]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
fs: Factor inode hash operations into functions
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27
28 /*
29 * This is needed for the following functions:
30 * - inode_has_buffers
31 * - invalidate_inode_buffers
32 * - invalidate_bdev
33 *
34 * FIXME: remove all knowledge of the buffer layer from this file
35 */
36 #include <linux/buffer_head.h>
37
38 /*
39 * New inode.c implementation.
40 *
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
44 *
45 * Famous last words.
46 */
47
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52
53 /*
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
56 */
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
59
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62
63 /*
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
70 *
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
73 */
74
75 static LIST_HEAD(inode_unused);
76 static struct hlist_head *inode_hashtable __read_mostly;
77
78 /*
79 * A simple spinlock to protect the list manipulations.
80 *
81 * NOTE! You also have to own the lock if you change
82 * the i_state of an inode while it is in use..
83 */
84 DEFINE_SPINLOCK(inode_lock);
85
86 /*
87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88 * icache shrinking path, and the umount path. Without this exclusion,
89 * by the time prune_icache calls iput for the inode whose pages it has
90 * been invalidating, or by the time it calls clear_inode & destroy_inode
91 * from its final dispose_list, the struct super_block they refer to
92 * (for inode->i_sb->s_op) may already have been freed and reused.
93 *
94 * We make this an rwsem because the fastpath is icache shrinking. In
95 * some cases a filesystem may be doing a significant amount of work in
96 * its inode reclaim code, so this should improve parallelism.
97 */
98 static DECLARE_RWSEM(iprune_sem);
99
100 /*
101 * Statistics gathering..
102 */
103 struct inodes_stat_t inodes_stat;
104
105 static struct percpu_counter nr_inodes __cacheline_aligned_in_smp;
106 static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp;
107
108 static struct kmem_cache *inode_cachep __read_mostly;
109
110 static inline int get_nr_inodes(void)
111 {
112 return percpu_counter_sum_positive(&nr_inodes);
113 }
114
115 static inline int get_nr_inodes_unused(void)
116 {
117 return percpu_counter_sum_positive(&nr_inodes_unused);
118 }
119
120 int get_nr_dirty_inodes(void)
121 {
122 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
123 return nr_dirty > 0 ? nr_dirty : 0;
124
125 }
126
127 /*
128 * Handle nr_inode sysctl
129 */
130 #ifdef CONFIG_SYSCTL
131 int proc_nr_inodes(ctl_table *table, int write,
132 void __user *buffer, size_t *lenp, loff_t *ppos)
133 {
134 inodes_stat.nr_inodes = get_nr_inodes();
135 inodes_stat.nr_unused = get_nr_inodes_unused();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 static void wake_up_inode(struct inode *inode)
141 {
142 /*
143 * Prevent speculative execution through spin_unlock(&inode_lock);
144 */
145 smp_mb();
146 wake_up_bit(&inode->i_state, __I_NEW);
147 }
148
149 /**
150 * inode_init_always - perform inode structure intialisation
151 * @sb: superblock inode belongs to
152 * @inode: inode to initialise
153 *
154 * These are initializations that need to be done on every inode
155 * allocation as the fields are not initialised by slab allocation.
156 */
157 int inode_init_always(struct super_block *sb, struct inode *inode)
158 {
159 static const struct address_space_operations empty_aops;
160 static const struct inode_operations empty_iops;
161 static const struct file_operations empty_fops;
162 struct address_space *const mapping = &inode->i_data;
163
164 inode->i_sb = sb;
165 inode->i_blkbits = sb->s_blocksize_bits;
166 inode->i_flags = 0;
167 atomic_set(&inode->i_count, 1);
168 inode->i_op = &empty_iops;
169 inode->i_fop = &empty_fops;
170 inode->i_nlink = 1;
171 inode->i_uid = 0;
172 inode->i_gid = 0;
173 atomic_set(&inode->i_writecount, 0);
174 inode->i_size = 0;
175 inode->i_blocks = 0;
176 inode->i_bytes = 0;
177 inode->i_generation = 0;
178 #ifdef CONFIG_QUOTA
179 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
180 #endif
181 inode->i_pipe = NULL;
182 inode->i_bdev = NULL;
183 inode->i_cdev = NULL;
184 inode->i_rdev = 0;
185 inode->dirtied_when = 0;
186
187 if (security_inode_alloc(inode))
188 goto out;
189 spin_lock_init(&inode->i_lock);
190 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
191
192 mutex_init(&inode->i_mutex);
193 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
194
195 init_rwsem(&inode->i_alloc_sem);
196 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
197
198 mapping->a_ops = &empty_aops;
199 mapping->host = inode;
200 mapping->flags = 0;
201 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
202 mapping->assoc_mapping = NULL;
203 mapping->backing_dev_info = &default_backing_dev_info;
204 mapping->writeback_index = 0;
205
206 /*
207 * If the block_device provides a backing_dev_info for client
208 * inodes then use that. Otherwise the inode share the bdev's
209 * backing_dev_info.
210 */
211 if (sb->s_bdev) {
212 struct backing_dev_info *bdi;
213
214 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
215 mapping->backing_dev_info = bdi;
216 }
217 inode->i_private = NULL;
218 inode->i_mapping = mapping;
219 #ifdef CONFIG_FS_POSIX_ACL
220 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
221 #endif
222
223 #ifdef CONFIG_FSNOTIFY
224 inode->i_fsnotify_mask = 0;
225 #endif
226
227 percpu_counter_inc(&nr_inodes);
228
229 return 0;
230 out:
231 return -ENOMEM;
232 }
233 EXPORT_SYMBOL(inode_init_always);
234
235 static struct inode *alloc_inode(struct super_block *sb)
236 {
237 struct inode *inode;
238
239 if (sb->s_op->alloc_inode)
240 inode = sb->s_op->alloc_inode(sb);
241 else
242 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
243
244 if (!inode)
245 return NULL;
246
247 if (unlikely(inode_init_always(sb, inode))) {
248 if (inode->i_sb->s_op->destroy_inode)
249 inode->i_sb->s_op->destroy_inode(inode);
250 else
251 kmem_cache_free(inode_cachep, inode);
252 return NULL;
253 }
254
255 return inode;
256 }
257
258 void __destroy_inode(struct inode *inode)
259 {
260 BUG_ON(inode_has_buffers(inode));
261 security_inode_free(inode);
262 fsnotify_inode_delete(inode);
263 #ifdef CONFIG_FS_POSIX_ACL
264 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
265 posix_acl_release(inode->i_acl);
266 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
267 posix_acl_release(inode->i_default_acl);
268 #endif
269 percpu_counter_dec(&nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272
273 static void destroy_inode(struct inode *inode)
274 {
275 __destroy_inode(inode);
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
279 kmem_cache_free(inode_cachep, (inode));
280 }
281
282 /*
283 * These are initializations that only need to be done
284 * once, because the fields are idempotent across use
285 * of the inode, so let the slab aware of that.
286 */
287 void inode_init_once(struct inode *inode)
288 {
289 memset(inode, 0, sizeof(*inode));
290 INIT_HLIST_NODE(&inode->i_hash);
291 INIT_LIST_HEAD(&inode->i_dentry);
292 INIT_LIST_HEAD(&inode->i_devices);
293 INIT_LIST_HEAD(&inode->i_list);
294 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
295 spin_lock_init(&inode->i_data.tree_lock);
296 spin_lock_init(&inode->i_data.i_mmap_lock);
297 INIT_LIST_HEAD(&inode->i_data.private_list);
298 spin_lock_init(&inode->i_data.private_lock);
299 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
300 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
301 i_size_ordered_init(inode);
302 #ifdef CONFIG_FSNOTIFY
303 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
304 #endif
305 }
306 EXPORT_SYMBOL(inode_init_once);
307
308 static void init_once(void *foo)
309 {
310 struct inode *inode = (struct inode *) foo;
311
312 inode_init_once(inode);
313 }
314
315 /*
316 * inode_lock must be held
317 */
318 void __iget(struct inode *inode)
319 {
320 atomic_inc(&inode->i_count);
321 }
322
323 static void inode_lru_list_add(struct inode *inode)
324 {
325 if (list_empty(&inode->i_list)) {
326 list_add(&inode->i_list, &inode_unused);
327 percpu_counter_inc(&nr_inodes_unused);
328 }
329 }
330
331 static void inode_lru_list_del(struct inode *inode)
332 {
333 if (!list_empty(&inode->i_list)) {
334 list_del_init(&inode->i_list);
335 percpu_counter_dec(&nr_inodes_unused);
336 }
337 }
338
339 static unsigned long hash(struct super_block *sb, unsigned long hashval)
340 {
341 unsigned long tmp;
342
343 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
344 L1_CACHE_BYTES;
345 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
346 return tmp & I_HASHMASK;
347 }
348
349 /**
350 * __insert_inode_hash - hash an inode
351 * @inode: unhashed inode
352 * @hashval: unsigned long value used to locate this object in the
353 * inode_hashtable.
354 *
355 * Add an inode to the inode hash for this superblock.
356 */
357 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
358 {
359 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
360 spin_lock(&inode_lock);
361 hlist_add_head(&inode->i_hash, head);
362 spin_unlock(&inode_lock);
363 }
364 EXPORT_SYMBOL(__insert_inode_hash);
365
366 /**
367 * __remove_inode_hash - remove an inode from the hash
368 * @inode: inode to unhash
369 *
370 * Remove an inode from the superblock.
371 */
372 static void __remove_inode_hash(struct inode *inode)
373 {
374 hlist_del_init(&inode->i_hash);
375 }
376
377 /**
378 * remove_inode_hash - remove an inode from the hash
379 * @inode: inode to unhash
380 *
381 * Remove an inode from the superblock.
382 */
383 void remove_inode_hash(struct inode *inode)
384 {
385 spin_lock(&inode_lock);
386 hlist_del_init(&inode->i_hash);
387 spin_unlock(&inode_lock);
388 }
389 EXPORT_SYMBOL(remove_inode_hash);
390
391 void end_writeback(struct inode *inode)
392 {
393 might_sleep();
394 BUG_ON(inode->i_data.nrpages);
395 BUG_ON(!list_empty(&inode->i_data.private_list));
396 BUG_ON(!(inode->i_state & I_FREEING));
397 BUG_ON(inode->i_state & I_CLEAR);
398 inode_sync_wait(inode);
399 inode->i_state = I_FREEING | I_CLEAR;
400 }
401 EXPORT_SYMBOL(end_writeback);
402
403 static void evict(struct inode *inode)
404 {
405 const struct super_operations *op = inode->i_sb->s_op;
406
407 if (op->evict_inode) {
408 op->evict_inode(inode);
409 } else {
410 if (inode->i_data.nrpages)
411 truncate_inode_pages(&inode->i_data, 0);
412 end_writeback(inode);
413 }
414 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
415 bd_forget(inode);
416 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
417 cd_forget(inode);
418 }
419
420 /*
421 * dispose_list - dispose of the contents of a local list
422 * @head: the head of the list to free
423 *
424 * Dispose-list gets a local list with local inodes in it, so it doesn't
425 * need to worry about list corruption and SMP locks.
426 */
427 static void dispose_list(struct list_head *head)
428 {
429 while (!list_empty(head)) {
430 struct inode *inode;
431
432 inode = list_first_entry(head, struct inode, i_list);
433 list_del_init(&inode->i_list);
434
435 evict(inode);
436
437 spin_lock(&inode_lock);
438 __remove_inode_hash(inode);
439 list_del_init(&inode->i_sb_list);
440 spin_unlock(&inode_lock);
441
442 wake_up_inode(inode);
443 destroy_inode(inode);
444 }
445 }
446
447 /*
448 * Invalidate all inodes for a device.
449 */
450 static int invalidate_list(struct list_head *head, struct list_head *dispose)
451 {
452 struct list_head *next;
453 int busy = 0;
454
455 next = head->next;
456 for (;;) {
457 struct list_head *tmp = next;
458 struct inode *inode;
459
460 /*
461 * We can reschedule here without worrying about the list's
462 * consistency because the per-sb list of inodes must not
463 * change during umount anymore, and because iprune_sem keeps
464 * shrink_icache_memory() away.
465 */
466 cond_resched_lock(&inode_lock);
467
468 next = next->next;
469 if (tmp == head)
470 break;
471 inode = list_entry(tmp, struct inode, i_sb_list);
472 if (inode->i_state & I_NEW)
473 continue;
474 invalidate_inode_buffers(inode);
475 if (!atomic_read(&inode->i_count)) {
476 list_move(&inode->i_list, dispose);
477 WARN_ON(inode->i_state & I_NEW);
478 inode->i_state |= I_FREEING;
479 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
480 percpu_counter_dec(&nr_inodes_unused);
481 continue;
482 }
483 busy = 1;
484 }
485 return busy;
486 }
487
488 /**
489 * invalidate_inodes - discard the inodes on a device
490 * @sb: superblock
491 *
492 * Discard all of the inodes for a given superblock. If the discard
493 * fails because there are busy inodes then a non zero value is returned.
494 * If the discard is successful all the inodes have been discarded.
495 */
496 int invalidate_inodes(struct super_block *sb)
497 {
498 int busy;
499 LIST_HEAD(throw_away);
500
501 down_write(&iprune_sem);
502 spin_lock(&inode_lock);
503 fsnotify_unmount_inodes(&sb->s_inodes);
504 busy = invalidate_list(&sb->s_inodes, &throw_away);
505 spin_unlock(&inode_lock);
506
507 dispose_list(&throw_away);
508 up_write(&iprune_sem);
509
510 return busy;
511 }
512
513 static int can_unuse(struct inode *inode)
514 {
515 if (inode->i_state & ~I_REFERENCED)
516 return 0;
517 if (inode_has_buffers(inode))
518 return 0;
519 if (atomic_read(&inode->i_count))
520 return 0;
521 if (inode->i_data.nrpages)
522 return 0;
523 return 1;
524 }
525
526 /*
527 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
528 * temporary list and then are freed outside inode_lock by dispose_list().
529 *
530 * Any inodes which are pinned purely because of attached pagecache have their
531 * pagecache removed. If the inode has metadata buffers attached to
532 * mapping->private_list then try to remove them.
533 *
534 * If the inode has the I_REFERENCED flag set, then it means that it has been
535 * used recently - the flag is set in iput_final(). When we encounter such an
536 * inode, clear the flag and move it to the back of the LRU so it gets another
537 * pass through the LRU before it gets reclaimed. This is necessary because of
538 * the fact we are doing lazy LRU updates to minimise lock contention so the
539 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
540 * with this flag set because they are the inodes that are out of order.
541 */
542 static void prune_icache(int nr_to_scan)
543 {
544 LIST_HEAD(freeable);
545 int nr_scanned;
546 unsigned long reap = 0;
547
548 down_read(&iprune_sem);
549 spin_lock(&inode_lock);
550 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
551 struct inode *inode;
552
553 if (list_empty(&inode_unused))
554 break;
555
556 inode = list_entry(inode_unused.prev, struct inode, i_list);
557
558 /*
559 * Referenced or dirty inodes are still in use. Give them
560 * another pass through the LRU as we canot reclaim them now.
561 */
562 if (atomic_read(&inode->i_count) ||
563 (inode->i_state & ~I_REFERENCED)) {
564 list_del_init(&inode->i_list);
565 percpu_counter_dec(&nr_inodes_unused);
566 continue;
567 }
568
569 /* recently referenced inodes get one more pass */
570 if (inode->i_state & I_REFERENCED) {
571 list_move(&inode->i_list, &inode_unused);
572 inode->i_state &= ~I_REFERENCED;
573 continue;
574 }
575 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
576 __iget(inode);
577 spin_unlock(&inode_lock);
578 if (remove_inode_buffers(inode))
579 reap += invalidate_mapping_pages(&inode->i_data,
580 0, -1);
581 iput(inode);
582 spin_lock(&inode_lock);
583
584 if (inode != list_entry(inode_unused.next,
585 struct inode, i_list))
586 continue; /* wrong inode or list_empty */
587 if (!can_unuse(inode))
588 continue;
589 }
590 list_move(&inode->i_list, &freeable);
591 WARN_ON(inode->i_state & I_NEW);
592 inode->i_state |= I_FREEING;
593 percpu_counter_dec(&nr_inodes_unused);
594 }
595 if (current_is_kswapd())
596 __count_vm_events(KSWAPD_INODESTEAL, reap);
597 else
598 __count_vm_events(PGINODESTEAL, reap);
599 spin_unlock(&inode_lock);
600
601 dispose_list(&freeable);
602 up_read(&iprune_sem);
603 }
604
605 /*
606 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
607 * "unused" means that no dentries are referring to the inodes: the files are
608 * not open and the dcache references to those inodes have already been
609 * reclaimed.
610 *
611 * This function is passed the number of inodes to scan, and it returns the
612 * total number of remaining possibly-reclaimable inodes.
613 */
614 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
615 {
616 if (nr) {
617 /*
618 * Nasty deadlock avoidance. We may hold various FS locks,
619 * and we don't want to recurse into the FS that called us
620 * in clear_inode() and friends..
621 */
622 if (!(gfp_mask & __GFP_FS))
623 return -1;
624 prune_icache(nr);
625 }
626 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
627 }
628
629 static struct shrinker icache_shrinker = {
630 .shrink = shrink_icache_memory,
631 .seeks = DEFAULT_SEEKS,
632 };
633
634 static void __wait_on_freeing_inode(struct inode *inode);
635 /*
636 * Called with the inode lock held.
637 * NOTE: we are not increasing the inode-refcount, you must call __iget()
638 * by hand after calling find_inode now! This simplifies iunique and won't
639 * add any additional branch in the common code.
640 */
641 static struct inode *find_inode(struct super_block *sb,
642 struct hlist_head *head,
643 int (*test)(struct inode *, void *),
644 void *data)
645 {
646 struct hlist_node *node;
647 struct inode *inode = NULL;
648
649 repeat:
650 hlist_for_each_entry(inode, node, head, i_hash) {
651 if (inode->i_sb != sb)
652 continue;
653 if (!test(inode, data))
654 continue;
655 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
656 __wait_on_freeing_inode(inode);
657 goto repeat;
658 }
659 break;
660 }
661 return node ? inode : NULL;
662 }
663
664 /*
665 * find_inode_fast is the fast path version of find_inode, see the comment at
666 * iget_locked for details.
667 */
668 static struct inode *find_inode_fast(struct super_block *sb,
669 struct hlist_head *head, unsigned long ino)
670 {
671 struct hlist_node *node;
672 struct inode *inode = NULL;
673
674 repeat:
675 hlist_for_each_entry(inode, node, head, i_hash) {
676 if (inode->i_ino != ino)
677 continue;
678 if (inode->i_sb != sb)
679 continue;
680 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
681 __wait_on_freeing_inode(inode);
682 goto repeat;
683 }
684 break;
685 }
686 return node ? inode : NULL;
687 }
688
689 static inline void
690 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
691 struct inode *inode)
692 {
693 list_add(&inode->i_sb_list, &sb->s_inodes);
694 if (head)
695 hlist_add_head(&inode->i_hash, head);
696 }
697
698 /**
699 * inode_add_to_lists - add a new inode to relevant lists
700 * @sb: superblock inode belongs to
701 * @inode: inode to mark in use
702 *
703 * When an inode is allocated it needs to be accounted for, added to the in use
704 * list, the owning superblock and the inode hash. This needs to be done under
705 * the inode_lock, so export a function to do this rather than the inode lock
706 * itself. We calculate the hash list to add to here so it is all internal
707 * which requires the caller to have already set up the inode number in the
708 * inode to add.
709 */
710 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
711 {
712 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
713
714 spin_lock(&inode_lock);
715 __inode_add_to_lists(sb, head, inode);
716 spin_unlock(&inode_lock);
717 }
718 EXPORT_SYMBOL_GPL(inode_add_to_lists);
719
720 /**
721 * new_inode - obtain an inode
722 * @sb: superblock
723 *
724 * Allocates a new inode for given superblock. The default gfp_mask
725 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
726 * If HIGHMEM pages are unsuitable or it is known that pages allocated
727 * for the page cache are not reclaimable or migratable,
728 * mapping_set_gfp_mask() must be called with suitable flags on the
729 * newly created inode's mapping
730 *
731 */
732 struct inode *new_inode(struct super_block *sb)
733 {
734 /*
735 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
736 * error if st_ino won't fit in target struct field. Use 32bit counter
737 * here to attempt to avoid that.
738 */
739 static unsigned int last_ino;
740 struct inode *inode;
741
742 spin_lock_prefetch(&inode_lock);
743
744 inode = alloc_inode(sb);
745 if (inode) {
746 spin_lock(&inode_lock);
747 __inode_add_to_lists(sb, NULL, inode);
748 inode->i_ino = ++last_ino;
749 inode->i_state = 0;
750 spin_unlock(&inode_lock);
751 }
752 return inode;
753 }
754 EXPORT_SYMBOL(new_inode);
755
756 void unlock_new_inode(struct inode *inode)
757 {
758 #ifdef CONFIG_DEBUG_LOCK_ALLOC
759 if (S_ISDIR(inode->i_mode)) {
760 struct file_system_type *type = inode->i_sb->s_type;
761
762 /* Set new key only if filesystem hasn't already changed it */
763 if (!lockdep_match_class(&inode->i_mutex,
764 &type->i_mutex_key)) {
765 /*
766 * ensure nobody is actually holding i_mutex
767 */
768 mutex_destroy(&inode->i_mutex);
769 mutex_init(&inode->i_mutex);
770 lockdep_set_class(&inode->i_mutex,
771 &type->i_mutex_dir_key);
772 }
773 }
774 #endif
775 /*
776 * This is special! We do not need the spinlock when clearing I_NEW,
777 * because we're guaranteed that nobody else tries to do anything about
778 * the state of the inode when it is locked, as we just created it (so
779 * there can be no old holders that haven't tested I_NEW).
780 * However we must emit the memory barrier so that other CPUs reliably
781 * see the clearing of I_NEW after the other inode initialisation has
782 * completed.
783 */
784 smp_mb();
785 WARN_ON(!(inode->i_state & I_NEW));
786 inode->i_state &= ~I_NEW;
787 wake_up_inode(inode);
788 }
789 EXPORT_SYMBOL(unlock_new_inode);
790
791 /*
792 * This is called without the inode lock held.. Be careful.
793 *
794 * We no longer cache the sb_flags in i_flags - see fs.h
795 * -- rmk@arm.uk.linux.org
796 */
797 static struct inode *get_new_inode(struct super_block *sb,
798 struct hlist_head *head,
799 int (*test)(struct inode *, void *),
800 int (*set)(struct inode *, void *),
801 void *data)
802 {
803 struct inode *inode;
804
805 inode = alloc_inode(sb);
806 if (inode) {
807 struct inode *old;
808
809 spin_lock(&inode_lock);
810 /* We released the lock, so.. */
811 old = find_inode(sb, head, test, data);
812 if (!old) {
813 if (set(inode, data))
814 goto set_failed;
815
816 __inode_add_to_lists(sb, head, inode);
817 inode->i_state = I_NEW;
818 spin_unlock(&inode_lock);
819
820 /* Return the locked inode with I_NEW set, the
821 * caller is responsible for filling in the contents
822 */
823 return inode;
824 }
825
826 /*
827 * Uhhuh, somebody else created the same inode under
828 * us. Use the old inode instead of the one we just
829 * allocated.
830 */
831 __iget(old);
832 spin_unlock(&inode_lock);
833 destroy_inode(inode);
834 inode = old;
835 wait_on_inode(inode);
836 }
837 return inode;
838
839 set_failed:
840 spin_unlock(&inode_lock);
841 destroy_inode(inode);
842 return NULL;
843 }
844
845 /*
846 * get_new_inode_fast is the fast path version of get_new_inode, see the
847 * comment at iget_locked for details.
848 */
849 static struct inode *get_new_inode_fast(struct super_block *sb,
850 struct hlist_head *head, unsigned long ino)
851 {
852 struct inode *inode;
853
854 inode = alloc_inode(sb);
855 if (inode) {
856 struct inode *old;
857
858 spin_lock(&inode_lock);
859 /* We released the lock, so.. */
860 old = find_inode_fast(sb, head, ino);
861 if (!old) {
862 inode->i_ino = ino;
863 __inode_add_to_lists(sb, head, inode);
864 inode->i_state = I_NEW;
865 spin_unlock(&inode_lock);
866
867 /* Return the locked inode with I_NEW set, the
868 * caller is responsible for filling in the contents
869 */
870 return inode;
871 }
872
873 /*
874 * Uhhuh, somebody else created the same inode under
875 * us. Use the old inode instead of the one we just
876 * allocated.
877 */
878 __iget(old);
879 spin_unlock(&inode_lock);
880 destroy_inode(inode);
881 inode = old;
882 wait_on_inode(inode);
883 }
884 return inode;
885 }
886
887 /**
888 * iunique - get a unique inode number
889 * @sb: superblock
890 * @max_reserved: highest reserved inode number
891 *
892 * Obtain an inode number that is unique on the system for a given
893 * superblock. This is used by file systems that have no natural
894 * permanent inode numbering system. An inode number is returned that
895 * is higher than the reserved limit but unique.
896 *
897 * BUGS:
898 * With a large number of inodes live on the file system this function
899 * currently becomes quite slow.
900 */
901 ino_t iunique(struct super_block *sb, ino_t max_reserved)
902 {
903 /*
904 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
905 * error if st_ino won't fit in target struct field. Use 32bit counter
906 * here to attempt to avoid that.
907 */
908 static unsigned int counter;
909 struct inode *inode;
910 struct hlist_head *head;
911 ino_t res;
912
913 spin_lock(&inode_lock);
914 do {
915 if (counter <= max_reserved)
916 counter = max_reserved + 1;
917 res = counter++;
918 head = inode_hashtable + hash(sb, res);
919 inode = find_inode_fast(sb, head, res);
920 } while (inode != NULL);
921 spin_unlock(&inode_lock);
922
923 return res;
924 }
925 EXPORT_SYMBOL(iunique);
926
927 struct inode *igrab(struct inode *inode)
928 {
929 spin_lock(&inode_lock);
930 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
931 __iget(inode);
932 else
933 /*
934 * Handle the case where s_op->clear_inode is not been
935 * called yet, and somebody is calling igrab
936 * while the inode is getting freed.
937 */
938 inode = NULL;
939 spin_unlock(&inode_lock);
940 return inode;
941 }
942 EXPORT_SYMBOL(igrab);
943
944 /**
945 * ifind - internal function, you want ilookup5() or iget5().
946 * @sb: super block of file system to search
947 * @head: the head of the list to search
948 * @test: callback used for comparisons between inodes
949 * @data: opaque data pointer to pass to @test
950 * @wait: if true wait for the inode to be unlocked, if false do not
951 *
952 * ifind() searches for the inode specified by @data in the inode
953 * cache. This is a generalized version of ifind_fast() for file systems where
954 * the inode number is not sufficient for unique identification of an inode.
955 *
956 * If the inode is in the cache, the inode is returned with an incremented
957 * reference count.
958 *
959 * Otherwise NULL is returned.
960 *
961 * Note, @test is called with the inode_lock held, so can't sleep.
962 */
963 static struct inode *ifind(struct super_block *sb,
964 struct hlist_head *head, int (*test)(struct inode *, void *),
965 void *data, const int wait)
966 {
967 struct inode *inode;
968
969 spin_lock(&inode_lock);
970 inode = find_inode(sb, head, test, data);
971 if (inode) {
972 __iget(inode);
973 spin_unlock(&inode_lock);
974 if (likely(wait))
975 wait_on_inode(inode);
976 return inode;
977 }
978 spin_unlock(&inode_lock);
979 return NULL;
980 }
981
982 /**
983 * ifind_fast - internal function, you want ilookup() or iget().
984 * @sb: super block of file system to search
985 * @head: head of the list to search
986 * @ino: inode number to search for
987 *
988 * ifind_fast() searches for the inode @ino in the inode cache. This is for
989 * file systems where the inode number is sufficient for unique identification
990 * of an inode.
991 *
992 * If the inode is in the cache, the inode is returned with an incremented
993 * reference count.
994 *
995 * Otherwise NULL is returned.
996 */
997 static struct inode *ifind_fast(struct super_block *sb,
998 struct hlist_head *head, unsigned long ino)
999 {
1000 struct inode *inode;
1001
1002 spin_lock(&inode_lock);
1003 inode = find_inode_fast(sb, head, ino);
1004 if (inode) {
1005 __iget(inode);
1006 spin_unlock(&inode_lock);
1007 wait_on_inode(inode);
1008 return inode;
1009 }
1010 spin_unlock(&inode_lock);
1011 return NULL;
1012 }
1013
1014 /**
1015 * ilookup5_nowait - search for an inode in the inode cache
1016 * @sb: super block of file system to search
1017 * @hashval: hash value (usually inode number) to search for
1018 * @test: callback used for comparisons between inodes
1019 * @data: opaque data pointer to pass to @test
1020 *
1021 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1022 * @data in the inode cache. This is a generalized version of ilookup() for
1023 * file systems where the inode number is not sufficient for unique
1024 * identification of an inode.
1025 *
1026 * If the inode is in the cache, the inode is returned with an incremented
1027 * reference count. Note, the inode lock is not waited upon so you have to be
1028 * very careful what you do with the returned inode. You probably should be
1029 * using ilookup5() instead.
1030 *
1031 * Otherwise NULL is returned.
1032 *
1033 * Note, @test is called with the inode_lock held, so can't sleep.
1034 */
1035 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1036 int (*test)(struct inode *, void *), void *data)
1037 {
1038 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1039
1040 return ifind(sb, head, test, data, 0);
1041 }
1042 EXPORT_SYMBOL(ilookup5_nowait);
1043
1044 /**
1045 * ilookup5 - search for an inode in the inode cache
1046 * @sb: super block of file system to search
1047 * @hashval: hash value (usually inode number) to search for
1048 * @test: callback used for comparisons between inodes
1049 * @data: opaque data pointer to pass to @test
1050 *
1051 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1052 * @data in the inode cache. This is a generalized version of ilookup() for
1053 * file systems where the inode number is not sufficient for unique
1054 * identification of an inode.
1055 *
1056 * If the inode is in the cache, the inode lock is waited upon and the inode is
1057 * returned with an incremented reference count.
1058 *
1059 * Otherwise NULL is returned.
1060 *
1061 * Note, @test is called with the inode_lock held, so can't sleep.
1062 */
1063 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1064 int (*test)(struct inode *, void *), void *data)
1065 {
1066 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1067
1068 return ifind(sb, head, test, data, 1);
1069 }
1070 EXPORT_SYMBOL(ilookup5);
1071
1072 /**
1073 * ilookup - search for an inode in the inode cache
1074 * @sb: super block of file system to search
1075 * @ino: inode number to search for
1076 *
1077 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1078 * This is for file systems where the inode number is sufficient for unique
1079 * identification of an inode.
1080 *
1081 * If the inode is in the cache, the inode is returned with an incremented
1082 * reference count.
1083 *
1084 * Otherwise NULL is returned.
1085 */
1086 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1087 {
1088 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1089
1090 return ifind_fast(sb, head, ino);
1091 }
1092 EXPORT_SYMBOL(ilookup);
1093
1094 /**
1095 * iget5_locked - obtain an inode from a mounted file system
1096 * @sb: super block of file system
1097 * @hashval: hash value (usually inode number) to get
1098 * @test: callback used for comparisons between inodes
1099 * @set: callback used to initialize a new struct inode
1100 * @data: opaque data pointer to pass to @test and @set
1101 *
1102 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1103 * and @data in the inode cache and if present it is returned with an increased
1104 * reference count. This is a generalized version of iget_locked() for file
1105 * systems where the inode number is not sufficient for unique identification
1106 * of an inode.
1107 *
1108 * If the inode is not in cache, get_new_inode() is called to allocate a new
1109 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1110 * file system gets to fill it in before unlocking it via unlock_new_inode().
1111 *
1112 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1113 */
1114 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1115 int (*test)(struct inode *, void *),
1116 int (*set)(struct inode *, void *), void *data)
1117 {
1118 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1119 struct inode *inode;
1120
1121 inode = ifind(sb, head, test, data, 1);
1122 if (inode)
1123 return inode;
1124 /*
1125 * get_new_inode() will do the right thing, re-trying the search
1126 * in case it had to block at any point.
1127 */
1128 return get_new_inode(sb, head, test, set, data);
1129 }
1130 EXPORT_SYMBOL(iget5_locked);
1131
1132 /**
1133 * iget_locked - obtain an inode from a mounted file system
1134 * @sb: super block of file system
1135 * @ino: inode number to get
1136 *
1137 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1138 * the inode cache and if present it is returned with an increased reference
1139 * count. This is for file systems where the inode number is sufficient for
1140 * unique identification of an inode.
1141 *
1142 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1143 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1144 * The file system gets to fill it in before unlocking it via
1145 * unlock_new_inode().
1146 */
1147 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1148 {
1149 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1150 struct inode *inode;
1151
1152 inode = ifind_fast(sb, head, ino);
1153 if (inode)
1154 return inode;
1155 /*
1156 * get_new_inode_fast() will do the right thing, re-trying the search
1157 * in case it had to block at any point.
1158 */
1159 return get_new_inode_fast(sb, head, ino);
1160 }
1161 EXPORT_SYMBOL(iget_locked);
1162
1163 int insert_inode_locked(struct inode *inode)
1164 {
1165 struct super_block *sb = inode->i_sb;
1166 ino_t ino = inode->i_ino;
1167 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168
1169 inode->i_state |= I_NEW;
1170 while (1) {
1171 struct hlist_node *node;
1172 struct inode *old = NULL;
1173 spin_lock(&inode_lock);
1174 hlist_for_each_entry(old, node, head, i_hash) {
1175 if (old->i_ino != ino)
1176 continue;
1177 if (old->i_sb != sb)
1178 continue;
1179 if (old->i_state & (I_FREEING|I_WILL_FREE))
1180 continue;
1181 break;
1182 }
1183 if (likely(!node)) {
1184 hlist_add_head(&inode->i_hash, head);
1185 spin_unlock(&inode_lock);
1186 return 0;
1187 }
1188 __iget(old);
1189 spin_unlock(&inode_lock);
1190 wait_on_inode(old);
1191 if (unlikely(!inode_unhashed(old))) {
1192 iput(old);
1193 return -EBUSY;
1194 }
1195 iput(old);
1196 }
1197 }
1198 EXPORT_SYMBOL(insert_inode_locked);
1199
1200 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1201 int (*test)(struct inode *, void *), void *data)
1202 {
1203 struct super_block *sb = inode->i_sb;
1204 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1205
1206 inode->i_state |= I_NEW;
1207
1208 while (1) {
1209 struct hlist_node *node;
1210 struct inode *old = NULL;
1211
1212 spin_lock(&inode_lock);
1213 hlist_for_each_entry(old, node, head, i_hash) {
1214 if (old->i_sb != sb)
1215 continue;
1216 if (!test(old, data))
1217 continue;
1218 if (old->i_state & (I_FREEING|I_WILL_FREE))
1219 continue;
1220 break;
1221 }
1222 if (likely(!node)) {
1223 hlist_add_head(&inode->i_hash, head);
1224 spin_unlock(&inode_lock);
1225 return 0;
1226 }
1227 __iget(old);
1228 spin_unlock(&inode_lock);
1229 wait_on_inode(old);
1230 if (unlikely(!inode_unhashed(old))) {
1231 iput(old);
1232 return -EBUSY;
1233 }
1234 iput(old);
1235 }
1236 }
1237 EXPORT_SYMBOL(insert_inode_locked4);
1238
1239
1240 int generic_delete_inode(struct inode *inode)
1241 {
1242 return 1;
1243 }
1244 EXPORT_SYMBOL(generic_delete_inode);
1245
1246 /*
1247 * Normal UNIX filesystem behaviour: delete the
1248 * inode when the usage count drops to zero, and
1249 * i_nlink is zero.
1250 */
1251 int generic_drop_inode(struct inode *inode)
1252 {
1253 return !inode->i_nlink || inode_unhashed(inode);
1254 }
1255 EXPORT_SYMBOL_GPL(generic_drop_inode);
1256
1257 /*
1258 * Called when we're dropping the last reference
1259 * to an inode.
1260 *
1261 * Call the FS "drop_inode()" function, defaulting to
1262 * the legacy UNIX filesystem behaviour. If it tells
1263 * us to evict inode, do so. Otherwise, retain inode
1264 * in cache if fs is alive, sync and evict if fs is
1265 * shutting down.
1266 */
1267 static void iput_final(struct inode *inode)
1268 {
1269 struct super_block *sb = inode->i_sb;
1270 const struct super_operations *op = inode->i_sb->s_op;
1271 int drop;
1272
1273 if (op && op->drop_inode)
1274 drop = op->drop_inode(inode);
1275 else
1276 drop = generic_drop_inode(inode);
1277
1278 if (!drop) {
1279 if (sb->s_flags & MS_ACTIVE) {
1280 inode->i_state |= I_REFERENCED;
1281 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1282 inode_lru_list_add(inode);
1283 }
1284 spin_unlock(&inode_lock);
1285 return;
1286 }
1287 WARN_ON(inode->i_state & I_NEW);
1288 inode->i_state |= I_WILL_FREE;
1289 spin_unlock(&inode_lock);
1290 write_inode_now(inode, 1);
1291 spin_lock(&inode_lock);
1292 WARN_ON(inode->i_state & I_NEW);
1293 inode->i_state &= ~I_WILL_FREE;
1294 __remove_inode_hash(inode);
1295 }
1296 WARN_ON(inode->i_state & I_NEW);
1297 inode->i_state |= I_FREEING;
1298
1299 /*
1300 * After we delete the inode from the LRU here, we avoid moving dirty
1301 * inodes back onto the LRU now because I_FREEING is set and hence
1302 * writeback_single_inode() won't move the inode around.
1303 */
1304 inode_lru_list_del(inode);
1305
1306 list_del_init(&inode->i_sb_list);
1307 spin_unlock(&inode_lock);
1308 evict(inode);
1309 remove_inode_hash(inode);
1310 wake_up_inode(inode);
1311 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1312 destroy_inode(inode);
1313 }
1314
1315 /**
1316 * iput - put an inode
1317 * @inode: inode to put
1318 *
1319 * Puts an inode, dropping its usage count. If the inode use count hits
1320 * zero, the inode is then freed and may also be destroyed.
1321 *
1322 * Consequently, iput() can sleep.
1323 */
1324 void iput(struct inode *inode)
1325 {
1326 if (inode) {
1327 BUG_ON(inode->i_state & I_CLEAR);
1328
1329 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1330 iput_final(inode);
1331 }
1332 }
1333 EXPORT_SYMBOL(iput);
1334
1335 /**
1336 * bmap - find a block number in a file
1337 * @inode: inode of file
1338 * @block: block to find
1339 *
1340 * Returns the block number on the device holding the inode that
1341 * is the disk block number for the block of the file requested.
1342 * That is, asked for block 4 of inode 1 the function will return the
1343 * disk block relative to the disk start that holds that block of the
1344 * file.
1345 */
1346 sector_t bmap(struct inode *inode, sector_t block)
1347 {
1348 sector_t res = 0;
1349 if (inode->i_mapping->a_ops->bmap)
1350 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1351 return res;
1352 }
1353 EXPORT_SYMBOL(bmap);
1354
1355 /*
1356 * With relative atime, only update atime if the previous atime is
1357 * earlier than either the ctime or mtime or if at least a day has
1358 * passed since the last atime update.
1359 */
1360 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1361 struct timespec now)
1362 {
1363
1364 if (!(mnt->mnt_flags & MNT_RELATIME))
1365 return 1;
1366 /*
1367 * Is mtime younger than atime? If yes, update atime:
1368 */
1369 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1370 return 1;
1371 /*
1372 * Is ctime younger than atime? If yes, update atime:
1373 */
1374 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1375 return 1;
1376
1377 /*
1378 * Is the previous atime value older than a day? If yes,
1379 * update atime:
1380 */
1381 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1382 return 1;
1383 /*
1384 * Good, we can skip the atime update:
1385 */
1386 return 0;
1387 }
1388
1389 /**
1390 * touch_atime - update the access time
1391 * @mnt: mount the inode is accessed on
1392 * @dentry: dentry accessed
1393 *
1394 * Update the accessed time on an inode and mark it for writeback.
1395 * This function automatically handles read only file systems and media,
1396 * as well as the "noatime" flag and inode specific "noatime" markers.
1397 */
1398 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1399 {
1400 struct inode *inode = dentry->d_inode;
1401 struct timespec now;
1402
1403 if (inode->i_flags & S_NOATIME)
1404 return;
1405 if (IS_NOATIME(inode))
1406 return;
1407 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1408 return;
1409
1410 if (mnt->mnt_flags & MNT_NOATIME)
1411 return;
1412 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1413 return;
1414
1415 now = current_fs_time(inode->i_sb);
1416
1417 if (!relatime_need_update(mnt, inode, now))
1418 return;
1419
1420 if (timespec_equal(&inode->i_atime, &now))
1421 return;
1422
1423 if (mnt_want_write(mnt))
1424 return;
1425
1426 inode->i_atime = now;
1427 mark_inode_dirty_sync(inode);
1428 mnt_drop_write(mnt);
1429 }
1430 EXPORT_SYMBOL(touch_atime);
1431
1432 /**
1433 * file_update_time - update mtime and ctime time
1434 * @file: file accessed
1435 *
1436 * Update the mtime and ctime members of an inode and mark the inode
1437 * for writeback. Note that this function is meant exclusively for
1438 * usage in the file write path of filesystems, and filesystems may
1439 * choose to explicitly ignore update via this function with the
1440 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1441 * timestamps are handled by the server.
1442 */
1443
1444 void file_update_time(struct file *file)
1445 {
1446 struct inode *inode = file->f_path.dentry->d_inode;
1447 struct timespec now;
1448 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1449
1450 /* First try to exhaust all avenues to not sync */
1451 if (IS_NOCMTIME(inode))
1452 return;
1453
1454 now = current_fs_time(inode->i_sb);
1455 if (!timespec_equal(&inode->i_mtime, &now))
1456 sync_it = S_MTIME;
1457
1458 if (!timespec_equal(&inode->i_ctime, &now))
1459 sync_it |= S_CTIME;
1460
1461 if (IS_I_VERSION(inode))
1462 sync_it |= S_VERSION;
1463
1464 if (!sync_it)
1465 return;
1466
1467 /* Finally allowed to write? Takes lock. */
1468 if (mnt_want_write_file(file))
1469 return;
1470
1471 /* Only change inode inside the lock region */
1472 if (sync_it & S_VERSION)
1473 inode_inc_iversion(inode);
1474 if (sync_it & S_CTIME)
1475 inode->i_ctime = now;
1476 if (sync_it & S_MTIME)
1477 inode->i_mtime = now;
1478 mark_inode_dirty_sync(inode);
1479 mnt_drop_write(file->f_path.mnt);
1480 }
1481 EXPORT_SYMBOL(file_update_time);
1482
1483 int inode_needs_sync(struct inode *inode)
1484 {
1485 if (IS_SYNC(inode))
1486 return 1;
1487 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1488 return 1;
1489 return 0;
1490 }
1491 EXPORT_SYMBOL(inode_needs_sync);
1492
1493 int inode_wait(void *word)
1494 {
1495 schedule();
1496 return 0;
1497 }
1498 EXPORT_SYMBOL(inode_wait);
1499
1500 /*
1501 * If we try to find an inode in the inode hash while it is being
1502 * deleted, we have to wait until the filesystem completes its
1503 * deletion before reporting that it isn't found. This function waits
1504 * until the deletion _might_ have completed. Callers are responsible
1505 * to recheck inode state.
1506 *
1507 * It doesn't matter if I_NEW is not set initially, a call to
1508 * wake_up_inode() after removing from the hash list will DTRT.
1509 *
1510 * This is called with inode_lock held.
1511 */
1512 static void __wait_on_freeing_inode(struct inode *inode)
1513 {
1514 wait_queue_head_t *wq;
1515 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1516 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1517 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1518 spin_unlock(&inode_lock);
1519 schedule();
1520 finish_wait(wq, &wait.wait);
1521 spin_lock(&inode_lock);
1522 }
1523
1524 static __initdata unsigned long ihash_entries;
1525 static int __init set_ihash_entries(char *str)
1526 {
1527 if (!str)
1528 return 0;
1529 ihash_entries = simple_strtoul(str, &str, 0);
1530 return 1;
1531 }
1532 __setup("ihash_entries=", set_ihash_entries);
1533
1534 /*
1535 * Initialize the waitqueues and inode hash table.
1536 */
1537 void __init inode_init_early(void)
1538 {
1539 int loop;
1540
1541 /* If hashes are distributed across NUMA nodes, defer
1542 * hash allocation until vmalloc space is available.
1543 */
1544 if (hashdist)
1545 return;
1546
1547 inode_hashtable =
1548 alloc_large_system_hash("Inode-cache",
1549 sizeof(struct hlist_head),
1550 ihash_entries,
1551 14,
1552 HASH_EARLY,
1553 &i_hash_shift,
1554 &i_hash_mask,
1555 0);
1556
1557 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1558 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1559 }
1560
1561 void __init inode_init(void)
1562 {
1563 int loop;
1564
1565 /* inode slab cache */
1566 inode_cachep = kmem_cache_create("inode_cache",
1567 sizeof(struct inode),
1568 0,
1569 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1570 SLAB_MEM_SPREAD),
1571 init_once);
1572 register_shrinker(&icache_shrinker);
1573 percpu_counter_init(&nr_inodes, 0);
1574 percpu_counter_init(&nr_inodes_unused, 0);
1575
1576 /* Hash may have been set up in inode_init_early */
1577 if (!hashdist)
1578 return;
1579
1580 inode_hashtable =
1581 alloc_large_system_hash("Inode-cache",
1582 sizeof(struct hlist_head),
1583 ihash_entries,
1584 14,
1585 0,
1586 &i_hash_shift,
1587 &i_hash_mask,
1588 0);
1589
1590 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1591 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1592 }
1593
1594 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1595 {
1596 inode->i_mode = mode;
1597 if (S_ISCHR(mode)) {
1598 inode->i_fop = &def_chr_fops;
1599 inode->i_rdev = rdev;
1600 } else if (S_ISBLK(mode)) {
1601 inode->i_fop = &def_blk_fops;
1602 inode->i_rdev = rdev;
1603 } else if (S_ISFIFO(mode))
1604 inode->i_fop = &def_fifo_fops;
1605 else if (S_ISSOCK(mode))
1606 inode->i_fop = &bad_sock_fops;
1607 else
1608 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1609 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1610 inode->i_ino);
1611 }
1612 EXPORT_SYMBOL(init_special_inode);
1613
1614 /**
1615 * Init uid,gid,mode for new inode according to posix standards
1616 * @inode: New inode
1617 * @dir: Directory inode
1618 * @mode: mode of the new inode
1619 */
1620 void inode_init_owner(struct inode *inode, const struct inode *dir,
1621 mode_t mode)
1622 {
1623 inode->i_uid = current_fsuid();
1624 if (dir && dir->i_mode & S_ISGID) {
1625 inode->i_gid = dir->i_gid;
1626 if (S_ISDIR(mode))
1627 mode |= S_ISGID;
1628 } else
1629 inode->i_gid = current_fsgid();
1630 inode->i_mode = mode;
1631 }
1632 EXPORT_SYMBOL(inode_init_owner);