]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ceph/caps.c
ceph: fix posix ACL hooks
[mirror_ubuntu-bionic-kernel.git] / fs / ceph / caps.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16
17 /*
18 * Capability management
19 *
20 * The Ceph metadata servers control client access to inode metadata
21 * and file data by issuing capabilities, granting clients permission
22 * to read and/or write both inode field and file data to OSDs
23 * (storage nodes). Each capability consists of a set of bits
24 * indicating which operations are allowed.
25 *
26 * If the client holds a *_SHARED cap, the client has a coherent value
27 * that can be safely read from the cached inode.
28 *
29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30 * client is allowed to change inode attributes (e.g., file size,
31 * mtime), note its dirty state in the ceph_cap, and asynchronously
32 * flush that metadata change to the MDS.
33 *
34 * In the event of a conflicting operation (perhaps by another
35 * client), the MDS will revoke the conflicting client capabilities.
36 *
37 * In order for a client to cache an inode, it must hold a capability
38 * with at least one MDS server. When inodes are released, release
39 * notifications are batched and periodically sent en masse to the MDS
40 * cluster to release server state.
41 */
42
43
44 /*
45 * Generate readable cap strings for debugging output.
46 */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51
52 static char *gcap_string(char *s, int c)
53 {
54 if (c & CEPH_CAP_GSHARED)
55 *s++ = 's';
56 if (c & CEPH_CAP_GEXCL)
57 *s++ = 'x';
58 if (c & CEPH_CAP_GCACHE)
59 *s++ = 'c';
60 if (c & CEPH_CAP_GRD)
61 *s++ = 'r';
62 if (c & CEPH_CAP_GWR)
63 *s++ = 'w';
64 if (c & CEPH_CAP_GBUFFER)
65 *s++ = 'b';
66 if (c & CEPH_CAP_GLAZYIO)
67 *s++ = 'l';
68 return s;
69 }
70
71 const char *ceph_cap_string(int caps)
72 {
73 int i;
74 char *s;
75 int c;
76
77 spin_lock(&cap_str_lock);
78 i = last_cap_str++;
79 if (last_cap_str == MAX_CAP_STR)
80 last_cap_str = 0;
81 spin_unlock(&cap_str_lock);
82
83 s = cap_str[i];
84
85 if (caps & CEPH_CAP_PIN)
86 *s++ = 'p';
87
88 c = (caps >> CEPH_CAP_SAUTH) & 3;
89 if (c) {
90 *s++ = 'A';
91 s = gcap_string(s, c);
92 }
93
94 c = (caps >> CEPH_CAP_SLINK) & 3;
95 if (c) {
96 *s++ = 'L';
97 s = gcap_string(s, c);
98 }
99
100 c = (caps >> CEPH_CAP_SXATTR) & 3;
101 if (c) {
102 *s++ = 'X';
103 s = gcap_string(s, c);
104 }
105
106 c = caps >> CEPH_CAP_SFILE;
107 if (c) {
108 *s++ = 'F';
109 s = gcap_string(s, c);
110 }
111
112 if (s == cap_str[i])
113 *s++ = '-';
114 *s = 0;
115 return cap_str[i];
116 }
117
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 INIT_LIST_HEAD(&mdsc->caps_list);
121 spin_lock_init(&mdsc->caps_list_lock);
122 }
123
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 struct ceph_cap *cap;
127
128 spin_lock(&mdsc->caps_list_lock);
129 while (!list_empty(&mdsc->caps_list)) {
130 cap = list_first_entry(&mdsc->caps_list,
131 struct ceph_cap, caps_item);
132 list_del(&cap->caps_item);
133 kmem_cache_free(ceph_cap_cachep, cap);
134 }
135 mdsc->caps_total_count = 0;
136 mdsc->caps_avail_count = 0;
137 mdsc->caps_use_count = 0;
138 mdsc->caps_reserve_count = 0;
139 mdsc->caps_min_count = 0;
140 spin_unlock(&mdsc->caps_list_lock);
141 }
142
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 spin_lock(&mdsc->caps_list_lock);
146 mdsc->caps_min_count += delta;
147 BUG_ON(mdsc->caps_min_count < 0);
148 spin_unlock(&mdsc->caps_list_lock);
149 }
150
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 struct ceph_cap_reservation *ctx, int need)
153 {
154 int i;
155 struct ceph_cap *cap;
156 int have;
157 int alloc = 0;
158 LIST_HEAD(newcaps);
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap)
178 break;
179 list_add(&cap->caps_item, &newcaps);
180 alloc++;
181 }
182 /* we didn't manage to reserve as much as we needed */
183 if (have + alloc != need)
184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 ctx, need, have + alloc);
186
187 spin_lock(&mdsc->caps_list_lock);
188 mdsc->caps_total_count += alloc;
189 mdsc->caps_reserve_count += alloc;
190 list_splice(&newcaps, &mdsc->caps_list);
191
192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 mdsc->caps_reserve_count +
194 mdsc->caps_avail_count);
195 spin_unlock(&mdsc->caps_list_lock);
196
197 ctx->count = need;
198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 struct ceph_cap_reservation *ctx)
205 {
206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 if (ctx->count) {
208 spin_lock(&mdsc->caps_list_lock);
209 BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 mdsc->caps_reserve_count -= ctx->count;
211 mdsc->caps_avail_count += ctx->count;
212 ctx->count = 0;
213 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 mdsc->caps_total_count, mdsc->caps_use_count,
215 mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 mdsc->caps_reserve_count +
218 mdsc->caps_avail_count);
219 spin_unlock(&mdsc->caps_list_lock);
220 }
221 return 0;
222 }
223
224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
225 struct ceph_cap_reservation *ctx)
226 {
227 struct ceph_cap *cap = NULL;
228
229 /* temporary, until we do something about cap import/export */
230 if (!ctx) {
231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 if (cap) {
233 spin_lock(&mdsc->caps_list_lock);
234 mdsc->caps_use_count++;
235 mdsc->caps_total_count++;
236 spin_unlock(&mdsc->caps_list_lock);
237 }
238 return cap;
239 }
240
241 spin_lock(&mdsc->caps_list_lock);
242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 BUG_ON(!ctx->count);
246 BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 BUG_ON(list_empty(&mdsc->caps_list));
248
249 ctx->count--;
250 mdsc->caps_reserve_count--;
251 mdsc->caps_use_count++;
252
253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 list_del(&cap->caps_item);
255
256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 spin_unlock(&mdsc->caps_list_lock);
259 return cap;
260 }
261
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 spin_lock(&mdsc->caps_list_lock);
265 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 mdsc->caps_use_count--;
269 /*
270 * Keep some preallocated caps around (ceph_min_count), to
271 * avoid lots of free/alloc churn.
272 */
273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 mdsc->caps_min_count) {
275 mdsc->caps_total_count--;
276 kmem_cache_free(ceph_cap_cachep, cap);
277 } else {
278 mdsc->caps_avail_count++;
279 list_add(&cap->caps_item, &mdsc->caps_list);
280 }
281
282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 spin_unlock(&mdsc->caps_list_lock);
285 }
286
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 int *total, int *avail, int *used, int *reserved,
289 int *min)
290 {
291 struct ceph_mds_client *mdsc = fsc->mdsc;
292
293 if (total)
294 *total = mdsc->caps_total_count;
295 if (avail)
296 *avail = mdsc->caps_avail_count;
297 if (used)
298 *used = mdsc->caps_use_count;
299 if (reserved)
300 *reserved = mdsc->caps_reserve_count;
301 if (min)
302 *min = mdsc->caps_min_count;
303 }
304
305 /*
306 * Find ceph_cap for given mds, if any.
307 *
308 * Called with i_ceph_lock held.
309 */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 struct ceph_cap *cap;
313 struct rb_node *n = ci->i_caps.rb_node;
314
315 while (n) {
316 cap = rb_entry(n, struct ceph_cap, ci_node);
317 if (mds < cap->mds)
318 n = n->rb_left;
319 else if (mds > cap->mds)
320 n = n->rb_right;
321 else
322 return cap;
323 }
324 return NULL;
325 }
326
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 struct ceph_cap *cap;
330
331 spin_lock(&ci->i_ceph_lock);
332 cap = __get_cap_for_mds(ci, mds);
333 spin_unlock(&ci->i_ceph_lock);
334 return cap;
335 }
336
337 /*
338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339 */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 struct ceph_cap *cap;
343 int mds = -1;
344 struct rb_node *p;
345
346 /* prefer mds with WR|BUFFER|EXCL caps */
347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 cap = rb_entry(p, struct ceph_cap, ci_node);
349 mds = cap->mds;
350 if (cap->issued & (CEPH_CAP_FILE_WR |
351 CEPH_CAP_FILE_BUFFER |
352 CEPH_CAP_FILE_EXCL))
353 break;
354 }
355 return mds;
356 }
357
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 struct ceph_inode_info *ci = ceph_inode(inode);
361 int mds;
362 spin_lock(&ci->i_ceph_lock);
363 mds = __ceph_get_cap_mds(ceph_inode(inode));
364 spin_unlock(&ci->i_ceph_lock);
365 return mds;
366 }
367
368 /*
369 * Called under i_ceph_lock.
370 */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 struct ceph_cap *new)
373 {
374 struct rb_node **p = &ci->i_caps.rb_node;
375 struct rb_node *parent = NULL;
376 struct ceph_cap *cap = NULL;
377
378 while (*p) {
379 parent = *p;
380 cap = rb_entry(parent, struct ceph_cap, ci_node);
381 if (new->mds < cap->mds)
382 p = &(*p)->rb_left;
383 else if (new->mds > cap->mds)
384 p = &(*p)->rb_right;
385 else
386 BUG();
387 }
388
389 rb_link_node(&new->ci_node, parent, p);
390 rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392
393 /*
394 * (re)set cap hold timeouts, which control the delayed release
395 * of unused caps back to the MDS. Should be called on cap use.
396 */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 struct ceph_inode_info *ci)
399 {
400 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401
402 ci->i_hold_caps_min = round_jiffies(jiffies +
403 ma->caps_wanted_delay_min * HZ);
404 ci->i_hold_caps_max = round_jiffies(jiffies +
405 ma->caps_wanted_delay_max * HZ);
406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409
410 /*
411 * (Re)queue cap at the end of the delayed cap release list.
412 *
413 * If I_FLUSH is set, leave the inode at the front of the list.
414 *
415 * Caller holds i_ceph_lock
416 * -> we take mdsc->cap_delay_lock
417 */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 struct ceph_inode_info *ci)
420 {
421 __cap_set_timeouts(mdsc, ci);
422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 ci->i_ceph_flags, ci->i_hold_caps_max);
424 if (!mdsc->stopping) {
425 spin_lock(&mdsc->cap_delay_lock);
426 if (!list_empty(&ci->i_cap_delay_list)) {
427 if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 goto no_change;
429 list_del_init(&ci->i_cap_delay_list);
430 }
431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 spin_unlock(&mdsc->cap_delay_lock);
434 }
435 }
436
437 /*
438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
439 * indicating we should send a cap message to flush dirty metadata
440 * asap, and move to the front of the delayed cap list.
441 */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 struct ceph_inode_info *ci)
444 {
445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 spin_lock(&mdsc->cap_delay_lock);
447 ci->i_ceph_flags |= CEPH_I_FLUSH;
448 if (!list_empty(&ci->i_cap_delay_list))
449 list_del_init(&ci->i_cap_delay_list);
450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 spin_unlock(&mdsc->cap_delay_lock);
452 }
453
454 /*
455 * Cancel delayed work on cap.
456 *
457 * Caller must hold i_ceph_lock.
458 */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 struct ceph_inode_info *ci)
461 {
462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 if (list_empty(&ci->i_cap_delay_list))
464 return;
465 spin_lock(&mdsc->cap_delay_lock);
466 list_del_init(&ci->i_cap_delay_list);
467 spin_unlock(&mdsc->cap_delay_lock);
468 }
469
470 /*
471 * Common issue checks for add_cap, handle_cap_grant.
472 */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 unsigned issued)
475 {
476 unsigned had = __ceph_caps_issued(ci, NULL);
477
478 /*
479 * Each time we receive FILE_CACHE anew, we increment
480 * i_rdcache_gen.
481 */
482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 ci->i_rdcache_gen++;
485 }
486
487 /*
488 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 * don't know what happened to this directory while we didn't
490 * have the cap.
491 */
492 if ((issued & CEPH_CAP_FILE_SHARED) &&
493 (had & CEPH_CAP_FILE_SHARED) == 0) {
494 ci->i_shared_gen++;
495 if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 __ceph_dir_clear_complete(ci);
498 }
499 }
500 }
501
502 /*
503 * Add a capability under the given MDS session.
504 *
505 * Caller should hold session snap_rwsem (read) and s_mutex.
506 *
507 * @fmode is the open file mode, if we are opening a file, otherwise
508 * it is < 0. (This is so we can atomically add the cap and add an
509 * open file reference to it.)
510 */
511 int ceph_add_cap(struct inode *inode,
512 struct ceph_mds_session *session, u64 cap_id,
513 int fmode, unsigned issued, unsigned wanted,
514 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 struct ceph_cap_reservation *caps_reservation)
516 {
517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 struct ceph_inode_info *ci = ceph_inode(inode);
519 struct ceph_cap *new_cap = NULL;
520 struct ceph_cap *cap;
521 int mds = session->s_mds;
522 int actual_wanted;
523
524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
525 session->s_mds, cap_id, ceph_cap_string(issued), seq);
526
527 /*
528 * If we are opening the file, include file mode wanted bits
529 * in wanted.
530 */
531 if (fmode >= 0)
532 wanted |= ceph_caps_for_mode(fmode);
533
534 retry:
535 spin_lock(&ci->i_ceph_lock);
536 cap = __get_cap_for_mds(ci, mds);
537 if (!cap) {
538 if (new_cap) {
539 cap = new_cap;
540 new_cap = NULL;
541 } else {
542 spin_unlock(&ci->i_ceph_lock);
543 new_cap = get_cap(mdsc, caps_reservation);
544 if (new_cap == NULL)
545 return -ENOMEM;
546 goto retry;
547 }
548
549 cap->issued = 0;
550 cap->implemented = 0;
551 cap->mds = mds;
552 cap->mds_wanted = 0;
553 cap->mseq = 0;
554
555 cap->ci = ci;
556 __insert_cap_node(ci, cap);
557
558 /* add to session cap list */
559 cap->session = session;
560 spin_lock(&session->s_cap_lock);
561 list_add_tail(&cap->session_caps, &session->s_caps);
562 session->s_nr_caps++;
563 spin_unlock(&session->s_cap_lock);
564 } else {
565 if (new_cap)
566 ceph_put_cap(mdsc, new_cap);
567
568 /*
569 * auth mds of the inode changed. we received the cap export
570 * message, but still haven't received the cap import message.
571 * handle_cap_export() updated the new auth MDS' cap.
572 *
573 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
574 * a message that was send before the cap import message. So
575 * don't remove caps.
576 */
577 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
578 WARN_ON(cap != ci->i_auth_cap);
579 WARN_ON(cap->cap_id != cap_id);
580 seq = cap->seq;
581 mseq = cap->mseq;
582 issued |= cap->issued;
583 flags |= CEPH_CAP_FLAG_AUTH;
584 }
585 }
586
587 if (!ci->i_snap_realm) {
588 /*
589 * add this inode to the appropriate snap realm
590 */
591 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
592 realmino);
593 if (realm) {
594 ceph_get_snap_realm(mdsc, realm);
595 spin_lock(&realm->inodes_with_caps_lock);
596 ci->i_snap_realm = realm;
597 list_add(&ci->i_snap_realm_item,
598 &realm->inodes_with_caps);
599 spin_unlock(&realm->inodes_with_caps_lock);
600 } else {
601 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
602 realmino);
603 WARN_ON(!realm);
604 }
605 }
606
607 __check_cap_issue(ci, cap, issued);
608
609 /*
610 * If we are issued caps we don't want, or the mds' wanted
611 * value appears to be off, queue a check so we'll release
612 * later and/or update the mds wanted value.
613 */
614 actual_wanted = __ceph_caps_wanted(ci);
615 if ((wanted & ~actual_wanted) ||
616 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
617 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
618 ceph_cap_string(issued), ceph_cap_string(wanted),
619 ceph_cap_string(actual_wanted));
620 __cap_delay_requeue(mdsc, ci);
621 }
622
623 if (flags & CEPH_CAP_FLAG_AUTH) {
624 if (ci->i_auth_cap == NULL ||
625 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
626 ci->i_auth_cap = cap;
627 ci->i_cap_exporting_issued = 0;
628 } else {
629 WARN_ON(ci->i_auth_cap == cap);
630 }
631
632 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
633 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
634 ceph_cap_string(issued|cap->issued), seq, mds);
635 cap->cap_id = cap_id;
636 cap->issued = issued;
637 cap->implemented |= issued;
638 if (ceph_seq_cmp(mseq, cap->mseq) > 0)
639 cap->mds_wanted = wanted;
640 else
641 cap->mds_wanted |= wanted;
642 cap->seq = seq;
643 cap->issue_seq = seq;
644 cap->mseq = mseq;
645 cap->cap_gen = session->s_cap_gen;
646
647 if (fmode >= 0)
648 __ceph_get_fmode(ci, fmode);
649 spin_unlock(&ci->i_ceph_lock);
650 wake_up_all(&ci->i_cap_wq);
651 return 0;
652 }
653
654 /*
655 * Return true if cap has not timed out and belongs to the current
656 * generation of the MDS session (i.e. has not gone 'stale' due to
657 * us losing touch with the mds).
658 */
659 static int __cap_is_valid(struct ceph_cap *cap)
660 {
661 unsigned long ttl;
662 u32 gen;
663
664 spin_lock(&cap->session->s_gen_ttl_lock);
665 gen = cap->session->s_cap_gen;
666 ttl = cap->session->s_cap_ttl;
667 spin_unlock(&cap->session->s_gen_ttl_lock);
668
669 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
670 dout("__cap_is_valid %p cap %p issued %s "
671 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
672 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
673 return 0;
674 }
675
676 return 1;
677 }
678
679 /*
680 * Return set of valid cap bits issued to us. Note that caps time
681 * out, and may be invalidated in bulk if the client session times out
682 * and session->s_cap_gen is bumped.
683 */
684 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
685 {
686 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
687 struct ceph_cap *cap;
688 struct rb_node *p;
689
690 if (implemented)
691 *implemented = 0;
692 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
693 cap = rb_entry(p, struct ceph_cap, ci_node);
694 if (!__cap_is_valid(cap))
695 continue;
696 dout("__ceph_caps_issued %p cap %p issued %s\n",
697 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
698 have |= cap->issued;
699 if (implemented)
700 *implemented |= cap->implemented;
701 }
702 /*
703 * exclude caps issued by non-auth MDS, but are been revoking
704 * by the auth MDS. The non-auth MDS should be revoking/exporting
705 * these caps, but the message is delayed.
706 */
707 if (ci->i_auth_cap) {
708 cap = ci->i_auth_cap;
709 have &= ~cap->implemented | cap->issued;
710 }
711 return have;
712 }
713
714 /*
715 * Get cap bits issued by caps other than @ocap
716 */
717 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
718 {
719 int have = ci->i_snap_caps;
720 struct ceph_cap *cap;
721 struct rb_node *p;
722
723 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
724 cap = rb_entry(p, struct ceph_cap, ci_node);
725 if (cap == ocap)
726 continue;
727 if (!__cap_is_valid(cap))
728 continue;
729 have |= cap->issued;
730 }
731 return have;
732 }
733
734 /*
735 * Move a cap to the end of the LRU (oldest caps at list head, newest
736 * at list tail).
737 */
738 static void __touch_cap(struct ceph_cap *cap)
739 {
740 struct ceph_mds_session *s = cap->session;
741
742 spin_lock(&s->s_cap_lock);
743 if (s->s_cap_iterator == NULL) {
744 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
745 s->s_mds);
746 list_move_tail(&cap->session_caps, &s->s_caps);
747 } else {
748 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
749 &cap->ci->vfs_inode, cap, s->s_mds);
750 }
751 spin_unlock(&s->s_cap_lock);
752 }
753
754 /*
755 * Check if we hold the given mask. If so, move the cap(s) to the
756 * front of their respective LRUs. (This is the preferred way for
757 * callers to check for caps they want.)
758 */
759 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
760 {
761 struct ceph_cap *cap;
762 struct rb_node *p;
763 int have = ci->i_snap_caps;
764
765 if ((have & mask) == mask) {
766 dout("__ceph_caps_issued_mask %p snap issued %s"
767 " (mask %s)\n", &ci->vfs_inode,
768 ceph_cap_string(have),
769 ceph_cap_string(mask));
770 return 1;
771 }
772
773 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
774 cap = rb_entry(p, struct ceph_cap, ci_node);
775 if (!__cap_is_valid(cap))
776 continue;
777 if ((cap->issued & mask) == mask) {
778 dout("__ceph_caps_issued_mask %p cap %p issued %s"
779 " (mask %s)\n", &ci->vfs_inode, cap,
780 ceph_cap_string(cap->issued),
781 ceph_cap_string(mask));
782 if (touch)
783 __touch_cap(cap);
784 return 1;
785 }
786
787 /* does a combination of caps satisfy mask? */
788 have |= cap->issued;
789 if ((have & mask) == mask) {
790 dout("__ceph_caps_issued_mask %p combo issued %s"
791 " (mask %s)\n", &ci->vfs_inode,
792 ceph_cap_string(cap->issued),
793 ceph_cap_string(mask));
794 if (touch) {
795 struct rb_node *q;
796
797 /* touch this + preceding caps */
798 __touch_cap(cap);
799 for (q = rb_first(&ci->i_caps); q != p;
800 q = rb_next(q)) {
801 cap = rb_entry(q, struct ceph_cap,
802 ci_node);
803 if (!__cap_is_valid(cap))
804 continue;
805 __touch_cap(cap);
806 }
807 }
808 return 1;
809 }
810 }
811
812 return 0;
813 }
814
815 /*
816 * Return true if mask caps are currently being revoked by an MDS.
817 */
818 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
819 struct ceph_cap *ocap, int mask)
820 {
821 struct ceph_cap *cap;
822 struct rb_node *p;
823
824 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
825 cap = rb_entry(p, struct ceph_cap, ci_node);
826 if (cap != ocap &&
827 (cap->implemented & ~cap->issued & mask))
828 return 1;
829 }
830 return 0;
831 }
832
833 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
834 {
835 struct inode *inode = &ci->vfs_inode;
836 int ret;
837
838 spin_lock(&ci->i_ceph_lock);
839 ret = __ceph_caps_revoking_other(ci, NULL, mask);
840 spin_unlock(&ci->i_ceph_lock);
841 dout("ceph_caps_revoking %p %s = %d\n", inode,
842 ceph_cap_string(mask), ret);
843 return ret;
844 }
845
846 int __ceph_caps_used(struct ceph_inode_info *ci)
847 {
848 int used = 0;
849 if (ci->i_pin_ref)
850 used |= CEPH_CAP_PIN;
851 if (ci->i_rd_ref)
852 used |= CEPH_CAP_FILE_RD;
853 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
854 used |= CEPH_CAP_FILE_CACHE;
855 if (ci->i_wr_ref)
856 used |= CEPH_CAP_FILE_WR;
857 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
858 used |= CEPH_CAP_FILE_BUFFER;
859 return used;
860 }
861
862 /*
863 * wanted, by virtue of open file modes
864 */
865 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
866 {
867 int want = 0;
868 int mode;
869 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
870 if (ci->i_nr_by_mode[mode])
871 want |= ceph_caps_for_mode(mode);
872 return want;
873 }
874
875 /*
876 * Return caps we have registered with the MDS(s) as 'wanted'.
877 */
878 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
879 {
880 struct ceph_cap *cap;
881 struct rb_node *p;
882 int mds_wanted = 0;
883
884 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
885 cap = rb_entry(p, struct ceph_cap, ci_node);
886 if (!__cap_is_valid(cap))
887 continue;
888 mds_wanted |= cap->mds_wanted;
889 }
890 return mds_wanted;
891 }
892
893 /*
894 * called under i_ceph_lock
895 */
896 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
897 {
898 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_issued;
899 }
900
901 int ceph_is_any_caps(struct inode *inode)
902 {
903 struct ceph_inode_info *ci = ceph_inode(inode);
904 int ret;
905
906 spin_lock(&ci->i_ceph_lock);
907 ret = __ceph_is_any_caps(ci);
908 spin_unlock(&ci->i_ceph_lock);
909
910 return ret;
911 }
912
913 /*
914 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
915 *
916 * caller should hold i_ceph_lock.
917 * caller will not hold session s_mutex if called from destroy_inode.
918 */
919 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
920 {
921 struct ceph_mds_session *session = cap->session;
922 struct ceph_inode_info *ci = cap->ci;
923 struct ceph_mds_client *mdsc =
924 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
925 int removed = 0;
926
927 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
928
929 /* remove from session list */
930 spin_lock(&session->s_cap_lock);
931 /*
932 * s_cap_reconnect is protected by s_cap_lock. no one changes
933 * s_cap_gen while session is in the reconnect state.
934 */
935 if (queue_release &&
936 (!session->s_cap_reconnect ||
937 cap->cap_gen == session->s_cap_gen))
938 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
939 cap->mseq, cap->issue_seq);
940
941 if (session->s_cap_iterator == cap) {
942 /* not yet, we are iterating over this very cap */
943 dout("__ceph_remove_cap delaying %p removal from session %p\n",
944 cap, cap->session);
945 } else {
946 list_del_init(&cap->session_caps);
947 session->s_nr_caps--;
948 cap->session = NULL;
949 removed = 1;
950 }
951 /* protect backpointer with s_cap_lock: see iterate_session_caps */
952 cap->ci = NULL;
953 spin_unlock(&session->s_cap_lock);
954
955 /* remove from inode list */
956 rb_erase(&cap->ci_node, &ci->i_caps);
957 if (ci->i_auth_cap == cap)
958 ci->i_auth_cap = NULL;
959
960 if (removed)
961 ceph_put_cap(mdsc, cap);
962
963 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
964 struct ceph_snap_realm *realm = ci->i_snap_realm;
965 spin_lock(&realm->inodes_with_caps_lock);
966 list_del_init(&ci->i_snap_realm_item);
967 ci->i_snap_realm_counter++;
968 ci->i_snap_realm = NULL;
969 spin_unlock(&realm->inodes_with_caps_lock);
970 ceph_put_snap_realm(mdsc, realm);
971 }
972 if (!__ceph_is_any_real_caps(ci))
973 __cap_delay_cancel(mdsc, ci);
974 }
975
976 /*
977 * Build and send a cap message to the given MDS.
978 *
979 * Caller should be holding s_mutex.
980 */
981 static int send_cap_msg(struct ceph_mds_session *session,
982 u64 ino, u64 cid, int op,
983 int caps, int wanted, int dirty,
984 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
985 u64 size, u64 max_size,
986 struct timespec *mtime, struct timespec *atime,
987 u64 time_warp_seq,
988 kuid_t uid, kgid_t gid, umode_t mode,
989 u64 xattr_version,
990 struct ceph_buffer *xattrs_buf,
991 u64 follows)
992 {
993 struct ceph_mds_caps *fc;
994 struct ceph_msg *msg;
995
996 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
997 " seq %u/%u mseq %u follows %lld size %llu/%llu"
998 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
999 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
1000 ceph_cap_string(dirty),
1001 seq, issue_seq, mseq, follows, size, max_size,
1002 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
1003
1004 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
1005 if (!msg)
1006 return -ENOMEM;
1007
1008 msg->hdr.tid = cpu_to_le64(flush_tid);
1009
1010 fc = msg->front.iov_base;
1011 memset(fc, 0, sizeof(*fc));
1012
1013 fc->cap_id = cpu_to_le64(cid);
1014 fc->op = cpu_to_le32(op);
1015 fc->seq = cpu_to_le32(seq);
1016 fc->issue_seq = cpu_to_le32(issue_seq);
1017 fc->migrate_seq = cpu_to_le32(mseq);
1018 fc->caps = cpu_to_le32(caps);
1019 fc->wanted = cpu_to_le32(wanted);
1020 fc->dirty = cpu_to_le32(dirty);
1021 fc->ino = cpu_to_le64(ino);
1022 fc->snap_follows = cpu_to_le64(follows);
1023
1024 fc->size = cpu_to_le64(size);
1025 fc->max_size = cpu_to_le64(max_size);
1026 if (mtime)
1027 ceph_encode_timespec(&fc->mtime, mtime);
1028 if (atime)
1029 ceph_encode_timespec(&fc->atime, atime);
1030 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1031
1032 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1033 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1034 fc->mode = cpu_to_le32(mode);
1035
1036 fc->xattr_version = cpu_to_le64(xattr_version);
1037 if (xattrs_buf) {
1038 msg->middle = ceph_buffer_get(xattrs_buf);
1039 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1040 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1041 }
1042
1043 ceph_con_send(&session->s_con, msg);
1044 return 0;
1045 }
1046
1047 void __queue_cap_release(struct ceph_mds_session *session,
1048 u64 ino, u64 cap_id, u32 migrate_seq,
1049 u32 issue_seq)
1050 {
1051 struct ceph_msg *msg;
1052 struct ceph_mds_cap_release *head;
1053 struct ceph_mds_cap_item *item;
1054
1055 BUG_ON(!session->s_num_cap_releases);
1056 msg = list_first_entry(&session->s_cap_releases,
1057 struct ceph_msg, list_head);
1058
1059 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1060 ino, session->s_mds, msg, session->s_num_cap_releases);
1061
1062 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1063 head = msg->front.iov_base;
1064 le32_add_cpu(&head->num, 1);
1065 item = msg->front.iov_base + msg->front.iov_len;
1066 item->ino = cpu_to_le64(ino);
1067 item->cap_id = cpu_to_le64(cap_id);
1068 item->migrate_seq = cpu_to_le32(migrate_seq);
1069 item->seq = cpu_to_le32(issue_seq);
1070
1071 session->s_num_cap_releases--;
1072
1073 msg->front.iov_len += sizeof(*item);
1074 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1075 dout(" release msg %p full\n", msg);
1076 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1077 } else {
1078 dout(" release msg %p at %d/%d (%d)\n", msg,
1079 (int)le32_to_cpu(head->num),
1080 (int)CEPH_CAPS_PER_RELEASE,
1081 (int)msg->front.iov_len);
1082 }
1083 }
1084
1085 /*
1086 * Queue cap releases when an inode is dropped from our cache. Since
1087 * inode is about to be destroyed, there is no need for i_ceph_lock.
1088 */
1089 void ceph_queue_caps_release(struct inode *inode)
1090 {
1091 struct ceph_inode_info *ci = ceph_inode(inode);
1092 struct rb_node *p;
1093
1094 p = rb_first(&ci->i_caps);
1095 while (p) {
1096 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1097 p = rb_next(p);
1098 __ceph_remove_cap(cap, true);
1099 }
1100 }
1101
1102 /*
1103 * Send a cap msg on the given inode. Update our caps state, then
1104 * drop i_ceph_lock and send the message.
1105 *
1106 * Make note of max_size reported/requested from mds, revoked caps
1107 * that have now been implemented.
1108 *
1109 * Make half-hearted attempt ot to invalidate page cache if we are
1110 * dropping RDCACHE. Note that this will leave behind locked pages
1111 * that we'll then need to deal with elsewhere.
1112 *
1113 * Return non-zero if delayed release, or we experienced an error
1114 * such that the caller should requeue + retry later.
1115 *
1116 * called with i_ceph_lock, then drops it.
1117 * caller should hold snap_rwsem (read), s_mutex.
1118 */
1119 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1120 int op, int used, int want, int retain, int flushing,
1121 unsigned *pflush_tid)
1122 __releases(cap->ci->i_ceph_lock)
1123 {
1124 struct ceph_inode_info *ci = cap->ci;
1125 struct inode *inode = &ci->vfs_inode;
1126 u64 cap_id = cap->cap_id;
1127 int held, revoking, dropping, keep;
1128 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1129 u64 size, max_size;
1130 struct timespec mtime, atime;
1131 int wake = 0;
1132 umode_t mode;
1133 kuid_t uid;
1134 kgid_t gid;
1135 struct ceph_mds_session *session;
1136 u64 xattr_version = 0;
1137 struct ceph_buffer *xattr_blob = NULL;
1138 int delayed = 0;
1139 u64 flush_tid = 0;
1140 int i;
1141 int ret;
1142
1143 held = cap->issued | cap->implemented;
1144 revoking = cap->implemented & ~cap->issued;
1145 retain &= ~revoking;
1146 dropping = cap->issued & ~retain;
1147
1148 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1149 inode, cap, cap->session,
1150 ceph_cap_string(held), ceph_cap_string(held & retain),
1151 ceph_cap_string(revoking));
1152 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1153
1154 session = cap->session;
1155
1156 /* don't release wanted unless we've waited a bit. */
1157 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1158 time_before(jiffies, ci->i_hold_caps_min)) {
1159 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1160 ceph_cap_string(cap->issued),
1161 ceph_cap_string(cap->issued & retain),
1162 ceph_cap_string(cap->mds_wanted),
1163 ceph_cap_string(want));
1164 want |= cap->mds_wanted;
1165 retain |= cap->issued;
1166 delayed = 1;
1167 }
1168 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1169
1170 cap->issued &= retain; /* drop bits we don't want */
1171 if (cap->implemented & ~cap->issued) {
1172 /*
1173 * Wake up any waiters on wanted -> needed transition.
1174 * This is due to the weird transition from buffered
1175 * to sync IO... we need to flush dirty pages _before_
1176 * allowing sync writes to avoid reordering.
1177 */
1178 wake = 1;
1179 }
1180 cap->implemented &= cap->issued | used;
1181 cap->mds_wanted = want;
1182
1183 if (flushing) {
1184 /*
1185 * assign a tid for flush operations so we can avoid
1186 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1187 * clean type races. track latest tid for every bit
1188 * so we can handle flush AxFw, flush Fw, and have the
1189 * first ack clean Ax.
1190 */
1191 flush_tid = ++ci->i_cap_flush_last_tid;
1192 if (pflush_tid)
1193 *pflush_tid = flush_tid;
1194 dout(" cap_flush_tid %d\n", (int)flush_tid);
1195 for (i = 0; i < CEPH_CAP_BITS; i++)
1196 if (flushing & (1 << i))
1197 ci->i_cap_flush_tid[i] = flush_tid;
1198
1199 follows = ci->i_head_snapc->seq;
1200 } else {
1201 follows = 0;
1202 }
1203
1204 keep = cap->implemented;
1205 seq = cap->seq;
1206 issue_seq = cap->issue_seq;
1207 mseq = cap->mseq;
1208 size = inode->i_size;
1209 ci->i_reported_size = size;
1210 max_size = ci->i_wanted_max_size;
1211 ci->i_requested_max_size = max_size;
1212 mtime = inode->i_mtime;
1213 atime = inode->i_atime;
1214 time_warp_seq = ci->i_time_warp_seq;
1215 uid = inode->i_uid;
1216 gid = inode->i_gid;
1217 mode = inode->i_mode;
1218
1219 if (flushing & CEPH_CAP_XATTR_EXCL) {
1220 __ceph_build_xattrs_blob(ci);
1221 xattr_blob = ci->i_xattrs.blob;
1222 xattr_version = ci->i_xattrs.version;
1223 }
1224
1225 spin_unlock(&ci->i_ceph_lock);
1226
1227 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1228 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1229 size, max_size, &mtime, &atime, time_warp_seq,
1230 uid, gid, mode, xattr_version, xattr_blob,
1231 follows);
1232 if (ret < 0) {
1233 dout("error sending cap msg, must requeue %p\n", inode);
1234 delayed = 1;
1235 }
1236
1237 if (wake)
1238 wake_up_all(&ci->i_cap_wq);
1239
1240 return delayed;
1241 }
1242
1243 /*
1244 * When a snapshot is taken, clients accumulate dirty metadata on
1245 * inodes with capabilities in ceph_cap_snaps to describe the file
1246 * state at the time the snapshot was taken. This must be flushed
1247 * asynchronously back to the MDS once sync writes complete and dirty
1248 * data is written out.
1249 *
1250 * Unless @again is true, skip cap_snaps that were already sent to
1251 * the MDS (i.e., during this session).
1252 *
1253 * Called under i_ceph_lock. Takes s_mutex as needed.
1254 */
1255 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1256 struct ceph_mds_session **psession,
1257 int again)
1258 __releases(ci->i_ceph_lock)
1259 __acquires(ci->i_ceph_lock)
1260 {
1261 struct inode *inode = &ci->vfs_inode;
1262 int mds;
1263 struct ceph_cap_snap *capsnap;
1264 u32 mseq;
1265 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1266 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1267 session->s_mutex */
1268 u64 next_follows = 0; /* keep track of how far we've gotten through the
1269 i_cap_snaps list, and skip these entries next time
1270 around to avoid an infinite loop */
1271
1272 if (psession)
1273 session = *psession;
1274
1275 dout("__flush_snaps %p\n", inode);
1276 retry:
1277 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1278 /* avoid an infiniute loop after retry */
1279 if (capsnap->follows < next_follows)
1280 continue;
1281 /*
1282 * we need to wait for sync writes to complete and for dirty
1283 * pages to be written out.
1284 */
1285 if (capsnap->dirty_pages || capsnap->writing)
1286 break;
1287
1288 /*
1289 * if cap writeback already occurred, we should have dropped
1290 * the capsnap in ceph_put_wrbuffer_cap_refs.
1291 */
1292 BUG_ON(capsnap->dirty == 0);
1293
1294 /* pick mds, take s_mutex */
1295 if (ci->i_auth_cap == NULL) {
1296 dout("no auth cap (migrating?), doing nothing\n");
1297 goto out;
1298 }
1299
1300 /* only flush each capsnap once */
1301 if (!again && !list_empty(&capsnap->flushing_item)) {
1302 dout("already flushed %p, skipping\n", capsnap);
1303 continue;
1304 }
1305
1306 mds = ci->i_auth_cap->session->s_mds;
1307 mseq = ci->i_auth_cap->mseq;
1308
1309 if (session && session->s_mds != mds) {
1310 dout("oops, wrong session %p mutex\n", session);
1311 mutex_unlock(&session->s_mutex);
1312 ceph_put_mds_session(session);
1313 session = NULL;
1314 }
1315 if (!session) {
1316 spin_unlock(&ci->i_ceph_lock);
1317 mutex_lock(&mdsc->mutex);
1318 session = __ceph_lookup_mds_session(mdsc, mds);
1319 mutex_unlock(&mdsc->mutex);
1320 if (session) {
1321 dout("inverting session/ino locks on %p\n",
1322 session);
1323 mutex_lock(&session->s_mutex);
1324 }
1325 /*
1326 * if session == NULL, we raced against a cap
1327 * deletion or migration. retry, and we'll
1328 * get a better @mds value next time.
1329 */
1330 spin_lock(&ci->i_ceph_lock);
1331 goto retry;
1332 }
1333
1334 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1335 atomic_inc(&capsnap->nref);
1336 if (!list_empty(&capsnap->flushing_item))
1337 list_del_init(&capsnap->flushing_item);
1338 list_add_tail(&capsnap->flushing_item,
1339 &session->s_cap_snaps_flushing);
1340 spin_unlock(&ci->i_ceph_lock);
1341
1342 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1343 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1344 send_cap_msg(session, ceph_vino(inode).ino, 0,
1345 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1346 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1347 capsnap->size, 0,
1348 &capsnap->mtime, &capsnap->atime,
1349 capsnap->time_warp_seq,
1350 capsnap->uid, capsnap->gid, capsnap->mode,
1351 capsnap->xattr_version, capsnap->xattr_blob,
1352 capsnap->follows);
1353
1354 next_follows = capsnap->follows + 1;
1355 ceph_put_cap_snap(capsnap);
1356
1357 spin_lock(&ci->i_ceph_lock);
1358 goto retry;
1359 }
1360
1361 /* we flushed them all; remove this inode from the queue */
1362 spin_lock(&mdsc->snap_flush_lock);
1363 list_del_init(&ci->i_snap_flush_item);
1364 spin_unlock(&mdsc->snap_flush_lock);
1365
1366 out:
1367 if (psession)
1368 *psession = session;
1369 else if (session) {
1370 mutex_unlock(&session->s_mutex);
1371 ceph_put_mds_session(session);
1372 }
1373 }
1374
1375 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1376 {
1377 spin_lock(&ci->i_ceph_lock);
1378 __ceph_flush_snaps(ci, NULL, 0);
1379 spin_unlock(&ci->i_ceph_lock);
1380 }
1381
1382 /*
1383 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1384 * Caller is then responsible for calling __mark_inode_dirty with the
1385 * returned flags value.
1386 */
1387 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1388 {
1389 struct ceph_mds_client *mdsc =
1390 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1391 struct inode *inode = &ci->vfs_inode;
1392 int was = ci->i_dirty_caps;
1393 int dirty = 0;
1394
1395 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1396 ceph_cap_string(mask), ceph_cap_string(was),
1397 ceph_cap_string(was | mask));
1398 ci->i_dirty_caps |= mask;
1399 if (was == 0) {
1400 if (!ci->i_head_snapc)
1401 ci->i_head_snapc = ceph_get_snap_context(
1402 ci->i_snap_realm->cached_context);
1403 dout(" inode %p now dirty snapc %p auth cap %p\n",
1404 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1405 WARN_ON(!ci->i_auth_cap);
1406 BUG_ON(!list_empty(&ci->i_dirty_item));
1407 spin_lock(&mdsc->cap_dirty_lock);
1408 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1409 spin_unlock(&mdsc->cap_dirty_lock);
1410 if (ci->i_flushing_caps == 0) {
1411 ihold(inode);
1412 dirty |= I_DIRTY_SYNC;
1413 }
1414 }
1415 BUG_ON(list_empty(&ci->i_dirty_item));
1416 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1417 (mask & CEPH_CAP_FILE_BUFFER))
1418 dirty |= I_DIRTY_DATASYNC;
1419 __cap_delay_requeue(mdsc, ci);
1420 return dirty;
1421 }
1422
1423 /*
1424 * Add dirty inode to the flushing list. Assigned a seq number so we
1425 * can wait for caps to flush without starving.
1426 *
1427 * Called under i_ceph_lock.
1428 */
1429 static int __mark_caps_flushing(struct inode *inode,
1430 struct ceph_mds_session *session)
1431 {
1432 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1433 struct ceph_inode_info *ci = ceph_inode(inode);
1434 int flushing;
1435
1436 BUG_ON(ci->i_dirty_caps == 0);
1437 BUG_ON(list_empty(&ci->i_dirty_item));
1438
1439 flushing = ci->i_dirty_caps;
1440 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1441 ceph_cap_string(flushing),
1442 ceph_cap_string(ci->i_flushing_caps),
1443 ceph_cap_string(ci->i_flushing_caps | flushing));
1444 ci->i_flushing_caps |= flushing;
1445 ci->i_dirty_caps = 0;
1446 dout(" inode %p now !dirty\n", inode);
1447
1448 spin_lock(&mdsc->cap_dirty_lock);
1449 list_del_init(&ci->i_dirty_item);
1450
1451 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1452 if (list_empty(&ci->i_flushing_item)) {
1453 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1454 mdsc->num_cap_flushing++;
1455 dout(" inode %p now flushing seq %lld\n", inode,
1456 ci->i_cap_flush_seq);
1457 } else {
1458 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1459 dout(" inode %p now flushing (more) seq %lld\n", inode,
1460 ci->i_cap_flush_seq);
1461 }
1462 spin_unlock(&mdsc->cap_dirty_lock);
1463
1464 return flushing;
1465 }
1466
1467 /*
1468 * try to invalidate mapping pages without blocking.
1469 */
1470 static int try_nonblocking_invalidate(struct inode *inode)
1471 {
1472 struct ceph_inode_info *ci = ceph_inode(inode);
1473 u32 invalidating_gen = ci->i_rdcache_gen;
1474
1475 spin_unlock(&ci->i_ceph_lock);
1476 invalidate_mapping_pages(&inode->i_data, 0, -1);
1477 spin_lock(&ci->i_ceph_lock);
1478
1479 if (inode->i_data.nrpages == 0 &&
1480 invalidating_gen == ci->i_rdcache_gen) {
1481 /* success. */
1482 dout("try_nonblocking_invalidate %p success\n", inode);
1483 /* save any racing async invalidate some trouble */
1484 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1485 return 0;
1486 }
1487 dout("try_nonblocking_invalidate %p failed\n", inode);
1488 return -1;
1489 }
1490
1491 /*
1492 * Swiss army knife function to examine currently used and wanted
1493 * versus held caps. Release, flush, ack revoked caps to mds as
1494 * appropriate.
1495 *
1496 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1497 * cap release further.
1498 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1499 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1500 * further delay.
1501 */
1502 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1503 struct ceph_mds_session *session)
1504 {
1505 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1506 struct ceph_mds_client *mdsc = fsc->mdsc;
1507 struct inode *inode = &ci->vfs_inode;
1508 struct ceph_cap *cap;
1509 int file_wanted, used, cap_used;
1510 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1511 int issued, implemented, want, retain, revoking, flushing = 0;
1512 int mds = -1; /* keep track of how far we've gone through i_caps list
1513 to avoid an infinite loop on retry */
1514 struct rb_node *p;
1515 int tried_invalidate = 0;
1516 int delayed = 0, sent = 0, force_requeue = 0, num;
1517 int queue_invalidate = 0;
1518 int is_delayed = flags & CHECK_CAPS_NODELAY;
1519
1520 /* if we are unmounting, flush any unused caps immediately. */
1521 if (mdsc->stopping)
1522 is_delayed = 1;
1523
1524 spin_lock(&ci->i_ceph_lock);
1525
1526 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1527 flags |= CHECK_CAPS_FLUSH;
1528
1529 /* flush snaps first time around only */
1530 if (!list_empty(&ci->i_cap_snaps))
1531 __ceph_flush_snaps(ci, &session, 0);
1532 goto retry_locked;
1533 retry:
1534 spin_lock(&ci->i_ceph_lock);
1535 retry_locked:
1536 file_wanted = __ceph_caps_file_wanted(ci);
1537 used = __ceph_caps_used(ci);
1538 want = file_wanted | used;
1539 issued = __ceph_caps_issued(ci, &implemented);
1540 revoking = implemented & ~issued;
1541
1542 retain = want | CEPH_CAP_PIN;
1543 if (!mdsc->stopping && inode->i_nlink > 0) {
1544 if (want) {
1545 retain |= CEPH_CAP_ANY; /* be greedy */
1546 } else {
1547 retain |= CEPH_CAP_ANY_SHARED;
1548 /*
1549 * keep RD only if we didn't have the file open RW,
1550 * because then the mds would revoke it anyway to
1551 * journal max_size=0.
1552 */
1553 if (ci->i_max_size == 0)
1554 retain |= CEPH_CAP_ANY_RD;
1555 }
1556 }
1557
1558 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1559 " issued %s revoking %s retain %s %s%s%s\n", inode,
1560 ceph_cap_string(file_wanted),
1561 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1562 ceph_cap_string(ci->i_flushing_caps),
1563 ceph_cap_string(issued), ceph_cap_string(revoking),
1564 ceph_cap_string(retain),
1565 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1566 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1567 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1568
1569 /*
1570 * If we no longer need to hold onto old our caps, and we may
1571 * have cached pages, but don't want them, then try to invalidate.
1572 * If we fail, it's because pages are locked.... try again later.
1573 */
1574 if ((!is_delayed || mdsc->stopping) &&
1575 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1576 inode->i_data.nrpages && /* have cached pages */
1577 (file_wanted == 0 || /* no open files */
1578 (revoking & (CEPH_CAP_FILE_CACHE|
1579 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1580 !tried_invalidate) {
1581 dout("check_caps trying to invalidate on %p\n", inode);
1582 if (try_nonblocking_invalidate(inode) < 0) {
1583 if (revoking & (CEPH_CAP_FILE_CACHE|
1584 CEPH_CAP_FILE_LAZYIO)) {
1585 dout("check_caps queuing invalidate\n");
1586 queue_invalidate = 1;
1587 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1588 } else {
1589 dout("check_caps failed to invalidate pages\n");
1590 /* we failed to invalidate pages. check these
1591 caps again later. */
1592 force_requeue = 1;
1593 __cap_set_timeouts(mdsc, ci);
1594 }
1595 }
1596 tried_invalidate = 1;
1597 goto retry_locked;
1598 }
1599
1600 num = 0;
1601 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1602 cap = rb_entry(p, struct ceph_cap, ci_node);
1603 num++;
1604
1605 /* avoid looping forever */
1606 if (mds >= cap->mds ||
1607 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1608 continue;
1609
1610 /* NOTE: no side-effects allowed, until we take s_mutex */
1611
1612 cap_used = used;
1613 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1614 cap_used &= ~ci->i_auth_cap->issued;
1615
1616 revoking = cap->implemented & ~cap->issued;
1617 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1618 cap->mds, cap, ceph_cap_string(cap->issued),
1619 ceph_cap_string(cap_used),
1620 ceph_cap_string(cap->implemented),
1621 ceph_cap_string(revoking));
1622
1623 if (cap == ci->i_auth_cap &&
1624 (cap->issued & CEPH_CAP_FILE_WR)) {
1625 /* request larger max_size from MDS? */
1626 if (ci->i_wanted_max_size > ci->i_max_size &&
1627 ci->i_wanted_max_size > ci->i_requested_max_size) {
1628 dout("requesting new max_size\n");
1629 goto ack;
1630 }
1631
1632 /* approaching file_max? */
1633 if ((inode->i_size << 1) >= ci->i_max_size &&
1634 (ci->i_reported_size << 1) < ci->i_max_size) {
1635 dout("i_size approaching max_size\n");
1636 goto ack;
1637 }
1638 }
1639 /* flush anything dirty? */
1640 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1641 ci->i_dirty_caps) {
1642 dout("flushing dirty caps\n");
1643 goto ack;
1644 }
1645
1646 /* completed revocation? going down and there are no caps? */
1647 if (revoking && (revoking & cap_used) == 0) {
1648 dout("completed revocation of %s\n",
1649 ceph_cap_string(cap->implemented & ~cap->issued));
1650 goto ack;
1651 }
1652
1653 /* want more caps from mds? */
1654 if (want & ~(cap->mds_wanted | cap->issued))
1655 goto ack;
1656
1657 /* things we might delay */
1658 if ((cap->issued & ~retain) == 0 &&
1659 cap->mds_wanted == want)
1660 continue; /* nope, all good */
1661
1662 if (is_delayed)
1663 goto ack;
1664
1665 /* delay? */
1666 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1667 time_before(jiffies, ci->i_hold_caps_max)) {
1668 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1669 ceph_cap_string(cap->issued),
1670 ceph_cap_string(cap->issued & retain),
1671 ceph_cap_string(cap->mds_wanted),
1672 ceph_cap_string(want));
1673 delayed++;
1674 continue;
1675 }
1676
1677 ack:
1678 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1679 dout(" skipping %p I_NOFLUSH set\n", inode);
1680 continue;
1681 }
1682
1683 if (session && session != cap->session) {
1684 dout("oops, wrong session %p mutex\n", session);
1685 mutex_unlock(&session->s_mutex);
1686 session = NULL;
1687 }
1688 if (!session) {
1689 session = cap->session;
1690 if (mutex_trylock(&session->s_mutex) == 0) {
1691 dout("inverting session/ino locks on %p\n",
1692 session);
1693 spin_unlock(&ci->i_ceph_lock);
1694 if (took_snap_rwsem) {
1695 up_read(&mdsc->snap_rwsem);
1696 took_snap_rwsem = 0;
1697 }
1698 mutex_lock(&session->s_mutex);
1699 goto retry;
1700 }
1701 }
1702 /* take snap_rwsem after session mutex */
1703 if (!took_snap_rwsem) {
1704 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1705 dout("inverting snap/in locks on %p\n",
1706 inode);
1707 spin_unlock(&ci->i_ceph_lock);
1708 down_read(&mdsc->snap_rwsem);
1709 took_snap_rwsem = 1;
1710 goto retry;
1711 }
1712 took_snap_rwsem = 1;
1713 }
1714
1715 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1716 flushing = __mark_caps_flushing(inode, session);
1717 else
1718 flushing = 0;
1719
1720 mds = cap->mds; /* remember mds, so we don't repeat */
1721 sent++;
1722
1723 /* __send_cap drops i_ceph_lock */
1724 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1725 want, retain, flushing, NULL);
1726 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1727 }
1728
1729 /*
1730 * Reschedule delayed caps release if we delayed anything,
1731 * otherwise cancel.
1732 */
1733 if (delayed && is_delayed)
1734 force_requeue = 1; /* __send_cap delayed release; requeue */
1735 if (!delayed && !is_delayed)
1736 __cap_delay_cancel(mdsc, ci);
1737 else if (!is_delayed || force_requeue)
1738 __cap_delay_requeue(mdsc, ci);
1739
1740 spin_unlock(&ci->i_ceph_lock);
1741
1742 if (queue_invalidate)
1743 ceph_queue_invalidate(inode);
1744
1745 if (session)
1746 mutex_unlock(&session->s_mutex);
1747 if (took_snap_rwsem)
1748 up_read(&mdsc->snap_rwsem);
1749 }
1750
1751 /*
1752 * Try to flush dirty caps back to the auth mds.
1753 */
1754 static int try_flush_caps(struct inode *inode, unsigned *flush_tid)
1755 {
1756 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1757 struct ceph_inode_info *ci = ceph_inode(inode);
1758 int flushing = 0;
1759 struct ceph_mds_session *session = NULL;
1760
1761 retry:
1762 spin_lock(&ci->i_ceph_lock);
1763 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1764 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1765 goto out;
1766 }
1767 if (ci->i_dirty_caps && ci->i_auth_cap) {
1768 struct ceph_cap *cap = ci->i_auth_cap;
1769 int used = __ceph_caps_used(ci);
1770 int want = __ceph_caps_wanted(ci);
1771 int delayed;
1772
1773 if (!session || session != cap->session) {
1774 spin_unlock(&ci->i_ceph_lock);
1775 if (session)
1776 mutex_unlock(&session->s_mutex);
1777 session = cap->session;
1778 mutex_lock(&session->s_mutex);
1779 goto retry;
1780 }
1781 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1782 goto out;
1783
1784 flushing = __mark_caps_flushing(inode, session);
1785
1786 /* __send_cap drops i_ceph_lock */
1787 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1788 cap->issued | cap->implemented, flushing,
1789 flush_tid);
1790 if (!delayed)
1791 goto out_unlocked;
1792
1793 spin_lock(&ci->i_ceph_lock);
1794 __cap_delay_requeue(mdsc, ci);
1795 }
1796 out:
1797 spin_unlock(&ci->i_ceph_lock);
1798 out_unlocked:
1799 if (session)
1800 mutex_unlock(&session->s_mutex);
1801 return flushing;
1802 }
1803
1804 /*
1805 * Return true if we've flushed caps through the given flush_tid.
1806 */
1807 static int caps_are_flushed(struct inode *inode, unsigned tid)
1808 {
1809 struct ceph_inode_info *ci = ceph_inode(inode);
1810 int i, ret = 1;
1811
1812 spin_lock(&ci->i_ceph_lock);
1813 for (i = 0; i < CEPH_CAP_BITS; i++)
1814 if ((ci->i_flushing_caps & (1 << i)) &&
1815 ci->i_cap_flush_tid[i] <= tid) {
1816 /* still flushing this bit */
1817 ret = 0;
1818 break;
1819 }
1820 spin_unlock(&ci->i_ceph_lock);
1821 return ret;
1822 }
1823
1824 /*
1825 * Wait on any unsafe replies for the given inode. First wait on the
1826 * newest request, and make that the upper bound. Then, if there are
1827 * more requests, keep waiting on the oldest as long as it is still older
1828 * than the original request.
1829 */
1830 static void sync_write_wait(struct inode *inode)
1831 {
1832 struct ceph_inode_info *ci = ceph_inode(inode);
1833 struct list_head *head = &ci->i_unsafe_writes;
1834 struct ceph_osd_request *req;
1835 u64 last_tid;
1836
1837 spin_lock(&ci->i_unsafe_lock);
1838 if (list_empty(head))
1839 goto out;
1840
1841 /* set upper bound as _last_ entry in chain */
1842 req = list_entry(head->prev, struct ceph_osd_request,
1843 r_unsafe_item);
1844 last_tid = req->r_tid;
1845
1846 do {
1847 ceph_osdc_get_request(req);
1848 spin_unlock(&ci->i_unsafe_lock);
1849 dout("sync_write_wait on tid %llu (until %llu)\n",
1850 req->r_tid, last_tid);
1851 wait_for_completion(&req->r_safe_completion);
1852 spin_lock(&ci->i_unsafe_lock);
1853 ceph_osdc_put_request(req);
1854
1855 /*
1856 * from here on look at first entry in chain, since we
1857 * only want to wait for anything older than last_tid
1858 */
1859 if (list_empty(head))
1860 break;
1861 req = list_entry(head->next, struct ceph_osd_request,
1862 r_unsafe_item);
1863 } while (req->r_tid < last_tid);
1864 out:
1865 spin_unlock(&ci->i_unsafe_lock);
1866 }
1867
1868 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1869 {
1870 struct inode *inode = file->f_mapping->host;
1871 struct ceph_inode_info *ci = ceph_inode(inode);
1872 unsigned flush_tid;
1873 int ret;
1874 int dirty;
1875
1876 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1877 sync_write_wait(inode);
1878
1879 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1880 if (ret < 0)
1881 return ret;
1882 mutex_lock(&inode->i_mutex);
1883
1884 dirty = try_flush_caps(inode, &flush_tid);
1885 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1886
1887 /*
1888 * only wait on non-file metadata writeback (the mds
1889 * can recover size and mtime, so we don't need to
1890 * wait for that)
1891 */
1892 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1893 dout("fsync waiting for flush_tid %u\n", flush_tid);
1894 ret = wait_event_interruptible(ci->i_cap_wq,
1895 caps_are_flushed(inode, flush_tid));
1896 }
1897
1898 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1899 mutex_unlock(&inode->i_mutex);
1900 return ret;
1901 }
1902
1903 /*
1904 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1905 * queue inode for flush but don't do so immediately, because we can
1906 * get by with fewer MDS messages if we wait for data writeback to
1907 * complete first.
1908 */
1909 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1910 {
1911 struct ceph_inode_info *ci = ceph_inode(inode);
1912 unsigned flush_tid;
1913 int err = 0;
1914 int dirty;
1915 int wait = wbc->sync_mode == WB_SYNC_ALL;
1916
1917 dout("write_inode %p wait=%d\n", inode, wait);
1918 if (wait) {
1919 dirty = try_flush_caps(inode, &flush_tid);
1920 if (dirty)
1921 err = wait_event_interruptible(ci->i_cap_wq,
1922 caps_are_flushed(inode, flush_tid));
1923 } else {
1924 struct ceph_mds_client *mdsc =
1925 ceph_sb_to_client(inode->i_sb)->mdsc;
1926
1927 spin_lock(&ci->i_ceph_lock);
1928 if (__ceph_caps_dirty(ci))
1929 __cap_delay_requeue_front(mdsc, ci);
1930 spin_unlock(&ci->i_ceph_lock);
1931 }
1932 return err;
1933 }
1934
1935 /*
1936 * After a recovering MDS goes active, we need to resend any caps
1937 * we were flushing.
1938 *
1939 * Caller holds session->s_mutex.
1940 */
1941 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1942 struct ceph_mds_session *session)
1943 {
1944 struct ceph_cap_snap *capsnap;
1945
1946 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1947 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1948 flushing_item) {
1949 struct ceph_inode_info *ci = capsnap->ci;
1950 struct inode *inode = &ci->vfs_inode;
1951 struct ceph_cap *cap;
1952
1953 spin_lock(&ci->i_ceph_lock);
1954 cap = ci->i_auth_cap;
1955 if (cap && cap->session == session) {
1956 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1957 cap, capsnap);
1958 __ceph_flush_snaps(ci, &session, 1);
1959 } else {
1960 pr_err("%p auth cap %p not mds%d ???\n", inode,
1961 cap, session->s_mds);
1962 }
1963 spin_unlock(&ci->i_ceph_lock);
1964 }
1965 }
1966
1967 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1968 struct ceph_mds_session *session)
1969 {
1970 struct ceph_inode_info *ci;
1971
1972 kick_flushing_capsnaps(mdsc, session);
1973
1974 dout("kick_flushing_caps mds%d\n", session->s_mds);
1975 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1976 struct inode *inode = &ci->vfs_inode;
1977 struct ceph_cap *cap;
1978 int delayed = 0;
1979
1980 spin_lock(&ci->i_ceph_lock);
1981 cap = ci->i_auth_cap;
1982 if (cap && cap->session == session) {
1983 dout("kick_flushing_caps %p cap %p %s\n", inode,
1984 cap, ceph_cap_string(ci->i_flushing_caps));
1985 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1986 __ceph_caps_used(ci),
1987 __ceph_caps_wanted(ci),
1988 cap->issued | cap->implemented,
1989 ci->i_flushing_caps, NULL);
1990 if (delayed) {
1991 spin_lock(&ci->i_ceph_lock);
1992 __cap_delay_requeue(mdsc, ci);
1993 spin_unlock(&ci->i_ceph_lock);
1994 }
1995 } else {
1996 pr_err("%p auth cap %p not mds%d ???\n", inode,
1997 cap, session->s_mds);
1998 spin_unlock(&ci->i_ceph_lock);
1999 }
2000 }
2001 }
2002
2003 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
2004 struct ceph_mds_session *session,
2005 struct inode *inode)
2006 {
2007 struct ceph_inode_info *ci = ceph_inode(inode);
2008 struct ceph_cap *cap;
2009 int delayed = 0;
2010
2011 spin_lock(&ci->i_ceph_lock);
2012 cap = ci->i_auth_cap;
2013 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
2014 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2015
2016 __ceph_flush_snaps(ci, &session, 1);
2017
2018 if (ci->i_flushing_caps) {
2019 spin_lock(&mdsc->cap_dirty_lock);
2020 list_move_tail(&ci->i_flushing_item,
2021 &cap->session->s_cap_flushing);
2022 spin_unlock(&mdsc->cap_dirty_lock);
2023
2024 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2025 __ceph_caps_used(ci),
2026 __ceph_caps_wanted(ci),
2027 cap->issued | cap->implemented,
2028 ci->i_flushing_caps, NULL);
2029 if (delayed) {
2030 spin_lock(&ci->i_ceph_lock);
2031 __cap_delay_requeue(mdsc, ci);
2032 spin_unlock(&ci->i_ceph_lock);
2033 }
2034 } else {
2035 spin_unlock(&ci->i_ceph_lock);
2036 }
2037 }
2038
2039
2040 /*
2041 * Take references to capabilities we hold, so that we don't release
2042 * them to the MDS prematurely.
2043 *
2044 * Protected by i_ceph_lock.
2045 */
2046 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2047 {
2048 if (got & CEPH_CAP_PIN)
2049 ci->i_pin_ref++;
2050 if (got & CEPH_CAP_FILE_RD)
2051 ci->i_rd_ref++;
2052 if (got & CEPH_CAP_FILE_CACHE)
2053 ci->i_rdcache_ref++;
2054 if (got & CEPH_CAP_FILE_WR)
2055 ci->i_wr_ref++;
2056 if (got & CEPH_CAP_FILE_BUFFER) {
2057 if (ci->i_wb_ref == 0)
2058 ihold(&ci->vfs_inode);
2059 ci->i_wb_ref++;
2060 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2061 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2062 }
2063 }
2064
2065 /*
2066 * Try to grab cap references. Specify those refs we @want, and the
2067 * minimal set we @need. Also include the larger offset we are writing
2068 * to (when applicable), and check against max_size here as well.
2069 * Note that caller is responsible for ensuring max_size increases are
2070 * requested from the MDS.
2071 */
2072 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2073 int *got, loff_t endoff, int *check_max, int *err)
2074 {
2075 struct inode *inode = &ci->vfs_inode;
2076 int ret = 0;
2077 int have, implemented;
2078 int file_wanted;
2079
2080 dout("get_cap_refs %p need %s want %s\n", inode,
2081 ceph_cap_string(need), ceph_cap_string(want));
2082 spin_lock(&ci->i_ceph_lock);
2083
2084 /* make sure file is actually open */
2085 file_wanted = __ceph_caps_file_wanted(ci);
2086 if ((file_wanted & need) == 0) {
2087 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2088 ceph_cap_string(need), ceph_cap_string(file_wanted));
2089 *err = -EBADF;
2090 ret = 1;
2091 goto out;
2092 }
2093
2094 /* finish pending truncate */
2095 while (ci->i_truncate_pending) {
2096 spin_unlock(&ci->i_ceph_lock);
2097 __ceph_do_pending_vmtruncate(inode);
2098 spin_lock(&ci->i_ceph_lock);
2099 }
2100
2101 have = __ceph_caps_issued(ci, &implemented);
2102
2103 if (have & need & CEPH_CAP_FILE_WR) {
2104 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2105 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2106 inode, endoff, ci->i_max_size);
2107 if (endoff > ci->i_requested_max_size) {
2108 *check_max = 1;
2109 ret = 1;
2110 }
2111 goto out;
2112 }
2113 /*
2114 * If a sync write is in progress, we must wait, so that we
2115 * can get a final snapshot value for size+mtime.
2116 */
2117 if (__ceph_have_pending_cap_snap(ci)) {
2118 dout("get_cap_refs %p cap_snap_pending\n", inode);
2119 goto out;
2120 }
2121 }
2122
2123 if ((have & need) == need) {
2124 /*
2125 * Look at (implemented & ~have & not) so that we keep waiting
2126 * on transition from wanted -> needed caps. This is needed
2127 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2128 * going before a prior buffered writeback happens.
2129 */
2130 int not = want & ~(have & need);
2131 int revoking = implemented & ~have;
2132 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2133 inode, ceph_cap_string(have), ceph_cap_string(not),
2134 ceph_cap_string(revoking));
2135 if ((revoking & not) == 0) {
2136 *got = need | (have & want);
2137 __take_cap_refs(ci, *got);
2138 ret = 1;
2139 }
2140 } else {
2141 dout("get_cap_refs %p have %s needed %s\n", inode,
2142 ceph_cap_string(have), ceph_cap_string(need));
2143 }
2144 out:
2145 spin_unlock(&ci->i_ceph_lock);
2146 dout("get_cap_refs %p ret %d got %s\n", inode,
2147 ret, ceph_cap_string(*got));
2148 return ret;
2149 }
2150
2151 /*
2152 * Check the offset we are writing up to against our current
2153 * max_size. If necessary, tell the MDS we want to write to
2154 * a larger offset.
2155 */
2156 static void check_max_size(struct inode *inode, loff_t endoff)
2157 {
2158 struct ceph_inode_info *ci = ceph_inode(inode);
2159 int check = 0;
2160
2161 /* do we need to explicitly request a larger max_size? */
2162 spin_lock(&ci->i_ceph_lock);
2163 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2164 dout("write %p at large endoff %llu, req max_size\n",
2165 inode, endoff);
2166 ci->i_wanted_max_size = endoff;
2167 }
2168 /* duplicate ceph_check_caps()'s logic */
2169 if (ci->i_auth_cap &&
2170 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2171 ci->i_wanted_max_size > ci->i_max_size &&
2172 ci->i_wanted_max_size > ci->i_requested_max_size)
2173 check = 1;
2174 spin_unlock(&ci->i_ceph_lock);
2175 if (check)
2176 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2177 }
2178
2179 /*
2180 * Wait for caps, and take cap references. If we can't get a WR cap
2181 * due to a small max_size, make sure we check_max_size (and possibly
2182 * ask the mds) so we don't get hung up indefinitely.
2183 */
2184 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2185 loff_t endoff)
2186 {
2187 int check_max, ret, err;
2188
2189 retry:
2190 if (endoff > 0)
2191 check_max_size(&ci->vfs_inode, endoff);
2192 check_max = 0;
2193 err = 0;
2194 ret = wait_event_interruptible(ci->i_cap_wq,
2195 try_get_cap_refs(ci, need, want,
2196 got, endoff,
2197 &check_max, &err));
2198 if (err)
2199 ret = err;
2200 if (check_max)
2201 goto retry;
2202 return ret;
2203 }
2204
2205 /*
2206 * Take cap refs. Caller must already know we hold at least one ref
2207 * on the caps in question or we don't know this is safe.
2208 */
2209 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2210 {
2211 spin_lock(&ci->i_ceph_lock);
2212 __take_cap_refs(ci, caps);
2213 spin_unlock(&ci->i_ceph_lock);
2214 }
2215
2216 /*
2217 * Release cap refs.
2218 *
2219 * If we released the last ref on any given cap, call ceph_check_caps
2220 * to release (or schedule a release).
2221 *
2222 * If we are releasing a WR cap (from a sync write), finalize any affected
2223 * cap_snap, and wake up any waiters.
2224 */
2225 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2226 {
2227 struct inode *inode = &ci->vfs_inode;
2228 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2229 struct ceph_cap_snap *capsnap;
2230
2231 spin_lock(&ci->i_ceph_lock);
2232 if (had & CEPH_CAP_PIN)
2233 --ci->i_pin_ref;
2234 if (had & CEPH_CAP_FILE_RD)
2235 if (--ci->i_rd_ref == 0)
2236 last++;
2237 if (had & CEPH_CAP_FILE_CACHE)
2238 if (--ci->i_rdcache_ref == 0)
2239 last++;
2240 if (had & CEPH_CAP_FILE_BUFFER) {
2241 if (--ci->i_wb_ref == 0) {
2242 last++;
2243 put++;
2244 }
2245 dout("put_cap_refs %p wb %d -> %d (?)\n",
2246 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2247 }
2248 if (had & CEPH_CAP_FILE_WR)
2249 if (--ci->i_wr_ref == 0) {
2250 last++;
2251 if (!list_empty(&ci->i_cap_snaps)) {
2252 capsnap = list_first_entry(&ci->i_cap_snaps,
2253 struct ceph_cap_snap,
2254 ci_item);
2255 if (capsnap->writing) {
2256 capsnap->writing = 0;
2257 flushsnaps =
2258 __ceph_finish_cap_snap(ci,
2259 capsnap);
2260 wake = 1;
2261 }
2262 }
2263 }
2264 spin_unlock(&ci->i_ceph_lock);
2265
2266 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2267 last ? " last" : "", put ? " put" : "");
2268
2269 if (last && !flushsnaps)
2270 ceph_check_caps(ci, 0, NULL);
2271 else if (flushsnaps)
2272 ceph_flush_snaps(ci);
2273 if (wake)
2274 wake_up_all(&ci->i_cap_wq);
2275 if (put)
2276 iput(inode);
2277 }
2278
2279 /*
2280 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2281 * context. Adjust per-snap dirty page accounting as appropriate.
2282 * Once all dirty data for a cap_snap is flushed, flush snapped file
2283 * metadata back to the MDS. If we dropped the last ref, call
2284 * ceph_check_caps.
2285 */
2286 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2287 struct ceph_snap_context *snapc)
2288 {
2289 struct inode *inode = &ci->vfs_inode;
2290 int last = 0;
2291 int complete_capsnap = 0;
2292 int drop_capsnap = 0;
2293 int found = 0;
2294 struct ceph_cap_snap *capsnap = NULL;
2295
2296 spin_lock(&ci->i_ceph_lock);
2297 ci->i_wrbuffer_ref -= nr;
2298 last = !ci->i_wrbuffer_ref;
2299
2300 if (ci->i_head_snapc == snapc) {
2301 ci->i_wrbuffer_ref_head -= nr;
2302 if (ci->i_wrbuffer_ref_head == 0 &&
2303 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2304 BUG_ON(!ci->i_head_snapc);
2305 ceph_put_snap_context(ci->i_head_snapc);
2306 ci->i_head_snapc = NULL;
2307 }
2308 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2309 inode,
2310 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2311 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2312 last ? " LAST" : "");
2313 } else {
2314 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2315 if (capsnap->context == snapc) {
2316 found = 1;
2317 break;
2318 }
2319 }
2320 BUG_ON(!found);
2321 capsnap->dirty_pages -= nr;
2322 if (capsnap->dirty_pages == 0) {
2323 complete_capsnap = 1;
2324 if (capsnap->dirty == 0)
2325 /* cap writeback completed before we created
2326 * the cap_snap; no FLUSHSNAP is needed */
2327 drop_capsnap = 1;
2328 }
2329 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2330 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2331 inode, capsnap, capsnap->context->seq,
2332 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2333 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2334 last ? " (wrbuffer last)" : "",
2335 complete_capsnap ? " (complete capsnap)" : "",
2336 drop_capsnap ? " (drop capsnap)" : "");
2337 if (drop_capsnap) {
2338 ceph_put_snap_context(capsnap->context);
2339 list_del(&capsnap->ci_item);
2340 list_del(&capsnap->flushing_item);
2341 ceph_put_cap_snap(capsnap);
2342 }
2343 }
2344
2345 spin_unlock(&ci->i_ceph_lock);
2346
2347 if (last) {
2348 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2349 iput(inode);
2350 } else if (complete_capsnap) {
2351 ceph_flush_snaps(ci);
2352 wake_up_all(&ci->i_cap_wq);
2353 }
2354 if (drop_capsnap)
2355 iput(inode);
2356 }
2357
2358 /*
2359 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2360 */
2361 static void invalidate_aliases(struct inode *inode)
2362 {
2363 struct dentry *dn, *prev = NULL;
2364
2365 dout("invalidate_aliases inode %p\n", inode);
2366 d_prune_aliases(inode);
2367 /*
2368 * For non-directory inode, d_find_alias() only returns
2369 * hashed dentry. After calling d_invalidate(), the
2370 * dentry becomes unhashed.
2371 *
2372 * For directory inode, d_find_alias() can return
2373 * unhashed dentry. But directory inode should have
2374 * one alias at most.
2375 */
2376 while ((dn = d_find_alias(inode))) {
2377 if (dn == prev) {
2378 dput(dn);
2379 break;
2380 }
2381 d_invalidate(dn);
2382 if (prev)
2383 dput(prev);
2384 prev = dn;
2385 }
2386 if (prev)
2387 dput(prev);
2388 }
2389
2390 /*
2391 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2392 * actually be a revocation if it specifies a smaller cap set.)
2393 *
2394 * caller holds s_mutex and i_ceph_lock, we drop both.
2395 *
2396 * return value:
2397 * 0 - ok
2398 * 1 - check_caps on auth cap only (writeback)
2399 * 2 - check_caps (ack revoke)
2400 */
2401 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2402 struct ceph_mds_session *session,
2403 struct ceph_cap *cap,
2404 struct ceph_buffer *xattr_buf)
2405 __releases(ci->i_ceph_lock)
2406 {
2407 struct ceph_inode_info *ci = ceph_inode(inode);
2408 int mds = session->s_mds;
2409 int seq = le32_to_cpu(grant->seq);
2410 int newcaps = le32_to_cpu(grant->caps);
2411 int issued, implemented, used, wanted, dirty;
2412 u64 size = le64_to_cpu(grant->size);
2413 u64 max_size = le64_to_cpu(grant->max_size);
2414 struct timespec mtime, atime, ctime;
2415 int check_caps = 0;
2416 int wake = 0;
2417 int writeback = 0;
2418 int queue_invalidate = 0;
2419 int deleted_inode = 0;
2420 int queue_revalidate = 0;
2421
2422 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2423 inode, cap, mds, seq, ceph_cap_string(newcaps));
2424 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2425 inode->i_size);
2426
2427
2428 /*
2429 * auth mds of the inode changed. we received the cap export message,
2430 * but still haven't received the cap import message. handle_cap_export
2431 * updated the new auth MDS' cap.
2432 *
2433 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2434 * that was sent before the cap import message. So don't remove caps.
2435 */
2436 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2437 WARN_ON(cap != ci->i_auth_cap);
2438 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2439 seq = cap->seq;
2440 newcaps |= cap->issued;
2441 }
2442
2443 /*
2444 * If CACHE is being revoked, and we have no dirty buffers,
2445 * try to invalidate (once). (If there are dirty buffers, we
2446 * will invalidate _after_ writeback.)
2447 */
2448 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2449 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2450 !ci->i_wrbuffer_ref) {
2451 if (try_nonblocking_invalidate(inode)) {
2452 /* there were locked pages.. invalidate later
2453 in a separate thread. */
2454 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2455 queue_invalidate = 1;
2456 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2457 }
2458 }
2459
2460 ceph_fscache_invalidate(inode);
2461 }
2462
2463 /* side effects now are allowed */
2464
2465 issued = __ceph_caps_issued(ci, &implemented);
2466 issued |= implemented | __ceph_caps_dirty(ci);
2467
2468 cap->cap_gen = session->s_cap_gen;
2469 cap->seq = seq;
2470
2471 __check_cap_issue(ci, cap, newcaps);
2472
2473 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2474 inode->i_mode = le32_to_cpu(grant->mode);
2475 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2476 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2477 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2478 from_kuid(&init_user_ns, inode->i_uid),
2479 from_kgid(&init_user_ns, inode->i_gid));
2480 }
2481
2482 if ((issued & CEPH_CAP_LINK_EXCL) == 0) {
2483 set_nlink(inode, le32_to_cpu(grant->nlink));
2484 if (inode->i_nlink == 0 &&
2485 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2486 deleted_inode = 1;
2487 }
2488
2489 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2490 int len = le32_to_cpu(grant->xattr_len);
2491 u64 version = le64_to_cpu(grant->xattr_version);
2492
2493 if (version > ci->i_xattrs.version) {
2494 dout(" got new xattrs v%llu on %p len %d\n",
2495 version, inode, len);
2496 if (ci->i_xattrs.blob)
2497 ceph_buffer_put(ci->i_xattrs.blob);
2498 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2499 ci->i_xattrs.version = version;
2500 ceph_forget_all_cached_acls(inode);
2501 }
2502 }
2503
2504 /* Do we need to revalidate our fscache cookie. Don't bother on the
2505 * first cache cap as we already validate at cookie creation time. */
2506 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2507 queue_revalidate = 1;
2508
2509 /* size/ctime/mtime/atime? */
2510 ceph_fill_file_size(inode, issued,
2511 le32_to_cpu(grant->truncate_seq),
2512 le64_to_cpu(grant->truncate_size), size);
2513 ceph_decode_timespec(&mtime, &grant->mtime);
2514 ceph_decode_timespec(&atime, &grant->atime);
2515 ceph_decode_timespec(&ctime, &grant->ctime);
2516 ceph_fill_file_time(inode, issued,
2517 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2518 &atime);
2519
2520
2521 /* file layout may have changed */
2522 ci->i_layout = grant->layout;
2523
2524 /* max size increase? */
2525 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2526 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2527 ci->i_max_size = max_size;
2528 if (max_size >= ci->i_wanted_max_size) {
2529 ci->i_wanted_max_size = 0; /* reset */
2530 ci->i_requested_max_size = 0;
2531 }
2532 wake = 1;
2533 }
2534
2535 /* check cap bits */
2536 wanted = __ceph_caps_wanted(ci);
2537 used = __ceph_caps_used(ci);
2538 dirty = __ceph_caps_dirty(ci);
2539 dout(" my wanted = %s, used = %s, dirty %s\n",
2540 ceph_cap_string(wanted),
2541 ceph_cap_string(used),
2542 ceph_cap_string(dirty));
2543 if (wanted != le32_to_cpu(grant->wanted)) {
2544 dout("mds wanted %s -> %s\n",
2545 ceph_cap_string(le32_to_cpu(grant->wanted)),
2546 ceph_cap_string(wanted));
2547 /* imported cap may not have correct mds_wanted */
2548 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2549 check_caps = 1;
2550 }
2551
2552 /* revocation, grant, or no-op? */
2553 if (cap->issued & ~newcaps) {
2554 int revoking = cap->issued & ~newcaps;
2555
2556 dout("revocation: %s -> %s (revoking %s)\n",
2557 ceph_cap_string(cap->issued),
2558 ceph_cap_string(newcaps),
2559 ceph_cap_string(revoking));
2560 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2561 writeback = 1; /* initiate writeback; will delay ack */
2562 else if (revoking == CEPH_CAP_FILE_CACHE &&
2563 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2564 queue_invalidate)
2565 ; /* do nothing yet, invalidation will be queued */
2566 else if (cap == ci->i_auth_cap)
2567 check_caps = 1; /* check auth cap only */
2568 else
2569 check_caps = 2; /* check all caps */
2570 cap->issued = newcaps;
2571 cap->implemented |= newcaps;
2572 } else if (cap->issued == newcaps) {
2573 dout("caps unchanged: %s -> %s\n",
2574 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2575 } else {
2576 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2577 ceph_cap_string(newcaps));
2578 /* non-auth MDS is revoking the newly grant caps ? */
2579 if (cap == ci->i_auth_cap &&
2580 __ceph_caps_revoking_other(ci, cap, newcaps))
2581 check_caps = 2;
2582
2583 cap->issued = newcaps;
2584 cap->implemented |= newcaps; /* add bits only, to
2585 * avoid stepping on a
2586 * pending revocation */
2587 wake = 1;
2588 }
2589 BUG_ON(cap->issued & ~cap->implemented);
2590
2591 spin_unlock(&ci->i_ceph_lock);
2592
2593 if (writeback)
2594 /*
2595 * queue inode for writeback: we can't actually call
2596 * filemap_write_and_wait, etc. from message handler
2597 * context.
2598 */
2599 ceph_queue_writeback(inode);
2600 if (queue_invalidate)
2601 ceph_queue_invalidate(inode);
2602 if (deleted_inode)
2603 invalidate_aliases(inode);
2604 if (queue_revalidate)
2605 ceph_queue_revalidate(inode);
2606 if (wake)
2607 wake_up_all(&ci->i_cap_wq);
2608
2609 if (check_caps == 1)
2610 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2611 session);
2612 else if (check_caps == 2)
2613 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2614 else
2615 mutex_unlock(&session->s_mutex);
2616 }
2617
2618 /*
2619 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2620 * MDS has been safely committed.
2621 */
2622 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2623 struct ceph_mds_caps *m,
2624 struct ceph_mds_session *session,
2625 struct ceph_cap *cap)
2626 __releases(ci->i_ceph_lock)
2627 {
2628 struct ceph_inode_info *ci = ceph_inode(inode);
2629 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2630 unsigned seq = le32_to_cpu(m->seq);
2631 int dirty = le32_to_cpu(m->dirty);
2632 int cleaned = 0;
2633 int drop = 0;
2634 int i;
2635
2636 for (i = 0; i < CEPH_CAP_BITS; i++)
2637 if ((dirty & (1 << i)) &&
2638 flush_tid == ci->i_cap_flush_tid[i])
2639 cleaned |= 1 << i;
2640
2641 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2642 " flushing %s -> %s\n",
2643 inode, session->s_mds, seq, ceph_cap_string(dirty),
2644 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2645 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2646
2647 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2648 goto out;
2649
2650 ci->i_flushing_caps &= ~cleaned;
2651
2652 spin_lock(&mdsc->cap_dirty_lock);
2653 if (ci->i_flushing_caps == 0) {
2654 list_del_init(&ci->i_flushing_item);
2655 if (!list_empty(&session->s_cap_flushing))
2656 dout(" mds%d still flushing cap on %p\n",
2657 session->s_mds,
2658 &list_entry(session->s_cap_flushing.next,
2659 struct ceph_inode_info,
2660 i_flushing_item)->vfs_inode);
2661 mdsc->num_cap_flushing--;
2662 wake_up_all(&mdsc->cap_flushing_wq);
2663 dout(" inode %p now !flushing\n", inode);
2664
2665 if (ci->i_dirty_caps == 0) {
2666 dout(" inode %p now clean\n", inode);
2667 BUG_ON(!list_empty(&ci->i_dirty_item));
2668 drop = 1;
2669 if (ci->i_wrbuffer_ref_head == 0) {
2670 BUG_ON(!ci->i_head_snapc);
2671 ceph_put_snap_context(ci->i_head_snapc);
2672 ci->i_head_snapc = NULL;
2673 }
2674 } else {
2675 BUG_ON(list_empty(&ci->i_dirty_item));
2676 }
2677 }
2678 spin_unlock(&mdsc->cap_dirty_lock);
2679 wake_up_all(&ci->i_cap_wq);
2680
2681 out:
2682 spin_unlock(&ci->i_ceph_lock);
2683 if (drop)
2684 iput(inode);
2685 }
2686
2687 /*
2688 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2689 * throw away our cap_snap.
2690 *
2691 * Caller hold s_mutex.
2692 */
2693 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2694 struct ceph_mds_caps *m,
2695 struct ceph_mds_session *session)
2696 {
2697 struct ceph_inode_info *ci = ceph_inode(inode);
2698 u64 follows = le64_to_cpu(m->snap_follows);
2699 struct ceph_cap_snap *capsnap;
2700 int drop = 0;
2701
2702 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2703 inode, ci, session->s_mds, follows);
2704
2705 spin_lock(&ci->i_ceph_lock);
2706 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2707 if (capsnap->follows == follows) {
2708 if (capsnap->flush_tid != flush_tid) {
2709 dout(" cap_snap %p follows %lld tid %lld !="
2710 " %lld\n", capsnap, follows,
2711 flush_tid, capsnap->flush_tid);
2712 break;
2713 }
2714 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2715 dout(" removing %p cap_snap %p follows %lld\n",
2716 inode, capsnap, follows);
2717 ceph_put_snap_context(capsnap->context);
2718 list_del(&capsnap->ci_item);
2719 list_del(&capsnap->flushing_item);
2720 ceph_put_cap_snap(capsnap);
2721 drop = 1;
2722 break;
2723 } else {
2724 dout(" skipping cap_snap %p follows %lld\n",
2725 capsnap, capsnap->follows);
2726 }
2727 }
2728 spin_unlock(&ci->i_ceph_lock);
2729 if (drop)
2730 iput(inode);
2731 }
2732
2733 /*
2734 * Handle TRUNC from MDS, indicating file truncation.
2735 *
2736 * caller hold s_mutex.
2737 */
2738 static void handle_cap_trunc(struct inode *inode,
2739 struct ceph_mds_caps *trunc,
2740 struct ceph_mds_session *session)
2741 __releases(ci->i_ceph_lock)
2742 {
2743 struct ceph_inode_info *ci = ceph_inode(inode);
2744 int mds = session->s_mds;
2745 int seq = le32_to_cpu(trunc->seq);
2746 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2747 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2748 u64 size = le64_to_cpu(trunc->size);
2749 int implemented = 0;
2750 int dirty = __ceph_caps_dirty(ci);
2751 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2752 int queue_trunc = 0;
2753
2754 issued |= implemented | dirty;
2755
2756 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2757 inode, mds, seq, truncate_size, truncate_seq);
2758 queue_trunc = ceph_fill_file_size(inode, issued,
2759 truncate_seq, truncate_size, size);
2760 spin_unlock(&ci->i_ceph_lock);
2761
2762 if (queue_trunc) {
2763 ceph_queue_vmtruncate(inode);
2764 ceph_fscache_invalidate(inode);
2765 }
2766 }
2767
2768 /*
2769 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2770 * different one. If we are the most recent migration we've seen (as
2771 * indicated by mseq), make note of the migrating cap bits for the
2772 * duration (until we see the corresponding IMPORT).
2773 *
2774 * caller holds s_mutex
2775 */
2776 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2777 struct ceph_mds_cap_peer *ph,
2778 struct ceph_mds_session *session)
2779 {
2780 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2781 struct ceph_mds_session *tsession = NULL;
2782 struct ceph_cap *cap, *tcap;
2783 struct ceph_inode_info *ci = ceph_inode(inode);
2784 u64 t_cap_id;
2785 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2786 unsigned t_seq, t_mseq;
2787 int target, issued;
2788 int mds = session->s_mds;
2789
2790 if (ph) {
2791 t_cap_id = le64_to_cpu(ph->cap_id);
2792 t_seq = le32_to_cpu(ph->seq);
2793 t_mseq = le32_to_cpu(ph->mseq);
2794 target = le32_to_cpu(ph->mds);
2795 } else {
2796 t_cap_id = t_seq = t_mseq = 0;
2797 target = -1;
2798 }
2799
2800 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
2801 inode, ci, mds, mseq, target);
2802 retry:
2803 spin_lock(&ci->i_ceph_lock);
2804 cap = __get_cap_for_mds(ci, mds);
2805 if (!cap)
2806 goto out_unlock;
2807
2808 if (target < 0) {
2809 __ceph_remove_cap(cap, false);
2810 goto out_unlock;
2811 }
2812
2813 /*
2814 * now we know we haven't received the cap import message yet
2815 * because the exported cap still exist.
2816 */
2817
2818 issued = cap->issued;
2819 WARN_ON(issued != cap->implemented);
2820
2821 tcap = __get_cap_for_mds(ci, target);
2822 if (tcap) {
2823 /* already have caps from the target */
2824 if (tcap->cap_id != t_cap_id ||
2825 ceph_seq_cmp(tcap->seq, t_seq) < 0) {
2826 dout(" updating import cap %p mds%d\n", tcap, target);
2827 tcap->cap_id = t_cap_id;
2828 tcap->seq = t_seq - 1;
2829 tcap->issue_seq = t_seq - 1;
2830 tcap->mseq = t_mseq;
2831 tcap->issued |= issued;
2832 tcap->implemented |= issued;
2833 if (cap == ci->i_auth_cap)
2834 ci->i_auth_cap = tcap;
2835 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
2836 spin_lock(&mdsc->cap_dirty_lock);
2837 list_move_tail(&ci->i_flushing_item,
2838 &tcap->session->s_cap_flushing);
2839 spin_unlock(&mdsc->cap_dirty_lock);
2840 }
2841 }
2842 __ceph_remove_cap(cap, false);
2843 goto out_unlock;
2844 }
2845
2846 if (tsession) {
2847 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
2848 spin_unlock(&ci->i_ceph_lock);
2849 /* add placeholder for the export tagert */
2850 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
2851 t_seq - 1, t_mseq, (u64)-1, flag, NULL);
2852 goto retry;
2853 }
2854
2855 spin_unlock(&ci->i_ceph_lock);
2856 mutex_unlock(&session->s_mutex);
2857
2858 /* open target session */
2859 tsession = ceph_mdsc_open_export_target_session(mdsc, target);
2860 if (!IS_ERR(tsession)) {
2861 if (mds > target) {
2862 mutex_lock(&session->s_mutex);
2863 mutex_lock_nested(&tsession->s_mutex,
2864 SINGLE_DEPTH_NESTING);
2865 } else {
2866 mutex_lock(&tsession->s_mutex);
2867 mutex_lock_nested(&session->s_mutex,
2868 SINGLE_DEPTH_NESTING);
2869 }
2870 ceph_add_cap_releases(mdsc, tsession);
2871 } else {
2872 WARN_ON(1);
2873 tsession = NULL;
2874 target = -1;
2875 }
2876 goto retry;
2877
2878 out_unlock:
2879 spin_unlock(&ci->i_ceph_lock);
2880 mutex_unlock(&session->s_mutex);
2881 if (tsession) {
2882 mutex_unlock(&tsession->s_mutex);
2883 ceph_put_mds_session(tsession);
2884 }
2885 }
2886
2887 /*
2888 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2889 * clean them up.
2890 *
2891 * caller holds s_mutex.
2892 */
2893 static void handle_cap_import(struct ceph_mds_client *mdsc,
2894 struct inode *inode, struct ceph_mds_caps *im,
2895 struct ceph_mds_cap_peer *ph,
2896 struct ceph_mds_session *session,
2897 void *snaptrace, int snaptrace_len)
2898 {
2899 struct ceph_inode_info *ci = ceph_inode(inode);
2900 struct ceph_cap *cap;
2901 int mds = session->s_mds;
2902 unsigned issued = le32_to_cpu(im->caps);
2903 unsigned wanted = le32_to_cpu(im->wanted);
2904 unsigned seq = le32_to_cpu(im->seq);
2905 unsigned mseq = le32_to_cpu(im->migrate_seq);
2906 u64 realmino = le64_to_cpu(im->realm);
2907 u64 cap_id = le64_to_cpu(im->cap_id);
2908 u64 p_cap_id;
2909 int peer;
2910
2911 if (ph) {
2912 p_cap_id = le64_to_cpu(ph->cap_id);
2913 peer = le32_to_cpu(ph->mds);
2914 } else {
2915 p_cap_id = 0;
2916 peer = -1;
2917 }
2918
2919 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
2920 inode, ci, mds, mseq, peer);
2921
2922 spin_lock(&ci->i_ceph_lock);
2923 cap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
2924 if (cap && cap->cap_id == p_cap_id) {
2925 dout(" remove export cap %p mds%d flags %d\n",
2926 cap, peer, ph->flags);
2927 if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
2928 (cap->seq != le32_to_cpu(ph->seq) ||
2929 cap->mseq != le32_to_cpu(ph->mseq))) {
2930 pr_err("handle_cap_import: mismatched seq/mseq: "
2931 "ino (%llx.%llx) mds%d seq %d mseq %d "
2932 "importer mds%d has peer seq %d mseq %d\n",
2933 ceph_vinop(inode), peer, cap->seq,
2934 cap->mseq, mds, le32_to_cpu(ph->seq),
2935 le32_to_cpu(ph->mseq));
2936 }
2937 ci->i_cap_exporting_issued = cap->issued;
2938 __ceph_remove_cap(cap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
2939 }
2940
2941 /* make sure we re-request max_size, if necessary */
2942 ci->i_wanted_max_size = 0;
2943 ci->i_requested_max_size = 0;
2944 spin_unlock(&ci->i_ceph_lock);
2945
2946 down_write(&mdsc->snap_rwsem);
2947 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2948 false);
2949 downgrade_write(&mdsc->snap_rwsem);
2950 ceph_add_cap(inode, session, cap_id, -1,
2951 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2952 NULL /* no caps context */);
2953 kick_flushing_inode_caps(mdsc, session, inode);
2954 up_read(&mdsc->snap_rwsem);
2955
2956 }
2957
2958 /*
2959 * Handle a caps message from the MDS.
2960 *
2961 * Identify the appropriate session, inode, and call the right handler
2962 * based on the cap op.
2963 */
2964 void ceph_handle_caps(struct ceph_mds_session *session,
2965 struct ceph_msg *msg)
2966 {
2967 struct ceph_mds_client *mdsc = session->s_mdsc;
2968 struct super_block *sb = mdsc->fsc->sb;
2969 struct inode *inode;
2970 struct ceph_inode_info *ci;
2971 struct ceph_cap *cap;
2972 struct ceph_mds_caps *h;
2973 struct ceph_mds_cap_peer *peer = NULL;
2974 int mds = session->s_mds;
2975 int op;
2976 u32 seq, mseq;
2977 struct ceph_vino vino;
2978 u64 cap_id;
2979 u64 size, max_size;
2980 u64 tid;
2981 void *snaptrace;
2982 size_t snaptrace_len;
2983 void *flock;
2984 void *end;
2985 u32 flock_len;
2986
2987 dout("handle_caps from mds%d\n", mds);
2988
2989 /* decode */
2990 end = msg->front.iov_base + msg->front.iov_len;
2991 tid = le64_to_cpu(msg->hdr.tid);
2992 if (msg->front.iov_len < sizeof(*h))
2993 goto bad;
2994 h = msg->front.iov_base;
2995 op = le32_to_cpu(h->op);
2996 vino.ino = le64_to_cpu(h->ino);
2997 vino.snap = CEPH_NOSNAP;
2998 cap_id = le64_to_cpu(h->cap_id);
2999 seq = le32_to_cpu(h->seq);
3000 mseq = le32_to_cpu(h->migrate_seq);
3001 size = le64_to_cpu(h->size);
3002 max_size = le64_to_cpu(h->max_size);
3003
3004 snaptrace = h + 1;
3005 snaptrace_len = le32_to_cpu(h->snap_trace_len);
3006
3007 if (le16_to_cpu(msg->hdr.version) >= 2) {
3008 void *p = snaptrace + snaptrace_len;
3009 ceph_decode_32_safe(&p, end, flock_len, bad);
3010 if (p + flock_len > end)
3011 goto bad;
3012 flock = p;
3013 } else {
3014 flock = NULL;
3015 flock_len = 0;
3016 }
3017
3018 if (le16_to_cpu(msg->hdr.version) >= 3) {
3019 if (op == CEPH_CAP_OP_IMPORT) {
3020 void *p = flock + flock_len;
3021 if (p + sizeof(*peer) > end)
3022 goto bad;
3023 peer = p;
3024 } else if (op == CEPH_CAP_OP_EXPORT) {
3025 /* recorded in unused fields */
3026 peer = (void *)&h->size;
3027 }
3028 }
3029
3030 mutex_lock(&session->s_mutex);
3031 session->s_seq++;
3032 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3033 (unsigned)seq);
3034
3035 if (op == CEPH_CAP_OP_IMPORT)
3036 ceph_add_cap_releases(mdsc, session);
3037
3038 /* lookup ino */
3039 inode = ceph_find_inode(sb, vino);
3040 ci = ceph_inode(inode);
3041 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3042 vino.snap, inode);
3043 if (!inode) {
3044 dout(" i don't have ino %llx\n", vino.ino);
3045
3046 if (op == CEPH_CAP_OP_IMPORT) {
3047 spin_lock(&session->s_cap_lock);
3048 __queue_cap_release(session, vino.ino, cap_id,
3049 mseq, seq);
3050 spin_unlock(&session->s_cap_lock);
3051 }
3052 goto flush_cap_releases;
3053 }
3054
3055 /* these will work even if we don't have a cap yet */
3056 switch (op) {
3057 case CEPH_CAP_OP_FLUSHSNAP_ACK:
3058 handle_cap_flushsnap_ack(inode, tid, h, session);
3059 goto done;
3060
3061 case CEPH_CAP_OP_EXPORT:
3062 handle_cap_export(inode, h, peer, session);
3063 goto done_unlocked;
3064
3065 case CEPH_CAP_OP_IMPORT:
3066 handle_cap_import(mdsc, inode, h, peer, session,
3067 snaptrace, snaptrace_len);
3068 }
3069
3070 /* the rest require a cap */
3071 spin_lock(&ci->i_ceph_lock);
3072 cap = __get_cap_for_mds(ceph_inode(inode), mds);
3073 if (!cap) {
3074 dout(" no cap on %p ino %llx.%llx from mds%d\n",
3075 inode, ceph_ino(inode), ceph_snap(inode), mds);
3076 spin_unlock(&ci->i_ceph_lock);
3077 goto flush_cap_releases;
3078 }
3079
3080 /* note that each of these drops i_ceph_lock for us */
3081 switch (op) {
3082 case CEPH_CAP_OP_REVOKE:
3083 case CEPH_CAP_OP_GRANT:
3084 case CEPH_CAP_OP_IMPORT:
3085 handle_cap_grant(inode, h, session, cap, msg->middle);
3086 goto done_unlocked;
3087
3088 case CEPH_CAP_OP_FLUSH_ACK:
3089 handle_cap_flush_ack(inode, tid, h, session, cap);
3090 break;
3091
3092 case CEPH_CAP_OP_TRUNC:
3093 handle_cap_trunc(inode, h, session);
3094 break;
3095
3096 default:
3097 spin_unlock(&ci->i_ceph_lock);
3098 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3099 ceph_cap_op_name(op));
3100 }
3101
3102 goto done;
3103
3104 flush_cap_releases:
3105 /*
3106 * send any full release message to try to move things
3107 * along for the mds (who clearly thinks we still have this
3108 * cap).
3109 */
3110 ceph_add_cap_releases(mdsc, session);
3111 ceph_send_cap_releases(mdsc, session);
3112
3113 done:
3114 mutex_unlock(&session->s_mutex);
3115 done_unlocked:
3116 if (inode)
3117 iput(inode);
3118 return;
3119
3120 bad:
3121 pr_err("ceph_handle_caps: corrupt message\n");
3122 ceph_msg_dump(msg);
3123 return;
3124 }
3125
3126 /*
3127 * Delayed work handler to process end of delayed cap release LRU list.
3128 */
3129 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3130 {
3131 struct ceph_inode_info *ci;
3132 int flags = CHECK_CAPS_NODELAY;
3133
3134 dout("check_delayed_caps\n");
3135 while (1) {
3136 spin_lock(&mdsc->cap_delay_lock);
3137 if (list_empty(&mdsc->cap_delay_list))
3138 break;
3139 ci = list_first_entry(&mdsc->cap_delay_list,
3140 struct ceph_inode_info,
3141 i_cap_delay_list);
3142 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3143 time_before(jiffies, ci->i_hold_caps_max))
3144 break;
3145 list_del_init(&ci->i_cap_delay_list);
3146 spin_unlock(&mdsc->cap_delay_lock);
3147 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3148 ceph_check_caps(ci, flags, NULL);
3149 }
3150 spin_unlock(&mdsc->cap_delay_lock);
3151 }
3152
3153 /*
3154 * Flush all dirty caps to the mds
3155 */
3156 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3157 {
3158 struct ceph_inode_info *ci;
3159 struct inode *inode;
3160
3161 dout("flush_dirty_caps\n");
3162 spin_lock(&mdsc->cap_dirty_lock);
3163 while (!list_empty(&mdsc->cap_dirty)) {
3164 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3165 i_dirty_item);
3166 inode = &ci->vfs_inode;
3167 ihold(inode);
3168 dout("flush_dirty_caps %p\n", inode);
3169 spin_unlock(&mdsc->cap_dirty_lock);
3170 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3171 iput(inode);
3172 spin_lock(&mdsc->cap_dirty_lock);
3173 }
3174 spin_unlock(&mdsc->cap_dirty_lock);
3175 dout("flush_dirty_caps done\n");
3176 }
3177
3178 /*
3179 * Drop open file reference. If we were the last open file,
3180 * we may need to release capabilities to the MDS (or schedule
3181 * their delayed release).
3182 */
3183 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3184 {
3185 struct inode *inode = &ci->vfs_inode;
3186 int last = 0;
3187
3188 spin_lock(&ci->i_ceph_lock);
3189 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3190 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3191 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3192 if (--ci->i_nr_by_mode[fmode] == 0)
3193 last++;
3194 spin_unlock(&ci->i_ceph_lock);
3195
3196 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3197 ceph_check_caps(ci, 0, NULL);
3198 }
3199
3200 /*
3201 * Helpers for embedding cap and dentry lease releases into mds
3202 * requests.
3203 *
3204 * @force is used by dentry_release (below) to force inclusion of a
3205 * record for the directory inode, even when there aren't any caps to
3206 * drop.
3207 */
3208 int ceph_encode_inode_release(void **p, struct inode *inode,
3209 int mds, int drop, int unless, int force)
3210 {
3211 struct ceph_inode_info *ci = ceph_inode(inode);
3212 struct ceph_cap *cap;
3213 struct ceph_mds_request_release *rel = *p;
3214 int used, dirty;
3215 int ret = 0;
3216
3217 spin_lock(&ci->i_ceph_lock);
3218 used = __ceph_caps_used(ci);
3219 dirty = __ceph_caps_dirty(ci);
3220
3221 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3222 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3223 ceph_cap_string(unless));
3224
3225 /* only drop unused, clean caps */
3226 drop &= ~(used | dirty);
3227
3228 cap = __get_cap_for_mds(ci, mds);
3229 if (cap && __cap_is_valid(cap)) {
3230 if (force ||
3231 ((cap->issued & drop) &&
3232 (cap->issued & unless) == 0)) {
3233 if ((cap->issued & drop) &&
3234 (cap->issued & unless) == 0) {
3235 int wanted = __ceph_caps_wanted(ci);
3236 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3237 wanted |= cap->mds_wanted;
3238 dout("encode_inode_release %p cap %p "
3239 "%s -> %s, wanted %s -> %s\n", inode, cap,
3240 ceph_cap_string(cap->issued),
3241 ceph_cap_string(cap->issued & ~drop),
3242 ceph_cap_string(cap->mds_wanted),
3243 ceph_cap_string(wanted));
3244
3245 cap->issued &= ~drop;
3246 cap->implemented &= ~drop;
3247 cap->mds_wanted = wanted;
3248 } else {
3249 dout("encode_inode_release %p cap %p %s"
3250 " (force)\n", inode, cap,
3251 ceph_cap_string(cap->issued));
3252 }
3253
3254 rel->ino = cpu_to_le64(ceph_ino(inode));
3255 rel->cap_id = cpu_to_le64(cap->cap_id);
3256 rel->seq = cpu_to_le32(cap->seq);
3257 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3258 rel->mseq = cpu_to_le32(cap->mseq);
3259 rel->caps = cpu_to_le32(cap->issued);
3260 rel->wanted = cpu_to_le32(cap->mds_wanted);
3261 rel->dname_len = 0;
3262 rel->dname_seq = 0;
3263 *p += sizeof(*rel);
3264 ret = 1;
3265 } else {
3266 dout("encode_inode_release %p cap %p %s\n",
3267 inode, cap, ceph_cap_string(cap->issued));
3268 }
3269 }
3270 spin_unlock(&ci->i_ceph_lock);
3271 return ret;
3272 }
3273
3274 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3275 int mds, int drop, int unless)
3276 {
3277 struct inode *dir = dentry->d_parent->d_inode;
3278 struct ceph_mds_request_release *rel = *p;
3279 struct ceph_dentry_info *di = ceph_dentry(dentry);
3280 int force = 0;
3281 int ret;
3282
3283 /*
3284 * force an record for the directory caps if we have a dentry lease.
3285 * this is racy (can't take i_ceph_lock and d_lock together), but it
3286 * doesn't have to be perfect; the mds will revoke anything we don't
3287 * release.
3288 */
3289 spin_lock(&dentry->d_lock);
3290 if (di->lease_session && di->lease_session->s_mds == mds)
3291 force = 1;
3292 spin_unlock(&dentry->d_lock);
3293
3294 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3295
3296 spin_lock(&dentry->d_lock);
3297 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3298 dout("encode_dentry_release %p mds%d seq %d\n",
3299 dentry, mds, (int)di->lease_seq);
3300 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3301 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3302 *p += dentry->d_name.len;
3303 rel->dname_seq = cpu_to_le32(di->lease_seq);
3304 __ceph_mdsc_drop_dentry_lease(dentry);
3305 }
3306 spin_unlock(&dentry->d_lock);
3307 return ret;
3308 }