]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: support plain user/group quota
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94
95 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
96 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
97 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
98
99 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
100 typecheck(unsigned long long, b) && \
101 ((long long)((a) - (b)) > 0))
102
103 typedef u32 block_t; /*
104 * should not change u32, since it is the on-disk block
105 * address format, __le32.
106 */
107 typedef u32 nid_t;
108
109 struct f2fs_mount_info {
110 unsigned int opt;
111 };
112
113 #define F2FS_FEATURE_ENCRYPT 0x0001
114 #define F2FS_FEATURE_BLKZONED 0x0002
115
116 #define F2FS_HAS_FEATURE(sb, mask) \
117 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
118 #define F2FS_SET_FEATURE(sb, mask) \
119 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
120 #define F2FS_CLEAR_FEATURE(sb, mask) \
121 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
122
123 /*
124 * For checkpoint manager
125 */
126 enum {
127 NAT_BITMAP,
128 SIT_BITMAP
129 };
130
131 #define CP_UMOUNT 0x00000001
132 #define CP_FASTBOOT 0x00000002
133 #define CP_SYNC 0x00000004
134 #define CP_RECOVERY 0x00000008
135 #define CP_DISCARD 0x00000010
136 #define CP_TRIMMED 0x00000020
137
138 #define DEF_BATCHED_TRIM_SECTIONS 2048
139 #define BATCHED_TRIM_SEGMENTS(sbi) \
140 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
141 #define BATCHED_TRIM_BLOCKS(sbi) \
142 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
143 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
144 #define DISCARD_ISSUE_RATE 8
145 #define DEF_CP_INTERVAL 60 /* 60 secs */
146 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
147
148 struct cp_control {
149 int reason;
150 __u64 trim_start;
151 __u64 trim_end;
152 __u64 trim_minlen;
153 __u64 trimmed;
154 };
155
156 /*
157 * For CP/NAT/SIT/SSA readahead
158 */
159 enum {
160 META_CP,
161 META_NAT,
162 META_SIT,
163 META_SSA,
164 META_POR,
165 };
166
167 /* for the list of ino */
168 enum {
169 ORPHAN_INO, /* for orphan ino list */
170 APPEND_INO, /* for append ino list */
171 UPDATE_INO, /* for update ino list */
172 MAX_INO_ENTRY, /* max. list */
173 };
174
175 struct ino_entry {
176 struct list_head list; /* list head */
177 nid_t ino; /* inode number */
178 };
179
180 /* for the list of inodes to be GCed */
181 struct inode_entry {
182 struct list_head list; /* list head */
183 struct inode *inode; /* vfs inode pointer */
184 };
185
186 /* for the bitmap indicate blocks to be discarded */
187 struct discard_entry {
188 struct list_head list; /* list head */
189 block_t start_blkaddr; /* start blockaddr of current segment */
190 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
191 };
192
193 /* max discard pend list number */
194 #define MAX_PLIST_NUM 512
195 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
196 (MAX_PLIST_NUM - 1) : (blk_num - 1))
197
198 enum {
199 D_PREP,
200 D_SUBMIT,
201 D_DONE,
202 };
203
204 struct discard_info {
205 block_t lstart; /* logical start address */
206 block_t len; /* length */
207 block_t start; /* actual start address in dev */
208 };
209
210 struct discard_cmd {
211 struct rb_node rb_node; /* rb node located in rb-tree */
212 union {
213 struct {
214 block_t lstart; /* logical start address */
215 block_t len; /* length */
216 block_t start; /* actual start address in dev */
217 };
218 struct discard_info di; /* discard info */
219
220 };
221 struct list_head list; /* command list */
222 struct completion wait; /* compleation */
223 struct block_device *bdev; /* bdev */
224 unsigned short ref; /* reference count */
225 unsigned char state; /* state */
226 int error; /* bio error */
227 };
228
229 struct discard_cmd_control {
230 struct task_struct *f2fs_issue_discard; /* discard thread */
231 struct list_head entry_list; /* 4KB discard entry list */
232 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
233 struct list_head wait_list; /* store on-flushing entries */
234 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
235 struct mutex cmd_lock;
236 unsigned int nr_discards; /* # of discards in the list */
237 unsigned int max_discards; /* max. discards to be issued */
238 unsigned int undiscard_blks; /* # of undiscard blocks */
239 atomic_t issued_discard; /* # of issued discard */
240 atomic_t issing_discard; /* # of issing discard */
241 atomic_t discard_cmd_cnt; /* # of cached cmd count */
242 struct rb_root root; /* root of discard rb-tree */
243 };
244
245 /* for the list of fsync inodes, used only during recovery */
246 struct fsync_inode_entry {
247 struct list_head list; /* list head */
248 struct inode *inode; /* vfs inode pointer */
249 block_t blkaddr; /* block address locating the last fsync */
250 block_t last_dentry; /* block address locating the last dentry */
251 };
252
253 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
254 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
255
256 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
257 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
258 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
259 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
260
261 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
262 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
263
264 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
265 {
266 int before = nats_in_cursum(journal);
267
268 journal->n_nats = cpu_to_le16(before + i);
269 return before;
270 }
271
272 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
273 {
274 int before = sits_in_cursum(journal);
275
276 journal->n_sits = cpu_to_le16(before + i);
277 return before;
278 }
279
280 static inline bool __has_cursum_space(struct f2fs_journal *journal,
281 int size, int type)
282 {
283 if (type == NAT_JOURNAL)
284 return size <= MAX_NAT_JENTRIES(journal);
285 return size <= MAX_SIT_JENTRIES(journal);
286 }
287
288 /*
289 * ioctl commands
290 */
291 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
292 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
293 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
294
295 #define F2FS_IOCTL_MAGIC 0xf5
296 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
297 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
298 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
299 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
300 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
301 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
302 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
303 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
304 struct f2fs_defragment)
305 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
306 struct f2fs_move_range)
307 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
308 struct f2fs_flush_device)
309 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
310 struct f2fs_gc_range)
311
312 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
313 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
314 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
315
316 /*
317 * should be same as XFS_IOC_GOINGDOWN.
318 * Flags for going down operation used by FS_IOC_GOINGDOWN
319 */
320 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
321 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
322 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
323 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
324 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
325
326 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
327 /*
328 * ioctl commands in 32 bit emulation
329 */
330 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
331 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
332 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
333 #endif
334
335 struct f2fs_gc_range {
336 u32 sync;
337 u64 start;
338 u64 len;
339 };
340
341 struct f2fs_defragment {
342 u64 start;
343 u64 len;
344 };
345
346 struct f2fs_move_range {
347 u32 dst_fd; /* destination fd */
348 u64 pos_in; /* start position in src_fd */
349 u64 pos_out; /* start position in dst_fd */
350 u64 len; /* size to move */
351 };
352
353 struct f2fs_flush_device {
354 u32 dev_num; /* device number to flush */
355 u32 segments; /* # of segments to flush */
356 };
357
358 /*
359 * For INODE and NODE manager
360 */
361 /* for directory operations */
362 struct f2fs_dentry_ptr {
363 struct inode *inode;
364 const void *bitmap;
365 struct f2fs_dir_entry *dentry;
366 __u8 (*filename)[F2FS_SLOT_LEN];
367 int max;
368 };
369
370 static inline void make_dentry_ptr_block(struct inode *inode,
371 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
372 {
373 d->inode = inode;
374 d->max = NR_DENTRY_IN_BLOCK;
375 d->bitmap = &t->dentry_bitmap;
376 d->dentry = t->dentry;
377 d->filename = t->filename;
378 }
379
380 static inline void make_dentry_ptr_inline(struct inode *inode,
381 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
382 {
383 d->inode = inode;
384 d->max = NR_INLINE_DENTRY;
385 d->bitmap = &t->dentry_bitmap;
386 d->dentry = t->dentry;
387 d->filename = t->filename;
388 }
389
390 /*
391 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
392 * as its node offset to distinguish from index node blocks.
393 * But some bits are used to mark the node block.
394 */
395 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
396 >> OFFSET_BIT_SHIFT)
397 enum {
398 ALLOC_NODE, /* allocate a new node page if needed */
399 LOOKUP_NODE, /* look up a node without readahead */
400 LOOKUP_NODE_RA, /*
401 * look up a node with readahead called
402 * by get_data_block.
403 */
404 };
405
406 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
407
408 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
409
410 /* vector size for gang look-up from extent cache that consists of radix tree */
411 #define EXT_TREE_VEC_SIZE 64
412
413 /* for in-memory extent cache entry */
414 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
415
416 /* number of extent info in extent cache we try to shrink */
417 #define EXTENT_CACHE_SHRINK_NUMBER 128
418
419 struct rb_entry {
420 struct rb_node rb_node; /* rb node located in rb-tree */
421 unsigned int ofs; /* start offset of the entry */
422 unsigned int len; /* length of the entry */
423 };
424
425 struct extent_info {
426 unsigned int fofs; /* start offset in a file */
427 unsigned int len; /* length of the extent */
428 u32 blk; /* start block address of the extent */
429 };
430
431 struct extent_node {
432 struct rb_node rb_node;
433 union {
434 struct {
435 unsigned int fofs;
436 unsigned int len;
437 u32 blk;
438 };
439 struct extent_info ei; /* extent info */
440
441 };
442 struct list_head list; /* node in global extent list of sbi */
443 struct extent_tree *et; /* extent tree pointer */
444 };
445
446 struct extent_tree {
447 nid_t ino; /* inode number */
448 struct rb_root root; /* root of extent info rb-tree */
449 struct extent_node *cached_en; /* recently accessed extent node */
450 struct extent_info largest; /* largested extent info */
451 struct list_head list; /* to be used by sbi->zombie_list */
452 rwlock_t lock; /* protect extent info rb-tree */
453 atomic_t node_cnt; /* # of extent node in rb-tree*/
454 };
455
456 /*
457 * This structure is taken from ext4_map_blocks.
458 *
459 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
460 */
461 #define F2FS_MAP_NEW (1 << BH_New)
462 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
463 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
464 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
465 F2FS_MAP_UNWRITTEN)
466
467 struct f2fs_map_blocks {
468 block_t m_pblk;
469 block_t m_lblk;
470 unsigned int m_len;
471 unsigned int m_flags;
472 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
473 };
474
475 /* for flag in get_data_block */
476 #define F2FS_GET_BLOCK_READ 0
477 #define F2FS_GET_BLOCK_DIO 1
478 #define F2FS_GET_BLOCK_FIEMAP 2
479 #define F2FS_GET_BLOCK_BMAP 3
480 #define F2FS_GET_BLOCK_PRE_DIO 4
481 #define F2FS_GET_BLOCK_PRE_AIO 5
482
483 /*
484 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
485 */
486 #define FADVISE_COLD_BIT 0x01
487 #define FADVISE_LOST_PINO_BIT 0x02
488 #define FADVISE_ENCRYPT_BIT 0x04
489 #define FADVISE_ENC_NAME_BIT 0x08
490 #define FADVISE_KEEP_SIZE_BIT 0x10
491
492 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
493 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
494 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
495 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
496 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
497 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
498 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
499 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
500 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
501 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
502 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
503 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
504 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
505
506 #define DEF_DIR_LEVEL 0
507
508 struct f2fs_inode_info {
509 struct inode vfs_inode; /* serve a vfs inode */
510 unsigned long i_flags; /* keep an inode flags for ioctl */
511 unsigned char i_advise; /* use to give file attribute hints */
512 unsigned char i_dir_level; /* use for dentry level for large dir */
513 unsigned int i_current_depth; /* use only in directory structure */
514 unsigned int i_pino; /* parent inode number */
515 umode_t i_acl_mode; /* keep file acl mode temporarily */
516
517 /* Use below internally in f2fs*/
518 unsigned long flags; /* use to pass per-file flags */
519 struct rw_semaphore i_sem; /* protect fi info */
520 atomic_t dirty_pages; /* # of dirty pages */
521 f2fs_hash_t chash; /* hash value of given file name */
522 unsigned int clevel; /* maximum level of given file name */
523 struct task_struct *task; /* lookup and create consistency */
524 nid_t i_xattr_nid; /* node id that contains xattrs */
525 loff_t last_disk_size; /* lastly written file size */
526
527 #ifdef CONFIG_QUOTA
528 struct dquot *i_dquot[MAXQUOTAS];
529
530 /* quota space reservation, managed internally by quota code */
531 qsize_t i_reserved_quota;
532 #endif
533 struct list_head dirty_list; /* dirty list for dirs and files */
534 struct list_head gdirty_list; /* linked in global dirty list */
535 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
536 struct mutex inmem_lock; /* lock for inmemory pages */
537 struct extent_tree *extent_tree; /* cached extent_tree entry */
538 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
539 struct rw_semaphore i_mmap_sem;
540 };
541
542 static inline void get_extent_info(struct extent_info *ext,
543 struct f2fs_extent *i_ext)
544 {
545 ext->fofs = le32_to_cpu(i_ext->fofs);
546 ext->blk = le32_to_cpu(i_ext->blk);
547 ext->len = le32_to_cpu(i_ext->len);
548 }
549
550 static inline void set_raw_extent(struct extent_info *ext,
551 struct f2fs_extent *i_ext)
552 {
553 i_ext->fofs = cpu_to_le32(ext->fofs);
554 i_ext->blk = cpu_to_le32(ext->blk);
555 i_ext->len = cpu_to_le32(ext->len);
556 }
557
558 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
559 u32 blk, unsigned int len)
560 {
561 ei->fofs = fofs;
562 ei->blk = blk;
563 ei->len = len;
564 }
565
566 static inline bool __is_discard_mergeable(struct discard_info *back,
567 struct discard_info *front)
568 {
569 return back->lstart + back->len == front->lstart;
570 }
571
572 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
573 struct discard_info *back)
574 {
575 return __is_discard_mergeable(back, cur);
576 }
577
578 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
579 struct discard_info *front)
580 {
581 return __is_discard_mergeable(cur, front);
582 }
583
584 static inline bool __is_extent_mergeable(struct extent_info *back,
585 struct extent_info *front)
586 {
587 return (back->fofs + back->len == front->fofs &&
588 back->blk + back->len == front->blk);
589 }
590
591 static inline bool __is_back_mergeable(struct extent_info *cur,
592 struct extent_info *back)
593 {
594 return __is_extent_mergeable(back, cur);
595 }
596
597 static inline bool __is_front_mergeable(struct extent_info *cur,
598 struct extent_info *front)
599 {
600 return __is_extent_mergeable(cur, front);
601 }
602
603 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
604 static inline void __try_update_largest_extent(struct inode *inode,
605 struct extent_tree *et, struct extent_node *en)
606 {
607 if (en->ei.len > et->largest.len) {
608 et->largest = en->ei;
609 f2fs_mark_inode_dirty_sync(inode, true);
610 }
611 }
612
613 enum nid_list {
614 FREE_NID_LIST,
615 ALLOC_NID_LIST,
616 MAX_NID_LIST,
617 };
618
619 struct f2fs_nm_info {
620 block_t nat_blkaddr; /* base disk address of NAT */
621 nid_t max_nid; /* maximum possible node ids */
622 nid_t available_nids; /* # of available node ids */
623 nid_t next_scan_nid; /* the next nid to be scanned */
624 unsigned int ram_thresh; /* control the memory footprint */
625 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
626 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
627
628 /* NAT cache management */
629 struct radix_tree_root nat_root;/* root of the nat entry cache */
630 struct radix_tree_root nat_set_root;/* root of the nat set cache */
631 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
632 struct list_head nat_entries; /* cached nat entry list (clean) */
633 unsigned int nat_cnt; /* the # of cached nat entries */
634 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
635 unsigned int nat_blocks; /* # of nat blocks */
636
637 /* free node ids management */
638 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
639 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
640 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
641 spinlock_t nid_list_lock; /* protect nid lists ops */
642 struct mutex build_lock; /* lock for build free nids */
643 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
644 unsigned char *nat_block_bitmap;
645 unsigned short *free_nid_count; /* free nid count of NAT block */
646
647 /* for checkpoint */
648 char *nat_bitmap; /* NAT bitmap pointer */
649
650 unsigned int nat_bits_blocks; /* # of nat bits blocks */
651 unsigned char *nat_bits; /* NAT bits blocks */
652 unsigned char *full_nat_bits; /* full NAT pages */
653 unsigned char *empty_nat_bits; /* empty NAT pages */
654 #ifdef CONFIG_F2FS_CHECK_FS
655 char *nat_bitmap_mir; /* NAT bitmap mirror */
656 #endif
657 int bitmap_size; /* bitmap size */
658 };
659
660 /*
661 * this structure is used as one of function parameters.
662 * all the information are dedicated to a given direct node block determined
663 * by the data offset in a file.
664 */
665 struct dnode_of_data {
666 struct inode *inode; /* vfs inode pointer */
667 struct page *inode_page; /* its inode page, NULL is possible */
668 struct page *node_page; /* cached direct node page */
669 nid_t nid; /* node id of the direct node block */
670 unsigned int ofs_in_node; /* data offset in the node page */
671 bool inode_page_locked; /* inode page is locked or not */
672 bool node_changed; /* is node block changed */
673 char cur_level; /* level of hole node page */
674 char max_level; /* level of current page located */
675 block_t data_blkaddr; /* block address of the node block */
676 };
677
678 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
679 struct page *ipage, struct page *npage, nid_t nid)
680 {
681 memset(dn, 0, sizeof(*dn));
682 dn->inode = inode;
683 dn->inode_page = ipage;
684 dn->node_page = npage;
685 dn->nid = nid;
686 }
687
688 /*
689 * For SIT manager
690 *
691 * By default, there are 6 active log areas across the whole main area.
692 * When considering hot and cold data separation to reduce cleaning overhead,
693 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
694 * respectively.
695 * In the current design, you should not change the numbers intentionally.
696 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
697 * logs individually according to the underlying devices. (default: 6)
698 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
699 * data and 8 for node logs.
700 */
701 #define NR_CURSEG_DATA_TYPE (3)
702 #define NR_CURSEG_NODE_TYPE (3)
703 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
704
705 enum {
706 CURSEG_HOT_DATA = 0, /* directory entry blocks */
707 CURSEG_WARM_DATA, /* data blocks */
708 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
709 CURSEG_HOT_NODE, /* direct node blocks of directory files */
710 CURSEG_WARM_NODE, /* direct node blocks of normal files */
711 CURSEG_COLD_NODE, /* indirect node blocks */
712 NO_CHECK_TYPE,
713 };
714
715 struct flush_cmd {
716 struct completion wait;
717 struct llist_node llnode;
718 int ret;
719 };
720
721 struct flush_cmd_control {
722 struct task_struct *f2fs_issue_flush; /* flush thread */
723 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
724 atomic_t issued_flush; /* # of issued flushes */
725 atomic_t issing_flush; /* # of issing flushes */
726 struct llist_head issue_list; /* list for command issue */
727 struct llist_node *dispatch_list; /* list for command dispatch */
728 };
729
730 struct f2fs_sm_info {
731 struct sit_info *sit_info; /* whole segment information */
732 struct free_segmap_info *free_info; /* free segment information */
733 struct dirty_seglist_info *dirty_info; /* dirty segment information */
734 struct curseg_info *curseg_array; /* active segment information */
735
736 block_t seg0_blkaddr; /* block address of 0'th segment */
737 block_t main_blkaddr; /* start block address of main area */
738 block_t ssa_blkaddr; /* start block address of SSA area */
739
740 unsigned int segment_count; /* total # of segments */
741 unsigned int main_segments; /* # of segments in main area */
742 unsigned int reserved_segments; /* # of reserved segments */
743 unsigned int ovp_segments; /* # of overprovision segments */
744
745 /* a threshold to reclaim prefree segments */
746 unsigned int rec_prefree_segments;
747
748 /* for batched trimming */
749 unsigned int trim_sections; /* # of sections to trim */
750
751 struct list_head sit_entry_set; /* sit entry set list */
752
753 unsigned int ipu_policy; /* in-place-update policy */
754 unsigned int min_ipu_util; /* in-place-update threshold */
755 unsigned int min_fsync_blocks; /* threshold for fsync */
756 unsigned int min_hot_blocks; /* threshold for hot block allocation */
757
758 /* for flush command control */
759 struct flush_cmd_control *fcc_info;
760
761 /* for discard command control */
762 struct discard_cmd_control *dcc_info;
763 };
764
765 /*
766 * For superblock
767 */
768 /*
769 * COUNT_TYPE for monitoring
770 *
771 * f2fs monitors the number of several block types such as on-writeback,
772 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
773 */
774 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
775 enum count_type {
776 F2FS_DIRTY_DENTS,
777 F2FS_DIRTY_DATA,
778 F2FS_DIRTY_NODES,
779 F2FS_DIRTY_META,
780 F2FS_INMEM_PAGES,
781 F2FS_DIRTY_IMETA,
782 F2FS_WB_CP_DATA,
783 F2FS_WB_DATA,
784 NR_COUNT_TYPE,
785 };
786
787 /*
788 * The below are the page types of bios used in submit_bio().
789 * The available types are:
790 * DATA User data pages. It operates as async mode.
791 * NODE Node pages. It operates as async mode.
792 * META FS metadata pages such as SIT, NAT, CP.
793 * NR_PAGE_TYPE The number of page types.
794 * META_FLUSH Make sure the previous pages are written
795 * with waiting the bio's completion
796 * ... Only can be used with META.
797 */
798 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
799 enum page_type {
800 DATA,
801 NODE,
802 META,
803 NR_PAGE_TYPE,
804 META_FLUSH,
805 INMEM, /* the below types are used by tracepoints only. */
806 INMEM_DROP,
807 INMEM_INVALIDATE,
808 INMEM_REVOKE,
809 IPU,
810 OPU,
811 };
812
813 enum temp_type {
814 HOT = 0, /* must be zero for meta bio */
815 WARM,
816 COLD,
817 NR_TEMP_TYPE,
818 };
819
820 enum need_lock_type {
821 LOCK_REQ = 0,
822 LOCK_DONE,
823 LOCK_RETRY,
824 };
825
826 struct f2fs_io_info {
827 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
828 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
829 enum temp_type temp; /* contains HOT/WARM/COLD */
830 int op; /* contains REQ_OP_ */
831 int op_flags; /* req_flag_bits */
832 block_t new_blkaddr; /* new block address to be written */
833 block_t old_blkaddr; /* old block address before Cow */
834 struct page *page; /* page to be written */
835 struct page *encrypted_page; /* encrypted page */
836 struct list_head list; /* serialize IOs */
837 bool submitted; /* indicate IO submission */
838 int need_lock; /* indicate we need to lock cp_rwsem */
839 bool in_list; /* indicate fio is in io_list */
840 };
841
842 #define is_read_io(rw) ((rw) == READ)
843 struct f2fs_bio_info {
844 struct f2fs_sb_info *sbi; /* f2fs superblock */
845 struct bio *bio; /* bios to merge */
846 sector_t last_block_in_bio; /* last block number */
847 struct f2fs_io_info fio; /* store buffered io info. */
848 struct rw_semaphore io_rwsem; /* blocking op for bio */
849 spinlock_t io_lock; /* serialize DATA/NODE IOs */
850 struct list_head io_list; /* track fios */
851 };
852
853 #define FDEV(i) (sbi->devs[i])
854 #define RDEV(i) (raw_super->devs[i])
855 struct f2fs_dev_info {
856 struct block_device *bdev;
857 char path[MAX_PATH_LEN];
858 unsigned int total_segments;
859 block_t start_blk;
860 block_t end_blk;
861 #ifdef CONFIG_BLK_DEV_ZONED
862 unsigned int nr_blkz; /* Total number of zones */
863 u8 *blkz_type; /* Array of zones type */
864 #endif
865 };
866
867 enum inode_type {
868 DIR_INODE, /* for dirty dir inode */
869 FILE_INODE, /* for dirty regular/symlink inode */
870 DIRTY_META, /* for all dirtied inode metadata */
871 NR_INODE_TYPE,
872 };
873
874 /* for inner inode cache management */
875 struct inode_management {
876 struct radix_tree_root ino_root; /* ino entry array */
877 spinlock_t ino_lock; /* for ino entry lock */
878 struct list_head ino_list; /* inode list head */
879 unsigned long ino_num; /* number of entries */
880 };
881
882 /* For s_flag in struct f2fs_sb_info */
883 enum {
884 SBI_IS_DIRTY, /* dirty flag for checkpoint */
885 SBI_IS_CLOSE, /* specify unmounting */
886 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
887 SBI_POR_DOING, /* recovery is doing or not */
888 SBI_NEED_SB_WRITE, /* need to recover superblock */
889 SBI_NEED_CP, /* need to checkpoint */
890 };
891
892 enum {
893 CP_TIME,
894 REQ_TIME,
895 MAX_TIME,
896 };
897
898 struct f2fs_sb_info {
899 struct super_block *sb; /* pointer to VFS super block */
900 struct proc_dir_entry *s_proc; /* proc entry */
901 struct f2fs_super_block *raw_super; /* raw super block pointer */
902 int valid_super_block; /* valid super block no */
903 unsigned long s_flag; /* flags for sbi */
904
905 #ifdef CONFIG_BLK_DEV_ZONED
906 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
907 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
908 #endif
909
910 /* for node-related operations */
911 struct f2fs_nm_info *nm_info; /* node manager */
912 struct inode *node_inode; /* cache node blocks */
913
914 /* for segment-related operations */
915 struct f2fs_sm_info *sm_info; /* segment manager */
916
917 /* for bio operations */
918 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
919 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
920 /* bio ordering for NODE/DATA */
921 int write_io_size_bits; /* Write IO size bits */
922 mempool_t *write_io_dummy; /* Dummy pages */
923
924 /* for checkpoint */
925 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
926 int cur_cp_pack; /* remain current cp pack */
927 spinlock_t cp_lock; /* for flag in ckpt */
928 struct inode *meta_inode; /* cache meta blocks */
929 struct mutex cp_mutex; /* checkpoint procedure lock */
930 struct rw_semaphore cp_rwsem; /* blocking FS operations */
931 struct rw_semaphore node_write; /* locking node writes */
932 struct rw_semaphore node_change; /* locking node change */
933 wait_queue_head_t cp_wait;
934 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
935 long interval_time[MAX_TIME]; /* to store thresholds */
936
937 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
938
939 /* for orphan inode, use 0'th array */
940 unsigned int max_orphans; /* max orphan inodes */
941
942 /* for inode management */
943 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
944 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
945
946 /* for extent tree cache */
947 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
948 struct mutex extent_tree_lock; /* locking extent radix tree */
949 struct list_head extent_list; /* lru list for shrinker */
950 spinlock_t extent_lock; /* locking extent lru list */
951 atomic_t total_ext_tree; /* extent tree count */
952 struct list_head zombie_list; /* extent zombie tree list */
953 atomic_t total_zombie_tree; /* extent zombie tree count */
954 atomic_t total_ext_node; /* extent info count */
955
956 /* basic filesystem units */
957 unsigned int log_sectors_per_block; /* log2 sectors per block */
958 unsigned int log_blocksize; /* log2 block size */
959 unsigned int blocksize; /* block size */
960 unsigned int root_ino_num; /* root inode number*/
961 unsigned int node_ino_num; /* node inode number*/
962 unsigned int meta_ino_num; /* meta inode number*/
963 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
964 unsigned int blocks_per_seg; /* blocks per segment */
965 unsigned int segs_per_sec; /* segments per section */
966 unsigned int secs_per_zone; /* sections per zone */
967 unsigned int total_sections; /* total section count */
968 unsigned int total_node_count; /* total node block count */
969 unsigned int total_valid_node_count; /* valid node block count */
970 loff_t max_file_blocks; /* max block index of file */
971 int active_logs; /* # of active logs */
972 int dir_level; /* directory level */
973
974 block_t user_block_count; /* # of user blocks */
975 block_t total_valid_block_count; /* # of valid blocks */
976 block_t discard_blks; /* discard command candidats */
977 block_t last_valid_block_count; /* for recovery */
978 block_t reserved_blocks; /* configurable reserved blocks */
979
980 u32 s_next_generation; /* for NFS support */
981
982 /* # of pages, see count_type */
983 atomic_t nr_pages[NR_COUNT_TYPE];
984 /* # of allocated blocks */
985 struct percpu_counter alloc_valid_block_count;
986
987 /* writeback control */
988 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
989
990 /* valid inode count */
991 struct percpu_counter total_valid_inode_count;
992
993 struct f2fs_mount_info mount_opt; /* mount options */
994
995 /* for cleaning operations */
996 struct mutex gc_mutex; /* mutex for GC */
997 struct f2fs_gc_kthread *gc_thread; /* GC thread */
998 unsigned int cur_victim_sec; /* current victim section num */
999
1000 /* threshold for converting bg victims for fg */
1001 u64 fggc_threshold;
1002
1003 /* maximum # of trials to find a victim segment for SSR and GC */
1004 unsigned int max_victim_search;
1005
1006 /*
1007 * for stat information.
1008 * one is for the LFS mode, and the other is for the SSR mode.
1009 */
1010 #ifdef CONFIG_F2FS_STAT_FS
1011 struct f2fs_stat_info *stat_info; /* FS status information */
1012 unsigned int segment_count[2]; /* # of allocated segments */
1013 unsigned int block_count[2]; /* # of allocated blocks */
1014 atomic_t inplace_count; /* # of inplace update */
1015 atomic64_t total_hit_ext; /* # of lookup extent cache */
1016 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1017 atomic64_t read_hit_largest; /* # of hit largest extent node */
1018 atomic64_t read_hit_cached; /* # of hit cached extent node */
1019 atomic_t inline_xattr; /* # of inline_xattr inodes */
1020 atomic_t inline_inode; /* # of inline_data inodes */
1021 atomic_t inline_dir; /* # of inline_dentry inodes */
1022 atomic_t aw_cnt; /* # of atomic writes */
1023 atomic_t vw_cnt; /* # of volatile writes */
1024 atomic_t max_aw_cnt; /* max # of atomic writes */
1025 atomic_t max_vw_cnt; /* max # of volatile writes */
1026 int bg_gc; /* background gc calls */
1027 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1028 #endif
1029 spinlock_t stat_lock; /* lock for stat operations */
1030
1031 /* For sysfs suppport */
1032 struct kobject s_kobj;
1033 struct completion s_kobj_unregister;
1034
1035 /* For shrinker support */
1036 struct list_head s_list;
1037 int s_ndevs; /* number of devices */
1038 struct f2fs_dev_info *devs; /* for device list */
1039 struct mutex umount_mutex;
1040 unsigned int shrinker_run_no;
1041
1042 /* For write statistics */
1043 u64 sectors_written_start;
1044 u64 kbytes_written;
1045
1046 /* Reference to checksum algorithm driver via cryptoapi */
1047 struct crypto_shash *s_chksum_driver;
1048
1049 /* For fault injection */
1050 #ifdef CONFIG_F2FS_FAULT_INJECTION
1051 struct f2fs_fault_info fault_info;
1052 #endif
1053 };
1054
1055 #ifdef CONFIG_F2FS_FAULT_INJECTION
1056 #define f2fs_show_injection_info(type) \
1057 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1058 KERN_INFO, fault_name[type], \
1059 __func__, __builtin_return_address(0))
1060 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1061 {
1062 struct f2fs_fault_info *ffi = &sbi->fault_info;
1063
1064 if (!ffi->inject_rate)
1065 return false;
1066
1067 if (!IS_FAULT_SET(ffi, type))
1068 return false;
1069
1070 atomic_inc(&ffi->inject_ops);
1071 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1072 atomic_set(&ffi->inject_ops, 0);
1073 return true;
1074 }
1075 return false;
1076 }
1077 #endif
1078
1079 /* For write statistics. Suppose sector size is 512 bytes,
1080 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1081 */
1082 #define BD_PART_WRITTEN(s) \
1083 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1084 (s)->sectors_written_start) >> 1)
1085
1086 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1087 {
1088 sbi->last_time[type] = jiffies;
1089 }
1090
1091 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1092 {
1093 struct timespec ts = {sbi->interval_time[type], 0};
1094 unsigned long interval = timespec_to_jiffies(&ts);
1095
1096 return time_after(jiffies, sbi->last_time[type] + interval);
1097 }
1098
1099 static inline bool is_idle(struct f2fs_sb_info *sbi)
1100 {
1101 struct block_device *bdev = sbi->sb->s_bdev;
1102 struct request_queue *q = bdev_get_queue(bdev);
1103 struct request_list *rl = &q->root_rl;
1104
1105 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1106 return 0;
1107
1108 return f2fs_time_over(sbi, REQ_TIME);
1109 }
1110
1111 /*
1112 * Inline functions
1113 */
1114 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1115 unsigned int length)
1116 {
1117 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1118 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1119 int err;
1120
1121 shash->tfm = sbi->s_chksum_driver;
1122 shash->flags = 0;
1123 *ctx = F2FS_SUPER_MAGIC;
1124
1125 err = crypto_shash_update(shash, address, length);
1126 BUG_ON(err);
1127
1128 return *ctx;
1129 }
1130
1131 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1132 void *buf, size_t buf_size)
1133 {
1134 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1135 }
1136
1137 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1138 {
1139 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1140 }
1141
1142 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1143 {
1144 return sb->s_fs_info;
1145 }
1146
1147 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1148 {
1149 return F2FS_SB(inode->i_sb);
1150 }
1151
1152 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1153 {
1154 return F2FS_I_SB(mapping->host);
1155 }
1156
1157 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1158 {
1159 return F2FS_M_SB(page->mapping);
1160 }
1161
1162 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1163 {
1164 return (struct f2fs_super_block *)(sbi->raw_super);
1165 }
1166
1167 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1168 {
1169 return (struct f2fs_checkpoint *)(sbi->ckpt);
1170 }
1171
1172 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1173 {
1174 return (struct f2fs_node *)page_address(page);
1175 }
1176
1177 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1178 {
1179 return &((struct f2fs_node *)page_address(page))->i;
1180 }
1181
1182 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1183 {
1184 return (struct f2fs_nm_info *)(sbi->nm_info);
1185 }
1186
1187 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1188 {
1189 return (struct f2fs_sm_info *)(sbi->sm_info);
1190 }
1191
1192 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1193 {
1194 return (struct sit_info *)(SM_I(sbi)->sit_info);
1195 }
1196
1197 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1198 {
1199 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1200 }
1201
1202 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1203 {
1204 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1205 }
1206
1207 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1208 {
1209 return sbi->meta_inode->i_mapping;
1210 }
1211
1212 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1213 {
1214 return sbi->node_inode->i_mapping;
1215 }
1216
1217 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1218 {
1219 return test_bit(type, &sbi->s_flag);
1220 }
1221
1222 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1223 {
1224 set_bit(type, &sbi->s_flag);
1225 }
1226
1227 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1228 {
1229 clear_bit(type, &sbi->s_flag);
1230 }
1231
1232 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1233 {
1234 return le64_to_cpu(cp->checkpoint_ver);
1235 }
1236
1237 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1238 {
1239 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1240 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1241 }
1242
1243 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1244 {
1245 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1246
1247 return ckpt_flags & f;
1248 }
1249
1250 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1251 {
1252 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1253 }
1254
1255 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1256 {
1257 unsigned int ckpt_flags;
1258
1259 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1260 ckpt_flags |= f;
1261 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1262 }
1263
1264 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1265 {
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&sbi->cp_lock, flags);
1269 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1270 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1271 }
1272
1273 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1274 {
1275 unsigned int ckpt_flags;
1276
1277 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1278 ckpt_flags &= (~f);
1279 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1280 }
1281
1282 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1283 {
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&sbi->cp_lock, flags);
1287 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1288 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1289 }
1290
1291 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1292 {
1293 unsigned long flags;
1294
1295 set_sbi_flag(sbi, SBI_NEED_FSCK);
1296
1297 if (lock)
1298 spin_lock_irqsave(&sbi->cp_lock, flags);
1299 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1300 kfree(NM_I(sbi)->nat_bits);
1301 NM_I(sbi)->nat_bits = NULL;
1302 if (lock)
1303 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1304 }
1305
1306 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1307 struct cp_control *cpc)
1308 {
1309 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1310
1311 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1312 }
1313
1314 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1315 {
1316 down_read(&sbi->cp_rwsem);
1317 }
1318
1319 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1320 {
1321 return down_read_trylock(&sbi->cp_rwsem);
1322 }
1323
1324 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1325 {
1326 up_read(&sbi->cp_rwsem);
1327 }
1328
1329 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1330 {
1331 down_write(&sbi->cp_rwsem);
1332 }
1333
1334 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1335 {
1336 up_write(&sbi->cp_rwsem);
1337 }
1338
1339 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1340 {
1341 int reason = CP_SYNC;
1342
1343 if (test_opt(sbi, FASTBOOT))
1344 reason = CP_FASTBOOT;
1345 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1346 reason = CP_UMOUNT;
1347 return reason;
1348 }
1349
1350 static inline bool __remain_node_summaries(int reason)
1351 {
1352 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1353 }
1354
1355 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1356 {
1357 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1358 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1359 }
1360
1361 /*
1362 * Check whether the given nid is within node id range.
1363 */
1364 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1365 {
1366 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1367 return -EINVAL;
1368 if (unlikely(nid >= NM_I(sbi)->max_nid))
1369 return -EINVAL;
1370 return 0;
1371 }
1372
1373 /*
1374 * Check whether the inode has blocks or not
1375 */
1376 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1377 {
1378 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1379
1380 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1381 }
1382
1383 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1384 {
1385 return ofs == XATTR_NODE_OFFSET;
1386 }
1387
1388 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1389 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1390 struct inode *inode, blkcnt_t *count)
1391 {
1392 blkcnt_t diff = 0, release = 0;
1393 block_t avail_user_block_count;
1394 int ret;
1395
1396 ret = dquot_reserve_block(inode, *count);
1397 if (ret)
1398 return ret;
1399
1400 #ifdef CONFIG_F2FS_FAULT_INJECTION
1401 if (time_to_inject(sbi, FAULT_BLOCK)) {
1402 f2fs_show_injection_info(FAULT_BLOCK);
1403 release = *count;
1404 goto enospc;
1405 }
1406 #endif
1407 /*
1408 * let's increase this in prior to actual block count change in order
1409 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1410 */
1411 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1412
1413 spin_lock(&sbi->stat_lock);
1414 sbi->total_valid_block_count += (block_t)(*count);
1415 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1416 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1417 diff = sbi->total_valid_block_count - avail_user_block_count;
1418 *count -= diff;
1419 release = diff;
1420 sbi->total_valid_block_count = avail_user_block_count;
1421 if (!*count) {
1422 spin_unlock(&sbi->stat_lock);
1423 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1424 goto enospc;
1425 }
1426 }
1427 spin_unlock(&sbi->stat_lock);
1428
1429 if (release)
1430 dquot_release_reservation_block(inode, release);
1431 f2fs_i_blocks_write(inode, *count, true, true);
1432 return 0;
1433
1434 enospc:
1435 dquot_release_reservation_block(inode, release);
1436 return -ENOSPC;
1437 }
1438
1439 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1440 struct inode *inode,
1441 block_t count)
1442 {
1443 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1444
1445 spin_lock(&sbi->stat_lock);
1446 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1447 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1448 sbi->total_valid_block_count -= (block_t)count;
1449 spin_unlock(&sbi->stat_lock);
1450 f2fs_i_blocks_write(inode, count, false, true);
1451 }
1452
1453 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1454 {
1455 atomic_inc(&sbi->nr_pages[count_type]);
1456
1457 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1458 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1459 return;
1460
1461 set_sbi_flag(sbi, SBI_IS_DIRTY);
1462 }
1463
1464 static inline void inode_inc_dirty_pages(struct inode *inode)
1465 {
1466 atomic_inc(&F2FS_I(inode)->dirty_pages);
1467 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1468 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1469 }
1470
1471 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1472 {
1473 atomic_dec(&sbi->nr_pages[count_type]);
1474 }
1475
1476 static inline void inode_dec_dirty_pages(struct inode *inode)
1477 {
1478 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1479 !S_ISLNK(inode->i_mode))
1480 return;
1481
1482 atomic_dec(&F2FS_I(inode)->dirty_pages);
1483 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1484 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1485 }
1486
1487 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1488 {
1489 return atomic_read(&sbi->nr_pages[count_type]);
1490 }
1491
1492 static inline int get_dirty_pages(struct inode *inode)
1493 {
1494 return atomic_read(&F2FS_I(inode)->dirty_pages);
1495 }
1496
1497 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1498 {
1499 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1500 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1501 sbi->log_blocks_per_seg;
1502
1503 return segs / sbi->segs_per_sec;
1504 }
1505
1506 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1507 {
1508 return sbi->total_valid_block_count;
1509 }
1510
1511 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1512 {
1513 return sbi->discard_blks;
1514 }
1515
1516 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1517 {
1518 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1519
1520 /* return NAT or SIT bitmap */
1521 if (flag == NAT_BITMAP)
1522 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1523 else if (flag == SIT_BITMAP)
1524 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1525
1526 return 0;
1527 }
1528
1529 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1530 {
1531 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1532 }
1533
1534 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1535 {
1536 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1537 int offset;
1538
1539 if (__cp_payload(sbi) > 0) {
1540 if (flag == NAT_BITMAP)
1541 return &ckpt->sit_nat_version_bitmap;
1542 else
1543 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1544 } else {
1545 offset = (flag == NAT_BITMAP) ?
1546 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1547 return &ckpt->sit_nat_version_bitmap + offset;
1548 }
1549 }
1550
1551 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1552 {
1553 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1554
1555 if (sbi->cur_cp_pack == 2)
1556 start_addr += sbi->blocks_per_seg;
1557 return start_addr;
1558 }
1559
1560 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1561 {
1562 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1563
1564 if (sbi->cur_cp_pack == 1)
1565 start_addr += sbi->blocks_per_seg;
1566 return start_addr;
1567 }
1568
1569 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1570 {
1571 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1572 }
1573
1574 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1575 {
1576 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1577 }
1578
1579 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1580 struct inode *inode, bool is_inode)
1581 {
1582 block_t valid_block_count;
1583 unsigned int valid_node_count;
1584 bool quota = inode && !is_inode;
1585
1586 if (quota) {
1587 int ret = dquot_reserve_block(inode, 1);
1588 if (ret)
1589 return ret;
1590 }
1591
1592 spin_lock(&sbi->stat_lock);
1593
1594 valid_block_count = sbi->total_valid_block_count + 1;
1595 if (unlikely(valid_block_count + sbi->reserved_blocks >
1596 sbi->user_block_count)) {
1597 spin_unlock(&sbi->stat_lock);
1598 goto enospc;
1599 }
1600
1601 valid_node_count = sbi->total_valid_node_count + 1;
1602 if (unlikely(valid_node_count > sbi->total_node_count)) {
1603 spin_unlock(&sbi->stat_lock);
1604 goto enospc;
1605 }
1606
1607 sbi->total_valid_node_count++;
1608 sbi->total_valid_block_count++;
1609 spin_unlock(&sbi->stat_lock);
1610
1611 if (inode) {
1612 if (is_inode)
1613 f2fs_mark_inode_dirty_sync(inode, true);
1614 else
1615 f2fs_i_blocks_write(inode, 1, true, true);
1616 }
1617
1618 percpu_counter_inc(&sbi->alloc_valid_block_count);
1619 return 0;
1620
1621 enospc:
1622 if (quota)
1623 dquot_release_reservation_block(inode, 1);
1624 return -ENOSPC;
1625 }
1626
1627 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1628 struct inode *inode, bool is_inode)
1629 {
1630 spin_lock(&sbi->stat_lock);
1631
1632 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1633 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1634 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1635
1636 sbi->total_valid_node_count--;
1637 sbi->total_valid_block_count--;
1638
1639 spin_unlock(&sbi->stat_lock);
1640
1641 if (!is_inode)
1642 f2fs_i_blocks_write(inode, 1, false, true);
1643 }
1644
1645 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1646 {
1647 return sbi->total_valid_node_count;
1648 }
1649
1650 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1651 {
1652 percpu_counter_inc(&sbi->total_valid_inode_count);
1653 }
1654
1655 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1656 {
1657 percpu_counter_dec(&sbi->total_valid_inode_count);
1658 }
1659
1660 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1661 {
1662 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1663 }
1664
1665 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1666 pgoff_t index, bool for_write)
1667 {
1668 #ifdef CONFIG_F2FS_FAULT_INJECTION
1669 struct page *page = find_lock_page(mapping, index);
1670
1671 if (page)
1672 return page;
1673
1674 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1675 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1676 return NULL;
1677 }
1678 #endif
1679 if (!for_write)
1680 return grab_cache_page(mapping, index);
1681 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1682 }
1683
1684 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1685 {
1686 char *src_kaddr = kmap(src);
1687 char *dst_kaddr = kmap(dst);
1688
1689 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1690 kunmap(dst);
1691 kunmap(src);
1692 }
1693
1694 static inline void f2fs_put_page(struct page *page, int unlock)
1695 {
1696 if (!page)
1697 return;
1698
1699 if (unlock) {
1700 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1701 unlock_page(page);
1702 }
1703 put_page(page);
1704 }
1705
1706 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1707 {
1708 if (dn->node_page)
1709 f2fs_put_page(dn->node_page, 1);
1710 if (dn->inode_page && dn->node_page != dn->inode_page)
1711 f2fs_put_page(dn->inode_page, 0);
1712 dn->node_page = NULL;
1713 dn->inode_page = NULL;
1714 }
1715
1716 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1717 size_t size)
1718 {
1719 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1720 }
1721
1722 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1723 gfp_t flags)
1724 {
1725 void *entry;
1726
1727 entry = kmem_cache_alloc(cachep, flags);
1728 if (!entry)
1729 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1730 return entry;
1731 }
1732
1733 static inline struct bio *f2fs_bio_alloc(int npages)
1734 {
1735 struct bio *bio;
1736
1737 /* No failure on bio allocation */
1738 bio = bio_alloc(GFP_NOIO, npages);
1739 if (!bio)
1740 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1741 return bio;
1742 }
1743
1744 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1745 unsigned long index, void *item)
1746 {
1747 while (radix_tree_insert(root, index, item))
1748 cond_resched();
1749 }
1750
1751 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1752
1753 static inline bool IS_INODE(struct page *page)
1754 {
1755 struct f2fs_node *p = F2FS_NODE(page);
1756
1757 return RAW_IS_INODE(p);
1758 }
1759
1760 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1761 {
1762 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1763 }
1764
1765 static inline block_t datablock_addr(struct page *node_page,
1766 unsigned int offset)
1767 {
1768 struct f2fs_node *raw_node;
1769 __le32 *addr_array;
1770
1771 raw_node = F2FS_NODE(node_page);
1772 addr_array = blkaddr_in_node(raw_node);
1773 return le32_to_cpu(addr_array[offset]);
1774 }
1775
1776 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1777 {
1778 int mask;
1779
1780 addr += (nr >> 3);
1781 mask = 1 << (7 - (nr & 0x07));
1782 return mask & *addr;
1783 }
1784
1785 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1786 {
1787 int mask;
1788
1789 addr += (nr >> 3);
1790 mask = 1 << (7 - (nr & 0x07));
1791 *addr |= mask;
1792 }
1793
1794 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1795 {
1796 int mask;
1797
1798 addr += (nr >> 3);
1799 mask = 1 << (7 - (nr & 0x07));
1800 *addr &= ~mask;
1801 }
1802
1803 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1804 {
1805 int mask;
1806 int ret;
1807
1808 addr += (nr >> 3);
1809 mask = 1 << (7 - (nr & 0x07));
1810 ret = mask & *addr;
1811 *addr |= mask;
1812 return ret;
1813 }
1814
1815 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1816 {
1817 int mask;
1818 int ret;
1819
1820 addr += (nr >> 3);
1821 mask = 1 << (7 - (nr & 0x07));
1822 ret = mask & *addr;
1823 *addr &= ~mask;
1824 return ret;
1825 }
1826
1827 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1828 {
1829 int mask;
1830
1831 addr += (nr >> 3);
1832 mask = 1 << (7 - (nr & 0x07));
1833 *addr ^= mask;
1834 }
1835
1836 /* used for f2fs_inode_info->flags */
1837 enum {
1838 FI_NEW_INODE, /* indicate newly allocated inode */
1839 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1840 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1841 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1842 FI_INC_LINK, /* need to increment i_nlink */
1843 FI_ACL_MODE, /* indicate acl mode */
1844 FI_NO_ALLOC, /* should not allocate any blocks */
1845 FI_FREE_NID, /* free allocated nide */
1846 FI_NO_EXTENT, /* not to use the extent cache */
1847 FI_INLINE_XATTR, /* used for inline xattr */
1848 FI_INLINE_DATA, /* used for inline data*/
1849 FI_INLINE_DENTRY, /* used for inline dentry */
1850 FI_APPEND_WRITE, /* inode has appended data */
1851 FI_UPDATE_WRITE, /* inode has in-place-update data */
1852 FI_NEED_IPU, /* used for ipu per file */
1853 FI_ATOMIC_FILE, /* indicate atomic file */
1854 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1855 FI_VOLATILE_FILE, /* indicate volatile file */
1856 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1857 FI_DROP_CACHE, /* drop dirty page cache */
1858 FI_DATA_EXIST, /* indicate data exists */
1859 FI_INLINE_DOTS, /* indicate inline dot dentries */
1860 FI_DO_DEFRAG, /* indicate defragment is running */
1861 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1862 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1863 FI_HOT_DATA, /* indicate file is hot */
1864 };
1865
1866 static inline void __mark_inode_dirty_flag(struct inode *inode,
1867 int flag, bool set)
1868 {
1869 switch (flag) {
1870 case FI_INLINE_XATTR:
1871 case FI_INLINE_DATA:
1872 case FI_INLINE_DENTRY:
1873 if (set)
1874 return;
1875 case FI_DATA_EXIST:
1876 case FI_INLINE_DOTS:
1877 f2fs_mark_inode_dirty_sync(inode, true);
1878 }
1879 }
1880
1881 static inline void set_inode_flag(struct inode *inode, int flag)
1882 {
1883 if (!test_bit(flag, &F2FS_I(inode)->flags))
1884 set_bit(flag, &F2FS_I(inode)->flags);
1885 __mark_inode_dirty_flag(inode, flag, true);
1886 }
1887
1888 static inline int is_inode_flag_set(struct inode *inode, int flag)
1889 {
1890 return test_bit(flag, &F2FS_I(inode)->flags);
1891 }
1892
1893 static inline void clear_inode_flag(struct inode *inode, int flag)
1894 {
1895 if (test_bit(flag, &F2FS_I(inode)->flags))
1896 clear_bit(flag, &F2FS_I(inode)->flags);
1897 __mark_inode_dirty_flag(inode, flag, false);
1898 }
1899
1900 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1901 {
1902 F2FS_I(inode)->i_acl_mode = mode;
1903 set_inode_flag(inode, FI_ACL_MODE);
1904 f2fs_mark_inode_dirty_sync(inode, false);
1905 }
1906
1907 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1908 {
1909 if (inc)
1910 inc_nlink(inode);
1911 else
1912 drop_nlink(inode);
1913 f2fs_mark_inode_dirty_sync(inode, true);
1914 }
1915
1916 static inline void f2fs_i_blocks_write(struct inode *inode,
1917 block_t diff, bool add, bool claim)
1918 {
1919 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1920 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1921
1922 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
1923 if (add) {
1924 if (claim)
1925 dquot_claim_block(inode, diff);
1926 else
1927 dquot_alloc_block_nofail(inode, diff);
1928 } else {
1929 dquot_free_block(inode, diff);
1930 }
1931
1932 f2fs_mark_inode_dirty_sync(inode, true);
1933 if (clean || recover)
1934 set_inode_flag(inode, FI_AUTO_RECOVER);
1935 }
1936
1937 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1938 {
1939 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1940 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1941
1942 if (i_size_read(inode) == i_size)
1943 return;
1944
1945 i_size_write(inode, i_size);
1946 f2fs_mark_inode_dirty_sync(inode, true);
1947 if (clean || recover)
1948 set_inode_flag(inode, FI_AUTO_RECOVER);
1949 }
1950
1951 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1952 {
1953 F2FS_I(inode)->i_current_depth = depth;
1954 f2fs_mark_inode_dirty_sync(inode, true);
1955 }
1956
1957 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1958 {
1959 F2FS_I(inode)->i_xattr_nid = xnid;
1960 f2fs_mark_inode_dirty_sync(inode, true);
1961 }
1962
1963 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1964 {
1965 F2FS_I(inode)->i_pino = pino;
1966 f2fs_mark_inode_dirty_sync(inode, true);
1967 }
1968
1969 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1970 {
1971 struct f2fs_inode_info *fi = F2FS_I(inode);
1972
1973 if (ri->i_inline & F2FS_INLINE_XATTR)
1974 set_bit(FI_INLINE_XATTR, &fi->flags);
1975 if (ri->i_inline & F2FS_INLINE_DATA)
1976 set_bit(FI_INLINE_DATA, &fi->flags);
1977 if (ri->i_inline & F2FS_INLINE_DENTRY)
1978 set_bit(FI_INLINE_DENTRY, &fi->flags);
1979 if (ri->i_inline & F2FS_DATA_EXIST)
1980 set_bit(FI_DATA_EXIST, &fi->flags);
1981 if (ri->i_inline & F2FS_INLINE_DOTS)
1982 set_bit(FI_INLINE_DOTS, &fi->flags);
1983 }
1984
1985 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1986 {
1987 ri->i_inline = 0;
1988
1989 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1990 ri->i_inline |= F2FS_INLINE_XATTR;
1991 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1992 ri->i_inline |= F2FS_INLINE_DATA;
1993 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1994 ri->i_inline |= F2FS_INLINE_DENTRY;
1995 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1996 ri->i_inline |= F2FS_DATA_EXIST;
1997 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1998 ri->i_inline |= F2FS_INLINE_DOTS;
1999 }
2000
2001 static inline int f2fs_has_inline_xattr(struct inode *inode)
2002 {
2003 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2004 }
2005
2006 static inline unsigned int addrs_per_inode(struct inode *inode)
2007 {
2008 if (f2fs_has_inline_xattr(inode))
2009 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
2010 return DEF_ADDRS_PER_INODE;
2011 }
2012
2013 static inline void *inline_xattr_addr(struct page *page)
2014 {
2015 struct f2fs_inode *ri = F2FS_INODE(page);
2016
2017 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2018 F2FS_INLINE_XATTR_ADDRS]);
2019 }
2020
2021 static inline int inline_xattr_size(struct inode *inode)
2022 {
2023 if (f2fs_has_inline_xattr(inode))
2024 return F2FS_INLINE_XATTR_ADDRS << 2;
2025 else
2026 return 0;
2027 }
2028
2029 static inline int f2fs_has_inline_data(struct inode *inode)
2030 {
2031 return is_inode_flag_set(inode, FI_INLINE_DATA);
2032 }
2033
2034 static inline int f2fs_exist_data(struct inode *inode)
2035 {
2036 return is_inode_flag_set(inode, FI_DATA_EXIST);
2037 }
2038
2039 static inline int f2fs_has_inline_dots(struct inode *inode)
2040 {
2041 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2042 }
2043
2044 static inline bool f2fs_is_atomic_file(struct inode *inode)
2045 {
2046 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2047 }
2048
2049 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2050 {
2051 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2052 }
2053
2054 static inline bool f2fs_is_volatile_file(struct inode *inode)
2055 {
2056 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2057 }
2058
2059 static inline bool f2fs_is_first_block_written(struct inode *inode)
2060 {
2061 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2062 }
2063
2064 static inline bool f2fs_is_drop_cache(struct inode *inode)
2065 {
2066 return is_inode_flag_set(inode, FI_DROP_CACHE);
2067 }
2068
2069 static inline void *inline_data_addr(struct page *page)
2070 {
2071 struct f2fs_inode *ri = F2FS_INODE(page);
2072
2073 return (void *)&(ri->i_addr[1]);
2074 }
2075
2076 static inline int f2fs_has_inline_dentry(struct inode *inode)
2077 {
2078 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2079 }
2080
2081 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2082 {
2083 if (!f2fs_has_inline_dentry(dir))
2084 kunmap(page);
2085 }
2086
2087 static inline int is_file(struct inode *inode, int type)
2088 {
2089 return F2FS_I(inode)->i_advise & type;
2090 }
2091
2092 static inline void set_file(struct inode *inode, int type)
2093 {
2094 F2FS_I(inode)->i_advise |= type;
2095 f2fs_mark_inode_dirty_sync(inode, true);
2096 }
2097
2098 static inline void clear_file(struct inode *inode, int type)
2099 {
2100 F2FS_I(inode)->i_advise &= ~type;
2101 f2fs_mark_inode_dirty_sync(inode, true);
2102 }
2103
2104 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2105 {
2106 if (dsync) {
2107 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2108 bool ret;
2109
2110 spin_lock(&sbi->inode_lock[DIRTY_META]);
2111 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2112 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2113 return ret;
2114 }
2115 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2116 file_keep_isize(inode) ||
2117 i_size_read(inode) & PAGE_MASK)
2118 return false;
2119 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2120 }
2121
2122 static inline int f2fs_readonly(struct super_block *sb)
2123 {
2124 return sb->s_flags & MS_RDONLY;
2125 }
2126
2127 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2128 {
2129 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2130 }
2131
2132 static inline bool is_dot_dotdot(const struct qstr *str)
2133 {
2134 if (str->len == 1 && str->name[0] == '.')
2135 return true;
2136
2137 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2138 return true;
2139
2140 return false;
2141 }
2142
2143 static inline bool f2fs_may_extent_tree(struct inode *inode)
2144 {
2145 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2146 is_inode_flag_set(inode, FI_NO_EXTENT))
2147 return false;
2148
2149 return S_ISREG(inode->i_mode);
2150 }
2151
2152 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2153 size_t size, gfp_t flags)
2154 {
2155 #ifdef CONFIG_F2FS_FAULT_INJECTION
2156 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2157 f2fs_show_injection_info(FAULT_KMALLOC);
2158 return NULL;
2159 }
2160 #endif
2161 return kmalloc(size, flags);
2162 }
2163
2164 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2165 {
2166 void *ret;
2167
2168 ret = kmalloc(size, flags | __GFP_NOWARN);
2169 if (!ret)
2170 ret = __vmalloc(size, flags, PAGE_KERNEL);
2171 return ret;
2172 }
2173
2174 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2175 {
2176 void *ret;
2177
2178 ret = kzalloc(size, flags | __GFP_NOWARN);
2179 if (!ret)
2180 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2181 return ret;
2182 }
2183
2184 #define get_inode_mode(i) \
2185 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2186 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2187
2188 /*
2189 * file.c
2190 */
2191 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2192 void truncate_data_blocks(struct dnode_of_data *dn);
2193 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2194 int f2fs_truncate(struct inode *inode);
2195 int f2fs_getattr(const struct path *path, struct kstat *stat,
2196 u32 request_mask, unsigned int flags);
2197 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2198 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2199 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2200 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2201 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2202
2203 /*
2204 * inode.c
2205 */
2206 void f2fs_set_inode_flags(struct inode *inode);
2207 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2208 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2209 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2210 int update_inode(struct inode *inode, struct page *node_page);
2211 int update_inode_page(struct inode *inode);
2212 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2213 void f2fs_evict_inode(struct inode *inode);
2214 void handle_failed_inode(struct inode *inode);
2215
2216 /*
2217 * namei.c
2218 */
2219 struct dentry *f2fs_get_parent(struct dentry *child);
2220
2221 /*
2222 * dir.c
2223 */
2224 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2225 unsigned char get_de_type(struct f2fs_dir_entry *de);
2226 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2227 f2fs_hash_t namehash, int *max_slots,
2228 struct f2fs_dentry_ptr *d);
2229 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2230 unsigned int start_pos, struct fscrypt_str *fstr);
2231 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2232 struct f2fs_dentry_ptr *d);
2233 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2234 const struct qstr *new_name,
2235 const struct qstr *orig_name, struct page *dpage);
2236 void update_parent_metadata(struct inode *dir, struct inode *inode,
2237 unsigned int current_depth);
2238 int room_for_filename(const void *bitmap, int slots, int max_slots);
2239 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2240 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2241 struct fscrypt_name *fname, struct page **res_page);
2242 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2243 const struct qstr *child, struct page **res_page);
2244 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2245 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2246 struct page **page);
2247 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2248 struct page *page, struct inode *inode);
2249 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2250 const struct qstr *name, f2fs_hash_t name_hash,
2251 unsigned int bit_pos);
2252 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2253 const struct qstr *orig_name,
2254 struct inode *inode, nid_t ino, umode_t mode);
2255 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2256 struct inode *inode, nid_t ino, umode_t mode);
2257 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2258 struct inode *inode, nid_t ino, umode_t mode);
2259 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2260 struct inode *dir, struct inode *inode);
2261 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2262 bool f2fs_empty_dir(struct inode *dir);
2263
2264 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2265 {
2266 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2267 inode, inode->i_ino, inode->i_mode);
2268 }
2269
2270 /*
2271 * super.c
2272 */
2273 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2274 void f2fs_inode_synced(struct inode *inode);
2275 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2276 int f2fs_sync_fs(struct super_block *sb, int sync);
2277 extern __printf(3, 4)
2278 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2279 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2280
2281 /*
2282 * hash.c
2283 */
2284 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2285 struct fscrypt_name *fname);
2286
2287 /*
2288 * node.c
2289 */
2290 struct dnode_of_data;
2291 struct node_info;
2292
2293 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2294 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2295 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2296 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2297 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2298 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2299 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2300 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2301 int truncate_xattr_node(struct inode *inode, struct page *page);
2302 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2303 int remove_inode_page(struct inode *inode);
2304 struct page *new_inode_page(struct inode *inode);
2305 struct page *new_node_page(struct dnode_of_data *dn,
2306 unsigned int ofs, struct page *ipage);
2307 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2308 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2309 struct page *get_node_page_ra(struct page *parent, int start);
2310 void move_node_page(struct page *node_page, int gc_type);
2311 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2312 struct writeback_control *wbc, bool atomic);
2313 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2314 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2315 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2316 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2317 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2318 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2319 void recover_inline_xattr(struct inode *inode, struct page *page);
2320 int recover_xattr_data(struct inode *inode, struct page *page,
2321 block_t blkaddr);
2322 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2323 int restore_node_summary(struct f2fs_sb_info *sbi,
2324 unsigned int segno, struct f2fs_summary_block *sum);
2325 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2326 int build_node_manager(struct f2fs_sb_info *sbi);
2327 void destroy_node_manager(struct f2fs_sb_info *sbi);
2328 int __init create_node_manager_caches(void);
2329 void destroy_node_manager_caches(void);
2330
2331 /*
2332 * segment.c
2333 */
2334 void register_inmem_page(struct inode *inode, struct page *page);
2335 void drop_inmem_pages(struct inode *inode);
2336 void drop_inmem_page(struct inode *inode, struct page *page);
2337 int commit_inmem_pages(struct inode *inode);
2338 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2339 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2340 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2341 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2342 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2343 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2344 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2345 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2346 void stop_discard_thread(struct f2fs_sb_info *sbi);
2347 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2348 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2349 void release_discard_addrs(struct f2fs_sb_info *sbi);
2350 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2351 void allocate_new_segments(struct f2fs_sb_info *sbi);
2352 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2353 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2354 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2355 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2356 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2357 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2358 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2359 int rewrite_data_page(struct f2fs_io_info *fio);
2360 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2361 block_t old_blkaddr, block_t new_blkaddr,
2362 bool recover_curseg, bool recover_newaddr);
2363 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2364 block_t old_addr, block_t new_addr,
2365 unsigned char version, bool recover_curseg,
2366 bool recover_newaddr);
2367 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2368 block_t old_blkaddr, block_t *new_blkaddr,
2369 struct f2fs_summary *sum, int type,
2370 struct f2fs_io_info *fio, bool add_list);
2371 void f2fs_wait_on_page_writeback(struct page *page,
2372 enum page_type type, bool ordered);
2373 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2374 block_t blkaddr);
2375 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2376 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2377 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2378 unsigned int val, int alloc);
2379 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2380 int build_segment_manager(struct f2fs_sb_info *sbi);
2381 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2382 int __init create_segment_manager_caches(void);
2383 void destroy_segment_manager_caches(void);
2384
2385 /*
2386 * checkpoint.c
2387 */
2388 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2389 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2390 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2391 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2392 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2393 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2394 int type, bool sync);
2395 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2396 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2397 long nr_to_write);
2398 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2399 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2400 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2401 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2402 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2403 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2404 void release_orphan_inode(struct f2fs_sb_info *sbi);
2405 void add_orphan_inode(struct inode *inode);
2406 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2407 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2408 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2409 void update_dirty_page(struct inode *inode, struct page *page);
2410 void remove_dirty_inode(struct inode *inode);
2411 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2412 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2413 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2414 int __init create_checkpoint_caches(void);
2415 void destroy_checkpoint_caches(void);
2416
2417 /*
2418 * data.c
2419 */
2420 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2421 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2422 struct inode *inode, nid_t ino, pgoff_t idx,
2423 enum page_type type);
2424 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2425 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2426 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2427 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2428 block_t blk_addr, struct bio *bio);
2429 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2430 void set_data_blkaddr(struct dnode_of_data *dn);
2431 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2432 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2433 int reserve_new_block(struct dnode_of_data *dn);
2434 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2435 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2436 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2437 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2438 int op_flags, bool for_write);
2439 struct page *find_data_page(struct inode *inode, pgoff_t index);
2440 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2441 bool for_write);
2442 struct page *get_new_data_page(struct inode *inode,
2443 struct page *ipage, pgoff_t index, bool new_i_size);
2444 int do_write_data_page(struct f2fs_io_info *fio);
2445 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2446 int create, int flag);
2447 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2448 u64 start, u64 len);
2449 void f2fs_set_page_dirty_nobuffers(struct page *page);
2450 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2451 unsigned int length);
2452 int f2fs_release_page(struct page *page, gfp_t wait);
2453 #ifdef CONFIG_MIGRATION
2454 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2455 struct page *page, enum migrate_mode mode);
2456 #endif
2457
2458 /*
2459 * gc.c
2460 */
2461 int start_gc_thread(struct f2fs_sb_info *sbi);
2462 void stop_gc_thread(struct f2fs_sb_info *sbi);
2463 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2464 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2465 unsigned int segno);
2466 void build_gc_manager(struct f2fs_sb_info *sbi);
2467
2468 /*
2469 * recovery.c
2470 */
2471 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2472 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2473
2474 /*
2475 * debug.c
2476 */
2477 #ifdef CONFIG_F2FS_STAT_FS
2478 struct f2fs_stat_info {
2479 struct list_head stat_list;
2480 struct f2fs_sb_info *sbi;
2481 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2482 int main_area_segs, main_area_sections, main_area_zones;
2483 unsigned long long hit_largest, hit_cached, hit_rbtree;
2484 unsigned long long hit_total, total_ext;
2485 int ext_tree, zombie_tree, ext_node;
2486 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2487 int inmem_pages;
2488 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2489 int nats, dirty_nats, sits, dirty_sits;
2490 int free_nids, avail_nids, alloc_nids;
2491 int total_count, utilization;
2492 int bg_gc, nr_wb_cp_data, nr_wb_data;
2493 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2494 int nr_discard_cmd;
2495 unsigned int undiscard_blks;
2496 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2497 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2498 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2499 unsigned int bimodal, avg_vblocks;
2500 int util_free, util_valid, util_invalid;
2501 int rsvd_segs, overp_segs;
2502 int dirty_count, node_pages, meta_pages;
2503 int prefree_count, call_count, cp_count, bg_cp_count;
2504 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2505 int bg_node_segs, bg_data_segs;
2506 int tot_blks, data_blks, node_blks;
2507 int bg_data_blks, bg_node_blks;
2508 int curseg[NR_CURSEG_TYPE];
2509 int cursec[NR_CURSEG_TYPE];
2510 int curzone[NR_CURSEG_TYPE];
2511
2512 unsigned int segment_count[2];
2513 unsigned int block_count[2];
2514 unsigned int inplace_count;
2515 unsigned long long base_mem, cache_mem, page_mem;
2516 };
2517
2518 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2519 {
2520 return (struct f2fs_stat_info *)sbi->stat_info;
2521 }
2522
2523 #define stat_inc_cp_count(si) ((si)->cp_count++)
2524 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2525 #define stat_inc_call_count(si) ((si)->call_count++)
2526 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2527 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2528 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2529 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2530 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2531 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2532 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2533 #define stat_inc_inline_xattr(inode) \
2534 do { \
2535 if (f2fs_has_inline_xattr(inode)) \
2536 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2537 } while (0)
2538 #define stat_dec_inline_xattr(inode) \
2539 do { \
2540 if (f2fs_has_inline_xattr(inode)) \
2541 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2542 } while (0)
2543 #define stat_inc_inline_inode(inode) \
2544 do { \
2545 if (f2fs_has_inline_data(inode)) \
2546 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2547 } while (0)
2548 #define stat_dec_inline_inode(inode) \
2549 do { \
2550 if (f2fs_has_inline_data(inode)) \
2551 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2552 } while (0)
2553 #define stat_inc_inline_dir(inode) \
2554 do { \
2555 if (f2fs_has_inline_dentry(inode)) \
2556 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2557 } while (0)
2558 #define stat_dec_inline_dir(inode) \
2559 do { \
2560 if (f2fs_has_inline_dentry(inode)) \
2561 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2562 } while (0)
2563 #define stat_inc_seg_type(sbi, curseg) \
2564 ((sbi)->segment_count[(curseg)->alloc_type]++)
2565 #define stat_inc_block_count(sbi, curseg) \
2566 ((sbi)->block_count[(curseg)->alloc_type]++)
2567 #define stat_inc_inplace_blocks(sbi) \
2568 (atomic_inc(&(sbi)->inplace_count))
2569 #define stat_inc_atomic_write(inode) \
2570 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2571 #define stat_dec_atomic_write(inode) \
2572 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2573 #define stat_update_max_atomic_write(inode) \
2574 do { \
2575 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2576 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2577 if (cur > max) \
2578 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2579 } while (0)
2580 #define stat_inc_volatile_write(inode) \
2581 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2582 #define stat_dec_volatile_write(inode) \
2583 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2584 #define stat_update_max_volatile_write(inode) \
2585 do { \
2586 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2587 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2588 if (cur > max) \
2589 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2590 } while (0)
2591 #define stat_inc_seg_count(sbi, type, gc_type) \
2592 do { \
2593 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2594 si->tot_segs++; \
2595 if ((type) == SUM_TYPE_DATA) { \
2596 si->data_segs++; \
2597 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2598 } else { \
2599 si->node_segs++; \
2600 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2601 } \
2602 } while (0)
2603
2604 #define stat_inc_tot_blk_count(si, blks) \
2605 ((si)->tot_blks += (blks))
2606
2607 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2608 do { \
2609 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2610 stat_inc_tot_blk_count(si, blks); \
2611 si->data_blks += (blks); \
2612 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2613 } while (0)
2614
2615 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2616 do { \
2617 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2618 stat_inc_tot_blk_count(si, blks); \
2619 si->node_blks += (blks); \
2620 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2621 } while (0)
2622
2623 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2624 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2625 int __init f2fs_create_root_stats(void);
2626 void f2fs_destroy_root_stats(void);
2627 #else
2628 #define stat_inc_cp_count(si) do { } while (0)
2629 #define stat_inc_bg_cp_count(si) do { } while (0)
2630 #define stat_inc_call_count(si) do { } while (0)
2631 #define stat_inc_bggc_count(si) do { } while (0)
2632 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2633 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2634 #define stat_inc_total_hit(sb) do { } while (0)
2635 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2636 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2637 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2638 #define stat_inc_inline_xattr(inode) do { } while (0)
2639 #define stat_dec_inline_xattr(inode) do { } while (0)
2640 #define stat_inc_inline_inode(inode) do { } while (0)
2641 #define stat_dec_inline_inode(inode) do { } while (0)
2642 #define stat_inc_inline_dir(inode) do { } while (0)
2643 #define stat_dec_inline_dir(inode) do { } while (0)
2644 #define stat_inc_atomic_write(inode) do { } while (0)
2645 #define stat_dec_atomic_write(inode) do { } while (0)
2646 #define stat_update_max_atomic_write(inode) do { } while (0)
2647 #define stat_inc_volatile_write(inode) do { } while (0)
2648 #define stat_dec_volatile_write(inode) do { } while (0)
2649 #define stat_update_max_volatile_write(inode) do { } while (0)
2650 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2651 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2652 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2653 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2654 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2655 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2656 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2657
2658 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2659 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2660 static inline int __init f2fs_create_root_stats(void) { return 0; }
2661 static inline void f2fs_destroy_root_stats(void) { }
2662 #endif
2663
2664 extern const struct file_operations f2fs_dir_operations;
2665 extern const struct file_operations f2fs_file_operations;
2666 extern const struct inode_operations f2fs_file_inode_operations;
2667 extern const struct address_space_operations f2fs_dblock_aops;
2668 extern const struct address_space_operations f2fs_node_aops;
2669 extern const struct address_space_operations f2fs_meta_aops;
2670 extern const struct inode_operations f2fs_dir_inode_operations;
2671 extern const struct inode_operations f2fs_symlink_inode_operations;
2672 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2673 extern const struct inode_operations f2fs_special_inode_operations;
2674 extern struct kmem_cache *inode_entry_slab;
2675
2676 /*
2677 * inline.c
2678 */
2679 bool f2fs_may_inline_data(struct inode *inode);
2680 bool f2fs_may_inline_dentry(struct inode *inode);
2681 void read_inline_data(struct page *page, struct page *ipage);
2682 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2683 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2684 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2685 int f2fs_convert_inline_inode(struct inode *inode);
2686 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2687 bool recover_inline_data(struct inode *inode, struct page *npage);
2688 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2689 struct fscrypt_name *fname, struct page **res_page);
2690 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2691 struct page *ipage);
2692 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2693 const struct qstr *orig_name,
2694 struct inode *inode, nid_t ino, umode_t mode);
2695 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2696 struct inode *dir, struct inode *inode);
2697 bool f2fs_empty_inline_dir(struct inode *dir);
2698 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2699 struct fscrypt_str *fstr);
2700 int f2fs_inline_data_fiemap(struct inode *inode,
2701 struct fiemap_extent_info *fieinfo,
2702 __u64 start, __u64 len);
2703
2704 /*
2705 * shrinker.c
2706 */
2707 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2708 struct shrink_control *sc);
2709 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2710 struct shrink_control *sc);
2711 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2712 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2713
2714 /*
2715 * extent_cache.c
2716 */
2717 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2718 struct rb_entry *cached_re, unsigned int ofs);
2719 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2720 struct rb_root *root, struct rb_node **parent,
2721 unsigned int ofs);
2722 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2723 struct rb_entry *cached_re, unsigned int ofs,
2724 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2725 struct rb_node ***insert_p, struct rb_node **insert_parent,
2726 bool force);
2727 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2728 struct rb_root *root);
2729 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2730 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2731 void f2fs_drop_extent_tree(struct inode *inode);
2732 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2733 void f2fs_destroy_extent_tree(struct inode *inode);
2734 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2735 struct extent_info *ei);
2736 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2737 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2738 pgoff_t fofs, block_t blkaddr, unsigned int len);
2739 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2740 int __init create_extent_cache(void);
2741 void destroy_extent_cache(void);
2742
2743 /*
2744 * sysfs.c
2745 */
2746 int __init f2fs_register_sysfs(void);
2747 void f2fs_unregister_sysfs(void);
2748 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2749 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2750
2751 /*
2752 * crypto support
2753 */
2754 static inline bool f2fs_encrypted_inode(struct inode *inode)
2755 {
2756 return file_is_encrypt(inode);
2757 }
2758
2759 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2760 {
2761 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2762 file_set_encrypt(inode);
2763 #endif
2764 }
2765
2766 static inline bool f2fs_bio_encrypted(struct bio *bio)
2767 {
2768 return bio->bi_private != NULL;
2769 }
2770
2771 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2772 {
2773 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2774 }
2775
2776 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2777 {
2778 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2779 }
2780
2781 #ifdef CONFIG_BLK_DEV_ZONED
2782 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2783 struct block_device *bdev, block_t blkaddr)
2784 {
2785 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2786 int i;
2787
2788 for (i = 0; i < sbi->s_ndevs; i++)
2789 if (FDEV(i).bdev == bdev)
2790 return FDEV(i).blkz_type[zno];
2791 return -EINVAL;
2792 }
2793 #endif
2794
2795 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2796 {
2797 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2798
2799 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2800 }
2801
2802 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2803 {
2804 clear_opt(sbi, ADAPTIVE);
2805 clear_opt(sbi, LFS);
2806
2807 switch (mt) {
2808 case F2FS_MOUNT_ADAPTIVE:
2809 set_opt(sbi, ADAPTIVE);
2810 break;
2811 case F2FS_MOUNT_LFS:
2812 set_opt(sbi, LFS);
2813 break;
2814 }
2815 }
2816
2817 static inline bool f2fs_may_encrypt(struct inode *inode)
2818 {
2819 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2820 umode_t mode = inode->i_mode;
2821
2822 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2823 #else
2824 return 0;
2825 #endif
2826 }
2827
2828 #endif