]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/gc.c
Merge tag 'microblaze-v5.13' of git://git.monstr.eu/linux-2.6-microblaze
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/gc.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/init.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/kthread.h>
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/sched/signal.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "gc.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *victim_entry_slab;
25
26 static unsigned int count_bits(const unsigned long *addr,
27 unsigned int offset, unsigned int len);
28
29 static int gc_thread_func(void *data)
30 {
31 struct f2fs_sb_info *sbi = data;
32 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
33 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
34 unsigned int wait_ms;
35
36 wait_ms = gc_th->min_sleep_time;
37
38 set_freezable();
39 do {
40 bool sync_mode;
41
42 wait_event_interruptible_timeout(*wq,
43 kthread_should_stop() || freezing(current) ||
44 gc_th->gc_wake,
45 msecs_to_jiffies(wait_ms));
46
47 /* give it a try one time */
48 if (gc_th->gc_wake)
49 gc_th->gc_wake = 0;
50
51 if (try_to_freeze()) {
52 stat_other_skip_bggc_count(sbi);
53 continue;
54 }
55 if (kthread_should_stop())
56 break;
57
58 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
59 increase_sleep_time(gc_th, &wait_ms);
60 stat_other_skip_bggc_count(sbi);
61 continue;
62 }
63
64 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
65 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
66 f2fs_stop_checkpoint(sbi, false);
67 }
68
69 if (!sb_start_write_trylock(sbi->sb)) {
70 stat_other_skip_bggc_count(sbi);
71 continue;
72 }
73
74 /*
75 * [GC triggering condition]
76 * 0. GC is not conducted currently.
77 * 1. There are enough dirty segments.
78 * 2. IO subsystem is idle by checking the # of writeback pages.
79 * 3. IO subsystem is idle by checking the # of requests in
80 * bdev's request list.
81 *
82 * Note) We have to avoid triggering GCs frequently.
83 * Because it is possible that some segments can be
84 * invalidated soon after by user update or deletion.
85 * So, I'd like to wait some time to collect dirty segments.
86 */
87 if (sbi->gc_mode == GC_URGENT_HIGH) {
88 wait_ms = gc_th->urgent_sleep_time;
89 down_write(&sbi->gc_lock);
90 goto do_gc;
91 }
92
93 if (!down_write_trylock(&sbi->gc_lock)) {
94 stat_other_skip_bggc_count(sbi);
95 goto next;
96 }
97
98 if (!is_idle(sbi, GC_TIME)) {
99 increase_sleep_time(gc_th, &wait_ms);
100 up_write(&sbi->gc_lock);
101 stat_io_skip_bggc_count(sbi);
102 goto next;
103 }
104
105 if (has_enough_invalid_blocks(sbi))
106 decrease_sleep_time(gc_th, &wait_ms);
107 else
108 increase_sleep_time(gc_th, &wait_ms);
109 do_gc:
110 stat_inc_bggc_count(sbi->stat_info);
111
112 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
113
114 /* if return value is not zero, no victim was selected */
115 if (f2fs_gc(sbi, sync_mode, true, NULL_SEGNO))
116 wait_ms = gc_th->no_gc_sleep_time;
117
118 trace_f2fs_background_gc(sbi->sb, wait_ms,
119 prefree_segments(sbi), free_segments(sbi));
120
121 /* balancing f2fs's metadata periodically */
122 f2fs_balance_fs_bg(sbi, true);
123 next:
124 sb_end_write(sbi->sb);
125
126 } while (!kthread_should_stop());
127 return 0;
128 }
129
130 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
131 {
132 struct f2fs_gc_kthread *gc_th;
133 dev_t dev = sbi->sb->s_bdev->bd_dev;
134 int err = 0;
135
136 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
137 if (!gc_th) {
138 err = -ENOMEM;
139 goto out;
140 }
141
142 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
143 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
144 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
145 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
146
147 gc_th->gc_wake= 0;
148
149 sbi->gc_thread = gc_th;
150 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
151 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
152 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
153 if (IS_ERR(gc_th->f2fs_gc_task)) {
154 err = PTR_ERR(gc_th->f2fs_gc_task);
155 kfree(gc_th);
156 sbi->gc_thread = NULL;
157 }
158 out:
159 return err;
160 }
161
162 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
163 {
164 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
165 if (!gc_th)
166 return;
167 kthread_stop(gc_th->f2fs_gc_task);
168 kfree(gc_th);
169 sbi->gc_thread = NULL;
170 }
171
172 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
173 {
174 int gc_mode;
175
176 if (gc_type == BG_GC) {
177 if (sbi->am.atgc_enabled)
178 gc_mode = GC_AT;
179 else
180 gc_mode = GC_CB;
181 } else {
182 gc_mode = GC_GREEDY;
183 }
184
185 switch (sbi->gc_mode) {
186 case GC_IDLE_CB:
187 gc_mode = GC_CB;
188 break;
189 case GC_IDLE_GREEDY:
190 case GC_URGENT_HIGH:
191 gc_mode = GC_GREEDY;
192 break;
193 case GC_IDLE_AT:
194 gc_mode = GC_AT;
195 break;
196 }
197
198 return gc_mode;
199 }
200
201 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
202 int type, struct victim_sel_policy *p)
203 {
204 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
205
206 if (p->alloc_mode == SSR) {
207 p->gc_mode = GC_GREEDY;
208 p->dirty_bitmap = dirty_i->dirty_segmap[type];
209 p->max_search = dirty_i->nr_dirty[type];
210 p->ofs_unit = 1;
211 } else if (p->alloc_mode == AT_SSR) {
212 p->gc_mode = GC_GREEDY;
213 p->dirty_bitmap = dirty_i->dirty_segmap[type];
214 p->max_search = dirty_i->nr_dirty[type];
215 p->ofs_unit = 1;
216 } else {
217 p->gc_mode = select_gc_type(sbi, gc_type);
218 p->ofs_unit = sbi->segs_per_sec;
219 if (__is_large_section(sbi)) {
220 p->dirty_bitmap = dirty_i->dirty_secmap;
221 p->max_search = count_bits(p->dirty_bitmap,
222 0, MAIN_SECS(sbi));
223 } else {
224 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
225 p->max_search = dirty_i->nr_dirty[DIRTY];
226 }
227 }
228
229 /*
230 * adjust candidates range, should select all dirty segments for
231 * foreground GC and urgent GC cases.
232 */
233 if (gc_type != FG_GC &&
234 (sbi->gc_mode != GC_URGENT_HIGH) &&
235 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
236 p->max_search > sbi->max_victim_search)
237 p->max_search = sbi->max_victim_search;
238
239 /* let's select beginning hot/small space first in no_heap mode*/
240 if (test_opt(sbi, NOHEAP) &&
241 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
242 p->offset = 0;
243 else
244 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
245 }
246
247 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
248 struct victim_sel_policy *p)
249 {
250 /* SSR allocates in a segment unit */
251 if (p->alloc_mode == SSR)
252 return sbi->blocks_per_seg;
253 else if (p->alloc_mode == AT_SSR)
254 return UINT_MAX;
255
256 /* LFS */
257 if (p->gc_mode == GC_GREEDY)
258 return 2 * sbi->blocks_per_seg * p->ofs_unit;
259 else if (p->gc_mode == GC_CB)
260 return UINT_MAX;
261 else if (p->gc_mode == GC_AT)
262 return UINT_MAX;
263 else /* No other gc_mode */
264 return 0;
265 }
266
267 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
268 {
269 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
270 unsigned int secno;
271
272 /*
273 * If the gc_type is FG_GC, we can select victim segments
274 * selected by background GC before.
275 * Those segments guarantee they have small valid blocks.
276 */
277 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
278 if (sec_usage_check(sbi, secno))
279 continue;
280 clear_bit(secno, dirty_i->victim_secmap);
281 return GET_SEG_FROM_SEC(sbi, secno);
282 }
283 return NULL_SEGNO;
284 }
285
286 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
287 {
288 struct sit_info *sit_i = SIT_I(sbi);
289 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
290 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
291 unsigned long long mtime = 0;
292 unsigned int vblocks;
293 unsigned char age = 0;
294 unsigned char u;
295 unsigned int i;
296 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
297
298 for (i = 0; i < usable_segs_per_sec; i++)
299 mtime += get_seg_entry(sbi, start + i)->mtime;
300 vblocks = get_valid_blocks(sbi, segno, true);
301
302 mtime = div_u64(mtime, usable_segs_per_sec);
303 vblocks = div_u64(vblocks, usable_segs_per_sec);
304
305 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
306
307 /* Handle if the system time has changed by the user */
308 if (mtime < sit_i->min_mtime)
309 sit_i->min_mtime = mtime;
310 if (mtime > sit_i->max_mtime)
311 sit_i->max_mtime = mtime;
312 if (sit_i->max_mtime != sit_i->min_mtime)
313 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
314 sit_i->max_mtime - sit_i->min_mtime);
315
316 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
317 }
318
319 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
320 unsigned int segno, struct victim_sel_policy *p)
321 {
322 if (p->alloc_mode == SSR)
323 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
324
325 /* alloc_mode == LFS */
326 if (p->gc_mode == GC_GREEDY)
327 return get_valid_blocks(sbi, segno, true);
328 else if (p->gc_mode == GC_CB)
329 return get_cb_cost(sbi, segno);
330
331 f2fs_bug_on(sbi, 1);
332 return 0;
333 }
334
335 static unsigned int count_bits(const unsigned long *addr,
336 unsigned int offset, unsigned int len)
337 {
338 unsigned int end = offset + len, sum = 0;
339
340 while (offset < end) {
341 if (test_bit(offset++, addr))
342 ++sum;
343 }
344 return sum;
345 }
346
347 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
348 unsigned long long mtime, unsigned int segno,
349 struct rb_node *parent, struct rb_node **p,
350 bool left_most)
351 {
352 struct atgc_management *am = &sbi->am;
353 struct victim_entry *ve;
354
355 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS);
356
357 ve->mtime = mtime;
358 ve->segno = segno;
359
360 rb_link_node(&ve->rb_node, parent, p);
361 rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
362
363 list_add_tail(&ve->list, &am->victim_list);
364
365 am->victim_count++;
366
367 return ve;
368 }
369
370 static void insert_victim_entry(struct f2fs_sb_info *sbi,
371 unsigned long long mtime, unsigned int segno)
372 {
373 struct atgc_management *am = &sbi->am;
374 struct rb_node **p;
375 struct rb_node *parent = NULL;
376 bool left_most = true;
377
378 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
379 attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
380 }
381
382 static void add_victim_entry(struct f2fs_sb_info *sbi,
383 struct victim_sel_policy *p, unsigned int segno)
384 {
385 struct sit_info *sit_i = SIT_I(sbi);
386 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
387 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
388 unsigned long long mtime = 0;
389 unsigned int i;
390
391 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
392 if (p->gc_mode == GC_AT &&
393 get_valid_blocks(sbi, segno, true) == 0)
394 return;
395
396 if (p->alloc_mode == AT_SSR &&
397 get_seg_entry(sbi, segno)->ckpt_valid_blocks == 0)
398 return;
399 }
400
401 for (i = 0; i < sbi->segs_per_sec; i++)
402 mtime += get_seg_entry(sbi, start + i)->mtime;
403 mtime = div_u64(mtime, sbi->segs_per_sec);
404
405 /* Handle if the system time has changed by the user */
406 if (mtime < sit_i->min_mtime)
407 sit_i->min_mtime = mtime;
408 if (mtime > sit_i->max_mtime)
409 sit_i->max_mtime = mtime;
410 if (mtime < sit_i->dirty_min_mtime)
411 sit_i->dirty_min_mtime = mtime;
412 if (mtime > sit_i->dirty_max_mtime)
413 sit_i->dirty_max_mtime = mtime;
414
415 /* don't choose young section as candidate */
416 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
417 return;
418
419 insert_victim_entry(sbi, mtime, segno);
420 }
421
422 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
423 struct victim_sel_policy *p)
424 {
425 struct atgc_management *am = &sbi->am;
426 struct rb_node *parent = NULL;
427 bool left_most;
428
429 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
430
431 return parent;
432 }
433
434 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
435 struct victim_sel_policy *p)
436 {
437 struct sit_info *sit_i = SIT_I(sbi);
438 struct atgc_management *am = &sbi->am;
439 struct rb_root_cached *root = &am->root;
440 struct rb_node *node;
441 struct rb_entry *re;
442 struct victim_entry *ve;
443 unsigned long long total_time;
444 unsigned long long age, u, accu;
445 unsigned long long max_mtime = sit_i->dirty_max_mtime;
446 unsigned long long min_mtime = sit_i->dirty_min_mtime;
447 unsigned int sec_blocks = BLKS_PER_SEC(sbi);
448 unsigned int vblocks;
449 unsigned int dirty_threshold = max(am->max_candidate_count,
450 am->candidate_ratio *
451 am->victim_count / 100);
452 unsigned int age_weight = am->age_weight;
453 unsigned int cost;
454 unsigned int iter = 0;
455
456 if (max_mtime < min_mtime)
457 return;
458
459 max_mtime += 1;
460 total_time = max_mtime - min_mtime;
461
462 accu = div64_u64(ULLONG_MAX, total_time);
463 accu = min_t(unsigned long long, div_u64(accu, 100),
464 DEFAULT_ACCURACY_CLASS);
465
466 node = rb_first_cached(root);
467 next:
468 re = rb_entry_safe(node, struct rb_entry, rb_node);
469 if (!re)
470 return;
471
472 ve = (struct victim_entry *)re;
473
474 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
475 goto skip;
476
477 /* age = 10000 * x% * 60 */
478 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
479 age_weight;
480
481 vblocks = get_valid_blocks(sbi, ve->segno, true);
482 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
483
484 /* u = 10000 * x% * 40 */
485 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
486 (100 - age_weight);
487
488 f2fs_bug_on(sbi, age + u >= UINT_MAX);
489
490 cost = UINT_MAX - (age + u);
491 iter++;
492
493 if (cost < p->min_cost ||
494 (cost == p->min_cost && age > p->oldest_age)) {
495 p->min_cost = cost;
496 p->oldest_age = age;
497 p->min_segno = ve->segno;
498 }
499 skip:
500 if (iter < dirty_threshold) {
501 node = rb_next(node);
502 goto next;
503 }
504 }
505
506 /*
507 * select candidates around source section in range of
508 * [target - dirty_threshold, target + dirty_threshold]
509 */
510 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
511 struct victim_sel_policy *p)
512 {
513 struct sit_info *sit_i = SIT_I(sbi);
514 struct atgc_management *am = &sbi->am;
515 struct rb_node *node;
516 struct rb_entry *re;
517 struct victim_entry *ve;
518 unsigned long long age;
519 unsigned long long max_mtime = sit_i->dirty_max_mtime;
520 unsigned long long min_mtime = sit_i->dirty_min_mtime;
521 unsigned int seg_blocks = sbi->blocks_per_seg;
522 unsigned int vblocks;
523 unsigned int dirty_threshold = max(am->max_candidate_count,
524 am->candidate_ratio *
525 am->victim_count / 100);
526 unsigned int cost;
527 unsigned int iter = 0;
528 int stage = 0;
529
530 if (max_mtime < min_mtime)
531 return;
532 max_mtime += 1;
533 next_stage:
534 node = lookup_central_victim(sbi, p);
535 next_node:
536 re = rb_entry_safe(node, struct rb_entry, rb_node);
537 if (!re) {
538 if (stage == 0)
539 goto skip_stage;
540 return;
541 }
542
543 ve = (struct victim_entry *)re;
544
545 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
546 goto skip_node;
547
548 age = max_mtime - ve->mtime;
549
550 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
551 f2fs_bug_on(sbi, !vblocks);
552
553 /* rare case */
554 if (vblocks == seg_blocks)
555 goto skip_node;
556
557 iter++;
558
559 age = max_mtime - abs(p->age - age);
560 cost = UINT_MAX - vblocks;
561
562 if (cost < p->min_cost ||
563 (cost == p->min_cost && age > p->oldest_age)) {
564 p->min_cost = cost;
565 p->oldest_age = age;
566 p->min_segno = ve->segno;
567 }
568 skip_node:
569 if (iter < dirty_threshold) {
570 if (stage == 0)
571 node = rb_prev(node);
572 else if (stage == 1)
573 node = rb_next(node);
574 goto next_node;
575 }
576 skip_stage:
577 if (stage < 1) {
578 stage++;
579 iter = 0;
580 goto next_stage;
581 }
582 }
583 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
584 struct victim_sel_policy *p)
585 {
586 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
587 &sbi->am.root, true));
588
589 if (p->gc_mode == GC_AT)
590 atgc_lookup_victim(sbi, p);
591 else if (p->alloc_mode == AT_SSR)
592 atssr_lookup_victim(sbi, p);
593 else
594 f2fs_bug_on(sbi, 1);
595 }
596
597 static void release_victim_entry(struct f2fs_sb_info *sbi)
598 {
599 struct atgc_management *am = &sbi->am;
600 struct victim_entry *ve, *tmp;
601
602 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
603 list_del(&ve->list);
604 kmem_cache_free(victim_entry_slab, ve);
605 am->victim_count--;
606 }
607
608 am->root = RB_ROOT_CACHED;
609
610 f2fs_bug_on(sbi, am->victim_count);
611 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
612 }
613
614 /*
615 * This function is called from two paths.
616 * One is garbage collection and the other is SSR segment selection.
617 * When it is called during GC, it just gets a victim segment
618 * and it does not remove it from dirty seglist.
619 * When it is called from SSR segment selection, it finds a segment
620 * which has minimum valid blocks and removes it from dirty seglist.
621 */
622 static int get_victim_by_default(struct f2fs_sb_info *sbi,
623 unsigned int *result, int gc_type, int type,
624 char alloc_mode, unsigned long long age)
625 {
626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
627 struct sit_info *sm = SIT_I(sbi);
628 struct victim_sel_policy p;
629 unsigned int secno, last_victim;
630 unsigned int last_segment;
631 unsigned int nsearched;
632 bool is_atgc;
633 int ret = 0;
634
635 mutex_lock(&dirty_i->seglist_lock);
636 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
637
638 p.alloc_mode = alloc_mode;
639 p.age = age;
640 p.age_threshold = sbi->am.age_threshold;
641
642 retry:
643 select_policy(sbi, gc_type, type, &p);
644 p.min_segno = NULL_SEGNO;
645 p.oldest_age = 0;
646 p.min_cost = get_max_cost(sbi, &p);
647
648 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
649 nsearched = 0;
650
651 if (is_atgc)
652 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
653
654 if (*result != NULL_SEGNO) {
655 if (!get_valid_blocks(sbi, *result, false)) {
656 ret = -ENODATA;
657 goto out;
658 }
659
660 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
661 ret = -EBUSY;
662 else
663 p.min_segno = *result;
664 goto out;
665 }
666
667 ret = -ENODATA;
668 if (p.max_search == 0)
669 goto out;
670
671 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
672 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
673 p.min_segno = sbi->next_victim_seg[BG_GC];
674 *result = p.min_segno;
675 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
676 goto got_result;
677 }
678 if (gc_type == FG_GC &&
679 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
680 p.min_segno = sbi->next_victim_seg[FG_GC];
681 *result = p.min_segno;
682 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
683 goto got_result;
684 }
685 }
686
687 last_victim = sm->last_victim[p.gc_mode];
688 if (p.alloc_mode == LFS && gc_type == FG_GC) {
689 p.min_segno = check_bg_victims(sbi);
690 if (p.min_segno != NULL_SEGNO)
691 goto got_it;
692 }
693
694 while (1) {
695 unsigned long cost, *dirty_bitmap;
696 unsigned int unit_no, segno;
697
698 dirty_bitmap = p.dirty_bitmap;
699 unit_no = find_next_bit(dirty_bitmap,
700 last_segment / p.ofs_unit,
701 p.offset / p.ofs_unit);
702 segno = unit_no * p.ofs_unit;
703 if (segno >= last_segment) {
704 if (sm->last_victim[p.gc_mode]) {
705 last_segment =
706 sm->last_victim[p.gc_mode];
707 sm->last_victim[p.gc_mode] = 0;
708 p.offset = 0;
709 continue;
710 }
711 break;
712 }
713
714 p.offset = segno + p.ofs_unit;
715 nsearched++;
716
717 #ifdef CONFIG_F2FS_CHECK_FS
718 /*
719 * skip selecting the invalid segno (that is failed due to block
720 * validity check failure during GC) to avoid endless GC loop in
721 * such cases.
722 */
723 if (test_bit(segno, sm->invalid_segmap))
724 goto next;
725 #endif
726
727 secno = GET_SEC_FROM_SEG(sbi, segno);
728
729 if (sec_usage_check(sbi, secno))
730 goto next;
731 /* Don't touch checkpointed data */
732 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
733 get_ckpt_valid_blocks(sbi, segno) &&
734 p.alloc_mode == LFS))
735 goto next;
736 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
737 goto next;
738
739 if (is_atgc) {
740 add_victim_entry(sbi, &p, segno);
741 goto next;
742 }
743
744 cost = get_gc_cost(sbi, segno, &p);
745
746 if (p.min_cost > cost) {
747 p.min_segno = segno;
748 p.min_cost = cost;
749 }
750 next:
751 if (nsearched >= p.max_search) {
752 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
753 sm->last_victim[p.gc_mode] =
754 last_victim + p.ofs_unit;
755 else
756 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
757 sm->last_victim[p.gc_mode] %=
758 (MAIN_SECS(sbi) * sbi->segs_per_sec);
759 break;
760 }
761 }
762
763 /* get victim for GC_AT/AT_SSR */
764 if (is_atgc) {
765 lookup_victim_by_age(sbi, &p);
766 release_victim_entry(sbi);
767 }
768
769 if (is_atgc && p.min_segno == NULL_SEGNO &&
770 sm->elapsed_time < p.age_threshold) {
771 p.age_threshold = 0;
772 goto retry;
773 }
774
775 if (p.min_segno != NULL_SEGNO) {
776 got_it:
777 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
778 got_result:
779 if (p.alloc_mode == LFS) {
780 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
781 if (gc_type == FG_GC)
782 sbi->cur_victim_sec = secno;
783 else
784 set_bit(secno, dirty_i->victim_secmap);
785 }
786 ret = 0;
787
788 }
789 out:
790 if (p.min_segno != NULL_SEGNO)
791 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
792 sbi->cur_victim_sec,
793 prefree_segments(sbi), free_segments(sbi));
794 mutex_unlock(&dirty_i->seglist_lock);
795
796 return ret;
797 }
798
799 static const struct victim_selection default_v_ops = {
800 .get_victim = get_victim_by_default,
801 };
802
803 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
804 {
805 struct inode_entry *ie;
806
807 ie = radix_tree_lookup(&gc_list->iroot, ino);
808 if (ie)
809 return ie->inode;
810 return NULL;
811 }
812
813 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
814 {
815 struct inode_entry *new_ie;
816
817 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
818 iput(inode);
819 return;
820 }
821 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS);
822 new_ie->inode = inode;
823
824 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
825 list_add_tail(&new_ie->list, &gc_list->ilist);
826 }
827
828 static void put_gc_inode(struct gc_inode_list *gc_list)
829 {
830 struct inode_entry *ie, *next_ie;
831 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
832 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
833 iput(ie->inode);
834 list_del(&ie->list);
835 kmem_cache_free(f2fs_inode_entry_slab, ie);
836 }
837 }
838
839 static int check_valid_map(struct f2fs_sb_info *sbi,
840 unsigned int segno, int offset)
841 {
842 struct sit_info *sit_i = SIT_I(sbi);
843 struct seg_entry *sentry;
844 int ret;
845
846 down_read(&sit_i->sentry_lock);
847 sentry = get_seg_entry(sbi, segno);
848 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
849 up_read(&sit_i->sentry_lock);
850 return ret;
851 }
852
853 /*
854 * This function compares node address got in summary with that in NAT.
855 * On validity, copy that node with cold status, otherwise (invalid node)
856 * ignore that.
857 */
858 static int gc_node_segment(struct f2fs_sb_info *sbi,
859 struct f2fs_summary *sum, unsigned int segno, int gc_type)
860 {
861 struct f2fs_summary *entry;
862 block_t start_addr;
863 int off;
864 int phase = 0;
865 bool fggc = (gc_type == FG_GC);
866 int submitted = 0;
867 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
868
869 start_addr = START_BLOCK(sbi, segno);
870
871 next_step:
872 entry = sum;
873
874 if (fggc && phase == 2)
875 atomic_inc(&sbi->wb_sync_req[NODE]);
876
877 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
878 nid_t nid = le32_to_cpu(entry->nid);
879 struct page *node_page;
880 struct node_info ni;
881 int err;
882
883 /* stop BG_GC if there is not enough free sections. */
884 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
885 return submitted;
886
887 if (check_valid_map(sbi, segno, off) == 0)
888 continue;
889
890 if (phase == 0) {
891 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
892 META_NAT, true);
893 continue;
894 }
895
896 if (phase == 1) {
897 f2fs_ra_node_page(sbi, nid);
898 continue;
899 }
900
901 /* phase == 2 */
902 node_page = f2fs_get_node_page(sbi, nid);
903 if (IS_ERR(node_page))
904 continue;
905
906 /* block may become invalid during f2fs_get_node_page */
907 if (check_valid_map(sbi, segno, off) == 0) {
908 f2fs_put_page(node_page, 1);
909 continue;
910 }
911
912 if (f2fs_get_node_info(sbi, nid, &ni)) {
913 f2fs_put_page(node_page, 1);
914 continue;
915 }
916
917 if (ni.blk_addr != start_addr + off) {
918 f2fs_put_page(node_page, 1);
919 continue;
920 }
921
922 err = f2fs_move_node_page(node_page, gc_type);
923 if (!err && gc_type == FG_GC)
924 submitted++;
925 stat_inc_node_blk_count(sbi, 1, gc_type);
926 }
927
928 if (++phase < 3)
929 goto next_step;
930
931 if (fggc)
932 atomic_dec(&sbi->wb_sync_req[NODE]);
933 return submitted;
934 }
935
936 /*
937 * Calculate start block index indicating the given node offset.
938 * Be careful, caller should give this node offset only indicating direct node
939 * blocks. If any node offsets, which point the other types of node blocks such
940 * as indirect or double indirect node blocks, are given, it must be a caller's
941 * bug.
942 */
943 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
944 {
945 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
946 unsigned int bidx;
947
948 if (node_ofs == 0)
949 return 0;
950
951 if (node_ofs <= 2) {
952 bidx = node_ofs - 1;
953 } else if (node_ofs <= indirect_blks) {
954 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
955 bidx = node_ofs - 2 - dec;
956 } else {
957 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
958 bidx = node_ofs - 5 - dec;
959 }
960 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
961 }
962
963 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
964 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
965 {
966 struct page *node_page;
967 nid_t nid;
968 unsigned int ofs_in_node;
969 block_t source_blkaddr;
970
971 nid = le32_to_cpu(sum->nid);
972 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
973
974 node_page = f2fs_get_node_page(sbi, nid);
975 if (IS_ERR(node_page))
976 return false;
977
978 if (f2fs_get_node_info(sbi, nid, dni)) {
979 f2fs_put_page(node_page, 1);
980 return false;
981 }
982
983 if (sum->version != dni->version) {
984 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
985 __func__);
986 set_sbi_flag(sbi, SBI_NEED_FSCK);
987 }
988
989 *nofs = ofs_of_node(node_page);
990 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
991 f2fs_put_page(node_page, 1);
992
993 if (source_blkaddr != blkaddr) {
994 #ifdef CONFIG_F2FS_CHECK_FS
995 unsigned int segno = GET_SEGNO(sbi, blkaddr);
996 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
997
998 if (unlikely(check_valid_map(sbi, segno, offset))) {
999 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1000 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u\n",
1001 blkaddr, source_blkaddr, segno);
1002 f2fs_bug_on(sbi, 1);
1003 }
1004 }
1005 #endif
1006 return false;
1007 }
1008 return true;
1009 }
1010
1011 static int ra_data_block(struct inode *inode, pgoff_t index)
1012 {
1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014 struct address_space *mapping = inode->i_mapping;
1015 struct dnode_of_data dn;
1016 struct page *page;
1017 struct extent_info ei = {0, 0, 0};
1018 struct f2fs_io_info fio = {
1019 .sbi = sbi,
1020 .ino = inode->i_ino,
1021 .type = DATA,
1022 .temp = COLD,
1023 .op = REQ_OP_READ,
1024 .op_flags = 0,
1025 .encrypted_page = NULL,
1026 .in_list = false,
1027 .retry = false,
1028 };
1029 int err;
1030
1031 page = f2fs_grab_cache_page(mapping, index, true);
1032 if (!page)
1033 return -ENOMEM;
1034
1035 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1036 dn.data_blkaddr = ei.blk + index - ei.fofs;
1037 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1038 DATA_GENERIC_ENHANCE_READ))) {
1039 err = -EFSCORRUPTED;
1040 goto put_page;
1041 }
1042 goto got_it;
1043 }
1044
1045 set_new_dnode(&dn, inode, NULL, NULL, 0);
1046 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1047 if (err)
1048 goto put_page;
1049 f2fs_put_dnode(&dn);
1050
1051 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1052 err = -ENOENT;
1053 goto put_page;
1054 }
1055 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1056 DATA_GENERIC_ENHANCE))) {
1057 err = -EFSCORRUPTED;
1058 goto put_page;
1059 }
1060 got_it:
1061 /* read page */
1062 fio.page = page;
1063 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1064
1065 /*
1066 * don't cache encrypted data into meta inode until previous dirty
1067 * data were writebacked to avoid racing between GC and flush.
1068 */
1069 f2fs_wait_on_page_writeback(page, DATA, true, true);
1070
1071 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1072
1073 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1074 dn.data_blkaddr,
1075 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1076 if (!fio.encrypted_page) {
1077 err = -ENOMEM;
1078 goto put_page;
1079 }
1080
1081 err = f2fs_submit_page_bio(&fio);
1082 if (err)
1083 goto put_encrypted_page;
1084 f2fs_put_page(fio.encrypted_page, 0);
1085 f2fs_put_page(page, 1);
1086
1087 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1088 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1089
1090 return 0;
1091 put_encrypted_page:
1092 f2fs_put_page(fio.encrypted_page, 1);
1093 put_page:
1094 f2fs_put_page(page, 1);
1095 return err;
1096 }
1097
1098 /*
1099 * Move data block via META_MAPPING while keeping locked data page.
1100 * This can be used to move blocks, aka LBAs, directly on disk.
1101 */
1102 static int move_data_block(struct inode *inode, block_t bidx,
1103 int gc_type, unsigned int segno, int off)
1104 {
1105 struct f2fs_io_info fio = {
1106 .sbi = F2FS_I_SB(inode),
1107 .ino = inode->i_ino,
1108 .type = DATA,
1109 .temp = COLD,
1110 .op = REQ_OP_READ,
1111 .op_flags = 0,
1112 .encrypted_page = NULL,
1113 .in_list = false,
1114 .retry = false,
1115 };
1116 struct dnode_of_data dn;
1117 struct f2fs_summary sum;
1118 struct node_info ni;
1119 struct page *page, *mpage;
1120 block_t newaddr;
1121 int err = 0;
1122 bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1123 int type = fio.sbi->am.atgc_enabled ?
1124 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1125
1126 /* do not read out */
1127 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1128 if (!page)
1129 return -ENOMEM;
1130
1131 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1132 err = -ENOENT;
1133 goto out;
1134 }
1135
1136 if (f2fs_is_atomic_file(inode)) {
1137 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1138 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1139 err = -EAGAIN;
1140 goto out;
1141 }
1142
1143 if (f2fs_is_pinned_file(inode)) {
1144 f2fs_pin_file_control(inode, true);
1145 err = -EAGAIN;
1146 goto out;
1147 }
1148
1149 set_new_dnode(&dn, inode, NULL, NULL, 0);
1150 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1151 if (err)
1152 goto out;
1153
1154 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1155 ClearPageUptodate(page);
1156 err = -ENOENT;
1157 goto put_out;
1158 }
1159
1160 /*
1161 * don't cache encrypted data into meta inode until previous dirty
1162 * data were writebacked to avoid racing between GC and flush.
1163 */
1164 f2fs_wait_on_page_writeback(page, DATA, true, true);
1165
1166 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1167
1168 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1169 if (err)
1170 goto put_out;
1171
1172 /* read page */
1173 fio.page = page;
1174 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1175
1176 if (lfs_mode)
1177 down_write(&fio.sbi->io_order_lock);
1178
1179 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1180 fio.old_blkaddr, false);
1181 if (!mpage) {
1182 err = -ENOMEM;
1183 goto up_out;
1184 }
1185
1186 fio.encrypted_page = mpage;
1187
1188 /* read source block in mpage */
1189 if (!PageUptodate(mpage)) {
1190 err = f2fs_submit_page_bio(&fio);
1191 if (err) {
1192 f2fs_put_page(mpage, 1);
1193 goto up_out;
1194 }
1195
1196 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1197 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1198
1199 lock_page(mpage);
1200 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1201 !PageUptodate(mpage))) {
1202 err = -EIO;
1203 f2fs_put_page(mpage, 1);
1204 goto up_out;
1205 }
1206 }
1207
1208 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1209
1210 /* allocate block address */
1211 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1212 &sum, type, NULL);
1213
1214 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1215 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1216 if (!fio.encrypted_page) {
1217 err = -ENOMEM;
1218 f2fs_put_page(mpage, 1);
1219 goto recover_block;
1220 }
1221
1222 /* write target block */
1223 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1224 memcpy(page_address(fio.encrypted_page),
1225 page_address(mpage), PAGE_SIZE);
1226 f2fs_put_page(mpage, 1);
1227 invalidate_mapping_pages(META_MAPPING(fio.sbi),
1228 fio.old_blkaddr, fio.old_blkaddr);
1229
1230 set_page_dirty(fio.encrypted_page);
1231 if (clear_page_dirty_for_io(fio.encrypted_page))
1232 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1233
1234 set_page_writeback(fio.encrypted_page);
1235 ClearPageError(page);
1236
1237 fio.op = REQ_OP_WRITE;
1238 fio.op_flags = REQ_SYNC;
1239 fio.new_blkaddr = newaddr;
1240 f2fs_submit_page_write(&fio);
1241 if (fio.retry) {
1242 err = -EAGAIN;
1243 if (PageWriteback(fio.encrypted_page))
1244 end_page_writeback(fio.encrypted_page);
1245 goto put_page_out;
1246 }
1247
1248 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1249
1250 f2fs_update_data_blkaddr(&dn, newaddr);
1251 set_inode_flag(inode, FI_APPEND_WRITE);
1252 if (page->index == 0)
1253 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1254 put_page_out:
1255 f2fs_put_page(fio.encrypted_page, 1);
1256 recover_block:
1257 if (err)
1258 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1259 true, true, true);
1260 up_out:
1261 if (lfs_mode)
1262 up_write(&fio.sbi->io_order_lock);
1263 put_out:
1264 f2fs_put_dnode(&dn);
1265 out:
1266 f2fs_put_page(page, 1);
1267 return err;
1268 }
1269
1270 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1271 unsigned int segno, int off)
1272 {
1273 struct page *page;
1274 int err = 0;
1275
1276 page = f2fs_get_lock_data_page(inode, bidx, true);
1277 if (IS_ERR(page))
1278 return PTR_ERR(page);
1279
1280 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1281 err = -ENOENT;
1282 goto out;
1283 }
1284
1285 if (f2fs_is_atomic_file(inode)) {
1286 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1287 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1288 err = -EAGAIN;
1289 goto out;
1290 }
1291 if (f2fs_is_pinned_file(inode)) {
1292 if (gc_type == FG_GC)
1293 f2fs_pin_file_control(inode, true);
1294 err = -EAGAIN;
1295 goto out;
1296 }
1297
1298 if (gc_type == BG_GC) {
1299 if (PageWriteback(page)) {
1300 err = -EAGAIN;
1301 goto out;
1302 }
1303 set_page_dirty(page);
1304 set_cold_data(page);
1305 } else {
1306 struct f2fs_io_info fio = {
1307 .sbi = F2FS_I_SB(inode),
1308 .ino = inode->i_ino,
1309 .type = DATA,
1310 .temp = COLD,
1311 .op = REQ_OP_WRITE,
1312 .op_flags = REQ_SYNC,
1313 .old_blkaddr = NULL_ADDR,
1314 .page = page,
1315 .encrypted_page = NULL,
1316 .need_lock = LOCK_REQ,
1317 .io_type = FS_GC_DATA_IO,
1318 };
1319 bool is_dirty = PageDirty(page);
1320
1321 retry:
1322 f2fs_wait_on_page_writeback(page, DATA, true, true);
1323
1324 set_page_dirty(page);
1325 if (clear_page_dirty_for_io(page)) {
1326 inode_dec_dirty_pages(inode);
1327 f2fs_remove_dirty_inode(inode);
1328 }
1329
1330 set_cold_data(page);
1331
1332 err = f2fs_do_write_data_page(&fio);
1333 if (err) {
1334 clear_cold_data(page);
1335 if (err == -ENOMEM) {
1336 congestion_wait(BLK_RW_ASYNC,
1337 DEFAULT_IO_TIMEOUT);
1338 goto retry;
1339 }
1340 if (is_dirty)
1341 set_page_dirty(page);
1342 }
1343 }
1344 out:
1345 f2fs_put_page(page, 1);
1346 return err;
1347 }
1348
1349 /*
1350 * This function tries to get parent node of victim data block, and identifies
1351 * data block validity. If the block is valid, copy that with cold status and
1352 * modify parent node.
1353 * If the parent node is not valid or the data block address is different,
1354 * the victim data block is ignored.
1355 */
1356 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1357 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
1358 {
1359 struct super_block *sb = sbi->sb;
1360 struct f2fs_summary *entry;
1361 block_t start_addr;
1362 int off;
1363 int phase = 0;
1364 int submitted = 0;
1365 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1366
1367 start_addr = START_BLOCK(sbi, segno);
1368
1369 next_step:
1370 entry = sum;
1371
1372 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1373 struct page *data_page;
1374 struct inode *inode;
1375 struct node_info dni; /* dnode info for the data */
1376 unsigned int ofs_in_node, nofs;
1377 block_t start_bidx;
1378 nid_t nid = le32_to_cpu(entry->nid);
1379
1380 /*
1381 * stop BG_GC if there is not enough free sections.
1382 * Or, stop GC if the segment becomes fully valid caused by
1383 * race condition along with SSR block allocation.
1384 */
1385 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1386 get_valid_blocks(sbi, segno, true) ==
1387 BLKS_PER_SEC(sbi))
1388 return submitted;
1389
1390 if (check_valid_map(sbi, segno, off) == 0)
1391 continue;
1392
1393 if (phase == 0) {
1394 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1395 META_NAT, true);
1396 continue;
1397 }
1398
1399 if (phase == 1) {
1400 f2fs_ra_node_page(sbi, nid);
1401 continue;
1402 }
1403
1404 /* Get an inode by ino with checking validity */
1405 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1406 continue;
1407
1408 if (phase == 2) {
1409 f2fs_ra_node_page(sbi, dni.ino);
1410 continue;
1411 }
1412
1413 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1414
1415 if (phase == 3) {
1416 inode = f2fs_iget(sb, dni.ino);
1417 if (IS_ERR(inode) || is_bad_inode(inode)) {
1418 set_sbi_flag(sbi, SBI_NEED_FSCK);
1419 continue;
1420 }
1421
1422 if (!down_write_trylock(
1423 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1424 iput(inode);
1425 sbi->skipped_gc_rwsem++;
1426 continue;
1427 }
1428
1429 start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1430 ofs_in_node;
1431
1432 if (f2fs_post_read_required(inode)) {
1433 int err = ra_data_block(inode, start_bidx);
1434
1435 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1436 if (err) {
1437 iput(inode);
1438 continue;
1439 }
1440 add_gc_inode(gc_list, inode);
1441 continue;
1442 }
1443
1444 data_page = f2fs_get_read_data_page(inode,
1445 start_bidx, REQ_RAHEAD, true);
1446 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1447 if (IS_ERR(data_page)) {
1448 iput(inode);
1449 continue;
1450 }
1451
1452 f2fs_put_page(data_page, 0);
1453 add_gc_inode(gc_list, inode);
1454 continue;
1455 }
1456
1457 /* phase 4 */
1458 inode = find_gc_inode(gc_list, dni.ino);
1459 if (inode) {
1460 struct f2fs_inode_info *fi = F2FS_I(inode);
1461 bool locked = false;
1462 int err;
1463
1464 if (S_ISREG(inode->i_mode)) {
1465 if (!down_write_trylock(&fi->i_gc_rwsem[READ]))
1466 continue;
1467 if (!down_write_trylock(
1468 &fi->i_gc_rwsem[WRITE])) {
1469 sbi->skipped_gc_rwsem++;
1470 up_write(&fi->i_gc_rwsem[READ]);
1471 continue;
1472 }
1473 locked = true;
1474
1475 /* wait for all inflight aio data */
1476 inode_dio_wait(inode);
1477 }
1478
1479 start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1480 + ofs_in_node;
1481 if (f2fs_post_read_required(inode))
1482 err = move_data_block(inode, start_bidx,
1483 gc_type, segno, off);
1484 else
1485 err = move_data_page(inode, start_bidx, gc_type,
1486 segno, off);
1487
1488 if (!err && (gc_type == FG_GC ||
1489 f2fs_post_read_required(inode)))
1490 submitted++;
1491
1492 if (locked) {
1493 up_write(&fi->i_gc_rwsem[WRITE]);
1494 up_write(&fi->i_gc_rwsem[READ]);
1495 }
1496
1497 stat_inc_data_blk_count(sbi, 1, gc_type);
1498 }
1499 }
1500
1501 if (++phase < 5)
1502 goto next_step;
1503
1504 return submitted;
1505 }
1506
1507 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1508 int gc_type)
1509 {
1510 struct sit_info *sit_i = SIT_I(sbi);
1511 int ret;
1512
1513 down_write(&sit_i->sentry_lock);
1514 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1515 NO_CHECK_TYPE, LFS, 0);
1516 up_write(&sit_i->sentry_lock);
1517 return ret;
1518 }
1519
1520 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1521 unsigned int start_segno,
1522 struct gc_inode_list *gc_list, int gc_type)
1523 {
1524 struct page *sum_page;
1525 struct f2fs_summary_block *sum;
1526 struct blk_plug plug;
1527 unsigned int segno = start_segno;
1528 unsigned int end_segno = start_segno + sbi->segs_per_sec;
1529 int seg_freed = 0, migrated = 0;
1530 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1531 SUM_TYPE_DATA : SUM_TYPE_NODE;
1532 int submitted = 0;
1533
1534 if (__is_large_section(sbi))
1535 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1536
1537 /*
1538 * zone-capacity can be less than zone-size in zoned devices,
1539 * resulting in less than expected usable segments in the zone,
1540 * calculate the end segno in the zone which can be garbage collected
1541 */
1542 if (f2fs_sb_has_blkzoned(sbi))
1543 end_segno -= sbi->segs_per_sec -
1544 f2fs_usable_segs_in_sec(sbi, segno);
1545
1546 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1547
1548 /* readahead multi ssa blocks those have contiguous address */
1549 if (__is_large_section(sbi))
1550 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1551 end_segno - segno, META_SSA, true);
1552
1553 /* reference all summary page */
1554 while (segno < end_segno) {
1555 sum_page = f2fs_get_sum_page(sbi, segno++);
1556 if (IS_ERR(sum_page)) {
1557 int err = PTR_ERR(sum_page);
1558
1559 end_segno = segno - 1;
1560 for (segno = start_segno; segno < end_segno; segno++) {
1561 sum_page = find_get_page(META_MAPPING(sbi),
1562 GET_SUM_BLOCK(sbi, segno));
1563 f2fs_put_page(sum_page, 0);
1564 f2fs_put_page(sum_page, 0);
1565 }
1566 return err;
1567 }
1568 unlock_page(sum_page);
1569 }
1570
1571 blk_start_plug(&plug);
1572
1573 for (segno = start_segno; segno < end_segno; segno++) {
1574
1575 /* find segment summary of victim */
1576 sum_page = find_get_page(META_MAPPING(sbi),
1577 GET_SUM_BLOCK(sbi, segno));
1578 f2fs_put_page(sum_page, 0);
1579
1580 if (get_valid_blocks(sbi, segno, false) == 0)
1581 goto freed;
1582 if (gc_type == BG_GC && __is_large_section(sbi) &&
1583 migrated >= sbi->migration_granularity)
1584 goto skip;
1585 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1586 goto skip;
1587
1588 sum = page_address(sum_page);
1589 if (type != GET_SUM_TYPE((&sum->footer))) {
1590 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1591 segno, type, GET_SUM_TYPE((&sum->footer)));
1592 set_sbi_flag(sbi, SBI_NEED_FSCK);
1593 f2fs_stop_checkpoint(sbi, false);
1594 goto skip;
1595 }
1596
1597 /*
1598 * this is to avoid deadlock:
1599 * - lock_page(sum_page) - f2fs_replace_block
1600 * - check_valid_map() - down_write(sentry_lock)
1601 * - down_read(sentry_lock) - change_curseg()
1602 * - lock_page(sum_page)
1603 */
1604 if (type == SUM_TYPE_NODE)
1605 submitted += gc_node_segment(sbi, sum->entries, segno,
1606 gc_type);
1607 else
1608 submitted += gc_data_segment(sbi, sum->entries, gc_list,
1609 segno, gc_type);
1610
1611 stat_inc_seg_count(sbi, type, gc_type);
1612 migrated++;
1613
1614 freed:
1615 if (gc_type == FG_GC &&
1616 get_valid_blocks(sbi, segno, false) == 0)
1617 seg_freed++;
1618
1619 if (__is_large_section(sbi) && segno + 1 < end_segno)
1620 sbi->next_victim_seg[gc_type] = segno + 1;
1621 skip:
1622 f2fs_put_page(sum_page, 0);
1623 }
1624
1625 if (submitted)
1626 f2fs_submit_merged_write(sbi,
1627 (type == SUM_TYPE_NODE) ? NODE : DATA);
1628
1629 blk_finish_plug(&plug);
1630
1631 stat_inc_call_count(sbi->stat_info);
1632
1633 return seg_freed;
1634 }
1635
1636 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1637 bool background, unsigned int segno)
1638 {
1639 int gc_type = sync ? FG_GC : BG_GC;
1640 int sec_freed = 0, seg_freed = 0, total_freed = 0;
1641 int ret = 0;
1642 struct cp_control cpc;
1643 unsigned int init_segno = segno;
1644 struct gc_inode_list gc_list = {
1645 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1646 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1647 };
1648 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC];
1649 unsigned long long first_skipped;
1650 unsigned int skipped_round = 0, round = 0;
1651
1652 trace_f2fs_gc_begin(sbi->sb, sync, background,
1653 get_pages(sbi, F2FS_DIRTY_NODES),
1654 get_pages(sbi, F2FS_DIRTY_DENTS),
1655 get_pages(sbi, F2FS_DIRTY_IMETA),
1656 free_sections(sbi),
1657 free_segments(sbi),
1658 reserved_segments(sbi),
1659 prefree_segments(sbi));
1660
1661 cpc.reason = __get_cp_reason(sbi);
1662 sbi->skipped_gc_rwsem = 0;
1663 first_skipped = last_skipped;
1664 gc_more:
1665 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1666 ret = -EINVAL;
1667 goto stop;
1668 }
1669 if (unlikely(f2fs_cp_error(sbi))) {
1670 ret = -EIO;
1671 goto stop;
1672 }
1673
1674 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1675 /*
1676 * For example, if there are many prefree_segments below given
1677 * threshold, we can make them free by checkpoint. Then, we
1678 * secure free segments which doesn't need fggc any more.
1679 */
1680 if (prefree_segments(sbi) &&
1681 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1682 ret = f2fs_write_checkpoint(sbi, &cpc);
1683 if (ret)
1684 goto stop;
1685 }
1686 if (has_not_enough_free_secs(sbi, 0, 0))
1687 gc_type = FG_GC;
1688 }
1689
1690 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1691 if (gc_type == BG_GC && !background) {
1692 ret = -EINVAL;
1693 goto stop;
1694 }
1695 ret = __get_victim(sbi, &segno, gc_type);
1696 if (ret)
1697 goto stop;
1698
1699 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
1700 if (gc_type == FG_GC &&
1701 seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1702 sec_freed++;
1703 total_freed += seg_freed;
1704
1705 if (gc_type == FG_GC) {
1706 if (sbi->skipped_atomic_files[FG_GC] > last_skipped ||
1707 sbi->skipped_gc_rwsem)
1708 skipped_round++;
1709 last_skipped = sbi->skipped_atomic_files[FG_GC];
1710 round++;
1711 }
1712
1713 if (gc_type == FG_GC && seg_freed)
1714 sbi->cur_victim_sec = NULL_SEGNO;
1715
1716 if (sync)
1717 goto stop;
1718
1719 if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1720 if (skipped_round <= MAX_SKIP_GC_COUNT ||
1721 skipped_round * 2 < round) {
1722 segno = NULL_SEGNO;
1723 goto gc_more;
1724 }
1725
1726 if (first_skipped < last_skipped &&
1727 (last_skipped - first_skipped) >
1728 sbi->skipped_gc_rwsem) {
1729 f2fs_drop_inmem_pages_all(sbi, true);
1730 segno = NULL_SEGNO;
1731 goto gc_more;
1732 }
1733 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1734 ret = f2fs_write_checkpoint(sbi, &cpc);
1735 }
1736 stop:
1737 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1738 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1739
1740 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1741 get_pages(sbi, F2FS_DIRTY_NODES),
1742 get_pages(sbi, F2FS_DIRTY_DENTS),
1743 get_pages(sbi, F2FS_DIRTY_IMETA),
1744 free_sections(sbi),
1745 free_segments(sbi),
1746 reserved_segments(sbi),
1747 prefree_segments(sbi));
1748
1749 up_write(&sbi->gc_lock);
1750
1751 put_gc_inode(&gc_list);
1752
1753 if (sync && !ret)
1754 ret = sec_freed ? 0 : -EAGAIN;
1755 return ret;
1756 }
1757
1758 int __init f2fs_create_garbage_collection_cache(void)
1759 {
1760 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1761 sizeof(struct victim_entry));
1762 if (!victim_entry_slab)
1763 return -ENOMEM;
1764 return 0;
1765 }
1766
1767 void f2fs_destroy_garbage_collection_cache(void)
1768 {
1769 kmem_cache_destroy(victim_entry_slab);
1770 }
1771
1772 static void init_atgc_management(struct f2fs_sb_info *sbi)
1773 {
1774 struct atgc_management *am = &sbi->am;
1775
1776 if (test_opt(sbi, ATGC) &&
1777 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1778 am->atgc_enabled = true;
1779
1780 am->root = RB_ROOT_CACHED;
1781 INIT_LIST_HEAD(&am->victim_list);
1782 am->victim_count = 0;
1783
1784 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1785 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1786 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1787 }
1788
1789 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1790 {
1791 DIRTY_I(sbi)->v_ops = &default_v_ops;
1792
1793 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1794
1795 /* give warm/cold data area from slower device */
1796 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1797 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1798 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1799
1800 init_atgc_management(sbi);
1801 }
1802
1803 static int free_segment_range(struct f2fs_sb_info *sbi,
1804 unsigned int secs, bool gc_only)
1805 {
1806 unsigned int segno, next_inuse, start, end;
1807 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1808 int gc_mode, gc_type;
1809 int err = 0;
1810 int type;
1811
1812 /* Force block allocation for GC */
1813 MAIN_SECS(sbi) -= secs;
1814 start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1815 end = MAIN_SEGS(sbi) - 1;
1816
1817 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1818 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1819 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1820 SIT_I(sbi)->last_victim[gc_mode] = 0;
1821
1822 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1823 if (sbi->next_victim_seg[gc_type] >= start)
1824 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1825 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1826
1827 /* Move out cursegs from the target range */
1828 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1829 f2fs_allocate_segment_for_resize(sbi, type, start, end);
1830
1831 /* do GC to move out valid blocks in the range */
1832 for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1833 struct gc_inode_list gc_list = {
1834 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1835 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1836 };
1837
1838 do_garbage_collect(sbi, segno, &gc_list, FG_GC);
1839 put_gc_inode(&gc_list);
1840
1841 if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1842 err = -EAGAIN;
1843 goto out;
1844 }
1845 if (fatal_signal_pending(current)) {
1846 err = -ERESTARTSYS;
1847 goto out;
1848 }
1849 }
1850 if (gc_only)
1851 goto out;
1852
1853 err = f2fs_write_checkpoint(sbi, &cpc);
1854 if (err)
1855 goto out;
1856
1857 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1858 if (next_inuse <= end) {
1859 f2fs_err(sbi, "segno %u should be free but still inuse!",
1860 next_inuse);
1861 f2fs_bug_on(sbi, 1);
1862 }
1863 out:
1864 MAIN_SECS(sbi) += secs;
1865 return err;
1866 }
1867
1868 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1869 {
1870 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
1871 int section_count;
1872 int segment_count;
1873 int segment_count_main;
1874 long long block_count;
1875 int segs = secs * sbi->segs_per_sec;
1876
1877 down_write(&sbi->sb_lock);
1878
1879 section_count = le32_to_cpu(raw_sb->section_count);
1880 segment_count = le32_to_cpu(raw_sb->segment_count);
1881 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
1882 block_count = le64_to_cpu(raw_sb->block_count);
1883
1884 raw_sb->section_count = cpu_to_le32(section_count + secs);
1885 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
1886 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
1887 raw_sb->block_count = cpu_to_le64(block_count +
1888 (long long)segs * sbi->blocks_per_seg);
1889 if (f2fs_is_multi_device(sbi)) {
1890 int last_dev = sbi->s_ndevs - 1;
1891 int dev_segs =
1892 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
1893
1894 raw_sb->devs[last_dev].total_segments =
1895 cpu_to_le32(dev_segs + segs);
1896 }
1897
1898 up_write(&sbi->sb_lock);
1899 }
1900
1901 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
1902 {
1903 int segs = secs * sbi->segs_per_sec;
1904 long long blks = (long long)segs * sbi->blocks_per_seg;
1905 long long user_block_count =
1906 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
1907
1908 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
1909 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
1910 MAIN_SECS(sbi) += secs;
1911 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
1912 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
1913 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
1914
1915 if (f2fs_is_multi_device(sbi)) {
1916 int last_dev = sbi->s_ndevs - 1;
1917
1918 FDEV(last_dev).total_segments =
1919 (int)FDEV(last_dev).total_segments + segs;
1920 FDEV(last_dev).end_blk =
1921 (long long)FDEV(last_dev).end_blk + blks;
1922 #ifdef CONFIG_BLK_DEV_ZONED
1923 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
1924 (int)(blks >> sbi->log_blocks_per_blkz);
1925 #endif
1926 }
1927 }
1928
1929 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
1930 {
1931 __u64 old_block_count, shrunk_blocks;
1932 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1933 unsigned int secs;
1934 int err = 0;
1935 __u32 rem;
1936
1937 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
1938 if (block_count > old_block_count)
1939 return -EINVAL;
1940
1941 if (f2fs_is_multi_device(sbi)) {
1942 int last_dev = sbi->s_ndevs - 1;
1943 __u64 last_segs = FDEV(last_dev).total_segments;
1944
1945 if (block_count + last_segs * sbi->blocks_per_seg <=
1946 old_block_count)
1947 return -EINVAL;
1948 }
1949
1950 /* new fs size should align to section size */
1951 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
1952 if (rem)
1953 return -EINVAL;
1954
1955 if (block_count == old_block_count)
1956 return 0;
1957
1958 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1959 f2fs_err(sbi, "Should run fsck to repair first.");
1960 return -EFSCORRUPTED;
1961 }
1962
1963 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1964 f2fs_err(sbi, "Checkpoint should be enabled.");
1965 return -EINVAL;
1966 }
1967
1968 shrunk_blocks = old_block_count - block_count;
1969 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
1970
1971 /* stop other GC */
1972 if (!down_write_trylock(&sbi->gc_lock))
1973 return -EAGAIN;
1974
1975 /* stop CP to protect MAIN_SEC in free_segment_range */
1976 f2fs_lock_op(sbi);
1977 err = free_segment_range(sbi, secs, true);
1978 f2fs_unlock_op(sbi);
1979 up_write(&sbi->gc_lock);
1980 if (err)
1981 return err;
1982
1983 set_sbi_flag(sbi, SBI_IS_RESIZEFS);
1984
1985 freeze_super(sbi->sb);
1986 down_write(&sbi->gc_lock);
1987 down_write(&sbi->cp_global_sem);
1988
1989 spin_lock(&sbi->stat_lock);
1990 if (shrunk_blocks + valid_user_blocks(sbi) +
1991 sbi->current_reserved_blocks + sbi->unusable_block_count +
1992 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
1993 err = -ENOSPC;
1994 else
1995 sbi->user_block_count -= shrunk_blocks;
1996 spin_unlock(&sbi->stat_lock);
1997 if (err)
1998 goto out_err;
1999
2000 err = free_segment_range(sbi, secs, false);
2001 if (err)
2002 goto recover_out;
2003
2004 update_sb_metadata(sbi, -secs);
2005
2006 err = f2fs_commit_super(sbi, false);
2007 if (err) {
2008 update_sb_metadata(sbi, secs);
2009 goto recover_out;
2010 }
2011
2012 update_fs_metadata(sbi, -secs);
2013 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2014 set_sbi_flag(sbi, SBI_IS_DIRTY);
2015
2016 err = f2fs_write_checkpoint(sbi, &cpc);
2017 if (err) {
2018 update_fs_metadata(sbi, secs);
2019 update_sb_metadata(sbi, secs);
2020 f2fs_commit_super(sbi, false);
2021 }
2022 recover_out:
2023 if (err) {
2024 set_sbi_flag(sbi, SBI_NEED_FSCK);
2025 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2026
2027 spin_lock(&sbi->stat_lock);
2028 sbi->user_block_count += shrunk_blocks;
2029 spin_unlock(&sbi->stat_lock);
2030 }
2031 out_err:
2032 up_write(&sbi->cp_global_sem);
2033 up_write(&sbi->gc_lock);
2034 thaw_super(sbi->sb);
2035 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2036 return err;
2037 }