]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/gfs2/rgrp.c
fs: cifs: transport: Use time_after for time comparison
[mirror_ubuntu-artful-kernel.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40
41 #if BITS_PER_LONG == 32
42 #define LBITMASK (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50
51 /*
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 *
56 * 0 = Free
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
59 * 3 = Used (metadata)
60 */
61
62 struct gfs2_extent {
63 struct gfs2_rbm rbm;
64 u32 len;
65 };
66
67 static const char valid_change[16] = {
68 /* current */
69 /* n */ 0, 1, 1, 1,
70 /* e */ 1, 0, 0, 0,
71 /* w */ 0, 0, 0, 1,
72 1, 0, 0, 0
73 };
74
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 const struct gfs2_inode *ip, bool nowrap);
77
78
79 /**
80 * gfs2_setbit - Set a bit in the bitmaps
81 * @rbm: The position of the bit to set
82 * @do_clone: Also set the clone bitmap, if it exists
83 * @new_state: the new state of the block
84 *
85 */
86
87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
88 unsigned char new_state)
89 {
90 unsigned char *byte1, *byte2, *end, cur_state;
91 struct gfs2_bitmap *bi = rbm_bi(rbm);
92 unsigned int buflen = bi->bi_len;
93 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
94
95 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
96 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
97
98 BUG_ON(byte1 >= end);
99
100 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
101
102 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
103 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 rbm->offset, cur_state, new_state);
105 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
107 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
108 bi->bi_offset, bi->bi_len);
109 dump_stack();
110 gfs2_consist_rgrpd(rbm->rgd);
111 return;
112 }
113 *byte1 ^= (cur_state ^ new_state) << bit;
114
115 if (do_clone && bi->bi_clone) {
116 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
118 *byte2 ^= (cur_state ^ new_state) << bit;
119 }
120 }
121
122 /**
123 * gfs2_testbit - test a bit in the bitmaps
124 * @rbm: The bit to test
125 *
126 * Returns: The two bit block state of the requested bit
127 */
128
129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
130 {
131 struct gfs2_bitmap *bi = rbm_bi(rbm);
132 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
133 const u8 *byte;
134 unsigned int bit;
135
136 byte = buffer + (rbm->offset / GFS2_NBBY);
137 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
138
139 return (*byte >> bit) & GFS2_BIT_MASK;
140 }
141
142 /**
143 * gfs2_bit_search
144 * @ptr: Pointer to bitmap data
145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
146 * @state: The state we are searching for
147 *
148 * We xor the bitmap data with a patter which is the bitwise opposite
149 * of what we are looking for, this gives rise to a pattern of ones
150 * wherever there is a match. Since we have two bits per entry, we
151 * take this pattern, shift it down by one place and then and it with
152 * the original. All the even bit positions (0,2,4, etc) then represent
153 * successful matches, so we mask with 0x55555..... to remove the unwanted
154 * odd bit positions.
155 *
156 * This allows searching of a whole u64 at once (32 blocks) with a
157 * single test (on 64 bit arches).
158 */
159
160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
161 {
162 u64 tmp;
163 static const u64 search[] = {
164 [0] = 0xffffffffffffffffULL,
165 [1] = 0xaaaaaaaaaaaaaaaaULL,
166 [2] = 0x5555555555555555ULL,
167 [3] = 0x0000000000000000ULL,
168 };
169 tmp = le64_to_cpu(*ptr) ^ search[state];
170 tmp &= (tmp >> 1);
171 tmp &= mask;
172 return tmp;
173 }
174
175 /**
176 * rs_cmp - multi-block reservation range compare
177 * @blk: absolute file system block number of the new reservation
178 * @len: number of blocks in the new reservation
179 * @rs: existing reservation to compare against
180 *
181 * returns: 1 if the block range is beyond the reach of the reservation
182 * -1 if the block range is before the start of the reservation
183 * 0 if the block range overlaps with the reservation
184 */
185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
186 {
187 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
188
189 if (blk >= startblk + rs->rs_free)
190 return 1;
191 if (blk + len - 1 < startblk)
192 return -1;
193 return 0;
194 }
195
196 /**
197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
198 * a block in a given allocation state.
199 * @buf: the buffer that holds the bitmaps
200 * @len: the length (in bytes) of the buffer
201 * @goal: start search at this block's bit-pair (within @buffer)
202 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
203 *
204 * Scope of @goal and returned block number is only within this bitmap buffer,
205 * not entire rgrp or filesystem. @buffer will be offset from the actual
206 * beginning of a bitmap block buffer, skipping any header structures, but
207 * headers are always a multiple of 64 bits long so that the buffer is
208 * always aligned to a 64 bit boundary.
209 *
210 * The size of the buffer is in bytes, but is it assumed that it is
211 * always ok to read a complete multiple of 64 bits at the end
212 * of the block in case the end is no aligned to a natural boundary.
213 *
214 * Return: the block number (bitmap buffer scope) that was found
215 */
216
217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
218 u32 goal, u8 state)
219 {
220 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
221 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
222 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
223 u64 tmp;
224 u64 mask = 0x5555555555555555ULL;
225 u32 bit;
226
227 /* Mask off bits we don't care about at the start of the search */
228 mask <<= spoint;
229 tmp = gfs2_bit_search(ptr, mask, state);
230 ptr++;
231 while(tmp == 0 && ptr < end) {
232 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
233 ptr++;
234 }
235 /* Mask off any bits which are more than len bytes from the start */
236 if (ptr == end && (len & (sizeof(u64) - 1)))
237 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
238 /* Didn't find anything, so return */
239 if (tmp == 0)
240 return BFITNOENT;
241 ptr--;
242 bit = __ffs64(tmp);
243 bit /= 2; /* two bits per entry in the bitmap */
244 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
245 }
246
247 /**
248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
249 * @rbm: The rbm with rgd already set correctly
250 * @block: The block number (filesystem relative)
251 *
252 * This sets the bi and offset members of an rbm based on a
253 * resource group and a filesystem relative block number. The
254 * resource group must be set in the rbm on entry, the bi and
255 * offset members will be set by this function.
256 *
257 * Returns: 0 on success, or an error code
258 */
259
260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
261 {
262 u64 rblock = block - rbm->rgd->rd_data0;
263
264 if (WARN_ON_ONCE(rblock > UINT_MAX))
265 return -EINVAL;
266 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
267 return -E2BIG;
268
269 rbm->bii = 0;
270 rbm->offset = (u32)(rblock);
271 /* Check if the block is within the first block */
272 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
273 return 0;
274
275 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
276 rbm->offset += (sizeof(struct gfs2_rgrp) -
277 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
278 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 return 0;
281 }
282
283 /**
284 * gfs2_rbm_incr - increment an rbm structure
285 * @rbm: The rbm with rgd already set correctly
286 *
287 * This function takes an existing rbm structure and increments it to the next
288 * viable block offset.
289 *
290 * Returns: If incrementing the offset would cause the rbm to go past the
291 * end of the rgrp, true is returned, otherwise false.
292 *
293 */
294
295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
296 {
297 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
298 rbm->offset++;
299 return false;
300 }
301 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
302 return true;
303
304 rbm->offset = 0;
305 rbm->bii++;
306 return false;
307 }
308
309 /**
310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
311 * @rbm: Position to search (value/result)
312 * @n_unaligned: Number of unaligned blocks to check
313 * @len: Decremented for each block found (terminate on zero)
314 *
315 * Returns: true if a non-free block is encountered
316 */
317
318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
319 {
320 u32 n;
321 u8 res;
322
323 for (n = 0; n < n_unaligned; n++) {
324 res = gfs2_testbit(rbm);
325 if (res != GFS2_BLKST_FREE)
326 return true;
327 (*len)--;
328 if (*len == 0)
329 return true;
330 if (gfs2_rbm_incr(rbm))
331 return true;
332 }
333
334 return false;
335 }
336
337 /**
338 * gfs2_free_extlen - Return extent length of free blocks
339 * @rrbm: Starting position
340 * @len: Max length to check
341 *
342 * Starting at the block specified by the rbm, see how many free blocks
343 * there are, not reading more than len blocks ahead. This can be done
344 * using memchr_inv when the blocks are byte aligned, but has to be done
345 * on a block by block basis in case of unaligned blocks. Also this
346 * function can cope with bitmap boundaries (although it must stop on
347 * a resource group boundary)
348 *
349 * Returns: Number of free blocks in the extent
350 */
351
352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
353 {
354 struct gfs2_rbm rbm = *rrbm;
355 u32 n_unaligned = rbm.offset & 3;
356 u32 size = len;
357 u32 bytes;
358 u32 chunk_size;
359 u8 *ptr, *start, *end;
360 u64 block;
361 struct gfs2_bitmap *bi;
362
363 if (n_unaligned &&
364 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
365 goto out;
366
367 n_unaligned = len & 3;
368 /* Start is now byte aligned */
369 while (len > 3) {
370 bi = rbm_bi(&rbm);
371 start = bi->bi_bh->b_data;
372 if (bi->bi_clone)
373 start = bi->bi_clone;
374 end = start + bi->bi_bh->b_size;
375 start += bi->bi_offset;
376 BUG_ON(rbm.offset & 3);
377 start += (rbm.offset / GFS2_NBBY);
378 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
379 ptr = memchr_inv(start, 0, bytes);
380 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
381 chunk_size *= GFS2_NBBY;
382 BUG_ON(len < chunk_size);
383 len -= chunk_size;
384 block = gfs2_rbm_to_block(&rbm);
385 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
386 n_unaligned = 0;
387 break;
388 }
389 if (ptr) {
390 n_unaligned = 3;
391 break;
392 }
393 n_unaligned = len & 3;
394 }
395
396 /* Deal with any bits left over at the end */
397 if (n_unaligned)
398 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
399 out:
400 return size - len;
401 }
402
403 /**
404 * gfs2_bitcount - count the number of bits in a certain state
405 * @rgd: the resource group descriptor
406 * @buffer: the buffer that holds the bitmaps
407 * @buflen: the length (in bytes) of the buffer
408 * @state: the state of the block we're looking for
409 *
410 * Returns: The number of bits
411 */
412
413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
414 unsigned int buflen, u8 state)
415 {
416 const u8 *byte = buffer;
417 const u8 *end = buffer + buflen;
418 const u8 state1 = state << 2;
419 const u8 state2 = state << 4;
420 const u8 state3 = state << 6;
421 u32 count = 0;
422
423 for (; byte < end; byte++) {
424 if (((*byte) & 0x03) == state)
425 count++;
426 if (((*byte) & 0x0C) == state1)
427 count++;
428 if (((*byte) & 0x30) == state2)
429 count++;
430 if (((*byte) & 0xC0) == state3)
431 count++;
432 }
433
434 return count;
435 }
436
437 /**
438 * gfs2_rgrp_verify - Verify that a resource group is consistent
439 * @rgd: the rgrp
440 *
441 */
442
443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
444 {
445 struct gfs2_sbd *sdp = rgd->rd_sbd;
446 struct gfs2_bitmap *bi = NULL;
447 u32 length = rgd->rd_length;
448 u32 count[4], tmp;
449 int buf, x;
450
451 memset(count, 0, 4 * sizeof(u32));
452
453 /* Count # blocks in each of 4 possible allocation states */
454 for (buf = 0; buf < length; buf++) {
455 bi = rgd->rd_bits + buf;
456 for (x = 0; x < 4; x++)
457 count[x] += gfs2_bitcount(rgd,
458 bi->bi_bh->b_data +
459 bi->bi_offset,
460 bi->bi_len, x);
461 }
462
463 if (count[0] != rgd->rd_free) {
464 if (gfs2_consist_rgrpd(rgd))
465 fs_err(sdp, "free data mismatch: %u != %u\n",
466 count[0], rgd->rd_free);
467 return;
468 }
469
470 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
471 if (count[1] != tmp) {
472 if (gfs2_consist_rgrpd(rgd))
473 fs_err(sdp, "used data mismatch: %u != %u\n",
474 count[1], tmp);
475 return;
476 }
477
478 if (count[2] + count[3] != rgd->rd_dinodes) {
479 if (gfs2_consist_rgrpd(rgd))
480 fs_err(sdp, "used metadata mismatch: %u != %u\n",
481 count[2] + count[3], rgd->rd_dinodes);
482 return;
483 }
484 }
485
486 /**
487 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488 * @sdp: The GFS2 superblock
489 * @blk: The data block number
490 * @exact: True if this needs to be an exact match
491 *
492 * Returns: The resource group, or NULL if not found
493 */
494
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 struct rb_node *n, *next;
498 struct gfs2_rgrpd *cur;
499
500 spin_lock(&sdp->sd_rindex_spin);
501 n = sdp->sd_rindex_tree.rb_node;
502 while (n) {
503 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 next = NULL;
505 if (blk < cur->rd_addr)
506 next = n->rb_left;
507 else if (blk >= cur->rd_data0 + cur->rd_data)
508 next = n->rb_right;
509 if (next == NULL) {
510 spin_unlock(&sdp->sd_rindex_spin);
511 if (exact) {
512 if (blk < cur->rd_addr)
513 return NULL;
514 if (blk >= cur->rd_data0 + cur->rd_data)
515 return NULL;
516 }
517 return cur;
518 }
519 n = next;
520 }
521 spin_unlock(&sdp->sd_rindex_spin);
522
523 return NULL;
524 }
525
526 /**
527 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528 * @sdp: The GFS2 superblock
529 *
530 * Returns: The first rgrp in the filesystem
531 */
532
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 const struct rb_node *n;
536 struct gfs2_rgrpd *rgd;
537
538 spin_lock(&sdp->sd_rindex_spin);
539 n = rb_first(&sdp->sd_rindex_tree);
540 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 spin_unlock(&sdp->sd_rindex_spin);
542
543 return rgd;
544 }
545
546 /**
547 * gfs2_rgrpd_get_next - get the next RG
548 * @rgd: the resource group descriptor
549 *
550 * Returns: The next rgrp
551 */
552
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 struct gfs2_sbd *sdp = rgd->rd_sbd;
556 const struct rb_node *n;
557
558 spin_lock(&sdp->sd_rindex_spin);
559 n = rb_next(&rgd->rd_node);
560 if (n == NULL)
561 n = rb_first(&sdp->sd_rindex_tree);
562
563 if (unlikely(&rgd->rd_node == n)) {
564 spin_unlock(&sdp->sd_rindex_spin);
565 return NULL;
566 }
567 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 spin_unlock(&sdp->sd_rindex_spin);
569 return rgd;
570 }
571
572 void check_and_update_goal(struct gfs2_inode *ip)
573 {
574 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
575 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
576 ip->i_goal = ip->i_no_addr;
577 }
578
579 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
580 {
581 int x;
582
583 for (x = 0; x < rgd->rd_length; x++) {
584 struct gfs2_bitmap *bi = rgd->rd_bits + x;
585 kfree(bi->bi_clone);
586 bi->bi_clone = NULL;
587 }
588 }
589
590 /**
591 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
592 * plus a quota allocations data structure, if necessary
593 * @ip: the inode for this reservation
594 */
595 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
596 {
597 return gfs2_qa_alloc(ip);
598 }
599
600 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
601 {
602 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
603 (unsigned long long)rs->rs_inum,
604 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
605 rs->rs_rbm.offset, rs->rs_free);
606 }
607
608 /**
609 * __rs_deltree - remove a multi-block reservation from the rgd tree
610 * @rs: The reservation to remove
611 *
612 */
613 static void __rs_deltree(struct gfs2_blkreserv *rs)
614 {
615 struct gfs2_rgrpd *rgd;
616
617 if (!gfs2_rs_active(rs))
618 return;
619
620 rgd = rs->rs_rbm.rgd;
621 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
622 rb_erase(&rs->rs_node, &rgd->rd_rstree);
623 RB_CLEAR_NODE(&rs->rs_node);
624
625 if (rs->rs_free) {
626 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
627
628 /* return reserved blocks to the rgrp */
629 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
630 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
631 /* The rgrp extent failure point is likely not to increase;
632 it will only do so if the freed blocks are somehow
633 contiguous with a span of free blocks that follows. Still,
634 it will force the number to be recalculated later. */
635 rgd->rd_extfail_pt += rs->rs_free;
636 rs->rs_free = 0;
637 clear_bit(GBF_FULL, &bi->bi_flags);
638 }
639 }
640
641 /**
642 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
643 * @rs: The reservation to remove
644 *
645 */
646 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
647 {
648 struct gfs2_rgrpd *rgd;
649
650 rgd = rs->rs_rbm.rgd;
651 if (rgd) {
652 spin_lock(&rgd->rd_rsspin);
653 __rs_deltree(rs);
654 BUG_ON(rs->rs_free);
655 spin_unlock(&rgd->rd_rsspin);
656 }
657 }
658
659 /**
660 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
661 * @ip: The inode for this reservation
662 * @wcount: The inode's write count, or NULL
663 *
664 */
665 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
666 {
667 down_write(&ip->i_rw_mutex);
668 if ((wcount == NULL) || (atomic_read(wcount) <= 1))
669 gfs2_rs_deltree(&ip->i_res);
670 up_write(&ip->i_rw_mutex);
671 gfs2_qa_delete(ip, wcount);
672 }
673
674 /**
675 * return_all_reservations - return all reserved blocks back to the rgrp.
676 * @rgd: the rgrp that needs its space back
677 *
678 * We previously reserved a bunch of blocks for allocation. Now we need to
679 * give them back. This leave the reservation structures in tact, but removes
680 * all of their corresponding "no-fly zones".
681 */
682 static void return_all_reservations(struct gfs2_rgrpd *rgd)
683 {
684 struct rb_node *n;
685 struct gfs2_blkreserv *rs;
686
687 spin_lock(&rgd->rd_rsspin);
688 while ((n = rb_first(&rgd->rd_rstree))) {
689 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
690 __rs_deltree(rs);
691 }
692 spin_unlock(&rgd->rd_rsspin);
693 }
694
695 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
696 {
697 struct rb_node *n;
698 struct gfs2_rgrpd *rgd;
699 struct gfs2_glock *gl;
700
701 while ((n = rb_first(&sdp->sd_rindex_tree))) {
702 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
703 gl = rgd->rd_gl;
704
705 rb_erase(n, &sdp->sd_rindex_tree);
706
707 if (gl) {
708 spin_lock(&gl->gl_lockref.lock);
709 gl->gl_object = NULL;
710 spin_unlock(&gl->gl_lockref.lock);
711 gfs2_glock_add_to_lru(gl);
712 gfs2_glock_put(gl);
713 }
714
715 gfs2_free_clones(rgd);
716 kfree(rgd->rd_bits);
717 rgd->rd_bits = NULL;
718 return_all_reservations(rgd);
719 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
720 }
721 }
722
723 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
724 {
725 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
726 pr_info("ri_length = %u\n", rgd->rd_length);
727 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
728 pr_info("ri_data = %u\n", rgd->rd_data);
729 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
730 }
731
732 /**
733 * gfs2_compute_bitstructs - Compute the bitmap sizes
734 * @rgd: The resource group descriptor
735 *
736 * Calculates bitmap descriptors, one for each block that contains bitmap data
737 *
738 * Returns: errno
739 */
740
741 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
742 {
743 struct gfs2_sbd *sdp = rgd->rd_sbd;
744 struct gfs2_bitmap *bi;
745 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
746 u32 bytes_left, bytes;
747 int x;
748
749 if (!length)
750 return -EINVAL;
751
752 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
753 if (!rgd->rd_bits)
754 return -ENOMEM;
755
756 bytes_left = rgd->rd_bitbytes;
757
758 for (x = 0; x < length; x++) {
759 bi = rgd->rd_bits + x;
760
761 bi->bi_flags = 0;
762 /* small rgrp; bitmap stored completely in header block */
763 if (length == 1) {
764 bytes = bytes_left;
765 bi->bi_offset = sizeof(struct gfs2_rgrp);
766 bi->bi_start = 0;
767 bi->bi_len = bytes;
768 bi->bi_blocks = bytes * GFS2_NBBY;
769 /* header block */
770 } else if (x == 0) {
771 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
772 bi->bi_offset = sizeof(struct gfs2_rgrp);
773 bi->bi_start = 0;
774 bi->bi_len = bytes;
775 bi->bi_blocks = bytes * GFS2_NBBY;
776 /* last block */
777 } else if (x + 1 == length) {
778 bytes = bytes_left;
779 bi->bi_offset = sizeof(struct gfs2_meta_header);
780 bi->bi_start = rgd->rd_bitbytes - bytes_left;
781 bi->bi_len = bytes;
782 bi->bi_blocks = bytes * GFS2_NBBY;
783 /* other blocks */
784 } else {
785 bytes = sdp->sd_sb.sb_bsize -
786 sizeof(struct gfs2_meta_header);
787 bi->bi_offset = sizeof(struct gfs2_meta_header);
788 bi->bi_start = rgd->rd_bitbytes - bytes_left;
789 bi->bi_len = bytes;
790 bi->bi_blocks = bytes * GFS2_NBBY;
791 }
792
793 bytes_left -= bytes;
794 }
795
796 if (bytes_left) {
797 gfs2_consist_rgrpd(rgd);
798 return -EIO;
799 }
800 bi = rgd->rd_bits + (length - 1);
801 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
802 if (gfs2_consist_rgrpd(rgd)) {
803 gfs2_rindex_print(rgd);
804 fs_err(sdp, "start=%u len=%u offset=%u\n",
805 bi->bi_start, bi->bi_len, bi->bi_offset);
806 }
807 return -EIO;
808 }
809
810 return 0;
811 }
812
813 /**
814 * gfs2_ri_total - Total up the file system space, according to the rindex.
815 * @sdp: the filesystem
816 *
817 */
818 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
819 {
820 u64 total_data = 0;
821 struct inode *inode = sdp->sd_rindex;
822 struct gfs2_inode *ip = GFS2_I(inode);
823 char buf[sizeof(struct gfs2_rindex)];
824 int error, rgrps;
825
826 for (rgrps = 0;; rgrps++) {
827 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
828
829 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
830 break;
831 error = gfs2_internal_read(ip, buf, &pos,
832 sizeof(struct gfs2_rindex));
833 if (error != sizeof(struct gfs2_rindex))
834 break;
835 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
836 }
837 return total_data;
838 }
839
840 static int rgd_insert(struct gfs2_rgrpd *rgd)
841 {
842 struct gfs2_sbd *sdp = rgd->rd_sbd;
843 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
844
845 /* Figure out where to put new node */
846 while (*newn) {
847 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
848 rd_node);
849
850 parent = *newn;
851 if (rgd->rd_addr < cur->rd_addr)
852 newn = &((*newn)->rb_left);
853 else if (rgd->rd_addr > cur->rd_addr)
854 newn = &((*newn)->rb_right);
855 else
856 return -EEXIST;
857 }
858
859 rb_link_node(&rgd->rd_node, parent, newn);
860 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
861 sdp->sd_rgrps++;
862 return 0;
863 }
864
865 /**
866 * read_rindex_entry - Pull in a new resource index entry from the disk
867 * @ip: Pointer to the rindex inode
868 *
869 * Returns: 0 on success, > 0 on EOF, error code otherwise
870 */
871
872 static int read_rindex_entry(struct gfs2_inode *ip)
873 {
874 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
875 const unsigned bsize = sdp->sd_sb.sb_bsize;
876 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
877 struct gfs2_rindex buf;
878 int error;
879 struct gfs2_rgrpd *rgd;
880
881 if (pos >= i_size_read(&ip->i_inode))
882 return 1;
883
884 error = gfs2_internal_read(ip, (char *)&buf, &pos,
885 sizeof(struct gfs2_rindex));
886
887 if (error != sizeof(struct gfs2_rindex))
888 return (error == 0) ? 1 : error;
889
890 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
891 error = -ENOMEM;
892 if (!rgd)
893 return error;
894
895 rgd->rd_sbd = sdp;
896 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
897 rgd->rd_length = be32_to_cpu(buf.ri_length);
898 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
899 rgd->rd_data = be32_to_cpu(buf.ri_data);
900 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
901 spin_lock_init(&rgd->rd_rsspin);
902
903 error = compute_bitstructs(rgd);
904 if (error)
905 goto fail;
906
907 error = gfs2_glock_get(sdp, rgd->rd_addr,
908 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
909 if (error)
910 goto fail;
911
912 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
913 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
914 if (rgd->rd_data > sdp->sd_max_rg_data)
915 sdp->sd_max_rg_data = rgd->rd_data;
916 spin_lock(&sdp->sd_rindex_spin);
917 error = rgd_insert(rgd);
918 spin_unlock(&sdp->sd_rindex_spin);
919 if (!error) {
920 rgd->rd_gl->gl_object = rgd;
921 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
922 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
923 rgd->rd_length) * bsize) - 1;
924 return 0;
925 }
926
927 error = 0; /* someone else read in the rgrp; free it and ignore it */
928 gfs2_glock_put(rgd->rd_gl);
929
930 fail:
931 kfree(rgd->rd_bits);
932 rgd->rd_bits = NULL;
933 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
934 return error;
935 }
936
937 /**
938 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
939 * @sdp: the GFS2 superblock
940 *
941 * The purpose of this function is to select a subset of the resource groups
942 * and mark them as PREFERRED. We do it in such a way that each node prefers
943 * to use a unique set of rgrps to minimize glock contention.
944 */
945 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
946 {
947 struct gfs2_rgrpd *rgd, *first;
948 int i;
949
950 /* Skip an initial number of rgrps, based on this node's journal ID.
951 That should start each node out on its own set. */
952 rgd = gfs2_rgrpd_get_first(sdp);
953 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
954 rgd = gfs2_rgrpd_get_next(rgd);
955 first = rgd;
956
957 do {
958 rgd->rd_flags |= GFS2_RDF_PREFERRED;
959 for (i = 0; i < sdp->sd_journals; i++) {
960 rgd = gfs2_rgrpd_get_next(rgd);
961 if (!rgd || rgd == first)
962 break;
963 }
964 } while (rgd && rgd != first);
965 }
966
967 /**
968 * gfs2_ri_update - Pull in a new resource index from the disk
969 * @ip: pointer to the rindex inode
970 *
971 * Returns: 0 on successful update, error code otherwise
972 */
973
974 static int gfs2_ri_update(struct gfs2_inode *ip)
975 {
976 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
977 int error;
978
979 do {
980 error = read_rindex_entry(ip);
981 } while (error == 0);
982
983 if (error < 0)
984 return error;
985
986 set_rgrp_preferences(sdp);
987
988 sdp->sd_rindex_uptodate = 1;
989 return 0;
990 }
991
992 /**
993 * gfs2_rindex_update - Update the rindex if required
994 * @sdp: The GFS2 superblock
995 *
996 * We grab a lock on the rindex inode to make sure that it doesn't
997 * change whilst we are performing an operation. We keep this lock
998 * for quite long periods of time compared to other locks. This
999 * doesn't matter, since it is shared and it is very, very rarely
1000 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1001 *
1002 * This makes sure that we're using the latest copy of the resource index
1003 * special file, which might have been updated if someone expanded the
1004 * filesystem (via gfs2_grow utility), which adds new resource groups.
1005 *
1006 * Returns: 0 on succeess, error code otherwise
1007 */
1008
1009 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1010 {
1011 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1012 struct gfs2_glock *gl = ip->i_gl;
1013 struct gfs2_holder ri_gh;
1014 int error = 0;
1015 int unlock_required = 0;
1016
1017 /* Read new copy from disk if we don't have the latest */
1018 if (!sdp->sd_rindex_uptodate) {
1019 if (!gfs2_glock_is_locked_by_me(gl)) {
1020 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1021 if (error)
1022 return error;
1023 unlock_required = 1;
1024 }
1025 if (!sdp->sd_rindex_uptodate)
1026 error = gfs2_ri_update(ip);
1027 if (unlock_required)
1028 gfs2_glock_dq_uninit(&ri_gh);
1029 }
1030
1031 return error;
1032 }
1033
1034 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1035 {
1036 const struct gfs2_rgrp *str = buf;
1037 u32 rg_flags;
1038
1039 rg_flags = be32_to_cpu(str->rg_flags);
1040 rg_flags &= ~GFS2_RDF_MASK;
1041 rgd->rd_flags &= GFS2_RDF_MASK;
1042 rgd->rd_flags |= rg_flags;
1043 rgd->rd_free = be32_to_cpu(str->rg_free);
1044 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1045 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1046 }
1047
1048 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1049 {
1050 struct gfs2_rgrp *str = buf;
1051
1052 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1053 str->rg_free = cpu_to_be32(rgd->rd_free);
1054 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1055 str->__pad = cpu_to_be32(0);
1056 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1057 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1058 }
1059
1060 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1061 {
1062 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1063 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1064
1065 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1066 rgl->rl_dinodes != str->rg_dinodes ||
1067 rgl->rl_igeneration != str->rg_igeneration)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1073 {
1074 const struct gfs2_rgrp *str = buf;
1075
1076 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1077 rgl->rl_flags = str->rg_flags;
1078 rgl->rl_free = str->rg_free;
1079 rgl->rl_dinodes = str->rg_dinodes;
1080 rgl->rl_igeneration = str->rg_igeneration;
1081 rgl->__pad = 0UL;
1082 }
1083
1084 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1085 {
1086 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1087 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1088 rgl->rl_unlinked = cpu_to_be32(unlinked);
1089 }
1090
1091 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1092 {
1093 struct gfs2_bitmap *bi;
1094 const u32 length = rgd->rd_length;
1095 const u8 *buffer = NULL;
1096 u32 i, goal, count = 0;
1097
1098 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1099 goal = 0;
1100 buffer = bi->bi_bh->b_data + bi->bi_offset;
1101 WARN_ON(!buffer_uptodate(bi->bi_bh));
1102 while (goal < bi->bi_len * GFS2_NBBY) {
1103 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1104 GFS2_BLKST_UNLINKED);
1105 if (goal == BFITNOENT)
1106 break;
1107 count++;
1108 goal++;
1109 }
1110 }
1111
1112 return count;
1113 }
1114
1115
1116 /**
1117 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1118 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1119 *
1120 * Read in all of a Resource Group's header and bitmap blocks.
1121 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1122 *
1123 * Returns: errno
1124 */
1125
1126 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1127 {
1128 struct gfs2_sbd *sdp = rgd->rd_sbd;
1129 struct gfs2_glock *gl = rgd->rd_gl;
1130 unsigned int length = rgd->rd_length;
1131 struct gfs2_bitmap *bi;
1132 unsigned int x, y;
1133 int error;
1134
1135 if (rgd->rd_bits[0].bi_bh != NULL)
1136 return 0;
1137
1138 for (x = 0; x < length; x++) {
1139 bi = rgd->rd_bits + x;
1140 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1141 if (error)
1142 goto fail;
1143 }
1144
1145 for (y = length; y--;) {
1146 bi = rgd->rd_bits + y;
1147 error = gfs2_meta_wait(sdp, bi->bi_bh);
1148 if (error)
1149 goto fail;
1150 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1151 GFS2_METATYPE_RG)) {
1152 error = -EIO;
1153 goto fail;
1154 }
1155 }
1156
1157 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1158 for (x = 0; x < length; x++)
1159 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1160 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1161 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1162 rgd->rd_free_clone = rgd->rd_free;
1163 /* max out the rgrp allocation failure point */
1164 rgd->rd_extfail_pt = rgd->rd_free;
1165 }
1166 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1167 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1168 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1169 rgd->rd_bits[0].bi_bh->b_data);
1170 }
1171 else if (sdp->sd_args.ar_rgrplvb) {
1172 if (!gfs2_rgrp_lvb_valid(rgd)){
1173 gfs2_consist_rgrpd(rgd);
1174 error = -EIO;
1175 goto fail;
1176 }
1177 if (rgd->rd_rgl->rl_unlinked == 0)
1178 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1179 }
1180 return 0;
1181
1182 fail:
1183 while (x--) {
1184 bi = rgd->rd_bits + x;
1185 brelse(bi->bi_bh);
1186 bi->bi_bh = NULL;
1187 gfs2_assert_warn(sdp, !bi->bi_clone);
1188 }
1189
1190 return error;
1191 }
1192
1193 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1194 {
1195 u32 rl_flags;
1196
1197 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1198 return 0;
1199
1200 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1201 return gfs2_rgrp_bh_get(rgd);
1202
1203 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1204 rl_flags &= ~GFS2_RDF_MASK;
1205 rgd->rd_flags &= GFS2_RDF_MASK;
1206 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1207 if (rgd->rd_rgl->rl_unlinked == 0)
1208 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1209 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1210 rgd->rd_free_clone = rgd->rd_free;
1211 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1212 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1213 return 0;
1214 }
1215
1216 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1217 {
1218 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1219 struct gfs2_sbd *sdp = rgd->rd_sbd;
1220
1221 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1222 return 0;
1223 return gfs2_rgrp_bh_get(rgd);
1224 }
1225
1226 /**
1227 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1228 * @rgd: The resource group
1229 *
1230 */
1231
1232 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1233 {
1234 int x, length = rgd->rd_length;
1235
1236 for (x = 0; x < length; x++) {
1237 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1238 if (bi->bi_bh) {
1239 brelse(bi->bi_bh);
1240 bi->bi_bh = NULL;
1241 }
1242 }
1243
1244 }
1245
1246 /**
1247 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1248 * @gh: The glock holder for the resource group
1249 *
1250 */
1251
1252 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1253 {
1254 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1255 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1256 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1257
1258 if (rgd && demote_requested)
1259 gfs2_rgrp_brelse(rgd);
1260 }
1261
1262 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1263 struct buffer_head *bh,
1264 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1265 {
1266 struct super_block *sb = sdp->sd_vfs;
1267 u64 blk;
1268 sector_t start = 0;
1269 sector_t nr_blks = 0;
1270 int rv;
1271 unsigned int x;
1272 u32 trimmed = 0;
1273 u8 diff;
1274
1275 for (x = 0; x < bi->bi_len; x++) {
1276 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1277 clone += bi->bi_offset;
1278 clone += x;
1279 if (bh) {
1280 const u8 *orig = bh->b_data + bi->bi_offset + x;
1281 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1282 } else {
1283 diff = ~(*clone | (*clone >> 1));
1284 }
1285 diff &= 0x55;
1286 if (diff == 0)
1287 continue;
1288 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1289 while(diff) {
1290 if (diff & 1) {
1291 if (nr_blks == 0)
1292 goto start_new_extent;
1293 if ((start + nr_blks) != blk) {
1294 if (nr_blks >= minlen) {
1295 rv = sb_issue_discard(sb,
1296 start, nr_blks,
1297 GFP_NOFS, 0);
1298 if (rv)
1299 goto fail;
1300 trimmed += nr_blks;
1301 }
1302 nr_blks = 0;
1303 start_new_extent:
1304 start = blk;
1305 }
1306 nr_blks++;
1307 }
1308 diff >>= 2;
1309 blk++;
1310 }
1311 }
1312 if (nr_blks >= minlen) {
1313 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1314 if (rv)
1315 goto fail;
1316 trimmed += nr_blks;
1317 }
1318 if (ptrimmed)
1319 *ptrimmed = trimmed;
1320 return 0;
1321
1322 fail:
1323 if (sdp->sd_args.ar_discard)
1324 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1325 sdp->sd_args.ar_discard = 0;
1326 return -EIO;
1327 }
1328
1329 /**
1330 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1331 * @filp: Any file on the filesystem
1332 * @argp: Pointer to the arguments (also used to pass result)
1333 *
1334 * Returns: 0 on success, otherwise error code
1335 */
1336
1337 int gfs2_fitrim(struct file *filp, void __user *argp)
1338 {
1339 struct inode *inode = file_inode(filp);
1340 struct gfs2_sbd *sdp = GFS2_SB(inode);
1341 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1342 struct buffer_head *bh;
1343 struct gfs2_rgrpd *rgd;
1344 struct gfs2_rgrpd *rgd_end;
1345 struct gfs2_holder gh;
1346 struct fstrim_range r;
1347 int ret = 0;
1348 u64 amt;
1349 u64 trimmed = 0;
1350 u64 start, end, minlen;
1351 unsigned int x;
1352 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1353
1354 if (!capable(CAP_SYS_ADMIN))
1355 return -EPERM;
1356
1357 if (!blk_queue_discard(q))
1358 return -EOPNOTSUPP;
1359
1360 if (copy_from_user(&r, argp, sizeof(r)))
1361 return -EFAULT;
1362
1363 ret = gfs2_rindex_update(sdp);
1364 if (ret)
1365 return ret;
1366
1367 start = r.start >> bs_shift;
1368 end = start + (r.len >> bs_shift);
1369 minlen = max_t(u64, r.minlen,
1370 q->limits.discard_granularity) >> bs_shift;
1371
1372 if (end <= start || minlen > sdp->sd_max_rg_data)
1373 return -EINVAL;
1374
1375 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1376 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1377
1378 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1379 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1380 return -EINVAL; /* start is beyond the end of the fs */
1381
1382 while (1) {
1383
1384 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1385 if (ret)
1386 goto out;
1387
1388 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1389 /* Trim each bitmap in the rgrp */
1390 for (x = 0; x < rgd->rd_length; x++) {
1391 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1392 ret = gfs2_rgrp_send_discards(sdp,
1393 rgd->rd_data0, NULL, bi, minlen,
1394 &amt);
1395 if (ret) {
1396 gfs2_glock_dq_uninit(&gh);
1397 goto out;
1398 }
1399 trimmed += amt;
1400 }
1401
1402 /* Mark rgrp as having been trimmed */
1403 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1404 if (ret == 0) {
1405 bh = rgd->rd_bits[0].bi_bh;
1406 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1407 gfs2_trans_add_meta(rgd->rd_gl, bh);
1408 gfs2_rgrp_out(rgd, bh->b_data);
1409 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1410 gfs2_trans_end(sdp);
1411 }
1412 }
1413 gfs2_glock_dq_uninit(&gh);
1414
1415 if (rgd == rgd_end)
1416 break;
1417
1418 rgd = gfs2_rgrpd_get_next(rgd);
1419 }
1420
1421 out:
1422 r.len = trimmed << bs_shift;
1423 if (copy_to_user(argp, &r, sizeof(r)))
1424 return -EFAULT;
1425
1426 return ret;
1427 }
1428
1429 /**
1430 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1431 * @ip: the inode structure
1432 *
1433 */
1434 static void rs_insert(struct gfs2_inode *ip)
1435 {
1436 struct rb_node **newn, *parent = NULL;
1437 int rc;
1438 struct gfs2_blkreserv *rs = &ip->i_res;
1439 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1440 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1441
1442 BUG_ON(gfs2_rs_active(rs));
1443
1444 spin_lock(&rgd->rd_rsspin);
1445 newn = &rgd->rd_rstree.rb_node;
1446 while (*newn) {
1447 struct gfs2_blkreserv *cur =
1448 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1449
1450 parent = *newn;
1451 rc = rs_cmp(fsblock, rs->rs_free, cur);
1452 if (rc > 0)
1453 newn = &((*newn)->rb_right);
1454 else if (rc < 0)
1455 newn = &((*newn)->rb_left);
1456 else {
1457 spin_unlock(&rgd->rd_rsspin);
1458 WARN_ON(1);
1459 return;
1460 }
1461 }
1462
1463 rb_link_node(&rs->rs_node, parent, newn);
1464 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1465
1466 /* Do our rgrp accounting for the reservation */
1467 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1468 spin_unlock(&rgd->rd_rsspin);
1469 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1470 }
1471
1472 /**
1473 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1474 * @rgd: the resource group descriptor
1475 * @ip: pointer to the inode for which we're reserving blocks
1476 * @ap: the allocation parameters
1477 *
1478 */
1479
1480 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1481 const struct gfs2_alloc_parms *ap)
1482 {
1483 struct gfs2_rbm rbm = { .rgd = rgd, };
1484 u64 goal;
1485 struct gfs2_blkreserv *rs = &ip->i_res;
1486 u32 extlen;
1487 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1488 int ret;
1489 struct inode *inode = &ip->i_inode;
1490
1491 if (S_ISDIR(inode->i_mode))
1492 extlen = 1;
1493 else {
1494 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1495 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1496 }
1497 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1498 return;
1499
1500 /* Find bitmap block that contains bits for goal block */
1501 if (rgrp_contains_block(rgd, ip->i_goal))
1502 goal = ip->i_goal;
1503 else
1504 goal = rgd->rd_last_alloc + rgd->rd_data0;
1505
1506 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1507 return;
1508
1509 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1510 if (ret == 0) {
1511 rs->rs_rbm = rbm;
1512 rs->rs_free = extlen;
1513 rs->rs_inum = ip->i_no_addr;
1514 rs_insert(ip);
1515 } else {
1516 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1517 rgd->rd_last_alloc = 0;
1518 }
1519 }
1520
1521 /**
1522 * gfs2_next_unreserved_block - Return next block that is not reserved
1523 * @rgd: The resource group
1524 * @block: The starting block
1525 * @length: The required length
1526 * @ip: Ignore any reservations for this inode
1527 *
1528 * If the block does not appear in any reservation, then return the
1529 * block number unchanged. If it does appear in the reservation, then
1530 * keep looking through the tree of reservations in order to find the
1531 * first block number which is not reserved.
1532 */
1533
1534 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1535 u32 length,
1536 const struct gfs2_inode *ip)
1537 {
1538 struct gfs2_blkreserv *rs;
1539 struct rb_node *n;
1540 int rc;
1541
1542 spin_lock(&rgd->rd_rsspin);
1543 n = rgd->rd_rstree.rb_node;
1544 while (n) {
1545 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1546 rc = rs_cmp(block, length, rs);
1547 if (rc < 0)
1548 n = n->rb_left;
1549 else if (rc > 0)
1550 n = n->rb_right;
1551 else
1552 break;
1553 }
1554
1555 if (n) {
1556 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1557 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1558 n = n->rb_right;
1559 if (n == NULL)
1560 break;
1561 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1562 }
1563 }
1564
1565 spin_unlock(&rgd->rd_rsspin);
1566 return block;
1567 }
1568
1569 /**
1570 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1571 * @rbm: The current position in the resource group
1572 * @ip: The inode for which we are searching for blocks
1573 * @minext: The minimum extent length
1574 * @maxext: A pointer to the maximum extent structure
1575 *
1576 * This checks the current position in the rgrp to see whether there is
1577 * a reservation covering this block. If not then this function is a
1578 * no-op. If there is, then the position is moved to the end of the
1579 * contiguous reservation(s) so that we are pointing at the first
1580 * non-reserved block.
1581 *
1582 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1583 */
1584
1585 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1586 const struct gfs2_inode *ip,
1587 u32 minext,
1588 struct gfs2_extent *maxext)
1589 {
1590 u64 block = gfs2_rbm_to_block(rbm);
1591 u32 extlen = 1;
1592 u64 nblock;
1593 int ret;
1594
1595 /*
1596 * If we have a minimum extent length, then skip over any extent
1597 * which is less than the min extent length in size.
1598 */
1599 if (minext) {
1600 extlen = gfs2_free_extlen(rbm, minext);
1601 if (extlen <= maxext->len)
1602 goto fail;
1603 }
1604
1605 /*
1606 * Check the extent which has been found against the reservations
1607 * and skip if parts of it are already reserved
1608 */
1609 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1610 if (nblock == block) {
1611 if (!minext || extlen >= minext)
1612 return 0;
1613
1614 if (extlen > maxext->len) {
1615 maxext->len = extlen;
1616 maxext->rbm = *rbm;
1617 }
1618 fail:
1619 nblock = block + extlen;
1620 }
1621 ret = gfs2_rbm_from_block(rbm, nblock);
1622 if (ret < 0)
1623 return ret;
1624 return 1;
1625 }
1626
1627 /**
1628 * gfs2_rbm_find - Look for blocks of a particular state
1629 * @rbm: Value/result starting position and final position
1630 * @state: The state which we want to find
1631 * @minext: Pointer to the requested extent length (NULL for a single block)
1632 * This is updated to be the actual reservation size.
1633 * @ip: If set, check for reservations
1634 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1635 * around until we've reached the starting point.
1636 *
1637 * Side effects:
1638 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1639 * has no free blocks in it.
1640 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1641 * has come up short on a free block search.
1642 *
1643 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1644 */
1645
1646 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1647 const struct gfs2_inode *ip, bool nowrap)
1648 {
1649 struct buffer_head *bh;
1650 int initial_bii;
1651 u32 initial_offset;
1652 int first_bii = rbm->bii;
1653 u32 first_offset = rbm->offset;
1654 u32 offset;
1655 u8 *buffer;
1656 int n = 0;
1657 int iters = rbm->rgd->rd_length;
1658 int ret;
1659 struct gfs2_bitmap *bi;
1660 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1661
1662 /* If we are not starting at the beginning of a bitmap, then we
1663 * need to add one to the bitmap count to ensure that we search
1664 * the starting bitmap twice.
1665 */
1666 if (rbm->offset != 0)
1667 iters++;
1668
1669 while(1) {
1670 bi = rbm_bi(rbm);
1671 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1672 (state == GFS2_BLKST_FREE))
1673 goto next_bitmap;
1674
1675 bh = bi->bi_bh;
1676 buffer = bh->b_data + bi->bi_offset;
1677 WARN_ON(!buffer_uptodate(bh));
1678 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1679 buffer = bi->bi_clone + bi->bi_offset;
1680 initial_offset = rbm->offset;
1681 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1682 if (offset == BFITNOENT)
1683 goto bitmap_full;
1684 rbm->offset = offset;
1685 if (ip == NULL)
1686 return 0;
1687
1688 initial_bii = rbm->bii;
1689 ret = gfs2_reservation_check_and_update(rbm, ip,
1690 minext ? *minext : 0,
1691 &maxext);
1692 if (ret == 0)
1693 return 0;
1694 if (ret > 0) {
1695 n += (rbm->bii - initial_bii);
1696 goto next_iter;
1697 }
1698 if (ret == -E2BIG) {
1699 rbm->bii = 0;
1700 rbm->offset = 0;
1701 n += (rbm->bii - initial_bii);
1702 goto res_covered_end_of_rgrp;
1703 }
1704 return ret;
1705
1706 bitmap_full: /* Mark bitmap as full and fall through */
1707 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1708 set_bit(GBF_FULL, &bi->bi_flags);
1709
1710 next_bitmap: /* Find next bitmap in the rgrp */
1711 rbm->offset = 0;
1712 rbm->bii++;
1713 if (rbm->bii == rbm->rgd->rd_length)
1714 rbm->bii = 0;
1715 res_covered_end_of_rgrp:
1716 if ((rbm->bii == 0) && nowrap)
1717 break;
1718 n++;
1719 next_iter:
1720 if (n >= iters)
1721 break;
1722 }
1723
1724 if (minext == NULL || state != GFS2_BLKST_FREE)
1725 return -ENOSPC;
1726
1727 /* If the extent was too small, and it's smaller than the smallest
1728 to have failed before, remember for future reference that it's
1729 useless to search this rgrp again for this amount or more. */
1730 if ((first_offset == 0) && (first_bii == 0) &&
1731 (*minext < rbm->rgd->rd_extfail_pt))
1732 rbm->rgd->rd_extfail_pt = *minext;
1733
1734 /* If the maximum extent we found is big enough to fulfill the
1735 minimum requirements, use it anyway. */
1736 if (maxext.len) {
1737 *rbm = maxext.rbm;
1738 *minext = maxext.len;
1739 return 0;
1740 }
1741
1742 return -ENOSPC;
1743 }
1744
1745 /**
1746 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1747 * @rgd: The rgrp
1748 * @last_unlinked: block address of the last dinode we unlinked
1749 * @skip: block address we should explicitly not unlink
1750 *
1751 * Returns: 0 if no error
1752 * The inode, if one has been found, in inode.
1753 */
1754
1755 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1756 {
1757 u64 block;
1758 struct gfs2_sbd *sdp = rgd->rd_sbd;
1759 struct gfs2_glock *gl;
1760 struct gfs2_inode *ip;
1761 int error;
1762 int found = 0;
1763 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1764
1765 while (1) {
1766 down_write(&sdp->sd_log_flush_lock);
1767 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1768 true);
1769 up_write(&sdp->sd_log_flush_lock);
1770 if (error == -ENOSPC)
1771 break;
1772 if (WARN_ON_ONCE(error))
1773 break;
1774
1775 block = gfs2_rbm_to_block(&rbm);
1776 if (gfs2_rbm_from_block(&rbm, block + 1))
1777 break;
1778 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1779 continue;
1780 if (block == skip)
1781 continue;
1782 *last_unlinked = block;
1783
1784 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1785 if (error)
1786 continue;
1787
1788 /* If the inode is already in cache, we can ignore it here
1789 * because the existing inode disposal code will deal with
1790 * it when all refs have gone away. Accessing gl_object like
1791 * this is not safe in general. Here it is ok because we do
1792 * not dereference the pointer, and we only need an approx
1793 * answer to whether it is NULL or not.
1794 */
1795 ip = gl->gl_object;
1796
1797 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1798 gfs2_glock_put(gl);
1799 else
1800 found++;
1801
1802 /* Limit reclaim to sensible number of tasks */
1803 if (found > NR_CPUS)
1804 return;
1805 }
1806
1807 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1808 return;
1809 }
1810
1811 /**
1812 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1813 * @rgd: The rgrp in question
1814 * @loops: An indication of how picky we can be (0=very, 1=less so)
1815 *
1816 * This function uses the recently added glock statistics in order to
1817 * figure out whether a parciular resource group is suffering from
1818 * contention from multiple nodes. This is done purely on the basis
1819 * of timings, since this is the only data we have to work with and
1820 * our aim here is to reject a resource group which is highly contended
1821 * but (very important) not to do this too often in order to ensure that
1822 * we do not land up introducing fragmentation by changing resource
1823 * groups when not actually required.
1824 *
1825 * The calculation is fairly simple, we want to know whether the SRTTB
1826 * (i.e. smoothed round trip time for blocking operations) to acquire
1827 * the lock for this rgrp's glock is significantly greater than the
1828 * time taken for resource groups on average. We introduce a margin in
1829 * the form of the variable @var which is computed as the sum of the two
1830 * respective variences, and multiplied by a factor depending on @loops
1831 * and whether we have a lot of data to base the decision on. This is
1832 * then tested against the square difference of the means in order to
1833 * decide whether the result is statistically significant or not.
1834 *
1835 * Returns: A boolean verdict on the congestion status
1836 */
1837
1838 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1839 {
1840 const struct gfs2_glock *gl = rgd->rd_gl;
1841 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1842 struct gfs2_lkstats *st;
1843 u64 r_dcount, l_dcount;
1844 u64 l_srttb, a_srttb = 0;
1845 s64 srttb_diff;
1846 u64 sqr_diff;
1847 u64 var;
1848 int cpu, nonzero = 0;
1849
1850 preempt_disable();
1851 for_each_present_cpu(cpu) {
1852 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1853 if (st->stats[GFS2_LKS_SRTTB]) {
1854 a_srttb += st->stats[GFS2_LKS_SRTTB];
1855 nonzero++;
1856 }
1857 }
1858 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1859 if (nonzero)
1860 do_div(a_srttb, nonzero);
1861 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1862 var = st->stats[GFS2_LKS_SRTTVARB] +
1863 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1864 preempt_enable();
1865
1866 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1867 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1868
1869 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1870 return false;
1871
1872 srttb_diff = a_srttb - l_srttb;
1873 sqr_diff = srttb_diff * srttb_diff;
1874
1875 var *= 2;
1876 if (l_dcount < 8 || r_dcount < 8)
1877 var *= 2;
1878 if (loops == 1)
1879 var *= 2;
1880
1881 return ((srttb_diff < 0) && (sqr_diff > var));
1882 }
1883
1884 /**
1885 * gfs2_rgrp_used_recently
1886 * @rs: The block reservation with the rgrp to test
1887 * @msecs: The time limit in milliseconds
1888 *
1889 * Returns: True if the rgrp glock has been used within the time limit
1890 */
1891 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1892 u64 msecs)
1893 {
1894 u64 tdiff;
1895
1896 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1897 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1898
1899 return tdiff > (msecs * 1000 * 1000);
1900 }
1901
1902 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1903 {
1904 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1905 u32 skip;
1906
1907 get_random_bytes(&skip, sizeof(skip));
1908 return skip % sdp->sd_rgrps;
1909 }
1910
1911 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1912 {
1913 struct gfs2_rgrpd *rgd = *pos;
1914 struct gfs2_sbd *sdp = rgd->rd_sbd;
1915
1916 rgd = gfs2_rgrpd_get_next(rgd);
1917 if (rgd == NULL)
1918 rgd = gfs2_rgrpd_get_first(sdp);
1919 *pos = rgd;
1920 if (rgd != begin) /* If we didn't wrap */
1921 return true;
1922 return false;
1923 }
1924
1925 /**
1926 * fast_to_acquire - determine if a resource group will be fast to acquire
1927 *
1928 * If this is one of our preferred rgrps, it should be quicker to acquire,
1929 * because we tried to set ourselves up as dlm lock master.
1930 */
1931 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1932 {
1933 struct gfs2_glock *gl = rgd->rd_gl;
1934
1935 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1936 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1937 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1938 return 1;
1939 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1940 return 1;
1941 return 0;
1942 }
1943
1944 /**
1945 * gfs2_inplace_reserve - Reserve space in the filesystem
1946 * @ip: the inode to reserve space for
1947 * @ap: the allocation parameters
1948 *
1949 * We try our best to find an rgrp that has at least ap->target blocks
1950 * available. After a couple of passes (loops == 2), the prospects of finding
1951 * such an rgrp diminish. At this stage, we return the first rgrp that has
1952 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1953 * the number of blocks available in the chosen rgrp.
1954 *
1955 * Returns: 0 on success,
1956 * -ENOMEM if a suitable rgrp can't be found
1957 * errno otherwise
1958 */
1959
1960 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1961 {
1962 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1963 struct gfs2_rgrpd *begin = NULL;
1964 struct gfs2_blkreserv *rs = &ip->i_res;
1965 int error = 0, rg_locked, flags = 0;
1966 u64 last_unlinked = NO_BLOCK;
1967 int loops = 0;
1968 u32 skip = 0;
1969
1970 if (sdp->sd_args.ar_rgrplvb)
1971 flags |= GL_SKIP;
1972 if (gfs2_assert_warn(sdp, ap->target))
1973 return -EINVAL;
1974 if (gfs2_rs_active(rs)) {
1975 begin = rs->rs_rbm.rgd;
1976 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1977 rs->rs_rbm.rgd = begin = ip->i_rgd;
1978 } else {
1979 check_and_update_goal(ip);
1980 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1981 }
1982 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1983 skip = gfs2_orlov_skip(ip);
1984 if (rs->rs_rbm.rgd == NULL)
1985 return -EBADSLT;
1986
1987 while (loops < 3) {
1988 rg_locked = 1;
1989
1990 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1991 rg_locked = 0;
1992 if (skip && skip--)
1993 goto next_rgrp;
1994 if (!gfs2_rs_active(rs)) {
1995 if (loops == 0 &&
1996 !fast_to_acquire(rs->rs_rbm.rgd))
1997 goto next_rgrp;
1998 if ((loops < 2) &&
1999 gfs2_rgrp_used_recently(rs, 1000) &&
2000 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2001 goto next_rgrp;
2002 }
2003 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2004 LM_ST_EXCLUSIVE, flags,
2005 &rs->rs_rgd_gh);
2006 if (unlikely(error))
2007 return error;
2008 if (!gfs2_rs_active(rs) && (loops < 2) &&
2009 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2010 goto skip_rgrp;
2011 if (sdp->sd_args.ar_rgrplvb) {
2012 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2013 if (unlikely(error)) {
2014 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2015 return error;
2016 }
2017 }
2018 }
2019
2020 /* Skip unuseable resource groups */
2021 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2022 GFS2_RDF_ERROR)) ||
2023 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2024 goto skip_rgrp;
2025
2026 if (sdp->sd_args.ar_rgrplvb)
2027 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2028
2029 /* Get a reservation if we don't already have one */
2030 if (!gfs2_rs_active(rs))
2031 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2032
2033 /* Skip rgrps when we can't get a reservation on first pass */
2034 if (!gfs2_rs_active(rs) && (loops < 1))
2035 goto check_rgrp;
2036
2037 /* If rgrp has enough free space, use it */
2038 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2039 (loops == 2 && ap->min_target &&
2040 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2041 ip->i_rgd = rs->rs_rbm.rgd;
2042 ap->allowed = ip->i_rgd->rd_free_clone;
2043 return 0;
2044 }
2045 check_rgrp:
2046 /* Check for unlinked inodes which can be reclaimed */
2047 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2048 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2049 ip->i_no_addr);
2050 skip_rgrp:
2051 /* Drop reservation, if we couldn't use reserved rgrp */
2052 if (gfs2_rs_active(rs))
2053 gfs2_rs_deltree(rs);
2054
2055 /* Unlock rgrp if required */
2056 if (!rg_locked)
2057 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2058 next_rgrp:
2059 /* Find the next rgrp, and continue looking */
2060 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2061 continue;
2062 if (skip)
2063 continue;
2064
2065 /* If we've scanned all the rgrps, but found no free blocks
2066 * then this checks for some less likely conditions before
2067 * trying again.
2068 */
2069 loops++;
2070 /* Check that fs hasn't grown if writing to rindex */
2071 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2072 error = gfs2_ri_update(ip);
2073 if (error)
2074 return error;
2075 }
2076 /* Flushing the log may release space */
2077 if (loops == 2)
2078 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2079 }
2080
2081 return -ENOSPC;
2082 }
2083
2084 /**
2085 * gfs2_inplace_release - release an inplace reservation
2086 * @ip: the inode the reservation was taken out on
2087 *
2088 * Release a reservation made by gfs2_inplace_reserve().
2089 */
2090
2091 void gfs2_inplace_release(struct gfs2_inode *ip)
2092 {
2093 struct gfs2_blkreserv *rs = &ip->i_res;
2094
2095 if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2096 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2097 }
2098
2099 /**
2100 * gfs2_get_block_type - Check a block in a RG is of given type
2101 * @rgd: the resource group holding the block
2102 * @block: the block number
2103 *
2104 * Returns: The block type (GFS2_BLKST_*)
2105 */
2106
2107 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2108 {
2109 struct gfs2_rbm rbm = { .rgd = rgd, };
2110 int ret;
2111
2112 ret = gfs2_rbm_from_block(&rbm, block);
2113 WARN_ON_ONCE(ret != 0);
2114
2115 return gfs2_testbit(&rbm);
2116 }
2117
2118
2119 /**
2120 * gfs2_alloc_extent - allocate an extent from a given bitmap
2121 * @rbm: the resource group information
2122 * @dinode: TRUE if the first block we allocate is for a dinode
2123 * @n: The extent length (value/result)
2124 *
2125 * Add the bitmap buffer to the transaction.
2126 * Set the found bits to @new_state to change block's allocation state.
2127 */
2128 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2129 unsigned int *n)
2130 {
2131 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2132 const unsigned int elen = *n;
2133 u64 block;
2134 int ret;
2135
2136 *n = 1;
2137 block = gfs2_rbm_to_block(rbm);
2138 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2139 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2140 block++;
2141 while (*n < elen) {
2142 ret = gfs2_rbm_from_block(&pos, block);
2143 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2144 break;
2145 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2146 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2147 (*n)++;
2148 block++;
2149 }
2150 }
2151
2152 /**
2153 * rgblk_free - Change alloc state of given block(s)
2154 * @sdp: the filesystem
2155 * @bstart: the start of a run of blocks to free
2156 * @blen: the length of the block run (all must lie within ONE RG!)
2157 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2158 *
2159 * Returns: Resource group containing the block(s)
2160 */
2161
2162 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2163 u32 blen, unsigned char new_state)
2164 {
2165 struct gfs2_rbm rbm;
2166 struct gfs2_bitmap *bi, *bi_prev = NULL;
2167
2168 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2169 if (!rbm.rgd) {
2170 if (gfs2_consist(sdp))
2171 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2172 return NULL;
2173 }
2174
2175 gfs2_rbm_from_block(&rbm, bstart);
2176 while (blen--) {
2177 bi = rbm_bi(&rbm);
2178 if (bi != bi_prev) {
2179 if (!bi->bi_clone) {
2180 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2181 GFP_NOFS | __GFP_NOFAIL);
2182 memcpy(bi->bi_clone + bi->bi_offset,
2183 bi->bi_bh->b_data + bi->bi_offset,
2184 bi->bi_len);
2185 }
2186 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2187 bi_prev = bi;
2188 }
2189 gfs2_setbit(&rbm, false, new_state);
2190 gfs2_rbm_incr(&rbm);
2191 }
2192
2193 return rbm.rgd;
2194 }
2195
2196 /**
2197 * gfs2_rgrp_dump - print out an rgrp
2198 * @seq: The iterator
2199 * @gl: The glock in question
2200 *
2201 */
2202
2203 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2204 {
2205 struct gfs2_rgrpd *rgd = gl->gl_object;
2206 struct gfs2_blkreserv *trs;
2207 const struct rb_node *n;
2208
2209 if (rgd == NULL)
2210 return;
2211 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2212 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2213 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2214 rgd->rd_reserved, rgd->rd_extfail_pt);
2215 spin_lock(&rgd->rd_rsspin);
2216 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2217 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2218 dump_rs(seq, trs);
2219 }
2220 spin_unlock(&rgd->rd_rsspin);
2221 }
2222
2223 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2224 {
2225 struct gfs2_sbd *sdp = rgd->rd_sbd;
2226 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2227 (unsigned long long)rgd->rd_addr);
2228 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2229 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2230 rgd->rd_flags |= GFS2_RDF_ERROR;
2231 }
2232
2233 /**
2234 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2235 * @ip: The inode we have just allocated blocks for
2236 * @rbm: The start of the allocated blocks
2237 * @len: The extent length
2238 *
2239 * Adjusts a reservation after an allocation has taken place. If the
2240 * reservation does not match the allocation, or if it is now empty
2241 * then it is removed.
2242 */
2243
2244 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2245 const struct gfs2_rbm *rbm, unsigned len)
2246 {
2247 struct gfs2_blkreserv *rs = &ip->i_res;
2248 struct gfs2_rgrpd *rgd = rbm->rgd;
2249 unsigned rlen;
2250 u64 block;
2251 int ret;
2252
2253 spin_lock(&rgd->rd_rsspin);
2254 if (gfs2_rs_active(rs)) {
2255 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2256 block = gfs2_rbm_to_block(rbm);
2257 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2258 rlen = min(rs->rs_free, len);
2259 rs->rs_free -= rlen;
2260 rgd->rd_reserved -= rlen;
2261 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2262 if (rs->rs_free && !ret)
2263 goto out;
2264 /* We used up our block reservation, so we should
2265 reserve more blocks next time. */
2266 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2267 }
2268 __rs_deltree(rs);
2269 }
2270 out:
2271 spin_unlock(&rgd->rd_rsspin);
2272 }
2273
2274 /**
2275 * gfs2_set_alloc_start - Set starting point for block allocation
2276 * @rbm: The rbm which will be set to the required location
2277 * @ip: The gfs2 inode
2278 * @dinode: Flag to say if allocation includes a new inode
2279 *
2280 * This sets the starting point from the reservation if one is active
2281 * otherwise it falls back to guessing a start point based on the
2282 * inode's goal block or the last allocation point in the rgrp.
2283 */
2284
2285 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2286 const struct gfs2_inode *ip, bool dinode)
2287 {
2288 u64 goal;
2289
2290 if (gfs2_rs_active(&ip->i_res)) {
2291 *rbm = ip->i_res.rs_rbm;
2292 return;
2293 }
2294
2295 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2296 goal = ip->i_goal;
2297 else
2298 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2299
2300 gfs2_rbm_from_block(rbm, goal);
2301 }
2302
2303 /**
2304 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2305 * @ip: the inode to allocate the block for
2306 * @bn: Used to return the starting block number
2307 * @nblocks: requested number of blocks/extent length (value/result)
2308 * @dinode: 1 if we're allocating a dinode block, else 0
2309 * @generation: the generation number of the inode
2310 *
2311 * Returns: 0 or error
2312 */
2313
2314 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2315 bool dinode, u64 *generation)
2316 {
2317 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2318 struct buffer_head *dibh;
2319 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2320 unsigned int ndata;
2321 u64 block; /* block, within the file system scope */
2322 int error;
2323
2324 gfs2_set_alloc_start(&rbm, ip, dinode);
2325 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2326
2327 if (error == -ENOSPC) {
2328 gfs2_set_alloc_start(&rbm, ip, dinode);
2329 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2330 }
2331
2332 /* Since all blocks are reserved in advance, this shouldn't happen */
2333 if (error) {
2334 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2335 (unsigned long long)ip->i_no_addr, error, *nblocks,
2336 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2337 rbm.rgd->rd_extfail_pt);
2338 goto rgrp_error;
2339 }
2340
2341 gfs2_alloc_extent(&rbm, dinode, nblocks);
2342 block = gfs2_rbm_to_block(&rbm);
2343 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2344 if (gfs2_rs_active(&ip->i_res))
2345 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2346 ndata = *nblocks;
2347 if (dinode)
2348 ndata--;
2349
2350 if (!dinode) {
2351 ip->i_goal = block + ndata - 1;
2352 error = gfs2_meta_inode_buffer(ip, &dibh);
2353 if (error == 0) {
2354 struct gfs2_dinode *di =
2355 (struct gfs2_dinode *)dibh->b_data;
2356 gfs2_trans_add_meta(ip->i_gl, dibh);
2357 di->di_goal_meta = di->di_goal_data =
2358 cpu_to_be64(ip->i_goal);
2359 brelse(dibh);
2360 }
2361 }
2362 if (rbm.rgd->rd_free < *nblocks) {
2363 pr_warn("nblocks=%u\n", *nblocks);
2364 goto rgrp_error;
2365 }
2366
2367 rbm.rgd->rd_free -= *nblocks;
2368 if (dinode) {
2369 rbm.rgd->rd_dinodes++;
2370 *generation = rbm.rgd->rd_igeneration++;
2371 if (*generation == 0)
2372 *generation = rbm.rgd->rd_igeneration++;
2373 }
2374
2375 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2376 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2377 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2378
2379 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2380 if (dinode)
2381 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2382
2383 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2384
2385 rbm.rgd->rd_free_clone -= *nblocks;
2386 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2387 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2388 *bn = block;
2389 return 0;
2390
2391 rgrp_error:
2392 gfs2_rgrp_error(rbm.rgd);
2393 return -EIO;
2394 }
2395
2396 /**
2397 * __gfs2_free_blocks - free a contiguous run of block(s)
2398 * @ip: the inode these blocks are being freed from
2399 * @bstart: first block of a run of contiguous blocks
2400 * @blen: the length of the block run
2401 * @meta: 1 if the blocks represent metadata
2402 *
2403 */
2404
2405 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2406 {
2407 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2408 struct gfs2_rgrpd *rgd;
2409
2410 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2411 if (!rgd)
2412 return;
2413 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2414 rgd->rd_free += blen;
2415 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2416 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2417 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2418 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2419
2420 /* Directories keep their data in the metadata address space */
2421 if (meta || ip->i_depth)
2422 gfs2_meta_wipe(ip, bstart, blen);
2423 }
2424
2425 /**
2426 * gfs2_free_meta - free a contiguous run of data block(s)
2427 * @ip: the inode these blocks are being freed from
2428 * @bstart: first block of a run of contiguous blocks
2429 * @blen: the length of the block run
2430 *
2431 */
2432
2433 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2434 {
2435 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2436
2437 __gfs2_free_blocks(ip, bstart, blen, 1);
2438 gfs2_statfs_change(sdp, 0, +blen, 0);
2439 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2440 }
2441
2442 void gfs2_unlink_di(struct inode *inode)
2443 {
2444 struct gfs2_inode *ip = GFS2_I(inode);
2445 struct gfs2_sbd *sdp = GFS2_SB(inode);
2446 struct gfs2_rgrpd *rgd;
2447 u64 blkno = ip->i_no_addr;
2448
2449 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2450 if (!rgd)
2451 return;
2452 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2453 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2454 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2455 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2456 update_rgrp_lvb_unlinked(rgd, 1);
2457 }
2458
2459 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2460 {
2461 struct gfs2_sbd *sdp = rgd->rd_sbd;
2462 struct gfs2_rgrpd *tmp_rgd;
2463
2464 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2465 if (!tmp_rgd)
2466 return;
2467 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2468
2469 if (!rgd->rd_dinodes)
2470 gfs2_consist_rgrpd(rgd);
2471 rgd->rd_dinodes--;
2472 rgd->rd_free++;
2473
2474 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2475 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2476 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2477 update_rgrp_lvb_unlinked(rgd, -1);
2478
2479 gfs2_statfs_change(sdp, 0, +1, -1);
2480 }
2481
2482
2483 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2484 {
2485 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2486 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2487 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2488 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2489 }
2490
2491 /**
2492 * gfs2_check_blk_type - Check the type of a block
2493 * @sdp: The superblock
2494 * @no_addr: The block number to check
2495 * @type: The block type we are looking for
2496 *
2497 * Returns: 0 if the block type matches the expected type
2498 * -ESTALE if it doesn't match
2499 * or -ve errno if something went wrong while checking
2500 */
2501
2502 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2503 {
2504 struct gfs2_rgrpd *rgd;
2505 struct gfs2_holder rgd_gh;
2506 int error = -EINVAL;
2507
2508 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2509 if (!rgd)
2510 goto fail;
2511
2512 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2513 if (error)
2514 goto fail;
2515
2516 if (gfs2_get_block_type(rgd, no_addr) != type)
2517 error = -ESTALE;
2518
2519 gfs2_glock_dq_uninit(&rgd_gh);
2520 fail:
2521 return error;
2522 }
2523
2524 /**
2525 * gfs2_rlist_add - add a RG to a list of RGs
2526 * @ip: the inode
2527 * @rlist: the list of resource groups
2528 * @block: the block
2529 *
2530 * Figure out what RG a block belongs to and add that RG to the list
2531 *
2532 * FIXME: Don't use NOFAIL
2533 *
2534 */
2535
2536 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2537 u64 block)
2538 {
2539 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2540 struct gfs2_rgrpd *rgd;
2541 struct gfs2_rgrpd **tmp;
2542 unsigned int new_space;
2543 unsigned int x;
2544
2545 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2546 return;
2547
2548 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2549 rgd = ip->i_rgd;
2550 else
2551 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2552 if (!rgd) {
2553 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2554 return;
2555 }
2556 ip->i_rgd = rgd;
2557
2558 for (x = 0; x < rlist->rl_rgrps; x++)
2559 if (rlist->rl_rgd[x] == rgd)
2560 return;
2561
2562 if (rlist->rl_rgrps == rlist->rl_space) {
2563 new_space = rlist->rl_space + 10;
2564
2565 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2566 GFP_NOFS | __GFP_NOFAIL);
2567
2568 if (rlist->rl_rgd) {
2569 memcpy(tmp, rlist->rl_rgd,
2570 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2571 kfree(rlist->rl_rgd);
2572 }
2573
2574 rlist->rl_space = new_space;
2575 rlist->rl_rgd = tmp;
2576 }
2577
2578 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2579 }
2580
2581 /**
2582 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2583 * and initialize an array of glock holders for them
2584 * @rlist: the list of resource groups
2585 * @state: the lock state to acquire the RG lock in
2586 *
2587 * FIXME: Don't use NOFAIL
2588 *
2589 */
2590
2591 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2592 {
2593 unsigned int x;
2594
2595 rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2596 GFP_NOFS | __GFP_NOFAIL);
2597 for (x = 0; x < rlist->rl_rgrps; x++)
2598 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2599 state, 0,
2600 &rlist->rl_ghs[x]);
2601 }
2602
2603 /**
2604 * gfs2_rlist_free - free a resource group list
2605 * @rlist: the list of resource groups
2606 *
2607 */
2608
2609 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2610 {
2611 unsigned int x;
2612
2613 kfree(rlist->rl_rgd);
2614
2615 if (rlist->rl_ghs) {
2616 for (x = 0; x < rlist->rl_rgrps; x++)
2617 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2618 kfree(rlist->rl_ghs);
2619 rlist->rl_ghs = NULL;
2620 }
2621 }
2622