]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/super.c
bcm2835-v4l2: Fix buffer overflow problem
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <linux/uaccess.h>
42 #include <linux/user_namespace.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct ext4_lazy_init *ext4_li_info;
58 static struct mutex ext4_li_mtx;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82 static struct inode *ext4_get_journal_inode(struct super_block *sb,
83 unsigned int journal_inum);
84
85 /*
86 * Lock ordering
87 *
88 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
89 * i_mmap_rwsem (inode->i_mmap_rwsem)!
90 *
91 * page fault path:
92 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
93 * page lock -> i_data_sem (rw)
94 *
95 * buffered write path:
96 * sb_start_write -> i_mutex -> mmap_sem
97 * sb_start_write -> i_mutex -> transaction start -> page lock ->
98 * i_data_sem (rw)
99 *
100 * truncate:
101 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
102 * i_mmap_rwsem (w) -> page lock
103 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
104 * transaction start -> i_data_sem (rw)
105 *
106 * direct IO:
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
109 * transaction start -> i_data_sem (rw)
110 *
111 * writepages:
112 * transaction start -> page lock(s) -> i_data_sem (rw)
113 */
114
115 static bool userns_mounts = false;
116 module_param(userns_mounts, bool, 0644);
117 MODULE_PARM_DESC(userns_mounts, "Allow mounts from unprivileged user namespaces");
118
119 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
120 static struct file_system_type ext2_fs_type = {
121 .owner = THIS_MODULE,
122 .name = "ext2",
123 .mount = ext4_mount,
124 .kill_sb = kill_block_super,
125 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
126 };
127 MODULE_ALIAS_FS("ext2");
128 MODULE_ALIAS("ext2");
129 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
130 #else
131 #define IS_EXT2_SB(sb) (0)
132 #endif
133
134
135 static struct file_system_type ext3_fs_type = {
136 .owner = THIS_MODULE,
137 .name = "ext3",
138 .mount = ext4_mount,
139 .kill_sb = kill_block_super,
140 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
141 };
142 MODULE_ALIAS_FS("ext3");
143 MODULE_ALIAS("ext3");
144 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145
146 static int ext4_verify_csum_type(struct super_block *sb,
147 struct ext4_super_block *es)
148 {
149 if (!ext4_has_feature_metadata_csum(sb))
150 return 1;
151
152 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
153 }
154
155 static __le32 ext4_superblock_csum(struct super_block *sb,
156 struct ext4_super_block *es)
157 {
158 struct ext4_sb_info *sbi = EXT4_SB(sb);
159 int offset = offsetof(struct ext4_super_block, s_checksum);
160 __u32 csum;
161
162 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
163
164 return cpu_to_le32(csum);
165 }
166
167 static int ext4_superblock_csum_verify(struct super_block *sb,
168 struct ext4_super_block *es)
169 {
170 if (!ext4_has_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum == ext4_superblock_csum(sb, es);
174 }
175
176 void ext4_superblock_csum_set(struct super_block *sb)
177 {
178 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
179
180 if (!ext4_has_metadata_csum(sb))
181 return;
182
183 es->s_checksum = ext4_superblock_csum(sb, es);
184 }
185
186 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 {
188 void *ret;
189
190 ret = kmalloc(size, flags | __GFP_NOWARN);
191 if (!ret)
192 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 return ret;
194 }
195
196 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 {
198 void *ret;
199
200 ret = kzalloc(size, flags | __GFP_NOWARN);
201 if (!ret)
202 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 return ret;
204 }
205
206 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
207 struct ext4_group_desc *bg)
208 {
209 return le32_to_cpu(bg->bg_block_bitmap_lo) |
210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
211 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
212 }
213
214 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
215 struct ext4_group_desc *bg)
216 {
217 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
219 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
220 }
221
222 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
223 struct ext4_group_desc *bg)
224 {
225 return le32_to_cpu(bg->bg_inode_table_lo) |
226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
227 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
228 }
229
230 __u32 ext4_free_group_clusters(struct super_block *sb,
231 struct ext4_group_desc *bg)
232 {
233 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
235 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
236 }
237
238 __u32 ext4_free_inodes_count(struct super_block *sb,
239 struct ext4_group_desc *bg)
240 {
241 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
243 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
244 }
245
246 __u32 ext4_used_dirs_count(struct super_block *sb,
247 struct ext4_group_desc *bg)
248 {
249 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
250 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
251 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
252 }
253
254 __u32 ext4_itable_unused_count(struct super_block *sb,
255 struct ext4_group_desc *bg)
256 {
257 return le16_to_cpu(bg->bg_itable_unused_lo) |
258 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
259 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
260 }
261
262 void ext4_block_bitmap_set(struct super_block *sb,
263 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 {
265 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
267 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
268 }
269
270 void ext4_inode_bitmap_set(struct super_block *sb,
271 struct ext4_group_desc *bg, ext4_fsblk_t blk)
272 {
273 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
275 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
276 }
277
278 void ext4_inode_table_set(struct super_block *sb,
279 struct ext4_group_desc *bg, ext4_fsblk_t blk)
280 {
281 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
283 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
284 }
285
286 void ext4_free_group_clusters_set(struct super_block *sb,
287 struct ext4_group_desc *bg, __u32 count)
288 {
289 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
291 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
292 }
293
294 void ext4_free_inodes_set(struct super_block *sb,
295 struct ext4_group_desc *bg, __u32 count)
296 {
297 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
299 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
300 }
301
302 void ext4_used_dirs_set(struct super_block *sb,
303 struct ext4_group_desc *bg, __u32 count)
304 {
305 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
306 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
307 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
308 }
309
310 void ext4_itable_unused_set(struct super_block *sb,
311 struct ext4_group_desc *bg, __u32 count)
312 {
313 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
314 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
315 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 }
317
318
319 static void __save_error_info(struct super_block *sb, const char *func,
320 unsigned int line)
321 {
322 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
323
324 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
325 if (bdev_read_only(sb->s_bdev))
326 return;
327 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
328 es->s_last_error_time = cpu_to_le32(get_seconds());
329 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
330 es->s_last_error_line = cpu_to_le32(line);
331 if (!es->s_first_error_time) {
332 es->s_first_error_time = es->s_last_error_time;
333 strncpy(es->s_first_error_func, func,
334 sizeof(es->s_first_error_func));
335 es->s_first_error_line = cpu_to_le32(line);
336 es->s_first_error_ino = es->s_last_error_ino;
337 es->s_first_error_block = es->s_last_error_block;
338 }
339 /*
340 * Start the daily error reporting function if it hasn't been
341 * started already
342 */
343 if (!es->s_error_count)
344 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
345 le32_add_cpu(&es->s_error_count, 1);
346 }
347
348 static void save_error_info(struct super_block *sb, const char *func,
349 unsigned int line)
350 {
351 __save_error_info(sb, func, line);
352 ext4_commit_super(sb, 1);
353 }
354
355 /*
356 * The del_gendisk() function uninitializes the disk-specific data
357 * structures, including the bdi structure, without telling anyone
358 * else. Once this happens, any attempt to call mark_buffer_dirty()
359 * (for example, by ext4_commit_super), will cause a kernel OOPS.
360 * This is a kludge to prevent these oops until we can put in a proper
361 * hook in del_gendisk() to inform the VFS and file system layers.
362 */
363 static int block_device_ejected(struct super_block *sb)
364 {
365 struct inode *bd_inode = sb->s_bdev->bd_inode;
366 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
367
368 return bdi->dev == NULL;
369 }
370
371 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
372 {
373 struct super_block *sb = journal->j_private;
374 struct ext4_sb_info *sbi = EXT4_SB(sb);
375 int error = is_journal_aborted(journal);
376 struct ext4_journal_cb_entry *jce;
377
378 BUG_ON(txn->t_state == T_FINISHED);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 if (sb->s_flags & MS_RDONLY)
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434 }
435
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442 {
443 struct va_format vaf;
444 va_list args;
445
446 if (ext4_error_ratelimit(sb)) {
447 va_start(args, fmt);
448 vaf.fmt = fmt;
449 vaf.va = &args;
450 printk(KERN_CRIT
451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
452 sb->s_id, function, line, current->comm, &vaf);
453 va_end(args);
454 }
455 save_error_info(sb, function, line);
456 ext4_handle_error(sb);
457 }
458
459 void __ext4_error_inode(struct inode *inode, const char *function,
460 unsigned int line, ext4_fsblk_t block,
461 const char *fmt, ...)
462 {
463 va_list args;
464 struct va_format vaf;
465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
466
467 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
468 es->s_last_error_block = cpu_to_le64(block);
469 if (ext4_error_ratelimit(inode->i_sb)) {
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: block %llu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 block, current->comm, &vaf);
478 else
479 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
480 "inode #%lu: comm %s: %pV\n",
481 inode->i_sb->s_id, function, line, inode->i_ino,
482 current->comm, &vaf);
483 va_end(args);
484 }
485 save_error_info(inode->i_sb, function, line);
486 ext4_handle_error(inode->i_sb);
487 }
488
489 void __ext4_error_file(struct file *file, const char *function,
490 unsigned int line, ext4_fsblk_t block,
491 const char *fmt, ...)
492 {
493 va_list args;
494 struct va_format vaf;
495 struct ext4_super_block *es;
496 struct inode *inode = file_inode(file);
497 char pathname[80], *path;
498
499 es = EXT4_SB(inode->i_sb)->s_es;
500 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
501 if (ext4_error_ratelimit(inode->i_sb)) {
502 path = file_path(file, pathname, sizeof(pathname));
503 if (IS_ERR(path))
504 path = "(unknown)";
505 va_start(args, fmt);
506 vaf.fmt = fmt;
507 vaf.va = &args;
508 if (block)
509 printk(KERN_CRIT
510 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
511 "block %llu: comm %s: path %s: %pV\n",
512 inode->i_sb->s_id, function, line, inode->i_ino,
513 block, current->comm, path, &vaf);
514 else
515 printk(KERN_CRIT
516 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
517 "comm %s: path %s: %pV\n",
518 inode->i_sb->s_id, function, line, inode->i_ino,
519 current->comm, path, &vaf);
520 va_end(args);
521 }
522 save_error_info(inode->i_sb, function, line);
523 ext4_handle_error(inode->i_sb);
524 }
525
526 const char *ext4_decode_error(struct super_block *sb, int errno,
527 char nbuf[16])
528 {
529 char *errstr = NULL;
530
531 switch (errno) {
532 case -EFSCORRUPTED:
533 errstr = "Corrupt filesystem";
534 break;
535 case -EFSBADCRC:
536 errstr = "Filesystem failed CRC";
537 break;
538 case -EIO:
539 errstr = "IO failure";
540 break;
541 case -ENOMEM:
542 errstr = "Out of memory";
543 break;
544 case -EROFS:
545 if (!sb || (EXT4_SB(sb)->s_journal &&
546 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
547 errstr = "Journal has aborted";
548 else
549 errstr = "Readonly filesystem";
550 break;
551 default:
552 /* If the caller passed in an extra buffer for unknown
553 * errors, textualise them now. Else we just return
554 * NULL. */
555 if (nbuf) {
556 /* Check for truncated error codes... */
557 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
558 errstr = nbuf;
559 }
560 break;
561 }
562
563 return errstr;
564 }
565
566 /* __ext4_std_error decodes expected errors from journaling functions
567 * automatically and invokes the appropriate error response. */
568
569 void __ext4_std_error(struct super_block *sb, const char *function,
570 unsigned int line, int errno)
571 {
572 char nbuf[16];
573 const char *errstr;
574
575 /* Special case: if the error is EROFS, and we're not already
576 * inside a transaction, then there's really no point in logging
577 * an error. */
578 if (errno == -EROFS && journal_current_handle() == NULL &&
579 (sb->s_flags & MS_RDONLY))
580 return;
581
582 if (ext4_error_ratelimit(sb)) {
583 errstr = ext4_decode_error(sb, errno, nbuf);
584 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
585 sb->s_id, function, line, errstr);
586 }
587
588 save_error_info(sb, function, line);
589 ext4_handle_error(sb);
590 }
591
592 /*
593 * ext4_abort is a much stronger failure handler than ext4_error. The
594 * abort function may be used to deal with unrecoverable failures such
595 * as journal IO errors or ENOMEM at a critical moment in log management.
596 *
597 * We unconditionally force the filesystem into an ABORT|READONLY state,
598 * unless the error response on the fs has been set to panic in which
599 * case we take the easy way out and panic immediately.
600 */
601
602 void __ext4_abort(struct super_block *sb, const char *function,
603 unsigned int line, const char *fmt, ...)
604 {
605 struct va_format vaf;
606 va_list args;
607
608 save_error_info(sb, function, line);
609 va_start(args, fmt);
610 vaf.fmt = fmt;
611 vaf.va = &args;
612 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
613 sb->s_id, function, line, &vaf);
614 va_end(args);
615
616 if ((sb->s_flags & MS_RDONLY) == 0) {
617 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
618 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
619 /*
620 * Make sure updated value of ->s_mount_flags will be visible
621 * before ->s_flags update
622 */
623 smp_wmb();
624 sb->s_flags |= MS_RDONLY;
625 if (EXT4_SB(sb)->s_journal)
626 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
627 save_error_info(sb, function, line);
628 }
629 if (test_opt(sb, ERRORS_PANIC)) {
630 if (EXT4_SB(sb)->s_journal &&
631 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
632 return;
633 panic("EXT4-fs panic from previous error\n");
634 }
635 }
636
637 void __ext4_msg(struct super_block *sb,
638 const char *prefix, const char *fmt, ...)
639 {
640 struct va_format vaf;
641 va_list args;
642
643 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
644 return;
645
646 va_start(args, fmt);
647 vaf.fmt = fmt;
648 vaf.va = &args;
649 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
650 va_end(args);
651 }
652
653 #define ext4_warning_ratelimit(sb) \
654 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
655 "EXT4-fs warning")
656
657 void __ext4_warning(struct super_block *sb, const char *function,
658 unsigned int line, const char *fmt, ...)
659 {
660 struct va_format vaf;
661 va_list args;
662
663 if (!ext4_warning_ratelimit(sb))
664 return;
665
666 va_start(args, fmt);
667 vaf.fmt = fmt;
668 vaf.va = &args;
669 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
670 sb->s_id, function, line, &vaf);
671 va_end(args);
672 }
673
674 void __ext4_warning_inode(const struct inode *inode, const char *function,
675 unsigned int line, const char *fmt, ...)
676 {
677 struct va_format vaf;
678 va_list args;
679
680 if (!ext4_warning_ratelimit(inode->i_sb))
681 return;
682
683 va_start(args, fmt);
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
687 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
688 function, line, inode->i_ino, current->comm, &vaf);
689 va_end(args);
690 }
691
692 void __ext4_grp_locked_error(const char *function, unsigned int line,
693 struct super_block *sb, ext4_group_t grp,
694 unsigned long ino, ext4_fsblk_t block,
695 const char *fmt, ...)
696 __releases(bitlock)
697 __acquires(bitlock)
698 {
699 struct va_format vaf;
700 va_list args;
701 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
702
703 es->s_last_error_ino = cpu_to_le32(ino);
704 es->s_last_error_block = cpu_to_le64(block);
705 __save_error_info(sb, function, line);
706
707 if (ext4_error_ratelimit(sb)) {
708 va_start(args, fmt);
709 vaf.fmt = fmt;
710 vaf.va = &args;
711 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
712 sb->s_id, function, line, grp);
713 if (ino)
714 printk(KERN_CONT "inode %lu: ", ino);
715 if (block)
716 printk(KERN_CONT "block %llu:",
717 (unsigned long long) block);
718 printk(KERN_CONT "%pV\n", &vaf);
719 va_end(args);
720 }
721
722 if (test_opt(sb, ERRORS_CONT)) {
723 ext4_commit_super(sb, 0);
724 return;
725 }
726
727 ext4_unlock_group(sb, grp);
728 ext4_handle_error(sb);
729 /*
730 * We only get here in the ERRORS_RO case; relocking the group
731 * may be dangerous, but nothing bad will happen since the
732 * filesystem will have already been marked read/only and the
733 * journal has been aborted. We return 1 as a hint to callers
734 * who might what to use the return value from
735 * ext4_grp_locked_error() to distinguish between the
736 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
737 * aggressively from the ext4 function in question, with a
738 * more appropriate error code.
739 */
740 ext4_lock_group(sb, grp);
741 return;
742 }
743
744 void ext4_update_dynamic_rev(struct super_block *sb)
745 {
746 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
747
748 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
749 return;
750
751 ext4_warning(sb,
752 "updating to rev %d because of new feature flag, "
753 "running e2fsck is recommended",
754 EXT4_DYNAMIC_REV);
755
756 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
757 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
758 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
759 /* leave es->s_feature_*compat flags alone */
760 /* es->s_uuid will be set by e2fsck if empty */
761
762 /*
763 * The rest of the superblock fields should be zero, and if not it
764 * means they are likely already in use, so leave them alone. We
765 * can leave it up to e2fsck to clean up any inconsistencies there.
766 */
767 }
768
769 /*
770 * Open the external journal device
771 */
772 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
773 {
774 struct block_device *bdev;
775 char b[BDEVNAME_SIZE];
776
777 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
778 if (IS_ERR(bdev))
779 goto fail;
780 return bdev;
781
782 fail:
783 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
784 __bdevname(dev, b), PTR_ERR(bdev));
785 return NULL;
786 }
787
788 /*
789 * Release the journal device
790 */
791 static void ext4_blkdev_put(struct block_device *bdev)
792 {
793 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
794 }
795
796 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
797 {
798 struct block_device *bdev;
799 bdev = sbi->journal_bdev;
800 if (bdev) {
801 ext4_blkdev_put(bdev);
802 sbi->journal_bdev = NULL;
803 }
804 }
805
806 static inline struct inode *orphan_list_entry(struct list_head *l)
807 {
808 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
809 }
810
811 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
812 {
813 struct list_head *l;
814
815 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
816 le32_to_cpu(sbi->s_es->s_last_orphan));
817
818 printk(KERN_ERR "sb_info orphan list:\n");
819 list_for_each(l, &sbi->s_orphan) {
820 struct inode *inode = orphan_list_entry(l);
821 printk(KERN_ERR " "
822 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
823 inode->i_sb->s_id, inode->i_ino, inode,
824 inode->i_mode, inode->i_nlink,
825 NEXT_ORPHAN(inode));
826 }
827 }
828
829 static void ext4_put_super(struct super_block *sb)
830 {
831 struct ext4_sb_info *sbi = EXT4_SB(sb);
832 struct ext4_super_block *es = sbi->s_es;
833 int aborted = 0;
834 int i, err;
835
836 ext4_unregister_li_request(sb);
837 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
838
839 flush_workqueue(sbi->rsv_conversion_wq);
840 destroy_workqueue(sbi->rsv_conversion_wq);
841
842 if (sbi->s_journal) {
843 aborted = is_journal_aborted(sbi->s_journal);
844 err = jbd2_journal_destroy(sbi->s_journal);
845 sbi->s_journal = NULL;
846 if ((err < 0) && !aborted)
847 ext4_abort(sb, "Couldn't clean up the journal");
848 }
849
850 ext4_unregister_sysfs(sb);
851 ext4_es_unregister_shrinker(sbi);
852 del_timer_sync(&sbi->s_err_report);
853 ext4_release_system_zone(sb);
854 ext4_mb_release(sb);
855 ext4_ext_release(sb);
856
857 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
858 ext4_clear_feature_journal_needs_recovery(sb);
859 es->s_state = cpu_to_le16(sbi->s_mount_state);
860 }
861 if (!(sb->s_flags & MS_RDONLY))
862 ext4_commit_super(sb, 1);
863
864 for (i = 0; i < sbi->s_gdb_count; i++)
865 brelse(sbi->s_group_desc[i]);
866 kvfree(sbi->s_group_desc);
867 kvfree(sbi->s_flex_groups);
868 percpu_counter_destroy(&sbi->s_freeclusters_counter);
869 percpu_counter_destroy(&sbi->s_freeinodes_counter);
870 percpu_counter_destroy(&sbi->s_dirs_counter);
871 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
872 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
873 #ifdef CONFIG_QUOTA
874 for (i = 0; i < EXT4_MAXQUOTAS; i++)
875 kfree(sbi->s_qf_names[i]);
876 #endif
877
878 /* Debugging code just in case the in-memory inode orphan list
879 * isn't empty. The on-disk one can be non-empty if we've
880 * detected an error and taken the fs readonly, but the
881 * in-memory list had better be clean by this point. */
882 if (!list_empty(&sbi->s_orphan))
883 dump_orphan_list(sb, sbi);
884 J_ASSERT(list_empty(&sbi->s_orphan));
885
886 sync_blockdev(sb->s_bdev);
887 invalidate_bdev(sb->s_bdev);
888 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
889 /*
890 * Invalidate the journal device's buffers. We don't want them
891 * floating about in memory - the physical journal device may
892 * hotswapped, and it breaks the `ro-after' testing code.
893 */
894 sync_blockdev(sbi->journal_bdev);
895 invalidate_bdev(sbi->journal_bdev);
896 ext4_blkdev_remove(sbi);
897 }
898 if (sbi->s_mb_cache) {
899 ext4_xattr_destroy_cache(sbi->s_mb_cache);
900 sbi->s_mb_cache = NULL;
901 }
902 if (sbi->s_mmp_tsk)
903 kthread_stop(sbi->s_mmp_tsk);
904 brelse(sbi->s_sbh);
905 sb->s_fs_info = NULL;
906 /*
907 * Now that we are completely done shutting down the
908 * superblock, we need to actually destroy the kobject.
909 */
910 kobject_put(&sbi->s_kobj);
911 wait_for_completion(&sbi->s_kobj_unregister);
912 if (sbi->s_chksum_driver)
913 crypto_free_shash(sbi->s_chksum_driver);
914 kfree(sbi->s_blockgroup_lock);
915 kfree(sbi);
916 }
917
918 static struct kmem_cache *ext4_inode_cachep;
919
920 /*
921 * Called inside transaction, so use GFP_NOFS
922 */
923 static struct inode *ext4_alloc_inode(struct super_block *sb)
924 {
925 struct ext4_inode_info *ei;
926
927 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
928 if (!ei)
929 return NULL;
930
931 ei->vfs_inode.i_version = 1;
932 spin_lock_init(&ei->i_raw_lock);
933 INIT_LIST_HEAD(&ei->i_prealloc_list);
934 spin_lock_init(&ei->i_prealloc_lock);
935 ext4_es_init_tree(&ei->i_es_tree);
936 rwlock_init(&ei->i_es_lock);
937 INIT_LIST_HEAD(&ei->i_es_list);
938 ei->i_es_all_nr = 0;
939 ei->i_es_shk_nr = 0;
940 ei->i_es_shrink_lblk = 0;
941 ei->i_reserved_data_blocks = 0;
942 ei->i_reserved_meta_blocks = 0;
943 ei->i_allocated_meta_blocks = 0;
944 ei->i_da_metadata_calc_len = 0;
945 ei->i_da_metadata_calc_last_lblock = 0;
946 spin_lock_init(&(ei->i_block_reservation_lock));
947 #ifdef CONFIG_QUOTA
948 ei->i_reserved_quota = 0;
949 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
950 #endif
951 ei->jinode = NULL;
952 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
953 spin_lock_init(&ei->i_completed_io_lock);
954 ei->i_sync_tid = 0;
955 ei->i_datasync_tid = 0;
956 atomic_set(&ei->i_unwritten, 0);
957 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
958 return &ei->vfs_inode;
959 }
960
961 static int ext4_drop_inode(struct inode *inode)
962 {
963 int drop = generic_drop_inode(inode);
964
965 trace_ext4_drop_inode(inode, drop);
966 return drop;
967 }
968
969 static void ext4_i_callback(struct rcu_head *head)
970 {
971 struct inode *inode = container_of(head, struct inode, i_rcu);
972 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
973 }
974
975 static void ext4_destroy_inode(struct inode *inode)
976 {
977 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
978 ext4_msg(inode->i_sb, KERN_ERR,
979 "Inode %lu (%p): orphan list check failed!",
980 inode->i_ino, EXT4_I(inode));
981 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
982 EXT4_I(inode), sizeof(struct ext4_inode_info),
983 true);
984 dump_stack();
985 }
986 call_rcu(&inode->i_rcu, ext4_i_callback);
987 }
988
989 static void init_once(void *foo)
990 {
991 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
992
993 INIT_LIST_HEAD(&ei->i_orphan);
994 init_rwsem(&ei->xattr_sem);
995 init_rwsem(&ei->i_data_sem);
996 init_rwsem(&ei->i_mmap_sem);
997 inode_init_once(&ei->vfs_inode);
998 }
999
1000 static int __init init_inodecache(void)
1001 {
1002 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1003 sizeof(struct ext4_inode_info),
1004 0, (SLAB_RECLAIM_ACCOUNT|
1005 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1006 init_once);
1007 if (ext4_inode_cachep == NULL)
1008 return -ENOMEM;
1009 return 0;
1010 }
1011
1012 static void destroy_inodecache(void)
1013 {
1014 /*
1015 * Make sure all delayed rcu free inodes are flushed before we
1016 * destroy cache.
1017 */
1018 rcu_barrier();
1019 kmem_cache_destroy(ext4_inode_cachep);
1020 }
1021
1022 void ext4_clear_inode(struct inode *inode)
1023 {
1024 invalidate_inode_buffers(inode);
1025 clear_inode(inode);
1026 dquot_drop(inode);
1027 ext4_discard_preallocations(inode);
1028 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1029 if (EXT4_I(inode)->jinode) {
1030 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1031 EXT4_I(inode)->jinode);
1032 jbd2_free_inode(EXT4_I(inode)->jinode);
1033 EXT4_I(inode)->jinode = NULL;
1034 }
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 fscrypt_put_encryption_info(inode, NULL);
1037 #endif
1038 }
1039
1040 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1041 u64 ino, u32 generation)
1042 {
1043 struct inode *inode;
1044
1045 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1046 return ERR_PTR(-ESTALE);
1047 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1048 return ERR_PTR(-ESTALE);
1049
1050 /* iget isn't really right if the inode is currently unallocated!!
1051 *
1052 * ext4_read_inode will return a bad_inode if the inode had been
1053 * deleted, so we should be safe.
1054 *
1055 * Currently we don't know the generation for parent directory, so
1056 * a generation of 0 means "accept any"
1057 */
1058 inode = ext4_iget_normal(sb, ino);
1059 if (IS_ERR(inode))
1060 return ERR_CAST(inode);
1061 if (generation && inode->i_generation != generation) {
1062 iput(inode);
1063 return ERR_PTR(-ESTALE);
1064 }
1065
1066 return inode;
1067 }
1068
1069 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071 {
1072 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074 }
1075
1076 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1077 int fh_len, int fh_type)
1078 {
1079 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1080 ext4_nfs_get_inode);
1081 }
1082
1083 /*
1084 * Try to release metadata pages (indirect blocks, directories) which are
1085 * mapped via the block device. Since these pages could have journal heads
1086 * which would prevent try_to_free_buffers() from freeing them, we must use
1087 * jbd2 layer's try_to_free_buffers() function to release them.
1088 */
1089 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1090 gfp_t wait)
1091 {
1092 journal_t *journal = EXT4_SB(sb)->s_journal;
1093
1094 WARN_ON(PageChecked(page));
1095 if (!page_has_buffers(page))
1096 return 0;
1097 if (journal)
1098 return jbd2_journal_try_to_free_buffers(journal, page,
1099 wait & ~__GFP_DIRECT_RECLAIM);
1100 return try_to_free_buffers(page);
1101 }
1102
1103 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1104 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1105 {
1106 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1107 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1108 }
1109
1110 static int ext4_key_prefix(struct inode *inode, u8 **key)
1111 {
1112 *key = EXT4_SB(inode->i_sb)->key_prefix;
1113 return EXT4_SB(inode->i_sb)->key_prefix_size;
1114 }
1115
1116 static int ext4_prepare_context(struct inode *inode)
1117 {
1118 return ext4_convert_inline_data(inode);
1119 }
1120
1121 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1122 void *fs_data)
1123 {
1124 handle_t *handle = fs_data;
1125 int res, res2, retries = 0;
1126
1127 /*
1128 * If a journal handle was specified, then the encryption context is
1129 * being set on a new inode via inheritance and is part of a larger
1130 * transaction to create the inode. Otherwise the encryption context is
1131 * being set on an existing inode in its own transaction. Only in the
1132 * latter case should the "retry on ENOSPC" logic be used.
1133 */
1134
1135 if (handle) {
1136 res = ext4_xattr_set_handle(handle, inode,
1137 EXT4_XATTR_INDEX_ENCRYPTION,
1138 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1139 ctx, len, 0);
1140 if (!res) {
1141 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1142 ext4_clear_inode_state(inode,
1143 EXT4_STATE_MAY_INLINE_DATA);
1144 /*
1145 * Update inode->i_flags - e.g. S_DAX may get disabled
1146 */
1147 ext4_set_inode_flags(inode);
1148 }
1149 return res;
1150 }
1151
1152 retry:
1153 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1154 ext4_jbd2_credits_xattr(inode));
1155 if (IS_ERR(handle))
1156 return PTR_ERR(handle);
1157
1158 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1159 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1160 ctx, len, 0);
1161 if (!res) {
1162 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1163 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1164 ext4_set_inode_flags(inode);
1165 res = ext4_mark_inode_dirty(handle, inode);
1166 if (res)
1167 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1168 }
1169 res2 = ext4_journal_stop(handle);
1170
1171 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1172 goto retry;
1173 if (!res)
1174 res = res2;
1175 return res;
1176 }
1177
1178 static int ext4_dummy_context(struct inode *inode)
1179 {
1180 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1181 }
1182
1183 static unsigned ext4_max_namelen(struct inode *inode)
1184 {
1185 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1186 EXT4_NAME_LEN;
1187 }
1188
1189 static struct fscrypt_operations ext4_cryptops = {
1190 .get_context = ext4_get_context,
1191 .key_prefix = ext4_key_prefix,
1192 .prepare_context = ext4_prepare_context,
1193 .set_context = ext4_set_context,
1194 .dummy_context = ext4_dummy_context,
1195 .is_encrypted = ext4_encrypted_inode,
1196 .empty_dir = ext4_empty_dir,
1197 .max_namelen = ext4_max_namelen,
1198 };
1199 #else
1200 static struct fscrypt_operations ext4_cryptops = {
1201 .is_encrypted = ext4_encrypted_inode,
1202 };
1203 #endif
1204
1205 #ifdef CONFIG_QUOTA
1206 static char *quotatypes[] = INITQFNAMES;
1207 #define QTYPE2NAME(t) (quotatypes[t])
1208
1209 static int ext4_write_dquot(struct dquot *dquot);
1210 static int ext4_acquire_dquot(struct dquot *dquot);
1211 static int ext4_release_dquot(struct dquot *dquot);
1212 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1213 static int ext4_write_info(struct super_block *sb, int type);
1214 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1215 const struct path *path);
1216 static int ext4_quota_off(struct super_block *sb, int type);
1217 static int ext4_quota_on_mount(struct super_block *sb, int type);
1218 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1219 size_t len, loff_t off);
1220 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1221 const char *data, size_t len, loff_t off);
1222 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1223 unsigned int flags);
1224 static int ext4_enable_quotas(struct super_block *sb);
1225 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1226
1227 static struct dquot **ext4_get_dquots(struct inode *inode)
1228 {
1229 return EXT4_I(inode)->i_dquot;
1230 }
1231
1232 static const struct dquot_operations ext4_quota_operations = {
1233 .get_reserved_space = ext4_get_reserved_space,
1234 .write_dquot = ext4_write_dquot,
1235 .acquire_dquot = ext4_acquire_dquot,
1236 .release_dquot = ext4_release_dquot,
1237 .mark_dirty = ext4_mark_dquot_dirty,
1238 .write_info = ext4_write_info,
1239 .alloc_dquot = dquot_alloc,
1240 .destroy_dquot = dquot_destroy,
1241 .get_projid = ext4_get_projid,
1242 .get_next_id = ext4_get_next_id,
1243 };
1244
1245 static const struct quotactl_ops ext4_qctl_operations = {
1246 .quota_on = ext4_quota_on,
1247 .quota_off = ext4_quota_off,
1248 .quota_sync = dquot_quota_sync,
1249 .get_state = dquot_get_state,
1250 .set_info = dquot_set_dqinfo,
1251 .get_dqblk = dquot_get_dqblk,
1252 .set_dqblk = dquot_set_dqblk,
1253 .get_nextdqblk = dquot_get_next_dqblk,
1254 };
1255 #endif
1256
1257 static const struct super_operations ext4_sops = {
1258 .alloc_inode = ext4_alloc_inode,
1259 .destroy_inode = ext4_destroy_inode,
1260 .write_inode = ext4_write_inode,
1261 .dirty_inode = ext4_dirty_inode,
1262 .drop_inode = ext4_drop_inode,
1263 .evict_inode = ext4_evict_inode,
1264 .put_super = ext4_put_super,
1265 .sync_fs = ext4_sync_fs,
1266 .freeze_fs = ext4_freeze,
1267 .unfreeze_fs = ext4_unfreeze,
1268 .statfs = ext4_statfs,
1269 .remount_fs = ext4_remount,
1270 .show_options = ext4_show_options,
1271 #ifdef CONFIG_QUOTA
1272 .quota_read = ext4_quota_read,
1273 .quota_write = ext4_quota_write,
1274 .get_dquots = ext4_get_dquots,
1275 #endif
1276 .bdev_try_to_free_page = bdev_try_to_free_page,
1277 };
1278
1279 static const struct export_operations ext4_export_ops = {
1280 .fh_to_dentry = ext4_fh_to_dentry,
1281 .fh_to_parent = ext4_fh_to_parent,
1282 .get_parent = ext4_get_parent,
1283 };
1284
1285 enum {
1286 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1287 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1288 Opt_nouid32, Opt_debug, Opt_removed,
1289 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1290 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1291 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1292 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1293 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1294 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1295 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1296 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1297 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1298 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1299 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1300 Opt_lazytime, Opt_nolazytime,
1301 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1302 Opt_inode_readahead_blks, Opt_journal_ioprio,
1303 Opt_dioread_nolock, Opt_dioread_lock,
1304 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1305 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1306 };
1307
1308 static const match_table_t tokens = {
1309 {Opt_bsd_df, "bsddf"},
1310 {Opt_minix_df, "minixdf"},
1311 {Opt_grpid, "grpid"},
1312 {Opt_grpid, "bsdgroups"},
1313 {Opt_nogrpid, "nogrpid"},
1314 {Opt_nogrpid, "sysvgroups"},
1315 {Opt_resgid, "resgid=%u"},
1316 {Opt_resuid, "resuid=%u"},
1317 {Opt_sb, "sb=%u"},
1318 {Opt_err_cont, "errors=continue"},
1319 {Opt_err_panic, "errors=panic"},
1320 {Opt_err_ro, "errors=remount-ro"},
1321 {Opt_nouid32, "nouid32"},
1322 {Opt_debug, "debug"},
1323 {Opt_removed, "oldalloc"},
1324 {Opt_removed, "orlov"},
1325 {Opt_user_xattr, "user_xattr"},
1326 {Opt_nouser_xattr, "nouser_xattr"},
1327 {Opt_acl, "acl"},
1328 {Opt_noacl, "noacl"},
1329 {Opt_noload, "norecovery"},
1330 {Opt_noload, "noload"},
1331 {Opt_removed, "nobh"},
1332 {Opt_removed, "bh"},
1333 {Opt_commit, "commit=%u"},
1334 {Opt_min_batch_time, "min_batch_time=%u"},
1335 {Opt_max_batch_time, "max_batch_time=%u"},
1336 {Opt_journal_dev, "journal_dev=%u"},
1337 {Opt_journal_path, "journal_path=%s"},
1338 {Opt_journal_checksum, "journal_checksum"},
1339 {Opt_nojournal_checksum, "nojournal_checksum"},
1340 {Opt_journal_async_commit, "journal_async_commit"},
1341 {Opt_abort, "abort"},
1342 {Opt_data_journal, "data=journal"},
1343 {Opt_data_ordered, "data=ordered"},
1344 {Opt_data_writeback, "data=writeback"},
1345 {Opt_data_err_abort, "data_err=abort"},
1346 {Opt_data_err_ignore, "data_err=ignore"},
1347 {Opt_offusrjquota, "usrjquota="},
1348 {Opt_usrjquota, "usrjquota=%s"},
1349 {Opt_offgrpjquota, "grpjquota="},
1350 {Opt_grpjquota, "grpjquota=%s"},
1351 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1352 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1353 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1354 {Opt_grpquota, "grpquota"},
1355 {Opt_noquota, "noquota"},
1356 {Opt_quota, "quota"},
1357 {Opt_usrquota, "usrquota"},
1358 {Opt_prjquota, "prjquota"},
1359 {Opt_barrier, "barrier=%u"},
1360 {Opt_barrier, "barrier"},
1361 {Opt_nobarrier, "nobarrier"},
1362 {Opt_i_version, "i_version"},
1363 {Opt_dax, "dax"},
1364 {Opt_stripe, "stripe=%u"},
1365 {Opt_delalloc, "delalloc"},
1366 {Opt_lazytime, "lazytime"},
1367 {Opt_nolazytime, "nolazytime"},
1368 {Opt_nodelalloc, "nodelalloc"},
1369 {Opt_removed, "mblk_io_submit"},
1370 {Opt_removed, "nomblk_io_submit"},
1371 {Opt_block_validity, "block_validity"},
1372 {Opt_noblock_validity, "noblock_validity"},
1373 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1374 {Opt_journal_ioprio, "journal_ioprio=%u"},
1375 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1376 {Opt_auto_da_alloc, "auto_da_alloc"},
1377 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1378 {Opt_dioread_nolock, "dioread_nolock"},
1379 {Opt_dioread_lock, "dioread_lock"},
1380 {Opt_discard, "discard"},
1381 {Opt_nodiscard, "nodiscard"},
1382 {Opt_init_itable, "init_itable=%u"},
1383 {Opt_init_itable, "init_itable"},
1384 {Opt_noinit_itable, "noinit_itable"},
1385 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1386 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1387 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1388 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1389 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1390 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1391 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1392 {Opt_err, NULL},
1393 };
1394
1395 static ext4_fsblk_t get_sb_block(void **data)
1396 {
1397 ext4_fsblk_t sb_block;
1398 char *options = (char *) *data;
1399
1400 if (!options || strncmp(options, "sb=", 3) != 0)
1401 return 1; /* Default location */
1402
1403 options += 3;
1404 /* TODO: use simple_strtoll with >32bit ext4 */
1405 sb_block = simple_strtoul(options, &options, 0);
1406 if (*options && *options != ',') {
1407 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1408 (char *) *data);
1409 return 1;
1410 }
1411 if (*options == ',')
1412 options++;
1413 *data = (void *) options;
1414
1415 return sb_block;
1416 }
1417
1418 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1419 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1420 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1421
1422 #ifdef CONFIG_QUOTA
1423 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1424 {
1425 struct ext4_sb_info *sbi = EXT4_SB(sb);
1426 char *qname;
1427 int ret = -1;
1428
1429 if (sb_any_quota_loaded(sb) &&
1430 !sbi->s_qf_names[qtype]) {
1431 ext4_msg(sb, KERN_ERR,
1432 "Cannot change journaled "
1433 "quota options when quota turned on");
1434 return -1;
1435 }
1436 if (ext4_has_feature_quota(sb)) {
1437 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1438 "ignored when QUOTA feature is enabled");
1439 return 1;
1440 }
1441 qname = match_strdup(args);
1442 if (!qname) {
1443 ext4_msg(sb, KERN_ERR,
1444 "Not enough memory for storing quotafile name");
1445 return -1;
1446 }
1447 if (sbi->s_qf_names[qtype]) {
1448 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1449 ret = 1;
1450 else
1451 ext4_msg(sb, KERN_ERR,
1452 "%s quota file already specified",
1453 QTYPE2NAME(qtype));
1454 goto errout;
1455 }
1456 if (strchr(qname, '/')) {
1457 ext4_msg(sb, KERN_ERR,
1458 "quotafile must be on filesystem root");
1459 goto errout;
1460 }
1461 sbi->s_qf_names[qtype] = qname;
1462 set_opt(sb, QUOTA);
1463 return 1;
1464 errout:
1465 kfree(qname);
1466 return ret;
1467 }
1468
1469 static int clear_qf_name(struct super_block *sb, int qtype)
1470 {
1471
1472 struct ext4_sb_info *sbi = EXT4_SB(sb);
1473
1474 if (sb_any_quota_loaded(sb) &&
1475 sbi->s_qf_names[qtype]) {
1476 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1477 " when quota turned on");
1478 return -1;
1479 }
1480 kfree(sbi->s_qf_names[qtype]);
1481 sbi->s_qf_names[qtype] = NULL;
1482 return 1;
1483 }
1484 #endif
1485
1486 #define MOPT_SET 0x0001
1487 #define MOPT_CLEAR 0x0002
1488 #define MOPT_NOSUPPORT 0x0004
1489 #define MOPT_EXPLICIT 0x0008
1490 #define MOPT_CLEAR_ERR 0x0010
1491 #define MOPT_GTE0 0x0020
1492 #ifdef CONFIG_QUOTA
1493 #define MOPT_Q 0
1494 #define MOPT_QFMT 0x0040
1495 #else
1496 #define MOPT_Q MOPT_NOSUPPORT
1497 #define MOPT_QFMT MOPT_NOSUPPORT
1498 #endif
1499 #define MOPT_DATAJ 0x0080
1500 #define MOPT_NO_EXT2 0x0100
1501 #define MOPT_NO_EXT3 0x0200
1502 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1503 #define MOPT_STRING 0x0400
1504
1505 static const struct mount_opts {
1506 int token;
1507 int mount_opt;
1508 int flags;
1509 } ext4_mount_opts[] = {
1510 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1511 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1512 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1513 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1514 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1515 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1516 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1517 MOPT_EXT4_ONLY | MOPT_SET},
1518 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1519 MOPT_EXT4_ONLY | MOPT_CLEAR},
1520 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1521 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1522 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1523 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1524 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1525 MOPT_EXT4_ONLY | MOPT_CLEAR},
1526 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1527 MOPT_EXT4_ONLY | MOPT_CLEAR},
1528 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1529 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1530 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1531 EXT4_MOUNT_JOURNAL_CHECKSUM),
1532 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1533 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1534 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1535 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1536 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1537 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1538 MOPT_NO_EXT2},
1539 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1540 MOPT_NO_EXT2},
1541 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1542 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1543 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1544 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1545 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1546 {Opt_commit, 0, MOPT_GTE0},
1547 {Opt_max_batch_time, 0, MOPT_GTE0},
1548 {Opt_min_batch_time, 0, MOPT_GTE0},
1549 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1550 {Opt_init_itable, 0, MOPT_GTE0},
1551 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1552 {Opt_stripe, 0, MOPT_GTE0},
1553 {Opt_resuid, 0, MOPT_GTE0},
1554 {Opt_resgid, 0, MOPT_GTE0},
1555 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1556 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1557 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1558 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1559 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1560 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1561 MOPT_NO_EXT2 | MOPT_DATAJ},
1562 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1563 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1564 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1565 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1566 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1567 #else
1568 {Opt_acl, 0, MOPT_NOSUPPORT},
1569 {Opt_noacl, 0, MOPT_NOSUPPORT},
1570 #endif
1571 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1572 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1573 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1574 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1575 MOPT_SET | MOPT_Q},
1576 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1577 MOPT_SET | MOPT_Q},
1578 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1579 MOPT_SET | MOPT_Q},
1580 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1581 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1582 MOPT_CLEAR | MOPT_Q},
1583 {Opt_usrjquota, 0, MOPT_Q},
1584 {Opt_grpjquota, 0, MOPT_Q},
1585 {Opt_offusrjquota, 0, MOPT_Q},
1586 {Opt_offgrpjquota, 0, MOPT_Q},
1587 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1588 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1589 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1590 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1591 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1592 {Opt_err, 0, 0}
1593 };
1594
1595 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1596 substring_t *args, unsigned long *journal_devnum,
1597 unsigned int *journal_ioprio, int is_remount)
1598 {
1599 struct ext4_sb_info *sbi = EXT4_SB(sb);
1600 const struct mount_opts *m;
1601 kuid_t uid;
1602 kgid_t gid;
1603 int arg = 0;
1604
1605 #ifdef CONFIG_QUOTA
1606 if (token == Opt_usrjquota)
1607 return set_qf_name(sb, USRQUOTA, &args[0]);
1608 else if (token == Opt_grpjquota)
1609 return set_qf_name(sb, GRPQUOTA, &args[0]);
1610 else if (token == Opt_offusrjquota)
1611 return clear_qf_name(sb, USRQUOTA);
1612 else if (token == Opt_offgrpjquota)
1613 return clear_qf_name(sb, GRPQUOTA);
1614 #endif
1615 switch (token) {
1616 case Opt_noacl:
1617 case Opt_nouser_xattr:
1618 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1619 break;
1620 case Opt_sb:
1621 return 1; /* handled by get_sb_block() */
1622 case Opt_removed:
1623 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1624 return 1;
1625 case Opt_abort:
1626 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1627 return 1;
1628 case Opt_i_version:
1629 sb->s_flags |= MS_I_VERSION;
1630 return 1;
1631 case Opt_lazytime:
1632 sb->s_flags |= MS_LAZYTIME;
1633 return 1;
1634 case Opt_nolazytime:
1635 sb->s_flags &= ~MS_LAZYTIME;
1636 return 1;
1637 }
1638
1639 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1640 if (token == m->token)
1641 break;
1642
1643 if (m->token == Opt_err) {
1644 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1645 "or missing value", opt);
1646 return -1;
1647 }
1648
1649 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1650 ext4_msg(sb, KERN_ERR,
1651 "Mount option \"%s\" incompatible with ext2", opt);
1652 return -1;
1653 }
1654 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1655 ext4_msg(sb, KERN_ERR,
1656 "Mount option \"%s\" incompatible with ext3", opt);
1657 return -1;
1658 }
1659
1660 if (token == Opt_err_panic && !capable(CAP_SYS_ADMIN)) {
1661 ext4_msg(sb, KERN_ERR,
1662 "Mount option \"%s\" not allowed for unprivileged mounts",
1663 opt);
1664 return -1;
1665 }
1666
1667 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1668 return -1;
1669 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1670 return -1;
1671 if (m->flags & MOPT_EXPLICIT) {
1672 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1673 set_opt2(sb, EXPLICIT_DELALLOC);
1674 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1675 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1676 } else
1677 return -1;
1678 }
1679 if (m->flags & MOPT_CLEAR_ERR)
1680 clear_opt(sb, ERRORS_MASK);
1681 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1682 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1683 "options when quota turned on");
1684 return -1;
1685 }
1686
1687 if (m->flags & MOPT_NOSUPPORT) {
1688 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1689 } else if (token == Opt_commit) {
1690 if (arg == 0)
1691 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1692 sbi->s_commit_interval = HZ * arg;
1693 } else if (token == Opt_max_batch_time) {
1694 sbi->s_max_batch_time = arg;
1695 } else if (token == Opt_min_batch_time) {
1696 sbi->s_min_batch_time = arg;
1697 } else if (token == Opt_inode_readahead_blks) {
1698 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1699 ext4_msg(sb, KERN_ERR,
1700 "EXT4-fs: inode_readahead_blks must be "
1701 "0 or a power of 2 smaller than 2^31");
1702 return -1;
1703 }
1704 sbi->s_inode_readahead_blks = arg;
1705 } else if (token == Opt_init_itable) {
1706 set_opt(sb, INIT_INODE_TABLE);
1707 if (!args->from)
1708 arg = EXT4_DEF_LI_WAIT_MULT;
1709 sbi->s_li_wait_mult = arg;
1710 } else if (token == Opt_max_dir_size_kb) {
1711 sbi->s_max_dir_size_kb = arg;
1712 } else if (token == Opt_stripe) {
1713 sbi->s_stripe = arg;
1714 } else if (token == Opt_resuid) {
1715 uid = make_kuid(sb->s_user_ns, arg);
1716 if (!uid_valid(uid)) {
1717 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1718 return -1;
1719 }
1720 sbi->s_resuid = uid;
1721 } else if (token == Opt_resgid) {
1722 gid = make_kgid(sb->s_user_ns, arg);
1723 if (!gid_valid(gid)) {
1724 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1725 return -1;
1726 }
1727 sbi->s_resgid = gid;
1728 } else if (token == Opt_journal_dev) {
1729 if (is_remount) {
1730 ext4_msg(sb, KERN_ERR,
1731 "Cannot specify journal on remount");
1732 return -1;
1733 }
1734 *journal_devnum = arg;
1735 } else if (token == Opt_journal_path) {
1736 char *journal_path;
1737 struct inode *journal_inode;
1738 struct path path;
1739 int error;
1740
1741 if (is_remount) {
1742 ext4_msg(sb, KERN_ERR,
1743 "Cannot specify journal on remount");
1744 return -1;
1745 }
1746 journal_path = match_strdup(&args[0]);
1747 if (!journal_path) {
1748 ext4_msg(sb, KERN_ERR, "error: could not dup "
1749 "journal device string");
1750 return -1;
1751 }
1752
1753 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1754 if (error) {
1755 ext4_msg(sb, KERN_ERR, "error: could not find "
1756 "journal device path: error %d", error);
1757 kfree(journal_path);
1758 return -1;
1759 }
1760
1761 /*
1762 * Refuse access for unprivileged mounts if the user does
1763 * not have rw access to the journal device via the supplied
1764 * path.
1765 */
1766 if (!capable(CAP_SYS_ADMIN) &&
1767 inode_permission(d_inode(path.dentry), MAY_READ|MAY_WRITE)) {
1768 ext4_msg(sb, KERN_ERR,
1769 "error: Insufficient access to journal path %s",
1770 journal_path);
1771 return -1;
1772 }
1773
1774 journal_inode = d_inode(path.dentry);
1775 if (!S_ISBLK(journal_inode->i_mode)) {
1776 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1777 "is not a block device", journal_path);
1778 path_put(&path);
1779 kfree(journal_path);
1780 return -1;
1781 }
1782
1783 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1784 path_put(&path);
1785 kfree(journal_path);
1786 } else if (token == Opt_journal_ioprio) {
1787 if (arg > 7) {
1788 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1789 " (must be 0-7)");
1790 return -1;
1791 }
1792 *journal_ioprio =
1793 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1794 } else if (token == Opt_test_dummy_encryption) {
1795 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1796 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1797 ext4_msg(sb, KERN_WARNING,
1798 "Test dummy encryption mode enabled");
1799 #else
1800 ext4_msg(sb, KERN_WARNING,
1801 "Test dummy encryption mount option ignored");
1802 #endif
1803 } else if (m->flags & MOPT_DATAJ) {
1804 if (is_remount) {
1805 if (!sbi->s_journal)
1806 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1807 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1808 ext4_msg(sb, KERN_ERR,
1809 "Cannot change data mode on remount");
1810 return -1;
1811 }
1812 } else {
1813 clear_opt(sb, DATA_FLAGS);
1814 sbi->s_mount_opt |= m->mount_opt;
1815 }
1816 #ifdef CONFIG_QUOTA
1817 } else if (m->flags & MOPT_QFMT) {
1818 if (sb_any_quota_loaded(sb) &&
1819 sbi->s_jquota_fmt != m->mount_opt) {
1820 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1821 "quota options when quota turned on");
1822 return -1;
1823 }
1824 if (ext4_has_feature_quota(sb)) {
1825 ext4_msg(sb, KERN_INFO,
1826 "Quota format mount options ignored "
1827 "when QUOTA feature is enabled");
1828 return 1;
1829 }
1830 sbi->s_jquota_fmt = m->mount_opt;
1831 #endif
1832 } else if (token == Opt_dax) {
1833 #ifdef CONFIG_FS_DAX
1834 ext4_msg(sb, KERN_WARNING,
1835 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1836 sbi->s_mount_opt |= m->mount_opt;
1837 #else
1838 ext4_msg(sb, KERN_INFO, "dax option not supported");
1839 return -1;
1840 #endif
1841 } else if (token == Opt_data_err_abort) {
1842 sbi->s_mount_opt |= m->mount_opt;
1843 } else if (token == Opt_data_err_ignore) {
1844 sbi->s_mount_opt &= ~m->mount_opt;
1845 } else {
1846 if (!args->from)
1847 arg = 1;
1848 if (m->flags & MOPT_CLEAR)
1849 arg = !arg;
1850 else if (unlikely(!(m->flags & MOPT_SET))) {
1851 ext4_msg(sb, KERN_WARNING,
1852 "buggy handling of option %s", opt);
1853 WARN_ON(1);
1854 return -1;
1855 }
1856 if (arg != 0)
1857 sbi->s_mount_opt |= m->mount_opt;
1858 else
1859 sbi->s_mount_opt &= ~m->mount_opt;
1860 }
1861 return 1;
1862 }
1863
1864 static int parse_options(char *options, struct super_block *sb,
1865 unsigned long *journal_devnum,
1866 unsigned int *journal_ioprio,
1867 int is_remount)
1868 {
1869 struct ext4_sb_info *sbi = EXT4_SB(sb);
1870 char *p;
1871 substring_t args[MAX_OPT_ARGS];
1872 int token;
1873
1874 if (!options)
1875 return 1;
1876
1877 while ((p = strsep(&options, ",")) != NULL) {
1878 if (!*p)
1879 continue;
1880 /*
1881 * Initialize args struct so we know whether arg was
1882 * found; some options take optional arguments.
1883 */
1884 args[0].to = args[0].from = NULL;
1885 token = match_token(p, tokens, args);
1886 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1887 journal_ioprio, is_remount) < 0)
1888 return 0;
1889 }
1890 #ifdef CONFIG_QUOTA
1891 /*
1892 * We do the test below only for project quotas. 'usrquota' and
1893 * 'grpquota' mount options are allowed even without quota feature
1894 * to support legacy quotas in quota files.
1895 */
1896 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1897 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1898 "Cannot enable project quota enforcement.");
1899 return 0;
1900 }
1901 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1902 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1903 clear_opt(sb, USRQUOTA);
1904
1905 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1906 clear_opt(sb, GRPQUOTA);
1907
1908 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1909 ext4_msg(sb, KERN_ERR, "old and new quota "
1910 "format mixing");
1911 return 0;
1912 }
1913
1914 if (!sbi->s_jquota_fmt) {
1915 ext4_msg(sb, KERN_ERR, "journaled quota format "
1916 "not specified");
1917 return 0;
1918 }
1919 }
1920 #endif
1921 if (test_opt(sb, DIOREAD_NOLOCK)) {
1922 int blocksize =
1923 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1924
1925 if (blocksize < PAGE_SIZE) {
1926 ext4_msg(sb, KERN_ERR, "can't mount with "
1927 "dioread_nolock if block size != PAGE_SIZE");
1928 return 0;
1929 }
1930 }
1931 return 1;
1932 }
1933
1934 static inline void ext4_show_quota_options(struct seq_file *seq,
1935 struct super_block *sb)
1936 {
1937 #if defined(CONFIG_QUOTA)
1938 struct ext4_sb_info *sbi = EXT4_SB(sb);
1939
1940 if (sbi->s_jquota_fmt) {
1941 char *fmtname = "";
1942
1943 switch (sbi->s_jquota_fmt) {
1944 case QFMT_VFS_OLD:
1945 fmtname = "vfsold";
1946 break;
1947 case QFMT_VFS_V0:
1948 fmtname = "vfsv0";
1949 break;
1950 case QFMT_VFS_V1:
1951 fmtname = "vfsv1";
1952 break;
1953 }
1954 seq_printf(seq, ",jqfmt=%s", fmtname);
1955 }
1956
1957 if (sbi->s_qf_names[USRQUOTA])
1958 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1959
1960 if (sbi->s_qf_names[GRPQUOTA])
1961 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1962 #endif
1963 }
1964
1965 static const char *token2str(int token)
1966 {
1967 const struct match_token *t;
1968
1969 for (t = tokens; t->token != Opt_err; t++)
1970 if (t->token == token && !strchr(t->pattern, '='))
1971 break;
1972 return t->pattern;
1973 }
1974
1975 /*
1976 * Show an option if
1977 * - it's set to a non-default value OR
1978 * - if the per-sb default is different from the global default
1979 */
1980 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1981 int nodefs)
1982 {
1983 struct ext4_sb_info *sbi = EXT4_SB(sb);
1984 struct ext4_super_block *es = sbi->s_es;
1985 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1986 const struct mount_opts *m;
1987 char sep = nodefs ? '\n' : ',';
1988
1989 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1990 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1991
1992 if (sbi->s_sb_block != 1)
1993 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1994
1995 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1996 int want_set = m->flags & MOPT_SET;
1997 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1998 (m->flags & MOPT_CLEAR_ERR))
1999 continue;
2000 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2001 continue; /* skip if same as the default */
2002 if ((want_set &&
2003 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2004 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2005 continue; /* select Opt_noFoo vs Opt_Foo */
2006 SEQ_OPTS_PRINT("%s", token2str(m->token));
2007 }
2008
2009 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(sb->s_user_ns, EXT4_DEF_RESUID)) ||
2010 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2011 SEQ_OPTS_PRINT("resuid=%u",
2012 from_kuid_munged(sb->s_user_ns, sbi->s_resuid));
2013 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(sb->s_user_ns, EXT4_DEF_RESGID)) ||
2014 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2015 SEQ_OPTS_PRINT("resgid=%u",
2016 from_kgid_munged(sb->s_user_ns, sbi->s_resgid));
2017 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2018 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2019 SEQ_OPTS_PUTS("errors=remount-ro");
2020 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2021 SEQ_OPTS_PUTS("errors=continue");
2022 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2023 SEQ_OPTS_PUTS("errors=panic");
2024 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2025 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2026 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2027 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2028 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2029 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2030 if (sb->s_flags & MS_I_VERSION)
2031 SEQ_OPTS_PUTS("i_version");
2032 if (nodefs || sbi->s_stripe)
2033 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2034 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2035 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2036 SEQ_OPTS_PUTS("data=journal");
2037 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2038 SEQ_OPTS_PUTS("data=ordered");
2039 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2040 SEQ_OPTS_PUTS("data=writeback");
2041 }
2042 if (nodefs ||
2043 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2044 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2045 sbi->s_inode_readahead_blks);
2046
2047 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2048 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2049 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2050 if (nodefs || sbi->s_max_dir_size_kb)
2051 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2052 if (test_opt(sb, DATA_ERR_ABORT))
2053 SEQ_OPTS_PUTS("data_err=abort");
2054
2055 ext4_show_quota_options(seq, sb);
2056 return 0;
2057 }
2058
2059 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2060 {
2061 return _ext4_show_options(seq, root->d_sb, 0);
2062 }
2063
2064 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2065 {
2066 struct super_block *sb = seq->private;
2067 int rc;
2068
2069 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2070 rc = _ext4_show_options(seq, sb, 1);
2071 seq_puts(seq, "\n");
2072 return rc;
2073 }
2074
2075 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2076 int read_only)
2077 {
2078 struct ext4_sb_info *sbi = EXT4_SB(sb);
2079 int res = 0;
2080
2081 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2082 ext4_msg(sb, KERN_ERR, "revision level too high, "
2083 "forcing read-only mode");
2084 res = MS_RDONLY;
2085 }
2086 if (read_only)
2087 goto done;
2088 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2089 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2090 "running e2fsck is recommended");
2091 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2092 ext4_msg(sb, KERN_WARNING,
2093 "warning: mounting fs with errors, "
2094 "running e2fsck is recommended");
2095 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2096 le16_to_cpu(es->s_mnt_count) >=
2097 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2098 ext4_msg(sb, KERN_WARNING,
2099 "warning: maximal mount count reached, "
2100 "running e2fsck is recommended");
2101 else if (le32_to_cpu(es->s_checkinterval) &&
2102 (le32_to_cpu(es->s_lastcheck) +
2103 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2104 ext4_msg(sb, KERN_WARNING,
2105 "warning: checktime reached, "
2106 "running e2fsck is recommended");
2107 if (!sbi->s_journal)
2108 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2109 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2110 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2111 le16_add_cpu(&es->s_mnt_count, 1);
2112 es->s_mtime = cpu_to_le32(get_seconds());
2113 ext4_update_dynamic_rev(sb);
2114 if (sbi->s_journal)
2115 ext4_set_feature_journal_needs_recovery(sb);
2116
2117 ext4_commit_super(sb, 1);
2118 done:
2119 if (test_opt(sb, DEBUG))
2120 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2121 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2122 sb->s_blocksize,
2123 sbi->s_groups_count,
2124 EXT4_BLOCKS_PER_GROUP(sb),
2125 EXT4_INODES_PER_GROUP(sb),
2126 sbi->s_mount_opt, sbi->s_mount_opt2);
2127
2128 cleancache_init_fs(sb);
2129 return res;
2130 }
2131
2132 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2133 {
2134 struct ext4_sb_info *sbi = EXT4_SB(sb);
2135 struct flex_groups *new_groups;
2136 int size;
2137
2138 if (!sbi->s_log_groups_per_flex)
2139 return 0;
2140
2141 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2142 if (size <= sbi->s_flex_groups_allocated)
2143 return 0;
2144
2145 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2146 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2147 if (!new_groups) {
2148 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2149 size / (int) sizeof(struct flex_groups));
2150 return -ENOMEM;
2151 }
2152
2153 if (sbi->s_flex_groups) {
2154 memcpy(new_groups, sbi->s_flex_groups,
2155 (sbi->s_flex_groups_allocated *
2156 sizeof(struct flex_groups)));
2157 kvfree(sbi->s_flex_groups);
2158 }
2159 sbi->s_flex_groups = new_groups;
2160 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2161 return 0;
2162 }
2163
2164 static int ext4_fill_flex_info(struct super_block *sb)
2165 {
2166 struct ext4_sb_info *sbi = EXT4_SB(sb);
2167 struct ext4_group_desc *gdp = NULL;
2168 ext4_group_t flex_group;
2169 int i, err;
2170
2171 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2172 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2173 sbi->s_log_groups_per_flex = 0;
2174 return 1;
2175 }
2176
2177 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2178 if (err)
2179 goto failed;
2180
2181 for (i = 0; i < sbi->s_groups_count; i++) {
2182 gdp = ext4_get_group_desc(sb, i, NULL);
2183
2184 flex_group = ext4_flex_group(sbi, i);
2185 atomic_add(ext4_free_inodes_count(sb, gdp),
2186 &sbi->s_flex_groups[flex_group].free_inodes);
2187 atomic64_add(ext4_free_group_clusters(sb, gdp),
2188 &sbi->s_flex_groups[flex_group].free_clusters);
2189 atomic_add(ext4_used_dirs_count(sb, gdp),
2190 &sbi->s_flex_groups[flex_group].used_dirs);
2191 }
2192
2193 return 1;
2194 failed:
2195 return 0;
2196 }
2197
2198 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2199 struct ext4_group_desc *gdp)
2200 {
2201 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2202 __u16 crc = 0;
2203 __le32 le_group = cpu_to_le32(block_group);
2204 struct ext4_sb_info *sbi = EXT4_SB(sb);
2205
2206 if (ext4_has_metadata_csum(sbi->s_sb)) {
2207 /* Use new metadata_csum algorithm */
2208 __u32 csum32;
2209 __u16 dummy_csum = 0;
2210
2211 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2212 sizeof(le_group));
2213 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2214 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2215 sizeof(dummy_csum));
2216 offset += sizeof(dummy_csum);
2217 if (offset < sbi->s_desc_size)
2218 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2219 sbi->s_desc_size - offset);
2220
2221 crc = csum32 & 0xFFFF;
2222 goto out;
2223 }
2224
2225 /* old crc16 code */
2226 if (!ext4_has_feature_gdt_csum(sb))
2227 return 0;
2228
2229 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2230 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2231 crc = crc16(crc, (__u8 *)gdp, offset);
2232 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2233 /* for checksum of struct ext4_group_desc do the rest...*/
2234 if (ext4_has_feature_64bit(sb) &&
2235 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2236 crc = crc16(crc, (__u8 *)gdp + offset,
2237 le16_to_cpu(sbi->s_es->s_desc_size) -
2238 offset);
2239
2240 out:
2241 return cpu_to_le16(crc);
2242 }
2243
2244 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2245 struct ext4_group_desc *gdp)
2246 {
2247 if (ext4_has_group_desc_csum(sb) &&
2248 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2249 return 0;
2250
2251 return 1;
2252 }
2253
2254 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2255 struct ext4_group_desc *gdp)
2256 {
2257 if (!ext4_has_group_desc_csum(sb))
2258 return;
2259 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2260 }
2261
2262 /* Called at mount-time, super-block is locked */
2263 static int ext4_check_descriptors(struct super_block *sb,
2264 ext4_fsblk_t sb_block,
2265 ext4_group_t *first_not_zeroed)
2266 {
2267 struct ext4_sb_info *sbi = EXT4_SB(sb);
2268 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2269 ext4_fsblk_t last_block;
2270 ext4_fsblk_t block_bitmap;
2271 ext4_fsblk_t inode_bitmap;
2272 ext4_fsblk_t inode_table;
2273 int flexbg_flag = 0;
2274 ext4_group_t i, grp = sbi->s_groups_count;
2275
2276 if (ext4_has_feature_flex_bg(sb))
2277 flexbg_flag = 1;
2278
2279 ext4_debug("Checking group descriptors");
2280
2281 for (i = 0; i < sbi->s_groups_count; i++) {
2282 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2283
2284 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2285 last_block = ext4_blocks_count(sbi->s_es) - 1;
2286 else
2287 last_block = first_block +
2288 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2289
2290 if ((grp == sbi->s_groups_count) &&
2291 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2292 grp = i;
2293
2294 block_bitmap = ext4_block_bitmap(sb, gdp);
2295 if (block_bitmap == sb_block) {
2296 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2297 "Block bitmap for group %u overlaps "
2298 "superblock", i);
2299 }
2300 if (block_bitmap < first_block || block_bitmap > last_block) {
2301 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2302 "Block bitmap for group %u not in group "
2303 "(block %llu)!", i, block_bitmap);
2304 return 0;
2305 }
2306 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2307 if (inode_bitmap == sb_block) {
2308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2309 "Inode bitmap for group %u overlaps "
2310 "superblock", i);
2311 }
2312 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2313 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2314 "Inode bitmap for group %u not in group "
2315 "(block %llu)!", i, inode_bitmap);
2316 return 0;
2317 }
2318 inode_table = ext4_inode_table(sb, gdp);
2319 if (inode_table == sb_block) {
2320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2321 "Inode table for group %u overlaps "
2322 "superblock", i);
2323 }
2324 if (inode_table < first_block ||
2325 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2327 "Inode table for group %u not in group "
2328 "(block %llu)!", i, inode_table);
2329 return 0;
2330 }
2331 ext4_lock_group(sb, i);
2332 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2334 "Checksum for group %u failed (%u!=%u)",
2335 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2336 gdp)), le16_to_cpu(gdp->bg_checksum));
2337 if (!(sb->s_flags & MS_RDONLY)) {
2338 ext4_unlock_group(sb, i);
2339 return 0;
2340 }
2341 }
2342 ext4_unlock_group(sb, i);
2343 if (!flexbg_flag)
2344 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2345 }
2346 if (NULL != first_not_zeroed)
2347 *first_not_zeroed = grp;
2348 return 1;
2349 }
2350
2351 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2352 * the superblock) which were deleted from all directories, but held open by
2353 * a process at the time of a crash. We walk the list and try to delete these
2354 * inodes at recovery time (only with a read-write filesystem).
2355 *
2356 * In order to keep the orphan inode chain consistent during traversal (in
2357 * case of crash during recovery), we link each inode into the superblock
2358 * orphan list_head and handle it the same way as an inode deletion during
2359 * normal operation (which journals the operations for us).
2360 *
2361 * We only do an iget() and an iput() on each inode, which is very safe if we
2362 * accidentally point at an in-use or already deleted inode. The worst that
2363 * can happen in this case is that we get a "bit already cleared" message from
2364 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2365 * e2fsck was run on this filesystem, and it must have already done the orphan
2366 * inode cleanup for us, so we can safely abort without any further action.
2367 */
2368 static void ext4_orphan_cleanup(struct super_block *sb,
2369 struct ext4_super_block *es)
2370 {
2371 unsigned int s_flags = sb->s_flags;
2372 int ret, nr_orphans = 0, nr_truncates = 0;
2373 #ifdef CONFIG_QUOTA
2374 int i;
2375 #endif
2376 if (!es->s_last_orphan) {
2377 jbd_debug(4, "no orphan inodes to clean up\n");
2378 return;
2379 }
2380
2381 if (bdev_read_only(sb->s_bdev)) {
2382 ext4_msg(sb, KERN_ERR, "write access "
2383 "unavailable, skipping orphan cleanup");
2384 return;
2385 }
2386
2387 /* Check if feature set would not allow a r/w mount */
2388 if (!ext4_feature_set_ok(sb, 0)) {
2389 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2390 "unknown ROCOMPAT features");
2391 return;
2392 }
2393
2394 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2395 /* don't clear list on RO mount w/ errors */
2396 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2397 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2398 "clearing orphan list.\n");
2399 es->s_last_orphan = 0;
2400 }
2401 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2402 return;
2403 }
2404
2405 if (s_flags & MS_RDONLY) {
2406 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2407 sb->s_flags &= ~MS_RDONLY;
2408 }
2409 #ifdef CONFIG_QUOTA
2410 /* Needed for iput() to work correctly and not trash data */
2411 sb->s_flags |= MS_ACTIVE;
2412 /* Turn on quotas so that they are updated correctly */
2413 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2414 if (EXT4_SB(sb)->s_qf_names[i]) {
2415 int ret = ext4_quota_on_mount(sb, i);
2416 if (ret < 0)
2417 ext4_msg(sb, KERN_ERR,
2418 "Cannot turn on journaled "
2419 "quota: error %d", ret);
2420 }
2421 }
2422 #endif
2423
2424 while (es->s_last_orphan) {
2425 struct inode *inode;
2426
2427 /*
2428 * We may have encountered an error during cleanup; if
2429 * so, skip the rest.
2430 */
2431 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2432 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2433 es->s_last_orphan = 0;
2434 break;
2435 }
2436
2437 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2438 if (IS_ERR(inode)) {
2439 es->s_last_orphan = 0;
2440 break;
2441 }
2442
2443 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2444 dquot_initialize(inode);
2445 if (inode->i_nlink) {
2446 if (test_opt(sb, DEBUG))
2447 ext4_msg(sb, KERN_DEBUG,
2448 "%s: truncating inode %lu to %lld bytes",
2449 __func__, inode->i_ino, inode->i_size);
2450 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2451 inode->i_ino, inode->i_size);
2452 inode_lock(inode);
2453 truncate_inode_pages(inode->i_mapping, inode->i_size);
2454 ret = ext4_truncate(inode);
2455 if (ret)
2456 ext4_std_error(inode->i_sb, ret);
2457 inode_unlock(inode);
2458 nr_truncates++;
2459 } else {
2460 if (test_opt(sb, DEBUG))
2461 ext4_msg(sb, KERN_DEBUG,
2462 "%s: deleting unreferenced inode %lu",
2463 __func__, inode->i_ino);
2464 jbd_debug(2, "deleting unreferenced inode %lu\n",
2465 inode->i_ino);
2466 nr_orphans++;
2467 }
2468 iput(inode); /* The delete magic happens here! */
2469 }
2470
2471 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2472
2473 if (nr_orphans)
2474 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2475 PLURAL(nr_orphans));
2476 if (nr_truncates)
2477 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2478 PLURAL(nr_truncates));
2479 #ifdef CONFIG_QUOTA
2480 /* Turn quotas off */
2481 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2482 if (sb_dqopt(sb)->files[i])
2483 dquot_quota_off(sb, i);
2484 }
2485 #endif
2486 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2487 }
2488
2489 /*
2490 * Maximal extent format file size.
2491 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2492 * extent format containers, within a sector_t, and within i_blocks
2493 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2494 * so that won't be a limiting factor.
2495 *
2496 * However there is other limiting factor. We do store extents in the form
2497 * of starting block and length, hence the resulting length of the extent
2498 * covering maximum file size must fit into on-disk format containers as
2499 * well. Given that length is always by 1 unit bigger than max unit (because
2500 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2501 *
2502 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2503 */
2504 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2505 {
2506 loff_t res;
2507 loff_t upper_limit = MAX_LFS_FILESIZE;
2508
2509 /* small i_blocks in vfs inode? */
2510 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2511 /*
2512 * CONFIG_LBDAF is not enabled implies the inode
2513 * i_block represent total blocks in 512 bytes
2514 * 32 == size of vfs inode i_blocks * 8
2515 */
2516 upper_limit = (1LL << 32) - 1;
2517
2518 /* total blocks in file system block size */
2519 upper_limit >>= (blkbits - 9);
2520 upper_limit <<= blkbits;
2521 }
2522
2523 /*
2524 * 32-bit extent-start container, ee_block. We lower the maxbytes
2525 * by one fs block, so ee_len can cover the extent of maximum file
2526 * size
2527 */
2528 res = (1LL << 32) - 1;
2529 res <<= blkbits;
2530
2531 /* Sanity check against vm- & vfs- imposed limits */
2532 if (res > upper_limit)
2533 res = upper_limit;
2534
2535 return res;
2536 }
2537
2538 /*
2539 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2540 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2541 * We need to be 1 filesystem block less than the 2^48 sector limit.
2542 */
2543 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2544 {
2545 loff_t res = EXT4_NDIR_BLOCKS;
2546 int meta_blocks;
2547 loff_t upper_limit;
2548 /* This is calculated to be the largest file size for a dense, block
2549 * mapped file such that the file's total number of 512-byte sectors,
2550 * including data and all indirect blocks, does not exceed (2^48 - 1).
2551 *
2552 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2553 * number of 512-byte sectors of the file.
2554 */
2555
2556 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2557 /*
2558 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2559 * the inode i_block field represents total file blocks in
2560 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2561 */
2562 upper_limit = (1LL << 32) - 1;
2563
2564 /* total blocks in file system block size */
2565 upper_limit >>= (bits - 9);
2566
2567 } else {
2568 /*
2569 * We use 48 bit ext4_inode i_blocks
2570 * With EXT4_HUGE_FILE_FL set the i_blocks
2571 * represent total number of blocks in
2572 * file system block size
2573 */
2574 upper_limit = (1LL << 48) - 1;
2575
2576 }
2577
2578 /* indirect blocks */
2579 meta_blocks = 1;
2580 /* double indirect blocks */
2581 meta_blocks += 1 + (1LL << (bits-2));
2582 /* tripple indirect blocks */
2583 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2584
2585 upper_limit -= meta_blocks;
2586 upper_limit <<= bits;
2587
2588 res += 1LL << (bits-2);
2589 res += 1LL << (2*(bits-2));
2590 res += 1LL << (3*(bits-2));
2591 res <<= bits;
2592 if (res > upper_limit)
2593 res = upper_limit;
2594
2595 if (res > MAX_LFS_FILESIZE)
2596 res = MAX_LFS_FILESIZE;
2597
2598 return res;
2599 }
2600
2601 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2602 ext4_fsblk_t logical_sb_block, int nr)
2603 {
2604 struct ext4_sb_info *sbi = EXT4_SB(sb);
2605 ext4_group_t bg, first_meta_bg;
2606 int has_super = 0;
2607
2608 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2609
2610 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2611 return logical_sb_block + nr + 1;
2612 bg = sbi->s_desc_per_block * nr;
2613 if (ext4_bg_has_super(sb, bg))
2614 has_super = 1;
2615
2616 /*
2617 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2618 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2619 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2620 * compensate.
2621 */
2622 if (sb->s_blocksize == 1024 && nr == 0 &&
2623 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2624 has_super++;
2625
2626 return (has_super + ext4_group_first_block_no(sb, bg));
2627 }
2628
2629 /**
2630 * ext4_get_stripe_size: Get the stripe size.
2631 * @sbi: In memory super block info
2632 *
2633 * If we have specified it via mount option, then
2634 * use the mount option value. If the value specified at mount time is
2635 * greater than the blocks per group use the super block value.
2636 * If the super block value is greater than blocks per group return 0.
2637 * Allocator needs it be less than blocks per group.
2638 *
2639 */
2640 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2641 {
2642 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2643 unsigned long stripe_width =
2644 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2645 int ret;
2646
2647 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2648 ret = sbi->s_stripe;
2649 else if (stripe_width <= sbi->s_blocks_per_group)
2650 ret = stripe_width;
2651 else if (stride <= sbi->s_blocks_per_group)
2652 ret = stride;
2653 else
2654 ret = 0;
2655
2656 /*
2657 * If the stripe width is 1, this makes no sense and
2658 * we set it to 0 to turn off stripe handling code.
2659 */
2660 if (ret <= 1)
2661 ret = 0;
2662
2663 return ret;
2664 }
2665
2666 /*
2667 * Check whether this filesystem can be mounted based on
2668 * the features present and the RDONLY/RDWR mount requested.
2669 * Returns 1 if this filesystem can be mounted as requested,
2670 * 0 if it cannot be.
2671 */
2672 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2673 {
2674 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2675 ext4_msg(sb, KERN_ERR,
2676 "Couldn't mount because of "
2677 "unsupported optional features (%x)",
2678 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2679 ~EXT4_FEATURE_INCOMPAT_SUPP));
2680 return 0;
2681 }
2682
2683 if (readonly)
2684 return 1;
2685
2686 if (ext4_has_feature_readonly(sb)) {
2687 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2688 sb->s_flags |= MS_RDONLY;
2689 return 1;
2690 }
2691
2692 /* Check that feature set is OK for a read-write mount */
2693 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2694 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2695 "unsupported optional features (%x)",
2696 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2697 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2698 return 0;
2699 }
2700 /*
2701 * Large file size enabled file system can only be mounted
2702 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2703 */
2704 if (ext4_has_feature_huge_file(sb)) {
2705 if (sizeof(blkcnt_t) < sizeof(u64)) {
2706 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2707 "cannot be mounted RDWR without "
2708 "CONFIG_LBDAF");
2709 return 0;
2710 }
2711 }
2712 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2713 ext4_msg(sb, KERN_ERR,
2714 "Can't support bigalloc feature without "
2715 "extents feature\n");
2716 return 0;
2717 }
2718
2719 #ifndef CONFIG_QUOTA
2720 if (ext4_has_feature_quota(sb) && !readonly) {
2721 ext4_msg(sb, KERN_ERR,
2722 "Filesystem with quota feature cannot be mounted RDWR "
2723 "without CONFIG_QUOTA");
2724 return 0;
2725 }
2726 if (ext4_has_feature_project(sb) && !readonly) {
2727 ext4_msg(sb, KERN_ERR,
2728 "Filesystem with project quota feature cannot be mounted RDWR "
2729 "without CONFIG_QUOTA");
2730 return 0;
2731 }
2732 #endif /* CONFIG_QUOTA */
2733 return 1;
2734 }
2735
2736 /*
2737 * This function is called once a day if we have errors logged
2738 * on the file system
2739 */
2740 static void print_daily_error_info(unsigned long arg)
2741 {
2742 struct super_block *sb = (struct super_block *) arg;
2743 struct ext4_sb_info *sbi;
2744 struct ext4_super_block *es;
2745
2746 sbi = EXT4_SB(sb);
2747 es = sbi->s_es;
2748
2749 if (es->s_error_count)
2750 /* fsck newer than v1.41.13 is needed to clean this condition. */
2751 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2752 le32_to_cpu(es->s_error_count));
2753 if (es->s_first_error_time) {
2754 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2755 sb->s_id, le32_to_cpu(es->s_first_error_time),
2756 (int) sizeof(es->s_first_error_func),
2757 es->s_first_error_func,
2758 le32_to_cpu(es->s_first_error_line));
2759 if (es->s_first_error_ino)
2760 printk(KERN_CONT ": inode %u",
2761 le32_to_cpu(es->s_first_error_ino));
2762 if (es->s_first_error_block)
2763 printk(KERN_CONT ": block %llu", (unsigned long long)
2764 le64_to_cpu(es->s_first_error_block));
2765 printk(KERN_CONT "\n");
2766 }
2767 if (es->s_last_error_time) {
2768 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2769 sb->s_id, le32_to_cpu(es->s_last_error_time),
2770 (int) sizeof(es->s_last_error_func),
2771 es->s_last_error_func,
2772 le32_to_cpu(es->s_last_error_line));
2773 if (es->s_last_error_ino)
2774 printk(KERN_CONT ": inode %u",
2775 le32_to_cpu(es->s_last_error_ino));
2776 if (es->s_last_error_block)
2777 printk(KERN_CONT ": block %llu", (unsigned long long)
2778 le64_to_cpu(es->s_last_error_block));
2779 printk(KERN_CONT "\n");
2780 }
2781 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2782 }
2783
2784 /* Find next suitable group and run ext4_init_inode_table */
2785 static int ext4_run_li_request(struct ext4_li_request *elr)
2786 {
2787 struct ext4_group_desc *gdp = NULL;
2788 ext4_group_t group, ngroups;
2789 struct super_block *sb;
2790 unsigned long timeout = 0;
2791 int ret = 0;
2792
2793 sb = elr->lr_super;
2794 ngroups = EXT4_SB(sb)->s_groups_count;
2795
2796 for (group = elr->lr_next_group; group < ngroups; group++) {
2797 gdp = ext4_get_group_desc(sb, group, NULL);
2798 if (!gdp) {
2799 ret = 1;
2800 break;
2801 }
2802
2803 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2804 break;
2805 }
2806
2807 if (group >= ngroups)
2808 ret = 1;
2809
2810 if (!ret) {
2811 timeout = jiffies;
2812 ret = ext4_init_inode_table(sb, group,
2813 elr->lr_timeout ? 0 : 1);
2814 if (elr->lr_timeout == 0) {
2815 timeout = (jiffies - timeout) *
2816 elr->lr_sbi->s_li_wait_mult;
2817 elr->lr_timeout = timeout;
2818 }
2819 elr->lr_next_sched = jiffies + elr->lr_timeout;
2820 elr->lr_next_group = group + 1;
2821 }
2822 return ret;
2823 }
2824
2825 /*
2826 * Remove lr_request from the list_request and free the
2827 * request structure. Should be called with li_list_mtx held
2828 */
2829 static void ext4_remove_li_request(struct ext4_li_request *elr)
2830 {
2831 struct ext4_sb_info *sbi;
2832
2833 if (!elr)
2834 return;
2835
2836 sbi = elr->lr_sbi;
2837
2838 list_del(&elr->lr_request);
2839 sbi->s_li_request = NULL;
2840 kfree(elr);
2841 }
2842
2843 static void ext4_unregister_li_request(struct super_block *sb)
2844 {
2845 mutex_lock(&ext4_li_mtx);
2846 if (!ext4_li_info) {
2847 mutex_unlock(&ext4_li_mtx);
2848 return;
2849 }
2850
2851 mutex_lock(&ext4_li_info->li_list_mtx);
2852 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2853 mutex_unlock(&ext4_li_info->li_list_mtx);
2854 mutex_unlock(&ext4_li_mtx);
2855 }
2856
2857 static struct task_struct *ext4_lazyinit_task;
2858
2859 /*
2860 * This is the function where ext4lazyinit thread lives. It walks
2861 * through the request list searching for next scheduled filesystem.
2862 * When such a fs is found, run the lazy initialization request
2863 * (ext4_rn_li_request) and keep track of the time spend in this
2864 * function. Based on that time we compute next schedule time of
2865 * the request. When walking through the list is complete, compute
2866 * next waking time and put itself into sleep.
2867 */
2868 static int ext4_lazyinit_thread(void *arg)
2869 {
2870 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2871 struct list_head *pos, *n;
2872 struct ext4_li_request *elr;
2873 unsigned long next_wakeup, cur;
2874
2875 BUG_ON(NULL == eli);
2876
2877 cont_thread:
2878 while (true) {
2879 next_wakeup = MAX_JIFFY_OFFSET;
2880
2881 mutex_lock(&eli->li_list_mtx);
2882 if (list_empty(&eli->li_request_list)) {
2883 mutex_unlock(&eli->li_list_mtx);
2884 goto exit_thread;
2885 }
2886 list_for_each_safe(pos, n, &eli->li_request_list) {
2887 int err = 0;
2888 int progress = 0;
2889 elr = list_entry(pos, struct ext4_li_request,
2890 lr_request);
2891
2892 if (time_before(jiffies, elr->lr_next_sched)) {
2893 if (time_before(elr->lr_next_sched, next_wakeup))
2894 next_wakeup = elr->lr_next_sched;
2895 continue;
2896 }
2897 if (down_read_trylock(&elr->lr_super->s_umount)) {
2898 if (sb_start_write_trylock(elr->lr_super)) {
2899 progress = 1;
2900 /*
2901 * We hold sb->s_umount, sb can not
2902 * be removed from the list, it is
2903 * now safe to drop li_list_mtx
2904 */
2905 mutex_unlock(&eli->li_list_mtx);
2906 err = ext4_run_li_request(elr);
2907 sb_end_write(elr->lr_super);
2908 mutex_lock(&eli->li_list_mtx);
2909 n = pos->next;
2910 }
2911 up_read((&elr->lr_super->s_umount));
2912 }
2913 /* error, remove the lazy_init job */
2914 if (err) {
2915 ext4_remove_li_request(elr);
2916 continue;
2917 }
2918 if (!progress) {
2919 elr->lr_next_sched = jiffies +
2920 (prandom_u32()
2921 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2922 }
2923 if (time_before(elr->lr_next_sched, next_wakeup))
2924 next_wakeup = elr->lr_next_sched;
2925 }
2926 mutex_unlock(&eli->li_list_mtx);
2927
2928 try_to_freeze();
2929
2930 cur = jiffies;
2931 if ((time_after_eq(cur, next_wakeup)) ||
2932 (MAX_JIFFY_OFFSET == next_wakeup)) {
2933 cond_resched();
2934 continue;
2935 }
2936
2937 schedule_timeout_interruptible(next_wakeup - cur);
2938
2939 if (kthread_should_stop()) {
2940 ext4_clear_request_list();
2941 goto exit_thread;
2942 }
2943 }
2944
2945 exit_thread:
2946 /*
2947 * It looks like the request list is empty, but we need
2948 * to check it under the li_list_mtx lock, to prevent any
2949 * additions into it, and of course we should lock ext4_li_mtx
2950 * to atomically free the list and ext4_li_info, because at
2951 * this point another ext4 filesystem could be registering
2952 * new one.
2953 */
2954 mutex_lock(&ext4_li_mtx);
2955 mutex_lock(&eli->li_list_mtx);
2956 if (!list_empty(&eli->li_request_list)) {
2957 mutex_unlock(&eli->li_list_mtx);
2958 mutex_unlock(&ext4_li_mtx);
2959 goto cont_thread;
2960 }
2961 mutex_unlock(&eli->li_list_mtx);
2962 kfree(ext4_li_info);
2963 ext4_li_info = NULL;
2964 mutex_unlock(&ext4_li_mtx);
2965
2966 return 0;
2967 }
2968
2969 static void ext4_clear_request_list(void)
2970 {
2971 struct list_head *pos, *n;
2972 struct ext4_li_request *elr;
2973
2974 mutex_lock(&ext4_li_info->li_list_mtx);
2975 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2976 elr = list_entry(pos, struct ext4_li_request,
2977 lr_request);
2978 ext4_remove_li_request(elr);
2979 }
2980 mutex_unlock(&ext4_li_info->li_list_mtx);
2981 }
2982
2983 static int ext4_run_lazyinit_thread(void)
2984 {
2985 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2986 ext4_li_info, "ext4lazyinit");
2987 if (IS_ERR(ext4_lazyinit_task)) {
2988 int err = PTR_ERR(ext4_lazyinit_task);
2989 ext4_clear_request_list();
2990 kfree(ext4_li_info);
2991 ext4_li_info = NULL;
2992 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2993 "initialization thread\n",
2994 err);
2995 return err;
2996 }
2997 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2998 return 0;
2999 }
3000
3001 /*
3002 * Check whether it make sense to run itable init. thread or not.
3003 * If there is at least one uninitialized inode table, return
3004 * corresponding group number, else the loop goes through all
3005 * groups and return total number of groups.
3006 */
3007 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3008 {
3009 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3010 struct ext4_group_desc *gdp = NULL;
3011
3012 for (group = 0; group < ngroups; group++) {
3013 gdp = ext4_get_group_desc(sb, group, NULL);
3014 if (!gdp)
3015 continue;
3016
3017 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3018 break;
3019 }
3020
3021 return group;
3022 }
3023
3024 static int ext4_li_info_new(void)
3025 {
3026 struct ext4_lazy_init *eli = NULL;
3027
3028 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3029 if (!eli)
3030 return -ENOMEM;
3031
3032 INIT_LIST_HEAD(&eli->li_request_list);
3033 mutex_init(&eli->li_list_mtx);
3034
3035 eli->li_state |= EXT4_LAZYINIT_QUIT;
3036
3037 ext4_li_info = eli;
3038
3039 return 0;
3040 }
3041
3042 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3043 ext4_group_t start)
3044 {
3045 struct ext4_sb_info *sbi = EXT4_SB(sb);
3046 struct ext4_li_request *elr;
3047
3048 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3049 if (!elr)
3050 return NULL;
3051
3052 elr->lr_super = sb;
3053 elr->lr_sbi = sbi;
3054 elr->lr_next_group = start;
3055
3056 /*
3057 * Randomize first schedule time of the request to
3058 * spread the inode table initialization requests
3059 * better.
3060 */
3061 elr->lr_next_sched = jiffies + (prandom_u32() %
3062 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3063 return elr;
3064 }
3065
3066 int ext4_register_li_request(struct super_block *sb,
3067 ext4_group_t first_not_zeroed)
3068 {
3069 struct ext4_sb_info *sbi = EXT4_SB(sb);
3070 struct ext4_li_request *elr = NULL;
3071 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3072 int ret = 0;
3073
3074 mutex_lock(&ext4_li_mtx);
3075 if (sbi->s_li_request != NULL) {
3076 /*
3077 * Reset timeout so it can be computed again, because
3078 * s_li_wait_mult might have changed.
3079 */
3080 sbi->s_li_request->lr_timeout = 0;
3081 goto out;
3082 }
3083
3084 if (first_not_zeroed == ngroups ||
3085 (sb->s_flags & MS_RDONLY) ||
3086 !test_opt(sb, INIT_INODE_TABLE))
3087 goto out;
3088
3089 elr = ext4_li_request_new(sb, first_not_zeroed);
3090 if (!elr) {
3091 ret = -ENOMEM;
3092 goto out;
3093 }
3094
3095 if (NULL == ext4_li_info) {
3096 ret = ext4_li_info_new();
3097 if (ret)
3098 goto out;
3099 }
3100
3101 mutex_lock(&ext4_li_info->li_list_mtx);
3102 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3103 mutex_unlock(&ext4_li_info->li_list_mtx);
3104
3105 sbi->s_li_request = elr;
3106 /*
3107 * set elr to NULL here since it has been inserted to
3108 * the request_list and the removal and free of it is
3109 * handled by ext4_clear_request_list from now on.
3110 */
3111 elr = NULL;
3112
3113 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3114 ret = ext4_run_lazyinit_thread();
3115 if (ret)
3116 goto out;
3117 }
3118 out:
3119 mutex_unlock(&ext4_li_mtx);
3120 if (ret)
3121 kfree(elr);
3122 return ret;
3123 }
3124
3125 /*
3126 * We do not need to lock anything since this is called on
3127 * module unload.
3128 */
3129 static void ext4_destroy_lazyinit_thread(void)
3130 {
3131 /*
3132 * If thread exited earlier
3133 * there's nothing to be done.
3134 */
3135 if (!ext4_li_info || !ext4_lazyinit_task)
3136 return;
3137
3138 kthread_stop(ext4_lazyinit_task);
3139 }
3140
3141 static int set_journal_csum_feature_set(struct super_block *sb)
3142 {
3143 int ret = 1;
3144 int compat, incompat;
3145 struct ext4_sb_info *sbi = EXT4_SB(sb);
3146
3147 if (ext4_has_metadata_csum(sb)) {
3148 /* journal checksum v3 */
3149 compat = 0;
3150 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3151 } else {
3152 /* journal checksum v1 */
3153 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3154 incompat = 0;
3155 }
3156
3157 jbd2_journal_clear_features(sbi->s_journal,
3158 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3159 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3160 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3161 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3162 ret = jbd2_journal_set_features(sbi->s_journal,
3163 compat, 0,
3164 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3165 incompat);
3166 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3167 ret = jbd2_journal_set_features(sbi->s_journal,
3168 compat, 0,
3169 incompat);
3170 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3171 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3172 } else {
3173 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3174 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3175 }
3176
3177 return ret;
3178 }
3179
3180 /*
3181 * Note: calculating the overhead so we can be compatible with
3182 * historical BSD practice is quite difficult in the face of
3183 * clusters/bigalloc. This is because multiple metadata blocks from
3184 * different block group can end up in the same allocation cluster.
3185 * Calculating the exact overhead in the face of clustered allocation
3186 * requires either O(all block bitmaps) in memory or O(number of block
3187 * groups**2) in time. We will still calculate the superblock for
3188 * older file systems --- and if we come across with a bigalloc file
3189 * system with zero in s_overhead_clusters the estimate will be close to
3190 * correct especially for very large cluster sizes --- but for newer
3191 * file systems, it's better to calculate this figure once at mkfs
3192 * time, and store it in the superblock. If the superblock value is
3193 * present (even for non-bigalloc file systems), we will use it.
3194 */
3195 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3196 char *buf)
3197 {
3198 struct ext4_sb_info *sbi = EXT4_SB(sb);
3199 struct ext4_group_desc *gdp;
3200 ext4_fsblk_t first_block, last_block, b;
3201 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3202 int s, j, count = 0;
3203
3204 if (!ext4_has_feature_bigalloc(sb))
3205 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3206 sbi->s_itb_per_group + 2);
3207
3208 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3209 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3210 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3211 for (i = 0; i < ngroups; i++) {
3212 gdp = ext4_get_group_desc(sb, i, NULL);
3213 b = ext4_block_bitmap(sb, gdp);
3214 if (b >= first_block && b <= last_block) {
3215 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3216 count++;
3217 }
3218 b = ext4_inode_bitmap(sb, gdp);
3219 if (b >= first_block && b <= last_block) {
3220 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3221 count++;
3222 }
3223 b = ext4_inode_table(sb, gdp);
3224 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3225 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3226 int c = EXT4_B2C(sbi, b - first_block);
3227 ext4_set_bit(c, buf);
3228 count++;
3229 }
3230 if (i != grp)
3231 continue;
3232 s = 0;
3233 if (ext4_bg_has_super(sb, grp)) {
3234 ext4_set_bit(s++, buf);
3235 count++;
3236 }
3237 j = ext4_bg_num_gdb(sb, grp);
3238 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3239 ext4_error(sb, "Invalid number of block group "
3240 "descriptor blocks: %d", j);
3241 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3242 }
3243 count += j;
3244 for (; j > 0; j--)
3245 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3246 }
3247 if (!count)
3248 return 0;
3249 return EXT4_CLUSTERS_PER_GROUP(sb) -
3250 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3251 }
3252
3253 /*
3254 * Compute the overhead and stash it in sbi->s_overhead
3255 */
3256 int ext4_calculate_overhead(struct super_block *sb)
3257 {
3258 struct ext4_sb_info *sbi = EXT4_SB(sb);
3259 struct ext4_super_block *es = sbi->s_es;
3260 struct inode *j_inode;
3261 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3262 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3263 ext4_fsblk_t overhead = 0;
3264 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3265
3266 if (!buf)
3267 return -ENOMEM;
3268
3269 /*
3270 * Compute the overhead (FS structures). This is constant
3271 * for a given filesystem unless the number of block groups
3272 * changes so we cache the previous value until it does.
3273 */
3274
3275 /*
3276 * All of the blocks before first_data_block are overhead
3277 */
3278 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3279
3280 /*
3281 * Add the overhead found in each block group
3282 */
3283 for (i = 0; i < ngroups; i++) {
3284 int blks;
3285
3286 blks = count_overhead(sb, i, buf);
3287 overhead += blks;
3288 if (blks)
3289 memset(buf, 0, PAGE_SIZE);
3290 cond_resched();
3291 }
3292
3293 /*
3294 * Add the internal journal blocks whether the journal has been
3295 * loaded or not
3296 */
3297 if (sbi->s_journal && !sbi->journal_bdev)
3298 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3299 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3300 j_inode = ext4_get_journal_inode(sb, j_inum);
3301 if (j_inode) {
3302 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3303 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3304 iput(j_inode);
3305 } else {
3306 ext4_msg(sb, KERN_ERR, "can't get journal size");
3307 }
3308 }
3309 sbi->s_overhead = overhead;
3310 smp_wmb();
3311 free_page((unsigned long) buf);
3312 return 0;
3313 }
3314
3315 static void ext4_set_resv_clusters(struct super_block *sb)
3316 {
3317 ext4_fsblk_t resv_clusters;
3318 struct ext4_sb_info *sbi = EXT4_SB(sb);
3319
3320 /*
3321 * There's no need to reserve anything when we aren't using extents.
3322 * The space estimates are exact, there are no unwritten extents,
3323 * hole punching doesn't need new metadata... This is needed especially
3324 * to keep ext2/3 backward compatibility.
3325 */
3326 if (!ext4_has_feature_extents(sb))
3327 return;
3328 /*
3329 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3330 * This should cover the situations where we can not afford to run
3331 * out of space like for example punch hole, or converting
3332 * unwritten extents in delalloc path. In most cases such
3333 * allocation would require 1, or 2 blocks, higher numbers are
3334 * very rare.
3335 */
3336 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3337 sbi->s_cluster_bits);
3338
3339 do_div(resv_clusters, 50);
3340 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3341
3342 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3343 }
3344
3345 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3346 {
3347 char *orig_data = kstrdup(data, GFP_KERNEL);
3348 struct buffer_head *bh;
3349 struct ext4_super_block *es = NULL;
3350 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3351 ext4_fsblk_t block;
3352 ext4_fsblk_t sb_block = get_sb_block(&data);
3353 ext4_fsblk_t logical_sb_block;
3354 unsigned long offset = 0;
3355 unsigned long journal_devnum = 0;
3356 unsigned long def_mount_opts;
3357 struct inode *root;
3358 const char *descr;
3359 int ret = -ENOMEM;
3360 int blocksize, clustersize;
3361 unsigned int db_count;
3362 unsigned int i;
3363 int needs_recovery, has_huge_files, has_bigalloc;
3364 __u64 blocks_count;
3365 int err = 0;
3366 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3367 ext4_group_t first_not_zeroed;
3368
3369 if ((data && !orig_data) || !sbi)
3370 goto out_free_base;
3371
3372 if (!userns_mounts && !capable(CAP_SYS_ADMIN)) {
3373 ret = -EPERM;
3374 goto out_free_base;
3375 }
3376
3377 sbi->s_blockgroup_lock =
3378 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3379 if (!sbi->s_blockgroup_lock)
3380 goto out_free_base;
3381
3382 sb->s_fs_info = sbi;
3383 sbi->s_sb = sb;
3384 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3385 sbi->s_sb_block = sb_block;
3386 if (sb->s_bdev->bd_part)
3387 sbi->s_sectors_written_start =
3388 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3389
3390 /* Cleanup superblock name */
3391 strreplace(sb->s_id, '/', '!');
3392
3393 /* -EINVAL is default */
3394 ret = -EINVAL;
3395 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3396 if (!blocksize) {
3397 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3398 goto out_fail;
3399 }
3400
3401 /*
3402 * The ext4 superblock will not be buffer aligned for other than 1kB
3403 * block sizes. We need to calculate the offset from buffer start.
3404 */
3405 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3406 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3407 offset = do_div(logical_sb_block, blocksize);
3408 } else {
3409 logical_sb_block = sb_block;
3410 }
3411
3412 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3413 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3414 goto out_fail;
3415 }
3416 /*
3417 * Note: s_es must be initialized as soon as possible because
3418 * some ext4 macro-instructions depend on its value
3419 */
3420 es = (struct ext4_super_block *) (bh->b_data + offset);
3421 sbi->s_es = es;
3422 sb->s_magic = le16_to_cpu(es->s_magic);
3423 if (sb->s_magic != EXT4_SUPER_MAGIC)
3424 goto cantfind_ext4;
3425 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3426
3427 /* Warn if metadata_csum and gdt_csum are both set. */
3428 if (ext4_has_feature_metadata_csum(sb) &&
3429 ext4_has_feature_gdt_csum(sb))
3430 ext4_warning(sb, "metadata_csum and uninit_bg are "
3431 "redundant flags; please run fsck.");
3432
3433 /* Check for a known checksum algorithm */
3434 if (!ext4_verify_csum_type(sb, es)) {
3435 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3436 "unknown checksum algorithm.");
3437 silent = 1;
3438 goto cantfind_ext4;
3439 }
3440
3441 /* Load the checksum driver */
3442 if (ext4_has_feature_metadata_csum(sb)) {
3443 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3444 if (IS_ERR(sbi->s_chksum_driver)) {
3445 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3446 ret = PTR_ERR(sbi->s_chksum_driver);
3447 sbi->s_chksum_driver = NULL;
3448 goto failed_mount;
3449 }
3450 }
3451
3452 /* Check superblock checksum */
3453 if (!ext4_superblock_csum_verify(sb, es)) {
3454 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3455 "invalid superblock checksum. Run e2fsck?");
3456 silent = 1;
3457 ret = -EFSBADCRC;
3458 goto cantfind_ext4;
3459 }
3460
3461 /* Precompute checksum seed for all metadata */
3462 if (ext4_has_feature_csum_seed(sb))
3463 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3464 else if (ext4_has_metadata_csum(sb))
3465 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3466 sizeof(es->s_uuid));
3467
3468 /* Set defaults before we parse the mount options */
3469 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3470 set_opt(sb, INIT_INODE_TABLE);
3471 if (def_mount_opts & EXT4_DEFM_DEBUG)
3472 set_opt(sb, DEBUG);
3473 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3474 set_opt(sb, GRPID);
3475 if (def_mount_opts & EXT4_DEFM_UID16)
3476 set_opt(sb, NO_UID32);
3477 /* xattr user namespace & acls are now defaulted on */
3478 set_opt(sb, XATTR_USER);
3479 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3480 set_opt(sb, POSIX_ACL);
3481 #endif
3482 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3483 if (ext4_has_metadata_csum(sb))
3484 set_opt(sb, JOURNAL_CHECKSUM);
3485
3486 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3487 set_opt(sb, JOURNAL_DATA);
3488 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3489 set_opt(sb, ORDERED_DATA);
3490 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3491 set_opt(sb, WRITEBACK_DATA);
3492
3493 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) {
3494 if (!capable(CAP_SYS_ADMIN))
3495 goto failed_mount;
3496 set_opt(sb, ERRORS_PANIC);
3497 } else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) {
3498 set_opt(sb, ERRORS_CONT);
3499 } else {
3500 set_opt(sb, ERRORS_RO);
3501 }
3502 /* block_validity enabled by default; disable with noblock_validity */
3503 set_opt(sb, BLOCK_VALIDITY);
3504 if (def_mount_opts & EXT4_DEFM_DISCARD)
3505 set_opt(sb, DISCARD);
3506
3507 sbi->s_resuid = make_kuid(sb->s_user_ns, le16_to_cpu(es->s_def_resuid));
3508 if (!uid_valid(sbi->s_resuid))
3509 sbi->s_resuid = make_kuid(sb->s_user_ns, EXT4_DEF_RESUID);
3510 sbi->s_resgid = make_kgid(sb->s_user_ns, le16_to_cpu(es->s_def_resgid));
3511 if (!gid_valid(sbi->s_resgid))
3512 sbi->s_resgid = make_kgid(sb->s_user_ns, EXT4_DEF_RESGID);
3513 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3514 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3515 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3516
3517 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3518 set_opt(sb, BARRIER);
3519
3520 /*
3521 * enable delayed allocation by default
3522 * Use -o nodelalloc to turn it off
3523 */
3524 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3525 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3526 set_opt(sb, DELALLOC);
3527
3528 /*
3529 * set default s_li_wait_mult for lazyinit, for the case there is
3530 * no mount option specified.
3531 */
3532 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3533
3534 if (sbi->s_es->s_mount_opts[0]) {
3535 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3536 sizeof(sbi->s_es->s_mount_opts),
3537 GFP_KERNEL);
3538 if (!s_mount_opts)
3539 goto failed_mount;
3540 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3541 &journal_ioprio, 0)) {
3542 ext4_msg(sb, KERN_WARNING,
3543 "failed to parse options in superblock: %s",
3544 s_mount_opts);
3545 }
3546 kfree(s_mount_opts);
3547 }
3548 sbi->s_def_mount_opt = sbi->s_mount_opt;
3549 if (!parse_options((char *) data, sb, &journal_devnum,
3550 &journal_ioprio, 0))
3551 goto failed_mount;
3552
3553 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3554 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3555 "with data=journal disables delayed "
3556 "allocation and O_DIRECT support!\n");
3557 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3558 ext4_msg(sb, KERN_ERR, "can't mount with "
3559 "both data=journal and delalloc");
3560 goto failed_mount;
3561 }
3562 if (test_opt(sb, DIOREAD_NOLOCK)) {
3563 ext4_msg(sb, KERN_ERR, "can't mount with "
3564 "both data=journal and dioread_nolock");
3565 goto failed_mount;
3566 }
3567 if (test_opt(sb, DAX)) {
3568 ext4_msg(sb, KERN_ERR, "can't mount with "
3569 "both data=journal and dax");
3570 goto failed_mount;
3571 }
3572 if (ext4_has_feature_encrypt(sb)) {
3573 ext4_msg(sb, KERN_WARNING,
3574 "encrypted files will use data=ordered "
3575 "instead of data journaling mode");
3576 }
3577 if (test_opt(sb, DELALLOC))
3578 clear_opt(sb, DELALLOC);
3579 } else {
3580 sb->s_iflags |= SB_I_CGROUPWB;
3581 }
3582
3583 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3584 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3585
3586 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3587 (ext4_has_compat_features(sb) ||
3588 ext4_has_ro_compat_features(sb) ||
3589 ext4_has_incompat_features(sb)))
3590 ext4_msg(sb, KERN_WARNING,
3591 "feature flags set on rev 0 fs, "
3592 "running e2fsck is recommended");
3593
3594 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3595 set_opt2(sb, HURD_COMPAT);
3596 if (ext4_has_feature_64bit(sb)) {
3597 ext4_msg(sb, KERN_ERR,
3598 "The Hurd can't support 64-bit file systems");
3599 goto failed_mount;
3600 }
3601 }
3602
3603 if (IS_EXT2_SB(sb)) {
3604 if (ext2_feature_set_ok(sb))
3605 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3606 "using the ext4 subsystem");
3607 else {
3608 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3609 "to feature incompatibilities");
3610 goto failed_mount;
3611 }
3612 }
3613
3614 if (IS_EXT3_SB(sb)) {
3615 if (ext3_feature_set_ok(sb))
3616 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3617 "using the ext4 subsystem");
3618 else {
3619 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3620 "to feature incompatibilities");
3621 goto failed_mount;
3622 }
3623 }
3624
3625 /*
3626 * Check feature flags regardless of the revision level, since we
3627 * previously didn't change the revision level when setting the flags,
3628 * so there is a chance incompat flags are set on a rev 0 filesystem.
3629 */
3630 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3631 goto failed_mount;
3632
3633 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3634 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3635 blocksize > EXT4_MAX_BLOCK_SIZE) {
3636 ext4_msg(sb, KERN_ERR,
3637 "Unsupported filesystem blocksize %d (%d log_block_size)",
3638 blocksize, le32_to_cpu(es->s_log_block_size));
3639 goto failed_mount;
3640 }
3641 if (le32_to_cpu(es->s_log_block_size) >
3642 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3643 ext4_msg(sb, KERN_ERR,
3644 "Invalid log block size: %u",
3645 le32_to_cpu(es->s_log_block_size));
3646 goto failed_mount;
3647 }
3648
3649 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3650 ext4_msg(sb, KERN_ERR,
3651 "Number of reserved GDT blocks insanely large: %d",
3652 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3653 goto failed_mount;
3654 }
3655
3656 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3657 err = bdev_dax_supported(sb, blocksize);
3658 if (err)
3659 goto failed_mount;
3660 }
3661
3662 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3663 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3664 es->s_encryption_level);
3665 goto failed_mount;
3666 }
3667
3668 if (sb->s_blocksize != blocksize) {
3669 /* Validate the filesystem blocksize */
3670 if (!sb_set_blocksize(sb, blocksize)) {
3671 ext4_msg(sb, KERN_ERR, "bad block size %d",
3672 blocksize);
3673 goto failed_mount;
3674 }
3675
3676 brelse(bh);
3677 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3678 offset = do_div(logical_sb_block, blocksize);
3679 bh = sb_bread_unmovable(sb, logical_sb_block);
3680 if (!bh) {
3681 ext4_msg(sb, KERN_ERR,
3682 "Can't read superblock on 2nd try");
3683 goto failed_mount;
3684 }
3685 es = (struct ext4_super_block *)(bh->b_data + offset);
3686 sbi->s_es = es;
3687 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3688 ext4_msg(sb, KERN_ERR,
3689 "Magic mismatch, very weird!");
3690 goto failed_mount;
3691 }
3692 }
3693
3694 has_huge_files = ext4_has_feature_huge_file(sb);
3695 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3696 has_huge_files);
3697 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3698
3699 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3700 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3701 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3702 } else {
3703 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3704 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3705 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3706 (!is_power_of_2(sbi->s_inode_size)) ||
3707 (sbi->s_inode_size > blocksize)) {
3708 ext4_msg(sb, KERN_ERR,
3709 "unsupported inode size: %d",
3710 sbi->s_inode_size);
3711 goto failed_mount;
3712 }
3713 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3714 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3715 }
3716
3717 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3718 if (ext4_has_feature_64bit(sb)) {
3719 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3720 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3721 !is_power_of_2(sbi->s_desc_size)) {
3722 ext4_msg(sb, KERN_ERR,
3723 "unsupported descriptor size %lu",
3724 sbi->s_desc_size);
3725 goto failed_mount;
3726 }
3727 } else
3728 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3729
3730 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3731 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3732
3733 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3734 if (sbi->s_inodes_per_block == 0)
3735 goto cantfind_ext4;
3736 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3737 sbi->s_inodes_per_group > blocksize * 8) {
3738 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3739 sbi->s_blocks_per_group);
3740 goto failed_mount;
3741 }
3742 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3743 sbi->s_inodes_per_block;
3744 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3745 sbi->s_sbh = bh;
3746 sbi->s_mount_state = le16_to_cpu(es->s_state);
3747 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3748 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3749
3750 for (i = 0; i < 4; i++)
3751 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3752 sbi->s_def_hash_version = es->s_def_hash_version;
3753 if (ext4_has_feature_dir_index(sb)) {
3754 i = le32_to_cpu(es->s_flags);
3755 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3756 sbi->s_hash_unsigned = 3;
3757 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3758 #ifdef __CHAR_UNSIGNED__
3759 if (!(sb->s_flags & MS_RDONLY))
3760 es->s_flags |=
3761 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3762 sbi->s_hash_unsigned = 3;
3763 #else
3764 if (!(sb->s_flags & MS_RDONLY))
3765 es->s_flags |=
3766 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3767 #endif
3768 }
3769 }
3770
3771 /* Handle clustersize */
3772 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3773 has_bigalloc = ext4_has_feature_bigalloc(sb);
3774 if (has_bigalloc) {
3775 if (clustersize < blocksize) {
3776 ext4_msg(sb, KERN_ERR,
3777 "cluster size (%d) smaller than "
3778 "block size (%d)", clustersize, blocksize);
3779 goto failed_mount;
3780 }
3781 if (le32_to_cpu(es->s_log_cluster_size) >
3782 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3783 ext4_msg(sb, KERN_ERR,
3784 "Invalid log cluster size: %u",
3785 le32_to_cpu(es->s_log_cluster_size));
3786 goto failed_mount;
3787 }
3788 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3789 le32_to_cpu(es->s_log_block_size);
3790 sbi->s_clusters_per_group =
3791 le32_to_cpu(es->s_clusters_per_group);
3792 if (sbi->s_clusters_per_group > blocksize * 8) {
3793 ext4_msg(sb, KERN_ERR,
3794 "#clusters per group too big: %lu",
3795 sbi->s_clusters_per_group);
3796 goto failed_mount;
3797 }
3798 if (sbi->s_blocks_per_group !=
3799 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3800 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3801 "clusters per group (%lu) inconsistent",
3802 sbi->s_blocks_per_group,
3803 sbi->s_clusters_per_group);
3804 goto failed_mount;
3805 }
3806 } else {
3807 if (clustersize != blocksize) {
3808 ext4_warning(sb, "fragment/cluster size (%d) != "
3809 "block size (%d)", clustersize,
3810 blocksize);
3811 clustersize = blocksize;
3812 }
3813 if (sbi->s_blocks_per_group > blocksize * 8) {
3814 ext4_msg(sb, KERN_ERR,
3815 "#blocks per group too big: %lu",
3816 sbi->s_blocks_per_group);
3817 goto failed_mount;
3818 }
3819 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3820 sbi->s_cluster_bits = 0;
3821 }
3822 sbi->s_cluster_ratio = clustersize / blocksize;
3823
3824 /* Do we have standard group size of clustersize * 8 blocks ? */
3825 if (sbi->s_blocks_per_group == clustersize << 3)
3826 set_opt2(sb, STD_GROUP_SIZE);
3827
3828 /*
3829 * Test whether we have more sectors than will fit in sector_t,
3830 * and whether the max offset is addressable by the page cache.
3831 */
3832 err = generic_check_addressable(sb->s_blocksize_bits,
3833 ext4_blocks_count(es));
3834 if (err) {
3835 ext4_msg(sb, KERN_ERR, "filesystem"
3836 " too large to mount safely on this system");
3837 if (sizeof(sector_t) < 8)
3838 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3839 goto failed_mount;
3840 }
3841
3842 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3843 goto cantfind_ext4;
3844
3845 /* check blocks count against device size */
3846 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3847 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3848 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3849 "exceeds size of device (%llu blocks)",
3850 ext4_blocks_count(es), blocks_count);
3851 goto failed_mount;
3852 }
3853
3854 /*
3855 * It makes no sense for the first data block to be beyond the end
3856 * of the filesystem.
3857 */
3858 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3859 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3860 "block %u is beyond end of filesystem (%llu)",
3861 le32_to_cpu(es->s_first_data_block),
3862 ext4_blocks_count(es));
3863 goto failed_mount;
3864 }
3865 blocks_count = (ext4_blocks_count(es) -
3866 le32_to_cpu(es->s_first_data_block) +
3867 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3868 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3869 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3870 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3871 "(block count %llu, first data block %u, "
3872 "blocks per group %lu)", sbi->s_groups_count,
3873 ext4_blocks_count(es),
3874 le32_to_cpu(es->s_first_data_block),
3875 EXT4_BLOCKS_PER_GROUP(sb));
3876 goto failed_mount;
3877 }
3878 sbi->s_groups_count = blocks_count;
3879 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3880 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3881 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3882 EXT4_DESC_PER_BLOCK(sb);
3883 if (ext4_has_feature_meta_bg(sb)) {
3884 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3885 ext4_msg(sb, KERN_WARNING,
3886 "first meta block group too large: %u "
3887 "(group descriptor block count %u)",
3888 le32_to_cpu(es->s_first_meta_bg), db_count);
3889 goto failed_mount;
3890 }
3891 }
3892 sbi->s_group_desc = ext4_kvmalloc(db_count *
3893 sizeof(struct buffer_head *),
3894 GFP_KERNEL);
3895 if (sbi->s_group_desc == NULL) {
3896 ext4_msg(sb, KERN_ERR, "not enough memory");
3897 ret = -ENOMEM;
3898 goto failed_mount;
3899 }
3900
3901 bgl_lock_init(sbi->s_blockgroup_lock);
3902
3903 for (i = 0; i < db_count; i++) {
3904 block = descriptor_loc(sb, logical_sb_block, i);
3905 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3906 if (!sbi->s_group_desc[i]) {
3907 ext4_msg(sb, KERN_ERR,
3908 "can't read group descriptor %d", i);
3909 db_count = i;
3910 goto failed_mount2;
3911 }
3912 }
3913 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3914 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3915 ret = -EFSCORRUPTED;
3916 goto failed_mount2;
3917 }
3918
3919 sbi->s_gdb_count = db_count;
3920 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3921 spin_lock_init(&sbi->s_next_gen_lock);
3922
3923 setup_timer(&sbi->s_err_report, print_daily_error_info,
3924 (unsigned long) sb);
3925
3926 /* Register extent status tree shrinker */
3927 if (ext4_es_register_shrinker(sbi))
3928 goto failed_mount3;
3929
3930 sbi->s_stripe = ext4_get_stripe_size(sbi);
3931 sbi->s_extent_max_zeroout_kb = 32;
3932
3933 /*
3934 * set up enough so that it can read an inode
3935 */
3936 sb->s_op = &ext4_sops;
3937 sb->s_export_op = &ext4_export_ops;
3938 sb->s_xattr = ext4_xattr_handlers;
3939 sb->s_cop = &ext4_cryptops;
3940 #ifdef CONFIG_QUOTA
3941 sb->dq_op = &ext4_quota_operations;
3942 if (ext4_has_feature_quota(sb))
3943 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3944 else
3945 sb->s_qcop = &ext4_qctl_operations;
3946 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3947 #endif
3948 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3949
3950 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3951 mutex_init(&sbi->s_orphan_lock);
3952
3953 sb->s_root = NULL;
3954
3955 needs_recovery = (es->s_last_orphan != 0 ||
3956 ext4_has_feature_journal_needs_recovery(sb));
3957
3958 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3959 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3960 goto failed_mount3a;
3961
3962 /*
3963 * The first inode we look at is the journal inode. Don't try
3964 * root first: it may be modified in the journal!
3965 */
3966 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3967 err = ext4_load_journal(sb, es, journal_devnum);
3968 if (err)
3969 goto failed_mount3a;
3970 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3971 ext4_has_feature_journal_needs_recovery(sb)) {
3972 ext4_msg(sb, KERN_ERR, "required journal recovery "
3973 "suppressed and not mounted read-only");
3974 goto failed_mount_wq;
3975 } else {
3976 /* Nojournal mode, all journal mount options are illegal */
3977 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3978 ext4_msg(sb, KERN_ERR, "can't mount with "
3979 "journal_checksum, fs mounted w/o journal");
3980 goto failed_mount_wq;
3981 }
3982 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3983 ext4_msg(sb, KERN_ERR, "can't mount with "
3984 "journal_async_commit, fs mounted w/o journal");
3985 goto failed_mount_wq;
3986 }
3987 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3988 ext4_msg(sb, KERN_ERR, "can't mount with "
3989 "commit=%lu, fs mounted w/o journal",
3990 sbi->s_commit_interval / HZ);
3991 goto failed_mount_wq;
3992 }
3993 if (EXT4_MOUNT_DATA_FLAGS &
3994 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3995 ext4_msg(sb, KERN_ERR, "can't mount with "
3996 "data=, fs mounted w/o journal");
3997 goto failed_mount_wq;
3998 }
3999 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4000 clear_opt(sb, JOURNAL_CHECKSUM);
4001 clear_opt(sb, DATA_FLAGS);
4002 sbi->s_journal = NULL;
4003 needs_recovery = 0;
4004 goto no_journal;
4005 }
4006
4007 if (ext4_has_feature_64bit(sb) &&
4008 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4009 JBD2_FEATURE_INCOMPAT_64BIT)) {
4010 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4011 goto failed_mount_wq;
4012 }
4013
4014 if (!set_journal_csum_feature_set(sb)) {
4015 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4016 "feature set");
4017 goto failed_mount_wq;
4018 }
4019
4020 /* We have now updated the journal if required, so we can
4021 * validate the data journaling mode. */
4022 switch (test_opt(sb, DATA_FLAGS)) {
4023 case 0:
4024 /* No mode set, assume a default based on the journal
4025 * capabilities: ORDERED_DATA if the journal can
4026 * cope, else JOURNAL_DATA
4027 */
4028 if (jbd2_journal_check_available_features
4029 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4030 set_opt(sb, ORDERED_DATA);
4031 else
4032 set_opt(sb, JOURNAL_DATA);
4033 break;
4034
4035 case EXT4_MOUNT_ORDERED_DATA:
4036 case EXT4_MOUNT_WRITEBACK_DATA:
4037 if (!jbd2_journal_check_available_features
4038 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4039 ext4_msg(sb, KERN_ERR, "Journal does not support "
4040 "requested data journaling mode");
4041 goto failed_mount_wq;
4042 }
4043 default:
4044 break;
4045 }
4046
4047 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4048 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4049 ext4_msg(sb, KERN_ERR, "can't mount with "
4050 "journal_async_commit in data=ordered mode");
4051 goto failed_mount_wq;
4052 }
4053
4054 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4055
4056 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4057
4058 no_journal:
4059 sbi->s_mb_cache = ext4_xattr_create_cache();
4060 if (!sbi->s_mb_cache) {
4061 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4062 goto failed_mount_wq;
4063 }
4064
4065 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4066 (blocksize != PAGE_SIZE)) {
4067 ext4_msg(sb, KERN_ERR,
4068 "Unsupported blocksize for fs encryption");
4069 goto failed_mount_wq;
4070 }
4071
4072 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4073 !ext4_has_feature_encrypt(sb)) {
4074 ext4_set_feature_encrypt(sb);
4075 ext4_commit_super(sb, 1);
4076 }
4077
4078 /*
4079 * Get the # of file system overhead blocks from the
4080 * superblock if present.
4081 */
4082 if (es->s_overhead_clusters)
4083 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4084 else {
4085 err = ext4_calculate_overhead(sb);
4086 if (err)
4087 goto failed_mount_wq;
4088 }
4089
4090 /*
4091 * The maximum number of concurrent works can be high and
4092 * concurrency isn't really necessary. Limit it to 1.
4093 */
4094 EXT4_SB(sb)->rsv_conversion_wq =
4095 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4096 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4097 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4098 ret = -ENOMEM;
4099 goto failed_mount4;
4100 }
4101
4102 /*
4103 * The jbd2_journal_load will have done any necessary log recovery,
4104 * so we can safely mount the rest of the filesystem now.
4105 */
4106
4107 root = ext4_iget(sb, EXT4_ROOT_INO);
4108 if (IS_ERR(root)) {
4109 ext4_msg(sb, KERN_ERR, "get root inode failed");
4110 ret = PTR_ERR(root);
4111 root = NULL;
4112 goto failed_mount4;
4113 }
4114 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4115 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4116 iput(root);
4117 goto failed_mount4;
4118 }
4119 sb->s_root = d_make_root(root);
4120 if (!sb->s_root) {
4121 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4122 ret = -ENOMEM;
4123 goto failed_mount4;
4124 }
4125
4126 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4127 sb->s_flags |= MS_RDONLY;
4128
4129 /* determine the minimum size of new large inodes, if present */
4130 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4131 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4132 EXT4_GOOD_OLD_INODE_SIZE;
4133 if (ext4_has_feature_extra_isize(sb)) {
4134 if (sbi->s_want_extra_isize <
4135 le16_to_cpu(es->s_want_extra_isize))
4136 sbi->s_want_extra_isize =
4137 le16_to_cpu(es->s_want_extra_isize);
4138 if (sbi->s_want_extra_isize <
4139 le16_to_cpu(es->s_min_extra_isize))
4140 sbi->s_want_extra_isize =
4141 le16_to_cpu(es->s_min_extra_isize);
4142 }
4143 }
4144 /* Check if enough inode space is available */
4145 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4146 sbi->s_inode_size) {
4147 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4148 EXT4_GOOD_OLD_INODE_SIZE;
4149 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4150 "available");
4151 }
4152
4153 ext4_set_resv_clusters(sb);
4154
4155 err = ext4_setup_system_zone(sb);
4156 if (err) {
4157 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4158 "zone (%d)", err);
4159 goto failed_mount4a;
4160 }
4161
4162 ext4_ext_init(sb);
4163 err = ext4_mb_init(sb);
4164 if (err) {
4165 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4166 err);
4167 goto failed_mount5;
4168 }
4169
4170 block = ext4_count_free_clusters(sb);
4171 ext4_free_blocks_count_set(sbi->s_es,
4172 EXT4_C2B(sbi, block));
4173 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4174 GFP_KERNEL);
4175 if (!err) {
4176 unsigned long freei = ext4_count_free_inodes(sb);
4177 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4178 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4179 GFP_KERNEL);
4180 }
4181 if (!err)
4182 err = percpu_counter_init(&sbi->s_dirs_counter,
4183 ext4_count_dirs(sb), GFP_KERNEL);
4184 if (!err)
4185 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4186 GFP_KERNEL);
4187 if (!err)
4188 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4189
4190 if (err) {
4191 ext4_msg(sb, KERN_ERR, "insufficient memory");
4192 goto failed_mount6;
4193 }
4194
4195 if (ext4_has_feature_flex_bg(sb))
4196 if (!ext4_fill_flex_info(sb)) {
4197 ext4_msg(sb, KERN_ERR,
4198 "unable to initialize "
4199 "flex_bg meta info!");
4200 goto failed_mount6;
4201 }
4202
4203 err = ext4_register_li_request(sb, first_not_zeroed);
4204 if (err)
4205 goto failed_mount6;
4206
4207 err = ext4_register_sysfs(sb);
4208 if (err)
4209 goto failed_mount7;
4210
4211 #ifdef CONFIG_QUOTA
4212 /* Enable quota usage during mount. */
4213 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4214 err = ext4_enable_quotas(sb);
4215 if (err)
4216 goto failed_mount8;
4217 }
4218 #endif /* CONFIG_QUOTA */
4219
4220 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4221 ext4_orphan_cleanup(sb, es);
4222 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4223 if (needs_recovery) {
4224 ext4_msg(sb, KERN_INFO, "recovery complete");
4225 ext4_mark_recovery_complete(sb, es);
4226 }
4227 if (EXT4_SB(sb)->s_journal) {
4228 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4229 descr = " journalled data mode";
4230 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4231 descr = " ordered data mode";
4232 else
4233 descr = " writeback data mode";
4234 } else
4235 descr = "out journal";
4236
4237 if (test_opt(sb, DISCARD)) {
4238 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4239 if (!blk_queue_discard(q))
4240 ext4_msg(sb, KERN_WARNING,
4241 "mounting with \"discard\" option, but "
4242 "the device does not support discard");
4243 }
4244
4245 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4246 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4247 "Opts: %.*s%s%s", descr,
4248 (int) sizeof(sbi->s_es->s_mount_opts),
4249 sbi->s_es->s_mount_opts,
4250 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4251
4252 if (es->s_error_count)
4253 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4254
4255 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4256 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4257 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4258 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4259
4260 kfree(orig_data);
4261 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4262 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4263 EXT4_KEY_DESC_PREFIX_SIZE);
4264 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4265 #endif
4266 return 0;
4267
4268 cantfind_ext4:
4269 if (!silent)
4270 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4271 goto failed_mount;
4272
4273 #ifdef CONFIG_QUOTA
4274 failed_mount8:
4275 ext4_unregister_sysfs(sb);
4276 #endif
4277 failed_mount7:
4278 ext4_unregister_li_request(sb);
4279 failed_mount6:
4280 ext4_mb_release(sb);
4281 if (sbi->s_flex_groups)
4282 kvfree(sbi->s_flex_groups);
4283 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4284 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4285 percpu_counter_destroy(&sbi->s_dirs_counter);
4286 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4287 failed_mount5:
4288 ext4_ext_release(sb);
4289 ext4_release_system_zone(sb);
4290 failed_mount4a:
4291 dput(sb->s_root);
4292 sb->s_root = NULL;
4293 failed_mount4:
4294 ext4_msg(sb, KERN_ERR, "mount failed");
4295 if (EXT4_SB(sb)->rsv_conversion_wq)
4296 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4297 failed_mount_wq:
4298 if (sbi->s_mb_cache) {
4299 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4300 sbi->s_mb_cache = NULL;
4301 }
4302 if (sbi->s_journal) {
4303 jbd2_journal_destroy(sbi->s_journal);
4304 sbi->s_journal = NULL;
4305 }
4306 failed_mount3a:
4307 ext4_es_unregister_shrinker(sbi);
4308 failed_mount3:
4309 del_timer_sync(&sbi->s_err_report);
4310 if (sbi->s_mmp_tsk)
4311 kthread_stop(sbi->s_mmp_tsk);
4312 failed_mount2:
4313 for (i = 0; i < db_count; i++)
4314 brelse(sbi->s_group_desc[i]);
4315 kvfree(sbi->s_group_desc);
4316 failed_mount:
4317 if (sbi->s_chksum_driver)
4318 crypto_free_shash(sbi->s_chksum_driver);
4319 #ifdef CONFIG_QUOTA
4320 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4321 kfree(sbi->s_qf_names[i]);
4322 #endif
4323 ext4_blkdev_remove(sbi);
4324 brelse(bh);
4325 out_fail:
4326 /* sb->s_user_ns will be put when sb is destroyed */
4327 sb->s_fs_info = NULL;
4328 kfree(sbi->s_blockgroup_lock);
4329 out_free_base:
4330 kfree(sbi);
4331 kfree(orig_data);
4332 return err ? err : ret;
4333 }
4334
4335 /*
4336 * Setup any per-fs journal parameters now. We'll do this both on
4337 * initial mount, once the journal has been initialised but before we've
4338 * done any recovery; and again on any subsequent remount.
4339 */
4340 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4341 {
4342 struct ext4_sb_info *sbi = EXT4_SB(sb);
4343
4344 journal->j_commit_interval = sbi->s_commit_interval;
4345 journal->j_min_batch_time = sbi->s_min_batch_time;
4346 journal->j_max_batch_time = sbi->s_max_batch_time;
4347
4348 write_lock(&journal->j_state_lock);
4349 if (test_opt(sb, BARRIER))
4350 journal->j_flags |= JBD2_BARRIER;
4351 else
4352 journal->j_flags &= ~JBD2_BARRIER;
4353 if (test_opt(sb, DATA_ERR_ABORT))
4354 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4355 else
4356 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4357 write_unlock(&journal->j_state_lock);
4358 }
4359
4360 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4361 unsigned int journal_inum)
4362 {
4363 struct inode *journal_inode;
4364
4365 /*
4366 * Test for the existence of a valid inode on disk. Bad things
4367 * happen if we iget() an unused inode, as the subsequent iput()
4368 * will try to delete it.
4369 */
4370 journal_inode = ext4_iget(sb, journal_inum);
4371 if (IS_ERR(journal_inode)) {
4372 ext4_msg(sb, KERN_ERR, "no journal found");
4373 return NULL;
4374 }
4375 if (!journal_inode->i_nlink) {
4376 make_bad_inode(journal_inode);
4377 iput(journal_inode);
4378 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4379 return NULL;
4380 }
4381
4382 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4383 journal_inode, journal_inode->i_size);
4384 if (!S_ISREG(journal_inode->i_mode)) {
4385 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4386 iput(journal_inode);
4387 return NULL;
4388 }
4389 return journal_inode;
4390 }
4391
4392 static journal_t *ext4_get_journal(struct super_block *sb,
4393 unsigned int journal_inum)
4394 {
4395 struct inode *journal_inode;
4396 journal_t *journal;
4397
4398 BUG_ON(!ext4_has_feature_journal(sb));
4399
4400 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4401 if (!journal_inode)
4402 return NULL;
4403
4404 journal = jbd2_journal_init_inode(journal_inode);
4405 if (!journal) {
4406 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4407 iput(journal_inode);
4408 return NULL;
4409 }
4410 journal->j_private = sb;
4411 ext4_init_journal_params(sb, journal);
4412 return journal;
4413 }
4414
4415 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4416 dev_t j_dev)
4417 {
4418 struct buffer_head *bh;
4419 journal_t *journal;
4420 ext4_fsblk_t start;
4421 ext4_fsblk_t len;
4422 int hblock, blocksize;
4423 ext4_fsblk_t sb_block;
4424 unsigned long offset;
4425 struct ext4_super_block *es;
4426 struct block_device *bdev;
4427
4428 BUG_ON(!ext4_has_feature_journal(sb));
4429
4430 bdev = ext4_blkdev_get(j_dev, sb);
4431 if (bdev == NULL)
4432 return NULL;
4433
4434 blocksize = sb->s_blocksize;
4435 hblock = bdev_logical_block_size(bdev);
4436 if (blocksize < hblock) {
4437 ext4_msg(sb, KERN_ERR,
4438 "blocksize too small for journal device");
4439 goto out_bdev;
4440 }
4441
4442 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4443 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4444 set_blocksize(bdev, blocksize);
4445 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4446 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4447 "external journal");
4448 goto out_bdev;
4449 }
4450
4451 es = (struct ext4_super_block *) (bh->b_data + offset);
4452 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4453 !(le32_to_cpu(es->s_feature_incompat) &
4454 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4455 ext4_msg(sb, KERN_ERR, "external journal has "
4456 "bad superblock");
4457 brelse(bh);
4458 goto out_bdev;
4459 }
4460
4461 if ((le32_to_cpu(es->s_feature_ro_compat) &
4462 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4463 es->s_checksum != ext4_superblock_csum(sb, es)) {
4464 ext4_msg(sb, KERN_ERR, "external journal has "
4465 "corrupt superblock");
4466 brelse(bh);
4467 goto out_bdev;
4468 }
4469
4470 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4471 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4472 brelse(bh);
4473 goto out_bdev;
4474 }
4475
4476 len = ext4_blocks_count(es);
4477 start = sb_block + 1;
4478 brelse(bh); /* we're done with the superblock */
4479
4480 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4481 start, len, blocksize);
4482 if (!journal) {
4483 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4484 goto out_bdev;
4485 }
4486 journal->j_private = sb;
4487 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4488 wait_on_buffer(journal->j_sb_buffer);
4489 if (!buffer_uptodate(journal->j_sb_buffer)) {
4490 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4491 goto out_journal;
4492 }
4493 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4494 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4495 "user (unsupported) - %d",
4496 be32_to_cpu(journal->j_superblock->s_nr_users));
4497 goto out_journal;
4498 }
4499 EXT4_SB(sb)->journal_bdev = bdev;
4500 ext4_init_journal_params(sb, journal);
4501 return journal;
4502
4503 out_journal:
4504 jbd2_journal_destroy(journal);
4505 out_bdev:
4506 ext4_blkdev_put(bdev);
4507 return NULL;
4508 }
4509
4510 static int ext4_load_journal(struct super_block *sb,
4511 struct ext4_super_block *es,
4512 unsigned long journal_devnum)
4513 {
4514 journal_t *journal;
4515 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4516 dev_t journal_dev;
4517 int err = 0;
4518 int really_read_only;
4519
4520 BUG_ON(!ext4_has_feature_journal(sb));
4521
4522 if (journal_devnum &&
4523 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4524 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4525 "numbers have changed");
4526 journal_dev = new_decode_dev(journal_devnum);
4527 } else
4528 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4529
4530 really_read_only = bdev_read_only(sb->s_bdev);
4531
4532 /*
4533 * Are we loading a blank journal or performing recovery after a
4534 * crash? For recovery, we need to check in advance whether we
4535 * can get read-write access to the device.
4536 */
4537 if (ext4_has_feature_journal_needs_recovery(sb)) {
4538 if (sb->s_flags & MS_RDONLY) {
4539 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4540 "required on readonly filesystem");
4541 if (really_read_only) {
4542 ext4_msg(sb, KERN_ERR, "write access "
4543 "unavailable, cannot proceed");
4544 return -EROFS;
4545 }
4546 ext4_msg(sb, KERN_INFO, "write access will "
4547 "be enabled during recovery");
4548 }
4549 }
4550
4551 if (journal_inum && journal_dev) {
4552 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4553 "and inode journals!");
4554 return -EINVAL;
4555 }
4556
4557 if (journal_inum) {
4558 if (!(journal = ext4_get_journal(sb, journal_inum)))
4559 return -EINVAL;
4560 } else {
4561 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4562 return -EINVAL;
4563 }
4564
4565 if (!(journal->j_flags & JBD2_BARRIER))
4566 ext4_msg(sb, KERN_INFO, "barriers disabled");
4567
4568 if (!ext4_has_feature_journal_needs_recovery(sb))
4569 err = jbd2_journal_wipe(journal, !really_read_only);
4570 if (!err) {
4571 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4572 if (save)
4573 memcpy(save, ((char *) es) +
4574 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4575 err = jbd2_journal_load(journal);
4576 if (save)
4577 memcpy(((char *) es) + EXT4_S_ERR_START,
4578 save, EXT4_S_ERR_LEN);
4579 kfree(save);
4580 }
4581
4582 if (err) {
4583 ext4_msg(sb, KERN_ERR, "error loading journal");
4584 jbd2_journal_destroy(journal);
4585 return err;
4586 }
4587
4588 EXT4_SB(sb)->s_journal = journal;
4589 ext4_clear_journal_err(sb, es);
4590
4591 if (!really_read_only && journal_devnum &&
4592 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4593 es->s_journal_dev = cpu_to_le32(journal_devnum);
4594
4595 /* Make sure we flush the recovery flag to disk. */
4596 ext4_commit_super(sb, 1);
4597 }
4598
4599 return 0;
4600 }
4601
4602 static int ext4_commit_super(struct super_block *sb, int sync)
4603 {
4604 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4605 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4606 int error = 0;
4607
4608 if (!sbh || block_device_ejected(sb))
4609 return error;
4610 /*
4611 * If the file system is mounted read-only, don't update the
4612 * superblock write time. This avoids updating the superblock
4613 * write time when we are mounting the root file system
4614 * read/only but we need to replay the journal; at that point,
4615 * for people who are east of GMT and who make their clock
4616 * tick in localtime for Windows bug-for-bug compatibility,
4617 * the clock is set in the future, and this will cause e2fsck
4618 * to complain and force a full file system check.
4619 */
4620 if (!(sb->s_flags & MS_RDONLY))
4621 es->s_wtime = cpu_to_le32(get_seconds());
4622 if (sb->s_bdev->bd_part)
4623 es->s_kbytes_written =
4624 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4625 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4626 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4627 else
4628 es->s_kbytes_written =
4629 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4630 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4631 ext4_free_blocks_count_set(es,
4632 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4633 &EXT4_SB(sb)->s_freeclusters_counter)));
4634 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4635 es->s_free_inodes_count =
4636 cpu_to_le32(percpu_counter_sum_positive(
4637 &EXT4_SB(sb)->s_freeinodes_counter));
4638 BUFFER_TRACE(sbh, "marking dirty");
4639 ext4_superblock_csum_set(sb);
4640 if (sync)
4641 lock_buffer(sbh);
4642 if (buffer_write_io_error(sbh)) {
4643 /*
4644 * Oh, dear. A previous attempt to write the
4645 * superblock failed. This could happen because the
4646 * USB device was yanked out. Or it could happen to
4647 * be a transient write error and maybe the block will
4648 * be remapped. Nothing we can do but to retry the
4649 * write and hope for the best.
4650 */
4651 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4652 "superblock detected");
4653 clear_buffer_write_io_error(sbh);
4654 set_buffer_uptodate(sbh);
4655 }
4656 mark_buffer_dirty(sbh);
4657 if (sync) {
4658 unlock_buffer(sbh);
4659 error = __sync_dirty_buffer(sbh,
4660 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC);
4661 if (error)
4662 return error;
4663
4664 error = buffer_write_io_error(sbh);
4665 if (error) {
4666 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4667 "superblock");
4668 clear_buffer_write_io_error(sbh);
4669 set_buffer_uptodate(sbh);
4670 }
4671 }
4672 return error;
4673 }
4674
4675 /*
4676 * Have we just finished recovery? If so, and if we are mounting (or
4677 * remounting) the filesystem readonly, then we will end up with a
4678 * consistent fs on disk. Record that fact.
4679 */
4680 static void ext4_mark_recovery_complete(struct super_block *sb,
4681 struct ext4_super_block *es)
4682 {
4683 journal_t *journal = EXT4_SB(sb)->s_journal;
4684
4685 if (!ext4_has_feature_journal(sb)) {
4686 BUG_ON(journal != NULL);
4687 return;
4688 }
4689 jbd2_journal_lock_updates(journal);
4690 if (jbd2_journal_flush(journal) < 0)
4691 goto out;
4692
4693 if (ext4_has_feature_journal_needs_recovery(sb) &&
4694 sb->s_flags & MS_RDONLY) {
4695 ext4_clear_feature_journal_needs_recovery(sb);
4696 ext4_commit_super(sb, 1);
4697 }
4698
4699 out:
4700 jbd2_journal_unlock_updates(journal);
4701 }
4702
4703 /*
4704 * If we are mounting (or read-write remounting) a filesystem whose journal
4705 * has recorded an error from a previous lifetime, move that error to the
4706 * main filesystem now.
4707 */
4708 static void ext4_clear_journal_err(struct super_block *sb,
4709 struct ext4_super_block *es)
4710 {
4711 journal_t *journal;
4712 int j_errno;
4713 const char *errstr;
4714
4715 BUG_ON(!ext4_has_feature_journal(sb));
4716
4717 journal = EXT4_SB(sb)->s_journal;
4718
4719 /*
4720 * Now check for any error status which may have been recorded in the
4721 * journal by a prior ext4_error() or ext4_abort()
4722 */
4723
4724 j_errno = jbd2_journal_errno(journal);
4725 if (j_errno) {
4726 char nbuf[16];
4727
4728 errstr = ext4_decode_error(sb, j_errno, nbuf);
4729 ext4_warning(sb, "Filesystem error recorded "
4730 "from previous mount: %s", errstr);
4731 ext4_warning(sb, "Marking fs in need of filesystem check.");
4732
4733 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4734 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4735 ext4_commit_super(sb, 1);
4736
4737 jbd2_journal_clear_err(journal);
4738 jbd2_journal_update_sb_errno(journal);
4739 }
4740 }
4741
4742 /*
4743 * Force the running and committing transactions to commit,
4744 * and wait on the commit.
4745 */
4746 int ext4_force_commit(struct super_block *sb)
4747 {
4748 journal_t *journal;
4749
4750 if (sb->s_flags & MS_RDONLY)
4751 return 0;
4752
4753 journal = EXT4_SB(sb)->s_journal;
4754 return ext4_journal_force_commit(journal);
4755 }
4756
4757 static int ext4_sync_fs(struct super_block *sb, int wait)
4758 {
4759 int ret = 0;
4760 tid_t target;
4761 bool needs_barrier = false;
4762 struct ext4_sb_info *sbi = EXT4_SB(sb);
4763
4764 trace_ext4_sync_fs(sb, wait);
4765 flush_workqueue(sbi->rsv_conversion_wq);
4766 /*
4767 * Writeback quota in non-journalled quota case - journalled quota has
4768 * no dirty dquots
4769 */
4770 dquot_writeback_dquots(sb, -1);
4771 /*
4772 * Data writeback is possible w/o journal transaction, so barrier must
4773 * being sent at the end of the function. But we can skip it if
4774 * transaction_commit will do it for us.
4775 */
4776 if (sbi->s_journal) {
4777 target = jbd2_get_latest_transaction(sbi->s_journal);
4778 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4779 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4780 needs_barrier = true;
4781
4782 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4783 if (wait)
4784 ret = jbd2_log_wait_commit(sbi->s_journal,
4785 target);
4786 }
4787 } else if (wait && test_opt(sb, BARRIER))
4788 needs_barrier = true;
4789 if (needs_barrier) {
4790 int err;
4791 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4792 if (!ret)
4793 ret = err;
4794 }
4795
4796 return ret;
4797 }
4798
4799 /*
4800 * LVM calls this function before a (read-only) snapshot is created. This
4801 * gives us a chance to flush the journal completely and mark the fs clean.
4802 *
4803 * Note that only this function cannot bring a filesystem to be in a clean
4804 * state independently. It relies on upper layer to stop all data & metadata
4805 * modifications.
4806 */
4807 static int ext4_freeze(struct super_block *sb)
4808 {
4809 int error = 0;
4810 journal_t *journal;
4811
4812 if (sb->s_flags & MS_RDONLY)
4813 return 0;
4814
4815 journal = EXT4_SB(sb)->s_journal;
4816
4817 if (journal) {
4818 /* Now we set up the journal barrier. */
4819 jbd2_journal_lock_updates(journal);
4820
4821 /*
4822 * Don't clear the needs_recovery flag if we failed to
4823 * flush the journal.
4824 */
4825 error = jbd2_journal_flush(journal);
4826 if (error < 0)
4827 goto out;
4828
4829 /* Journal blocked and flushed, clear needs_recovery flag. */
4830 ext4_clear_feature_journal_needs_recovery(sb);
4831 }
4832
4833 error = ext4_commit_super(sb, 1);
4834 out:
4835 if (journal)
4836 /* we rely on upper layer to stop further updates */
4837 jbd2_journal_unlock_updates(journal);
4838 return error;
4839 }
4840
4841 /*
4842 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4843 * flag here, even though the filesystem is not technically dirty yet.
4844 */
4845 static int ext4_unfreeze(struct super_block *sb)
4846 {
4847 if (sb->s_flags & MS_RDONLY)
4848 return 0;
4849
4850 if (EXT4_SB(sb)->s_journal) {
4851 /* Reset the needs_recovery flag before the fs is unlocked. */
4852 ext4_set_feature_journal_needs_recovery(sb);
4853 }
4854
4855 ext4_commit_super(sb, 1);
4856 return 0;
4857 }
4858
4859 /*
4860 * Structure to save mount options for ext4_remount's benefit
4861 */
4862 struct ext4_mount_options {
4863 unsigned long s_mount_opt;
4864 unsigned long s_mount_opt2;
4865 kuid_t s_resuid;
4866 kgid_t s_resgid;
4867 unsigned long s_commit_interval;
4868 u32 s_min_batch_time, s_max_batch_time;
4869 #ifdef CONFIG_QUOTA
4870 int s_jquota_fmt;
4871 char *s_qf_names[EXT4_MAXQUOTAS];
4872 #endif
4873 };
4874
4875 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4876 {
4877 struct ext4_super_block *es;
4878 struct ext4_sb_info *sbi = EXT4_SB(sb);
4879 unsigned long old_sb_flags;
4880 struct ext4_mount_options old_opts;
4881 int enable_quota = 0;
4882 ext4_group_t g;
4883 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4884 int err = 0;
4885 #ifdef CONFIG_QUOTA
4886 int i, j;
4887 #endif
4888 char *orig_data = kstrdup(data, GFP_KERNEL);
4889
4890 /* Store the original options */
4891 old_sb_flags = sb->s_flags;
4892 old_opts.s_mount_opt = sbi->s_mount_opt;
4893 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4894 old_opts.s_resuid = sbi->s_resuid;
4895 old_opts.s_resgid = sbi->s_resgid;
4896 old_opts.s_commit_interval = sbi->s_commit_interval;
4897 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4898 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4899 #ifdef CONFIG_QUOTA
4900 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4901 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4902 if (sbi->s_qf_names[i]) {
4903 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4904 GFP_KERNEL);
4905 if (!old_opts.s_qf_names[i]) {
4906 for (j = 0; j < i; j++)
4907 kfree(old_opts.s_qf_names[j]);
4908 kfree(orig_data);
4909 return -ENOMEM;
4910 }
4911 } else
4912 old_opts.s_qf_names[i] = NULL;
4913 #endif
4914 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4915 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4916
4917 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4918 err = -EINVAL;
4919 goto restore_opts;
4920 }
4921
4922 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4923 test_opt(sb, JOURNAL_CHECKSUM)) {
4924 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4925 "during remount not supported; ignoring");
4926 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4927 }
4928
4929 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4930 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4931 ext4_msg(sb, KERN_ERR, "can't mount with "
4932 "both data=journal and delalloc");
4933 err = -EINVAL;
4934 goto restore_opts;
4935 }
4936 if (test_opt(sb, DIOREAD_NOLOCK)) {
4937 ext4_msg(sb, KERN_ERR, "can't mount with "
4938 "both data=journal and dioread_nolock");
4939 err = -EINVAL;
4940 goto restore_opts;
4941 }
4942 if (test_opt(sb, DAX)) {
4943 ext4_msg(sb, KERN_ERR, "can't mount with "
4944 "both data=journal and dax");
4945 err = -EINVAL;
4946 goto restore_opts;
4947 }
4948 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4949 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4950 ext4_msg(sb, KERN_ERR, "can't mount with "
4951 "journal_async_commit in data=ordered mode");
4952 err = -EINVAL;
4953 goto restore_opts;
4954 }
4955 }
4956
4957 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4958 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4959 "dax flag with busy inodes while remounting");
4960 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4961 }
4962
4963 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4964 ext4_abort(sb, "Abort forced by user");
4965
4966 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4967 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4968
4969 es = sbi->s_es;
4970
4971 if (sbi->s_journal) {
4972 ext4_init_journal_params(sb, sbi->s_journal);
4973 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4974 }
4975
4976 if (*flags & MS_LAZYTIME)
4977 sb->s_flags |= MS_LAZYTIME;
4978
4979 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4980 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4981 err = -EROFS;
4982 goto restore_opts;
4983 }
4984
4985 if (*flags & MS_RDONLY) {
4986 err = sync_filesystem(sb);
4987 if (err < 0)
4988 goto restore_opts;
4989 err = dquot_suspend(sb, -1);
4990 if (err < 0)
4991 goto restore_opts;
4992
4993 /*
4994 * First of all, the unconditional stuff we have to do
4995 * to disable replay of the journal when we next remount
4996 */
4997 sb->s_flags |= MS_RDONLY;
4998
4999 /*
5000 * OK, test if we are remounting a valid rw partition
5001 * readonly, and if so set the rdonly flag and then
5002 * mark the partition as valid again.
5003 */
5004 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5005 (sbi->s_mount_state & EXT4_VALID_FS))
5006 es->s_state = cpu_to_le16(sbi->s_mount_state);
5007
5008 if (sbi->s_journal)
5009 ext4_mark_recovery_complete(sb, es);
5010 } else {
5011 /* Make sure we can mount this feature set readwrite */
5012 if (ext4_has_feature_readonly(sb) ||
5013 !ext4_feature_set_ok(sb, 0)) {
5014 err = -EROFS;
5015 goto restore_opts;
5016 }
5017 /*
5018 * Make sure the group descriptor checksums
5019 * are sane. If they aren't, refuse to remount r/w.
5020 */
5021 for (g = 0; g < sbi->s_groups_count; g++) {
5022 struct ext4_group_desc *gdp =
5023 ext4_get_group_desc(sb, g, NULL);
5024
5025 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5026 ext4_msg(sb, KERN_ERR,
5027 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5028 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5029 le16_to_cpu(gdp->bg_checksum));
5030 err = -EFSBADCRC;
5031 goto restore_opts;
5032 }
5033 }
5034
5035 /*
5036 * If we have an unprocessed orphan list hanging
5037 * around from a previously readonly bdev mount,
5038 * require a full umount/remount for now.
5039 */
5040 if (es->s_last_orphan) {
5041 ext4_msg(sb, KERN_WARNING, "Couldn't "
5042 "remount RDWR because of unprocessed "
5043 "orphan inode list. Please "
5044 "umount/remount instead");
5045 err = -EINVAL;
5046 goto restore_opts;
5047 }
5048
5049 /*
5050 * Mounting a RDONLY partition read-write, so reread
5051 * and store the current valid flag. (It may have
5052 * been changed by e2fsck since we originally mounted
5053 * the partition.)
5054 */
5055 if (sbi->s_journal)
5056 ext4_clear_journal_err(sb, es);
5057 sbi->s_mount_state = le16_to_cpu(es->s_state);
5058 if (!ext4_setup_super(sb, es, 0))
5059 sb->s_flags &= ~MS_RDONLY;
5060 if (ext4_has_feature_mmp(sb))
5061 if (ext4_multi_mount_protect(sb,
5062 le64_to_cpu(es->s_mmp_block))) {
5063 err = -EROFS;
5064 goto restore_opts;
5065 }
5066 enable_quota = 1;
5067 }
5068 }
5069
5070 /*
5071 * Reinitialize lazy itable initialization thread based on
5072 * current settings
5073 */
5074 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5075 ext4_unregister_li_request(sb);
5076 else {
5077 ext4_group_t first_not_zeroed;
5078 first_not_zeroed = ext4_has_uninit_itable(sb);
5079 ext4_register_li_request(sb, first_not_zeroed);
5080 }
5081
5082 ext4_setup_system_zone(sb);
5083 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5084 ext4_commit_super(sb, 1);
5085
5086 #ifdef CONFIG_QUOTA
5087 /* Release old quota file names */
5088 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5089 kfree(old_opts.s_qf_names[i]);
5090 if (enable_quota) {
5091 if (sb_any_quota_suspended(sb))
5092 dquot_resume(sb, -1);
5093 else if (ext4_has_feature_quota(sb)) {
5094 err = ext4_enable_quotas(sb);
5095 if (err)
5096 goto restore_opts;
5097 }
5098 }
5099 #endif
5100
5101 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5102 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5103 kfree(orig_data);
5104 return 0;
5105
5106 restore_opts:
5107 sb->s_flags = old_sb_flags;
5108 sbi->s_mount_opt = old_opts.s_mount_opt;
5109 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5110 sbi->s_resuid = old_opts.s_resuid;
5111 sbi->s_resgid = old_opts.s_resgid;
5112 sbi->s_commit_interval = old_opts.s_commit_interval;
5113 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5114 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5115 #ifdef CONFIG_QUOTA
5116 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5117 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5118 kfree(sbi->s_qf_names[i]);
5119 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5120 }
5121 #endif
5122 kfree(orig_data);
5123 return err;
5124 }
5125
5126 #ifdef CONFIG_QUOTA
5127 static int ext4_statfs_project(struct super_block *sb,
5128 kprojid_t projid, struct kstatfs *buf)
5129 {
5130 struct kqid qid;
5131 struct dquot *dquot;
5132 u64 limit;
5133 u64 curblock;
5134
5135 qid = make_kqid_projid(projid);
5136 dquot = dqget(sb, qid);
5137 if (IS_ERR(dquot))
5138 return PTR_ERR(dquot);
5139 spin_lock(&dq_data_lock);
5140
5141 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5142 dquot->dq_dqb.dqb_bsoftlimit :
5143 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5144 if (limit && buf->f_blocks > limit) {
5145 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5146 buf->f_blocks = limit;
5147 buf->f_bfree = buf->f_bavail =
5148 (buf->f_blocks > curblock) ?
5149 (buf->f_blocks - curblock) : 0;
5150 }
5151
5152 limit = dquot->dq_dqb.dqb_isoftlimit ?
5153 dquot->dq_dqb.dqb_isoftlimit :
5154 dquot->dq_dqb.dqb_ihardlimit;
5155 if (limit && buf->f_files > limit) {
5156 buf->f_files = limit;
5157 buf->f_ffree =
5158 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5159 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5160 }
5161
5162 spin_unlock(&dq_data_lock);
5163 dqput(dquot);
5164 return 0;
5165 }
5166 #endif
5167
5168 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5169 {
5170 struct super_block *sb = dentry->d_sb;
5171 struct ext4_sb_info *sbi = EXT4_SB(sb);
5172 struct ext4_super_block *es = sbi->s_es;
5173 ext4_fsblk_t overhead = 0, resv_blocks;
5174 u64 fsid;
5175 s64 bfree;
5176 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5177
5178 if (!test_opt(sb, MINIX_DF))
5179 overhead = sbi->s_overhead;
5180
5181 buf->f_type = EXT4_SUPER_MAGIC;
5182 buf->f_bsize = sb->s_blocksize;
5183 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5184 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5185 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5186 /* prevent underflow in case that few free space is available */
5187 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5188 buf->f_bavail = buf->f_bfree -
5189 (ext4_r_blocks_count(es) + resv_blocks);
5190 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5191 buf->f_bavail = 0;
5192 buf->f_files = le32_to_cpu(es->s_inodes_count);
5193 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5194 buf->f_namelen = EXT4_NAME_LEN;
5195 fsid = le64_to_cpup((void *)es->s_uuid) ^
5196 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5197 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5198 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5199
5200 #ifdef CONFIG_QUOTA
5201 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5202 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5203 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5204 #endif
5205 return 0;
5206 }
5207
5208 /* Helper function for writing quotas on sync - we need to start transaction
5209 * before quota file is locked for write. Otherwise the are possible deadlocks:
5210 * Process 1 Process 2
5211 * ext4_create() quota_sync()
5212 * jbd2_journal_start() write_dquot()
5213 * dquot_initialize() down(dqio_mutex)
5214 * down(dqio_mutex) jbd2_journal_start()
5215 *
5216 */
5217
5218 #ifdef CONFIG_QUOTA
5219
5220 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5221 {
5222 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5223 }
5224
5225 static int ext4_write_dquot(struct dquot *dquot)
5226 {
5227 int ret, err;
5228 handle_t *handle;
5229 struct inode *inode;
5230
5231 inode = dquot_to_inode(dquot);
5232 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5234 if (IS_ERR(handle))
5235 return PTR_ERR(handle);
5236 ret = dquot_commit(dquot);
5237 err = ext4_journal_stop(handle);
5238 if (!ret)
5239 ret = err;
5240 return ret;
5241 }
5242
5243 static int ext4_acquire_dquot(struct dquot *dquot)
5244 {
5245 int ret, err;
5246 handle_t *handle;
5247
5248 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5249 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5250 if (IS_ERR(handle))
5251 return PTR_ERR(handle);
5252 ret = dquot_acquire(dquot);
5253 err = ext4_journal_stop(handle);
5254 if (!ret)
5255 ret = err;
5256 return ret;
5257 }
5258
5259 static int ext4_release_dquot(struct dquot *dquot)
5260 {
5261 int ret, err;
5262 handle_t *handle;
5263
5264 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5265 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5266 if (IS_ERR(handle)) {
5267 /* Release dquot anyway to avoid endless cycle in dqput() */
5268 dquot_release(dquot);
5269 return PTR_ERR(handle);
5270 }
5271 ret = dquot_release(dquot);
5272 err = ext4_journal_stop(handle);
5273 if (!ret)
5274 ret = err;
5275 return ret;
5276 }
5277
5278 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5279 {
5280 struct super_block *sb = dquot->dq_sb;
5281 struct ext4_sb_info *sbi = EXT4_SB(sb);
5282
5283 /* Are we journaling quotas? */
5284 if (ext4_has_feature_quota(sb) ||
5285 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5286 dquot_mark_dquot_dirty(dquot);
5287 return ext4_write_dquot(dquot);
5288 } else {
5289 return dquot_mark_dquot_dirty(dquot);
5290 }
5291 }
5292
5293 static int ext4_write_info(struct super_block *sb, int type)
5294 {
5295 int ret, err;
5296 handle_t *handle;
5297
5298 /* Data block + inode block */
5299 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5300 if (IS_ERR(handle))
5301 return PTR_ERR(handle);
5302 ret = dquot_commit_info(sb, type);
5303 err = ext4_journal_stop(handle);
5304 if (!ret)
5305 ret = err;
5306 return ret;
5307 }
5308
5309 /*
5310 * Turn on quotas during mount time - we need to find
5311 * the quota file and such...
5312 */
5313 static int ext4_quota_on_mount(struct super_block *sb, int type)
5314 {
5315 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5316 EXT4_SB(sb)->s_jquota_fmt, type);
5317 }
5318
5319 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5320 {
5321 struct ext4_inode_info *ei = EXT4_I(inode);
5322
5323 /* The first argument of lockdep_set_subclass has to be
5324 * *exactly* the same as the argument to init_rwsem() --- in
5325 * this case, in init_once() --- or lockdep gets unhappy
5326 * because the name of the lock is set using the
5327 * stringification of the argument to init_rwsem().
5328 */
5329 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5330 lockdep_set_subclass(&ei->i_data_sem, subclass);
5331 }
5332
5333 /*
5334 * Standard function to be called on quota_on
5335 */
5336 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5337 const struct path *path)
5338 {
5339 int err;
5340
5341 if (!test_opt(sb, QUOTA))
5342 return -EINVAL;
5343
5344 /* Quotafile not on the same filesystem? */
5345 if (path->dentry->d_sb != sb)
5346 return -EXDEV;
5347 /* Journaling quota? */
5348 if (EXT4_SB(sb)->s_qf_names[type]) {
5349 /* Quotafile not in fs root? */
5350 if (path->dentry->d_parent != sb->s_root)
5351 ext4_msg(sb, KERN_WARNING,
5352 "Quota file not on filesystem root. "
5353 "Journaled quota will not work");
5354 }
5355
5356 /*
5357 * When we journal data on quota file, we have to flush journal to see
5358 * all updates to the file when we bypass pagecache...
5359 */
5360 if (EXT4_SB(sb)->s_journal &&
5361 ext4_should_journal_data(d_inode(path->dentry))) {
5362 /*
5363 * We don't need to lock updates but journal_flush() could
5364 * otherwise be livelocked...
5365 */
5366 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5367 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5368 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5369 if (err)
5370 return err;
5371 }
5372 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5373 err = dquot_quota_on(sb, type, format_id, path);
5374 if (err)
5375 lockdep_set_quota_inode(path->dentry->d_inode,
5376 I_DATA_SEM_NORMAL);
5377 return err;
5378 }
5379
5380 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5381 unsigned int flags)
5382 {
5383 int err;
5384 struct inode *qf_inode;
5385 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5386 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5387 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5388 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5389 };
5390
5391 BUG_ON(!ext4_has_feature_quota(sb));
5392
5393 if (!qf_inums[type])
5394 return -EPERM;
5395
5396 qf_inode = ext4_iget(sb, qf_inums[type]);
5397 if (IS_ERR(qf_inode)) {
5398 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5399 return PTR_ERR(qf_inode);
5400 }
5401
5402 /* Don't account quota for quota files to avoid recursion */
5403 qf_inode->i_flags |= S_NOQUOTA;
5404 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5405 err = dquot_enable(qf_inode, type, format_id, flags);
5406 iput(qf_inode);
5407 if (err)
5408 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5409
5410 return err;
5411 }
5412
5413 /* Enable usage tracking for all quota types. */
5414 static int ext4_enable_quotas(struct super_block *sb)
5415 {
5416 int type, err = 0;
5417 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5418 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5419 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5420 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5421 };
5422 bool quota_mopt[EXT4_MAXQUOTAS] = {
5423 test_opt(sb, USRQUOTA),
5424 test_opt(sb, GRPQUOTA),
5425 test_opt(sb, PRJQUOTA),
5426 };
5427
5428 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5429 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5430 if (qf_inums[type]) {
5431 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5432 DQUOT_USAGE_ENABLED |
5433 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5434 if (err) {
5435 ext4_warning(sb,
5436 "Failed to enable quota tracking "
5437 "(type=%d, err=%d). Please run "
5438 "e2fsck to fix.", type, err);
5439 return err;
5440 }
5441 }
5442 }
5443 return 0;
5444 }
5445
5446 static int ext4_quota_off(struct super_block *sb, int type)
5447 {
5448 struct inode *inode = sb_dqopt(sb)->files[type];
5449 handle_t *handle;
5450
5451 /* Force all delayed allocation blocks to be allocated.
5452 * Caller already holds s_umount sem */
5453 if (test_opt(sb, DELALLOC))
5454 sync_filesystem(sb);
5455
5456 if (!inode)
5457 goto out;
5458
5459 /* Update modification times of quota files when userspace can
5460 * start looking at them */
5461 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5462 if (IS_ERR(handle))
5463 goto out;
5464 inode->i_mtime = inode->i_ctime = current_time(inode);
5465 ext4_mark_inode_dirty(handle, inode);
5466 ext4_journal_stop(handle);
5467
5468 out:
5469 return dquot_quota_off(sb, type);
5470 }
5471
5472 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5473 * acquiring the locks... As quota files are never truncated and quota code
5474 * itself serializes the operations (and no one else should touch the files)
5475 * we don't have to be afraid of races */
5476 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5477 size_t len, loff_t off)
5478 {
5479 struct inode *inode = sb_dqopt(sb)->files[type];
5480 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5481 int offset = off & (sb->s_blocksize - 1);
5482 int tocopy;
5483 size_t toread;
5484 struct buffer_head *bh;
5485 loff_t i_size = i_size_read(inode);
5486
5487 if (off > i_size)
5488 return 0;
5489 if (off+len > i_size)
5490 len = i_size-off;
5491 toread = len;
5492 while (toread > 0) {
5493 tocopy = sb->s_blocksize - offset < toread ?
5494 sb->s_blocksize - offset : toread;
5495 bh = ext4_bread(NULL, inode, blk, 0);
5496 if (IS_ERR(bh))
5497 return PTR_ERR(bh);
5498 if (!bh) /* A hole? */
5499 memset(data, 0, tocopy);
5500 else
5501 memcpy(data, bh->b_data+offset, tocopy);
5502 brelse(bh);
5503 offset = 0;
5504 toread -= tocopy;
5505 data += tocopy;
5506 blk++;
5507 }
5508 return len;
5509 }
5510
5511 /* Write to quotafile (we know the transaction is already started and has
5512 * enough credits) */
5513 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5514 const char *data, size_t len, loff_t off)
5515 {
5516 struct inode *inode = sb_dqopt(sb)->files[type];
5517 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5518 int err, offset = off & (sb->s_blocksize - 1);
5519 int retries = 0;
5520 struct buffer_head *bh;
5521 handle_t *handle = journal_current_handle();
5522
5523 if (EXT4_SB(sb)->s_journal && !handle) {
5524 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5525 " cancelled because transaction is not started",
5526 (unsigned long long)off, (unsigned long long)len);
5527 return -EIO;
5528 }
5529 /*
5530 * Since we account only one data block in transaction credits,
5531 * then it is impossible to cross a block boundary.
5532 */
5533 if (sb->s_blocksize - offset < len) {
5534 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5535 " cancelled because not block aligned",
5536 (unsigned long long)off, (unsigned long long)len);
5537 return -EIO;
5538 }
5539
5540 do {
5541 bh = ext4_bread(handle, inode, blk,
5542 EXT4_GET_BLOCKS_CREATE |
5543 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5544 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5545 ext4_should_retry_alloc(inode->i_sb, &retries));
5546 if (IS_ERR(bh))
5547 return PTR_ERR(bh);
5548 if (!bh)
5549 goto out;
5550 BUFFER_TRACE(bh, "get write access");
5551 err = ext4_journal_get_write_access(handle, bh);
5552 if (err) {
5553 brelse(bh);
5554 return err;
5555 }
5556 lock_buffer(bh);
5557 memcpy(bh->b_data+offset, data, len);
5558 flush_dcache_page(bh->b_page);
5559 unlock_buffer(bh);
5560 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5561 brelse(bh);
5562 out:
5563 if (inode->i_size < off + len) {
5564 i_size_write(inode, off + len);
5565 EXT4_I(inode)->i_disksize = inode->i_size;
5566 ext4_mark_inode_dirty(handle, inode);
5567 }
5568 return len;
5569 }
5570
5571 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5572 {
5573 const struct quota_format_ops *ops;
5574
5575 if (!sb_has_quota_loaded(sb, qid->type))
5576 return -ESRCH;
5577 ops = sb_dqopt(sb)->ops[qid->type];
5578 if (!ops || !ops->get_next_id)
5579 return -ENOSYS;
5580 return dquot_get_next_id(sb, qid);
5581 }
5582 #endif
5583
5584 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5585 const char *dev_name, void *data)
5586 {
5587 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5588 }
5589
5590 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5591 static inline void register_as_ext2(void)
5592 {
5593 int err = register_filesystem(&ext2_fs_type);
5594 if (err)
5595 printk(KERN_WARNING
5596 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5597 }
5598
5599 static inline void unregister_as_ext2(void)
5600 {
5601 unregister_filesystem(&ext2_fs_type);
5602 }
5603
5604 static inline int ext2_feature_set_ok(struct super_block *sb)
5605 {
5606 if (ext4_has_unknown_ext2_incompat_features(sb))
5607 return 0;
5608 if (sb->s_flags & MS_RDONLY)
5609 return 1;
5610 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5611 return 0;
5612 return 1;
5613 }
5614 #else
5615 static inline void register_as_ext2(void) { }
5616 static inline void unregister_as_ext2(void) { }
5617 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5618 #endif
5619
5620 static inline void register_as_ext3(void)
5621 {
5622 int err = register_filesystem(&ext3_fs_type);
5623 if (err)
5624 printk(KERN_WARNING
5625 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5626 }
5627
5628 static inline void unregister_as_ext3(void)
5629 {
5630 unregister_filesystem(&ext3_fs_type);
5631 }
5632
5633 static inline int ext3_feature_set_ok(struct super_block *sb)
5634 {
5635 if (ext4_has_unknown_ext3_incompat_features(sb))
5636 return 0;
5637 if (!ext4_has_feature_journal(sb))
5638 return 0;
5639 if (sb->s_flags & MS_RDONLY)
5640 return 1;
5641 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5642 return 0;
5643 return 1;
5644 }
5645
5646 static struct file_system_type ext4_fs_type = {
5647 .owner = THIS_MODULE,
5648 .name = "ext4",
5649 .mount = ext4_mount,
5650 .kill_sb = kill_block_super,
5651 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
5652 };
5653 MODULE_ALIAS_FS("ext4");
5654
5655 /* Shared across all ext4 file systems */
5656 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5657
5658 static int __init ext4_init_fs(void)
5659 {
5660 int i, err;
5661
5662 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5663 ext4_li_info = NULL;
5664 mutex_init(&ext4_li_mtx);
5665
5666 /* Build-time check for flags consistency */
5667 ext4_check_flag_values();
5668
5669 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5670 init_waitqueue_head(&ext4__ioend_wq[i]);
5671
5672 err = ext4_init_es();
5673 if (err)
5674 return err;
5675
5676 err = ext4_init_pageio();
5677 if (err)
5678 goto out5;
5679
5680 err = ext4_init_system_zone();
5681 if (err)
5682 goto out4;
5683
5684 err = ext4_init_sysfs();
5685 if (err)
5686 goto out3;
5687
5688 err = ext4_init_mballoc();
5689 if (err)
5690 goto out2;
5691 err = init_inodecache();
5692 if (err)
5693 goto out1;
5694 register_as_ext3();
5695 register_as_ext2();
5696 err = register_filesystem(&ext4_fs_type);
5697 if (err)
5698 goto out;
5699
5700 return 0;
5701 out:
5702 unregister_as_ext2();
5703 unregister_as_ext3();
5704 destroy_inodecache();
5705 out1:
5706 ext4_exit_mballoc();
5707 out2:
5708 ext4_exit_sysfs();
5709 out3:
5710 ext4_exit_system_zone();
5711 out4:
5712 ext4_exit_pageio();
5713 out5:
5714 ext4_exit_es();
5715
5716 return err;
5717 }
5718
5719 static void __exit ext4_exit_fs(void)
5720 {
5721 ext4_destroy_lazyinit_thread();
5722 unregister_as_ext2();
5723 unregister_as_ext3();
5724 unregister_filesystem(&ext4_fs_type);
5725 destroy_inodecache();
5726 ext4_exit_mballoc();
5727 ext4_exit_sysfs();
5728 ext4_exit_system_zone();
5729 ext4_exit_pageio();
5730 ext4_exit_es();
5731 }
5732
5733 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5734 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5735 MODULE_LICENSE("GPL");
5736 module_init(ext4_init_fs)
5737 module_exit(ext4_exit_fs)