]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/segment.c
Merge tag 'hwlock-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38 shift = 56;
39 #endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45 }
46
47 /*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 int num = 0;
54
55 #if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60 #endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84 }
85
86 /*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97 {
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119 pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127 found:
128 return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133 {
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156 pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164 found:
165 return result - size + __reverse_ffz(tmp);
166 }
167
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173
174 if (f2fs_lfs_mode(sbi))
175 return false;
176 if (sbi->gc_mode == GC_URGENT_HIGH)
177 return true;
178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 return true;
180
181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187 struct inmem_pages *new;
188
189 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
190
191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192
193 /* add atomic page indices to the list */
194 new->page = page;
195 INIT_LIST_HEAD(&new->list);
196
197 /* increase reference count with clean state */
198 get_page(page);
199 mutex_lock(&F2FS_I(inode)->inmem_lock);
200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 mutex_unlock(&F2FS_I(inode)->inmem_lock);
203
204 trace_f2fs_register_inmem_page(page, INMEM);
205 }
206
207 static int __revoke_inmem_pages(struct inode *inode,
208 struct list_head *head, bool drop, bool recover,
209 bool trylock)
210 {
211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 struct inmem_pages *cur, *tmp;
213 int err = 0;
214
215 list_for_each_entry_safe(cur, tmp, head, list) {
216 struct page *page = cur->page;
217
218 if (drop)
219 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220
221 if (trylock) {
222 /*
223 * to avoid deadlock in between page lock and
224 * inmem_lock.
225 */
226 if (!trylock_page(page))
227 continue;
228 } else {
229 lock_page(page);
230 }
231
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234 if (recover) {
235 struct dnode_of_data dn;
236 struct node_info ni;
237
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
242 LOOKUP_NODE);
243 if (err) {
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC,
246 DEFAULT_IO_TIMEOUT);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253
254 err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 if (err) {
256 f2fs_put_dnode(&dn);
257 return err;
258 }
259
260 if (cur->old_addr == NEW_ADDR) {
261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 } else
264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 cur->old_addr, ni.version, true, true);
266 f2fs_put_dnode(&dn);
267 }
268 next:
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop || recover) {
271 ClearPageUptodate(page);
272 clear_cold_data(page);
273 }
274 f2fs_clear_page_private(page);
275 f2fs_put_page(page, 1);
276
277 list_del(&cur->list);
278 kmem_cache_free(inmem_entry_slab, cur);
279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280 }
281 return err;
282 }
283
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285 {
286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287 struct inode *inode;
288 struct f2fs_inode_info *fi;
289 unsigned int count = sbi->atomic_files;
290 unsigned int looped = 0;
291 next:
292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
293 if (list_empty(head)) {
294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295 return;
296 }
297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
298 inode = igrab(&fi->vfs_inode);
299 if (inode)
300 list_move_tail(&fi->inmem_ilist, head);
301 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
302
303 if (inode) {
304 if (gc_failure) {
305 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
306 goto skip;
307 }
308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
309 f2fs_drop_inmem_pages(inode);
310 skip:
311 iput(inode);
312 }
313 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
314 cond_resched();
315 if (gc_failure) {
316 if (++looped >= count)
317 return;
318 }
319 goto next;
320 }
321
322 void f2fs_drop_inmem_pages(struct inode *inode)
323 {
324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
325 struct f2fs_inode_info *fi = F2FS_I(inode);
326
327 while (!list_empty(&fi->inmem_pages)) {
328 mutex_lock(&fi->inmem_lock);
329 __revoke_inmem_pages(inode, &fi->inmem_pages,
330 true, false, true);
331 mutex_unlock(&fi->inmem_lock);
332 }
333
334 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
335
336 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
337 if (!list_empty(&fi->inmem_ilist))
338 list_del_init(&fi->inmem_ilist);
339 if (f2fs_is_atomic_file(inode)) {
340 clear_inode_flag(inode, FI_ATOMIC_FILE);
341 sbi->atomic_files--;
342 }
343 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
344 }
345
346 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
347 {
348 struct f2fs_inode_info *fi = F2FS_I(inode);
349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 struct list_head *head = &fi->inmem_pages;
351 struct inmem_pages *cur = NULL;
352
353 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
354
355 mutex_lock(&fi->inmem_lock);
356 list_for_each_entry(cur, head, list) {
357 if (cur->page == page)
358 break;
359 }
360
361 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
362 list_del(&cur->list);
363 mutex_unlock(&fi->inmem_lock);
364
365 dec_page_count(sbi, F2FS_INMEM_PAGES);
366 kmem_cache_free(inmem_entry_slab, cur);
367
368 ClearPageUptodate(page);
369 f2fs_clear_page_private(page);
370 f2fs_put_page(page, 0);
371
372 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
373 }
374
375 static int __f2fs_commit_inmem_pages(struct inode *inode)
376 {
377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
378 struct f2fs_inode_info *fi = F2FS_I(inode);
379 struct inmem_pages *cur, *tmp;
380 struct f2fs_io_info fio = {
381 .sbi = sbi,
382 .ino = inode->i_ino,
383 .type = DATA,
384 .op = REQ_OP_WRITE,
385 .op_flags = REQ_SYNC | REQ_PRIO,
386 .io_type = FS_DATA_IO,
387 };
388 struct list_head revoke_list;
389 bool submit_bio = false;
390 int err = 0;
391
392 INIT_LIST_HEAD(&revoke_list);
393
394 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
395 struct page *page = cur->page;
396
397 lock_page(page);
398 if (page->mapping == inode->i_mapping) {
399 trace_f2fs_commit_inmem_page(page, INMEM);
400
401 f2fs_wait_on_page_writeback(page, DATA, true, true);
402
403 set_page_dirty(page);
404 if (clear_page_dirty_for_io(page)) {
405 inode_dec_dirty_pages(inode);
406 f2fs_remove_dirty_inode(inode);
407 }
408 retry:
409 fio.page = page;
410 fio.old_blkaddr = NULL_ADDR;
411 fio.encrypted_page = NULL;
412 fio.need_lock = LOCK_DONE;
413 err = f2fs_do_write_data_page(&fio);
414 if (err) {
415 if (err == -ENOMEM) {
416 congestion_wait(BLK_RW_ASYNC,
417 DEFAULT_IO_TIMEOUT);
418 cond_resched();
419 goto retry;
420 }
421 unlock_page(page);
422 break;
423 }
424 /* record old blkaddr for revoking */
425 cur->old_addr = fio.old_blkaddr;
426 submit_bio = true;
427 }
428 unlock_page(page);
429 list_move_tail(&cur->list, &revoke_list);
430 }
431
432 if (submit_bio)
433 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
434
435 if (err) {
436 /*
437 * try to revoke all committed pages, but still we could fail
438 * due to no memory or other reason, if that happened, EAGAIN
439 * will be returned, which means in such case, transaction is
440 * already not integrity, caller should use journal to do the
441 * recovery or rewrite & commit last transaction. For other
442 * error number, revoking was done by filesystem itself.
443 */
444 err = __revoke_inmem_pages(inode, &revoke_list,
445 false, true, false);
446
447 /* drop all uncommitted pages */
448 __revoke_inmem_pages(inode, &fi->inmem_pages,
449 true, false, false);
450 } else {
451 __revoke_inmem_pages(inode, &revoke_list,
452 false, false, false);
453 }
454
455 return err;
456 }
457
458 int f2fs_commit_inmem_pages(struct inode *inode)
459 {
460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
461 struct f2fs_inode_info *fi = F2FS_I(inode);
462 int err;
463
464 f2fs_balance_fs(sbi, true);
465
466 down_write(&fi->i_gc_rwsem[WRITE]);
467
468 f2fs_lock_op(sbi);
469 set_inode_flag(inode, FI_ATOMIC_COMMIT);
470
471 mutex_lock(&fi->inmem_lock);
472 err = __f2fs_commit_inmem_pages(inode);
473 mutex_unlock(&fi->inmem_lock);
474
475 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
476
477 f2fs_unlock_op(sbi);
478 up_write(&fi->i_gc_rwsem[WRITE]);
479
480 return err;
481 }
482
483 /*
484 * This function balances dirty node and dentry pages.
485 * In addition, it controls garbage collection.
486 */
487 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
488 {
489 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
490 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
491 f2fs_stop_checkpoint(sbi, false);
492 }
493
494 /* balance_fs_bg is able to be pending */
495 if (need && excess_cached_nats(sbi))
496 f2fs_balance_fs_bg(sbi, false);
497
498 if (!f2fs_is_checkpoint_ready(sbi))
499 return;
500
501 /*
502 * We should do GC or end up with checkpoint, if there are so many dirty
503 * dir/node pages without enough free segments.
504 */
505 if (has_not_enough_free_secs(sbi, 0, 0)) {
506 down_write(&sbi->gc_lock);
507 f2fs_gc(sbi, false, false, NULL_SEGNO);
508 }
509 }
510
511 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
512 {
513 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
514 return;
515
516 /* try to shrink extent cache when there is no enough memory */
517 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
518 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
519
520 /* check the # of cached NAT entries */
521 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
522 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
523
524 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
525 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
526 else
527 f2fs_build_free_nids(sbi, false, false);
528
529 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
530 excess_prefree_segs(sbi))
531 goto do_sync;
532
533 /* there is background inflight IO or foreground operation recently */
534 if (is_inflight_io(sbi, REQ_TIME) ||
535 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
536 return;
537
538 /* exceed periodical checkpoint timeout threshold */
539 if (f2fs_time_over(sbi, CP_TIME))
540 goto do_sync;
541
542 /* checkpoint is the only way to shrink partial cached entries */
543 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
544 f2fs_available_free_memory(sbi, INO_ENTRIES))
545 return;
546
547 do_sync:
548 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
549 struct blk_plug plug;
550
551 mutex_lock(&sbi->flush_lock);
552
553 blk_start_plug(&plug);
554 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
555 blk_finish_plug(&plug);
556
557 mutex_unlock(&sbi->flush_lock);
558 }
559 f2fs_sync_fs(sbi->sb, true);
560 stat_inc_bg_cp_count(sbi->stat_info);
561 }
562
563 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
564 struct block_device *bdev)
565 {
566 int ret = blkdev_issue_flush(bdev);
567
568 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
569 test_opt(sbi, FLUSH_MERGE), ret);
570 return ret;
571 }
572
573 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
574 {
575 int ret = 0;
576 int i;
577
578 if (!f2fs_is_multi_device(sbi))
579 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
580
581 for (i = 0; i < sbi->s_ndevs; i++) {
582 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
583 continue;
584 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
585 if (ret)
586 break;
587 }
588 return ret;
589 }
590
591 static int issue_flush_thread(void *data)
592 {
593 struct f2fs_sb_info *sbi = data;
594 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
595 wait_queue_head_t *q = &fcc->flush_wait_queue;
596 repeat:
597 if (kthread_should_stop())
598 return 0;
599
600 if (!llist_empty(&fcc->issue_list)) {
601 struct flush_cmd *cmd, *next;
602 int ret;
603
604 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
605 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
606
607 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
608
609 ret = submit_flush_wait(sbi, cmd->ino);
610 atomic_inc(&fcc->issued_flush);
611
612 llist_for_each_entry_safe(cmd, next,
613 fcc->dispatch_list, llnode) {
614 cmd->ret = ret;
615 complete(&cmd->wait);
616 }
617 fcc->dispatch_list = NULL;
618 }
619
620 wait_event_interruptible(*q,
621 kthread_should_stop() || !llist_empty(&fcc->issue_list));
622 goto repeat;
623 }
624
625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
626 {
627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
628 struct flush_cmd cmd;
629 int ret;
630
631 if (test_opt(sbi, NOBARRIER))
632 return 0;
633
634 if (!test_opt(sbi, FLUSH_MERGE)) {
635 atomic_inc(&fcc->queued_flush);
636 ret = submit_flush_wait(sbi, ino);
637 atomic_dec(&fcc->queued_flush);
638 atomic_inc(&fcc->issued_flush);
639 return ret;
640 }
641
642 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
643 f2fs_is_multi_device(sbi)) {
644 ret = submit_flush_wait(sbi, ino);
645 atomic_dec(&fcc->queued_flush);
646
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 cmd.ino = ino;
652 init_completion(&cmd.wait);
653
654 llist_add(&cmd.llnode, &fcc->issue_list);
655
656 /* update issue_list before we wake up issue_flush thread */
657 smp_mb();
658
659 if (waitqueue_active(&fcc->flush_wait_queue))
660 wake_up(&fcc->flush_wait_queue);
661
662 if (fcc->f2fs_issue_flush) {
663 wait_for_completion(&cmd.wait);
664 atomic_dec(&fcc->queued_flush);
665 } else {
666 struct llist_node *list;
667
668 list = llist_del_all(&fcc->issue_list);
669 if (!list) {
670 wait_for_completion(&cmd.wait);
671 atomic_dec(&fcc->queued_flush);
672 } else {
673 struct flush_cmd *tmp, *next;
674
675 ret = submit_flush_wait(sbi, ino);
676
677 llist_for_each_entry_safe(tmp, next, list, llnode) {
678 if (tmp == &cmd) {
679 cmd.ret = ret;
680 atomic_dec(&fcc->queued_flush);
681 continue;
682 }
683 tmp->ret = ret;
684 complete(&tmp->wait);
685 }
686 }
687 }
688
689 return cmd.ret;
690 }
691
692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
693 {
694 dev_t dev = sbi->sb->s_bdev->bd_dev;
695 struct flush_cmd_control *fcc;
696 int err = 0;
697
698 if (SM_I(sbi)->fcc_info) {
699 fcc = SM_I(sbi)->fcc_info;
700 if (fcc->f2fs_issue_flush)
701 return err;
702 goto init_thread;
703 }
704
705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
706 if (!fcc)
707 return -ENOMEM;
708 atomic_set(&fcc->issued_flush, 0);
709 atomic_set(&fcc->queued_flush, 0);
710 init_waitqueue_head(&fcc->flush_wait_queue);
711 init_llist_head(&fcc->issue_list);
712 SM_I(sbi)->fcc_info = fcc;
713 if (!test_opt(sbi, FLUSH_MERGE))
714 return err;
715
716 init_thread:
717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
719 if (IS_ERR(fcc->f2fs_issue_flush)) {
720 err = PTR_ERR(fcc->f2fs_issue_flush);
721 kfree(fcc);
722 SM_I(sbi)->fcc_info = NULL;
723 return err;
724 }
725
726 return err;
727 }
728
729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
730 {
731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
732
733 if (fcc && fcc->f2fs_issue_flush) {
734 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
735
736 fcc->f2fs_issue_flush = NULL;
737 kthread_stop(flush_thread);
738 }
739 if (free) {
740 kfree(fcc);
741 SM_I(sbi)->fcc_info = NULL;
742 }
743 }
744
745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
746 {
747 int ret = 0, i;
748
749 if (!f2fs_is_multi_device(sbi))
750 return 0;
751
752 if (test_opt(sbi, NOBARRIER))
753 return 0;
754
755 for (i = 1; i < sbi->s_ndevs; i++) {
756 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
757 continue;
758 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
759 if (ret)
760 break;
761
762 spin_lock(&sbi->dev_lock);
763 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764 spin_unlock(&sbi->dev_lock);
765 }
766
767 return ret;
768 }
769
770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 enum dirty_type dirty_type)
772 {
773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774
775 /* need not be added */
776 if (IS_CURSEG(sbi, segno))
777 return;
778
779 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780 dirty_i->nr_dirty[dirty_type]++;
781
782 if (dirty_type == DIRTY) {
783 struct seg_entry *sentry = get_seg_entry(sbi, segno);
784 enum dirty_type t = sentry->type;
785
786 if (unlikely(t >= DIRTY)) {
787 f2fs_bug_on(sbi, 1);
788 return;
789 }
790 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791 dirty_i->nr_dirty[t]++;
792
793 if (__is_large_section(sbi)) {
794 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795 block_t valid_blocks =
796 get_valid_blocks(sbi, segno, true);
797
798 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
799 valid_blocks == BLKS_PER_SEC(sbi)));
800
801 if (!IS_CURSEC(sbi, secno))
802 set_bit(secno, dirty_i->dirty_secmap);
803 }
804 }
805 }
806
807 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
808 enum dirty_type dirty_type)
809 {
810 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
811 block_t valid_blocks;
812
813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
814 dirty_i->nr_dirty[dirty_type]--;
815
816 if (dirty_type == DIRTY) {
817 struct seg_entry *sentry = get_seg_entry(sbi, segno);
818 enum dirty_type t = sentry->type;
819
820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
821 dirty_i->nr_dirty[t]--;
822
823 valid_blocks = get_valid_blocks(sbi, segno, true);
824 if (valid_blocks == 0) {
825 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
826 dirty_i->victim_secmap);
827 #ifdef CONFIG_F2FS_CHECK_FS
828 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
829 #endif
830 }
831 if (__is_large_section(sbi)) {
832 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
833
834 if (!valid_blocks ||
835 valid_blocks == BLKS_PER_SEC(sbi)) {
836 clear_bit(secno, dirty_i->dirty_secmap);
837 return;
838 }
839
840 if (!IS_CURSEC(sbi, secno))
841 set_bit(secno, dirty_i->dirty_secmap);
842 }
843 }
844 }
845
846 /*
847 * Should not occur error such as -ENOMEM.
848 * Adding dirty entry into seglist is not critical operation.
849 * If a given segment is one of current working segments, it won't be added.
850 */
851 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
852 {
853 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854 unsigned short valid_blocks, ckpt_valid_blocks;
855 unsigned int usable_blocks;
856
857 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
858 return;
859
860 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
861 mutex_lock(&dirty_i->seglist_lock);
862
863 valid_blocks = get_valid_blocks(sbi, segno, false);
864 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
865
866 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
867 ckpt_valid_blocks == usable_blocks)) {
868 __locate_dirty_segment(sbi, segno, PRE);
869 __remove_dirty_segment(sbi, segno, DIRTY);
870 } else if (valid_blocks < usable_blocks) {
871 __locate_dirty_segment(sbi, segno, DIRTY);
872 } else {
873 /* Recovery routine with SSR needs this */
874 __remove_dirty_segment(sbi, segno, DIRTY);
875 }
876
877 mutex_unlock(&dirty_i->seglist_lock);
878 }
879
880 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
881 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
882 {
883 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
884 unsigned int segno;
885
886 mutex_lock(&dirty_i->seglist_lock);
887 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
888 if (get_valid_blocks(sbi, segno, false))
889 continue;
890 if (IS_CURSEG(sbi, segno))
891 continue;
892 __locate_dirty_segment(sbi, segno, PRE);
893 __remove_dirty_segment(sbi, segno, DIRTY);
894 }
895 mutex_unlock(&dirty_i->seglist_lock);
896 }
897
898 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
899 {
900 int ovp_hole_segs =
901 (overprovision_segments(sbi) - reserved_segments(sbi));
902 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
903 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
904 block_t holes[2] = {0, 0}; /* DATA and NODE */
905 block_t unusable;
906 struct seg_entry *se;
907 unsigned int segno;
908
909 mutex_lock(&dirty_i->seglist_lock);
910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 se = get_seg_entry(sbi, segno);
912 if (IS_NODESEG(se->type))
913 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
914 se->valid_blocks;
915 else
916 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
917 se->valid_blocks;
918 }
919 mutex_unlock(&dirty_i->seglist_lock);
920
921 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
922 if (unusable > ovp_holes)
923 return unusable - ovp_holes;
924 return 0;
925 }
926
927 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
928 {
929 int ovp_hole_segs =
930 (overprovision_segments(sbi) - reserved_segments(sbi));
931 if (unusable > F2FS_OPTION(sbi).unusable_cap)
932 return -EAGAIN;
933 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
934 dirty_segments(sbi) > ovp_hole_segs)
935 return -EAGAIN;
936 return 0;
937 }
938
939 /* This is only used by SBI_CP_DISABLED */
940 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
941 {
942 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
943 unsigned int segno = 0;
944
945 mutex_lock(&dirty_i->seglist_lock);
946 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
947 if (get_valid_blocks(sbi, segno, false))
948 continue;
949 if (get_ckpt_valid_blocks(sbi, segno))
950 continue;
951 mutex_unlock(&dirty_i->seglist_lock);
952 return segno;
953 }
954 mutex_unlock(&dirty_i->seglist_lock);
955 return NULL_SEGNO;
956 }
957
958 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
959 struct block_device *bdev, block_t lstart,
960 block_t start, block_t len)
961 {
962 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
963 struct list_head *pend_list;
964 struct discard_cmd *dc;
965
966 f2fs_bug_on(sbi, !len);
967
968 pend_list = &dcc->pend_list[plist_idx(len)];
969
970 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
971 INIT_LIST_HEAD(&dc->list);
972 dc->bdev = bdev;
973 dc->lstart = lstart;
974 dc->start = start;
975 dc->len = len;
976 dc->ref = 0;
977 dc->state = D_PREP;
978 dc->queued = 0;
979 dc->error = 0;
980 init_completion(&dc->wait);
981 list_add_tail(&dc->list, pend_list);
982 spin_lock_init(&dc->lock);
983 dc->bio_ref = 0;
984 atomic_inc(&dcc->discard_cmd_cnt);
985 dcc->undiscard_blks += len;
986
987 return dc;
988 }
989
990 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
991 struct block_device *bdev, block_t lstart,
992 block_t start, block_t len,
993 struct rb_node *parent, struct rb_node **p,
994 bool leftmost)
995 {
996 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997 struct discard_cmd *dc;
998
999 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1000
1001 rb_link_node(&dc->rb_node, parent, p);
1002 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1003
1004 return dc;
1005 }
1006
1007 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1008 struct discard_cmd *dc)
1009 {
1010 if (dc->state == D_DONE)
1011 atomic_sub(dc->queued, &dcc->queued_discard);
1012
1013 list_del(&dc->list);
1014 rb_erase_cached(&dc->rb_node, &dcc->root);
1015 dcc->undiscard_blks -= dc->len;
1016
1017 kmem_cache_free(discard_cmd_slab, dc);
1018
1019 atomic_dec(&dcc->discard_cmd_cnt);
1020 }
1021
1022 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1023 struct discard_cmd *dc)
1024 {
1025 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1026 unsigned long flags;
1027
1028 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1029
1030 spin_lock_irqsave(&dc->lock, flags);
1031 if (dc->bio_ref) {
1032 spin_unlock_irqrestore(&dc->lock, flags);
1033 return;
1034 }
1035 spin_unlock_irqrestore(&dc->lock, flags);
1036
1037 f2fs_bug_on(sbi, dc->ref);
1038
1039 if (dc->error == -EOPNOTSUPP)
1040 dc->error = 0;
1041
1042 if (dc->error)
1043 printk_ratelimited(
1044 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1045 KERN_INFO, sbi->sb->s_id,
1046 dc->lstart, dc->start, dc->len, dc->error);
1047 __detach_discard_cmd(dcc, dc);
1048 }
1049
1050 static void f2fs_submit_discard_endio(struct bio *bio)
1051 {
1052 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1053 unsigned long flags;
1054
1055 spin_lock_irqsave(&dc->lock, flags);
1056 if (!dc->error)
1057 dc->error = blk_status_to_errno(bio->bi_status);
1058 dc->bio_ref--;
1059 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1060 dc->state = D_DONE;
1061 complete_all(&dc->wait);
1062 }
1063 spin_unlock_irqrestore(&dc->lock, flags);
1064 bio_put(bio);
1065 }
1066
1067 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1068 block_t start, block_t end)
1069 {
1070 #ifdef CONFIG_F2FS_CHECK_FS
1071 struct seg_entry *sentry;
1072 unsigned int segno;
1073 block_t blk = start;
1074 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1075 unsigned long *map;
1076
1077 while (blk < end) {
1078 segno = GET_SEGNO(sbi, blk);
1079 sentry = get_seg_entry(sbi, segno);
1080 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1081
1082 if (end < START_BLOCK(sbi, segno + 1))
1083 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1084 else
1085 size = max_blocks;
1086 map = (unsigned long *)(sentry->cur_valid_map);
1087 offset = __find_rev_next_bit(map, size, offset);
1088 f2fs_bug_on(sbi, offset != size);
1089 blk = START_BLOCK(sbi, segno + 1);
1090 }
1091 #endif
1092 }
1093
1094 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1095 struct discard_policy *dpolicy,
1096 int discard_type, unsigned int granularity)
1097 {
1098 /* common policy */
1099 dpolicy->type = discard_type;
1100 dpolicy->sync = true;
1101 dpolicy->ordered = false;
1102 dpolicy->granularity = granularity;
1103
1104 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1105 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1106 dpolicy->timeout = false;
1107
1108 if (discard_type == DPOLICY_BG) {
1109 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1110 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1111 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1112 dpolicy->io_aware = true;
1113 dpolicy->sync = false;
1114 dpolicy->ordered = true;
1115 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1116 dpolicy->granularity = 1;
1117 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1118 }
1119 } else if (discard_type == DPOLICY_FORCE) {
1120 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1122 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1123 dpolicy->io_aware = false;
1124 } else if (discard_type == DPOLICY_FSTRIM) {
1125 dpolicy->io_aware = false;
1126 } else if (discard_type == DPOLICY_UMOUNT) {
1127 dpolicy->io_aware = false;
1128 /* we need to issue all to keep CP_TRIMMED_FLAG */
1129 dpolicy->granularity = 1;
1130 dpolicy->timeout = true;
1131 }
1132 }
1133
1134 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1135 struct block_device *bdev, block_t lstart,
1136 block_t start, block_t len);
1137 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1138 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1139 struct discard_policy *dpolicy,
1140 struct discard_cmd *dc,
1141 unsigned int *issued)
1142 {
1143 struct block_device *bdev = dc->bdev;
1144 struct request_queue *q = bdev_get_queue(bdev);
1145 unsigned int max_discard_blocks =
1146 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1149 &(dcc->fstrim_list) : &(dcc->wait_list);
1150 int flag = dpolicy->sync ? REQ_SYNC : 0;
1151 block_t lstart, start, len, total_len;
1152 int err = 0;
1153
1154 if (dc->state != D_PREP)
1155 return 0;
1156
1157 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1158 return 0;
1159
1160 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1161
1162 lstart = dc->lstart;
1163 start = dc->start;
1164 len = dc->len;
1165 total_len = len;
1166
1167 dc->len = 0;
1168
1169 while (total_len && *issued < dpolicy->max_requests && !err) {
1170 struct bio *bio = NULL;
1171 unsigned long flags;
1172 bool last = true;
1173
1174 if (len > max_discard_blocks) {
1175 len = max_discard_blocks;
1176 last = false;
1177 }
1178
1179 (*issued)++;
1180 if (*issued == dpolicy->max_requests)
1181 last = true;
1182
1183 dc->len += len;
1184
1185 if (time_to_inject(sbi, FAULT_DISCARD)) {
1186 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1187 err = -EIO;
1188 goto submit;
1189 }
1190 err = __blkdev_issue_discard(bdev,
1191 SECTOR_FROM_BLOCK(start),
1192 SECTOR_FROM_BLOCK(len),
1193 GFP_NOFS, 0, &bio);
1194 submit:
1195 if (err) {
1196 spin_lock_irqsave(&dc->lock, flags);
1197 if (dc->state == D_PARTIAL)
1198 dc->state = D_SUBMIT;
1199 spin_unlock_irqrestore(&dc->lock, flags);
1200
1201 break;
1202 }
1203
1204 f2fs_bug_on(sbi, !bio);
1205
1206 /*
1207 * should keep before submission to avoid D_DONE
1208 * right away
1209 */
1210 spin_lock_irqsave(&dc->lock, flags);
1211 if (last)
1212 dc->state = D_SUBMIT;
1213 else
1214 dc->state = D_PARTIAL;
1215 dc->bio_ref++;
1216 spin_unlock_irqrestore(&dc->lock, flags);
1217
1218 atomic_inc(&dcc->queued_discard);
1219 dc->queued++;
1220 list_move_tail(&dc->list, wait_list);
1221
1222 /* sanity check on discard range */
1223 __check_sit_bitmap(sbi, lstart, lstart + len);
1224
1225 bio->bi_private = dc;
1226 bio->bi_end_io = f2fs_submit_discard_endio;
1227 bio->bi_opf |= flag;
1228 submit_bio(bio);
1229
1230 atomic_inc(&dcc->issued_discard);
1231
1232 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1233
1234 lstart += len;
1235 start += len;
1236 total_len -= len;
1237 len = total_len;
1238 }
1239
1240 if (!err && len) {
1241 dcc->undiscard_blks -= len;
1242 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1243 }
1244 return err;
1245 }
1246
1247 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1248 struct block_device *bdev, block_t lstart,
1249 block_t start, block_t len,
1250 struct rb_node **insert_p,
1251 struct rb_node *insert_parent)
1252 {
1253 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1254 struct rb_node **p;
1255 struct rb_node *parent = NULL;
1256 bool leftmost = true;
1257
1258 if (insert_p && insert_parent) {
1259 parent = insert_parent;
1260 p = insert_p;
1261 goto do_insert;
1262 }
1263
1264 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1265 lstart, &leftmost);
1266 do_insert:
1267 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1268 p, leftmost);
1269 }
1270
1271 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1272 struct discard_cmd *dc)
1273 {
1274 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1275 }
1276
1277 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1278 struct discard_cmd *dc, block_t blkaddr)
1279 {
1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 struct discard_info di = dc->di;
1282 bool modified = false;
1283
1284 if (dc->state == D_DONE || dc->len == 1) {
1285 __remove_discard_cmd(sbi, dc);
1286 return;
1287 }
1288
1289 dcc->undiscard_blks -= di.len;
1290
1291 if (blkaddr > di.lstart) {
1292 dc->len = blkaddr - dc->lstart;
1293 dcc->undiscard_blks += dc->len;
1294 __relocate_discard_cmd(dcc, dc);
1295 modified = true;
1296 }
1297
1298 if (blkaddr < di.lstart + di.len - 1) {
1299 if (modified) {
1300 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1301 di.start + blkaddr + 1 - di.lstart,
1302 di.lstart + di.len - 1 - blkaddr,
1303 NULL, NULL);
1304 } else {
1305 dc->lstart++;
1306 dc->len--;
1307 dc->start++;
1308 dcc->undiscard_blks += dc->len;
1309 __relocate_discard_cmd(dcc, dc);
1310 }
1311 }
1312 }
1313
1314 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1315 struct block_device *bdev, block_t lstart,
1316 block_t start, block_t len)
1317 {
1318 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1319 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1320 struct discard_cmd *dc;
1321 struct discard_info di = {0};
1322 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1323 struct request_queue *q = bdev_get_queue(bdev);
1324 unsigned int max_discard_blocks =
1325 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1326 block_t end = lstart + len;
1327
1328 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1329 NULL, lstart,
1330 (struct rb_entry **)&prev_dc,
1331 (struct rb_entry **)&next_dc,
1332 &insert_p, &insert_parent, true, NULL);
1333 if (dc)
1334 prev_dc = dc;
1335
1336 if (!prev_dc) {
1337 di.lstart = lstart;
1338 di.len = next_dc ? next_dc->lstart - lstart : len;
1339 di.len = min(di.len, len);
1340 di.start = start;
1341 }
1342
1343 while (1) {
1344 struct rb_node *node;
1345 bool merged = false;
1346 struct discard_cmd *tdc = NULL;
1347
1348 if (prev_dc) {
1349 di.lstart = prev_dc->lstart + prev_dc->len;
1350 if (di.lstart < lstart)
1351 di.lstart = lstart;
1352 if (di.lstart >= end)
1353 break;
1354
1355 if (!next_dc || next_dc->lstart > end)
1356 di.len = end - di.lstart;
1357 else
1358 di.len = next_dc->lstart - di.lstart;
1359 di.start = start + di.lstart - lstart;
1360 }
1361
1362 if (!di.len)
1363 goto next;
1364
1365 if (prev_dc && prev_dc->state == D_PREP &&
1366 prev_dc->bdev == bdev &&
1367 __is_discard_back_mergeable(&di, &prev_dc->di,
1368 max_discard_blocks)) {
1369 prev_dc->di.len += di.len;
1370 dcc->undiscard_blks += di.len;
1371 __relocate_discard_cmd(dcc, prev_dc);
1372 di = prev_dc->di;
1373 tdc = prev_dc;
1374 merged = true;
1375 }
1376
1377 if (next_dc && next_dc->state == D_PREP &&
1378 next_dc->bdev == bdev &&
1379 __is_discard_front_mergeable(&di, &next_dc->di,
1380 max_discard_blocks)) {
1381 next_dc->di.lstart = di.lstart;
1382 next_dc->di.len += di.len;
1383 next_dc->di.start = di.start;
1384 dcc->undiscard_blks += di.len;
1385 __relocate_discard_cmd(dcc, next_dc);
1386 if (tdc)
1387 __remove_discard_cmd(sbi, tdc);
1388 merged = true;
1389 }
1390
1391 if (!merged) {
1392 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1393 di.len, NULL, NULL);
1394 }
1395 next:
1396 prev_dc = next_dc;
1397 if (!prev_dc)
1398 break;
1399
1400 node = rb_next(&prev_dc->rb_node);
1401 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1402 }
1403 }
1404
1405 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1406 struct block_device *bdev, block_t blkstart, block_t blklen)
1407 {
1408 block_t lblkstart = blkstart;
1409
1410 if (!f2fs_bdev_support_discard(bdev))
1411 return 0;
1412
1413 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1414
1415 if (f2fs_is_multi_device(sbi)) {
1416 int devi = f2fs_target_device_index(sbi, blkstart);
1417
1418 blkstart -= FDEV(devi).start_blk;
1419 }
1420 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1421 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1422 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1423 return 0;
1424 }
1425
1426 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1427 struct discard_policy *dpolicy)
1428 {
1429 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1430 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1431 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1432 struct discard_cmd *dc;
1433 struct blk_plug plug;
1434 unsigned int pos = dcc->next_pos;
1435 unsigned int issued = 0;
1436 bool io_interrupted = false;
1437
1438 mutex_lock(&dcc->cmd_lock);
1439 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1440 NULL, pos,
1441 (struct rb_entry **)&prev_dc,
1442 (struct rb_entry **)&next_dc,
1443 &insert_p, &insert_parent, true, NULL);
1444 if (!dc)
1445 dc = next_dc;
1446
1447 blk_start_plug(&plug);
1448
1449 while (dc) {
1450 struct rb_node *node;
1451 int err = 0;
1452
1453 if (dc->state != D_PREP)
1454 goto next;
1455
1456 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1457 io_interrupted = true;
1458 break;
1459 }
1460
1461 dcc->next_pos = dc->lstart + dc->len;
1462 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1463
1464 if (issued >= dpolicy->max_requests)
1465 break;
1466 next:
1467 node = rb_next(&dc->rb_node);
1468 if (err)
1469 __remove_discard_cmd(sbi, dc);
1470 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1471 }
1472
1473 blk_finish_plug(&plug);
1474
1475 if (!dc)
1476 dcc->next_pos = 0;
1477
1478 mutex_unlock(&dcc->cmd_lock);
1479
1480 if (!issued && io_interrupted)
1481 issued = -1;
1482
1483 return issued;
1484 }
1485 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1486 struct discard_policy *dpolicy);
1487
1488 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1489 struct discard_policy *dpolicy)
1490 {
1491 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1492 struct list_head *pend_list;
1493 struct discard_cmd *dc, *tmp;
1494 struct blk_plug plug;
1495 int i, issued;
1496 bool io_interrupted = false;
1497
1498 if (dpolicy->timeout)
1499 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1500
1501 retry:
1502 issued = 0;
1503 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1504 if (dpolicy->timeout &&
1505 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1506 break;
1507
1508 if (i + 1 < dpolicy->granularity)
1509 break;
1510
1511 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1512 return __issue_discard_cmd_orderly(sbi, dpolicy);
1513
1514 pend_list = &dcc->pend_list[i];
1515
1516 mutex_lock(&dcc->cmd_lock);
1517 if (list_empty(pend_list))
1518 goto next;
1519 if (unlikely(dcc->rbtree_check))
1520 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1521 &dcc->root, false));
1522 blk_start_plug(&plug);
1523 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1524 f2fs_bug_on(sbi, dc->state != D_PREP);
1525
1526 if (dpolicy->timeout &&
1527 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1528 break;
1529
1530 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1531 !is_idle(sbi, DISCARD_TIME)) {
1532 io_interrupted = true;
1533 break;
1534 }
1535
1536 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1537
1538 if (issued >= dpolicy->max_requests)
1539 break;
1540 }
1541 blk_finish_plug(&plug);
1542 next:
1543 mutex_unlock(&dcc->cmd_lock);
1544
1545 if (issued >= dpolicy->max_requests || io_interrupted)
1546 break;
1547 }
1548
1549 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1550 __wait_all_discard_cmd(sbi, dpolicy);
1551 goto retry;
1552 }
1553
1554 if (!issued && io_interrupted)
1555 issued = -1;
1556
1557 return issued;
1558 }
1559
1560 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1561 {
1562 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563 struct list_head *pend_list;
1564 struct discard_cmd *dc, *tmp;
1565 int i;
1566 bool dropped = false;
1567
1568 mutex_lock(&dcc->cmd_lock);
1569 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1570 pend_list = &dcc->pend_list[i];
1571 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1572 f2fs_bug_on(sbi, dc->state != D_PREP);
1573 __remove_discard_cmd(sbi, dc);
1574 dropped = true;
1575 }
1576 }
1577 mutex_unlock(&dcc->cmd_lock);
1578
1579 return dropped;
1580 }
1581
1582 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1583 {
1584 __drop_discard_cmd(sbi);
1585 }
1586
1587 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1588 struct discard_cmd *dc)
1589 {
1590 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1591 unsigned int len = 0;
1592
1593 wait_for_completion_io(&dc->wait);
1594 mutex_lock(&dcc->cmd_lock);
1595 f2fs_bug_on(sbi, dc->state != D_DONE);
1596 dc->ref--;
1597 if (!dc->ref) {
1598 if (!dc->error)
1599 len = dc->len;
1600 __remove_discard_cmd(sbi, dc);
1601 }
1602 mutex_unlock(&dcc->cmd_lock);
1603
1604 return len;
1605 }
1606
1607 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1608 struct discard_policy *dpolicy,
1609 block_t start, block_t end)
1610 {
1611 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1612 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1613 &(dcc->fstrim_list) : &(dcc->wait_list);
1614 struct discard_cmd *dc, *tmp;
1615 bool need_wait;
1616 unsigned int trimmed = 0;
1617
1618 next:
1619 need_wait = false;
1620
1621 mutex_lock(&dcc->cmd_lock);
1622 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1623 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1624 continue;
1625 if (dc->len < dpolicy->granularity)
1626 continue;
1627 if (dc->state == D_DONE && !dc->ref) {
1628 wait_for_completion_io(&dc->wait);
1629 if (!dc->error)
1630 trimmed += dc->len;
1631 __remove_discard_cmd(sbi, dc);
1632 } else {
1633 dc->ref++;
1634 need_wait = true;
1635 break;
1636 }
1637 }
1638 mutex_unlock(&dcc->cmd_lock);
1639
1640 if (need_wait) {
1641 trimmed += __wait_one_discard_bio(sbi, dc);
1642 goto next;
1643 }
1644
1645 return trimmed;
1646 }
1647
1648 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1649 struct discard_policy *dpolicy)
1650 {
1651 struct discard_policy dp;
1652 unsigned int discard_blks;
1653
1654 if (dpolicy)
1655 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1656
1657 /* wait all */
1658 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1659 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1660 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1661 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1662
1663 return discard_blks;
1664 }
1665
1666 /* This should be covered by global mutex, &sit_i->sentry_lock */
1667 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1668 {
1669 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1670 struct discard_cmd *dc;
1671 bool need_wait = false;
1672
1673 mutex_lock(&dcc->cmd_lock);
1674 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1675 NULL, blkaddr);
1676 if (dc) {
1677 if (dc->state == D_PREP) {
1678 __punch_discard_cmd(sbi, dc, blkaddr);
1679 } else {
1680 dc->ref++;
1681 need_wait = true;
1682 }
1683 }
1684 mutex_unlock(&dcc->cmd_lock);
1685
1686 if (need_wait)
1687 __wait_one_discard_bio(sbi, dc);
1688 }
1689
1690 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1691 {
1692 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1693
1694 if (dcc && dcc->f2fs_issue_discard) {
1695 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1696
1697 dcc->f2fs_issue_discard = NULL;
1698 kthread_stop(discard_thread);
1699 }
1700 }
1701
1702 /* This comes from f2fs_put_super */
1703 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1704 {
1705 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1706 struct discard_policy dpolicy;
1707 bool dropped;
1708
1709 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1710 dcc->discard_granularity);
1711 __issue_discard_cmd(sbi, &dpolicy);
1712 dropped = __drop_discard_cmd(sbi);
1713
1714 /* just to make sure there is no pending discard commands */
1715 __wait_all_discard_cmd(sbi, NULL);
1716
1717 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1718 return dropped;
1719 }
1720
1721 static int issue_discard_thread(void *data)
1722 {
1723 struct f2fs_sb_info *sbi = data;
1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725 wait_queue_head_t *q = &dcc->discard_wait_queue;
1726 struct discard_policy dpolicy;
1727 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1728 int issued;
1729
1730 set_freezable();
1731
1732 do {
1733 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1734 dcc->discard_granularity);
1735
1736 wait_event_interruptible_timeout(*q,
1737 kthread_should_stop() || freezing(current) ||
1738 dcc->discard_wake,
1739 msecs_to_jiffies(wait_ms));
1740
1741 if (dcc->discard_wake)
1742 dcc->discard_wake = 0;
1743
1744 /* clean up pending candidates before going to sleep */
1745 if (atomic_read(&dcc->queued_discard))
1746 __wait_all_discard_cmd(sbi, NULL);
1747
1748 if (try_to_freeze())
1749 continue;
1750 if (f2fs_readonly(sbi->sb))
1751 continue;
1752 if (kthread_should_stop())
1753 return 0;
1754 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1755 wait_ms = dpolicy.max_interval;
1756 continue;
1757 }
1758
1759 if (sbi->gc_mode == GC_URGENT_HIGH)
1760 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1761
1762 sb_start_intwrite(sbi->sb);
1763
1764 issued = __issue_discard_cmd(sbi, &dpolicy);
1765 if (issued > 0) {
1766 __wait_all_discard_cmd(sbi, &dpolicy);
1767 wait_ms = dpolicy.min_interval;
1768 } else if (issued == -1){
1769 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1770 if (!wait_ms)
1771 wait_ms = dpolicy.mid_interval;
1772 } else {
1773 wait_ms = dpolicy.max_interval;
1774 }
1775
1776 sb_end_intwrite(sbi->sb);
1777
1778 } while (!kthread_should_stop());
1779 return 0;
1780 }
1781
1782 #ifdef CONFIG_BLK_DEV_ZONED
1783 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1784 struct block_device *bdev, block_t blkstart, block_t blklen)
1785 {
1786 sector_t sector, nr_sects;
1787 block_t lblkstart = blkstart;
1788 int devi = 0;
1789
1790 if (f2fs_is_multi_device(sbi)) {
1791 devi = f2fs_target_device_index(sbi, blkstart);
1792 if (blkstart < FDEV(devi).start_blk ||
1793 blkstart > FDEV(devi).end_blk) {
1794 f2fs_err(sbi, "Invalid block %x", blkstart);
1795 return -EIO;
1796 }
1797 blkstart -= FDEV(devi).start_blk;
1798 }
1799
1800 /* For sequential zones, reset the zone write pointer */
1801 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1802 sector = SECTOR_FROM_BLOCK(blkstart);
1803 nr_sects = SECTOR_FROM_BLOCK(blklen);
1804
1805 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1806 nr_sects != bdev_zone_sectors(bdev)) {
1807 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1808 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1809 blkstart, blklen);
1810 return -EIO;
1811 }
1812 trace_f2fs_issue_reset_zone(bdev, blkstart);
1813 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1814 sector, nr_sects, GFP_NOFS);
1815 }
1816
1817 /* For conventional zones, use regular discard if supported */
1818 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1819 }
1820 #endif
1821
1822 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1823 struct block_device *bdev, block_t blkstart, block_t blklen)
1824 {
1825 #ifdef CONFIG_BLK_DEV_ZONED
1826 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1827 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1828 #endif
1829 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1830 }
1831
1832 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1833 block_t blkstart, block_t blklen)
1834 {
1835 sector_t start = blkstart, len = 0;
1836 struct block_device *bdev;
1837 struct seg_entry *se;
1838 unsigned int offset;
1839 block_t i;
1840 int err = 0;
1841
1842 bdev = f2fs_target_device(sbi, blkstart, NULL);
1843
1844 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1845 if (i != start) {
1846 struct block_device *bdev2 =
1847 f2fs_target_device(sbi, i, NULL);
1848
1849 if (bdev2 != bdev) {
1850 err = __issue_discard_async(sbi, bdev,
1851 start, len);
1852 if (err)
1853 return err;
1854 bdev = bdev2;
1855 start = i;
1856 len = 0;
1857 }
1858 }
1859
1860 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1861 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1862
1863 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1864 sbi->discard_blks--;
1865 }
1866
1867 if (len)
1868 err = __issue_discard_async(sbi, bdev, start, len);
1869 return err;
1870 }
1871
1872 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1873 bool check_only)
1874 {
1875 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1876 int max_blocks = sbi->blocks_per_seg;
1877 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1878 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1879 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1880 unsigned long *discard_map = (unsigned long *)se->discard_map;
1881 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1882 unsigned int start = 0, end = -1;
1883 bool force = (cpc->reason & CP_DISCARD);
1884 struct discard_entry *de = NULL;
1885 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1886 int i;
1887
1888 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1889 return false;
1890
1891 if (!force) {
1892 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1893 SM_I(sbi)->dcc_info->nr_discards >=
1894 SM_I(sbi)->dcc_info->max_discards)
1895 return false;
1896 }
1897
1898 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1899 for (i = 0; i < entries; i++)
1900 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1901 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1902
1903 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1904 SM_I(sbi)->dcc_info->max_discards) {
1905 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1906 if (start >= max_blocks)
1907 break;
1908
1909 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1910 if (force && start && end != max_blocks
1911 && (end - start) < cpc->trim_minlen)
1912 continue;
1913
1914 if (check_only)
1915 return true;
1916
1917 if (!de) {
1918 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1919 GFP_F2FS_ZERO);
1920 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1921 list_add_tail(&de->list, head);
1922 }
1923
1924 for (i = start; i < end; i++)
1925 __set_bit_le(i, (void *)de->discard_map);
1926
1927 SM_I(sbi)->dcc_info->nr_discards += end - start;
1928 }
1929 return false;
1930 }
1931
1932 static void release_discard_addr(struct discard_entry *entry)
1933 {
1934 list_del(&entry->list);
1935 kmem_cache_free(discard_entry_slab, entry);
1936 }
1937
1938 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1939 {
1940 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1941 struct discard_entry *entry, *this;
1942
1943 /* drop caches */
1944 list_for_each_entry_safe(entry, this, head, list)
1945 release_discard_addr(entry);
1946 }
1947
1948 /*
1949 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1950 */
1951 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1952 {
1953 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1954 unsigned int segno;
1955
1956 mutex_lock(&dirty_i->seglist_lock);
1957 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1958 __set_test_and_free(sbi, segno, false);
1959 mutex_unlock(&dirty_i->seglist_lock);
1960 }
1961
1962 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1963 struct cp_control *cpc)
1964 {
1965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1966 struct list_head *head = &dcc->entry_list;
1967 struct discard_entry *entry, *this;
1968 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1969 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1970 unsigned int start = 0, end = -1;
1971 unsigned int secno, start_segno;
1972 bool force = (cpc->reason & CP_DISCARD);
1973 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1974
1975 mutex_lock(&dirty_i->seglist_lock);
1976
1977 while (1) {
1978 int i;
1979
1980 if (need_align && end != -1)
1981 end--;
1982 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1983 if (start >= MAIN_SEGS(sbi))
1984 break;
1985 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1986 start + 1);
1987
1988 if (need_align) {
1989 start = rounddown(start, sbi->segs_per_sec);
1990 end = roundup(end, sbi->segs_per_sec);
1991 }
1992
1993 for (i = start; i < end; i++) {
1994 if (test_and_clear_bit(i, prefree_map))
1995 dirty_i->nr_dirty[PRE]--;
1996 }
1997
1998 if (!f2fs_realtime_discard_enable(sbi))
1999 continue;
2000
2001 if (force && start >= cpc->trim_start &&
2002 (end - 1) <= cpc->trim_end)
2003 continue;
2004
2005 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2006 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2007 (end - start) << sbi->log_blocks_per_seg);
2008 continue;
2009 }
2010 next:
2011 secno = GET_SEC_FROM_SEG(sbi, start);
2012 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2013 if (!IS_CURSEC(sbi, secno) &&
2014 !get_valid_blocks(sbi, start, true))
2015 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2016 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2017
2018 start = start_segno + sbi->segs_per_sec;
2019 if (start < end)
2020 goto next;
2021 else
2022 end = start - 1;
2023 }
2024 mutex_unlock(&dirty_i->seglist_lock);
2025
2026 /* send small discards */
2027 list_for_each_entry_safe(entry, this, head, list) {
2028 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2029 bool is_valid = test_bit_le(0, entry->discard_map);
2030
2031 find_next:
2032 if (is_valid) {
2033 next_pos = find_next_zero_bit_le(entry->discard_map,
2034 sbi->blocks_per_seg, cur_pos);
2035 len = next_pos - cur_pos;
2036
2037 if (f2fs_sb_has_blkzoned(sbi) ||
2038 (force && len < cpc->trim_minlen))
2039 goto skip;
2040
2041 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2042 len);
2043 total_len += len;
2044 } else {
2045 next_pos = find_next_bit_le(entry->discard_map,
2046 sbi->blocks_per_seg, cur_pos);
2047 }
2048 skip:
2049 cur_pos = next_pos;
2050 is_valid = !is_valid;
2051
2052 if (cur_pos < sbi->blocks_per_seg)
2053 goto find_next;
2054
2055 release_discard_addr(entry);
2056 dcc->nr_discards -= total_len;
2057 }
2058
2059 wake_up_discard_thread(sbi, false);
2060 }
2061
2062 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2063 {
2064 dev_t dev = sbi->sb->s_bdev->bd_dev;
2065 struct discard_cmd_control *dcc;
2066 int err = 0, i;
2067
2068 if (SM_I(sbi)->dcc_info) {
2069 dcc = SM_I(sbi)->dcc_info;
2070 goto init_thread;
2071 }
2072
2073 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2074 if (!dcc)
2075 return -ENOMEM;
2076
2077 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2078 INIT_LIST_HEAD(&dcc->entry_list);
2079 for (i = 0; i < MAX_PLIST_NUM; i++)
2080 INIT_LIST_HEAD(&dcc->pend_list[i]);
2081 INIT_LIST_HEAD(&dcc->wait_list);
2082 INIT_LIST_HEAD(&dcc->fstrim_list);
2083 mutex_init(&dcc->cmd_lock);
2084 atomic_set(&dcc->issued_discard, 0);
2085 atomic_set(&dcc->queued_discard, 0);
2086 atomic_set(&dcc->discard_cmd_cnt, 0);
2087 dcc->nr_discards = 0;
2088 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2089 dcc->undiscard_blks = 0;
2090 dcc->next_pos = 0;
2091 dcc->root = RB_ROOT_CACHED;
2092 dcc->rbtree_check = false;
2093
2094 init_waitqueue_head(&dcc->discard_wait_queue);
2095 SM_I(sbi)->dcc_info = dcc;
2096 init_thread:
2097 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2098 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2099 if (IS_ERR(dcc->f2fs_issue_discard)) {
2100 err = PTR_ERR(dcc->f2fs_issue_discard);
2101 kfree(dcc);
2102 SM_I(sbi)->dcc_info = NULL;
2103 return err;
2104 }
2105
2106 return err;
2107 }
2108
2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2110 {
2111 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2112
2113 if (!dcc)
2114 return;
2115
2116 f2fs_stop_discard_thread(sbi);
2117
2118 /*
2119 * Recovery can cache discard commands, so in error path of
2120 * fill_super(), it needs to give a chance to handle them.
2121 */
2122 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2123 f2fs_issue_discard_timeout(sbi);
2124
2125 kfree(dcc);
2126 SM_I(sbi)->dcc_info = NULL;
2127 }
2128
2129 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2130 {
2131 struct sit_info *sit_i = SIT_I(sbi);
2132
2133 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2134 sit_i->dirty_sentries++;
2135 return false;
2136 }
2137
2138 return true;
2139 }
2140
2141 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2142 unsigned int segno, int modified)
2143 {
2144 struct seg_entry *se = get_seg_entry(sbi, segno);
2145 se->type = type;
2146 if (modified)
2147 __mark_sit_entry_dirty(sbi, segno);
2148 }
2149
2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2151 block_t blkaddr)
2152 {
2153 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2154
2155 if (segno == NULL_SEGNO)
2156 return 0;
2157 return get_seg_entry(sbi, segno)->mtime;
2158 }
2159
2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2161 unsigned long long old_mtime)
2162 {
2163 struct seg_entry *se;
2164 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2165 unsigned long long ctime = get_mtime(sbi, false);
2166 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2167
2168 if (segno == NULL_SEGNO)
2169 return;
2170
2171 se = get_seg_entry(sbi, segno);
2172
2173 if (!se->mtime)
2174 se->mtime = mtime;
2175 else
2176 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2177 se->valid_blocks + 1);
2178
2179 if (ctime > SIT_I(sbi)->max_mtime)
2180 SIT_I(sbi)->max_mtime = ctime;
2181 }
2182
2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2184 {
2185 struct seg_entry *se;
2186 unsigned int segno, offset;
2187 long int new_vblocks;
2188 bool exist;
2189 #ifdef CONFIG_F2FS_CHECK_FS
2190 bool mir_exist;
2191 #endif
2192
2193 segno = GET_SEGNO(sbi, blkaddr);
2194
2195 se = get_seg_entry(sbi, segno);
2196 new_vblocks = se->valid_blocks + del;
2197 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2198
2199 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2200 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2201
2202 se->valid_blocks = new_vblocks;
2203
2204 /* Update valid block bitmap */
2205 if (del > 0) {
2206 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2207 #ifdef CONFIG_F2FS_CHECK_FS
2208 mir_exist = f2fs_test_and_set_bit(offset,
2209 se->cur_valid_map_mir);
2210 if (unlikely(exist != mir_exist)) {
2211 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2212 blkaddr, exist);
2213 f2fs_bug_on(sbi, 1);
2214 }
2215 #endif
2216 if (unlikely(exist)) {
2217 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2218 blkaddr);
2219 f2fs_bug_on(sbi, 1);
2220 se->valid_blocks--;
2221 del = 0;
2222 }
2223
2224 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2225 sbi->discard_blks--;
2226
2227 /*
2228 * SSR should never reuse block which is checkpointed
2229 * or newly invalidated.
2230 */
2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233 se->ckpt_valid_blocks++;
2234 }
2235 } else {
2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237 #ifdef CONFIG_F2FS_CHECK_FS
2238 mir_exist = f2fs_test_and_clear_bit(offset,
2239 se->cur_valid_map_mir);
2240 if (unlikely(exist != mir_exist)) {
2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242 blkaddr, exist);
2243 f2fs_bug_on(sbi, 1);
2244 }
2245 #endif
2246 if (unlikely(!exist)) {
2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248 blkaddr);
2249 f2fs_bug_on(sbi, 1);
2250 se->valid_blocks++;
2251 del = 0;
2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253 /*
2254 * If checkpoints are off, we must not reuse data that
2255 * was used in the previous checkpoint. If it was used
2256 * before, we must track that to know how much space we
2257 * really have.
2258 */
2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260 spin_lock(&sbi->stat_lock);
2261 sbi->unusable_block_count++;
2262 spin_unlock(&sbi->stat_lock);
2263 }
2264 }
2265
2266 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2267 sbi->discard_blks++;
2268 }
2269 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2270 se->ckpt_valid_blocks += del;
2271
2272 __mark_sit_entry_dirty(sbi, segno);
2273
2274 /* update total number of valid blocks to be written in ckpt area */
2275 SIT_I(sbi)->written_valid_blocks += del;
2276
2277 if (__is_large_section(sbi))
2278 get_sec_entry(sbi, segno)->valid_blocks += del;
2279 }
2280
2281 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2282 {
2283 unsigned int segno = GET_SEGNO(sbi, addr);
2284 struct sit_info *sit_i = SIT_I(sbi);
2285
2286 f2fs_bug_on(sbi, addr == NULL_ADDR);
2287 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2288 return;
2289
2290 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2291
2292 /* add it into sit main buffer */
2293 down_write(&sit_i->sentry_lock);
2294
2295 update_segment_mtime(sbi, addr, 0);
2296 update_sit_entry(sbi, addr, -1);
2297
2298 /* add it into dirty seglist */
2299 locate_dirty_segment(sbi, segno);
2300
2301 up_write(&sit_i->sentry_lock);
2302 }
2303
2304 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2305 {
2306 struct sit_info *sit_i = SIT_I(sbi);
2307 unsigned int segno, offset;
2308 struct seg_entry *se;
2309 bool is_cp = false;
2310
2311 if (!__is_valid_data_blkaddr(blkaddr))
2312 return true;
2313
2314 down_read(&sit_i->sentry_lock);
2315
2316 segno = GET_SEGNO(sbi, blkaddr);
2317 se = get_seg_entry(sbi, segno);
2318 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2319
2320 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2321 is_cp = true;
2322
2323 up_read(&sit_i->sentry_lock);
2324
2325 return is_cp;
2326 }
2327
2328 /*
2329 * This function should be resided under the curseg_mutex lock
2330 */
2331 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2332 struct f2fs_summary *sum)
2333 {
2334 struct curseg_info *curseg = CURSEG_I(sbi, type);
2335 void *addr = curseg->sum_blk;
2336 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2337 memcpy(addr, sum, sizeof(struct f2fs_summary));
2338 }
2339
2340 /*
2341 * Calculate the number of current summary pages for writing
2342 */
2343 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2344 {
2345 int valid_sum_count = 0;
2346 int i, sum_in_page;
2347
2348 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2349 if (sbi->ckpt->alloc_type[i] == SSR)
2350 valid_sum_count += sbi->blocks_per_seg;
2351 else {
2352 if (for_ra)
2353 valid_sum_count += le16_to_cpu(
2354 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2355 else
2356 valid_sum_count += curseg_blkoff(sbi, i);
2357 }
2358 }
2359
2360 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2361 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2362 if (valid_sum_count <= sum_in_page)
2363 return 1;
2364 else if ((valid_sum_count - sum_in_page) <=
2365 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2366 return 2;
2367 return 3;
2368 }
2369
2370 /*
2371 * Caller should put this summary page
2372 */
2373 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2374 {
2375 if (unlikely(f2fs_cp_error(sbi)))
2376 return ERR_PTR(-EIO);
2377 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2378 }
2379
2380 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2381 void *src, block_t blk_addr)
2382 {
2383 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2384
2385 memcpy(page_address(page), src, PAGE_SIZE);
2386 set_page_dirty(page);
2387 f2fs_put_page(page, 1);
2388 }
2389
2390 static void write_sum_page(struct f2fs_sb_info *sbi,
2391 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2392 {
2393 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2394 }
2395
2396 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2397 int type, block_t blk_addr)
2398 {
2399 struct curseg_info *curseg = CURSEG_I(sbi, type);
2400 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2401 struct f2fs_summary_block *src = curseg->sum_blk;
2402 struct f2fs_summary_block *dst;
2403
2404 dst = (struct f2fs_summary_block *)page_address(page);
2405 memset(dst, 0, PAGE_SIZE);
2406
2407 mutex_lock(&curseg->curseg_mutex);
2408
2409 down_read(&curseg->journal_rwsem);
2410 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2411 up_read(&curseg->journal_rwsem);
2412
2413 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2414 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2415
2416 mutex_unlock(&curseg->curseg_mutex);
2417
2418 set_page_dirty(page);
2419 f2fs_put_page(page, 1);
2420 }
2421
2422 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2423 struct curseg_info *curseg, int type)
2424 {
2425 unsigned int segno = curseg->segno + 1;
2426 struct free_segmap_info *free_i = FREE_I(sbi);
2427
2428 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2429 return !test_bit(segno, free_i->free_segmap);
2430 return 0;
2431 }
2432
2433 /*
2434 * Find a new segment from the free segments bitmap to right order
2435 * This function should be returned with success, otherwise BUG
2436 */
2437 static void get_new_segment(struct f2fs_sb_info *sbi,
2438 unsigned int *newseg, bool new_sec, int dir)
2439 {
2440 struct free_segmap_info *free_i = FREE_I(sbi);
2441 unsigned int segno, secno, zoneno;
2442 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2443 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2444 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2445 unsigned int left_start = hint;
2446 bool init = true;
2447 int go_left = 0;
2448 int i;
2449
2450 spin_lock(&free_i->segmap_lock);
2451
2452 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2453 segno = find_next_zero_bit(free_i->free_segmap,
2454 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2455 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2456 goto got_it;
2457 }
2458 find_other_zone:
2459 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2460 if (secno >= MAIN_SECS(sbi)) {
2461 if (dir == ALLOC_RIGHT) {
2462 secno = find_next_zero_bit(free_i->free_secmap,
2463 MAIN_SECS(sbi), 0);
2464 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2465 } else {
2466 go_left = 1;
2467 left_start = hint - 1;
2468 }
2469 }
2470 if (go_left == 0)
2471 goto skip_left;
2472
2473 while (test_bit(left_start, free_i->free_secmap)) {
2474 if (left_start > 0) {
2475 left_start--;
2476 continue;
2477 }
2478 left_start = find_next_zero_bit(free_i->free_secmap,
2479 MAIN_SECS(sbi), 0);
2480 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2481 break;
2482 }
2483 secno = left_start;
2484 skip_left:
2485 segno = GET_SEG_FROM_SEC(sbi, secno);
2486 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2487
2488 /* give up on finding another zone */
2489 if (!init)
2490 goto got_it;
2491 if (sbi->secs_per_zone == 1)
2492 goto got_it;
2493 if (zoneno == old_zoneno)
2494 goto got_it;
2495 if (dir == ALLOC_LEFT) {
2496 if (!go_left && zoneno + 1 >= total_zones)
2497 goto got_it;
2498 if (go_left && zoneno == 0)
2499 goto got_it;
2500 }
2501 for (i = 0; i < NR_CURSEG_TYPE; i++)
2502 if (CURSEG_I(sbi, i)->zone == zoneno)
2503 break;
2504
2505 if (i < NR_CURSEG_TYPE) {
2506 /* zone is in user, try another */
2507 if (go_left)
2508 hint = zoneno * sbi->secs_per_zone - 1;
2509 else if (zoneno + 1 >= total_zones)
2510 hint = 0;
2511 else
2512 hint = (zoneno + 1) * sbi->secs_per_zone;
2513 init = false;
2514 goto find_other_zone;
2515 }
2516 got_it:
2517 /* set it as dirty segment in free segmap */
2518 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2519 __set_inuse(sbi, segno);
2520 *newseg = segno;
2521 spin_unlock(&free_i->segmap_lock);
2522 }
2523
2524 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2525 {
2526 struct curseg_info *curseg = CURSEG_I(sbi, type);
2527 struct summary_footer *sum_footer;
2528 unsigned short seg_type = curseg->seg_type;
2529
2530 curseg->inited = true;
2531 curseg->segno = curseg->next_segno;
2532 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2533 curseg->next_blkoff = 0;
2534 curseg->next_segno = NULL_SEGNO;
2535
2536 sum_footer = &(curseg->sum_blk->footer);
2537 memset(sum_footer, 0, sizeof(struct summary_footer));
2538
2539 sanity_check_seg_type(sbi, seg_type);
2540
2541 if (IS_DATASEG(seg_type))
2542 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2543 if (IS_NODESEG(seg_type))
2544 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2545 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2546 }
2547
2548 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2549 {
2550 struct curseg_info *curseg = CURSEG_I(sbi, type);
2551 unsigned short seg_type = curseg->seg_type;
2552
2553 sanity_check_seg_type(sbi, seg_type);
2554
2555 /* if segs_per_sec is large than 1, we need to keep original policy. */
2556 if (__is_large_section(sbi))
2557 return curseg->segno;
2558
2559 /* inmem log may not locate on any segment after mount */
2560 if (!curseg->inited)
2561 return 0;
2562
2563 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2564 return 0;
2565
2566 if (test_opt(sbi, NOHEAP) &&
2567 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2568 return 0;
2569
2570 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2571 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2572
2573 /* find segments from 0 to reuse freed segments */
2574 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2575 return 0;
2576
2577 return curseg->segno;
2578 }
2579
2580 /*
2581 * Allocate a current working segment.
2582 * This function always allocates a free segment in LFS manner.
2583 */
2584 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2585 {
2586 struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 unsigned short seg_type = curseg->seg_type;
2588 unsigned int segno = curseg->segno;
2589 int dir = ALLOC_LEFT;
2590
2591 if (curseg->inited)
2592 write_sum_page(sbi, curseg->sum_blk,
2593 GET_SUM_BLOCK(sbi, segno));
2594 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2595 dir = ALLOC_RIGHT;
2596
2597 if (test_opt(sbi, NOHEAP))
2598 dir = ALLOC_RIGHT;
2599
2600 segno = __get_next_segno(sbi, type);
2601 get_new_segment(sbi, &segno, new_sec, dir);
2602 curseg->next_segno = segno;
2603 reset_curseg(sbi, type, 1);
2604 curseg->alloc_type = LFS;
2605 }
2606
2607 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2608 struct curseg_info *seg, block_t start)
2609 {
2610 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2611 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2612 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2613 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2614 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2615 int i, pos;
2616
2617 for (i = 0; i < entries; i++)
2618 target_map[i] = ckpt_map[i] | cur_map[i];
2619
2620 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2621
2622 seg->next_blkoff = pos;
2623 }
2624
2625 /*
2626 * If a segment is written by LFS manner, next block offset is just obtained
2627 * by increasing the current block offset. However, if a segment is written by
2628 * SSR manner, next block offset obtained by calling __next_free_blkoff
2629 */
2630 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2631 struct curseg_info *seg)
2632 {
2633 if (seg->alloc_type == SSR)
2634 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2635 else
2636 seg->next_blkoff++;
2637 }
2638
2639 /*
2640 * This function always allocates a used segment(from dirty seglist) by SSR
2641 * manner, so it should recover the existing segment information of valid blocks
2642 */
2643 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2644 {
2645 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2646 struct curseg_info *curseg = CURSEG_I(sbi, type);
2647 unsigned int new_segno = curseg->next_segno;
2648 struct f2fs_summary_block *sum_node;
2649 struct page *sum_page;
2650
2651 if (flush)
2652 write_sum_page(sbi, curseg->sum_blk,
2653 GET_SUM_BLOCK(sbi, curseg->segno));
2654
2655 __set_test_and_inuse(sbi, new_segno);
2656
2657 mutex_lock(&dirty_i->seglist_lock);
2658 __remove_dirty_segment(sbi, new_segno, PRE);
2659 __remove_dirty_segment(sbi, new_segno, DIRTY);
2660 mutex_unlock(&dirty_i->seglist_lock);
2661
2662 reset_curseg(sbi, type, 1);
2663 curseg->alloc_type = SSR;
2664 __next_free_blkoff(sbi, curseg, 0);
2665
2666 sum_page = f2fs_get_sum_page(sbi, new_segno);
2667 if (IS_ERR(sum_page)) {
2668 /* GC won't be able to use stale summary pages by cp_error */
2669 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2670 return;
2671 }
2672 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2673 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2674 f2fs_put_page(sum_page, 1);
2675 }
2676
2677 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2678 int alloc_mode, unsigned long long age);
2679
2680 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2681 int target_type, int alloc_mode,
2682 unsigned long long age)
2683 {
2684 struct curseg_info *curseg = CURSEG_I(sbi, type);
2685
2686 curseg->seg_type = target_type;
2687
2688 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2689 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2690
2691 curseg->seg_type = se->type;
2692 change_curseg(sbi, type, true);
2693 } else {
2694 /* allocate cold segment by default */
2695 curseg->seg_type = CURSEG_COLD_DATA;
2696 new_curseg(sbi, type, true);
2697 }
2698 stat_inc_seg_type(sbi, curseg);
2699 }
2700
2701 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2702 {
2703 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2704
2705 if (!sbi->am.atgc_enabled)
2706 return;
2707
2708 down_read(&SM_I(sbi)->curseg_lock);
2709
2710 mutex_lock(&curseg->curseg_mutex);
2711 down_write(&SIT_I(sbi)->sentry_lock);
2712
2713 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2714
2715 up_write(&SIT_I(sbi)->sentry_lock);
2716 mutex_unlock(&curseg->curseg_mutex);
2717
2718 up_read(&SM_I(sbi)->curseg_lock);
2719
2720 }
2721 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2722 {
2723 __f2fs_init_atgc_curseg(sbi);
2724 }
2725
2726 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2727 {
2728 struct curseg_info *curseg = CURSEG_I(sbi, type);
2729
2730 mutex_lock(&curseg->curseg_mutex);
2731 if (!curseg->inited)
2732 goto out;
2733
2734 if (get_valid_blocks(sbi, curseg->segno, false)) {
2735 write_sum_page(sbi, curseg->sum_blk,
2736 GET_SUM_BLOCK(sbi, curseg->segno));
2737 } else {
2738 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2739 __set_test_and_free(sbi, curseg->segno, true);
2740 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2741 }
2742 out:
2743 mutex_unlock(&curseg->curseg_mutex);
2744 }
2745
2746 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2747 {
2748 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2749
2750 if (sbi->am.atgc_enabled)
2751 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2752 }
2753
2754 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2755 {
2756 struct curseg_info *curseg = CURSEG_I(sbi, type);
2757
2758 mutex_lock(&curseg->curseg_mutex);
2759 if (!curseg->inited)
2760 goto out;
2761 if (get_valid_blocks(sbi, curseg->segno, false))
2762 goto out;
2763
2764 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2765 __set_test_and_inuse(sbi, curseg->segno);
2766 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2767 out:
2768 mutex_unlock(&curseg->curseg_mutex);
2769 }
2770
2771 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2772 {
2773 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2774
2775 if (sbi->am.atgc_enabled)
2776 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2777 }
2778
2779 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2780 int alloc_mode, unsigned long long age)
2781 {
2782 struct curseg_info *curseg = CURSEG_I(sbi, type);
2783 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2784 unsigned segno = NULL_SEGNO;
2785 unsigned short seg_type = curseg->seg_type;
2786 int i, cnt;
2787 bool reversed = false;
2788
2789 sanity_check_seg_type(sbi, seg_type);
2790
2791 /* f2fs_need_SSR() already forces to do this */
2792 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2793 curseg->next_segno = segno;
2794 return 1;
2795 }
2796
2797 /* For node segments, let's do SSR more intensively */
2798 if (IS_NODESEG(seg_type)) {
2799 if (seg_type >= CURSEG_WARM_NODE) {
2800 reversed = true;
2801 i = CURSEG_COLD_NODE;
2802 } else {
2803 i = CURSEG_HOT_NODE;
2804 }
2805 cnt = NR_CURSEG_NODE_TYPE;
2806 } else {
2807 if (seg_type >= CURSEG_WARM_DATA) {
2808 reversed = true;
2809 i = CURSEG_COLD_DATA;
2810 } else {
2811 i = CURSEG_HOT_DATA;
2812 }
2813 cnt = NR_CURSEG_DATA_TYPE;
2814 }
2815
2816 for (; cnt-- > 0; reversed ? i-- : i++) {
2817 if (i == seg_type)
2818 continue;
2819 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2820 curseg->next_segno = segno;
2821 return 1;
2822 }
2823 }
2824
2825 /* find valid_blocks=0 in dirty list */
2826 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2827 segno = get_free_segment(sbi);
2828 if (segno != NULL_SEGNO) {
2829 curseg->next_segno = segno;
2830 return 1;
2831 }
2832 }
2833 return 0;
2834 }
2835
2836 /*
2837 * flush out current segment and replace it with new segment
2838 * This function should be returned with success, otherwise BUG
2839 */
2840 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2841 int type, bool force)
2842 {
2843 struct curseg_info *curseg = CURSEG_I(sbi, type);
2844
2845 if (force)
2846 new_curseg(sbi, type, true);
2847 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2848 curseg->seg_type == CURSEG_WARM_NODE)
2849 new_curseg(sbi, type, false);
2850 else if (curseg->alloc_type == LFS &&
2851 is_next_segment_free(sbi, curseg, type) &&
2852 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2853 new_curseg(sbi, type, false);
2854 else if (f2fs_need_SSR(sbi) &&
2855 get_ssr_segment(sbi, type, SSR, 0))
2856 change_curseg(sbi, type, true);
2857 else
2858 new_curseg(sbi, type, false);
2859
2860 stat_inc_seg_type(sbi, curseg);
2861 }
2862
2863 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2864 unsigned int start, unsigned int end)
2865 {
2866 struct curseg_info *curseg = CURSEG_I(sbi, type);
2867 unsigned int segno;
2868
2869 down_read(&SM_I(sbi)->curseg_lock);
2870 mutex_lock(&curseg->curseg_mutex);
2871 down_write(&SIT_I(sbi)->sentry_lock);
2872
2873 segno = CURSEG_I(sbi, type)->segno;
2874 if (segno < start || segno > end)
2875 goto unlock;
2876
2877 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2878 change_curseg(sbi, type, true);
2879 else
2880 new_curseg(sbi, type, true);
2881
2882 stat_inc_seg_type(sbi, curseg);
2883
2884 locate_dirty_segment(sbi, segno);
2885 unlock:
2886 up_write(&SIT_I(sbi)->sentry_lock);
2887
2888 if (segno != curseg->segno)
2889 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2890 type, segno, curseg->segno);
2891
2892 mutex_unlock(&curseg->curseg_mutex);
2893 up_read(&SM_I(sbi)->curseg_lock);
2894 }
2895
2896 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2897 {
2898 struct curseg_info *curseg = CURSEG_I(sbi, type);
2899 unsigned int old_segno;
2900
2901 if (!curseg->inited)
2902 goto alloc;
2903
2904 if (!curseg->next_blkoff &&
2905 !get_valid_blocks(sbi, curseg->segno, false) &&
2906 !get_ckpt_valid_blocks(sbi, curseg->segno))
2907 return;
2908
2909 alloc:
2910 old_segno = curseg->segno;
2911 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2912 locate_dirty_segment(sbi, old_segno);
2913 }
2914
2915 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2916 {
2917 down_write(&SIT_I(sbi)->sentry_lock);
2918 __allocate_new_segment(sbi, type);
2919 up_write(&SIT_I(sbi)->sentry_lock);
2920 }
2921
2922 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2923 {
2924 int i;
2925
2926 down_write(&SIT_I(sbi)->sentry_lock);
2927 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2928 __allocate_new_segment(sbi, i);
2929 up_write(&SIT_I(sbi)->sentry_lock);
2930 }
2931
2932 static const struct segment_allocation default_salloc_ops = {
2933 .allocate_segment = allocate_segment_by_default,
2934 };
2935
2936 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2937 struct cp_control *cpc)
2938 {
2939 __u64 trim_start = cpc->trim_start;
2940 bool has_candidate = false;
2941
2942 down_write(&SIT_I(sbi)->sentry_lock);
2943 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2944 if (add_discard_addrs(sbi, cpc, true)) {
2945 has_candidate = true;
2946 break;
2947 }
2948 }
2949 up_write(&SIT_I(sbi)->sentry_lock);
2950
2951 cpc->trim_start = trim_start;
2952 return has_candidate;
2953 }
2954
2955 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2956 struct discard_policy *dpolicy,
2957 unsigned int start, unsigned int end)
2958 {
2959 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2960 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2961 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2962 struct discard_cmd *dc;
2963 struct blk_plug plug;
2964 int issued;
2965 unsigned int trimmed = 0;
2966
2967 next:
2968 issued = 0;
2969
2970 mutex_lock(&dcc->cmd_lock);
2971 if (unlikely(dcc->rbtree_check))
2972 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2973 &dcc->root, false));
2974
2975 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2976 NULL, start,
2977 (struct rb_entry **)&prev_dc,
2978 (struct rb_entry **)&next_dc,
2979 &insert_p, &insert_parent, true, NULL);
2980 if (!dc)
2981 dc = next_dc;
2982
2983 blk_start_plug(&plug);
2984
2985 while (dc && dc->lstart <= end) {
2986 struct rb_node *node;
2987 int err = 0;
2988
2989 if (dc->len < dpolicy->granularity)
2990 goto skip;
2991
2992 if (dc->state != D_PREP) {
2993 list_move_tail(&dc->list, &dcc->fstrim_list);
2994 goto skip;
2995 }
2996
2997 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2998
2999 if (issued >= dpolicy->max_requests) {
3000 start = dc->lstart + dc->len;
3001
3002 if (err)
3003 __remove_discard_cmd(sbi, dc);
3004
3005 blk_finish_plug(&plug);
3006 mutex_unlock(&dcc->cmd_lock);
3007 trimmed += __wait_all_discard_cmd(sbi, NULL);
3008 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3009 goto next;
3010 }
3011 skip:
3012 node = rb_next(&dc->rb_node);
3013 if (err)
3014 __remove_discard_cmd(sbi, dc);
3015 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3016
3017 if (fatal_signal_pending(current))
3018 break;
3019 }
3020
3021 blk_finish_plug(&plug);
3022 mutex_unlock(&dcc->cmd_lock);
3023
3024 return trimmed;
3025 }
3026
3027 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3028 {
3029 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3030 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3031 unsigned int start_segno, end_segno;
3032 block_t start_block, end_block;
3033 struct cp_control cpc;
3034 struct discard_policy dpolicy;
3035 unsigned long long trimmed = 0;
3036 int err = 0;
3037 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3038
3039 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3040 return -EINVAL;
3041
3042 if (end < MAIN_BLKADDR(sbi))
3043 goto out;
3044
3045 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3046 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3047 return -EFSCORRUPTED;
3048 }
3049
3050 /* start/end segment number in main_area */
3051 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3052 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3053 GET_SEGNO(sbi, end);
3054 if (need_align) {
3055 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3056 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3057 }
3058
3059 cpc.reason = CP_DISCARD;
3060 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3061 cpc.trim_start = start_segno;
3062 cpc.trim_end = end_segno;
3063
3064 if (sbi->discard_blks == 0)
3065 goto out;
3066
3067 down_write(&sbi->gc_lock);
3068 err = f2fs_write_checkpoint(sbi, &cpc);
3069 up_write(&sbi->gc_lock);
3070 if (err)
3071 goto out;
3072
3073 /*
3074 * We filed discard candidates, but actually we don't need to wait for
3075 * all of them, since they'll be issued in idle time along with runtime
3076 * discard option. User configuration looks like using runtime discard
3077 * or periodic fstrim instead of it.
3078 */
3079 if (f2fs_realtime_discard_enable(sbi))
3080 goto out;
3081
3082 start_block = START_BLOCK(sbi, start_segno);
3083 end_block = START_BLOCK(sbi, end_segno + 1);
3084
3085 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3086 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3087 start_block, end_block);
3088
3089 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3090 start_block, end_block);
3091 out:
3092 if (!err)
3093 range->len = F2FS_BLK_TO_BYTES(trimmed);
3094 return err;
3095 }
3096
3097 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3098 struct curseg_info *curseg)
3099 {
3100 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3101 curseg->segno);
3102 }
3103
3104 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3105 {
3106 switch (hint) {
3107 case WRITE_LIFE_SHORT:
3108 return CURSEG_HOT_DATA;
3109 case WRITE_LIFE_EXTREME:
3110 return CURSEG_COLD_DATA;
3111 default:
3112 return CURSEG_WARM_DATA;
3113 }
3114 }
3115
3116 /* This returns write hints for each segment type. This hints will be
3117 * passed down to block layer. There are mapping tables which depend on
3118 * the mount option 'whint_mode'.
3119 *
3120 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3121 *
3122 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3123 *
3124 * User F2FS Block
3125 * ---- ---- -----
3126 * META WRITE_LIFE_NOT_SET
3127 * HOT_NODE "
3128 * WARM_NODE "
3129 * COLD_NODE "
3130 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3131 * extension list " "
3132 *
3133 * -- buffered io
3134 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3135 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3136 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3137 * WRITE_LIFE_NONE " "
3138 * WRITE_LIFE_MEDIUM " "
3139 * WRITE_LIFE_LONG " "
3140 *
3141 * -- direct io
3142 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3143 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3144 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3145 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3146 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3147 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3148 *
3149 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3150 *
3151 * User F2FS Block
3152 * ---- ---- -----
3153 * META WRITE_LIFE_MEDIUM;
3154 * HOT_NODE WRITE_LIFE_NOT_SET
3155 * WARM_NODE "
3156 * COLD_NODE WRITE_LIFE_NONE
3157 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3158 * extension list " "
3159 *
3160 * -- buffered io
3161 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3162 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3163 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3164 * WRITE_LIFE_NONE " "
3165 * WRITE_LIFE_MEDIUM " "
3166 * WRITE_LIFE_LONG " "
3167 *
3168 * -- direct io
3169 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3170 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3171 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3172 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3173 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3174 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3175 */
3176
3177 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3178 enum page_type type, enum temp_type temp)
3179 {
3180 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3181 if (type == DATA) {
3182 if (temp == WARM)
3183 return WRITE_LIFE_NOT_SET;
3184 else if (temp == HOT)
3185 return WRITE_LIFE_SHORT;
3186 else if (temp == COLD)
3187 return WRITE_LIFE_EXTREME;
3188 } else {
3189 return WRITE_LIFE_NOT_SET;
3190 }
3191 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3192 if (type == DATA) {
3193 if (temp == WARM)
3194 return WRITE_LIFE_LONG;
3195 else if (temp == HOT)
3196 return WRITE_LIFE_SHORT;
3197 else if (temp == COLD)
3198 return WRITE_LIFE_EXTREME;
3199 } else if (type == NODE) {
3200 if (temp == WARM || temp == HOT)
3201 return WRITE_LIFE_NOT_SET;
3202 else if (temp == COLD)
3203 return WRITE_LIFE_NONE;
3204 } else if (type == META) {
3205 return WRITE_LIFE_MEDIUM;
3206 }
3207 }
3208 return WRITE_LIFE_NOT_SET;
3209 }
3210
3211 static int __get_segment_type_2(struct f2fs_io_info *fio)
3212 {
3213 if (fio->type == DATA)
3214 return CURSEG_HOT_DATA;
3215 else
3216 return CURSEG_HOT_NODE;
3217 }
3218
3219 static int __get_segment_type_4(struct f2fs_io_info *fio)
3220 {
3221 if (fio->type == DATA) {
3222 struct inode *inode = fio->page->mapping->host;
3223
3224 if (S_ISDIR(inode->i_mode))
3225 return CURSEG_HOT_DATA;
3226 else
3227 return CURSEG_COLD_DATA;
3228 } else {
3229 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3230 return CURSEG_WARM_NODE;
3231 else
3232 return CURSEG_COLD_NODE;
3233 }
3234 }
3235
3236 static int __get_segment_type_6(struct f2fs_io_info *fio)
3237 {
3238 if (fio->type == DATA) {
3239 struct inode *inode = fio->page->mapping->host;
3240
3241 if (is_cold_data(fio->page)) {
3242 if (fio->sbi->am.atgc_enabled)
3243 return CURSEG_ALL_DATA_ATGC;
3244 else
3245 return CURSEG_COLD_DATA;
3246 }
3247 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3248 return CURSEG_COLD_DATA;
3249 if (file_is_hot(inode) ||
3250 is_inode_flag_set(inode, FI_HOT_DATA) ||
3251 f2fs_is_atomic_file(inode) ||
3252 f2fs_is_volatile_file(inode))
3253 return CURSEG_HOT_DATA;
3254 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3255 } else {
3256 if (IS_DNODE(fio->page))
3257 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3258 CURSEG_HOT_NODE;
3259 return CURSEG_COLD_NODE;
3260 }
3261 }
3262
3263 static int __get_segment_type(struct f2fs_io_info *fio)
3264 {
3265 int type = 0;
3266
3267 switch (F2FS_OPTION(fio->sbi).active_logs) {
3268 case 2:
3269 type = __get_segment_type_2(fio);
3270 break;
3271 case 4:
3272 type = __get_segment_type_4(fio);
3273 break;
3274 case 6:
3275 type = __get_segment_type_6(fio);
3276 break;
3277 default:
3278 f2fs_bug_on(fio->sbi, true);
3279 }
3280
3281 if (IS_HOT(type))
3282 fio->temp = HOT;
3283 else if (IS_WARM(type))
3284 fio->temp = WARM;
3285 else
3286 fio->temp = COLD;
3287 return type;
3288 }
3289
3290 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3291 block_t old_blkaddr, block_t *new_blkaddr,
3292 struct f2fs_summary *sum, int type,
3293 struct f2fs_io_info *fio)
3294 {
3295 struct sit_info *sit_i = SIT_I(sbi);
3296 struct curseg_info *curseg = CURSEG_I(sbi, type);
3297 unsigned long long old_mtime;
3298 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3299 struct seg_entry *se = NULL;
3300
3301 down_read(&SM_I(sbi)->curseg_lock);
3302
3303 mutex_lock(&curseg->curseg_mutex);
3304 down_write(&sit_i->sentry_lock);
3305
3306 if (from_gc) {
3307 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3308 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3309 sanity_check_seg_type(sbi, se->type);
3310 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3311 }
3312 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3313
3314 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3315
3316 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3317
3318 /*
3319 * __add_sum_entry should be resided under the curseg_mutex
3320 * because, this function updates a summary entry in the
3321 * current summary block.
3322 */
3323 __add_sum_entry(sbi, type, sum);
3324
3325 __refresh_next_blkoff(sbi, curseg);
3326
3327 stat_inc_block_count(sbi, curseg);
3328
3329 if (from_gc) {
3330 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3331 } else {
3332 update_segment_mtime(sbi, old_blkaddr, 0);
3333 old_mtime = 0;
3334 }
3335 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3336
3337 /*
3338 * SIT information should be updated before segment allocation,
3339 * since SSR needs latest valid block information.
3340 */
3341 update_sit_entry(sbi, *new_blkaddr, 1);
3342 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3343 update_sit_entry(sbi, old_blkaddr, -1);
3344
3345 if (!__has_curseg_space(sbi, curseg)) {
3346 if (from_gc)
3347 get_atssr_segment(sbi, type, se->type,
3348 AT_SSR, se->mtime);
3349 else
3350 sit_i->s_ops->allocate_segment(sbi, type, false);
3351 }
3352 /*
3353 * segment dirty status should be updated after segment allocation,
3354 * so we just need to update status only one time after previous
3355 * segment being closed.
3356 */
3357 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3358 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3359
3360 up_write(&sit_i->sentry_lock);
3361
3362 if (page && IS_NODESEG(type)) {
3363 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3364
3365 f2fs_inode_chksum_set(sbi, page);
3366 }
3367
3368 if (F2FS_IO_ALIGNED(sbi))
3369 fio->retry = false;
3370
3371 if (fio) {
3372 struct f2fs_bio_info *io;
3373
3374 INIT_LIST_HEAD(&fio->list);
3375 fio->in_list = true;
3376 io = sbi->write_io[fio->type] + fio->temp;
3377 spin_lock(&io->io_lock);
3378 list_add_tail(&fio->list, &io->io_list);
3379 spin_unlock(&io->io_lock);
3380 }
3381
3382 mutex_unlock(&curseg->curseg_mutex);
3383
3384 up_read(&SM_I(sbi)->curseg_lock);
3385 }
3386
3387 static void update_device_state(struct f2fs_io_info *fio)
3388 {
3389 struct f2fs_sb_info *sbi = fio->sbi;
3390 unsigned int devidx;
3391
3392 if (!f2fs_is_multi_device(sbi))
3393 return;
3394
3395 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3396
3397 /* update device state for fsync */
3398 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3399
3400 /* update device state for checkpoint */
3401 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3402 spin_lock(&sbi->dev_lock);
3403 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3404 spin_unlock(&sbi->dev_lock);
3405 }
3406 }
3407
3408 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3409 {
3410 int type = __get_segment_type(fio);
3411 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3412
3413 if (keep_order)
3414 down_read(&fio->sbi->io_order_lock);
3415 reallocate:
3416 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3417 &fio->new_blkaddr, sum, type, fio);
3418 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3419 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3420 fio->old_blkaddr, fio->old_blkaddr);
3421
3422 /* writeout dirty page into bdev */
3423 f2fs_submit_page_write(fio);
3424 if (fio->retry) {
3425 fio->old_blkaddr = fio->new_blkaddr;
3426 goto reallocate;
3427 }
3428
3429 update_device_state(fio);
3430
3431 if (keep_order)
3432 up_read(&fio->sbi->io_order_lock);
3433 }
3434
3435 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3436 enum iostat_type io_type)
3437 {
3438 struct f2fs_io_info fio = {
3439 .sbi = sbi,
3440 .type = META,
3441 .temp = HOT,
3442 .op = REQ_OP_WRITE,
3443 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3444 .old_blkaddr = page->index,
3445 .new_blkaddr = page->index,
3446 .page = page,
3447 .encrypted_page = NULL,
3448 .in_list = false,
3449 };
3450
3451 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3452 fio.op_flags &= ~REQ_META;
3453
3454 set_page_writeback(page);
3455 ClearPageError(page);
3456 f2fs_submit_page_write(&fio);
3457
3458 stat_inc_meta_count(sbi, page->index);
3459 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3460 }
3461
3462 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3463 {
3464 struct f2fs_summary sum;
3465
3466 set_summary(&sum, nid, 0, 0);
3467 do_write_page(&sum, fio);
3468
3469 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3470 }
3471
3472 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3473 struct f2fs_io_info *fio)
3474 {
3475 struct f2fs_sb_info *sbi = fio->sbi;
3476 struct f2fs_summary sum;
3477
3478 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3479 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3480 do_write_page(&sum, fio);
3481 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3482
3483 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3484 }
3485
3486 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3487 {
3488 int err;
3489 struct f2fs_sb_info *sbi = fio->sbi;
3490 unsigned int segno;
3491
3492 fio->new_blkaddr = fio->old_blkaddr;
3493 /* i/o temperature is needed for passing down write hints */
3494 __get_segment_type(fio);
3495
3496 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3497
3498 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3499 set_sbi_flag(sbi, SBI_NEED_FSCK);
3500 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3501 __func__, segno);
3502 return -EFSCORRUPTED;
3503 }
3504
3505 stat_inc_inplace_blocks(fio->sbi);
3506
3507 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3508 err = f2fs_merge_page_bio(fio);
3509 else
3510 err = f2fs_submit_page_bio(fio);
3511 if (!err) {
3512 update_device_state(fio);
3513 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3514 }
3515
3516 return err;
3517 }
3518
3519 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3520 unsigned int segno)
3521 {
3522 int i;
3523
3524 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3525 if (CURSEG_I(sbi, i)->segno == segno)
3526 break;
3527 }
3528 return i;
3529 }
3530
3531 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3532 block_t old_blkaddr, block_t new_blkaddr,
3533 bool recover_curseg, bool recover_newaddr,
3534 bool from_gc)
3535 {
3536 struct sit_info *sit_i = SIT_I(sbi);
3537 struct curseg_info *curseg;
3538 unsigned int segno, old_cursegno;
3539 struct seg_entry *se;
3540 int type;
3541 unsigned short old_blkoff;
3542
3543 segno = GET_SEGNO(sbi, new_blkaddr);
3544 se = get_seg_entry(sbi, segno);
3545 type = se->type;
3546
3547 down_write(&SM_I(sbi)->curseg_lock);
3548
3549 if (!recover_curseg) {
3550 /* for recovery flow */
3551 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3552 if (old_blkaddr == NULL_ADDR)
3553 type = CURSEG_COLD_DATA;
3554 else
3555 type = CURSEG_WARM_DATA;
3556 }
3557 } else {
3558 if (IS_CURSEG(sbi, segno)) {
3559 /* se->type is volatile as SSR allocation */
3560 type = __f2fs_get_curseg(sbi, segno);
3561 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3562 } else {
3563 type = CURSEG_WARM_DATA;
3564 }
3565 }
3566
3567 f2fs_bug_on(sbi, !IS_DATASEG(type));
3568 curseg = CURSEG_I(sbi, type);
3569
3570 mutex_lock(&curseg->curseg_mutex);
3571 down_write(&sit_i->sentry_lock);
3572
3573 old_cursegno = curseg->segno;
3574 old_blkoff = curseg->next_blkoff;
3575
3576 /* change the current segment */
3577 if (segno != curseg->segno) {
3578 curseg->next_segno = segno;
3579 change_curseg(sbi, type, true);
3580 }
3581
3582 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3583 __add_sum_entry(sbi, type, sum);
3584
3585 if (!recover_curseg || recover_newaddr) {
3586 if (!from_gc)
3587 update_segment_mtime(sbi, new_blkaddr, 0);
3588 update_sit_entry(sbi, new_blkaddr, 1);
3589 }
3590 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3591 invalidate_mapping_pages(META_MAPPING(sbi),
3592 old_blkaddr, old_blkaddr);
3593 if (!from_gc)
3594 update_segment_mtime(sbi, old_blkaddr, 0);
3595 update_sit_entry(sbi, old_blkaddr, -1);
3596 }
3597
3598 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3599 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3600
3601 locate_dirty_segment(sbi, old_cursegno);
3602
3603 if (recover_curseg) {
3604 if (old_cursegno != curseg->segno) {
3605 curseg->next_segno = old_cursegno;
3606 change_curseg(sbi, type, true);
3607 }
3608 curseg->next_blkoff = old_blkoff;
3609 }
3610
3611 up_write(&sit_i->sentry_lock);
3612 mutex_unlock(&curseg->curseg_mutex);
3613 up_write(&SM_I(sbi)->curseg_lock);
3614 }
3615
3616 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3617 block_t old_addr, block_t new_addr,
3618 unsigned char version, bool recover_curseg,
3619 bool recover_newaddr)
3620 {
3621 struct f2fs_summary sum;
3622
3623 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3624
3625 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3626 recover_curseg, recover_newaddr, false);
3627
3628 f2fs_update_data_blkaddr(dn, new_addr);
3629 }
3630
3631 void f2fs_wait_on_page_writeback(struct page *page,
3632 enum page_type type, bool ordered, bool locked)
3633 {
3634 if (PageWriteback(page)) {
3635 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3636
3637 /* submit cached LFS IO */
3638 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3639 /* sbumit cached IPU IO */
3640 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3641 if (ordered) {
3642 wait_on_page_writeback(page);
3643 f2fs_bug_on(sbi, locked && PageWriteback(page));
3644 } else {
3645 wait_for_stable_page(page);
3646 }
3647 }
3648 }
3649
3650 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3651 {
3652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3653 struct page *cpage;
3654
3655 if (!f2fs_post_read_required(inode))
3656 return;
3657
3658 if (!__is_valid_data_blkaddr(blkaddr))
3659 return;
3660
3661 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3662 if (cpage) {
3663 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3664 f2fs_put_page(cpage, 1);
3665 }
3666 }
3667
3668 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3669 block_t len)
3670 {
3671 block_t i;
3672
3673 for (i = 0; i < len; i++)
3674 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3675 }
3676
3677 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3678 {
3679 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3680 struct curseg_info *seg_i;
3681 unsigned char *kaddr;
3682 struct page *page;
3683 block_t start;
3684 int i, j, offset;
3685
3686 start = start_sum_block(sbi);
3687
3688 page = f2fs_get_meta_page(sbi, start++);
3689 if (IS_ERR(page))
3690 return PTR_ERR(page);
3691 kaddr = (unsigned char *)page_address(page);
3692
3693 /* Step 1: restore nat cache */
3694 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3695 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3696
3697 /* Step 2: restore sit cache */
3698 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3699 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3700 offset = 2 * SUM_JOURNAL_SIZE;
3701
3702 /* Step 3: restore summary entries */
3703 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3704 unsigned short blk_off;
3705 unsigned int segno;
3706
3707 seg_i = CURSEG_I(sbi, i);
3708 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3709 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3710 seg_i->next_segno = segno;
3711 reset_curseg(sbi, i, 0);
3712 seg_i->alloc_type = ckpt->alloc_type[i];
3713 seg_i->next_blkoff = blk_off;
3714
3715 if (seg_i->alloc_type == SSR)
3716 blk_off = sbi->blocks_per_seg;
3717
3718 for (j = 0; j < blk_off; j++) {
3719 struct f2fs_summary *s;
3720 s = (struct f2fs_summary *)(kaddr + offset);
3721 seg_i->sum_blk->entries[j] = *s;
3722 offset += SUMMARY_SIZE;
3723 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3724 SUM_FOOTER_SIZE)
3725 continue;
3726
3727 f2fs_put_page(page, 1);
3728 page = NULL;
3729
3730 page = f2fs_get_meta_page(sbi, start++);
3731 if (IS_ERR(page))
3732 return PTR_ERR(page);
3733 kaddr = (unsigned char *)page_address(page);
3734 offset = 0;
3735 }
3736 }
3737 f2fs_put_page(page, 1);
3738 return 0;
3739 }
3740
3741 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3742 {
3743 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3744 struct f2fs_summary_block *sum;
3745 struct curseg_info *curseg;
3746 struct page *new;
3747 unsigned short blk_off;
3748 unsigned int segno = 0;
3749 block_t blk_addr = 0;
3750 int err = 0;
3751
3752 /* get segment number and block addr */
3753 if (IS_DATASEG(type)) {
3754 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3755 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3756 CURSEG_HOT_DATA]);
3757 if (__exist_node_summaries(sbi))
3758 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3759 else
3760 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3761 } else {
3762 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3763 CURSEG_HOT_NODE]);
3764 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3765 CURSEG_HOT_NODE]);
3766 if (__exist_node_summaries(sbi))
3767 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3768 type - CURSEG_HOT_NODE);
3769 else
3770 blk_addr = GET_SUM_BLOCK(sbi, segno);
3771 }
3772
3773 new = f2fs_get_meta_page(sbi, blk_addr);
3774 if (IS_ERR(new))
3775 return PTR_ERR(new);
3776 sum = (struct f2fs_summary_block *)page_address(new);
3777
3778 if (IS_NODESEG(type)) {
3779 if (__exist_node_summaries(sbi)) {
3780 struct f2fs_summary *ns = &sum->entries[0];
3781 int i;
3782 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3783 ns->version = 0;
3784 ns->ofs_in_node = 0;
3785 }
3786 } else {
3787 err = f2fs_restore_node_summary(sbi, segno, sum);
3788 if (err)
3789 goto out;
3790 }
3791 }
3792
3793 /* set uncompleted segment to curseg */
3794 curseg = CURSEG_I(sbi, type);
3795 mutex_lock(&curseg->curseg_mutex);
3796
3797 /* update journal info */
3798 down_write(&curseg->journal_rwsem);
3799 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3800 up_write(&curseg->journal_rwsem);
3801
3802 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3803 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3804 curseg->next_segno = segno;
3805 reset_curseg(sbi, type, 0);
3806 curseg->alloc_type = ckpt->alloc_type[type];
3807 curseg->next_blkoff = blk_off;
3808 mutex_unlock(&curseg->curseg_mutex);
3809 out:
3810 f2fs_put_page(new, 1);
3811 return err;
3812 }
3813
3814 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3815 {
3816 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3817 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3818 int type = CURSEG_HOT_DATA;
3819 int err;
3820
3821 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3822 int npages = f2fs_npages_for_summary_flush(sbi, true);
3823
3824 if (npages >= 2)
3825 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3826 META_CP, true);
3827
3828 /* restore for compacted data summary */
3829 err = read_compacted_summaries(sbi);
3830 if (err)
3831 return err;
3832 type = CURSEG_HOT_NODE;
3833 }
3834
3835 if (__exist_node_summaries(sbi))
3836 f2fs_ra_meta_pages(sbi,
3837 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3838 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3839
3840 for (; type <= CURSEG_COLD_NODE; type++) {
3841 err = read_normal_summaries(sbi, type);
3842 if (err)
3843 return err;
3844 }
3845
3846 /* sanity check for summary blocks */
3847 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3848 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3849 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3850 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3851 return -EINVAL;
3852 }
3853
3854 return 0;
3855 }
3856
3857 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3858 {
3859 struct page *page;
3860 unsigned char *kaddr;
3861 struct f2fs_summary *summary;
3862 struct curseg_info *seg_i;
3863 int written_size = 0;
3864 int i, j;
3865
3866 page = f2fs_grab_meta_page(sbi, blkaddr++);
3867 kaddr = (unsigned char *)page_address(page);
3868 memset(kaddr, 0, PAGE_SIZE);
3869
3870 /* Step 1: write nat cache */
3871 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3872 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3873 written_size += SUM_JOURNAL_SIZE;
3874
3875 /* Step 2: write sit cache */
3876 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3877 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3878 written_size += SUM_JOURNAL_SIZE;
3879
3880 /* Step 3: write summary entries */
3881 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3882 unsigned short blkoff;
3883 seg_i = CURSEG_I(sbi, i);
3884 if (sbi->ckpt->alloc_type[i] == SSR)
3885 blkoff = sbi->blocks_per_seg;
3886 else
3887 blkoff = curseg_blkoff(sbi, i);
3888
3889 for (j = 0; j < blkoff; j++) {
3890 if (!page) {
3891 page = f2fs_grab_meta_page(sbi, blkaddr++);
3892 kaddr = (unsigned char *)page_address(page);
3893 memset(kaddr, 0, PAGE_SIZE);
3894 written_size = 0;
3895 }
3896 summary = (struct f2fs_summary *)(kaddr + written_size);
3897 *summary = seg_i->sum_blk->entries[j];
3898 written_size += SUMMARY_SIZE;
3899
3900 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3901 SUM_FOOTER_SIZE)
3902 continue;
3903
3904 set_page_dirty(page);
3905 f2fs_put_page(page, 1);
3906 page = NULL;
3907 }
3908 }
3909 if (page) {
3910 set_page_dirty(page);
3911 f2fs_put_page(page, 1);
3912 }
3913 }
3914
3915 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3916 block_t blkaddr, int type)
3917 {
3918 int i, end;
3919 if (IS_DATASEG(type))
3920 end = type + NR_CURSEG_DATA_TYPE;
3921 else
3922 end = type + NR_CURSEG_NODE_TYPE;
3923
3924 for (i = type; i < end; i++)
3925 write_current_sum_page(sbi, i, blkaddr + (i - type));
3926 }
3927
3928 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3929 {
3930 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3931 write_compacted_summaries(sbi, start_blk);
3932 else
3933 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3934 }
3935
3936 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3937 {
3938 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3939 }
3940
3941 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3942 unsigned int val, int alloc)
3943 {
3944 int i;
3945
3946 if (type == NAT_JOURNAL) {
3947 for (i = 0; i < nats_in_cursum(journal); i++) {
3948 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3949 return i;
3950 }
3951 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3952 return update_nats_in_cursum(journal, 1);
3953 } else if (type == SIT_JOURNAL) {
3954 for (i = 0; i < sits_in_cursum(journal); i++)
3955 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3956 return i;
3957 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3958 return update_sits_in_cursum(journal, 1);
3959 }
3960 return -1;
3961 }
3962
3963 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3964 unsigned int segno)
3965 {
3966 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3967 }
3968
3969 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3970 unsigned int start)
3971 {
3972 struct sit_info *sit_i = SIT_I(sbi);
3973 struct page *page;
3974 pgoff_t src_off, dst_off;
3975
3976 src_off = current_sit_addr(sbi, start);
3977 dst_off = next_sit_addr(sbi, src_off);
3978
3979 page = f2fs_grab_meta_page(sbi, dst_off);
3980 seg_info_to_sit_page(sbi, page, start);
3981
3982 set_page_dirty(page);
3983 set_to_next_sit(sit_i, start);
3984
3985 return page;
3986 }
3987
3988 static struct sit_entry_set *grab_sit_entry_set(void)
3989 {
3990 struct sit_entry_set *ses =
3991 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3992
3993 ses->entry_cnt = 0;
3994 INIT_LIST_HEAD(&ses->set_list);
3995 return ses;
3996 }
3997
3998 static void release_sit_entry_set(struct sit_entry_set *ses)
3999 {
4000 list_del(&ses->set_list);
4001 kmem_cache_free(sit_entry_set_slab, ses);
4002 }
4003
4004 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4005 struct list_head *head)
4006 {
4007 struct sit_entry_set *next = ses;
4008
4009 if (list_is_last(&ses->set_list, head))
4010 return;
4011
4012 list_for_each_entry_continue(next, head, set_list)
4013 if (ses->entry_cnt <= next->entry_cnt)
4014 break;
4015
4016 list_move_tail(&ses->set_list, &next->set_list);
4017 }
4018
4019 static void add_sit_entry(unsigned int segno, struct list_head *head)
4020 {
4021 struct sit_entry_set *ses;
4022 unsigned int start_segno = START_SEGNO(segno);
4023
4024 list_for_each_entry(ses, head, set_list) {
4025 if (ses->start_segno == start_segno) {
4026 ses->entry_cnt++;
4027 adjust_sit_entry_set(ses, head);
4028 return;
4029 }
4030 }
4031
4032 ses = grab_sit_entry_set();
4033
4034 ses->start_segno = start_segno;
4035 ses->entry_cnt++;
4036 list_add(&ses->set_list, head);
4037 }
4038
4039 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4040 {
4041 struct f2fs_sm_info *sm_info = SM_I(sbi);
4042 struct list_head *set_list = &sm_info->sit_entry_set;
4043 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4044 unsigned int segno;
4045
4046 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4047 add_sit_entry(segno, set_list);
4048 }
4049
4050 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4051 {
4052 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4053 struct f2fs_journal *journal = curseg->journal;
4054 int i;
4055
4056 down_write(&curseg->journal_rwsem);
4057 for (i = 0; i < sits_in_cursum(journal); i++) {
4058 unsigned int segno;
4059 bool dirtied;
4060
4061 segno = le32_to_cpu(segno_in_journal(journal, i));
4062 dirtied = __mark_sit_entry_dirty(sbi, segno);
4063
4064 if (!dirtied)
4065 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4066 }
4067 update_sits_in_cursum(journal, -i);
4068 up_write(&curseg->journal_rwsem);
4069 }
4070
4071 /*
4072 * CP calls this function, which flushes SIT entries including sit_journal,
4073 * and moves prefree segs to free segs.
4074 */
4075 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4076 {
4077 struct sit_info *sit_i = SIT_I(sbi);
4078 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4079 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4080 struct f2fs_journal *journal = curseg->journal;
4081 struct sit_entry_set *ses, *tmp;
4082 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4083 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4084 struct seg_entry *se;
4085
4086 down_write(&sit_i->sentry_lock);
4087
4088 if (!sit_i->dirty_sentries)
4089 goto out;
4090
4091 /*
4092 * add and account sit entries of dirty bitmap in sit entry
4093 * set temporarily
4094 */
4095 add_sits_in_set(sbi);
4096
4097 /*
4098 * if there are no enough space in journal to store dirty sit
4099 * entries, remove all entries from journal and add and account
4100 * them in sit entry set.
4101 */
4102 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4103 !to_journal)
4104 remove_sits_in_journal(sbi);
4105
4106 /*
4107 * there are two steps to flush sit entries:
4108 * #1, flush sit entries to journal in current cold data summary block.
4109 * #2, flush sit entries to sit page.
4110 */
4111 list_for_each_entry_safe(ses, tmp, head, set_list) {
4112 struct page *page = NULL;
4113 struct f2fs_sit_block *raw_sit = NULL;
4114 unsigned int start_segno = ses->start_segno;
4115 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4116 (unsigned long)MAIN_SEGS(sbi));
4117 unsigned int segno = start_segno;
4118
4119 if (to_journal &&
4120 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4121 to_journal = false;
4122
4123 if (to_journal) {
4124 down_write(&curseg->journal_rwsem);
4125 } else {
4126 page = get_next_sit_page(sbi, start_segno);
4127 raw_sit = page_address(page);
4128 }
4129
4130 /* flush dirty sit entries in region of current sit set */
4131 for_each_set_bit_from(segno, bitmap, end) {
4132 int offset, sit_offset;
4133
4134 se = get_seg_entry(sbi, segno);
4135 #ifdef CONFIG_F2FS_CHECK_FS
4136 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4137 SIT_VBLOCK_MAP_SIZE))
4138 f2fs_bug_on(sbi, 1);
4139 #endif
4140
4141 /* add discard candidates */
4142 if (!(cpc->reason & CP_DISCARD)) {
4143 cpc->trim_start = segno;
4144 add_discard_addrs(sbi, cpc, false);
4145 }
4146
4147 if (to_journal) {
4148 offset = f2fs_lookup_journal_in_cursum(journal,
4149 SIT_JOURNAL, segno, 1);
4150 f2fs_bug_on(sbi, offset < 0);
4151 segno_in_journal(journal, offset) =
4152 cpu_to_le32(segno);
4153 seg_info_to_raw_sit(se,
4154 &sit_in_journal(journal, offset));
4155 check_block_count(sbi, segno,
4156 &sit_in_journal(journal, offset));
4157 } else {
4158 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4159 seg_info_to_raw_sit(se,
4160 &raw_sit->entries[sit_offset]);
4161 check_block_count(sbi, segno,
4162 &raw_sit->entries[sit_offset]);
4163 }
4164
4165 __clear_bit(segno, bitmap);
4166 sit_i->dirty_sentries--;
4167 ses->entry_cnt--;
4168 }
4169
4170 if (to_journal)
4171 up_write(&curseg->journal_rwsem);
4172 else
4173 f2fs_put_page(page, 1);
4174
4175 f2fs_bug_on(sbi, ses->entry_cnt);
4176 release_sit_entry_set(ses);
4177 }
4178
4179 f2fs_bug_on(sbi, !list_empty(head));
4180 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4181 out:
4182 if (cpc->reason & CP_DISCARD) {
4183 __u64 trim_start = cpc->trim_start;
4184
4185 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4186 add_discard_addrs(sbi, cpc, false);
4187
4188 cpc->trim_start = trim_start;
4189 }
4190 up_write(&sit_i->sentry_lock);
4191
4192 set_prefree_as_free_segments(sbi);
4193 }
4194
4195 static int build_sit_info(struct f2fs_sb_info *sbi)
4196 {
4197 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4198 struct sit_info *sit_i;
4199 unsigned int sit_segs, start;
4200 char *src_bitmap, *bitmap;
4201 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4202
4203 /* allocate memory for SIT information */
4204 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4205 if (!sit_i)
4206 return -ENOMEM;
4207
4208 SM_I(sbi)->sit_info = sit_i;
4209
4210 sit_i->sentries =
4211 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4212 MAIN_SEGS(sbi)),
4213 GFP_KERNEL);
4214 if (!sit_i->sentries)
4215 return -ENOMEM;
4216
4217 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4218 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4219 GFP_KERNEL);
4220 if (!sit_i->dirty_sentries_bitmap)
4221 return -ENOMEM;
4222
4223 #ifdef CONFIG_F2FS_CHECK_FS
4224 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4225 #else
4226 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4227 #endif
4228 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4229 if (!sit_i->bitmap)
4230 return -ENOMEM;
4231
4232 bitmap = sit_i->bitmap;
4233
4234 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4235 sit_i->sentries[start].cur_valid_map = bitmap;
4236 bitmap += SIT_VBLOCK_MAP_SIZE;
4237
4238 sit_i->sentries[start].ckpt_valid_map = bitmap;
4239 bitmap += SIT_VBLOCK_MAP_SIZE;
4240
4241 #ifdef CONFIG_F2FS_CHECK_FS
4242 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4243 bitmap += SIT_VBLOCK_MAP_SIZE;
4244 #endif
4245
4246 sit_i->sentries[start].discard_map = bitmap;
4247 bitmap += SIT_VBLOCK_MAP_SIZE;
4248 }
4249
4250 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4251 if (!sit_i->tmp_map)
4252 return -ENOMEM;
4253
4254 if (__is_large_section(sbi)) {
4255 sit_i->sec_entries =
4256 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4257 MAIN_SECS(sbi)),
4258 GFP_KERNEL);
4259 if (!sit_i->sec_entries)
4260 return -ENOMEM;
4261 }
4262
4263 /* get information related with SIT */
4264 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4265
4266 /* setup SIT bitmap from ckeckpoint pack */
4267 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4268 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4269
4270 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4271 if (!sit_i->sit_bitmap)
4272 return -ENOMEM;
4273
4274 #ifdef CONFIG_F2FS_CHECK_FS
4275 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4276 sit_bitmap_size, GFP_KERNEL);
4277 if (!sit_i->sit_bitmap_mir)
4278 return -ENOMEM;
4279
4280 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4281 main_bitmap_size, GFP_KERNEL);
4282 if (!sit_i->invalid_segmap)
4283 return -ENOMEM;
4284 #endif
4285
4286 /* init SIT information */
4287 sit_i->s_ops = &default_salloc_ops;
4288
4289 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4290 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4291 sit_i->written_valid_blocks = 0;
4292 sit_i->bitmap_size = sit_bitmap_size;
4293 sit_i->dirty_sentries = 0;
4294 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4295 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4296 sit_i->mounted_time = ktime_get_boottime_seconds();
4297 init_rwsem(&sit_i->sentry_lock);
4298 return 0;
4299 }
4300
4301 static int build_free_segmap(struct f2fs_sb_info *sbi)
4302 {
4303 struct free_segmap_info *free_i;
4304 unsigned int bitmap_size, sec_bitmap_size;
4305
4306 /* allocate memory for free segmap information */
4307 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4308 if (!free_i)
4309 return -ENOMEM;
4310
4311 SM_I(sbi)->free_info = free_i;
4312
4313 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4314 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4315 if (!free_i->free_segmap)
4316 return -ENOMEM;
4317
4318 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4319 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4320 if (!free_i->free_secmap)
4321 return -ENOMEM;
4322
4323 /* set all segments as dirty temporarily */
4324 memset(free_i->free_segmap, 0xff, bitmap_size);
4325 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4326
4327 /* init free segmap information */
4328 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4329 free_i->free_segments = 0;
4330 free_i->free_sections = 0;
4331 spin_lock_init(&free_i->segmap_lock);
4332 return 0;
4333 }
4334
4335 static int build_curseg(struct f2fs_sb_info *sbi)
4336 {
4337 struct curseg_info *array;
4338 int i;
4339
4340 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4341 sizeof(*array)), GFP_KERNEL);
4342 if (!array)
4343 return -ENOMEM;
4344
4345 SM_I(sbi)->curseg_array = array;
4346
4347 for (i = 0; i < NO_CHECK_TYPE; i++) {
4348 mutex_init(&array[i].curseg_mutex);
4349 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4350 if (!array[i].sum_blk)
4351 return -ENOMEM;
4352 init_rwsem(&array[i].journal_rwsem);
4353 array[i].journal = f2fs_kzalloc(sbi,
4354 sizeof(struct f2fs_journal), GFP_KERNEL);
4355 if (!array[i].journal)
4356 return -ENOMEM;
4357 if (i < NR_PERSISTENT_LOG)
4358 array[i].seg_type = CURSEG_HOT_DATA + i;
4359 else if (i == CURSEG_COLD_DATA_PINNED)
4360 array[i].seg_type = CURSEG_COLD_DATA;
4361 else if (i == CURSEG_ALL_DATA_ATGC)
4362 array[i].seg_type = CURSEG_COLD_DATA;
4363 array[i].segno = NULL_SEGNO;
4364 array[i].next_blkoff = 0;
4365 array[i].inited = false;
4366 }
4367 return restore_curseg_summaries(sbi);
4368 }
4369
4370 static int build_sit_entries(struct f2fs_sb_info *sbi)
4371 {
4372 struct sit_info *sit_i = SIT_I(sbi);
4373 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4374 struct f2fs_journal *journal = curseg->journal;
4375 struct seg_entry *se;
4376 struct f2fs_sit_entry sit;
4377 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4378 unsigned int i, start, end;
4379 unsigned int readed, start_blk = 0;
4380 int err = 0;
4381 block_t total_node_blocks = 0;
4382
4383 do {
4384 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4385 META_SIT, true);
4386
4387 start = start_blk * sit_i->sents_per_block;
4388 end = (start_blk + readed) * sit_i->sents_per_block;
4389
4390 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4391 struct f2fs_sit_block *sit_blk;
4392 struct page *page;
4393
4394 se = &sit_i->sentries[start];
4395 page = get_current_sit_page(sbi, start);
4396 if (IS_ERR(page))
4397 return PTR_ERR(page);
4398 sit_blk = (struct f2fs_sit_block *)page_address(page);
4399 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4400 f2fs_put_page(page, 1);
4401
4402 err = check_block_count(sbi, start, &sit);
4403 if (err)
4404 return err;
4405 seg_info_from_raw_sit(se, &sit);
4406 if (IS_NODESEG(se->type))
4407 total_node_blocks += se->valid_blocks;
4408
4409 /* build discard map only one time */
4410 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4411 memset(se->discard_map, 0xff,
4412 SIT_VBLOCK_MAP_SIZE);
4413 } else {
4414 memcpy(se->discard_map,
4415 se->cur_valid_map,
4416 SIT_VBLOCK_MAP_SIZE);
4417 sbi->discard_blks +=
4418 sbi->blocks_per_seg -
4419 se->valid_blocks;
4420 }
4421
4422 if (__is_large_section(sbi))
4423 get_sec_entry(sbi, start)->valid_blocks +=
4424 se->valid_blocks;
4425 }
4426 start_blk += readed;
4427 } while (start_blk < sit_blk_cnt);
4428
4429 down_read(&curseg->journal_rwsem);
4430 for (i = 0; i < sits_in_cursum(journal); i++) {
4431 unsigned int old_valid_blocks;
4432
4433 start = le32_to_cpu(segno_in_journal(journal, i));
4434 if (start >= MAIN_SEGS(sbi)) {
4435 f2fs_err(sbi, "Wrong journal entry on segno %u",
4436 start);
4437 err = -EFSCORRUPTED;
4438 break;
4439 }
4440
4441 se = &sit_i->sentries[start];
4442 sit = sit_in_journal(journal, i);
4443
4444 old_valid_blocks = se->valid_blocks;
4445 if (IS_NODESEG(se->type))
4446 total_node_blocks -= old_valid_blocks;
4447
4448 err = check_block_count(sbi, start, &sit);
4449 if (err)
4450 break;
4451 seg_info_from_raw_sit(se, &sit);
4452 if (IS_NODESEG(se->type))
4453 total_node_blocks += se->valid_blocks;
4454
4455 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4456 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4457 } else {
4458 memcpy(se->discard_map, se->cur_valid_map,
4459 SIT_VBLOCK_MAP_SIZE);
4460 sbi->discard_blks += old_valid_blocks;
4461 sbi->discard_blks -= se->valid_blocks;
4462 }
4463
4464 if (__is_large_section(sbi)) {
4465 get_sec_entry(sbi, start)->valid_blocks +=
4466 se->valid_blocks;
4467 get_sec_entry(sbi, start)->valid_blocks -=
4468 old_valid_blocks;
4469 }
4470 }
4471 up_read(&curseg->journal_rwsem);
4472
4473 if (!err && total_node_blocks != valid_node_count(sbi)) {
4474 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4475 total_node_blocks, valid_node_count(sbi));
4476 err = -EFSCORRUPTED;
4477 }
4478
4479 return err;
4480 }
4481
4482 static void init_free_segmap(struct f2fs_sb_info *sbi)
4483 {
4484 unsigned int start;
4485 int type;
4486 struct seg_entry *sentry;
4487
4488 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4489 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4490 continue;
4491 sentry = get_seg_entry(sbi, start);
4492 if (!sentry->valid_blocks)
4493 __set_free(sbi, start);
4494 else
4495 SIT_I(sbi)->written_valid_blocks +=
4496 sentry->valid_blocks;
4497 }
4498
4499 /* set use the current segments */
4500 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4501 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4502 __set_test_and_inuse(sbi, curseg_t->segno);
4503 }
4504 }
4505
4506 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4507 {
4508 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4509 struct free_segmap_info *free_i = FREE_I(sbi);
4510 unsigned int segno = 0, offset = 0, secno;
4511 block_t valid_blocks, usable_blks_in_seg;
4512 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4513
4514 while (1) {
4515 /* find dirty segment based on free segmap */
4516 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4517 if (segno >= MAIN_SEGS(sbi))
4518 break;
4519 offset = segno + 1;
4520 valid_blocks = get_valid_blocks(sbi, segno, false);
4521 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4522 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4523 continue;
4524 if (valid_blocks > usable_blks_in_seg) {
4525 f2fs_bug_on(sbi, 1);
4526 continue;
4527 }
4528 mutex_lock(&dirty_i->seglist_lock);
4529 __locate_dirty_segment(sbi, segno, DIRTY);
4530 mutex_unlock(&dirty_i->seglist_lock);
4531 }
4532
4533 if (!__is_large_section(sbi))
4534 return;
4535
4536 mutex_lock(&dirty_i->seglist_lock);
4537 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4538 valid_blocks = get_valid_blocks(sbi, segno, true);
4539 secno = GET_SEC_FROM_SEG(sbi, segno);
4540
4541 if (!valid_blocks || valid_blocks == blks_per_sec)
4542 continue;
4543 if (IS_CURSEC(sbi, secno))
4544 continue;
4545 set_bit(secno, dirty_i->dirty_secmap);
4546 }
4547 mutex_unlock(&dirty_i->seglist_lock);
4548 }
4549
4550 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4551 {
4552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4553 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4554
4555 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4556 if (!dirty_i->victim_secmap)
4557 return -ENOMEM;
4558 return 0;
4559 }
4560
4561 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4562 {
4563 struct dirty_seglist_info *dirty_i;
4564 unsigned int bitmap_size, i;
4565
4566 /* allocate memory for dirty segments list information */
4567 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4568 GFP_KERNEL);
4569 if (!dirty_i)
4570 return -ENOMEM;
4571
4572 SM_I(sbi)->dirty_info = dirty_i;
4573 mutex_init(&dirty_i->seglist_lock);
4574
4575 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4576
4577 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4578 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4579 GFP_KERNEL);
4580 if (!dirty_i->dirty_segmap[i])
4581 return -ENOMEM;
4582 }
4583
4584 if (__is_large_section(sbi)) {
4585 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4586 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4587 bitmap_size, GFP_KERNEL);
4588 if (!dirty_i->dirty_secmap)
4589 return -ENOMEM;
4590 }
4591
4592 init_dirty_segmap(sbi);
4593 return init_victim_secmap(sbi);
4594 }
4595
4596 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4597 {
4598 int i;
4599
4600 /*
4601 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4602 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4603 */
4604 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4605 struct curseg_info *curseg = CURSEG_I(sbi, i);
4606 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4607 unsigned int blkofs = curseg->next_blkoff;
4608
4609 sanity_check_seg_type(sbi, curseg->seg_type);
4610
4611 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4612 goto out;
4613
4614 if (curseg->alloc_type == SSR)
4615 continue;
4616
4617 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4618 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4619 continue;
4620 out:
4621 f2fs_err(sbi,
4622 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4623 i, curseg->segno, curseg->alloc_type,
4624 curseg->next_blkoff, blkofs);
4625 return -EFSCORRUPTED;
4626 }
4627 }
4628 return 0;
4629 }
4630
4631 #ifdef CONFIG_BLK_DEV_ZONED
4632
4633 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4634 struct f2fs_dev_info *fdev,
4635 struct blk_zone *zone)
4636 {
4637 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4638 block_t zone_block, wp_block, last_valid_block;
4639 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4640 int i, s, b, ret;
4641 struct seg_entry *se;
4642
4643 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4644 return 0;
4645
4646 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4647 wp_segno = GET_SEGNO(sbi, wp_block);
4648 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4649 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4650 zone_segno = GET_SEGNO(sbi, zone_block);
4651 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4652
4653 if (zone_segno >= MAIN_SEGS(sbi))
4654 return 0;
4655
4656 /*
4657 * Skip check of zones cursegs point to, since
4658 * fix_curseg_write_pointer() checks them.
4659 */
4660 for (i = 0; i < NO_CHECK_TYPE; i++)
4661 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4662 CURSEG_I(sbi, i)->segno))
4663 return 0;
4664
4665 /*
4666 * Get last valid block of the zone.
4667 */
4668 last_valid_block = zone_block - 1;
4669 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4670 segno = zone_segno + s;
4671 se = get_seg_entry(sbi, segno);
4672 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4673 if (f2fs_test_bit(b, se->cur_valid_map)) {
4674 last_valid_block = START_BLOCK(sbi, segno) + b;
4675 break;
4676 }
4677 if (last_valid_block >= zone_block)
4678 break;
4679 }
4680
4681 /*
4682 * If last valid block is beyond the write pointer, report the
4683 * inconsistency. This inconsistency does not cause write error
4684 * because the zone will not be selected for write operation until
4685 * it get discarded. Just report it.
4686 */
4687 if (last_valid_block >= wp_block) {
4688 f2fs_notice(sbi, "Valid block beyond write pointer: "
4689 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4690 GET_SEGNO(sbi, last_valid_block),
4691 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4692 wp_segno, wp_blkoff);
4693 return 0;
4694 }
4695
4696 /*
4697 * If there is no valid block in the zone and if write pointer is
4698 * not at zone start, reset the write pointer.
4699 */
4700 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4701 f2fs_notice(sbi,
4702 "Zone without valid block has non-zero write "
4703 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4704 wp_segno, wp_blkoff);
4705 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4706 zone->len >> log_sectors_per_block);
4707 if (ret) {
4708 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4709 fdev->path, ret);
4710 return ret;
4711 }
4712 }
4713
4714 return 0;
4715 }
4716
4717 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4718 block_t zone_blkaddr)
4719 {
4720 int i;
4721
4722 for (i = 0; i < sbi->s_ndevs; i++) {
4723 if (!bdev_is_zoned(FDEV(i).bdev))
4724 continue;
4725 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4726 zone_blkaddr <= FDEV(i).end_blk))
4727 return &FDEV(i);
4728 }
4729
4730 return NULL;
4731 }
4732
4733 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4734 void *data) {
4735 memcpy(data, zone, sizeof(struct blk_zone));
4736 return 0;
4737 }
4738
4739 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4740 {
4741 struct curseg_info *cs = CURSEG_I(sbi, type);
4742 struct f2fs_dev_info *zbd;
4743 struct blk_zone zone;
4744 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4745 block_t cs_zone_block, wp_block;
4746 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4747 sector_t zone_sector;
4748 int err;
4749
4750 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4751 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4752
4753 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4754 if (!zbd)
4755 return 0;
4756
4757 /* report zone for the sector the curseg points to */
4758 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4759 << log_sectors_per_block;
4760 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4761 report_one_zone_cb, &zone);
4762 if (err != 1) {
4763 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4764 zbd->path, err);
4765 return err;
4766 }
4767
4768 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4769 return 0;
4770
4771 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4772 wp_segno = GET_SEGNO(sbi, wp_block);
4773 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4774 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4775
4776 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4777 wp_sector_off == 0)
4778 return 0;
4779
4780 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4781 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4782 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4783
4784 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4785 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4786 allocate_segment_by_default(sbi, type, true);
4787
4788 /* check consistency of the zone curseg pointed to */
4789 if (check_zone_write_pointer(sbi, zbd, &zone))
4790 return -EIO;
4791
4792 /* check newly assigned zone */
4793 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4794 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4795
4796 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4797 if (!zbd)
4798 return 0;
4799
4800 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4801 << log_sectors_per_block;
4802 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4803 report_one_zone_cb, &zone);
4804 if (err != 1) {
4805 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4806 zbd->path, err);
4807 return err;
4808 }
4809
4810 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4811 return 0;
4812
4813 if (zone.wp != zone.start) {
4814 f2fs_notice(sbi,
4815 "New zone for curseg[%d] is not yet discarded. "
4816 "Reset the zone: curseg[0x%x,0x%x]",
4817 type, cs->segno, cs->next_blkoff);
4818 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4819 zone_sector >> log_sectors_per_block,
4820 zone.len >> log_sectors_per_block);
4821 if (err) {
4822 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4823 zbd->path, err);
4824 return err;
4825 }
4826 }
4827
4828 return 0;
4829 }
4830
4831 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4832 {
4833 int i, ret;
4834
4835 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4836 ret = fix_curseg_write_pointer(sbi, i);
4837 if (ret)
4838 return ret;
4839 }
4840
4841 return 0;
4842 }
4843
4844 struct check_zone_write_pointer_args {
4845 struct f2fs_sb_info *sbi;
4846 struct f2fs_dev_info *fdev;
4847 };
4848
4849 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4850 void *data) {
4851 struct check_zone_write_pointer_args *args;
4852 args = (struct check_zone_write_pointer_args *)data;
4853
4854 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4855 }
4856
4857 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4858 {
4859 int i, ret;
4860 struct check_zone_write_pointer_args args;
4861
4862 for (i = 0; i < sbi->s_ndevs; i++) {
4863 if (!bdev_is_zoned(FDEV(i).bdev))
4864 continue;
4865
4866 args.sbi = sbi;
4867 args.fdev = &FDEV(i);
4868 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4869 check_zone_write_pointer_cb, &args);
4870 if (ret < 0)
4871 return ret;
4872 }
4873
4874 return 0;
4875 }
4876
4877 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4878 unsigned int dev_idx)
4879 {
4880 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4881 return true;
4882 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4883 }
4884
4885 /* Return the zone index in the given device */
4886 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4887 int dev_idx)
4888 {
4889 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4890
4891 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4892 sbi->log_blocks_per_blkz;
4893 }
4894
4895 /*
4896 * Return the usable segments in a section based on the zone's
4897 * corresponding zone capacity. Zone is equal to a section.
4898 */
4899 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4900 struct f2fs_sb_info *sbi, unsigned int segno)
4901 {
4902 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4903
4904 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4905 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4906
4907 /* Conventional zone's capacity is always equal to zone size */
4908 if (is_conv_zone(sbi, zone_idx, dev_idx))
4909 return sbi->segs_per_sec;
4910
4911 /*
4912 * If the zone_capacity_blocks array is NULL, then zone capacity
4913 * is equal to the zone size for all zones
4914 */
4915 if (!FDEV(dev_idx).zone_capacity_blocks)
4916 return sbi->segs_per_sec;
4917
4918 /* Get the segment count beyond zone capacity block */
4919 unusable_segs_in_sec = (sbi->blocks_per_blkz -
4920 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4921 sbi->log_blocks_per_seg;
4922 return sbi->segs_per_sec - unusable_segs_in_sec;
4923 }
4924
4925 /*
4926 * Return the number of usable blocks in a segment. The number of blocks
4927 * returned is always equal to the number of blocks in a segment for
4928 * segments fully contained within a sequential zone capacity or a
4929 * conventional zone. For segments partially contained in a sequential
4930 * zone capacity, the number of usable blocks up to the zone capacity
4931 * is returned. 0 is returned in all other cases.
4932 */
4933 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4934 struct f2fs_sb_info *sbi, unsigned int segno)
4935 {
4936 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4937 unsigned int zone_idx, dev_idx, secno;
4938
4939 secno = GET_SEC_FROM_SEG(sbi, segno);
4940 seg_start = START_BLOCK(sbi, segno);
4941 dev_idx = f2fs_target_device_index(sbi, seg_start);
4942 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4943
4944 /*
4945 * Conventional zone's capacity is always equal to zone size,
4946 * so, blocks per segment is unchanged.
4947 */
4948 if (is_conv_zone(sbi, zone_idx, dev_idx))
4949 return sbi->blocks_per_seg;
4950
4951 if (!FDEV(dev_idx).zone_capacity_blocks)
4952 return sbi->blocks_per_seg;
4953
4954 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4955 sec_cap_blkaddr = sec_start_blkaddr +
4956 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4957
4958 /*
4959 * If segment starts before zone capacity and spans beyond
4960 * zone capacity, then usable blocks are from seg start to
4961 * zone capacity. If the segment starts after the zone capacity,
4962 * then there are no usable blocks.
4963 */
4964 if (seg_start >= sec_cap_blkaddr)
4965 return 0;
4966 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4967 return sec_cap_blkaddr - seg_start;
4968
4969 return sbi->blocks_per_seg;
4970 }
4971 #else
4972 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4973 {
4974 return 0;
4975 }
4976
4977 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4978 {
4979 return 0;
4980 }
4981
4982 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4983 unsigned int segno)
4984 {
4985 return 0;
4986 }
4987
4988 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4989 unsigned int segno)
4990 {
4991 return 0;
4992 }
4993 #endif
4994 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
4995 unsigned int segno)
4996 {
4997 if (f2fs_sb_has_blkzoned(sbi))
4998 return f2fs_usable_zone_blks_in_seg(sbi, segno);
4999
5000 return sbi->blocks_per_seg;
5001 }
5002
5003 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5004 unsigned int segno)
5005 {
5006 if (f2fs_sb_has_blkzoned(sbi))
5007 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5008
5009 return sbi->segs_per_sec;
5010 }
5011
5012 /*
5013 * Update min, max modified time for cost-benefit GC algorithm
5014 */
5015 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5016 {
5017 struct sit_info *sit_i = SIT_I(sbi);
5018 unsigned int segno;
5019
5020 down_write(&sit_i->sentry_lock);
5021
5022 sit_i->min_mtime = ULLONG_MAX;
5023
5024 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5025 unsigned int i;
5026 unsigned long long mtime = 0;
5027
5028 for (i = 0; i < sbi->segs_per_sec; i++)
5029 mtime += get_seg_entry(sbi, segno + i)->mtime;
5030
5031 mtime = div_u64(mtime, sbi->segs_per_sec);
5032
5033 if (sit_i->min_mtime > mtime)
5034 sit_i->min_mtime = mtime;
5035 }
5036 sit_i->max_mtime = get_mtime(sbi, false);
5037 sit_i->dirty_max_mtime = 0;
5038 up_write(&sit_i->sentry_lock);
5039 }
5040
5041 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5042 {
5043 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5044 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5045 struct f2fs_sm_info *sm_info;
5046 int err;
5047
5048 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5049 if (!sm_info)
5050 return -ENOMEM;
5051
5052 /* init sm info */
5053 sbi->sm_info = sm_info;
5054 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5055 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5056 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5057 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5058 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5059 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5060 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5061 sm_info->rec_prefree_segments = sm_info->main_segments *
5062 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5063 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5064 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5065
5066 if (!f2fs_lfs_mode(sbi))
5067 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5068 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5069 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5070 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5071 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5072 sm_info->min_ssr_sections = reserved_sections(sbi);
5073
5074 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5075
5076 init_rwsem(&sm_info->curseg_lock);
5077
5078 if (!f2fs_readonly(sbi->sb)) {
5079 err = f2fs_create_flush_cmd_control(sbi);
5080 if (err)
5081 return err;
5082 }
5083
5084 err = create_discard_cmd_control(sbi);
5085 if (err)
5086 return err;
5087
5088 err = build_sit_info(sbi);
5089 if (err)
5090 return err;
5091 err = build_free_segmap(sbi);
5092 if (err)
5093 return err;
5094 err = build_curseg(sbi);
5095 if (err)
5096 return err;
5097
5098 /* reinit free segmap based on SIT */
5099 err = build_sit_entries(sbi);
5100 if (err)
5101 return err;
5102
5103 init_free_segmap(sbi);
5104 err = build_dirty_segmap(sbi);
5105 if (err)
5106 return err;
5107
5108 err = sanity_check_curseg(sbi);
5109 if (err)
5110 return err;
5111
5112 init_min_max_mtime(sbi);
5113 return 0;
5114 }
5115
5116 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5117 enum dirty_type dirty_type)
5118 {
5119 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5120
5121 mutex_lock(&dirty_i->seglist_lock);
5122 kvfree(dirty_i->dirty_segmap[dirty_type]);
5123 dirty_i->nr_dirty[dirty_type] = 0;
5124 mutex_unlock(&dirty_i->seglist_lock);
5125 }
5126
5127 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5128 {
5129 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5130 kvfree(dirty_i->victim_secmap);
5131 }
5132
5133 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5134 {
5135 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5136 int i;
5137
5138 if (!dirty_i)
5139 return;
5140
5141 /* discard pre-free/dirty segments list */
5142 for (i = 0; i < NR_DIRTY_TYPE; i++)
5143 discard_dirty_segmap(sbi, i);
5144
5145 if (__is_large_section(sbi)) {
5146 mutex_lock(&dirty_i->seglist_lock);
5147 kvfree(dirty_i->dirty_secmap);
5148 mutex_unlock(&dirty_i->seglist_lock);
5149 }
5150
5151 destroy_victim_secmap(sbi);
5152 SM_I(sbi)->dirty_info = NULL;
5153 kfree(dirty_i);
5154 }
5155
5156 static void destroy_curseg(struct f2fs_sb_info *sbi)
5157 {
5158 struct curseg_info *array = SM_I(sbi)->curseg_array;
5159 int i;
5160
5161 if (!array)
5162 return;
5163 SM_I(sbi)->curseg_array = NULL;
5164 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5165 kfree(array[i].sum_blk);
5166 kfree(array[i].journal);
5167 }
5168 kfree(array);
5169 }
5170
5171 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5172 {
5173 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5174 if (!free_i)
5175 return;
5176 SM_I(sbi)->free_info = NULL;
5177 kvfree(free_i->free_segmap);
5178 kvfree(free_i->free_secmap);
5179 kfree(free_i);
5180 }
5181
5182 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5183 {
5184 struct sit_info *sit_i = SIT_I(sbi);
5185
5186 if (!sit_i)
5187 return;
5188
5189 if (sit_i->sentries)
5190 kvfree(sit_i->bitmap);
5191 kfree(sit_i->tmp_map);
5192
5193 kvfree(sit_i->sentries);
5194 kvfree(sit_i->sec_entries);
5195 kvfree(sit_i->dirty_sentries_bitmap);
5196
5197 SM_I(sbi)->sit_info = NULL;
5198 kvfree(sit_i->sit_bitmap);
5199 #ifdef CONFIG_F2FS_CHECK_FS
5200 kvfree(sit_i->sit_bitmap_mir);
5201 kvfree(sit_i->invalid_segmap);
5202 #endif
5203 kfree(sit_i);
5204 }
5205
5206 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5207 {
5208 struct f2fs_sm_info *sm_info = SM_I(sbi);
5209
5210 if (!sm_info)
5211 return;
5212 f2fs_destroy_flush_cmd_control(sbi, true);
5213 destroy_discard_cmd_control(sbi);
5214 destroy_dirty_segmap(sbi);
5215 destroy_curseg(sbi);
5216 destroy_free_segmap(sbi);
5217 destroy_sit_info(sbi);
5218 sbi->sm_info = NULL;
5219 kfree(sm_info);
5220 }
5221
5222 int __init f2fs_create_segment_manager_caches(void)
5223 {
5224 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5225 sizeof(struct discard_entry));
5226 if (!discard_entry_slab)
5227 goto fail;
5228
5229 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5230 sizeof(struct discard_cmd));
5231 if (!discard_cmd_slab)
5232 goto destroy_discard_entry;
5233
5234 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5235 sizeof(struct sit_entry_set));
5236 if (!sit_entry_set_slab)
5237 goto destroy_discard_cmd;
5238
5239 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5240 sizeof(struct inmem_pages));
5241 if (!inmem_entry_slab)
5242 goto destroy_sit_entry_set;
5243 return 0;
5244
5245 destroy_sit_entry_set:
5246 kmem_cache_destroy(sit_entry_set_slab);
5247 destroy_discard_cmd:
5248 kmem_cache_destroy(discard_cmd_slab);
5249 destroy_discard_entry:
5250 kmem_cache_destroy(discard_entry_slab);
5251 fail:
5252 return -ENOMEM;
5253 }
5254
5255 void f2fs_destroy_segment_manager_caches(void)
5256 {
5257 kmem_cache_destroy(sit_entry_set_slab);
5258 kmem_cache_destroy(discard_cmd_slab);
5259 kmem_cache_destroy(discard_entry_slab);
5260 kmem_cache_destroy(inmem_entry_slab);
5261 }