]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/exec.c
UBUNTU: SAUCE: overlayfs: Propogate nosuid from lower and upper mounts
[mirror_ubuntu-zesty-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <trace/events/fs.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109
110 bool path_nosuid(const struct path *path)
111 {
112 return !mnt_may_suid(path->mnt) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
114 }
115 EXPORT_SYMBOL(path_nosuid);
116
117 #ifdef CONFIG_USELIB
118 /*
119 * Note that a shared library must be both readable and executable due to
120 * security reasons.
121 *
122 * Also note that we take the address to load from from the file itself.
123 */
124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 struct linux_binfmt *fmt;
127 struct file *file;
128 struct filename *tmp = getname(library);
129 int error = PTR_ERR(tmp);
130 static const struct open_flags uselib_flags = {
131 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132 .acc_mode = MAY_READ | MAY_EXEC,
133 .intent = LOOKUP_OPEN,
134 .lookup_flags = LOOKUP_FOLLOW,
135 };
136
137 if (IS_ERR(tmp))
138 goto out;
139
140 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 putname(tmp);
142 error = PTR_ERR(file);
143 if (IS_ERR(file))
144 goto out;
145
146 error = -EINVAL;
147 if (!S_ISREG(file_inode(file)->i_mode))
148 goto exit;
149
150 error = -EACCES;
151 if (path_noexec(&file->f_path))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
221 &page, NULL, NULL);
222 if (ret <= 0)
223 return NULL;
224
225 if (write) {
226 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
227 struct rlimit *rlim;
228
229 acct_arg_size(bprm, size / PAGE_SIZE);
230
231 /*
232 * We've historically supported up to 32 pages (ARG_MAX)
233 * of argument strings even with small stacks
234 */
235 if (size <= ARG_MAX)
236 return page;
237
238 /*
239 * Limit to 1/4-th the stack size for the argv+env strings.
240 * This ensures that:
241 * - the remaining binfmt code will not run out of stack space,
242 * - the program will have a reasonable amount of stack left
243 * to work from.
244 */
245 rlim = current->signal->rlim;
246 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
247 put_page(page);
248 return NULL;
249 }
250 }
251
252 return page;
253 }
254
255 static void put_arg_page(struct page *page)
256 {
257 put_page(page);
258 }
259
260 static void free_arg_pages(struct linux_binprm *bprm)
261 {
262 }
263
264 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
265 struct page *page)
266 {
267 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
268 }
269
270 static int __bprm_mm_init(struct linux_binprm *bprm)
271 {
272 int err;
273 struct vm_area_struct *vma = NULL;
274 struct mm_struct *mm = bprm->mm;
275
276 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
277 if (!vma)
278 return -ENOMEM;
279
280 if (down_write_killable(&mm->mmap_sem)) {
281 err = -EINTR;
282 goto err_free;
283 }
284 vma->vm_mm = mm;
285
286 /*
287 * Place the stack at the largest stack address the architecture
288 * supports. Later, we'll move this to an appropriate place. We don't
289 * use STACK_TOP because that can depend on attributes which aren't
290 * configured yet.
291 */
292 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
293 vma->vm_end = STACK_TOP_MAX;
294 vma->vm_start = vma->vm_end - PAGE_SIZE;
295 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
296 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
297 INIT_LIST_HEAD(&vma->anon_vma_chain);
298
299 err = insert_vm_struct(mm, vma);
300 if (err)
301 goto err;
302
303 mm->stack_vm = mm->total_vm = 1;
304 arch_bprm_mm_init(mm, vma);
305 up_write(&mm->mmap_sem);
306 bprm->p = vma->vm_end - sizeof(void *);
307 return 0;
308 err:
309 up_write(&mm->mmap_sem);
310 err_free:
311 bprm->vma = NULL;
312 kmem_cache_free(vm_area_cachep, vma);
313 return err;
314 }
315
316 static bool valid_arg_len(struct linux_binprm *bprm, long len)
317 {
318 return len <= MAX_ARG_STRLEN;
319 }
320
321 #else
322
323 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
324 {
325 }
326
327 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
328 int write)
329 {
330 struct page *page;
331
332 page = bprm->page[pos / PAGE_SIZE];
333 if (!page && write) {
334 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
335 if (!page)
336 return NULL;
337 bprm->page[pos / PAGE_SIZE] = page;
338 }
339
340 return page;
341 }
342
343 static void put_arg_page(struct page *page)
344 {
345 }
346
347 static void free_arg_page(struct linux_binprm *bprm, int i)
348 {
349 if (bprm->page[i]) {
350 __free_page(bprm->page[i]);
351 bprm->page[i] = NULL;
352 }
353 }
354
355 static void free_arg_pages(struct linux_binprm *bprm)
356 {
357 int i;
358
359 for (i = 0; i < MAX_ARG_PAGES; i++)
360 free_arg_page(bprm, i);
361 }
362
363 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
364 struct page *page)
365 {
366 }
367
368 static int __bprm_mm_init(struct linux_binprm *bprm)
369 {
370 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
371 return 0;
372 }
373
374 static bool valid_arg_len(struct linux_binprm *bprm, long len)
375 {
376 return len <= bprm->p;
377 }
378
379 #endif /* CONFIG_MMU */
380
381 /*
382 * Create a new mm_struct and populate it with a temporary stack
383 * vm_area_struct. We don't have enough context at this point to set the stack
384 * flags, permissions, and offset, so we use temporary values. We'll update
385 * them later in setup_arg_pages().
386 */
387 static int bprm_mm_init(struct linux_binprm *bprm)
388 {
389 int err;
390 struct mm_struct *mm = NULL;
391
392 bprm->mm = mm = mm_alloc();
393 err = -ENOMEM;
394 if (!mm)
395 goto err;
396
397 err = __bprm_mm_init(bprm);
398 if (err)
399 goto err;
400
401 return 0;
402
403 err:
404 if (mm) {
405 bprm->mm = NULL;
406 mmdrop(mm);
407 }
408
409 return err;
410 }
411
412 struct user_arg_ptr {
413 #ifdef CONFIG_COMPAT
414 bool is_compat;
415 #endif
416 union {
417 const char __user *const __user *native;
418 #ifdef CONFIG_COMPAT
419 const compat_uptr_t __user *compat;
420 #endif
421 } ptr;
422 };
423
424 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
425 {
426 const char __user *native;
427
428 #ifdef CONFIG_COMPAT
429 if (unlikely(argv.is_compat)) {
430 compat_uptr_t compat;
431
432 if (get_user(compat, argv.ptr.compat + nr))
433 return ERR_PTR(-EFAULT);
434
435 return compat_ptr(compat);
436 }
437 #endif
438
439 if (get_user(native, argv.ptr.native + nr))
440 return ERR_PTR(-EFAULT);
441
442 return native;
443 }
444
445 /*
446 * count() counts the number of strings in array ARGV.
447 */
448 static int count(struct user_arg_ptr argv, int max)
449 {
450 int i = 0;
451
452 if (argv.ptr.native != NULL) {
453 for (;;) {
454 const char __user *p = get_user_arg_ptr(argv, i);
455
456 if (!p)
457 break;
458
459 if (IS_ERR(p))
460 return -EFAULT;
461
462 if (i >= max)
463 return -E2BIG;
464 ++i;
465
466 if (fatal_signal_pending(current))
467 return -ERESTARTNOHAND;
468 cond_resched();
469 }
470 }
471 return i;
472 }
473
474 /*
475 * 'copy_strings()' copies argument/environment strings from the old
476 * processes's memory to the new process's stack. The call to get_user_pages()
477 * ensures the destination page is created and not swapped out.
478 */
479 static int copy_strings(int argc, struct user_arg_ptr argv,
480 struct linux_binprm *bprm)
481 {
482 struct page *kmapped_page = NULL;
483 char *kaddr = NULL;
484 unsigned long kpos = 0;
485 int ret;
486
487 while (argc-- > 0) {
488 const char __user *str;
489 int len;
490 unsigned long pos;
491
492 ret = -EFAULT;
493 str = get_user_arg_ptr(argv, argc);
494 if (IS_ERR(str))
495 goto out;
496
497 len = strnlen_user(str, MAX_ARG_STRLEN);
498 if (!len)
499 goto out;
500
501 ret = -E2BIG;
502 if (!valid_arg_len(bprm, len))
503 goto out;
504
505 /* We're going to work our way backwords. */
506 pos = bprm->p;
507 str += len;
508 bprm->p -= len;
509
510 while (len > 0) {
511 int offset, bytes_to_copy;
512
513 if (fatal_signal_pending(current)) {
514 ret = -ERESTARTNOHAND;
515 goto out;
516 }
517 cond_resched();
518
519 offset = pos % PAGE_SIZE;
520 if (offset == 0)
521 offset = PAGE_SIZE;
522
523 bytes_to_copy = offset;
524 if (bytes_to_copy > len)
525 bytes_to_copy = len;
526
527 offset -= bytes_to_copy;
528 pos -= bytes_to_copy;
529 str -= bytes_to_copy;
530 len -= bytes_to_copy;
531
532 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
533 struct page *page;
534
535 page = get_arg_page(bprm, pos, 1);
536 if (!page) {
537 ret = -E2BIG;
538 goto out;
539 }
540
541 if (kmapped_page) {
542 flush_kernel_dcache_page(kmapped_page);
543 kunmap(kmapped_page);
544 put_arg_page(kmapped_page);
545 }
546 kmapped_page = page;
547 kaddr = kmap(kmapped_page);
548 kpos = pos & PAGE_MASK;
549 flush_arg_page(bprm, kpos, kmapped_page);
550 }
551 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
552 ret = -EFAULT;
553 goto out;
554 }
555 }
556 }
557 ret = 0;
558 out:
559 if (kmapped_page) {
560 flush_kernel_dcache_page(kmapped_page);
561 kunmap(kmapped_page);
562 put_arg_page(kmapped_page);
563 }
564 return ret;
565 }
566
567 /*
568 * Like copy_strings, but get argv and its values from kernel memory.
569 */
570 int copy_strings_kernel(int argc, const char *const *__argv,
571 struct linux_binprm *bprm)
572 {
573 int r;
574 mm_segment_t oldfs = get_fs();
575 struct user_arg_ptr argv = {
576 .ptr.native = (const char __user *const __user *)__argv,
577 };
578
579 set_fs(KERNEL_DS);
580 r = copy_strings(argc, argv, bprm);
581 set_fs(oldfs);
582
583 return r;
584 }
585 EXPORT_SYMBOL(copy_strings_kernel);
586
587 #ifdef CONFIG_MMU
588
589 /*
590 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
591 * the binfmt code determines where the new stack should reside, we shift it to
592 * its final location. The process proceeds as follows:
593 *
594 * 1) Use shift to calculate the new vma endpoints.
595 * 2) Extend vma to cover both the old and new ranges. This ensures the
596 * arguments passed to subsequent functions are consistent.
597 * 3) Move vma's page tables to the new range.
598 * 4) Free up any cleared pgd range.
599 * 5) Shrink the vma to cover only the new range.
600 */
601 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
602 {
603 struct mm_struct *mm = vma->vm_mm;
604 unsigned long old_start = vma->vm_start;
605 unsigned long old_end = vma->vm_end;
606 unsigned long length = old_end - old_start;
607 unsigned long new_start = old_start - shift;
608 unsigned long new_end = old_end - shift;
609 struct mmu_gather tlb;
610
611 BUG_ON(new_start > new_end);
612
613 /*
614 * ensure there are no vmas between where we want to go
615 * and where we are
616 */
617 if (vma != find_vma(mm, new_start))
618 return -EFAULT;
619
620 /*
621 * cover the whole range: [new_start, old_end)
622 */
623 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
624 return -ENOMEM;
625
626 /*
627 * move the page tables downwards, on failure we rely on
628 * process cleanup to remove whatever mess we made.
629 */
630 if (length != move_page_tables(vma, old_start,
631 vma, new_start, length, false))
632 return -ENOMEM;
633
634 lru_add_drain();
635 tlb_gather_mmu(&tlb, mm, old_start, old_end);
636 if (new_end > old_start) {
637 /*
638 * when the old and new regions overlap clear from new_end.
639 */
640 free_pgd_range(&tlb, new_end, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 } else {
643 /*
644 * otherwise, clean from old_start; this is done to not touch
645 * the address space in [new_end, old_start) some architectures
646 * have constraints on va-space that make this illegal (IA64) -
647 * for the others its just a little faster.
648 */
649 free_pgd_range(&tlb, old_start, old_end, new_end,
650 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
651 }
652 tlb_finish_mmu(&tlb, old_start, old_end);
653
654 /*
655 * Shrink the vma to just the new range. Always succeeds.
656 */
657 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
658
659 return 0;
660 }
661
662 /*
663 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
664 * the stack is optionally relocated, and some extra space is added.
665 */
666 int setup_arg_pages(struct linux_binprm *bprm,
667 unsigned long stack_top,
668 int executable_stack)
669 {
670 unsigned long ret;
671 unsigned long stack_shift;
672 struct mm_struct *mm = current->mm;
673 struct vm_area_struct *vma = bprm->vma;
674 struct vm_area_struct *prev = NULL;
675 unsigned long vm_flags;
676 unsigned long stack_base;
677 unsigned long stack_size;
678 unsigned long stack_expand;
679 unsigned long rlim_stack;
680
681 #ifdef CONFIG_STACK_GROWSUP
682 /* Limit stack size */
683 stack_base = rlimit_max(RLIMIT_STACK);
684 if (stack_base > STACK_SIZE_MAX)
685 stack_base = STACK_SIZE_MAX;
686
687 /* Add space for stack randomization. */
688 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
689
690 /* Make sure we didn't let the argument array grow too large. */
691 if (vma->vm_end - vma->vm_start > stack_base)
692 return -ENOMEM;
693
694 stack_base = PAGE_ALIGN(stack_top - stack_base);
695
696 stack_shift = vma->vm_start - stack_base;
697 mm->arg_start = bprm->p - stack_shift;
698 bprm->p = vma->vm_end - stack_shift;
699 #else
700 stack_top = arch_align_stack(stack_top);
701 stack_top = PAGE_ALIGN(stack_top);
702
703 if (unlikely(stack_top < mmap_min_addr) ||
704 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
705 return -ENOMEM;
706
707 stack_shift = vma->vm_end - stack_top;
708
709 bprm->p -= stack_shift;
710 mm->arg_start = bprm->p;
711 #endif
712
713 if (bprm->loader)
714 bprm->loader -= stack_shift;
715 bprm->exec -= stack_shift;
716
717 if (down_write_killable(&mm->mmap_sem))
718 return -EINTR;
719
720 vm_flags = VM_STACK_FLAGS;
721
722 /*
723 * Adjust stack execute permissions; explicitly enable for
724 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
725 * (arch default) otherwise.
726 */
727 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
728 vm_flags |= VM_EXEC;
729 else if (executable_stack == EXSTACK_DISABLE_X)
730 vm_flags &= ~VM_EXEC;
731 vm_flags |= mm->def_flags;
732 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
733
734 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
735 vm_flags);
736 if (ret)
737 goto out_unlock;
738 BUG_ON(prev != vma);
739
740 /* Move stack pages down in memory. */
741 if (stack_shift) {
742 ret = shift_arg_pages(vma, stack_shift);
743 if (ret)
744 goto out_unlock;
745 }
746
747 /* mprotect_fixup is overkill to remove the temporary stack flags */
748 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
749
750 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
751 stack_size = vma->vm_end - vma->vm_start;
752 /*
753 * Align this down to a page boundary as expand_stack
754 * will align it up.
755 */
756 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
757 #ifdef CONFIG_STACK_GROWSUP
758 if (stack_size + stack_expand > rlim_stack)
759 stack_base = vma->vm_start + rlim_stack;
760 else
761 stack_base = vma->vm_end + stack_expand;
762 #else
763 if (stack_size + stack_expand > rlim_stack)
764 stack_base = vma->vm_end - rlim_stack;
765 else
766 stack_base = vma->vm_start - stack_expand;
767 #endif
768 current->mm->start_stack = bprm->p;
769 ret = expand_stack(vma, stack_base);
770 if (ret)
771 ret = -EFAULT;
772
773 out_unlock:
774 up_write(&mm->mmap_sem);
775 return ret;
776 }
777 EXPORT_SYMBOL(setup_arg_pages);
778
779 #else
780
781 /*
782 * Transfer the program arguments and environment from the holding pages
783 * onto the stack. The provided stack pointer is adjusted accordingly.
784 */
785 int transfer_args_to_stack(struct linux_binprm *bprm,
786 unsigned long *sp_location)
787 {
788 unsigned long index, stop, sp;
789 int ret = 0;
790
791 stop = bprm->p >> PAGE_SHIFT;
792 sp = *sp_location;
793
794 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
795 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
796 char *src = kmap(bprm->page[index]) + offset;
797 sp -= PAGE_SIZE - offset;
798 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
799 ret = -EFAULT;
800 kunmap(bprm->page[index]);
801 if (ret)
802 goto out;
803 }
804
805 *sp_location = sp;
806
807 out:
808 return ret;
809 }
810 EXPORT_SYMBOL(transfer_args_to_stack);
811
812 #endif /* CONFIG_MMU */
813
814 static struct file *do_open_execat(int fd, struct filename *name, int flags)
815 {
816 struct file *file;
817 int err;
818 struct open_flags open_exec_flags = {
819 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
820 .acc_mode = MAY_EXEC,
821 .intent = LOOKUP_OPEN,
822 .lookup_flags = LOOKUP_FOLLOW,
823 };
824
825 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
826 return ERR_PTR(-EINVAL);
827 if (flags & AT_SYMLINK_NOFOLLOW)
828 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
829 if (flags & AT_EMPTY_PATH)
830 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
831
832 file = do_filp_open(fd, name, &open_exec_flags);
833 if (IS_ERR(file))
834 goto out;
835
836 err = -EACCES;
837 if (!S_ISREG(file_inode(file)->i_mode))
838 goto exit;
839
840 if (path_noexec(&file->f_path))
841 goto exit;
842
843 err = deny_write_access(file);
844 if (err)
845 goto exit;
846
847 if (name->name[0] != '\0')
848 fsnotify_open(file);
849
850 trace_open_exec(name->name);
851
852 out:
853 return file;
854
855 exit:
856 fput(file);
857 return ERR_PTR(err);
858 }
859
860 struct file *open_exec(const char *name)
861 {
862 struct filename *filename = getname_kernel(name);
863 struct file *f = ERR_CAST(filename);
864
865 if (!IS_ERR(filename)) {
866 f = do_open_execat(AT_FDCWD, filename, 0);
867 putname(filename);
868 }
869 return f;
870 }
871 EXPORT_SYMBOL(open_exec);
872
873 int kernel_read(struct file *file, loff_t offset,
874 char *addr, unsigned long count)
875 {
876 mm_segment_t old_fs;
877 loff_t pos = offset;
878 int result;
879
880 old_fs = get_fs();
881 set_fs(get_ds());
882 /* The cast to a user pointer is valid due to the set_fs() */
883 result = vfs_read(file, (void __user *)addr, count, &pos);
884 set_fs(old_fs);
885 return result;
886 }
887
888 EXPORT_SYMBOL(kernel_read);
889
890 int kernel_read_file(struct file *file, void **buf, loff_t *size,
891 loff_t max_size, enum kernel_read_file_id id)
892 {
893 loff_t i_size, pos;
894 ssize_t bytes = 0;
895 int ret;
896
897 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
898 return -EINVAL;
899
900 ret = security_kernel_read_file(file, id);
901 if (ret)
902 return ret;
903
904 ret = deny_write_access(file);
905 if (ret)
906 return ret;
907
908 i_size = i_size_read(file_inode(file));
909 if (max_size > 0 && i_size > max_size) {
910 ret = -EFBIG;
911 goto out;
912 }
913 if (i_size <= 0) {
914 ret = -EINVAL;
915 goto out;
916 }
917
918 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
919 *buf = vmalloc(i_size);
920 if (!*buf) {
921 ret = -ENOMEM;
922 goto out;
923 }
924
925 pos = 0;
926 while (pos < i_size) {
927 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
928 i_size - pos);
929 if (bytes < 0) {
930 ret = bytes;
931 goto out;
932 }
933
934 if (bytes == 0)
935 break;
936 pos += bytes;
937 }
938
939 if (pos != i_size) {
940 ret = -EIO;
941 goto out_free;
942 }
943
944 ret = security_kernel_post_read_file(file, *buf, i_size, id);
945 if (!ret)
946 *size = pos;
947
948 out_free:
949 if (ret < 0) {
950 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
951 vfree(*buf);
952 *buf = NULL;
953 }
954 }
955
956 out:
957 allow_write_access(file);
958 return ret;
959 }
960 EXPORT_SYMBOL_GPL(kernel_read_file);
961
962 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
963 loff_t max_size, enum kernel_read_file_id id)
964 {
965 struct file *file;
966 int ret;
967
968 if (!path || !*path)
969 return -EINVAL;
970
971 file = filp_open(path, O_RDONLY, 0);
972 if (IS_ERR(file))
973 return PTR_ERR(file);
974
975 ret = kernel_read_file(file, buf, size, max_size, id);
976 fput(file);
977 return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
980
981 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
982 enum kernel_read_file_id id)
983 {
984 struct fd f = fdget(fd);
985 int ret = -EBADF;
986
987 if (!f.file)
988 goto out;
989
990 ret = kernel_read_file(f.file, buf, size, max_size, id);
991 out:
992 fdput(f);
993 return ret;
994 }
995 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
996
997 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
998 {
999 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1000 if (res > 0)
1001 flush_icache_range(addr, addr + len);
1002 return res;
1003 }
1004 EXPORT_SYMBOL(read_code);
1005
1006 static int exec_mmap(struct mm_struct *mm)
1007 {
1008 struct task_struct *tsk;
1009 struct mm_struct *old_mm, *active_mm;
1010
1011 /* Notify parent that we're no longer interested in the old VM */
1012 tsk = current;
1013 old_mm = current->mm;
1014 mm_release(tsk, old_mm);
1015
1016 if (old_mm) {
1017 sync_mm_rss(old_mm);
1018 /*
1019 * Make sure that if there is a core dump in progress
1020 * for the old mm, we get out and die instead of going
1021 * through with the exec. We must hold mmap_sem around
1022 * checking core_state and changing tsk->mm.
1023 */
1024 down_read(&old_mm->mmap_sem);
1025 if (unlikely(old_mm->core_state)) {
1026 up_read(&old_mm->mmap_sem);
1027 return -EINTR;
1028 }
1029 }
1030 task_lock(tsk);
1031 active_mm = tsk->active_mm;
1032 tsk->mm = mm;
1033 tsk->active_mm = mm;
1034 activate_mm(active_mm, mm);
1035 tsk->mm->vmacache_seqnum = 0;
1036 vmacache_flush(tsk);
1037 task_unlock(tsk);
1038 if (old_mm) {
1039 up_read(&old_mm->mmap_sem);
1040 BUG_ON(active_mm != old_mm);
1041 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1042 mm_update_next_owner(old_mm);
1043 mmput(old_mm);
1044 return 0;
1045 }
1046 mmdrop(active_mm);
1047 return 0;
1048 }
1049
1050 /*
1051 * This function makes sure the current process has its own signal table,
1052 * so that flush_signal_handlers can later reset the handlers without
1053 * disturbing other processes. (Other processes might share the signal
1054 * table via the CLONE_SIGHAND option to clone().)
1055 */
1056 static int de_thread(struct task_struct *tsk)
1057 {
1058 struct signal_struct *sig = tsk->signal;
1059 struct sighand_struct *oldsighand = tsk->sighand;
1060 spinlock_t *lock = &oldsighand->siglock;
1061
1062 if (thread_group_empty(tsk))
1063 goto no_thread_group;
1064
1065 /*
1066 * Kill all other threads in the thread group.
1067 */
1068 spin_lock_irq(lock);
1069 if (signal_group_exit(sig)) {
1070 /*
1071 * Another group action in progress, just
1072 * return so that the signal is processed.
1073 */
1074 spin_unlock_irq(lock);
1075 return -EAGAIN;
1076 }
1077
1078 sig->group_exit_task = tsk;
1079 sig->notify_count = zap_other_threads(tsk);
1080 if (!thread_group_leader(tsk))
1081 sig->notify_count--;
1082
1083 while (sig->notify_count) {
1084 __set_current_state(TASK_KILLABLE);
1085 spin_unlock_irq(lock);
1086 schedule();
1087 if (unlikely(__fatal_signal_pending(tsk)))
1088 goto killed;
1089 spin_lock_irq(lock);
1090 }
1091 spin_unlock_irq(lock);
1092
1093 /*
1094 * At this point all other threads have exited, all we have to
1095 * do is to wait for the thread group leader to become inactive,
1096 * and to assume its PID:
1097 */
1098 if (!thread_group_leader(tsk)) {
1099 struct task_struct *leader = tsk->group_leader;
1100
1101 for (;;) {
1102 threadgroup_change_begin(tsk);
1103 write_lock_irq(&tasklist_lock);
1104 /*
1105 * Do this under tasklist_lock to ensure that
1106 * exit_notify() can't miss ->group_exit_task
1107 */
1108 sig->notify_count = -1;
1109 if (likely(leader->exit_state))
1110 break;
1111 __set_current_state(TASK_KILLABLE);
1112 write_unlock_irq(&tasklist_lock);
1113 threadgroup_change_end(tsk);
1114 schedule();
1115 if (unlikely(__fatal_signal_pending(tsk)))
1116 goto killed;
1117 }
1118
1119 /*
1120 * The only record we have of the real-time age of a
1121 * process, regardless of execs it's done, is start_time.
1122 * All the past CPU time is accumulated in signal_struct
1123 * from sister threads now dead. But in this non-leader
1124 * exec, nothing survives from the original leader thread,
1125 * whose birth marks the true age of this process now.
1126 * When we take on its identity by switching to its PID, we
1127 * also take its birthdate (always earlier than our own).
1128 */
1129 tsk->start_time = leader->start_time;
1130 tsk->real_start_time = leader->real_start_time;
1131
1132 BUG_ON(!same_thread_group(leader, tsk));
1133 BUG_ON(has_group_leader_pid(tsk));
1134 /*
1135 * An exec() starts a new thread group with the
1136 * TGID of the previous thread group. Rehash the
1137 * two threads with a switched PID, and release
1138 * the former thread group leader:
1139 */
1140
1141 /* Become a process group leader with the old leader's pid.
1142 * The old leader becomes a thread of the this thread group.
1143 * Note: The old leader also uses this pid until release_task
1144 * is called. Odd but simple and correct.
1145 */
1146 tsk->pid = leader->pid;
1147 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1148 transfer_pid(leader, tsk, PIDTYPE_PGID);
1149 transfer_pid(leader, tsk, PIDTYPE_SID);
1150
1151 list_replace_rcu(&leader->tasks, &tsk->tasks);
1152 list_replace_init(&leader->sibling, &tsk->sibling);
1153
1154 tsk->group_leader = tsk;
1155 leader->group_leader = tsk;
1156
1157 tsk->exit_signal = SIGCHLD;
1158 leader->exit_signal = -1;
1159
1160 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1161 leader->exit_state = EXIT_DEAD;
1162
1163 /*
1164 * We are going to release_task()->ptrace_unlink() silently,
1165 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1166 * the tracer wont't block again waiting for this thread.
1167 */
1168 if (unlikely(leader->ptrace))
1169 __wake_up_parent(leader, leader->parent);
1170 write_unlock_irq(&tasklist_lock);
1171 threadgroup_change_end(tsk);
1172
1173 release_task(leader);
1174 }
1175
1176 sig->group_exit_task = NULL;
1177 sig->notify_count = 0;
1178
1179 no_thread_group:
1180 /* we have changed execution domain */
1181 tsk->exit_signal = SIGCHLD;
1182
1183 #ifdef CONFIG_POSIX_TIMERS
1184 exit_itimers(sig);
1185 flush_itimer_signals();
1186 #endif
1187
1188 if (atomic_read(&oldsighand->count) != 1) {
1189 struct sighand_struct *newsighand;
1190 /*
1191 * This ->sighand is shared with the CLONE_SIGHAND
1192 * but not CLONE_THREAD task, switch to the new one.
1193 */
1194 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195 if (!newsighand)
1196 return -ENOMEM;
1197
1198 atomic_set(&newsighand->count, 1);
1199 memcpy(newsighand->action, oldsighand->action,
1200 sizeof(newsighand->action));
1201
1202 write_lock_irq(&tasklist_lock);
1203 spin_lock(&oldsighand->siglock);
1204 rcu_assign_pointer(tsk->sighand, newsighand);
1205 spin_unlock(&oldsighand->siglock);
1206 write_unlock_irq(&tasklist_lock);
1207
1208 __cleanup_sighand(oldsighand);
1209 }
1210
1211 BUG_ON(!thread_group_leader(tsk));
1212 return 0;
1213
1214 killed:
1215 /* protects against exit_notify() and __exit_signal() */
1216 read_lock(&tasklist_lock);
1217 sig->group_exit_task = NULL;
1218 sig->notify_count = 0;
1219 read_unlock(&tasklist_lock);
1220 return -EAGAIN;
1221 }
1222
1223 char *get_task_comm(char *buf, struct task_struct *tsk)
1224 {
1225 /* buf must be at least sizeof(tsk->comm) in size */
1226 task_lock(tsk);
1227 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1228 task_unlock(tsk);
1229 return buf;
1230 }
1231 EXPORT_SYMBOL_GPL(get_task_comm);
1232
1233 /*
1234 * These functions flushes out all traces of the currently running executable
1235 * so that a new one can be started
1236 */
1237
1238 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1239 {
1240 task_lock(tsk);
1241 trace_task_rename(tsk, buf);
1242 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1243 task_unlock(tsk);
1244 perf_event_comm(tsk, exec);
1245 }
1246
1247 int flush_old_exec(struct linux_binprm * bprm)
1248 {
1249 int retval;
1250
1251 /*
1252 * Make sure we have a private signal table and that
1253 * we are unassociated from the previous thread group.
1254 */
1255 retval = de_thread(current);
1256 if (retval)
1257 goto out;
1258
1259 /*
1260 * Must be called _before_ exec_mmap() as bprm->mm is
1261 * not visibile until then. This also enables the update
1262 * to be lockless.
1263 */
1264 set_mm_exe_file(bprm->mm, bprm->file);
1265
1266 /*
1267 * Release all of the old mmap stuff
1268 */
1269 acct_arg_size(bprm, 0);
1270 retval = exec_mmap(bprm->mm);
1271 if (retval)
1272 goto out;
1273
1274 bprm->mm = NULL; /* We're using it now */
1275
1276 set_fs(USER_DS);
1277 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1278 PF_NOFREEZE | PF_NO_SETAFFINITY);
1279 flush_thread();
1280 current->personality &= ~bprm->per_clear;
1281
1282 /*
1283 * We have to apply CLOEXEC before we change whether the process is
1284 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1285 * trying to access the should-be-closed file descriptors of a process
1286 * undergoing exec(2).
1287 */
1288 do_close_on_exec(current->files);
1289 return 0;
1290
1291 out:
1292 return retval;
1293 }
1294 EXPORT_SYMBOL(flush_old_exec);
1295
1296 void would_dump(struct linux_binprm *bprm, struct file *file)
1297 {
1298 struct inode *inode = file_inode(file);
1299 if (inode_permission(inode, MAY_READ) < 0) {
1300 struct user_namespace *old, *user_ns;
1301 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1302
1303 /* Ensure mm->user_ns contains the executable */
1304 user_ns = old = bprm->mm->user_ns;
1305 while ((user_ns != &init_user_ns) &&
1306 !privileged_wrt_inode_uidgid(user_ns, inode))
1307 user_ns = user_ns->parent;
1308
1309 if (old != user_ns) {
1310 bprm->mm->user_ns = get_user_ns(user_ns);
1311 put_user_ns(old);
1312 }
1313 }
1314 }
1315 EXPORT_SYMBOL(would_dump);
1316
1317 void setup_new_exec(struct linux_binprm * bprm)
1318 {
1319 arch_pick_mmap_layout(current->mm);
1320
1321 /* This is the point of no return */
1322 current->sas_ss_sp = current->sas_ss_size = 0;
1323
1324 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1325 set_dumpable(current->mm, SUID_DUMP_USER);
1326 else
1327 set_dumpable(current->mm, suid_dumpable);
1328
1329 perf_event_exec();
1330 __set_task_comm(current, kbasename(bprm->filename), true);
1331
1332 /* Set the new mm task size. We have to do that late because it may
1333 * depend on TIF_32BIT which is only updated in flush_thread() on
1334 * some architectures like powerpc
1335 */
1336 current->mm->task_size = TASK_SIZE;
1337
1338 /* install the new credentials */
1339 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1340 !gid_eq(bprm->cred->gid, current_egid())) {
1341 current->pdeath_signal = 0;
1342 } else {
1343 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1344 set_dumpable(current->mm, suid_dumpable);
1345 }
1346
1347 /* An exec changes our domain. We are no longer part of the thread
1348 group */
1349 current->self_exec_id++;
1350 flush_signal_handlers(current, 0);
1351 }
1352 EXPORT_SYMBOL(setup_new_exec);
1353
1354 /*
1355 * Prepare credentials and lock ->cred_guard_mutex.
1356 * install_exec_creds() commits the new creds and drops the lock.
1357 * Or, if exec fails before, free_bprm() should release ->cred and
1358 * and unlock.
1359 */
1360 int prepare_bprm_creds(struct linux_binprm *bprm)
1361 {
1362 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1363 return -ERESTARTNOINTR;
1364
1365 bprm->cred = prepare_exec_creds();
1366 if (likely(bprm->cred))
1367 return 0;
1368
1369 mutex_unlock(&current->signal->cred_guard_mutex);
1370 return -ENOMEM;
1371 }
1372
1373 static void free_bprm(struct linux_binprm *bprm)
1374 {
1375 free_arg_pages(bprm);
1376 if (bprm->cred) {
1377 mutex_unlock(&current->signal->cred_guard_mutex);
1378 abort_creds(bprm->cred);
1379 }
1380 if (bprm->file) {
1381 allow_write_access(bprm->file);
1382 fput(bprm->file);
1383 }
1384 /* If a binfmt changed the interp, free it. */
1385 if (bprm->interp != bprm->filename)
1386 kfree(bprm->interp);
1387 kfree(bprm);
1388 }
1389
1390 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1391 {
1392 /* If a binfmt changed the interp, free it first. */
1393 if (bprm->interp != bprm->filename)
1394 kfree(bprm->interp);
1395 bprm->interp = kstrdup(interp, GFP_KERNEL);
1396 if (!bprm->interp)
1397 return -ENOMEM;
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(bprm_change_interp);
1401
1402 /*
1403 * install the new credentials for this executable
1404 */
1405 void install_exec_creds(struct linux_binprm *bprm)
1406 {
1407 security_bprm_committing_creds(bprm);
1408
1409 commit_creds(bprm->cred);
1410 bprm->cred = NULL;
1411
1412 /*
1413 * Disable monitoring for regular users
1414 * when executing setuid binaries. Must
1415 * wait until new credentials are committed
1416 * by commit_creds() above
1417 */
1418 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1419 perf_event_exit_task(current);
1420 /*
1421 * cred_guard_mutex must be held at least to this point to prevent
1422 * ptrace_attach() from altering our determination of the task's
1423 * credentials; any time after this it may be unlocked.
1424 */
1425 security_bprm_committed_creds(bprm);
1426 mutex_unlock(&current->signal->cred_guard_mutex);
1427 }
1428 EXPORT_SYMBOL(install_exec_creds);
1429
1430 /*
1431 * determine how safe it is to execute the proposed program
1432 * - the caller must hold ->cred_guard_mutex to protect against
1433 * PTRACE_ATTACH or seccomp thread-sync
1434 */
1435 static void check_unsafe_exec(struct linux_binprm *bprm)
1436 {
1437 struct task_struct *p = current, *t;
1438 unsigned n_fs;
1439
1440 if (p->ptrace) {
1441 if (ptracer_capable(p, current_user_ns()))
1442 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1443 else
1444 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1445 }
1446
1447 /*
1448 * This isn't strictly necessary, but it makes it harder for LSMs to
1449 * mess up.
1450 */
1451 if (task_no_new_privs(current))
1452 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1453
1454 t = p;
1455 n_fs = 1;
1456 spin_lock(&p->fs->lock);
1457 rcu_read_lock();
1458 while_each_thread(p, t) {
1459 if (t->fs == p->fs)
1460 n_fs++;
1461 }
1462 rcu_read_unlock();
1463
1464 if (p->fs->users > n_fs)
1465 bprm->unsafe |= LSM_UNSAFE_SHARE;
1466 else
1467 p->fs->in_exec = 1;
1468 spin_unlock(&p->fs->lock);
1469 }
1470
1471 static void bprm_fill_uid(struct linux_binprm *bprm)
1472 {
1473 struct inode *inode;
1474 unsigned int mode;
1475 kuid_t uid;
1476 kgid_t gid;
1477
1478 /*
1479 * Since this can be called multiple times (via prepare_binprm),
1480 * we must clear any previous work done when setting set[ug]id
1481 * bits from any earlier bprm->file uses (for example when run
1482 * first for a setuid script then again for its interpreter).
1483 */
1484 bprm->cred->euid = current_euid();
1485 bprm->cred->egid = current_egid();
1486
1487 if (path_nosuid(&bprm->file->f_path))
1488 return;
1489
1490 if (task_no_new_privs(current))
1491 return;
1492
1493 inode = file_inode(bprm->file);
1494 mode = READ_ONCE(inode->i_mode);
1495 if (!(mode & (S_ISUID|S_ISGID)))
1496 return;
1497
1498 /* Be careful if suid/sgid is set */
1499 inode_lock(inode);
1500
1501 /* reload atomically mode/uid/gid now that lock held */
1502 mode = inode->i_mode;
1503 uid = inode->i_uid;
1504 gid = inode->i_gid;
1505 inode_unlock(inode);
1506
1507 /* We ignore suid/sgid if there are no mappings for them in the ns */
1508 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1509 !kgid_has_mapping(bprm->cred->user_ns, gid))
1510 return;
1511
1512 if (mode & S_ISUID) {
1513 bprm->per_clear |= PER_CLEAR_ON_SETID;
1514 bprm->cred->euid = uid;
1515 }
1516
1517 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1518 bprm->per_clear |= PER_CLEAR_ON_SETID;
1519 bprm->cred->egid = gid;
1520 }
1521 }
1522
1523 /*
1524 * Fill the binprm structure from the inode.
1525 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1526 *
1527 * This may be called multiple times for binary chains (scripts for example).
1528 */
1529 int prepare_binprm(struct linux_binprm *bprm)
1530 {
1531 int retval;
1532
1533 bprm_fill_uid(bprm);
1534
1535 /* fill in binprm security blob */
1536 retval = security_bprm_set_creds(bprm);
1537 if (retval)
1538 return retval;
1539 bprm->cred_prepared = 1;
1540
1541 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1542 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1543 }
1544
1545 EXPORT_SYMBOL(prepare_binprm);
1546
1547 /*
1548 * Arguments are '\0' separated strings found at the location bprm->p
1549 * points to; chop off the first by relocating brpm->p to right after
1550 * the first '\0' encountered.
1551 */
1552 int remove_arg_zero(struct linux_binprm *bprm)
1553 {
1554 int ret = 0;
1555 unsigned long offset;
1556 char *kaddr;
1557 struct page *page;
1558
1559 if (!bprm->argc)
1560 return 0;
1561
1562 do {
1563 offset = bprm->p & ~PAGE_MASK;
1564 page = get_arg_page(bprm, bprm->p, 0);
1565 if (!page) {
1566 ret = -EFAULT;
1567 goto out;
1568 }
1569 kaddr = kmap_atomic(page);
1570
1571 for (; offset < PAGE_SIZE && kaddr[offset];
1572 offset++, bprm->p++)
1573 ;
1574
1575 kunmap_atomic(kaddr);
1576 put_arg_page(page);
1577 } while (offset == PAGE_SIZE);
1578
1579 bprm->p++;
1580 bprm->argc--;
1581 ret = 0;
1582
1583 out:
1584 return ret;
1585 }
1586 EXPORT_SYMBOL(remove_arg_zero);
1587
1588 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1589 /*
1590 * cycle the list of binary formats handler, until one recognizes the image
1591 */
1592 int search_binary_handler(struct linux_binprm *bprm)
1593 {
1594 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1595 struct linux_binfmt *fmt;
1596 int retval;
1597
1598 /* This allows 4 levels of binfmt rewrites before failing hard. */
1599 if (bprm->recursion_depth > 5)
1600 return -ELOOP;
1601
1602 retval = security_bprm_check(bprm);
1603 if (retval)
1604 return retval;
1605
1606 retval = -ENOENT;
1607 retry:
1608 read_lock(&binfmt_lock);
1609 list_for_each_entry(fmt, &formats, lh) {
1610 if (!try_module_get(fmt->module))
1611 continue;
1612 read_unlock(&binfmt_lock);
1613 bprm->recursion_depth++;
1614 retval = fmt->load_binary(bprm);
1615 read_lock(&binfmt_lock);
1616 put_binfmt(fmt);
1617 bprm->recursion_depth--;
1618 if (retval < 0 && !bprm->mm) {
1619 /* we got to flush_old_exec() and failed after it */
1620 read_unlock(&binfmt_lock);
1621 force_sigsegv(SIGSEGV, current);
1622 return retval;
1623 }
1624 if (retval != -ENOEXEC || !bprm->file) {
1625 read_unlock(&binfmt_lock);
1626 return retval;
1627 }
1628 }
1629 read_unlock(&binfmt_lock);
1630
1631 if (need_retry) {
1632 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1633 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1634 return retval;
1635 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1636 return retval;
1637 need_retry = false;
1638 goto retry;
1639 }
1640
1641 return retval;
1642 }
1643 EXPORT_SYMBOL(search_binary_handler);
1644
1645 static int exec_binprm(struct linux_binprm *bprm)
1646 {
1647 pid_t old_pid, old_vpid;
1648 int ret;
1649
1650 /* Need to fetch pid before load_binary changes it */
1651 old_pid = current->pid;
1652 rcu_read_lock();
1653 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1654 rcu_read_unlock();
1655
1656 ret = search_binary_handler(bprm);
1657 if (ret >= 0) {
1658 audit_bprm(bprm);
1659 trace_sched_process_exec(current, old_pid, bprm);
1660 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1661 proc_exec_connector(current);
1662 }
1663
1664 return ret;
1665 }
1666
1667 /*
1668 * sys_execve() executes a new program.
1669 */
1670 static int do_execveat_common(int fd, struct filename *filename,
1671 struct user_arg_ptr argv,
1672 struct user_arg_ptr envp,
1673 int flags)
1674 {
1675 char *pathbuf = NULL;
1676 struct linux_binprm *bprm;
1677 struct file *file;
1678 struct files_struct *displaced;
1679 int retval;
1680
1681 if (IS_ERR(filename))
1682 return PTR_ERR(filename);
1683
1684 /*
1685 * We move the actual failure in case of RLIMIT_NPROC excess from
1686 * set*uid() to execve() because too many poorly written programs
1687 * don't check setuid() return code. Here we additionally recheck
1688 * whether NPROC limit is still exceeded.
1689 */
1690 if ((current->flags & PF_NPROC_EXCEEDED) &&
1691 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1692 retval = -EAGAIN;
1693 goto out_ret;
1694 }
1695
1696 /* We're below the limit (still or again), so we don't want to make
1697 * further execve() calls fail. */
1698 current->flags &= ~PF_NPROC_EXCEEDED;
1699
1700 retval = unshare_files(&displaced);
1701 if (retval)
1702 goto out_ret;
1703
1704 retval = -ENOMEM;
1705 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1706 if (!bprm)
1707 goto out_files;
1708
1709 retval = prepare_bprm_creds(bprm);
1710 if (retval)
1711 goto out_free;
1712
1713 check_unsafe_exec(bprm);
1714 current->in_execve = 1;
1715
1716 file = do_open_execat(fd, filename, flags);
1717 retval = PTR_ERR(file);
1718 if (IS_ERR(file))
1719 goto out_unmark;
1720
1721 sched_exec();
1722
1723 bprm->file = file;
1724 if (fd == AT_FDCWD || filename->name[0] == '/') {
1725 bprm->filename = filename->name;
1726 } else {
1727 if (filename->name[0] == '\0')
1728 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1729 else
1730 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1731 fd, filename->name);
1732 if (!pathbuf) {
1733 retval = -ENOMEM;
1734 goto out_unmark;
1735 }
1736 /*
1737 * Record that a name derived from an O_CLOEXEC fd will be
1738 * inaccessible after exec. Relies on having exclusive access to
1739 * current->files (due to unshare_files above).
1740 */
1741 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1742 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1743 bprm->filename = pathbuf;
1744 }
1745 bprm->interp = bprm->filename;
1746
1747 retval = bprm_mm_init(bprm);
1748 if (retval)
1749 goto out_unmark;
1750
1751 bprm->argc = count(argv, MAX_ARG_STRINGS);
1752 if ((retval = bprm->argc) < 0)
1753 goto out;
1754
1755 bprm->envc = count(envp, MAX_ARG_STRINGS);
1756 if ((retval = bprm->envc) < 0)
1757 goto out;
1758
1759 retval = prepare_binprm(bprm);
1760 if (retval < 0)
1761 goto out;
1762
1763 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1764 if (retval < 0)
1765 goto out;
1766
1767 bprm->exec = bprm->p;
1768 retval = copy_strings(bprm->envc, envp, bprm);
1769 if (retval < 0)
1770 goto out;
1771
1772 retval = copy_strings(bprm->argc, argv, bprm);
1773 if (retval < 0)
1774 goto out;
1775
1776 would_dump(bprm, bprm->file);
1777
1778 retval = exec_binprm(bprm);
1779 if (retval < 0)
1780 goto out;
1781
1782 /* execve succeeded */
1783 current->fs->in_exec = 0;
1784 current->in_execve = 0;
1785 acct_update_integrals(current);
1786 task_numa_free(current);
1787 free_bprm(bprm);
1788 kfree(pathbuf);
1789 putname(filename);
1790 if (displaced)
1791 put_files_struct(displaced);
1792 return retval;
1793
1794 out:
1795 if (bprm->mm) {
1796 acct_arg_size(bprm, 0);
1797 mmput(bprm->mm);
1798 }
1799
1800 out_unmark:
1801 current->fs->in_exec = 0;
1802 current->in_execve = 0;
1803
1804 out_free:
1805 free_bprm(bprm);
1806 kfree(pathbuf);
1807
1808 out_files:
1809 if (displaced)
1810 reset_files_struct(displaced);
1811 out_ret:
1812 putname(filename);
1813 return retval;
1814 }
1815
1816 int do_execve(struct filename *filename,
1817 const char __user *const __user *__argv,
1818 const char __user *const __user *__envp)
1819 {
1820 struct user_arg_ptr argv = { .ptr.native = __argv };
1821 struct user_arg_ptr envp = { .ptr.native = __envp };
1822 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1823 }
1824
1825 int do_execveat(int fd, struct filename *filename,
1826 const char __user *const __user *__argv,
1827 const char __user *const __user *__envp,
1828 int flags)
1829 {
1830 struct user_arg_ptr argv = { .ptr.native = __argv };
1831 struct user_arg_ptr envp = { .ptr.native = __envp };
1832
1833 return do_execveat_common(fd, filename, argv, envp, flags);
1834 }
1835
1836 #ifdef CONFIG_COMPAT
1837 static int compat_do_execve(struct filename *filename,
1838 const compat_uptr_t __user *__argv,
1839 const compat_uptr_t __user *__envp)
1840 {
1841 struct user_arg_ptr argv = {
1842 .is_compat = true,
1843 .ptr.compat = __argv,
1844 };
1845 struct user_arg_ptr envp = {
1846 .is_compat = true,
1847 .ptr.compat = __envp,
1848 };
1849 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1850 }
1851
1852 static int compat_do_execveat(int fd, struct filename *filename,
1853 const compat_uptr_t __user *__argv,
1854 const compat_uptr_t __user *__envp,
1855 int flags)
1856 {
1857 struct user_arg_ptr argv = {
1858 .is_compat = true,
1859 .ptr.compat = __argv,
1860 };
1861 struct user_arg_ptr envp = {
1862 .is_compat = true,
1863 .ptr.compat = __envp,
1864 };
1865 return do_execveat_common(fd, filename, argv, envp, flags);
1866 }
1867 #endif
1868
1869 void set_binfmt(struct linux_binfmt *new)
1870 {
1871 struct mm_struct *mm = current->mm;
1872
1873 if (mm->binfmt)
1874 module_put(mm->binfmt->module);
1875
1876 mm->binfmt = new;
1877 if (new)
1878 __module_get(new->module);
1879 }
1880 EXPORT_SYMBOL(set_binfmt);
1881
1882 /*
1883 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1884 */
1885 void set_dumpable(struct mm_struct *mm, int value)
1886 {
1887 unsigned long old, new;
1888
1889 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1890 return;
1891
1892 do {
1893 old = ACCESS_ONCE(mm->flags);
1894 new = (old & ~MMF_DUMPABLE_MASK) | value;
1895 } while (cmpxchg(&mm->flags, old, new) != old);
1896 }
1897
1898 SYSCALL_DEFINE3(execve,
1899 const char __user *, filename,
1900 const char __user *const __user *, argv,
1901 const char __user *const __user *, envp)
1902 {
1903 return do_execve(getname(filename), argv, envp);
1904 }
1905
1906 SYSCALL_DEFINE5(execveat,
1907 int, fd, const char __user *, filename,
1908 const char __user *const __user *, argv,
1909 const char __user *const __user *, envp,
1910 int, flags)
1911 {
1912 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1913
1914 return do_execveat(fd,
1915 getname_flags(filename, lookup_flags, NULL),
1916 argv, envp, flags);
1917 }
1918
1919 #ifdef CONFIG_COMPAT
1920 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1921 const compat_uptr_t __user *, argv,
1922 const compat_uptr_t __user *, envp)
1923 {
1924 return compat_do_execve(getname(filename), argv, envp);
1925 }
1926
1927 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1928 const char __user *, filename,
1929 const compat_uptr_t __user *, argv,
1930 const compat_uptr_t __user *, envp,
1931 int, flags)
1932 {
1933 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1934
1935 return compat_do_execveat(fd,
1936 getname_flags(filename, lookup_flags, NULL),
1937 argv, envp, flags);
1938 }
1939 #endif