1502 void block_invalidatepage(struct page *page, unsigned int offset,
1503 unsigned int length)
1504 {
1505 struct buffer_head *head, *bh, *next;
1506 unsigned int curr_off = 0;
1507 unsigned int stop = length + offset;
1508
1509 BUG_ON(!PageLocked(page));
1510 if (!page_has_buffers(page))
1511 goto out;
1512
1513 /*
1514 * Check for overflow
1515 */
1516 BUG_ON(stop > PAGE_SIZE || stop < length);
1517
1518 head = page_buffers(page);
1519 bh = head;
1520 do {
1521 unsigned int next_off = curr_off + bh->b_size;
1522 next = bh->b_this_page;
1523
1524 /*
1525 * Are we still fully in range ?
1526 */
1527 if (next_off > stop)
1528 goto out;
1529
1530 /*
1531 * is this block fully invalidated?
1532 */
1533 if (offset <= curr_off)
1534 discard_buffer(bh);
1535 curr_off = next_off;
1536 bh = next;
1537 } while (bh != head);
1538
1539 /*
1540 * We release buffers only if the entire page is being invalidated.
1541 * The get_block cached value has been unconditionally invalidated,
1542 * so real IO is not possible anymore.
1543 */
1544 if (length == PAGE_SIZE)
1545 try_to_release_page(page, 0);
1546 out:
1547 return;
1548 }
1549 EXPORT_SYMBOL(block_invalidatepage);
1550
1551
1552 /*
1553 * We attach and possibly dirty the buffers atomically wrt
1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1555 * is already excluded via the page lock.
1556 */
1557 void create_empty_buffers(struct page *page,
1558 unsigned long blocksize, unsigned long b_state)
1559 {
1560 struct buffer_head *bh, *head, *tail;
1561
1562 head = alloc_page_buffers(page, blocksize, true);
1563 bh = head;
1564 do {
1565 bh->b_state |= b_state;
1566 tail = bh;
1567 bh = bh->b_this_page;
1568 } while (bh);
1569 tail->b_this_page = head;
1570
1571 spin_lock(&page->mapping->private_lock);
1572 if (PageUptodate(page) || PageDirty(page)) {
1573 bh = head;
1574 do {
1575 if (PageDirty(page))
1576 set_buffer_dirty(bh);
1577 if (PageUptodate(page))
1578 set_buffer_uptodate(bh);
1579 bh = bh->b_this_page;
1580 } while (bh != head);
1581 }
1582 attach_page_private(page, head);
1583 spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586
1587 /**
1588 * clean_bdev_aliases: clean a range of buffers in block device
1589 * @bdev: Block device to clean buffers in
1590 * @block: Start of a range of blocks to clean
1591 * @len: Number of blocks to clean
1592 *
1593 * We are taking a range of blocks for data and we don't want writeback of any
1594 * buffer-cache aliases starting from return from this function and until the
1595 * moment when something will explicitly mark the buffer dirty (hopefully that
1596 * will not happen until we will free that block ;-) We don't even need to mark
1597 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600 * would confuse anyone who might pick it with bread() afterwards...
1601 *
1602 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1603 * writeout I/O going on against recently-freed buffers. We don't wait on that
1604 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605 * need to. That happens here.
1606 */
1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1608 {
1609 struct inode *bd_inode = bdev->bd_inode;
1610 struct address_space *bd_mapping = bd_inode->i_mapping;
1611 struct pagevec pvec;
1612 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613 pgoff_t end;
1614 int i, count;
1615 struct buffer_head *bh;
1616 struct buffer_head *head;
1617
1618 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1619 pagevec_init(&pvec);
1620 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1621 count = pagevec_count(&pvec);
1622 for (i = 0; i < count; i++) {
1623 struct page *page = pvec.pages[i];
1624
1625 if (!page_has_buffers(page))
1626 continue;
1627 /*
1628 * We use page lock instead of bd_mapping->private_lock
1629 * to pin buffers here since we can afford to sleep and
1630 * it scales better than a global spinlock lock.
1631 */
1632 lock_page(page);
1633 /* Recheck when the page is locked which pins bhs */
1634 if (!page_has_buffers(page))
1635 goto unlock_page;
1636 head = page_buffers(page);
1637 bh = head;
1638 do {
1639 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1640 goto next;
1641 if (bh->b_blocknr >= block + len)
1642 break;
1643 clear_buffer_dirty(bh);
1644 wait_on_buffer(bh);
1645 clear_buffer_req(bh);
1646 next:
1647 bh = bh->b_this_page;
1648 } while (bh != head);
1649 unlock_page:
1650 unlock_page(page);
1651 }
1652 pagevec_release(&pvec);
1653 cond_resched();
1654 /* End of range already reached? */
1655 if (index > end || !index)
1656 break;
1657 }
1658 }
1659 EXPORT_SYMBOL(clean_bdev_aliases);
1660
1661 /*
1662 * Size is a power-of-two in the range 512..PAGE_SIZE,
1663 * and the case we care about most is PAGE_SIZE.
1664 *
1665 * So this *could* possibly be written with those
1666 * constraints in mind (relevant mostly if some
1667 * architecture has a slow bit-scan instruction)
1668 */
1669 static inline int block_size_bits(unsigned int blocksize)
1670 {
1671 return ilog2(blocksize);
1672 }
1673
1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1675 {
1676 BUG_ON(!PageLocked(page));
1677
1678 if (!page_has_buffers(page))
1679 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1680 b_state);
1681 return page_buffers(page);
1682 }
1683
1684 /*
1685 * NOTE! All mapped/uptodate combinations are valid:
1686 *
1687 * Mapped Uptodate Meaning
1688 *
1689 * No No "unknown" - must do get_block()
1690 * No Yes "hole" - zero-filled
1691 * Yes No "allocated" - allocated on disk, not read in
1692 * Yes Yes "valid" - allocated and up-to-date in memory.
1693 *
1694 * "Dirty" is valid only with the last case (mapped+uptodate).
1695 */
1696
1697 /*
1698 * While block_write_full_page is writing back the dirty buffers under
1699 * the page lock, whoever dirtied the buffers may decide to clean them
1700 * again at any time. We handle that by only looking at the buffer
1701 * state inside lock_buffer().
1702 *
1703 * If block_write_full_page() is called for regular writeback
1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705 * locked buffer. This only can happen if someone has written the buffer
1706 * directly, with submit_bh(). At the address_space level PageWriteback
1707 * prevents this contention from occurring.
1708 *
1709 * If block_write_full_page() is called with wbc->sync_mode ==
1710 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711 * causes the writes to be flagged as synchronous writes.
1712 */
1713 int __block_write_full_page(struct inode *inode, struct page *page,
1714 get_block_t *get_block, struct writeback_control *wbc,
1715 bh_end_io_t *handler)
1716 {
1717 int err;
1718 sector_t block;
1719 sector_t last_block;
1720 struct buffer_head *bh, *head;
1721 unsigned int blocksize, bbits;
1722 int nr_underway = 0;
1723 int write_flags = wbc_to_write_flags(wbc);
1724
1725 head = create_page_buffers(page, inode,
1726 (1 << BH_Dirty)|(1 << BH_Uptodate));
1727
1728 /*
1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1730 * here, and the (potentially unmapped) buffers may become dirty at
1731 * any time. If a buffer becomes dirty here after we've inspected it
1732 * then we just miss that fact, and the page stays dirty.
1733 *
1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735 * handle that here by just cleaning them.
1736 */
1737
1738 bh = head;
1739 blocksize = bh->b_size;
1740 bbits = block_size_bits(blocksize);
1741
1742 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1743 last_block = (i_size_read(inode) - 1) >> bbits;
1744
1745 /*
1746 * Get all the dirty buffers mapped to disk addresses and
1747 * handle any aliases from the underlying blockdev's mapping.
1748 */
1749 do {
1750 if (block > last_block) {
1751 /*
1752 * mapped buffers outside i_size will occur, because
1753 * this page can be outside i_size when there is a
1754 * truncate in progress.
1755 */
1756 /*
1757 * The buffer was zeroed by block_write_full_page()
1758 */
1759 clear_buffer_dirty(bh);
1760 set_buffer_uptodate(bh);
1761 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1762 buffer_dirty(bh)) {
1763 WARN_ON(bh->b_size != blocksize);
1764 err = get_block(inode, block, bh, 1);
1765 if (err)
1766 goto recover;
1767 clear_buffer_delay(bh);
1768 if (buffer_new(bh)) {
1769 /* blockdev mappings never come here */
1770 clear_buffer_new(bh);
1771 clean_bdev_bh_alias(bh);
1772 }
1773 }
1774 bh = bh->b_this_page;
1775 block++;
1776 } while (bh != head);
1777
1778 do {
1779 if (!buffer_mapped(bh))
1780 continue;
1781 /*
1782 * If it's a fully non-blocking write attempt and we cannot
1783 * lock the buffer then redirty the page. Note that this can
1784 * potentially cause a busy-wait loop from writeback threads
1785 * and kswapd activity, but those code paths have their own
1786 * higher-level throttling.
1787 */
1788 if (wbc->sync_mode != WB_SYNC_NONE) {
1789 lock_buffer(bh);
1790 } else if (!trylock_buffer(bh)) {
1791 redirty_page_for_writepage(wbc, page);
1792 continue;
1793 }
1794 if (test_clear_buffer_dirty(bh)) {
1795 mark_buffer_async_write_endio(bh, handler);
1796 } else {
1797 unlock_buffer(bh);
1798 }
1799 } while ((bh = bh->b_this_page) != head);
1800
1801 /*
1802 * The page and its buffers are protected by PageWriteback(), so we can
1803 * drop the bh refcounts early.
1804 */
1805 BUG_ON(PageWriteback(page));
1806 set_page_writeback(page);
1807
1808 do {
1809 struct buffer_head *next = bh->b_this_page;
1810 if (buffer_async_write(bh)) {
1811 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1812 inode->i_write_hint, wbc);
1813 nr_underway++;
1814 }
1815 bh = next;
1816 } while (bh != head);
1817 unlock_page(page);
1818
1819 err = 0;
1820 done:
1821 if (nr_underway == 0) {
1822 /*
1823 * The page was marked dirty, but the buffers were
1824 * clean. Someone wrote them back by hand with
1825 * ll_rw_block/submit_bh. A rare case.
1826 */
1827 end_page_writeback(page);
1828
1829 /*
1830 * The page and buffer_heads can be released at any time from
1831 * here on.
1832 */
1833 }
1834 return err;
1835
1836 recover:
1837 /*
1838 * ENOSPC, or some other error. We may already have added some
1839 * blocks to the file, so we need to write these out to avoid
1840 * exposing stale data.
1841 * The page is currently locked and not marked for writeback
1842 */
1843 bh = head;
1844 /* Recovery: lock and submit the mapped buffers */
1845 do {
1846 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1847 !buffer_delay(bh)) {
1848 lock_buffer(bh);
1849 mark_buffer_async_write_endio(bh, handler);
1850 } else {
1851 /*
1852 * The buffer may have been set dirty during
1853 * attachment to a dirty page.
1854 */
1855 clear_buffer_dirty(bh);
1856 }
1857 } while ((bh = bh->b_this_page) != head);
1858 SetPageError(page);
1859 BUG_ON(PageWriteback(page));
1860 mapping_set_error(page->mapping, err);
1861 set_page_writeback(page);
1862 do {
1863 struct buffer_head *next = bh->b_this_page;
1864 if (buffer_async_write(bh)) {
1865 clear_buffer_dirty(bh);
1866 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1867 inode->i_write_hint, wbc);
1868 nr_underway++;
1869 }
1870 bh = next;
1871 } while (bh != head);
1872 unlock_page(page);
1873 goto done;
1874 }
1875 EXPORT_SYMBOL(__block_write_full_page);
1876
1877 /*
1878 * If a page has any new buffers, zero them out here, and mark them uptodate
1879 * and dirty so they'll be written out (in order to prevent uninitialised
1880 * block data from leaking). And clear the new bit.
1881 */
1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1883 {
1884 unsigned int block_start, block_end;
1885 struct buffer_head *head, *bh;
1886
1887 BUG_ON(!PageLocked(page));
1888 if (!page_has_buffers(page))
1889 return;
1890
1891 bh = head = page_buffers(page);
1892 block_start = 0;
1893 do {
1894 block_end = block_start + bh->b_size;
1895
1896 if (buffer_new(bh)) {
1897 if (block_end > from && block_start < to) {
1898 if (!PageUptodate(page)) {
1899 unsigned start, size;
1900
1901 start = max(from, block_start);
1902 size = min(to, block_end) - start;
1903
1904 zero_user(page, start, size);
1905 set_buffer_uptodate(bh);
1906 }
1907
1908 clear_buffer_new(bh);
1909 mark_buffer_dirty(bh);
1910 }
1911 }
1912
1913 block_start = block_end;
1914 bh = bh->b_this_page;
1915 } while (bh != head);
1916 }
1917 EXPORT_SYMBOL(page_zero_new_buffers);
1918
1919 static void
1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1921 const struct iomap *iomap)
1922 {
1923 loff_t offset = block << inode->i_blkbits;
1924
1925 bh->b_bdev = iomap->bdev;
1926
1927 /*
1928 * Block points to offset in file we need to map, iomap contains
1929 * the offset at which the map starts. If the map ends before the
1930 * current block, then do not map the buffer and let the caller
1931 * handle it.
1932 */
1933 BUG_ON(offset >= iomap->offset + iomap->length);
1934
1935 switch (iomap->type) {
1936 case IOMAP_HOLE:
1937 /*
1938 * If the buffer is not up to date or beyond the current EOF,
1939 * we need to mark it as new to ensure sub-block zeroing is
1940 * executed if necessary.
1941 */
1942 if (!buffer_uptodate(bh) ||
1943 (offset >= i_size_read(inode)))
1944 set_buffer_new(bh);
1945 break;
1946 case IOMAP_DELALLOC:
1947 if (!buffer_uptodate(bh) ||
1948 (offset >= i_size_read(inode)))
1949 set_buffer_new(bh);
1950 set_buffer_uptodate(bh);
1951 set_buffer_mapped(bh);
1952 set_buffer_delay(bh);
1953 break;
1954 case IOMAP_UNWRITTEN:
1955 /*
1956 * For unwritten regions, we always need to ensure that regions
1957 * in the block we are not writing to are zeroed. Mark the
1958 * buffer as new to ensure this.
1959 */
1960 set_buffer_new(bh);
1961 set_buffer_unwritten(bh);
1962 fallthrough;
1963 case IOMAP_MAPPED:
1964 if ((iomap->flags & IOMAP_F_NEW) ||
1965 offset >= i_size_read(inode))
1966 set_buffer_new(bh);
1967 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1968 inode->i_blkbits;
1969 set_buffer_mapped(bh);
1970 break;
1971 }
1972 }
1973
1974 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1975 get_block_t *get_block, const struct iomap *iomap)
1976 {
1977 unsigned from = pos & (PAGE_SIZE - 1);
1978 unsigned to = from + len;
1979 struct inode *inode = page->mapping->host;
1980 unsigned block_start, block_end;
1981 sector_t block;
1982 int err = 0;
1983 unsigned blocksize, bbits;
1984 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1985
1986 BUG_ON(!PageLocked(page));
1987 BUG_ON(from > PAGE_SIZE);
1988 BUG_ON(to > PAGE_SIZE);
1989 BUG_ON(from > to);
1990
1991 head = create_page_buffers(page, inode, 0);
1992 blocksize = head->b_size;
1993 bbits = block_size_bits(blocksize);
1994
1995 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1996
1997 for(bh = head, block_start = 0; bh != head || !block_start;
1998 block++, block_start=block_end, bh = bh->b_this_page) {
1999 block_end = block_start + blocksize;
2000 if (block_end <= from || block_start >= to) {
2001 if (PageUptodate(page)) {
2002 if (!buffer_uptodate(bh))
2003 set_buffer_uptodate(bh);
2004 }
2005 continue;
2006 }
2007 if (buffer_new(bh))
2008 clear_buffer_new(bh);
2009 if (!buffer_mapped(bh)) {
2010 WARN_ON(bh->b_size != blocksize);
2011 if (get_block) {
2012 err = get_block(inode, block, bh, 1);
2013 if (err)
2014 break;
2015 } else {
2016 iomap_to_bh(inode, block, bh, iomap);
2017 }
2018
2019 if (buffer_new(bh)) {
2020 clean_bdev_bh_alias(bh);
2021 if (PageUptodate(page)) {
2022 clear_buffer_new(bh);
2023 set_buffer_uptodate(bh);
2024 mark_buffer_dirty(bh);
2025 continue;
2026 }
2027 if (block_end > to || block_start < from)
2028 zero_user_segments(page,
2029 to, block_end,
2030 block_start, from);
2031 continue;
2032 }
2033 }
2034 if (PageUptodate(page)) {
2035 if (!buffer_uptodate(bh))
2036 set_buffer_uptodate(bh);
2037 continue;
2038 }
2039 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2040 !buffer_unwritten(bh) &&
2041 (block_start < from || block_end > to)) {
2042 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2043 *wait_bh++=bh;
2044 }
2045 }
2046 /*
2047 * If we issued read requests - let them complete.
2048 */
2049 while(wait_bh > wait) {
2050 wait_on_buffer(*--wait_bh);
2051 if (!buffer_uptodate(*wait_bh))
2052 err = -EIO;
2053 }
2054 if (unlikely(err))
2055 page_zero_new_buffers(page, from, to);
2056 return err;
2057 }
2058
2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2060 get_block_t *get_block)
2061 {
2062 return __block_write_begin_int(page, pos, len, get_block, NULL);
2063 }
2064 EXPORT_SYMBOL(__block_write_begin);
2065
2066 static int __block_commit_write(struct inode *inode, struct page *page,
2067 unsigned from, unsigned to)
2068 {
2069 unsigned block_start, block_end;
2070 int partial = 0;
2071 unsigned blocksize;
2072 struct buffer_head *bh, *head;
2073
2074 bh = head = page_buffers(page);
2075 blocksize = bh->b_size;
2076
2077 block_start = 0;
2078 do {
2079 block_end = block_start + blocksize;
2080 if (block_end <= from || block_start >= to) {
2081 if (!buffer_uptodate(bh))
2082 partial = 1;
2083 } else {
2084 set_buffer_uptodate(bh);
2085 mark_buffer_dirty(bh);
2086 }
2087 if (buffer_new(bh))
2088 clear_buffer_new(bh);
2089
2090 block_start = block_end;
2091 bh = bh->b_this_page;
2092 } while (bh != head);
2093
2094 /*
2095 * If this is a partial write which happened to make all buffers
2096 * uptodate then we can optimize away a bogus readpage() for
2097 * the next read(). Here we 'discover' whether the page went
2098 * uptodate as a result of this (potentially partial) write.
2099 */
2100 if (!partial)
2101 SetPageUptodate(page);
2102 return 0;
2103 }
2104
2105 /*
2106 * block_write_begin takes care of the basic task of block allocation and
2107 * bringing partial write blocks uptodate first.
2108 *
2109 * The filesystem needs to handle block truncation upon failure.
2110 */
2111 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2112 unsigned flags, struct page **pagep, get_block_t *get_block)
2113 {
2114 pgoff_t index = pos >> PAGE_SHIFT;
2115 struct page *page;
2116 int status;
2117
2118 page = grab_cache_page_write_begin(mapping, index, flags);
2119 if (!page)
2120 return -ENOMEM;
2121
2122 status = __block_write_begin(page, pos, len, get_block);
2123 if (unlikely(status)) {
2124 unlock_page(page);
2125 put_page(page);
2126 page = NULL;
2127 }
2128
2129 *pagep = page;
2130 return status;
2131 }
2132 EXPORT_SYMBOL(block_write_begin);
2133
2134 int block_write_end(struct file *file, struct address_space *mapping,
2135 loff_t pos, unsigned len, unsigned copied,
2136 struct page *page, void *fsdata)
2137 {
2138 struct inode *inode = mapping->host;
2139 unsigned start;
2140
2141 start = pos & (PAGE_SIZE - 1);
2142
2143 if (unlikely(copied < len)) {
2144 /*
2145 * The buffers that were written will now be uptodate, so we
2146 * don't have to worry about a readpage reading them and
2147 * overwriting a partial write. However if we have encountered
2148 * a short write and only partially written into a buffer, it
2149 * will not be marked uptodate, so a readpage might come in and
2150 * destroy our partial write.
2151 *
2152 * Do the simplest thing, and just treat any short write to a
2153 * non uptodate page as a zero-length write, and force the
2154 * caller to redo the whole thing.
2155 */
2156 if (!PageUptodate(page))
2157 copied = 0;
2158
2159 page_zero_new_buffers(page, start+copied, start+len);
2160 }
2161 flush_dcache_page(page);
2162
2163 /* This could be a short (even 0-length) commit */
2164 __block_commit_write(inode, page, start, start+copied);
2165
2166 return copied;
2167 }
2168 EXPORT_SYMBOL(block_write_end);
2169
2170 int generic_write_end(struct file *file, struct address_space *mapping,
2171 loff_t pos, unsigned len, unsigned copied,
2172 struct page *page, void *fsdata)
2173 {
2174 struct inode *inode = mapping->host;
2175 loff_t old_size = inode->i_size;
2176 bool i_size_changed = false;
2177
2178 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2179
2180 /*
2181 * No need to use i_size_read() here, the i_size cannot change under us
2182 * because we hold i_rwsem.
2183 *
2184 * But it's important to update i_size while still holding page lock:
2185 * page writeout could otherwise come in and zero beyond i_size.
2186 */
2187 if (pos + copied > inode->i_size) {
2188 i_size_write(inode, pos + copied);
2189 i_size_changed = true;
2190 }
2191
2192 unlock_page(page);
2193 put_page(page);
2194
2195 if (old_size < pos)
2196 pagecache_isize_extended(inode, old_size, pos);
2197 /*
2198 * Don't mark the inode dirty under page lock. First, it unnecessarily
2199 * makes the holding time of page lock longer. Second, it forces lock
2200 * ordering of page lock and transaction start for journaling
2201 * filesystems.
2202 */
2203 if (i_size_changed)
2204 mark_inode_dirty(inode);
2205 return copied;
2206 }
2207 EXPORT_SYMBOL(generic_write_end);
2208
2209 /*
2210 * block_is_partially_uptodate checks whether buffers within a page are
2211 * uptodate or not.
2212 *
2213 * Returns true if all buffers which correspond to a file portion
2214 * we want to read are uptodate.
2215 */
2216 int block_is_partially_uptodate(struct page *page, unsigned long from,
2217 unsigned long count)
2218 {
2219 unsigned block_start, block_end, blocksize;
2220 unsigned to;
2221 struct buffer_head *bh, *head;
2222 int ret = 1;
2223
2224 if (!page_has_buffers(page))
2225 return 0;
2226
2227 head = page_buffers(page);
2228 blocksize = head->b_size;
2229 to = min_t(unsigned, PAGE_SIZE - from, count);
2230 to = from + to;
2231 if (from < blocksize && to > PAGE_SIZE - blocksize)
2232 return 0;
2233
2234 bh = head;
2235 block_start = 0;
2236 do {
2237 block_end = block_start + blocksize;
2238 if (block_end > from && block_start < to) {
2239 if (!buffer_uptodate(bh)) {
2240 ret = 0;
2241 break;
2242 }
2243 if (block_end >= to)
2244 break;
2245 }
2246 block_start = block_end;
2247 bh = bh->b_this_page;
2248 } while (bh != head);
2249
2250 return ret;
2251 }
2252 EXPORT_SYMBOL(block_is_partially_uptodate);
2253
2254 /*
2255 * Generic "read page" function for block devices that have the normal
2256 * get_block functionality. This is most of the block device filesystems.
2257 * Reads the page asynchronously --- the unlock_buffer() and
2258 * set/clear_buffer_uptodate() functions propagate buffer state into the
2259 * page struct once IO has completed.
2260 */
2261 int block_read_full_page(struct page *page, get_block_t *get_block)
2262 {
2263 struct inode *inode = page->mapping->host;
2264 sector_t iblock, lblock;
2265 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2266 unsigned int blocksize, bbits;
2267 int nr, i;
2268 int fully_mapped = 1;
2269
2270 head = create_page_buffers(page, inode, 0);
2271 blocksize = head->b_size;
2272 bbits = block_size_bits(blocksize);
2273
2274 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2275 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2276 bh = head;
2277 nr = 0;
2278 i = 0;
2279
2280 do {
2281 if (buffer_uptodate(bh))
2282 continue;
2283
2284 if (!buffer_mapped(bh)) {
2285 int err = 0;
2286
2287 fully_mapped = 0;
2288 if (iblock < lblock) {
2289 WARN_ON(bh->b_size != blocksize);
2290 err = get_block(inode, iblock, bh, 0);
2291 if (err)
2292 SetPageError(page);
2293 }
2294 if (!buffer_mapped(bh)) {
2295 zero_user(page, i * blocksize, blocksize);
2296 if (!err)
2297 set_buffer_uptodate(bh);
2298 continue;
2299 }
2300 /*
2301 * get_block() might have updated the buffer
2302 * synchronously
2303 */
2304 if (buffer_uptodate(bh))
2305 continue;
2306 }
2307 arr[nr++] = bh;
2308 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2309
2310 if (fully_mapped)
2311 SetPageMappedToDisk(page);
2312
2313 if (!nr) {
2314 /*
2315 * All buffers are uptodate - we can set the page uptodate
2316 * as well. But not if get_block() returned an error.
2317 */
2318 if (!PageError(page))
2319 SetPageUptodate(page);
2320 unlock_page(page);
2321 return 0;
2322 }
2323
2324 /* Stage two: lock the buffers */
2325 for (i = 0; i < nr; i++) {
2326 bh = arr[i];
2327 lock_buffer(bh);
2328 mark_buffer_async_read(bh);
2329 }
2330
2331 /*
2332 * Stage 3: start the IO. Check for uptodateness
2333 * inside the buffer lock in case another process reading
2334 * the underlying blockdev brought it uptodate (the sct fix).
2335 */
2336 for (i = 0; i < nr; i++) {
2337 bh = arr[i];
2338 if (buffer_uptodate(bh))
2339 end_buffer_async_read(bh, 1);
2340 else
2341 submit_bh(REQ_OP_READ, 0, bh);
2342 }
2343 return 0;
2344 }
2345 EXPORT_SYMBOL(block_read_full_page);
2346
2347 /* utility function for filesystems that need to do work on expanding
2348 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2349 * deal with the hole.
2350 */
2351 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2352 {
2353 struct address_space *mapping = inode->i_mapping;
2354 struct page *page;
2355 void *fsdata;
2356 int err;
2357
2358 err = inode_newsize_ok(inode, size);
2359 if (err)
2360 goto out;
2361
2362 err = pagecache_write_begin(NULL, mapping, size, 0,
2363 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2364 if (err)
2365 goto out;
2366
2367 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2368 BUG_ON(err > 0);
2369
2370 out:
2371 return err;
2372 }
2373 EXPORT_SYMBOL(generic_cont_expand_simple);
2374
2375 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2376 loff_t pos, loff_t *bytes)
2377 {
2378 struct inode *inode = mapping->host;
2379 unsigned int blocksize = i_blocksize(inode);
2380 struct page *page;
2381 void *fsdata;
2382 pgoff_t index, curidx;
2383 loff_t curpos;
2384 unsigned zerofrom, offset, len;
2385 int err = 0;
2386
2387 index = pos >> PAGE_SHIFT;
2388 offset = pos & ~PAGE_MASK;
2389
2390 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2391 zerofrom = curpos & ~PAGE_MASK;
2392 if (zerofrom & (blocksize-1)) {
2393 *bytes |= (blocksize-1);
2394 (*bytes)++;
2395 }
2396 len = PAGE_SIZE - zerofrom;
2397
2398 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2399 &page, &fsdata);
2400 if (err)
2401 goto out;
2402 zero_user(page, zerofrom, len);
2403 err = pagecache_write_end(file, mapping, curpos, len, len,
2404 page, fsdata);
2405 if (err < 0)
2406 goto out;
2407 BUG_ON(err != len);
2408 err = 0;
2409
2410 balance_dirty_pages_ratelimited(mapping);
2411
2412 if (fatal_signal_pending(current)) {
2413 err = -EINTR;
2414 goto out;
2415 }
2416 }
2417
2418 /* page covers the boundary, find the boundary offset */
2419 if (index == curidx) {
2420 zerofrom = curpos & ~PAGE_MASK;
2421 /* if we will expand the thing last block will be filled */
2422 if (offset <= zerofrom) {
2423 goto out;
2424 }
2425 if (zerofrom & (blocksize-1)) {
2426 *bytes |= (blocksize-1);
2427 (*bytes)++;
2428 }
2429 len = offset - zerofrom;
2430
2431 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2432 &page, &fsdata);
2433 if (err)
2434 goto out;
2435 zero_user(page, zerofrom, len);
2436 err = pagecache_write_end(file, mapping, curpos, len, len,
2437 page, fsdata);
2438 if (err < 0)
2439 goto out;
2440 BUG_ON(err != len);
2441 err = 0;
2442 }
2443 out:
2444 return err;
2445 }
2446
2447 /*
2448 * For moronic filesystems that do not allow holes in file.
2449 * We may have to extend the file.
2450 */
2451 int cont_write_begin(struct file *file, struct address_space *mapping,
2452 loff_t pos, unsigned len, unsigned flags,
2453 struct page **pagep, void **fsdata,
2454 get_block_t *get_block, loff_t *bytes)
2455 {
2456 struct inode *inode = mapping->host;
2457 unsigned int blocksize = i_blocksize(inode);
2458 unsigned int zerofrom;
2459 int err;
2460
2461 err = cont_expand_zero(file, mapping, pos, bytes);
2462 if (err)
2463 return err;
2464
2465 zerofrom = *bytes & ~PAGE_MASK;
2466 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2467 *bytes |= (blocksize-1);
2468 (*bytes)++;
2469 }
2470
2471 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2472 }
2473 EXPORT_SYMBOL(cont_write_begin);
2474
2475 int block_commit_write(struct page *page, unsigned from, unsigned to)
2476 {
2477 struct inode *inode = page->mapping->host;
2478 __block_commit_write(inode,page,from,to);
2479 return 0;
2480 }
2481 EXPORT_SYMBOL(block_commit_write);
2482
2483 /*
2484 * block_page_mkwrite() is not allowed to change the file size as it gets
2485 * called from a page fault handler when a page is first dirtied. Hence we must
2486 * be careful to check for EOF conditions here. We set the page up correctly
2487 * for a written page which means we get ENOSPC checking when writing into
2488 * holes and correct delalloc and unwritten extent mapping on filesystems that
2489 * support these features.
2490 *
2491 * We are not allowed to take the i_mutex here so we have to play games to
2492 * protect against truncate races as the page could now be beyond EOF. Because
2493 * truncate writes the inode size before removing pages, once we have the
2494 * page lock we can determine safely if the page is beyond EOF. If it is not
2495 * beyond EOF, then the page is guaranteed safe against truncation until we
2496 * unlock the page.
2497 *
2498 * Direct callers of this function should protect against filesystem freezing
2499 * using sb_start_pagefault() - sb_end_pagefault() functions.
2500 */
2501 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2502 get_block_t get_block)
2503 {
2504 struct page *page = vmf->page;
2505 struct inode *inode = file_inode(vma->vm_file);
2506 unsigned long end;
2507 loff_t size;
2508 int ret;
2509
2510 lock_page(page);
2511 size = i_size_read(inode);
2512 if ((page->mapping != inode->i_mapping) ||
2513 (page_offset(page) > size)) {
2514 /* We overload EFAULT to mean page got truncated */
2515 ret = -EFAULT;
2516 goto out_unlock;
2517 }
2518
2519 /* page is wholly or partially inside EOF */
2520 if (((page->index + 1) << PAGE_SHIFT) > size)
2521 end = size & ~PAGE_MASK;
2522 else
2523 end = PAGE_SIZE;
2524
2525 ret = __block_write_begin(page, 0, end, get_block);
2526 if (!ret)
2527 ret = block_commit_write(page, 0, end);
2528
2529 if (unlikely(ret < 0))
2530 goto out_unlock;
2531 set_page_dirty(page);
2532 wait_for_stable_page(page);
2533 return 0;
2534 out_unlock:
2535 unlock_page(page);
2536 return ret;
2537 }
2538 EXPORT_SYMBOL(block_page_mkwrite);
2539
2540 /*
2541 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2542 * immediately, while under the page lock. So it needs a special end_io
2543 * handler which does not touch the bh after unlocking it.
2544 */
2545 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2546 {
2547 __end_buffer_read_notouch(bh, uptodate);
2548 }
2549
2550 /*
2551 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2552 * the page (converting it to circular linked list and taking care of page
2553 * dirty races).
2554 */
2555 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2556 {
2557 struct buffer_head *bh;
2558
2559 BUG_ON(!PageLocked(page));
2560
2561 spin_lock(&page->mapping->private_lock);
2562 bh = head;
2563 do {
2564 if (PageDirty(page))
2565 set_buffer_dirty(bh);
2566 if (!bh->b_this_page)
2567 bh->b_this_page = head;
2568 bh = bh->b_this_page;
2569 } while (bh != head);
2570 attach_page_private(page, head);
2571 spin_unlock(&page->mapping->private_lock);
2572 }
2573
2574 /*
2575 * On entry, the page is fully not uptodate.
2576 * On exit the page is fully uptodate in the areas outside (from,to)
2577 * The filesystem needs to handle block truncation upon failure.
2578 */
2579 int nobh_write_begin(struct address_space *mapping,
2580 loff_t pos, unsigned len, unsigned flags,
2581 struct page **pagep, void **fsdata,
2582 get_block_t *get_block)
2583 {
2584 struct inode *inode = mapping->host;
2585 const unsigned blkbits = inode->i_blkbits;
2586 const unsigned blocksize = 1 << blkbits;
2587 struct buffer_head *head, *bh;
2588 struct page *page;
2589 pgoff_t index;
2590 unsigned from, to;
2591 unsigned block_in_page;
2592 unsigned block_start, block_end;
2593 sector_t block_in_file;
2594 int nr_reads = 0;
2595 int ret = 0;
2596 int is_mapped_to_disk = 1;
2597
2598 index = pos >> PAGE_SHIFT;
2599 from = pos & (PAGE_SIZE - 1);
2600 to = from + len;
2601
2602 page = grab_cache_page_write_begin(mapping, index, flags);
2603 if (!page)
2604 return -ENOMEM;
2605 *pagep = page;
2606 *fsdata = NULL;
2607
2608 if (page_has_buffers(page)) {
2609 ret = __block_write_begin(page, pos, len, get_block);
2610 if (unlikely(ret))
2611 goto out_release;
2612 return ret;
2613 }
2614
2615 if (PageMappedToDisk(page))
2616 return 0;
2617
2618 /*
2619 * Allocate buffers so that we can keep track of state, and potentially
2620 * attach them to the page if an error occurs. In the common case of
2621 * no error, they will just be freed again without ever being attached
2622 * to the page (which is all OK, because we're under the page lock).
2623 *
2624 * Be careful: the buffer linked list is a NULL terminated one, rather
2625 * than the circular one we're used to.
2626 */
2627 head = alloc_page_buffers(page, blocksize, false);
2628 if (!head) {
2629 ret = -ENOMEM;
2630 goto out_release;
2631 }
2632
2633 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2634
2635 /*
2636 * We loop across all blocks in the page, whether or not they are
2637 * part of the affected region. This is so we can discover if the
2638 * page is fully mapped-to-disk.
2639 */
2640 for (block_start = 0, block_in_page = 0, bh = head;
2641 block_start < PAGE_SIZE;
2642 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2643 int create;
2644
2645 block_end = block_start + blocksize;
2646 bh->b_state = 0;
2647 create = 1;
2648 if (block_start >= to)
2649 create = 0;
2650 ret = get_block(inode, block_in_file + block_in_page,
2651 bh, create);
2652 if (ret)
2653 goto failed;
2654 if (!buffer_mapped(bh))
2655 is_mapped_to_disk = 0;
2656 if (buffer_new(bh))
2657 clean_bdev_bh_alias(bh);
2658 if (PageUptodate(page)) {
2659 set_buffer_uptodate(bh);
2660 continue;
2661 }
2662 if (buffer_new(bh) || !buffer_mapped(bh)) {
2663 zero_user_segments(page, block_start, from,
2664 to, block_end);
2665 continue;
2666 }
2667 if (buffer_uptodate(bh))
2668 continue; /* reiserfs does this */
2669 if (block_start < from || block_end > to) {
2670 lock_buffer(bh);
2671 bh->b_end_io = end_buffer_read_nobh;
2672 submit_bh(REQ_OP_READ, 0, bh);
2673 nr_reads++;
2674 }
2675 }
2676
2677 if (nr_reads) {
2678 /*
2679 * The page is locked, so these buffers are protected from
2680 * any VM or truncate activity. Hence we don't need to care
2681 * for the buffer_head refcounts.
2682 */
2683 for (bh = head; bh; bh = bh->b_this_page) {
2684 wait_on_buffer(bh);
2685 if (!buffer_uptodate(bh))
2686 ret = -EIO;
2687 }
2688 if (ret)
2689 goto failed;
2690 }
2691
2692 if (is_mapped_to_disk)
2693 SetPageMappedToDisk(page);
2694
2695 *fsdata = head; /* to be released by nobh_write_end */
2696
2697 return 0;
2698
2699 failed:
2700 BUG_ON(!ret);
2701 /*
2702 * Error recovery is a bit difficult. We need to zero out blocks that
2703 * were newly allocated, and dirty them to ensure they get written out.
2704 * Buffers need to be attached to the page at this point, otherwise
2705 * the handling of potential IO errors during writeout would be hard
2706 * (could try doing synchronous writeout, but what if that fails too?)
2707 */
2708 attach_nobh_buffers(page, head);
2709 page_zero_new_buffers(page, from, to);
2710
2711 out_release:
2712 unlock_page(page);
2713 put_page(page);
2714 *pagep = NULL;
2715
2716 return ret;
2717 }
2718 EXPORT_SYMBOL(nobh_write_begin);
2719
2720 int nobh_write_end(struct file *file, struct address_space *mapping,
2721 loff_t pos, unsigned len, unsigned copied,
2722 struct page *page, void *fsdata)
2723 {
2724 struct inode *inode = page->mapping->host;
2725 struct buffer_head *head = fsdata;
2726 struct buffer_head *bh;
2727 BUG_ON(fsdata != NULL && page_has_buffers(page));
2728
2729 if (unlikely(copied < len) && head)
2730 attach_nobh_buffers(page, head);
2731 if (page_has_buffers(page))
2732 return generic_write_end(file, mapping, pos, len,
2733 copied, page, fsdata);
2734
2735 SetPageUptodate(page);
2736 set_page_dirty(page);
2737 if (pos+copied > inode->i_size) {
2738 i_size_write(inode, pos+copied);
2739 mark_inode_dirty(inode);
2740 }
2741
2742 unlock_page(page);
2743 put_page(page);
2744
2745 while (head) {
2746 bh = head;
2747 head = head->b_this_page;
2748 free_buffer_head(bh);
2749 }
2750
2751 return copied;
2752 }
2753 EXPORT_SYMBOL(nobh_write_end);
2754
2755 /*
2756 * nobh_writepage() - based on block_full_write_page() except
2757 * that it tries to operate without attaching bufferheads to
2758 * the page.
2759 */
2760 int nobh_writepage(struct page *page, get_block_t *get_block,
2761 struct writeback_control *wbc)
2762 {
2763 struct inode * const inode = page->mapping->host;
2764 loff_t i_size = i_size_read(inode);
2765 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2766 unsigned offset;
2767 int ret;
2768
2769 /* Is the page fully inside i_size? */
2770 if (page->index < end_index)
2771 goto out;
2772
2773 /* Is the page fully outside i_size? (truncate in progress) */
2774 offset = i_size & (PAGE_SIZE-1);
2775 if (page->index >= end_index+1 || !offset) {
2776 unlock_page(page);
2777 return 0; /* don't care */
2778 }
2779
2780 /*
2781 * The page straddles i_size. It must be zeroed out on each and every
2782 * writepage invocation because it may be mmapped. "A file is mapped
2783 * in multiples of the page size. For a file that is not a multiple of
2784 * the page size, the remaining memory is zeroed when mapped, and
2785 * writes to that region are not written out to the file."
2786 */
2787 zero_user_segment(page, offset, PAGE_SIZE);
2788 out:
2789 ret = mpage_writepage(page, get_block, wbc);
2790 if (ret == -EAGAIN)
2791 ret = __block_write_full_page(inode, page, get_block, wbc,
2792 end_buffer_async_write);
2793 return ret;
2794 }
2795 EXPORT_SYMBOL(nobh_writepage);
2796
2797 int nobh_truncate_page(struct address_space *mapping,
2798 loff_t from, get_block_t *get_block)
2799 {
2800 pgoff_t index = from >> PAGE_SHIFT;
2801 unsigned offset = from & (PAGE_SIZE-1);
2802 unsigned blocksize;
2803 sector_t iblock;
2804 unsigned length, pos;
2805 struct inode *inode = mapping->host;
2806 struct page *page;
2807 struct buffer_head map_bh;
2808 int err;
2809
2810 blocksize = i_blocksize(inode);
2811 length = offset & (blocksize - 1);
2812
2813 /* Block boundary? Nothing to do */
2814 if (!length)
2815 return 0;
2816
2817 length = blocksize - length;
2818 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2819
2820 page = grab_cache_page(mapping, index);
2821 err = -ENOMEM;
2822 if (!page)
2823 goto out;
2824
2825 if (page_has_buffers(page)) {
2826 has_buffers:
2827 unlock_page(page);
2828 put_page(page);
2829 return block_truncate_page(mapping, from, get_block);
2830 }
2831
2832 /* Find the buffer that contains "offset" */
2833 pos = blocksize;
2834 while (offset >= pos) {
2835 iblock++;
2836 pos += blocksize;
2837 }
2838
2839 map_bh.b_size = blocksize;
2840 map_bh.b_state = 0;
2841 err = get_block(inode, iblock, &map_bh, 0);
2842 if (err)
2843 goto unlock;
2844 /* unmapped? It's a hole - nothing to do */
2845 if (!buffer_mapped(&map_bh))
2846 goto unlock;
2847
2848 /* Ok, it's mapped. Make sure it's up-to-date */
2849 if (!PageUptodate(page)) {
2850 err = mapping->a_ops->readpage(NULL, page);
2851 if (err) {
2852 put_page(page);
2853 goto out;
2854 }
2855 lock_page(page);
2856 if (!PageUptodate(page)) {
2857 err = -EIO;
2858 goto unlock;
2859 }
2860 if (page_has_buffers(page))
2861 goto has_buffers;
2862 }
2863 zero_user(page, offset, length);
2864 set_page_dirty(page);
2865 err = 0;
2866
2867 unlock:
2868 unlock_page(page);
2869 put_page(page);
2870 out:
2871 return err;
2872 }
2873 EXPORT_SYMBOL(nobh_truncate_page);
2874
2875 int block_truncate_page(struct address_space *mapping,
2876 loff_t from, get_block_t *get_block)
2877 {
2878 pgoff_t index = from >> PAGE_SHIFT;
2879 unsigned offset = from & (PAGE_SIZE-1);
2880 unsigned blocksize;
2881 sector_t iblock;
2882 unsigned length, pos;
2883 struct inode *inode = mapping->host;
2884 struct page *page;
2885 struct buffer_head *bh;
2886 int err;
2887
2888 blocksize = i_blocksize(inode);
2889 length = offset & (blocksize - 1);
2890
2891 /* Block boundary? Nothing to do */
2892 if (!length)
2893 return 0;
2894
2895 length = blocksize - length;
2896 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2897
2898 page = grab_cache_page(mapping, index);
2899 err = -ENOMEM;
2900 if (!page)
2901 goto out;
2902
2903 if (!page_has_buffers(page))
2904 create_empty_buffers(page, blocksize, 0);
2905
2906 /* Find the buffer that contains "offset" */
2907 bh = page_buffers(page);
2908 pos = blocksize;
2909 while (offset >= pos) {
2910 bh = bh->b_this_page;
2911 iblock++;
2912 pos += blocksize;
2913 }
2914
2915 err = 0;
2916 if (!buffer_mapped(bh)) {
2917 WARN_ON(bh->b_size != blocksize);
2918 err = get_block(inode, iblock, bh, 0);
2919 if (err)
2920 goto unlock;
2921 /* unmapped? It's a hole - nothing to do */
2922 if (!buffer_mapped(bh))
2923 goto unlock;
2924 }
2925
2926 /* Ok, it's mapped. Make sure it's up-to-date */
2927 if (PageUptodate(page))
2928 set_buffer_uptodate(bh);
2929
2930 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2931 err = -EIO;
2932 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2933 wait_on_buffer(bh);
2934 /* Uhhuh. Read error. Complain and punt. */
2935 if (!buffer_uptodate(bh))
2936 goto unlock;
2937 }
2938
2939 zero_user(page, offset, length);
2940 mark_buffer_dirty(bh);
2941 err = 0;
2942
2943 unlock:
2944 unlock_page(page);
2945 put_page(page);
2946 out:
2947 return err;
2948 }
2949 EXPORT_SYMBOL(block_truncate_page);
2950
2951 /*
2952 * The generic ->writepage function for buffer-backed address_spaces
2953 */
2954 int block_write_full_page(struct page *page, get_block_t *get_block,
2955 struct writeback_control *wbc)
2956 {
2957 struct inode * const inode = page->mapping->host;
2958 loff_t i_size = i_size_read(inode);
2959 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2960 unsigned offset;
2961
2962 /* Is the page fully inside i_size? */
2963 if (page->index < end_index)
2964 return __block_write_full_page(inode, page, get_block, wbc,
2965 end_buffer_async_write);
2966
2967 /* Is the page fully outside i_size? (truncate in progress) */
2968 offset = i_size & (PAGE_SIZE-1);
2969 if (page->index >= end_index+1 || !offset) {
2970 unlock_page(page);
2971 return 0; /* don't care */
2972 }
2973
2974 /*
2975 * The page straddles i_size. It must be zeroed out on each and every
2976 * writepage invocation because it may be mmapped. "A file is mapped
2977 * in multiples of the page size. For a file that is not a multiple of
2978 * the page size, the remaining memory is zeroed when mapped, and
2979 * writes to that region are not written out to the file."
2980 */
2981 zero_user_segment(page, offset, PAGE_SIZE);
2982 return __block_write_full_page(inode, page, get_block, wbc,
2983 end_buffer_async_write);
2984 }
2985 EXPORT_SYMBOL(block_write_full_page);
2986
2987 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2988 get_block_t *get_block)
2989 {
2990 struct inode *inode = mapping->host;
2991 struct buffer_head tmp = {
2992 .b_size = i_blocksize(inode),
2993 };
2994
2995 get_block(inode, block, &tmp, 0);
2996 return tmp.b_blocknr;
2997 }
2998 EXPORT_SYMBOL(generic_block_bmap);
2999
3000 static void end_bio_bh_io_sync(struct bio *bio)
3001 {
3002 struct buffer_head *bh = bio->bi_private;
3003
3004 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3005 set_bit(BH_Quiet, &bh->b_state);
3006
3007 bh->b_end_io(bh, !bio->bi_status);
3008 bio_put(bio);
3009 }
3010
3011 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3012 enum rw_hint write_hint, struct writeback_control *wbc)
3013 {
3014 struct bio *bio;
3015
3016 BUG_ON(!buffer_locked(bh));
3017 BUG_ON(!buffer_mapped(bh));
3018 BUG_ON(!bh->b_end_io);
3019 BUG_ON(buffer_delay(bh));
3020 BUG_ON(buffer_unwritten(bh));
3021
3022 /*
3023 * Only clear out a write error when rewriting
3024 */
3025 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3026 clear_buffer_write_io_error(bh);
3027
3028 bio = bio_alloc(GFP_NOIO, 1);
3029
3030 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3031
3032 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3033 bio_set_dev(bio, bh->b_bdev);
3034 bio->bi_write_hint = write_hint;
3035
3036 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3037 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3038
3039 bio->bi_end_io = end_bio_bh_io_sync;
3040 bio->bi_private = bh;
3041
3042 if (buffer_meta(bh))
3043 op_flags |= REQ_META;
3044 if (buffer_prio(bh))
3045 op_flags |= REQ_PRIO;
3046 bio_set_op_attrs(bio, op, op_flags);
3047
3048 /* Take care of bh's that straddle the end of the device */
3049 guard_bio_eod(bio);
3050
3051 if (wbc) {
3052 wbc_init_bio(wbc, bio);
3053 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3054 }
3055
3056 submit_bio(bio);
3057 return 0;
3058 }
3059
3060 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3061 {
3062 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3063 }
3064 EXPORT_SYMBOL(submit_bh);
3065
3066 /**
3067 * ll_rw_block: low-level access to block devices (DEPRECATED)
3068 * @op: whether to %READ or %WRITE
3069 * @op_flags: req_flag_bits
3070 * @nr: number of &struct buffer_heads in the array
3071 * @bhs: array of pointers to &struct buffer_head
3072 *
3073 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3074 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3075 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3076 * %REQ_RAHEAD.
3077 *
3078 * This function drops any buffer that it cannot get a lock on (with the
3079 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3080 * request, and any buffer that appears to be up-to-date when doing read
3081 * request. Further it marks as clean buffers that are processed for
3082 * writing (the buffer cache won't assume that they are actually clean
3083 * until the buffer gets unlocked).
3084 *
3085 * ll_rw_block sets b_end_io to simple completion handler that marks
3086 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3087 * any waiters.
3088 *
3089 * All of the buffers must be for the same device, and must also be a
3090 * multiple of the current approved size for the device.
3091 */
3092 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3093 {
3094 int i;
3095
3096 for (i = 0; i < nr; i++) {
3097 struct buffer_head *bh = bhs[i];
3098
3099 if (!trylock_buffer(bh))
3100 continue;
3101 if (op == WRITE) {
3102 if (test_clear_buffer_dirty(bh)) {
3103 bh->b_end_io = end_buffer_write_sync;
3104 get_bh(bh);
3105 submit_bh(op, op_flags, bh);
3106 continue;
3107 }
3108 } else {
3109 if (!buffer_uptodate(bh)) {
3110 bh->b_end_io = end_buffer_read_sync;
3111 get_bh(bh);
3112 submit_bh(op, op_flags, bh);
3113 continue;
3114 }
3115 }
3116 unlock_buffer(bh);
3117 }
3118 }
3119 EXPORT_SYMBOL(ll_rw_block);
3120
3121 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3122 {
3123 lock_buffer(bh);
3124 if (!test_clear_buffer_dirty(bh)) {
3125 unlock_buffer(bh);
3126 return;
3127 }
3128 bh->b_end_io = end_buffer_write_sync;
3129 get_bh(bh);
3130 submit_bh(REQ_OP_WRITE, op_flags, bh);
3131 }
3132 EXPORT_SYMBOL(write_dirty_buffer);
3133
3134 /*
3135 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3136 * and then start new I/O and then wait upon it. The caller must have a ref on
3137 * the buffer_head.
3138 */
3139 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3140 {
3141 int ret = 0;
3142
3143 WARN_ON(atomic_read(&bh->b_count) < 1);
3144 lock_buffer(bh);
3145 if (test_clear_buffer_dirty(bh)) {
3146 /*
3147 * The bh should be mapped, but it might not be if the
3148 * device was hot-removed. Not much we can do but fail the I/O.
3149 */
3150 if (!buffer_mapped(bh)) {
3151 unlock_buffer(bh);
3152 return -EIO;
3153 }
3154
3155 get_bh(bh);
3156 bh->b_end_io = end_buffer_write_sync;
3157 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3158 wait_on_buffer(bh);
3159 if (!ret && !buffer_uptodate(bh))
3160 ret = -EIO;
3161 } else {
3162 unlock_buffer(bh);
3163 }
3164 return ret;
3165 }
3166 EXPORT_SYMBOL(__sync_dirty_buffer);
3167
3168 int sync_dirty_buffer(struct buffer_head *bh)
3169 {
3170 return __sync_dirty_buffer(bh, REQ_SYNC);
3171 }
3172 EXPORT_SYMBOL(sync_dirty_buffer);
3173
3174 /*
3175 * try_to_free_buffers() checks if all the buffers on this particular page
3176 * are unused, and releases them if so.
3177 *
3178 * Exclusion against try_to_free_buffers may be obtained by either
3179 * locking the page or by holding its mapping's private_lock.
3180 *
3181 * If the page is dirty but all the buffers are clean then we need to
3182 * be sure to mark the page clean as well. This is because the page
3183 * may be against a block device, and a later reattachment of buffers
3184 * to a dirty page will set *all* buffers dirty. Which would corrupt
3185 * filesystem data on the same device.
3186 *
3187 * The same applies to regular filesystem pages: if all the buffers are
3188 * clean then we set the page clean and proceed. To do that, we require
3189 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3190 * private_lock.
3191 *
3192 * try_to_free_buffers() is non-blocking.
3193 */
3194 static inline int buffer_busy(struct buffer_head *bh)
3195 {
3196 return atomic_read(&bh->b_count) |
3197 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3198 }
3199
3200 static int
3201 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3202 {
3203 struct buffer_head *head = page_buffers(page);
3204 struct buffer_head *bh;
3205
3206 bh = head;
3207 do {
3208 if (buffer_busy(bh))
3209 goto failed;
3210 bh = bh->b_this_page;
3211 } while (bh != head);
3212
3213 do {
3214 struct buffer_head *next = bh->b_this_page;
3215
3216 if (bh->b_assoc_map)
3217 __remove_assoc_queue(bh);
3218 bh = next;
3219 } while (bh != head);
3220 *buffers_to_free = head;
3221 detach_page_private(page);
3222 return 1;
3223 failed:
3224 return 0;
3225 }
3226
3227 int try_to_free_buffers(struct page *page)
3228 {
3229 struct address_space * const mapping = page->mapping;
3230 struct buffer_head *buffers_to_free = NULL;
3231 int ret = 0;
3232
3233 BUG_ON(!PageLocked(page));
3234 if (PageWriteback(page))
3235 return 0;
3236
3237 if (mapping == NULL) { /* can this still happen? */
3238 ret = drop_buffers(page, &buffers_to_free);
3239 goto out;
3240 }
3241
3242 spin_lock(&mapping->private_lock);
3243 ret = drop_buffers(page, &buffers_to_free);
3244
3245 /*
3246 * If the filesystem writes its buffers by hand (eg ext3)
3247 * then we can have clean buffers against a dirty page. We
3248 * clean the page here; otherwise the VM will never notice
3249 * that the filesystem did any IO at all.
3250 *
3251 * Also, during truncate, discard_buffer will have marked all
3252 * the page's buffers clean. We discover that here and clean
3253 * the page also.
3254 *
3255 * private_lock must be held over this entire operation in order
3256 * to synchronise against __set_page_dirty_buffers and prevent the
3257 * dirty bit from being lost.
3258 */
3259 if (ret)
3260 cancel_dirty_page(page);
3261 spin_unlock(&mapping->private_lock);
3262 out:
3263 if (buffers_to_free) {
3264 struct buffer_head *bh = buffers_to_free;
3265
3266 do {
3267 struct buffer_head *next = bh->b_this_page;
3268 free_buffer_head(bh);
3269 bh = next;
3270 } while (bh != buffers_to_free);
3271 }
3272 return ret;
3273 }
3274 EXPORT_SYMBOL(try_to_free_buffers);
3275
3276 /*
3277 * Buffer-head allocation
3278 */
3279 static struct kmem_cache *bh_cachep __read_mostly;
3280
3281 /*
3282 * Once the number of bh's in the machine exceeds this level, we start
3283 * stripping them in writeback.
3284 */
3285 static unsigned long max_buffer_heads;
3286
3287 int buffer_heads_over_limit;
3288
3289 struct bh_accounting {
3290 int nr; /* Number of live bh's */
3291 int ratelimit; /* Limit cacheline bouncing */
3292 };
3293
3294 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3295
3296 static void recalc_bh_state(void)
3297 {
3298 int i;
3299 int tot = 0;
3300
3301 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3302 return;
3303 __this_cpu_write(bh_accounting.ratelimit, 0);
3304 for_each_online_cpu(i)
3305 tot += per_cpu(bh_accounting, i).nr;
3306 buffer_heads_over_limit = (tot > max_buffer_heads);
3307 }
3308
3309 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3310 {
3311 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3312 if (ret) {
3313 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3314 spin_lock_init(&ret->b_uptodate_lock);
3315 preempt_disable();
3316 __this_cpu_inc(bh_accounting.nr);
3317 recalc_bh_state();
3318 preempt_enable();
3319 }
3320 return ret;
3321 }
3322 EXPORT_SYMBOL(alloc_buffer_head);
3323
3324 void free_buffer_head(struct buffer_head *bh)
3325 {
3326 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3327 kmem_cache_free(bh_cachep, bh);
3328 preempt_disable();
3329 __this_cpu_dec(bh_accounting.nr);
3330 recalc_bh_state();
3331 preempt_enable();
3332 }
3333 EXPORT_SYMBOL(free_buffer_head);
3334
3335 static int buffer_exit_cpu_dead(unsigned int cpu)
3336 {
3337 int i;
3338 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3339
3340 for (i = 0; i < BH_LRU_SIZE; i++) {
3341 brelse(b->bhs[i]);
3342 b->bhs[i] = NULL;
3343 }
3344 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3345 per_cpu(bh_accounting, cpu).nr = 0;
3346 return 0;
3347 }
3348
3349 /**
3350 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3351 * @bh: struct buffer_head
3352 *
3353 * Return true if the buffer is up-to-date and false,
3354 * with the buffer locked, if not.
3355 */
3356 int bh_uptodate_or_lock(struct buffer_head *bh)
3357 {
3358 if (!buffer_uptodate(bh)) {
3359 lock_buffer(bh);
3360 if (!buffer_uptodate(bh))
3361 return 0;
3362 unlock_buffer(bh);
3363 }
3364 return 1;
3365 }
3366 EXPORT_SYMBOL(bh_uptodate_or_lock);
3367
3368 /**
3369 * bh_submit_read - Submit a locked buffer for reading
3370 * @bh: struct buffer_head
3371 *
3372 * Returns zero on success and -EIO on error.
3373 */
3374 int bh_submit_read(struct buffer_head *bh)
3375 {
3376 BUG_ON(!buffer_locked(bh));
3377
3378 if (buffer_uptodate(bh)) {
3379 unlock_buffer(bh);
3380 return 0;
3381 }
3382
3383 get_bh(bh);
3384 bh->b_end_io = end_buffer_read_sync;
3385 submit_bh(REQ_OP_READ, 0, bh);
3386 wait_on_buffer(bh);
3387 if (buffer_uptodate(bh))
3388 return 0;
3389 return -EIO;
3390 }
3391 EXPORT_SYMBOL(bh_submit_read);
3392
3393 void __init buffer_init(void)
3394 {
3395 unsigned long nrpages;
3396 int ret;
3397
3398 bh_cachep = kmem_cache_create("buffer_head",
3399 sizeof(struct buffer_head), 0,
3400 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3401 SLAB_MEM_SPREAD),
3402 NULL);
3403
3404 /*
3405 * Limit the bh occupancy to 10% of ZONE_NORMAL
3406 */
3407 nrpages = (nr_free_buffer_pages() * 10) / 100;
3408 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3409 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3410 NULL, buffer_exit_cpu_dead);
3411 WARN_ON(ret < 0);
3412 }