]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/gfs2/aops.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / fs / gfs2 / aops.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39
40
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 unsigned int from, unsigned int to)
43 {
44 struct buffer_head *head = page_buffers(page);
45 unsigned int bsize = head->b_size;
46 struct buffer_head *bh;
47 unsigned int start, end;
48
49 for (bh = head, start = 0; bh != head || !start;
50 bh = bh->b_this_page, start = end) {
51 end = start + bsize;
52 if (end <= from || start >= to)
53 continue;
54 if (gfs2_is_jdata(ip))
55 set_buffer_uptodate(bh);
56 gfs2_trans_add_data(ip->i_gl, bh);
57 }
58 }
59
60 /**
61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62 * @inode: The inode
63 * @lblock: The block number to look up
64 * @bh_result: The buffer head to return the result in
65 * @create: Non-zero if we may add block to the file
66 *
67 * Returns: errno
68 */
69
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 struct buffer_head *bh_result, int create)
72 {
73 int error;
74
75 error = gfs2_block_map(inode, lblock, bh_result, 0);
76 if (error)
77 return error;
78 if (!buffer_mapped(bh_result))
79 return -EIO;
80 return 0;
81 }
82
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 struct buffer_head *bh_result, int create)
85 {
86 return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88
89 /**
90 * gfs2_writepage_common - Common bits of writepage
91 * @page: The page to be written
92 * @wbc: The writeback control
93 *
94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 */
96
97 static int gfs2_writepage_common(struct page *page,
98 struct writeback_control *wbc)
99 {
100 struct inode *inode = page->mapping->host;
101 struct gfs2_inode *ip = GFS2_I(inode);
102 struct gfs2_sbd *sdp = GFS2_SB(inode);
103 loff_t i_size = i_size_read(inode);
104 pgoff_t end_index = i_size >> PAGE_SHIFT;
105 unsigned offset;
106
107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 goto out;
109 if (current->journal_info)
110 goto redirty;
111 /* Is the page fully outside i_size? (truncate in progress) */
112 offset = i_size & (PAGE_SIZE-1);
113 if (page->index > end_index || (page->index == end_index && !offset)) {
114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
115 goto out;
116 }
117 return 1;
118 redirty:
119 redirty_page_for_writepage(wbc, page);
120 out:
121 unlock_page(page);
122 return 0;
123 }
124
125 /**
126 * gfs2_writepage - Write page for writeback mappings
127 * @page: The page
128 * @wbc: The writeback control
129 *
130 */
131
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 int ret;
135
136 ret = gfs2_writepage_common(page, wbc);
137 if (ret <= 0)
138 return ret;
139
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142
143 /* This is the same as calling block_write_full_page, but it also
144 * writes pages outside of i_size
145 */
146 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
147 struct writeback_control *wbc)
148 {
149 struct inode * const inode = page->mapping->host;
150 loff_t i_size = i_size_read(inode);
151 const pgoff_t end_index = i_size >> PAGE_SHIFT;
152 unsigned offset;
153
154 /*
155 * The page straddles i_size. It must be zeroed out on each and every
156 * writepage invocation because it may be mmapped. "A file is mapped
157 * in multiples of the page size. For a file that is not a multiple of
158 * the page size, the remaining memory is zeroed when mapped, and
159 * writes to that region are not written out to the file."
160 */
161 offset = i_size & (PAGE_SIZE-1);
162 if (page->index == end_index && offset)
163 zero_user_segment(page, offset, PAGE_SIZE);
164
165 return __block_write_full_page(inode, page, get_block, wbc,
166 end_buffer_async_write);
167 }
168
169 /**
170 * __gfs2_jdata_writepage - The core of jdata writepage
171 * @page: The page to write
172 * @wbc: The writeback control
173 *
174 * This is shared between writepage and writepages and implements the
175 * core of the writepage operation. If a transaction is required then
176 * PageChecked will have been set and the transaction will have
177 * already been started before this is called.
178 */
179
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 struct inode *inode = page->mapping->host;
183 struct gfs2_inode *ip = GFS2_I(inode);
184 struct gfs2_sbd *sdp = GFS2_SB(inode);
185
186 if (PageChecked(page)) {
187 ClearPageChecked(page);
188 if (!page_has_buffers(page)) {
189 create_empty_buffers(page, inode->i_sb->s_blocksize,
190 BIT(BH_Dirty)|BIT(BH_Uptodate));
191 }
192 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 }
194 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196
197 /**
198 * gfs2_jdata_writepage - Write complete page
199 * @page: Page to write
200 * @wbc: The writeback control
201 *
202 * Returns: errno
203 *
204 */
205
206 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 {
208 struct inode *inode = page->mapping->host;
209 struct gfs2_inode *ip = GFS2_I(inode);
210 struct gfs2_sbd *sdp = GFS2_SB(inode);
211 int ret;
212
213 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
214 goto out;
215 if (PageChecked(page) || current->journal_info)
216 goto out_ignore;
217 ret = __gfs2_jdata_writepage(page, wbc);
218 return ret;
219
220 out_ignore:
221 redirty_page_for_writepage(wbc, page);
222 out:
223 unlock_page(page);
224 return 0;
225 }
226
227 /**
228 * gfs2_writepages - Write a bunch of dirty pages back to disk
229 * @mapping: The mapping to write
230 * @wbc: Write-back control
231 *
232 * Used for both ordered and writeback modes.
233 */
234 static int gfs2_writepages(struct address_space *mapping,
235 struct writeback_control *wbc)
236 {
237 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
238 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
239
240 /*
241 * Even if we didn't write any pages here, we might still be holding
242 * dirty pages in the ail. We forcibly flush the ail because we don't
243 * want balance_dirty_pages() to loop indefinitely trying to write out
244 * pages held in the ail that it can't find.
245 */
246 if (ret == 0)
247 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
248
249 return ret;
250 }
251
252 /**
253 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
254 * @mapping: The mapping
255 * @wbc: The writeback control
256 * @pvec: The vector of pages
257 * @nr_pages: The number of pages to write
258 * @end: End position
259 * @done_index: Page index
260 *
261 * Returns: non-zero if loop should terminate, zero otherwise
262 */
263
264 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
265 struct writeback_control *wbc,
266 struct pagevec *pvec,
267 int nr_pages, pgoff_t end,
268 pgoff_t *done_index)
269 {
270 struct inode *inode = mapping->host;
271 struct gfs2_sbd *sdp = GFS2_SB(inode);
272 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
273 int i;
274 int ret;
275
276 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 if (ret < 0)
278 return ret;
279
280 for(i = 0; i < nr_pages; i++) {
281 struct page *page = pvec->pages[i];
282
283 *done_index = page->index;
284
285 lock_page(page);
286
287 if (unlikely(page->mapping != mapping)) {
288 continue_unlock:
289 unlock_page(page);
290 continue;
291 }
292
293 if (!PageDirty(page)) {
294 /* someone wrote it for us */
295 goto continue_unlock;
296 }
297
298 if (PageWriteback(page)) {
299 if (wbc->sync_mode != WB_SYNC_NONE)
300 wait_on_page_writeback(page);
301 else
302 goto continue_unlock;
303 }
304
305 BUG_ON(PageWriteback(page));
306 if (!clear_page_dirty_for_io(page))
307 goto continue_unlock;
308
309 trace_wbc_writepage(wbc, inode_to_bdi(inode));
310
311 ret = __gfs2_jdata_writepage(page, wbc);
312 if (unlikely(ret)) {
313 if (ret == AOP_WRITEPAGE_ACTIVATE) {
314 unlock_page(page);
315 ret = 0;
316 } else {
317
318 /*
319 * done_index is set past this page,
320 * so media errors will not choke
321 * background writeout for the entire
322 * file. This has consequences for
323 * range_cyclic semantics (ie. it may
324 * not be suitable for data integrity
325 * writeout).
326 */
327 *done_index = page->index + 1;
328 ret = 1;
329 break;
330 }
331 }
332
333 /*
334 * We stop writing back only if we are not doing
335 * integrity sync. In case of integrity sync we have to
336 * keep going until we have written all the pages
337 * we tagged for writeback prior to entering this loop.
338 */
339 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
340 ret = 1;
341 break;
342 }
343
344 }
345 gfs2_trans_end(sdp);
346 return ret;
347 }
348
349 /**
350 * gfs2_write_cache_jdata - Like write_cache_pages but different
351 * @mapping: The mapping to write
352 * @wbc: The writeback control
353 *
354 * The reason that we use our own function here is that we need to
355 * start transactions before we grab page locks. This allows us
356 * to get the ordering right.
357 */
358
359 static int gfs2_write_cache_jdata(struct address_space *mapping,
360 struct writeback_control *wbc)
361 {
362 int ret = 0;
363 int done = 0;
364 struct pagevec pvec;
365 int nr_pages;
366 pgoff_t uninitialized_var(writeback_index);
367 pgoff_t index;
368 pgoff_t end;
369 pgoff_t done_index;
370 int cycled;
371 int range_whole = 0;
372 int tag;
373
374 pagevec_init(&pvec);
375 if (wbc->range_cyclic) {
376 writeback_index = mapping->writeback_index; /* prev offset */
377 index = writeback_index;
378 if (index == 0)
379 cycled = 1;
380 else
381 cycled = 0;
382 end = -1;
383 } else {
384 index = wbc->range_start >> PAGE_SHIFT;
385 end = wbc->range_end >> PAGE_SHIFT;
386 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
387 range_whole = 1;
388 cycled = 1; /* ignore range_cyclic tests */
389 }
390 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
391 tag = PAGECACHE_TAG_TOWRITE;
392 else
393 tag = PAGECACHE_TAG_DIRTY;
394
395 retry:
396 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
397 tag_pages_for_writeback(mapping, index, end);
398 done_index = index;
399 while (!done && (index <= end)) {
400 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
401 tag);
402 if (nr_pages == 0)
403 break;
404
405 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
406 if (ret)
407 done = 1;
408 if (ret > 0)
409 ret = 0;
410 pagevec_release(&pvec);
411 cond_resched();
412 }
413
414 if (!cycled && !done) {
415 /*
416 * range_cyclic:
417 * We hit the last page and there is more work to be done: wrap
418 * back to the start of the file
419 */
420 cycled = 1;
421 index = 0;
422 end = writeback_index - 1;
423 goto retry;
424 }
425
426 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
427 mapping->writeback_index = done_index;
428
429 return ret;
430 }
431
432
433 /**
434 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
435 * @mapping: The mapping to write
436 * @wbc: The writeback control
437 *
438 */
439
440 static int gfs2_jdata_writepages(struct address_space *mapping,
441 struct writeback_control *wbc)
442 {
443 struct gfs2_inode *ip = GFS2_I(mapping->host);
444 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
445 int ret;
446
447 ret = gfs2_write_cache_jdata(mapping, wbc);
448 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
449 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
450 ret = gfs2_write_cache_jdata(mapping, wbc);
451 }
452 return ret;
453 }
454
455 /**
456 * stuffed_readpage - Fill in a Linux page with stuffed file data
457 * @ip: the inode
458 * @page: the page
459 *
460 * Returns: errno
461 */
462
463 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
464 {
465 struct buffer_head *dibh;
466 u64 dsize = i_size_read(&ip->i_inode);
467 void *kaddr;
468 int error;
469
470 /*
471 * Due to the order of unstuffing files and ->fault(), we can be
472 * asked for a zero page in the case of a stuffed file being extended,
473 * so we need to supply one here. It doesn't happen often.
474 */
475 if (unlikely(page->index)) {
476 zero_user(page, 0, PAGE_SIZE);
477 SetPageUptodate(page);
478 return 0;
479 }
480
481 error = gfs2_meta_inode_buffer(ip, &dibh);
482 if (error)
483 return error;
484
485 kaddr = kmap_atomic(page);
486 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
487 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
488 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
489 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
490 kunmap_atomic(kaddr);
491 flush_dcache_page(page);
492 brelse(dibh);
493 SetPageUptodate(page);
494
495 return 0;
496 }
497
498
499 /**
500 * __gfs2_readpage - readpage
501 * @file: The file to read a page for
502 * @page: The page to read
503 *
504 * This is the core of gfs2's readpage. Its used by the internal file
505 * reading code as in that case we already hold the glock. Also its
506 * called by gfs2_readpage() once the required lock has been granted.
507 *
508 */
509
510 static int __gfs2_readpage(void *file, struct page *page)
511 {
512 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
513 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
514 int error;
515
516 if (gfs2_is_stuffed(ip)) {
517 error = stuffed_readpage(ip, page);
518 unlock_page(page);
519 } else {
520 error = mpage_readpage(page, gfs2_block_map);
521 }
522
523 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
524 return -EIO;
525
526 return error;
527 }
528
529 /**
530 * gfs2_readpage - read a page of a file
531 * @file: The file to read
532 * @page: The page of the file
533 *
534 * This deals with the locking required. We have to unlock and
535 * relock the page in order to get the locking in the right
536 * order.
537 */
538
539 static int gfs2_readpage(struct file *file, struct page *page)
540 {
541 struct address_space *mapping = page->mapping;
542 struct gfs2_inode *ip = GFS2_I(mapping->host);
543 struct gfs2_holder gh;
544 int error;
545
546 unlock_page(page);
547 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
548 error = gfs2_glock_nq(&gh);
549 if (unlikely(error))
550 goto out;
551 error = AOP_TRUNCATED_PAGE;
552 lock_page(page);
553 if (page->mapping == mapping && !PageUptodate(page))
554 error = __gfs2_readpage(file, page);
555 else
556 unlock_page(page);
557 gfs2_glock_dq(&gh);
558 out:
559 gfs2_holder_uninit(&gh);
560 if (error && error != AOP_TRUNCATED_PAGE)
561 lock_page(page);
562 return error;
563 }
564
565 /**
566 * gfs2_internal_read - read an internal file
567 * @ip: The gfs2 inode
568 * @buf: The buffer to fill
569 * @pos: The file position
570 * @size: The amount to read
571 *
572 */
573
574 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
575 unsigned size)
576 {
577 struct address_space *mapping = ip->i_inode.i_mapping;
578 unsigned long index = *pos / PAGE_SIZE;
579 unsigned offset = *pos & (PAGE_SIZE - 1);
580 unsigned copied = 0;
581 unsigned amt;
582 struct page *page;
583 void *p;
584
585 do {
586 amt = size - copied;
587 if (offset + size > PAGE_SIZE)
588 amt = PAGE_SIZE - offset;
589 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
590 if (IS_ERR(page))
591 return PTR_ERR(page);
592 p = kmap_atomic(page);
593 memcpy(buf + copied, p + offset, amt);
594 kunmap_atomic(p);
595 put_page(page);
596 copied += amt;
597 index++;
598 offset = 0;
599 } while(copied < size);
600 (*pos) += size;
601 return size;
602 }
603
604 /**
605 * gfs2_readpages - Read a bunch of pages at once
606 * @file: The file to read from
607 * @mapping: Address space info
608 * @pages: List of pages to read
609 * @nr_pages: Number of pages to read
610 *
611 * Some notes:
612 * 1. This is only for readahead, so we can simply ignore any things
613 * which are slightly inconvenient (such as locking conflicts between
614 * the page lock and the glock) and return having done no I/O. Its
615 * obviously not something we'd want to do on too regular a basis.
616 * Any I/O we ignore at this time will be done via readpage later.
617 * 2. We don't handle stuffed files here we let readpage do the honours.
618 * 3. mpage_readpages() does most of the heavy lifting in the common case.
619 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
620 */
621
622 static int gfs2_readpages(struct file *file, struct address_space *mapping,
623 struct list_head *pages, unsigned nr_pages)
624 {
625 struct inode *inode = mapping->host;
626 struct gfs2_inode *ip = GFS2_I(inode);
627 struct gfs2_sbd *sdp = GFS2_SB(inode);
628 struct gfs2_holder gh;
629 int ret;
630
631 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
632 ret = gfs2_glock_nq(&gh);
633 if (unlikely(ret))
634 goto out_uninit;
635 if (!gfs2_is_stuffed(ip))
636 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
637 gfs2_glock_dq(&gh);
638 out_uninit:
639 gfs2_holder_uninit(&gh);
640 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
641 ret = -EIO;
642 return ret;
643 }
644
645 /**
646 * gfs2_write_begin - Begin to write to a file
647 * @file: The file to write to
648 * @mapping: The mapping in which to write
649 * @pos: The file offset at which to start writing
650 * @len: Length of the write
651 * @flags: Various flags
652 * @pagep: Pointer to return the page
653 * @fsdata: Pointer to return fs data (unused by GFS2)
654 *
655 * Returns: errno
656 */
657
658 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
659 loff_t pos, unsigned len, unsigned flags,
660 struct page **pagep, void **fsdata)
661 {
662 struct gfs2_inode *ip = GFS2_I(mapping->host);
663 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
664 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
665 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
666 unsigned requested = 0;
667 int alloc_required;
668 int error = 0;
669 pgoff_t index = pos >> PAGE_SHIFT;
670 unsigned from = pos & (PAGE_SIZE - 1);
671 struct page *page;
672
673 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
674 error = gfs2_glock_nq(&ip->i_gh);
675 if (unlikely(error))
676 goto out_uninit;
677 if (&ip->i_inode == sdp->sd_rindex) {
678 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
679 GL_NOCACHE, &m_ip->i_gh);
680 if (unlikely(error)) {
681 gfs2_glock_dq(&ip->i_gh);
682 goto out_uninit;
683 }
684 }
685
686 alloc_required = gfs2_write_alloc_required(ip, pos, len);
687
688 if (alloc_required || gfs2_is_jdata(ip))
689 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
690
691 if (alloc_required) {
692 struct gfs2_alloc_parms ap = { .aflags = 0, };
693 requested = data_blocks + ind_blocks;
694 ap.target = requested;
695 error = gfs2_quota_lock_check(ip, &ap);
696 if (error)
697 goto out_unlock;
698
699 error = gfs2_inplace_reserve(ip, &ap);
700 if (error)
701 goto out_qunlock;
702 }
703
704 rblocks = RES_DINODE + ind_blocks;
705 if (gfs2_is_jdata(ip))
706 rblocks += data_blocks ? data_blocks : 1;
707 if (ind_blocks || data_blocks)
708 rblocks += RES_STATFS + RES_QUOTA;
709 if (&ip->i_inode == sdp->sd_rindex)
710 rblocks += 2 * RES_STATFS;
711 if (alloc_required)
712 rblocks += gfs2_rg_blocks(ip, requested);
713
714 error = gfs2_trans_begin(sdp, rblocks,
715 PAGE_SIZE/sdp->sd_sb.sb_bsize);
716 if (error)
717 goto out_trans_fail;
718
719 error = -ENOMEM;
720 flags |= AOP_FLAG_NOFS;
721 page = grab_cache_page_write_begin(mapping, index, flags);
722 *pagep = page;
723 if (unlikely(!page))
724 goto out_endtrans;
725
726 if (gfs2_is_stuffed(ip)) {
727 error = 0;
728 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
729 error = gfs2_unstuff_dinode(ip, page);
730 if (error == 0)
731 goto prepare_write;
732 } else if (!PageUptodate(page)) {
733 error = stuffed_readpage(ip, page);
734 }
735 goto out;
736 }
737
738 prepare_write:
739 error = __block_write_begin(page, from, len, gfs2_block_map);
740 out:
741 if (error == 0)
742 return 0;
743
744 unlock_page(page);
745 put_page(page);
746
747 gfs2_trans_end(sdp);
748 if (pos + len > ip->i_inode.i_size)
749 gfs2_trim_blocks(&ip->i_inode);
750 goto out_trans_fail;
751
752 out_endtrans:
753 gfs2_trans_end(sdp);
754 out_trans_fail:
755 if (alloc_required) {
756 gfs2_inplace_release(ip);
757 out_qunlock:
758 gfs2_quota_unlock(ip);
759 }
760 out_unlock:
761 if (&ip->i_inode == sdp->sd_rindex) {
762 gfs2_glock_dq(&m_ip->i_gh);
763 gfs2_holder_uninit(&m_ip->i_gh);
764 }
765 gfs2_glock_dq(&ip->i_gh);
766 out_uninit:
767 gfs2_holder_uninit(&ip->i_gh);
768 return error;
769 }
770
771 /**
772 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
773 * @inode: the rindex inode
774 */
775 static void adjust_fs_space(struct inode *inode)
776 {
777 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
778 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
779 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
780 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
781 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
782 struct buffer_head *m_bh, *l_bh;
783 u64 fs_total, new_free;
784
785 /* Total up the file system space, according to the latest rindex. */
786 fs_total = gfs2_ri_total(sdp);
787 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
788 return;
789
790 spin_lock(&sdp->sd_statfs_spin);
791 gfs2_statfs_change_in(m_sc, m_bh->b_data +
792 sizeof(struct gfs2_dinode));
793 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
794 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
795 else
796 new_free = 0;
797 spin_unlock(&sdp->sd_statfs_spin);
798 fs_warn(sdp, "File system extended by %llu blocks.\n",
799 (unsigned long long)new_free);
800 gfs2_statfs_change(sdp, new_free, new_free, 0);
801
802 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
803 goto out;
804 update_statfs(sdp, m_bh, l_bh);
805 brelse(l_bh);
806 out:
807 brelse(m_bh);
808 }
809
810 /**
811 * gfs2_stuffed_write_end - Write end for stuffed files
812 * @inode: The inode
813 * @dibh: The buffer_head containing the on-disk inode
814 * @pos: The file position
815 * @len: The length of the write
816 * @copied: How much was actually copied by the VFS
817 * @page: The page
818 *
819 * This copies the data from the page into the inode block after
820 * the inode data structure itself.
821 *
822 * Returns: errno
823 */
824 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
825 loff_t pos, unsigned len, unsigned copied,
826 struct page *page)
827 {
828 struct gfs2_inode *ip = GFS2_I(inode);
829 struct gfs2_sbd *sdp = GFS2_SB(inode);
830 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
831 u64 to = pos + copied;
832 void *kaddr;
833 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
834
835 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
836 kaddr = kmap_atomic(page);
837 memcpy(buf + pos, kaddr + pos, copied);
838 flush_dcache_page(page);
839 kunmap_atomic(kaddr);
840
841 WARN_ON(!PageUptodate(page));
842 unlock_page(page);
843 put_page(page);
844
845 if (copied) {
846 if (inode->i_size < to)
847 i_size_write(inode, to);
848 mark_inode_dirty(inode);
849 }
850
851 if (inode == sdp->sd_rindex) {
852 adjust_fs_space(inode);
853 sdp->sd_rindex_uptodate = 0;
854 }
855
856 brelse(dibh);
857 gfs2_trans_end(sdp);
858 if (inode == sdp->sd_rindex) {
859 gfs2_glock_dq(&m_ip->i_gh);
860 gfs2_holder_uninit(&m_ip->i_gh);
861 }
862 gfs2_glock_dq(&ip->i_gh);
863 gfs2_holder_uninit(&ip->i_gh);
864 return copied;
865 }
866
867 /**
868 * gfs2_write_end
869 * @file: The file to write to
870 * @mapping: The address space to write to
871 * @pos: The file position
872 * @len: The length of the data
873 * @copied: How much was actually copied by the VFS
874 * @page: The page that has been written
875 * @fsdata: The fsdata (unused in GFS2)
876 *
877 * The main write_end function for GFS2. We have a separate one for
878 * stuffed files as they are slightly different, otherwise we just
879 * put our locking around the VFS provided functions.
880 *
881 * Returns: errno
882 */
883
884 static int gfs2_write_end(struct file *file, struct address_space *mapping,
885 loff_t pos, unsigned len, unsigned copied,
886 struct page *page, void *fsdata)
887 {
888 struct inode *inode = page->mapping->host;
889 struct gfs2_inode *ip = GFS2_I(inode);
890 struct gfs2_sbd *sdp = GFS2_SB(inode);
891 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
892 struct buffer_head *dibh;
893 unsigned int from = pos & (PAGE_SIZE - 1);
894 unsigned int to = from + len;
895 int ret;
896 struct gfs2_trans *tr = current->journal_info;
897 BUG_ON(!tr);
898
899 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
900
901 ret = gfs2_meta_inode_buffer(ip, &dibh);
902 if (unlikely(ret)) {
903 unlock_page(page);
904 put_page(page);
905 goto failed;
906 }
907
908 if (gfs2_is_stuffed(ip))
909 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
910
911 if (!gfs2_is_writeback(ip))
912 gfs2_page_add_databufs(ip, page, from, to);
913
914 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
915 if (tr->tr_num_buf_new)
916 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
917 else
918 gfs2_trans_add_meta(ip->i_gl, dibh);
919
920
921 if (inode == sdp->sd_rindex) {
922 adjust_fs_space(inode);
923 sdp->sd_rindex_uptodate = 0;
924 }
925
926 brelse(dibh);
927 failed:
928 gfs2_trans_end(sdp);
929 gfs2_inplace_release(ip);
930 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
931 gfs2_quota_unlock(ip);
932 if (inode == sdp->sd_rindex) {
933 gfs2_glock_dq(&m_ip->i_gh);
934 gfs2_holder_uninit(&m_ip->i_gh);
935 }
936 gfs2_glock_dq(&ip->i_gh);
937 gfs2_holder_uninit(&ip->i_gh);
938 return ret;
939 }
940
941 /**
942 * gfs2_set_page_dirty - Page dirtying function
943 * @page: The page to dirty
944 *
945 * Returns: 1 if it dirtyed the page, or 0 otherwise
946 */
947
948 static int gfs2_set_page_dirty(struct page *page)
949 {
950 SetPageChecked(page);
951 return __set_page_dirty_buffers(page);
952 }
953
954 /**
955 * gfs2_bmap - Block map function
956 * @mapping: Address space info
957 * @lblock: The block to map
958 *
959 * Returns: The disk address for the block or 0 on hole or error
960 */
961
962 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
963 {
964 struct gfs2_inode *ip = GFS2_I(mapping->host);
965 struct gfs2_holder i_gh;
966 sector_t dblock = 0;
967 int error;
968
969 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
970 if (error)
971 return 0;
972
973 if (!gfs2_is_stuffed(ip))
974 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
975
976 gfs2_glock_dq_uninit(&i_gh);
977
978 return dblock;
979 }
980
981 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
982 {
983 struct gfs2_bufdata *bd;
984
985 lock_buffer(bh);
986 gfs2_log_lock(sdp);
987 clear_buffer_dirty(bh);
988 bd = bh->b_private;
989 if (bd) {
990 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
991 list_del_init(&bd->bd_list);
992 else
993 gfs2_remove_from_journal(bh, REMOVE_JDATA);
994 }
995 bh->b_bdev = NULL;
996 clear_buffer_mapped(bh);
997 clear_buffer_req(bh);
998 clear_buffer_new(bh);
999 gfs2_log_unlock(sdp);
1000 unlock_buffer(bh);
1001 }
1002
1003 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1004 unsigned int length)
1005 {
1006 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1007 unsigned int stop = offset + length;
1008 int partial_page = (offset || length < PAGE_SIZE);
1009 struct buffer_head *bh, *head;
1010 unsigned long pos = 0;
1011
1012 BUG_ON(!PageLocked(page));
1013 if (!partial_page)
1014 ClearPageChecked(page);
1015 if (!page_has_buffers(page))
1016 goto out;
1017
1018 bh = head = page_buffers(page);
1019 do {
1020 if (pos + bh->b_size > stop)
1021 return;
1022
1023 if (offset <= pos)
1024 gfs2_discard(sdp, bh);
1025 pos += bh->b_size;
1026 bh = bh->b_this_page;
1027 } while (bh != head);
1028 out:
1029 if (!partial_page)
1030 try_to_release_page(page, 0);
1031 }
1032
1033 /**
1034 * gfs2_ok_for_dio - check that dio is valid on this file
1035 * @ip: The inode
1036 * @offset: The offset at which we are reading or writing
1037 *
1038 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1039 * 1 (to accept the i/o request)
1040 */
1041 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1042 {
1043 /*
1044 * Should we return an error here? I can't see that O_DIRECT for
1045 * a stuffed file makes any sense. For now we'll silently fall
1046 * back to buffered I/O
1047 */
1048 if (gfs2_is_stuffed(ip))
1049 return 0;
1050
1051 if (offset >= i_size_read(&ip->i_inode))
1052 return 0;
1053 return 1;
1054 }
1055
1056
1057
1058 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1059 {
1060 struct file *file = iocb->ki_filp;
1061 struct inode *inode = file->f_mapping->host;
1062 struct address_space *mapping = inode->i_mapping;
1063 struct gfs2_inode *ip = GFS2_I(inode);
1064 loff_t offset = iocb->ki_pos;
1065 struct gfs2_holder gh;
1066 int rv;
1067
1068 /*
1069 * Deferred lock, even if its a write, since we do no allocation
1070 * on this path. All we need change is atime, and this lock mode
1071 * ensures that other nodes have flushed their buffered read caches
1072 * (i.e. their page cache entries for this inode). We do not,
1073 * unfortunately have the option of only flushing a range like
1074 * the VFS does.
1075 */
1076 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1077 rv = gfs2_glock_nq(&gh);
1078 if (rv)
1079 goto out_uninit;
1080 rv = gfs2_ok_for_dio(ip, offset);
1081 if (rv != 1)
1082 goto out; /* dio not valid, fall back to buffered i/o */
1083
1084 /*
1085 * Now since we are holding a deferred (CW) lock at this point, you
1086 * might be wondering why this is ever needed. There is a case however
1087 * where we've granted a deferred local lock against a cached exclusive
1088 * glock. That is ok provided all granted local locks are deferred, but
1089 * it also means that it is possible to encounter pages which are
1090 * cached and possibly also mapped. So here we check for that and sort
1091 * them out ahead of the dio. The glock state machine will take care of
1092 * everything else.
1093 *
1094 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1095 * the first place, mapping->nr_pages will always be zero.
1096 */
1097 if (mapping->nrpages) {
1098 loff_t lstart = offset & ~(PAGE_SIZE - 1);
1099 loff_t len = iov_iter_count(iter);
1100 loff_t end = PAGE_ALIGN(offset + len) - 1;
1101
1102 rv = 0;
1103 if (len == 0)
1104 goto out;
1105 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1106 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1107 rv = filemap_write_and_wait_range(mapping, lstart, end);
1108 if (rv)
1109 goto out;
1110 if (iov_iter_rw(iter) == WRITE)
1111 truncate_inode_pages_range(mapping, lstart, end);
1112 }
1113
1114 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1115 gfs2_get_block_direct, NULL, NULL, 0);
1116 out:
1117 gfs2_glock_dq(&gh);
1118 out_uninit:
1119 gfs2_holder_uninit(&gh);
1120 return rv;
1121 }
1122
1123 /**
1124 * gfs2_releasepage - free the metadata associated with a page
1125 * @page: the page that's being released
1126 * @gfp_mask: passed from Linux VFS, ignored by us
1127 *
1128 * Call try_to_free_buffers() if the buffers in this page can be
1129 * released.
1130 *
1131 * Returns: 0
1132 */
1133
1134 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1135 {
1136 struct address_space *mapping = page->mapping;
1137 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1138 struct buffer_head *bh, *head;
1139 struct gfs2_bufdata *bd;
1140
1141 if (!page_has_buffers(page))
1142 return 0;
1143
1144 /*
1145 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1146 * clean pages might not have had the dirty bit cleared. Thus, it can
1147 * send actual dirty pages to ->releasepage() via shrink_active_list().
1148 *
1149 * As a workaround, we skip pages that contain dirty buffers below.
1150 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1151 * on dirty buffers like we used to here again.
1152 */
1153
1154 gfs2_log_lock(sdp);
1155 spin_lock(&sdp->sd_ail_lock);
1156 head = bh = page_buffers(page);
1157 do {
1158 if (atomic_read(&bh->b_count))
1159 goto cannot_release;
1160 bd = bh->b_private;
1161 if (bd && bd->bd_tr)
1162 goto cannot_release;
1163 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1164 goto cannot_release;
1165 bh = bh->b_this_page;
1166 } while(bh != head);
1167 spin_unlock(&sdp->sd_ail_lock);
1168
1169 head = bh = page_buffers(page);
1170 do {
1171 bd = bh->b_private;
1172 if (bd) {
1173 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1174 if (!list_empty(&bd->bd_list))
1175 list_del_init(&bd->bd_list);
1176 bd->bd_bh = NULL;
1177 bh->b_private = NULL;
1178 kmem_cache_free(gfs2_bufdata_cachep, bd);
1179 }
1180
1181 bh = bh->b_this_page;
1182 } while (bh != head);
1183 gfs2_log_unlock(sdp);
1184
1185 return try_to_free_buffers(page);
1186
1187 cannot_release:
1188 spin_unlock(&sdp->sd_ail_lock);
1189 gfs2_log_unlock(sdp);
1190 return 0;
1191 }
1192
1193 static const struct address_space_operations gfs2_writeback_aops = {
1194 .writepage = gfs2_writepage,
1195 .writepages = gfs2_writepages,
1196 .readpage = gfs2_readpage,
1197 .readpages = gfs2_readpages,
1198 .write_begin = gfs2_write_begin,
1199 .write_end = gfs2_write_end,
1200 .bmap = gfs2_bmap,
1201 .invalidatepage = gfs2_invalidatepage,
1202 .releasepage = gfs2_releasepage,
1203 .direct_IO = gfs2_direct_IO,
1204 .migratepage = buffer_migrate_page,
1205 .is_partially_uptodate = block_is_partially_uptodate,
1206 .error_remove_page = generic_error_remove_page,
1207 };
1208
1209 static const struct address_space_operations gfs2_ordered_aops = {
1210 .writepage = gfs2_writepage,
1211 .writepages = gfs2_writepages,
1212 .readpage = gfs2_readpage,
1213 .readpages = gfs2_readpages,
1214 .write_begin = gfs2_write_begin,
1215 .write_end = gfs2_write_end,
1216 .set_page_dirty = gfs2_set_page_dirty,
1217 .bmap = gfs2_bmap,
1218 .invalidatepage = gfs2_invalidatepage,
1219 .releasepage = gfs2_releasepage,
1220 .direct_IO = gfs2_direct_IO,
1221 .migratepage = buffer_migrate_page,
1222 .is_partially_uptodate = block_is_partially_uptodate,
1223 .error_remove_page = generic_error_remove_page,
1224 };
1225
1226 static const struct address_space_operations gfs2_jdata_aops = {
1227 .writepage = gfs2_jdata_writepage,
1228 .writepages = gfs2_jdata_writepages,
1229 .readpage = gfs2_readpage,
1230 .readpages = gfs2_readpages,
1231 .write_begin = gfs2_write_begin,
1232 .write_end = gfs2_write_end,
1233 .set_page_dirty = gfs2_set_page_dirty,
1234 .bmap = gfs2_bmap,
1235 .invalidatepage = gfs2_invalidatepage,
1236 .releasepage = gfs2_releasepage,
1237 .is_partially_uptodate = block_is_partially_uptodate,
1238 .error_remove_page = generic_error_remove_page,
1239 };
1240
1241 void gfs2_set_aops(struct inode *inode)
1242 {
1243 struct gfs2_inode *ip = GFS2_I(inode);
1244
1245 if (gfs2_is_writeback(ip))
1246 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1247 else if (gfs2_is_ordered(ip))
1248 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1249 else if (gfs2_is_jdata(ip))
1250 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1251 else
1252 BUG();
1253 }
1254