]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/file.c
f2fs: fix reference leaks in f2fs_acl_create
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
33 struct vm_fault *vmf)
34 {
35 struct page *page = vmf->page;
36 struct inode *inode = file_inode(vma->vm_file);
37 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
38 struct dnode_of_data dn;
39 int err;
40
41 f2fs_balance_fs(sbi);
42
43 sb_start_pagefault(inode->i_sb);
44
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46
47 /* block allocation */
48 f2fs_lock_op(sbi);
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
51 if (err) {
52 f2fs_unlock_op(sbi);
53 goto out;
54 }
55 f2fs_put_dnode(&dn);
56 f2fs_unlock_op(sbi);
57
58 file_update_time(vma->vm_file);
59 lock_page(page);
60 if (unlikely(page->mapping != inode->i_mapping ||
61 page_offset(page) > i_size_read(inode) ||
62 !PageUptodate(page))) {
63 unlock_page(page);
64 err = -EFAULT;
65 goto out;
66 }
67
68 /*
69 * check to see if the page is mapped already (no holes)
70 */
71 if (PageMappedToDisk(page))
72 goto mapped;
73
74 /* page is wholly or partially inside EOF */
75 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
76 unsigned offset;
77 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
78 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
79 }
80 set_page_dirty(page);
81 SetPageUptodate(page);
82
83 trace_f2fs_vm_page_mkwrite(page, DATA);
84 mapped:
85 /* fill the page */
86 f2fs_wait_on_page_writeback(page, DATA);
87 out:
88 sb_end_pagefault(inode->i_sb);
89 return block_page_mkwrite_return(err);
90 }
91
92 static const struct vm_operations_struct f2fs_file_vm_ops = {
93 .fault = filemap_fault,
94 .map_pages = filemap_map_pages,
95 .page_mkwrite = f2fs_vm_page_mkwrite,
96 };
97
98 static int get_parent_ino(struct inode *inode, nid_t *pino)
99 {
100 struct dentry *dentry;
101
102 inode = igrab(inode);
103 dentry = d_find_any_alias(inode);
104 iput(inode);
105 if (!dentry)
106 return 0;
107
108 if (update_dent_inode(inode, &dentry->d_name)) {
109 dput(dentry);
110 return 0;
111 }
112
113 *pino = parent_ino(dentry);
114 dput(dentry);
115 return 1;
116 }
117
118 static inline bool need_do_checkpoint(struct inode *inode)
119 {
120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
121 bool need_cp = false;
122
123 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
124 need_cp = true;
125 else if (file_wrong_pino(inode))
126 need_cp = true;
127 else if (!space_for_roll_forward(sbi))
128 need_cp = true;
129 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
130 need_cp = true;
131 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
132 need_cp = true;
133 else if (test_opt(sbi, FASTBOOT))
134 need_cp = true;
135 else if (sbi->active_logs == 2)
136 need_cp = true;
137
138 return need_cp;
139 }
140
141 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
142 {
143 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
144 bool ret = false;
145 /* But we need to avoid that there are some inode updates */
146 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
147 ret = true;
148 f2fs_put_page(i, 0);
149 return ret;
150 }
151
152 static void try_to_fix_pino(struct inode *inode)
153 {
154 struct f2fs_inode_info *fi = F2FS_I(inode);
155 nid_t pino;
156
157 down_write(&fi->i_sem);
158 fi->xattr_ver = 0;
159 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
160 get_parent_ino(inode, &pino)) {
161 fi->i_pino = pino;
162 file_got_pino(inode);
163 up_write(&fi->i_sem);
164
165 mark_inode_dirty_sync(inode);
166 f2fs_write_inode(inode, NULL);
167 } else {
168 up_write(&fi->i_sem);
169 }
170 }
171
172 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
173 {
174 struct inode *inode = file->f_mapping->host;
175 struct f2fs_inode_info *fi = F2FS_I(inode);
176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
177 nid_t ino = inode->i_ino;
178 int ret = 0;
179 bool need_cp = false;
180 struct writeback_control wbc = {
181 .sync_mode = WB_SYNC_ALL,
182 .nr_to_write = LONG_MAX,
183 .for_reclaim = 0,
184 };
185
186 if (unlikely(f2fs_readonly(inode->i_sb)))
187 return 0;
188
189 trace_f2fs_sync_file_enter(inode);
190
191 /* if fdatasync is triggered, let's do in-place-update */
192 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
193 set_inode_flag(fi, FI_NEED_IPU);
194 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
195 clear_inode_flag(fi, FI_NEED_IPU);
196
197 if (ret) {
198 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
199 return ret;
200 }
201
202 /* if the inode is dirty, let's recover all the time */
203 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
204 update_inode_page(inode);
205 goto go_write;
206 }
207
208 /*
209 * if there is no written data, don't waste time to write recovery info.
210 */
211 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
212 !exist_written_data(sbi, ino, APPEND_INO)) {
213
214 /* it may call write_inode just prior to fsync */
215 if (need_inode_page_update(sbi, ino))
216 goto go_write;
217
218 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
219 exist_written_data(sbi, ino, UPDATE_INO))
220 goto flush_out;
221 goto out;
222 }
223 go_write:
224 /* guarantee free sections for fsync */
225 f2fs_balance_fs(sbi);
226
227 /*
228 * Both of fdatasync() and fsync() are able to be recovered from
229 * sudden-power-off.
230 */
231 down_read(&fi->i_sem);
232 need_cp = need_do_checkpoint(inode);
233 up_read(&fi->i_sem);
234
235 if (need_cp) {
236 /* all the dirty node pages should be flushed for POR */
237 ret = f2fs_sync_fs(inode->i_sb, 1);
238
239 /*
240 * We've secured consistency through sync_fs. Following pino
241 * will be used only for fsynced inodes after checkpoint.
242 */
243 try_to_fix_pino(inode);
244 clear_inode_flag(fi, FI_APPEND_WRITE);
245 clear_inode_flag(fi, FI_UPDATE_WRITE);
246 goto out;
247 }
248 sync_nodes:
249 sync_node_pages(sbi, ino, &wbc);
250
251 /* if cp_error was enabled, we should avoid infinite loop */
252 if (unlikely(f2fs_cp_error(sbi)))
253 goto out;
254
255 if (need_inode_block_update(sbi, ino)) {
256 mark_inode_dirty_sync(inode);
257 f2fs_write_inode(inode, NULL);
258 goto sync_nodes;
259 }
260
261 ret = wait_on_node_pages_writeback(sbi, ino);
262 if (ret)
263 goto out;
264
265 /* once recovery info is written, don't need to tack this */
266 remove_dirty_inode(sbi, ino, APPEND_INO);
267 clear_inode_flag(fi, FI_APPEND_WRITE);
268 flush_out:
269 remove_dirty_inode(sbi, ino, UPDATE_INO);
270 clear_inode_flag(fi, FI_UPDATE_WRITE);
271 ret = f2fs_issue_flush(sbi);
272 out:
273 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
274 f2fs_trace_ios(NULL, NULL, 1);
275 return ret;
276 }
277
278 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
279 pgoff_t pgofs, int whence)
280 {
281 struct pagevec pvec;
282 int nr_pages;
283
284 if (whence != SEEK_DATA)
285 return 0;
286
287 /* find first dirty page index */
288 pagevec_init(&pvec, 0);
289 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
290 PAGECACHE_TAG_DIRTY, 1);
291 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
292 pagevec_release(&pvec);
293 return pgofs;
294 }
295
296 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
297 int whence)
298 {
299 switch (whence) {
300 case SEEK_DATA:
301 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
302 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
303 return true;
304 break;
305 case SEEK_HOLE:
306 if (blkaddr == NULL_ADDR)
307 return true;
308 break;
309 }
310 return false;
311 }
312
313 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
314 {
315 struct inode *inode = file->f_mapping->host;
316 loff_t maxbytes = inode->i_sb->s_maxbytes;
317 struct dnode_of_data dn;
318 pgoff_t pgofs, end_offset, dirty;
319 loff_t data_ofs = offset;
320 loff_t isize;
321 int err = 0;
322
323 mutex_lock(&inode->i_mutex);
324
325 isize = i_size_read(inode);
326 if (offset >= isize)
327 goto fail;
328
329 /* handle inline data case */
330 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
331 if (whence == SEEK_HOLE)
332 data_ofs = isize;
333 goto found;
334 }
335
336 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
337
338 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
339
340 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
341 set_new_dnode(&dn, inode, NULL, NULL, 0);
342 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
343 if (err && err != -ENOENT) {
344 goto fail;
345 } else if (err == -ENOENT) {
346 /* direct node does not exists */
347 if (whence == SEEK_DATA) {
348 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
349 F2FS_I(inode));
350 continue;
351 } else {
352 goto found;
353 }
354 }
355
356 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
357
358 /* find data/hole in dnode block */
359 for (; dn.ofs_in_node < end_offset;
360 dn.ofs_in_node++, pgofs++,
361 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
362 block_t blkaddr;
363 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
364
365 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
366 f2fs_put_dnode(&dn);
367 goto found;
368 }
369 }
370 f2fs_put_dnode(&dn);
371 }
372
373 if (whence == SEEK_DATA)
374 goto fail;
375 found:
376 if (whence == SEEK_HOLE && data_ofs > isize)
377 data_ofs = isize;
378 mutex_unlock(&inode->i_mutex);
379 return vfs_setpos(file, data_ofs, maxbytes);
380 fail:
381 mutex_unlock(&inode->i_mutex);
382 return -ENXIO;
383 }
384
385 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
386 {
387 struct inode *inode = file->f_mapping->host;
388 loff_t maxbytes = inode->i_sb->s_maxbytes;
389
390 switch (whence) {
391 case SEEK_SET:
392 case SEEK_CUR:
393 case SEEK_END:
394 return generic_file_llseek_size(file, offset, whence,
395 maxbytes, i_size_read(inode));
396 case SEEK_DATA:
397 case SEEK_HOLE:
398 if (offset < 0)
399 return -ENXIO;
400 return f2fs_seek_block(file, offset, whence);
401 }
402
403 return -EINVAL;
404 }
405
406 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
407 {
408 struct inode *inode = file_inode(file);
409
410 /* we don't need to use inline_data strictly */
411 if (f2fs_has_inline_data(inode)) {
412 int err = f2fs_convert_inline_inode(inode);
413 if (err)
414 return err;
415 }
416
417 file_accessed(file);
418 vma->vm_ops = &f2fs_file_vm_ops;
419 return 0;
420 }
421
422 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
423 {
424 int nr_free = 0, ofs = dn->ofs_in_node;
425 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
426 struct f2fs_node *raw_node;
427 __le32 *addr;
428
429 raw_node = F2FS_NODE(dn->node_page);
430 addr = blkaddr_in_node(raw_node) + ofs;
431
432 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
433 block_t blkaddr = le32_to_cpu(*addr);
434 if (blkaddr == NULL_ADDR)
435 continue;
436
437 dn->data_blkaddr = NULL_ADDR;
438 f2fs_update_extent_cache(dn);
439 invalidate_blocks(sbi, blkaddr);
440 nr_free++;
441 }
442 if (nr_free) {
443 dec_valid_block_count(sbi, dn->inode, nr_free);
444 set_page_dirty(dn->node_page);
445 sync_inode_page(dn);
446 }
447 dn->ofs_in_node = ofs;
448
449 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
450 dn->ofs_in_node, nr_free);
451 return nr_free;
452 }
453
454 void truncate_data_blocks(struct dnode_of_data *dn)
455 {
456 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
457 }
458
459 static int truncate_partial_data_page(struct inode *inode, u64 from)
460 {
461 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
462 struct page *page;
463
464 if (!offset)
465 return 0;
466
467 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
468 if (IS_ERR(page))
469 return 0;
470
471 lock_page(page);
472 if (unlikely(!PageUptodate(page) ||
473 page->mapping != inode->i_mapping))
474 goto out;
475
476 f2fs_wait_on_page_writeback(page, DATA);
477 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
478 set_page_dirty(page);
479 out:
480 f2fs_put_page(page, 1);
481 return 0;
482 }
483
484 int truncate_blocks(struct inode *inode, u64 from, bool lock)
485 {
486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
487 unsigned int blocksize = inode->i_sb->s_blocksize;
488 struct dnode_of_data dn;
489 pgoff_t free_from;
490 int count = 0, err = 0;
491 struct page *ipage;
492
493 trace_f2fs_truncate_blocks_enter(inode, from);
494
495 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
496
497 if (lock)
498 f2fs_lock_op(sbi);
499
500 ipage = get_node_page(sbi, inode->i_ino);
501 if (IS_ERR(ipage)) {
502 err = PTR_ERR(ipage);
503 goto out;
504 }
505
506 if (f2fs_has_inline_data(inode)) {
507 f2fs_put_page(ipage, 1);
508 goto out;
509 }
510
511 set_new_dnode(&dn, inode, ipage, NULL, 0);
512 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
513 if (err) {
514 if (err == -ENOENT)
515 goto free_next;
516 goto out;
517 }
518
519 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
520
521 count -= dn.ofs_in_node;
522 f2fs_bug_on(sbi, count < 0);
523
524 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
525 truncate_data_blocks_range(&dn, count);
526 free_from += count;
527 }
528
529 f2fs_put_dnode(&dn);
530 free_next:
531 err = truncate_inode_blocks(inode, free_from);
532 out:
533 if (lock)
534 f2fs_unlock_op(sbi);
535
536 /* lastly zero out the first data page */
537 if (!err)
538 err = truncate_partial_data_page(inode, from);
539
540 trace_f2fs_truncate_blocks_exit(inode, err);
541 return err;
542 }
543
544 void f2fs_truncate(struct inode *inode)
545 {
546 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
547 S_ISLNK(inode->i_mode)))
548 return;
549
550 trace_f2fs_truncate(inode);
551
552 /* we should check inline_data size */
553 if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
554 if (f2fs_convert_inline_inode(inode))
555 return;
556 }
557
558 if (!truncate_blocks(inode, i_size_read(inode), true)) {
559 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
560 mark_inode_dirty(inode);
561 }
562 }
563
564 int f2fs_getattr(struct vfsmount *mnt,
565 struct dentry *dentry, struct kstat *stat)
566 {
567 struct inode *inode = dentry->d_inode;
568 generic_fillattr(inode, stat);
569 stat->blocks <<= 3;
570 return 0;
571 }
572
573 #ifdef CONFIG_F2FS_FS_POSIX_ACL
574 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
575 {
576 struct f2fs_inode_info *fi = F2FS_I(inode);
577 unsigned int ia_valid = attr->ia_valid;
578
579 if (ia_valid & ATTR_UID)
580 inode->i_uid = attr->ia_uid;
581 if (ia_valid & ATTR_GID)
582 inode->i_gid = attr->ia_gid;
583 if (ia_valid & ATTR_ATIME)
584 inode->i_atime = timespec_trunc(attr->ia_atime,
585 inode->i_sb->s_time_gran);
586 if (ia_valid & ATTR_MTIME)
587 inode->i_mtime = timespec_trunc(attr->ia_mtime,
588 inode->i_sb->s_time_gran);
589 if (ia_valid & ATTR_CTIME)
590 inode->i_ctime = timespec_trunc(attr->ia_ctime,
591 inode->i_sb->s_time_gran);
592 if (ia_valid & ATTR_MODE) {
593 umode_t mode = attr->ia_mode;
594
595 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
596 mode &= ~S_ISGID;
597 set_acl_inode(fi, mode);
598 }
599 }
600 #else
601 #define __setattr_copy setattr_copy
602 #endif
603
604 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
605 {
606 struct inode *inode = dentry->d_inode;
607 struct f2fs_inode_info *fi = F2FS_I(inode);
608 int err;
609
610 err = inode_change_ok(inode, attr);
611 if (err)
612 return err;
613
614 if (attr->ia_valid & ATTR_SIZE) {
615 if (attr->ia_size != i_size_read(inode)) {
616 truncate_setsize(inode, attr->ia_size);
617 f2fs_truncate(inode);
618 f2fs_balance_fs(F2FS_I_SB(inode));
619 } else {
620 /*
621 * giving a chance to truncate blocks past EOF which
622 * are fallocated with FALLOC_FL_KEEP_SIZE.
623 */
624 f2fs_truncate(inode);
625 }
626 }
627
628 __setattr_copy(inode, attr);
629
630 if (attr->ia_valid & ATTR_MODE) {
631 err = posix_acl_chmod(inode, get_inode_mode(inode));
632 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
633 inode->i_mode = fi->i_acl_mode;
634 clear_inode_flag(fi, FI_ACL_MODE);
635 }
636 }
637
638 mark_inode_dirty(inode);
639 return err;
640 }
641
642 const struct inode_operations f2fs_file_inode_operations = {
643 .getattr = f2fs_getattr,
644 .setattr = f2fs_setattr,
645 .get_acl = f2fs_get_acl,
646 .set_acl = f2fs_set_acl,
647 #ifdef CONFIG_F2FS_FS_XATTR
648 .setxattr = generic_setxattr,
649 .getxattr = generic_getxattr,
650 .listxattr = f2fs_listxattr,
651 .removexattr = generic_removexattr,
652 #endif
653 .fiemap = f2fs_fiemap,
654 };
655
656 static void fill_zero(struct inode *inode, pgoff_t index,
657 loff_t start, loff_t len)
658 {
659 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
660 struct page *page;
661
662 if (!len)
663 return;
664
665 f2fs_balance_fs(sbi);
666
667 f2fs_lock_op(sbi);
668 page = get_new_data_page(inode, NULL, index, false);
669 f2fs_unlock_op(sbi);
670
671 if (!IS_ERR(page)) {
672 f2fs_wait_on_page_writeback(page, DATA);
673 zero_user(page, start, len);
674 set_page_dirty(page);
675 f2fs_put_page(page, 1);
676 }
677 }
678
679 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
680 {
681 pgoff_t index;
682 int err;
683
684 for (index = pg_start; index < pg_end; index++) {
685 struct dnode_of_data dn;
686
687 set_new_dnode(&dn, inode, NULL, NULL, 0);
688 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
689 if (err) {
690 if (err == -ENOENT)
691 continue;
692 return err;
693 }
694
695 if (dn.data_blkaddr != NULL_ADDR)
696 truncate_data_blocks_range(&dn, 1);
697 f2fs_put_dnode(&dn);
698 }
699 return 0;
700 }
701
702 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
703 {
704 pgoff_t pg_start, pg_end;
705 loff_t off_start, off_end;
706 int ret = 0;
707
708 if (!S_ISREG(inode->i_mode))
709 return -EOPNOTSUPP;
710
711 /* skip punching hole beyond i_size */
712 if (offset >= inode->i_size)
713 return ret;
714
715 if (f2fs_has_inline_data(inode)) {
716 ret = f2fs_convert_inline_inode(inode);
717 if (ret)
718 return ret;
719 }
720
721 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
722 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
723
724 off_start = offset & (PAGE_CACHE_SIZE - 1);
725 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
726
727 if (pg_start == pg_end) {
728 fill_zero(inode, pg_start, off_start,
729 off_end - off_start);
730 } else {
731 if (off_start)
732 fill_zero(inode, pg_start++, off_start,
733 PAGE_CACHE_SIZE - off_start);
734 if (off_end)
735 fill_zero(inode, pg_end, 0, off_end);
736
737 if (pg_start < pg_end) {
738 struct address_space *mapping = inode->i_mapping;
739 loff_t blk_start, blk_end;
740 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
741
742 f2fs_balance_fs(sbi);
743
744 blk_start = pg_start << PAGE_CACHE_SHIFT;
745 blk_end = pg_end << PAGE_CACHE_SHIFT;
746 truncate_inode_pages_range(mapping, blk_start,
747 blk_end - 1);
748
749 f2fs_lock_op(sbi);
750 ret = truncate_hole(inode, pg_start, pg_end);
751 f2fs_unlock_op(sbi);
752 }
753 }
754
755 return ret;
756 }
757
758 static int expand_inode_data(struct inode *inode, loff_t offset,
759 loff_t len, int mode)
760 {
761 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
762 pgoff_t index, pg_start, pg_end;
763 loff_t new_size = i_size_read(inode);
764 loff_t off_start, off_end;
765 int ret = 0;
766
767 f2fs_balance_fs(sbi);
768
769 ret = inode_newsize_ok(inode, (len + offset));
770 if (ret)
771 return ret;
772
773 if (f2fs_has_inline_data(inode)) {
774 ret = f2fs_convert_inline_inode(inode);
775 if (ret)
776 return ret;
777 }
778
779 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
780 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
781
782 off_start = offset & (PAGE_CACHE_SIZE - 1);
783 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
784
785 f2fs_lock_op(sbi);
786
787 for (index = pg_start; index <= pg_end; index++) {
788 struct dnode_of_data dn;
789
790 if (index == pg_end && !off_end)
791 goto noalloc;
792
793 set_new_dnode(&dn, inode, NULL, NULL, 0);
794 ret = f2fs_reserve_block(&dn, index);
795 if (ret)
796 break;
797 noalloc:
798 if (pg_start == pg_end)
799 new_size = offset + len;
800 else if (index == pg_start && off_start)
801 new_size = (index + 1) << PAGE_CACHE_SHIFT;
802 else if (index == pg_end)
803 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
804 else
805 new_size += PAGE_CACHE_SIZE;
806 }
807
808 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
809 i_size_read(inode) < new_size) {
810 i_size_write(inode, new_size);
811 mark_inode_dirty(inode);
812 update_inode_page(inode);
813 }
814 f2fs_unlock_op(sbi);
815
816 return ret;
817 }
818
819 static long f2fs_fallocate(struct file *file, int mode,
820 loff_t offset, loff_t len)
821 {
822 struct inode *inode = file_inode(file);
823 long ret;
824
825 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
826 return -EOPNOTSUPP;
827
828 mutex_lock(&inode->i_mutex);
829
830 if (mode & FALLOC_FL_PUNCH_HOLE)
831 ret = punch_hole(inode, offset, len);
832 else
833 ret = expand_inode_data(inode, offset, len, mode);
834
835 if (!ret) {
836 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
837 mark_inode_dirty(inode);
838 }
839
840 mutex_unlock(&inode->i_mutex);
841
842 trace_f2fs_fallocate(inode, mode, offset, len, ret);
843 return ret;
844 }
845
846 static int f2fs_release_file(struct inode *inode, struct file *filp)
847 {
848 /* some remained atomic pages should discarded */
849 if (f2fs_is_atomic_file(inode))
850 commit_inmem_pages(inode, true);
851 if (f2fs_is_volatile_file(inode)) {
852 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
853 filemap_fdatawrite(inode->i_mapping);
854 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
855 }
856 return 0;
857 }
858
859 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
860 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
861
862 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
863 {
864 if (S_ISDIR(mode))
865 return flags;
866 else if (S_ISREG(mode))
867 return flags & F2FS_REG_FLMASK;
868 else
869 return flags & F2FS_OTHER_FLMASK;
870 }
871
872 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
873 {
874 struct inode *inode = file_inode(filp);
875 struct f2fs_inode_info *fi = F2FS_I(inode);
876 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
877 return put_user(flags, (int __user *)arg);
878 }
879
880 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
881 {
882 struct inode *inode = file_inode(filp);
883 struct f2fs_inode_info *fi = F2FS_I(inode);
884 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
885 unsigned int oldflags;
886 int ret;
887
888 ret = mnt_want_write_file(filp);
889 if (ret)
890 return ret;
891
892 if (!inode_owner_or_capable(inode)) {
893 ret = -EACCES;
894 goto out;
895 }
896
897 if (get_user(flags, (int __user *)arg)) {
898 ret = -EFAULT;
899 goto out;
900 }
901
902 flags = f2fs_mask_flags(inode->i_mode, flags);
903
904 mutex_lock(&inode->i_mutex);
905
906 oldflags = fi->i_flags;
907
908 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
909 if (!capable(CAP_LINUX_IMMUTABLE)) {
910 mutex_unlock(&inode->i_mutex);
911 ret = -EPERM;
912 goto out;
913 }
914 }
915
916 flags = flags & FS_FL_USER_MODIFIABLE;
917 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
918 fi->i_flags = flags;
919 mutex_unlock(&inode->i_mutex);
920
921 f2fs_set_inode_flags(inode);
922 inode->i_ctime = CURRENT_TIME;
923 mark_inode_dirty(inode);
924 out:
925 mnt_drop_write_file(filp);
926 return ret;
927 }
928
929 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
930 {
931 struct inode *inode = file_inode(filp);
932
933 return put_user(inode->i_generation, (int __user *)arg);
934 }
935
936 static int f2fs_ioc_start_atomic_write(struct file *filp)
937 {
938 struct inode *inode = file_inode(filp);
939
940 if (!inode_owner_or_capable(inode))
941 return -EACCES;
942
943 f2fs_balance_fs(F2FS_I_SB(inode));
944
945 if (f2fs_is_atomic_file(inode))
946 return 0;
947
948 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
949
950 return f2fs_convert_inline_inode(inode);
951 }
952
953 static int f2fs_ioc_commit_atomic_write(struct file *filp)
954 {
955 struct inode *inode = file_inode(filp);
956 int ret;
957
958 if (!inode_owner_or_capable(inode))
959 return -EACCES;
960
961 if (f2fs_is_volatile_file(inode))
962 return 0;
963
964 ret = mnt_want_write_file(filp);
965 if (ret)
966 return ret;
967
968 if (f2fs_is_atomic_file(inode))
969 commit_inmem_pages(inode, false);
970
971 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
972 mnt_drop_write_file(filp);
973 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
974 return ret;
975 }
976
977 static int f2fs_ioc_start_volatile_write(struct file *filp)
978 {
979 struct inode *inode = file_inode(filp);
980
981 if (!inode_owner_or_capable(inode))
982 return -EACCES;
983
984 if (f2fs_is_volatile_file(inode))
985 return 0;
986
987 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
988
989 return f2fs_convert_inline_inode(inode);
990 }
991
992 static int f2fs_ioc_release_volatile_write(struct file *filp)
993 {
994 struct inode *inode = file_inode(filp);
995
996 if (!inode_owner_or_capable(inode))
997 return -EACCES;
998
999 if (!f2fs_is_volatile_file(inode))
1000 return 0;
1001
1002 punch_hole(inode, 0, F2FS_BLKSIZE);
1003 return 0;
1004 }
1005
1006 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1007 {
1008 struct inode *inode = file_inode(filp);
1009 int ret;
1010
1011 if (!inode_owner_or_capable(inode))
1012 return -EACCES;
1013
1014 ret = mnt_want_write_file(filp);
1015 if (ret)
1016 return ret;
1017
1018 f2fs_balance_fs(F2FS_I_SB(inode));
1019
1020 if (f2fs_is_atomic_file(inode)) {
1021 commit_inmem_pages(inode, false);
1022 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1023 }
1024
1025 if (f2fs_is_volatile_file(inode)) {
1026 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1027 filemap_fdatawrite(inode->i_mapping);
1028 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1029 }
1030 mnt_drop_write_file(filp);
1031 return ret;
1032 }
1033
1034 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1035 {
1036 struct inode *inode = file_inode(filp);
1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038 struct super_block *sb = sbi->sb;
1039 __u32 in;
1040
1041 if (!capable(CAP_SYS_ADMIN))
1042 return -EPERM;
1043
1044 if (get_user(in, (__u32 __user *)arg))
1045 return -EFAULT;
1046
1047 switch (in) {
1048 case F2FS_GOING_DOWN_FULLSYNC:
1049 sb = freeze_bdev(sb->s_bdev);
1050 if (sb && !IS_ERR(sb)) {
1051 f2fs_stop_checkpoint(sbi);
1052 thaw_bdev(sb->s_bdev, sb);
1053 }
1054 break;
1055 case F2FS_GOING_DOWN_METASYNC:
1056 /* do checkpoint only */
1057 f2fs_sync_fs(sb, 1);
1058 f2fs_stop_checkpoint(sbi);
1059 break;
1060 case F2FS_GOING_DOWN_NOSYNC:
1061 f2fs_stop_checkpoint(sbi);
1062 break;
1063 default:
1064 return -EINVAL;
1065 }
1066 return 0;
1067 }
1068
1069 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1070 {
1071 struct inode *inode = file_inode(filp);
1072 struct super_block *sb = inode->i_sb;
1073 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1074 struct fstrim_range range;
1075 int ret;
1076
1077 if (!capable(CAP_SYS_ADMIN))
1078 return -EPERM;
1079
1080 if (!blk_queue_discard(q))
1081 return -EOPNOTSUPP;
1082
1083 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1084 sizeof(range)))
1085 return -EFAULT;
1086
1087 range.minlen = max((unsigned int)range.minlen,
1088 q->limits.discard_granularity);
1089 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1090 if (ret < 0)
1091 return ret;
1092
1093 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1094 sizeof(range)))
1095 return -EFAULT;
1096 return 0;
1097 }
1098
1099 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1100 {
1101 switch (cmd) {
1102 case F2FS_IOC_GETFLAGS:
1103 return f2fs_ioc_getflags(filp, arg);
1104 case F2FS_IOC_SETFLAGS:
1105 return f2fs_ioc_setflags(filp, arg);
1106 case F2FS_IOC_GETVERSION:
1107 return f2fs_ioc_getversion(filp, arg);
1108 case F2FS_IOC_START_ATOMIC_WRITE:
1109 return f2fs_ioc_start_atomic_write(filp);
1110 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1111 return f2fs_ioc_commit_atomic_write(filp);
1112 case F2FS_IOC_START_VOLATILE_WRITE:
1113 return f2fs_ioc_start_volatile_write(filp);
1114 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1115 return f2fs_ioc_release_volatile_write(filp);
1116 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1117 return f2fs_ioc_abort_volatile_write(filp);
1118 case F2FS_IOC_SHUTDOWN:
1119 return f2fs_ioc_shutdown(filp, arg);
1120 case FITRIM:
1121 return f2fs_ioc_fitrim(filp, arg);
1122 default:
1123 return -ENOTTY;
1124 }
1125 }
1126
1127 #ifdef CONFIG_COMPAT
1128 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1129 {
1130 switch (cmd) {
1131 case F2FS_IOC32_GETFLAGS:
1132 cmd = F2FS_IOC_GETFLAGS;
1133 break;
1134 case F2FS_IOC32_SETFLAGS:
1135 cmd = F2FS_IOC_SETFLAGS;
1136 break;
1137 default:
1138 return -ENOIOCTLCMD;
1139 }
1140 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1141 }
1142 #endif
1143
1144 const struct file_operations f2fs_file_operations = {
1145 .llseek = f2fs_llseek,
1146 .read = new_sync_read,
1147 .write = new_sync_write,
1148 .read_iter = generic_file_read_iter,
1149 .write_iter = generic_file_write_iter,
1150 .open = generic_file_open,
1151 .release = f2fs_release_file,
1152 .mmap = f2fs_file_mmap,
1153 .fsync = f2fs_sync_file,
1154 .fallocate = f2fs_fallocate,
1155 .unlocked_ioctl = f2fs_ioctl,
1156 #ifdef CONFIG_COMPAT
1157 .compat_ioctl = f2fs_compat_ioctl,
1158 #endif
1159 .splice_read = generic_file_splice_read,
1160 .splice_write = iter_file_splice_write,
1161 };