]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/segment.h
f2fs: update the comment of default nr_pages to skipping
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
26
27 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
29
30 #define IS_CURSEG(sbi, seg) \
31 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
37
38 #define IS_CURSEC(sbi, secno) \
39 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
46 sbi->segs_per_sec) || \
47 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
48 sbi->segs_per_sec) || \
49 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
50 sbi->segs_per_sec)) \
51
52 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
53 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
54
55 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
56 #define MAIN_SECS(sbi) (sbi->total_sections)
57
58 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
59 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
60
61 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
63 sbi->log_blocks_per_seg))
64
65 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
66 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
67
68 #define NEXT_FREE_BLKADDR(sbi, curseg) \
69 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
70
71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
75 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
76
77 #define GET_SEGNO(sbi, blk_addr) \
78 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
79 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
80 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81 #define GET_SECNO(sbi, segno) \
82 ((segno) / sbi->segs_per_sec)
83 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
84 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
85
86 #define GET_SUM_BLOCK(sbi, segno) \
87 ((sbi->sm_info->ssa_blkaddr) + segno)
88
89 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
90 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
91
92 #define SIT_ENTRY_OFFSET(sit_i, segno) \
93 (segno % sit_i->sents_per_block)
94 #define SIT_BLOCK_OFFSET(segno) \
95 (segno / SIT_ENTRY_PER_BLOCK)
96 #define START_SEGNO(segno) \
97 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98 #define SIT_BLK_CNT(sbi) \
99 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100 #define f2fs_bitmap_size(nr) \
101 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
102
103 #define SECTOR_FROM_BLOCK(blk_addr) \
104 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105 #define SECTOR_TO_BLOCK(sectors) \
106 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107
108 /*
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
112 */
113 enum {
114 ALLOC_RIGHT = 0,
115 ALLOC_LEFT
116 };
117
118 /*
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122 */
123 enum {
124 LFS = 0,
125 SSR
126 };
127
128 /*
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
132 */
133 enum {
134 GC_CB = 0,
135 GC_GREEDY
136 };
137
138 /*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
142 */
143 enum {
144 BG_GC = 0,
145 FG_GC,
146 FORCE_FG_GC,
147 };
148
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy {
151 int alloc_mode; /* LFS or SSR */
152 int gc_mode; /* GC_CB or GC_GREEDY */
153 unsigned long *dirty_segmap; /* dirty segment bitmap */
154 unsigned int max_search; /* maximum # of segments to search */
155 unsigned int offset; /* last scanned bitmap offset */
156 unsigned int ofs_unit; /* bitmap search unit */
157 unsigned int min_cost; /* minimum cost */
158 unsigned int min_segno; /* segment # having min. cost */
159 };
160
161 struct seg_entry {
162 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
163 unsigned int valid_blocks:10; /* # of valid blocks */
164 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
165 unsigned int padding:6; /* padding */
166 unsigned char *cur_valid_map; /* validity bitmap of blocks */
167 #ifdef CONFIG_F2FS_CHECK_FS
168 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
169 #endif
170 /*
171 * # of valid blocks and the validity bitmap stored in the the last
172 * checkpoint pack. This information is used by the SSR mode.
173 */
174 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
175 unsigned char *discard_map;
176 unsigned long long mtime; /* modification time of the segment */
177 };
178
179 struct sec_entry {
180 unsigned int valid_blocks; /* # of valid blocks in a section */
181 };
182
183 struct segment_allocation {
184 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
185 };
186
187 /*
188 * this value is set in page as a private data which indicate that
189 * the page is atomically written, and it is in inmem_pages list.
190 */
191 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
192 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
193
194 #define IS_ATOMIC_WRITTEN_PAGE(page) \
195 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
196 #define IS_DUMMY_WRITTEN_PAGE(page) \
197 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
198
199 struct inmem_pages {
200 struct list_head list;
201 struct page *page;
202 block_t old_addr; /* for revoking when fail to commit */
203 };
204
205 struct sit_info {
206 const struct segment_allocation *s_ops;
207
208 block_t sit_base_addr; /* start block address of SIT area */
209 block_t sit_blocks; /* # of blocks used by SIT area */
210 block_t written_valid_blocks; /* # of valid blocks in main area */
211 char *sit_bitmap; /* SIT bitmap pointer */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 char *sit_bitmap_mir; /* SIT bitmap mirror */
214 #endif
215 unsigned int bitmap_size; /* SIT bitmap size */
216
217 unsigned long *tmp_map; /* bitmap for temporal use */
218 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
219 unsigned int dirty_sentries; /* # of dirty sentries */
220 unsigned int sents_per_block; /* # of SIT entries per block */
221 struct mutex sentry_lock; /* to protect SIT cache */
222 struct seg_entry *sentries; /* SIT segment-level cache */
223 struct sec_entry *sec_entries; /* SIT section-level cache */
224
225 /* for cost-benefit algorithm in cleaning procedure */
226 unsigned long long elapsed_time; /* elapsed time after mount */
227 unsigned long long mounted_time; /* mount time */
228 unsigned long long min_mtime; /* min. modification time */
229 unsigned long long max_mtime; /* max. modification time */
230 };
231
232 struct free_segmap_info {
233 unsigned int start_segno; /* start segment number logically */
234 unsigned int free_segments; /* # of free segments */
235 unsigned int free_sections; /* # of free sections */
236 spinlock_t segmap_lock; /* free segmap lock */
237 unsigned long *free_segmap; /* free segment bitmap */
238 unsigned long *free_secmap; /* free section bitmap */
239 };
240
241 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
242 enum dirty_type {
243 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
244 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
245 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
246 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
247 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
248 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
249 DIRTY, /* to count # of dirty segments */
250 PRE, /* to count # of entirely obsolete segments */
251 NR_DIRTY_TYPE
252 };
253
254 struct dirty_seglist_info {
255 const struct victim_selection *v_ops; /* victim selction operation */
256 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
257 struct mutex seglist_lock; /* lock for segment bitmaps */
258 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
259 unsigned long *victim_secmap; /* background GC victims */
260 };
261
262 /* victim selection function for cleaning and SSR */
263 struct victim_selection {
264 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
265 int, int, char);
266 };
267
268 /* for active log information */
269 struct curseg_info {
270 struct mutex curseg_mutex; /* lock for consistency */
271 struct f2fs_summary_block *sum_blk; /* cached summary block */
272 struct rw_semaphore journal_rwsem; /* protect journal area */
273 struct f2fs_journal *journal; /* cached journal info */
274 unsigned char alloc_type; /* current allocation type */
275 unsigned int segno; /* current segment number */
276 unsigned short next_blkoff; /* next block offset to write */
277 unsigned int zone; /* current zone number */
278 unsigned int next_segno; /* preallocated segment */
279 };
280
281 struct sit_entry_set {
282 struct list_head set_list; /* link with all sit sets */
283 unsigned int start_segno; /* start segno of sits in set */
284 unsigned int entry_cnt; /* the # of sit entries in set */
285 };
286
287 /*
288 * inline functions
289 */
290 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
291 {
292 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
293 }
294
295 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
296 unsigned int segno)
297 {
298 struct sit_info *sit_i = SIT_I(sbi);
299 return &sit_i->sentries[segno];
300 }
301
302 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
303 unsigned int segno)
304 {
305 struct sit_info *sit_i = SIT_I(sbi);
306 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
307 }
308
309 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
310 unsigned int segno, int section)
311 {
312 /*
313 * In order to get # of valid blocks in a section instantly from many
314 * segments, f2fs manages two counting structures separately.
315 */
316 if (section > 1)
317 return get_sec_entry(sbi, segno)->valid_blocks;
318 else
319 return get_seg_entry(sbi, segno)->valid_blocks;
320 }
321
322 static inline void seg_info_from_raw_sit(struct seg_entry *se,
323 struct f2fs_sit_entry *rs)
324 {
325 se->valid_blocks = GET_SIT_VBLOCKS(rs);
326 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
327 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
328 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
329 #ifdef CONFIG_F2FS_CHECK_FS
330 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
331 #endif
332 se->type = GET_SIT_TYPE(rs);
333 se->mtime = le64_to_cpu(rs->mtime);
334 }
335
336 static inline void seg_info_to_raw_sit(struct seg_entry *se,
337 struct f2fs_sit_entry *rs)
338 {
339 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
340 se->valid_blocks;
341 rs->vblocks = cpu_to_le16(raw_vblocks);
342 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
343 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
344 se->ckpt_valid_blocks = se->valid_blocks;
345 rs->mtime = cpu_to_le64(se->mtime);
346 }
347
348 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
349 unsigned int max, unsigned int segno)
350 {
351 unsigned int ret;
352 spin_lock(&free_i->segmap_lock);
353 ret = find_next_bit(free_i->free_segmap, max, segno);
354 spin_unlock(&free_i->segmap_lock);
355 return ret;
356 }
357
358 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
359 {
360 struct free_segmap_info *free_i = FREE_I(sbi);
361 unsigned int secno = segno / sbi->segs_per_sec;
362 unsigned int start_segno = secno * sbi->segs_per_sec;
363 unsigned int next;
364
365 spin_lock(&free_i->segmap_lock);
366 clear_bit(segno, free_i->free_segmap);
367 free_i->free_segments++;
368
369 next = find_next_bit(free_i->free_segmap,
370 start_segno + sbi->segs_per_sec, start_segno);
371 if (next >= start_segno + sbi->segs_per_sec) {
372 clear_bit(secno, free_i->free_secmap);
373 free_i->free_sections++;
374 }
375 spin_unlock(&free_i->segmap_lock);
376 }
377
378 static inline void __set_inuse(struct f2fs_sb_info *sbi,
379 unsigned int segno)
380 {
381 struct free_segmap_info *free_i = FREE_I(sbi);
382 unsigned int secno = segno / sbi->segs_per_sec;
383 set_bit(segno, free_i->free_segmap);
384 free_i->free_segments--;
385 if (!test_and_set_bit(secno, free_i->free_secmap))
386 free_i->free_sections--;
387 }
388
389 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
390 unsigned int segno)
391 {
392 struct free_segmap_info *free_i = FREE_I(sbi);
393 unsigned int secno = segno / sbi->segs_per_sec;
394 unsigned int start_segno = secno * sbi->segs_per_sec;
395 unsigned int next;
396
397 spin_lock(&free_i->segmap_lock);
398 if (test_and_clear_bit(segno, free_i->free_segmap)) {
399 free_i->free_segments++;
400
401 next = find_next_bit(free_i->free_segmap,
402 start_segno + sbi->segs_per_sec, start_segno);
403 if (next >= start_segno + sbi->segs_per_sec) {
404 if (test_and_clear_bit(secno, free_i->free_secmap))
405 free_i->free_sections++;
406 }
407 }
408 spin_unlock(&free_i->segmap_lock);
409 }
410
411 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
412 unsigned int segno)
413 {
414 struct free_segmap_info *free_i = FREE_I(sbi);
415 unsigned int secno = segno / sbi->segs_per_sec;
416 spin_lock(&free_i->segmap_lock);
417 if (!test_and_set_bit(segno, free_i->free_segmap)) {
418 free_i->free_segments--;
419 if (!test_and_set_bit(secno, free_i->free_secmap))
420 free_i->free_sections--;
421 }
422 spin_unlock(&free_i->segmap_lock);
423 }
424
425 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
426 void *dst_addr)
427 {
428 struct sit_info *sit_i = SIT_I(sbi);
429
430 #ifdef CONFIG_F2FS_CHECK_FS
431 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
432 sit_i->bitmap_size))
433 f2fs_bug_on(sbi, 1);
434 #endif
435 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
436 }
437
438 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
439 {
440 return SIT_I(sbi)->written_valid_blocks;
441 }
442
443 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
444 {
445 return FREE_I(sbi)->free_segments;
446 }
447
448 static inline int reserved_segments(struct f2fs_sb_info *sbi)
449 {
450 return SM_I(sbi)->reserved_segments;
451 }
452
453 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
454 {
455 return FREE_I(sbi)->free_sections;
456 }
457
458 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
459 {
460 return DIRTY_I(sbi)->nr_dirty[PRE];
461 }
462
463 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
464 {
465 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
466 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
467 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
468 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
469 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
470 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
471 }
472
473 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
474 {
475 return SM_I(sbi)->ovp_segments;
476 }
477
478 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
479 {
480 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
481 }
482
483 static inline int reserved_sections(struct f2fs_sb_info *sbi)
484 {
485 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
486 }
487
488 static inline bool need_SSR(struct f2fs_sb_info *sbi)
489 {
490 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
491 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
492 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
493
494 if (test_opt(sbi, LFS))
495 return false;
496
497 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
498 reserved_sections(sbi) + 1);
499 }
500
501 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
502 int freed, int needed)
503 {
504 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
505 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
506 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
507
508 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
509 return false;
510
511 return (free_sections(sbi) + freed) <=
512 (node_secs + 2 * dent_secs + imeta_secs +
513 reserved_sections(sbi) + needed);
514 }
515
516 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
517 {
518 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
519 }
520
521 static inline int utilization(struct f2fs_sb_info *sbi)
522 {
523 return div_u64((u64)valid_user_blocks(sbi) * 100,
524 sbi->user_block_count);
525 }
526
527 /*
528 * Sometimes f2fs may be better to drop out-of-place update policy.
529 * And, users can control the policy through sysfs entries.
530 * There are five policies with triggering conditions as follows.
531 * F2FS_IPU_FORCE - all the time,
532 * F2FS_IPU_SSR - if SSR mode is activated,
533 * F2FS_IPU_UTIL - if FS utilization is over threashold,
534 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
535 * threashold,
536 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
537 * storages. IPU will be triggered only if the # of dirty
538 * pages over min_fsync_blocks.
539 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
540 */
541 #define DEF_MIN_IPU_UTIL 70
542 #define DEF_MIN_FSYNC_BLOCKS 8
543
544 enum {
545 F2FS_IPU_FORCE,
546 F2FS_IPU_SSR,
547 F2FS_IPU_UTIL,
548 F2FS_IPU_SSR_UTIL,
549 F2FS_IPU_FSYNC,
550 };
551
552 static inline bool need_inplace_update(struct inode *inode)
553 {
554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 unsigned int policy = SM_I(sbi)->ipu_policy;
556
557 /* IPU can be done only for the user data */
558 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
559 return false;
560
561 if (test_opt(sbi, LFS))
562 return false;
563
564 if (policy & (0x1 << F2FS_IPU_FORCE))
565 return true;
566 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
567 return true;
568 if (policy & (0x1 << F2FS_IPU_UTIL) &&
569 utilization(sbi) > SM_I(sbi)->min_ipu_util)
570 return true;
571 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
572 utilization(sbi) > SM_I(sbi)->min_ipu_util)
573 return true;
574
575 /* this is only set during fdatasync */
576 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
577 is_inode_flag_set(inode, FI_NEED_IPU))
578 return true;
579
580 return false;
581 }
582
583 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
584 int type)
585 {
586 struct curseg_info *curseg = CURSEG_I(sbi, type);
587 return curseg->segno;
588 }
589
590 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
591 int type)
592 {
593 struct curseg_info *curseg = CURSEG_I(sbi, type);
594 return curseg->alloc_type;
595 }
596
597 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
598 {
599 struct curseg_info *curseg = CURSEG_I(sbi, type);
600 return curseg->next_blkoff;
601 }
602
603 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
604 {
605 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
606 }
607
608 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
609 {
610 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
611 || blk_addr >= MAX_BLKADDR(sbi));
612 }
613
614 /*
615 * Summary block is always treated as an invalid block
616 */
617 static inline void check_block_count(struct f2fs_sb_info *sbi,
618 int segno, struct f2fs_sit_entry *raw_sit)
619 {
620 #ifdef CONFIG_F2FS_CHECK_FS
621 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
622 int valid_blocks = 0;
623 int cur_pos = 0, next_pos;
624
625 /* check bitmap with valid block count */
626 do {
627 if (is_valid) {
628 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
629 sbi->blocks_per_seg,
630 cur_pos);
631 valid_blocks += next_pos - cur_pos;
632 } else
633 next_pos = find_next_bit_le(&raw_sit->valid_map,
634 sbi->blocks_per_seg,
635 cur_pos);
636 cur_pos = next_pos;
637 is_valid = !is_valid;
638 } while (cur_pos < sbi->blocks_per_seg);
639 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
640 #endif
641 /* check segment usage, and check boundary of a given segment number */
642 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
643 || segno > TOTAL_SEGS(sbi) - 1);
644 }
645
646 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
647 unsigned int start)
648 {
649 struct sit_info *sit_i = SIT_I(sbi);
650 unsigned int offset = SIT_BLOCK_OFFSET(start);
651 block_t blk_addr = sit_i->sit_base_addr + offset;
652
653 check_seg_range(sbi, start);
654
655 #ifdef CONFIG_F2FS_CHECK_FS
656 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
657 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
658 f2fs_bug_on(sbi, 1);
659 #endif
660
661 /* calculate sit block address */
662 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
663 blk_addr += sit_i->sit_blocks;
664
665 return blk_addr;
666 }
667
668 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
669 pgoff_t block_addr)
670 {
671 struct sit_info *sit_i = SIT_I(sbi);
672 block_addr -= sit_i->sit_base_addr;
673 if (block_addr < sit_i->sit_blocks)
674 block_addr += sit_i->sit_blocks;
675 else
676 block_addr -= sit_i->sit_blocks;
677
678 return block_addr + sit_i->sit_base_addr;
679 }
680
681 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
682 {
683 unsigned int block_off = SIT_BLOCK_OFFSET(start);
684
685 f2fs_change_bit(block_off, sit_i->sit_bitmap);
686 #ifdef CONFIG_F2FS_CHECK_FS
687 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
688 #endif
689 }
690
691 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
692 {
693 struct sit_info *sit_i = SIT_I(sbi);
694 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
695 sit_i->mounted_time;
696 }
697
698 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
699 unsigned int ofs_in_node, unsigned char version)
700 {
701 sum->nid = cpu_to_le32(nid);
702 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
703 sum->version = version;
704 }
705
706 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
707 {
708 return __start_cp_addr(sbi) +
709 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
710 }
711
712 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
713 {
714 return __start_cp_addr(sbi) +
715 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
716 - (base + 1) + type;
717 }
718
719 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
720 unsigned int secno)
721 {
722 if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
723 sbi->fggc_threshold)
724 return true;
725 return false;
726 }
727
728 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
729 {
730 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
731 return true;
732 return false;
733 }
734
735 /*
736 * It is very important to gather dirty pages and write at once, so that we can
737 * submit a big bio without interfering other data writes.
738 * By default, 512 pages for directory data,
739 * 512 pages (2MB) * 8 for nodes, and
740 * 256 pages * 8 for meta are set.
741 */
742 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
743 {
744 if (sbi->sb->s_bdi->wb.dirty_exceeded)
745 return 0;
746
747 if (type == DATA)
748 return sbi->blocks_per_seg;
749 else if (type == NODE)
750 return 8 * sbi->blocks_per_seg;
751 else if (type == META)
752 return 8 * BIO_MAX_PAGES;
753 else
754 return 0;
755 }
756
757 /*
758 * When writing pages, it'd better align nr_to_write for segment size.
759 */
760 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
761 struct writeback_control *wbc)
762 {
763 long nr_to_write, desired;
764
765 if (wbc->sync_mode != WB_SYNC_NONE)
766 return 0;
767
768 nr_to_write = wbc->nr_to_write;
769 desired = BIO_MAX_PAGES;
770 if (type == NODE)
771 desired <<= 1;
772
773 wbc->nr_to_write = desired;
774 return desired - nr_to_write;
775 }