]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
fs: don't set *REFERENCED on single use objects
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
159
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
164 #endif
165
166 if (security_inode_alloc(inode))
167 goto out;
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173
174 atomic_set(&inode->i_dio_count, 0);
175
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
178 mapping->flags = 0;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
241 }
242
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
257 }
258
259 static void destroy_inode(struct inode *inode)
260 {
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
267 }
268
269 /**
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
272 *
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
279 */
280 void drop_nlink(struct inode *inode)
281 {
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288
289 /**
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
296 */
297 void clear_nlink(struct inode *inode)
298 {
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 }
304 EXPORT_SYMBOL(clear_nlink);
305
306 /**
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
310 *
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
313 */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
322
323 inode->__i_nlink = nlink;
324 }
325 }
326 EXPORT_SYMBOL(set_nlink);
327
328 /**
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
335 */
336 void inc_nlink(struct inode *inode)
337 {
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341 }
342
343 inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346
347 void address_space_init_once(struct address_space *mapping)
348 {
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374 #ifdef CONFIG_FSNOTIFY
375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
376 #endif
377 }
378 EXPORT_SYMBOL(inode_init_once);
379
380 static void init_once(void *foo)
381 {
382 struct inode *inode = (struct inode *) foo;
383
384 inode_init_once(inode);
385 }
386
387 /*
388 * inode->i_lock must be held
389 */
390 void __iget(struct inode *inode)
391 {
392 atomic_inc(&inode->i_count);
393 }
394
395 /*
396 * get additional reference to inode; caller must already hold one.
397 */
398 void ihold(struct inode *inode)
399 {
400 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
401 }
402 EXPORT_SYMBOL(ihold);
403
404 static void inode_lru_list_add(struct inode *inode)
405 {
406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
407 this_cpu_inc(nr_unused);
408 else
409 inode->i_state |= I_REFERENCED;
410 }
411
412 /*
413 * Add inode to LRU if needed (inode is unused and clean).
414 *
415 * Needs inode->i_lock held.
416 */
417 void inode_add_lru(struct inode *inode)
418 {
419 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
420 I_FREEING | I_WILL_FREE)) &&
421 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
422 inode_lru_list_add(inode);
423 }
424
425
426 static void inode_lru_list_del(struct inode *inode)
427 {
428
429 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_dec(nr_unused);
431 }
432
433 /**
434 * inode_sb_list_add - add inode to the superblock list of inodes
435 * @inode: inode to add
436 */
437 void inode_sb_list_add(struct inode *inode)
438 {
439 spin_lock(&inode->i_sb->s_inode_list_lock);
440 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
441 spin_unlock(&inode->i_sb->s_inode_list_lock);
442 }
443 EXPORT_SYMBOL_GPL(inode_sb_list_add);
444
445 static inline void inode_sb_list_del(struct inode *inode)
446 {
447 if (!list_empty(&inode->i_sb_list)) {
448 spin_lock(&inode->i_sb->s_inode_list_lock);
449 list_del_init(&inode->i_sb_list);
450 spin_unlock(&inode->i_sb->s_inode_list_lock);
451 }
452 }
453
454 static unsigned long hash(struct super_block *sb, unsigned long hashval)
455 {
456 unsigned long tmp;
457
458 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
459 L1_CACHE_BYTES;
460 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
461 return tmp & i_hash_mask;
462 }
463
464 /**
465 * __insert_inode_hash - hash an inode
466 * @inode: unhashed inode
467 * @hashval: unsigned long value used to locate this object in the
468 * inode_hashtable.
469 *
470 * Add an inode to the inode hash for this superblock.
471 */
472 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
473 {
474 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
475
476 spin_lock(&inode_hash_lock);
477 spin_lock(&inode->i_lock);
478 hlist_add_head(&inode->i_hash, b);
479 spin_unlock(&inode->i_lock);
480 spin_unlock(&inode_hash_lock);
481 }
482 EXPORT_SYMBOL(__insert_inode_hash);
483
484 /**
485 * __remove_inode_hash - remove an inode from the hash
486 * @inode: inode to unhash
487 *
488 * Remove an inode from the superblock.
489 */
490 void __remove_inode_hash(struct inode *inode)
491 {
492 spin_lock(&inode_hash_lock);
493 spin_lock(&inode->i_lock);
494 hlist_del_init(&inode->i_hash);
495 spin_unlock(&inode->i_lock);
496 spin_unlock(&inode_hash_lock);
497 }
498 EXPORT_SYMBOL(__remove_inode_hash);
499
500 void clear_inode(struct inode *inode)
501 {
502 might_sleep();
503 /*
504 * We have to cycle tree_lock here because reclaim can be still in the
505 * process of removing the last page (in __delete_from_page_cache())
506 * and we must not free mapping under it.
507 */
508 spin_lock_irq(&inode->i_data.tree_lock);
509 BUG_ON(inode->i_data.nrpages);
510 BUG_ON(inode->i_data.nrexceptional);
511 spin_unlock_irq(&inode->i_data.tree_lock);
512 BUG_ON(!list_empty(&inode->i_data.private_list));
513 BUG_ON(!(inode->i_state & I_FREEING));
514 BUG_ON(inode->i_state & I_CLEAR);
515 BUG_ON(!list_empty(&inode->i_wb_list));
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode->i_state = I_FREEING | I_CLEAR;
518 }
519 EXPORT_SYMBOL(clear_inode);
520
521 /*
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
525 *
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
529 *
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
533 */
534 static void evict(struct inode *inode)
535 {
536 const struct super_operations *op = inode->i_sb->s_op;
537
538 BUG_ON(!(inode->i_state & I_FREEING));
539 BUG_ON(!list_empty(&inode->i_lru));
540
541 if (!list_empty(&inode->i_io_list))
542 inode_io_list_del(inode);
543
544 inode_sb_list_del(inode);
545
546 /*
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
551 */
552 inode_wait_for_writeback(inode);
553
554 if (op->evict_inode) {
555 op->evict_inode(inode);
556 } else {
557 truncate_inode_pages_final(&inode->i_data);
558 clear_inode(inode);
559 }
560 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
561 bd_forget(inode);
562 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
563 cd_forget(inode);
564
565 remove_inode_hash(inode);
566
567 spin_lock(&inode->i_lock);
568 wake_up_bit(&inode->i_state, __I_NEW);
569 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
570 spin_unlock(&inode->i_lock);
571
572 destroy_inode(inode);
573 }
574
575 /*
576 * dispose_list - dispose of the contents of a local list
577 * @head: the head of the list to free
578 *
579 * Dispose-list gets a local list with local inodes in it, so it doesn't
580 * need to worry about list corruption and SMP locks.
581 */
582 static void dispose_list(struct list_head *head)
583 {
584 while (!list_empty(head)) {
585 struct inode *inode;
586
587 inode = list_first_entry(head, struct inode, i_lru);
588 list_del_init(&inode->i_lru);
589
590 evict(inode);
591 cond_resched();
592 }
593 }
594
595 /**
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
598 *
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
603 */
604 void evict_inodes(struct super_block *sb)
605 {
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
608
609 again:
610 spin_lock(&sb->s_inode_list_lock);
611 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
612 if (atomic_read(&inode->i_count))
613 continue;
614
615 spin_lock(&inode->i_lock);
616 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
617 spin_unlock(&inode->i_lock);
618 continue;
619 }
620
621 inode->i_state |= I_FREEING;
622 inode_lru_list_del(inode);
623 spin_unlock(&inode->i_lock);
624 list_add(&inode->i_lru, &dispose);
625
626 /*
627 * We can have a ton of inodes to evict at unmount time given
628 * enough memory, check to see if we need to go to sleep for a
629 * bit so we don't livelock.
630 */
631 if (need_resched()) {
632 spin_unlock(&sb->s_inode_list_lock);
633 cond_resched();
634 dispose_list(&dispose);
635 goto again;
636 }
637 }
638 spin_unlock(&sb->s_inode_list_lock);
639
640 dispose_list(&dispose);
641 }
642
643 /**
644 * invalidate_inodes - attempt to free all inodes on a superblock
645 * @sb: superblock to operate on
646 * @kill_dirty: flag to guide handling of dirty inodes
647 *
648 * Attempts to free all inodes for a given superblock. If there were any
649 * busy inodes return a non-zero value, else zero.
650 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
651 * them as busy.
652 */
653 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
654 {
655 int busy = 0;
656 struct inode *inode, *next;
657 LIST_HEAD(dispose);
658
659 spin_lock(&sb->s_inode_list_lock);
660 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
661 spin_lock(&inode->i_lock);
662 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
663 spin_unlock(&inode->i_lock);
664 continue;
665 }
666 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
667 spin_unlock(&inode->i_lock);
668 busy = 1;
669 continue;
670 }
671 if (atomic_read(&inode->i_count)) {
672 spin_unlock(&inode->i_lock);
673 busy = 1;
674 continue;
675 }
676
677 inode->i_state |= I_FREEING;
678 inode_lru_list_del(inode);
679 spin_unlock(&inode->i_lock);
680 list_add(&inode->i_lru, &dispose);
681 }
682 spin_unlock(&sb->s_inode_list_lock);
683
684 dispose_list(&dispose);
685
686 return busy;
687 }
688
689 /*
690 * Isolate the inode from the LRU in preparation for freeing it.
691 *
692 * Any inodes which are pinned purely because of attached pagecache have their
693 * pagecache removed. If the inode has metadata buffers attached to
694 * mapping->private_list then try to remove them.
695 *
696 * If the inode has the I_REFERENCED flag set, then it means that it has been
697 * used recently - the flag is set in iput_final(). When we encounter such an
698 * inode, clear the flag and move it to the back of the LRU so it gets another
699 * pass through the LRU before it gets reclaimed. This is necessary because of
700 * the fact we are doing lazy LRU updates to minimise lock contention so the
701 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
702 * with this flag set because they are the inodes that are out of order.
703 */
704 static enum lru_status inode_lru_isolate(struct list_head *item,
705 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
706 {
707 struct list_head *freeable = arg;
708 struct inode *inode = container_of(item, struct inode, i_lru);
709
710 /*
711 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
712 * If we fail to get the lock, just skip it.
713 */
714 if (!spin_trylock(&inode->i_lock))
715 return LRU_SKIP;
716
717 /*
718 * Referenced or dirty inodes are still in use. Give them another pass
719 * through the LRU as we canot reclaim them now.
720 */
721 if (atomic_read(&inode->i_count) ||
722 (inode->i_state & ~I_REFERENCED)) {
723 list_lru_isolate(lru, &inode->i_lru);
724 spin_unlock(&inode->i_lock);
725 this_cpu_dec(nr_unused);
726 return LRU_REMOVED;
727 }
728
729 /* recently referenced inodes get one more pass */
730 if (inode->i_state & I_REFERENCED) {
731 inode->i_state &= ~I_REFERENCED;
732 spin_unlock(&inode->i_lock);
733 return LRU_ROTATE;
734 }
735
736 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
737 __iget(inode);
738 spin_unlock(&inode->i_lock);
739 spin_unlock(lru_lock);
740 if (remove_inode_buffers(inode)) {
741 unsigned long reap;
742 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
743 if (current_is_kswapd())
744 __count_vm_events(KSWAPD_INODESTEAL, reap);
745 else
746 __count_vm_events(PGINODESTEAL, reap);
747 if (current->reclaim_state)
748 current->reclaim_state->reclaimed_slab += reap;
749 }
750 iput(inode);
751 spin_lock(lru_lock);
752 return LRU_RETRY;
753 }
754
755 WARN_ON(inode->i_state & I_NEW);
756 inode->i_state |= I_FREEING;
757 list_lru_isolate_move(lru, &inode->i_lru, freeable);
758 spin_unlock(&inode->i_lock);
759
760 this_cpu_dec(nr_unused);
761 return LRU_REMOVED;
762 }
763
764 /*
765 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
766 * This is called from the superblock shrinker function with a number of inodes
767 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
768 * then are freed outside inode_lock by dispose_list().
769 */
770 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
771 {
772 LIST_HEAD(freeable);
773 long freed;
774
775 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
776 inode_lru_isolate, &freeable);
777 dispose_list(&freeable);
778 return freed;
779 }
780
781 static void __wait_on_freeing_inode(struct inode *inode);
782 /*
783 * Called with the inode lock held.
784 */
785 static struct inode *find_inode(struct super_block *sb,
786 struct hlist_head *head,
787 int (*test)(struct inode *, void *),
788 void *data)
789 {
790 struct inode *inode = NULL;
791
792 repeat:
793 hlist_for_each_entry(inode, head, i_hash) {
794 if (inode->i_sb != sb)
795 continue;
796 if (!test(inode, data))
797 continue;
798 spin_lock(&inode->i_lock);
799 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
800 __wait_on_freeing_inode(inode);
801 goto repeat;
802 }
803 __iget(inode);
804 spin_unlock(&inode->i_lock);
805 return inode;
806 }
807 return NULL;
808 }
809
810 /*
811 * find_inode_fast is the fast path version of find_inode, see the comment at
812 * iget_locked for details.
813 */
814 static struct inode *find_inode_fast(struct super_block *sb,
815 struct hlist_head *head, unsigned long ino)
816 {
817 struct inode *inode = NULL;
818
819 repeat:
820 hlist_for_each_entry(inode, head, i_hash) {
821 if (inode->i_ino != ino)
822 continue;
823 if (inode->i_sb != sb)
824 continue;
825 spin_lock(&inode->i_lock);
826 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
827 __wait_on_freeing_inode(inode);
828 goto repeat;
829 }
830 __iget(inode);
831 spin_unlock(&inode->i_lock);
832 return inode;
833 }
834 return NULL;
835 }
836
837 /*
838 * Each cpu owns a range of LAST_INO_BATCH numbers.
839 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
840 * to renew the exhausted range.
841 *
842 * This does not significantly increase overflow rate because every CPU can
843 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
844 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
845 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
846 * overflow rate by 2x, which does not seem too significant.
847 *
848 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
849 * error if st_ino won't fit in target struct field. Use 32bit counter
850 * here to attempt to avoid that.
851 */
852 #define LAST_INO_BATCH 1024
853 static DEFINE_PER_CPU(unsigned int, last_ino);
854
855 unsigned int get_next_ino(void)
856 {
857 unsigned int *p = &get_cpu_var(last_ino);
858 unsigned int res = *p;
859
860 #ifdef CONFIG_SMP
861 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
862 static atomic_t shared_last_ino;
863 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
864
865 res = next - LAST_INO_BATCH;
866 }
867 #endif
868
869 res++;
870 /* get_next_ino should not provide a 0 inode number */
871 if (unlikely(!res))
872 res++;
873 *p = res;
874 put_cpu_var(last_ino);
875 return res;
876 }
877 EXPORT_SYMBOL(get_next_ino);
878
879 /**
880 * new_inode_pseudo - obtain an inode
881 * @sb: superblock
882 *
883 * Allocates a new inode for given superblock.
884 * Inode wont be chained in superblock s_inodes list
885 * This means :
886 * - fs can't be unmount
887 * - quotas, fsnotify, writeback can't work
888 */
889 struct inode *new_inode_pseudo(struct super_block *sb)
890 {
891 struct inode *inode = alloc_inode(sb);
892
893 if (inode) {
894 spin_lock(&inode->i_lock);
895 inode->i_state = 0;
896 spin_unlock(&inode->i_lock);
897 INIT_LIST_HEAD(&inode->i_sb_list);
898 }
899 return inode;
900 }
901
902 /**
903 * new_inode - obtain an inode
904 * @sb: superblock
905 *
906 * Allocates a new inode for given superblock. The default gfp_mask
907 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
908 * If HIGHMEM pages are unsuitable or it is known that pages allocated
909 * for the page cache are not reclaimable or migratable,
910 * mapping_set_gfp_mask() must be called with suitable flags on the
911 * newly created inode's mapping
912 *
913 */
914 struct inode *new_inode(struct super_block *sb)
915 {
916 struct inode *inode;
917
918 spin_lock_prefetch(&sb->s_inode_list_lock);
919
920 inode = new_inode_pseudo(sb);
921 if (inode)
922 inode_sb_list_add(inode);
923 return inode;
924 }
925 EXPORT_SYMBOL(new_inode);
926
927 #ifdef CONFIG_DEBUG_LOCK_ALLOC
928 void lockdep_annotate_inode_mutex_key(struct inode *inode)
929 {
930 if (S_ISDIR(inode->i_mode)) {
931 struct file_system_type *type = inode->i_sb->s_type;
932
933 /* Set new key only if filesystem hasn't already changed it */
934 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
935 /*
936 * ensure nobody is actually holding i_mutex
937 */
938 // mutex_destroy(&inode->i_mutex);
939 init_rwsem(&inode->i_rwsem);
940 lockdep_set_class(&inode->i_rwsem,
941 &type->i_mutex_dir_key);
942 }
943 }
944 }
945 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
946 #endif
947
948 /**
949 * unlock_new_inode - clear the I_NEW state and wake up any waiters
950 * @inode: new inode to unlock
951 *
952 * Called when the inode is fully initialised to clear the new state of the
953 * inode and wake up anyone waiting for the inode to finish initialisation.
954 */
955 void unlock_new_inode(struct inode *inode)
956 {
957 lockdep_annotate_inode_mutex_key(inode);
958 spin_lock(&inode->i_lock);
959 WARN_ON(!(inode->i_state & I_NEW));
960 inode->i_state &= ~I_NEW;
961 smp_mb();
962 wake_up_bit(&inode->i_state, __I_NEW);
963 spin_unlock(&inode->i_lock);
964 }
965 EXPORT_SYMBOL(unlock_new_inode);
966
967 /**
968 * lock_two_nondirectories - take two i_mutexes on non-directory objects
969 *
970 * Lock any non-NULL argument that is not a directory.
971 * Zero, one or two objects may be locked by this function.
972 *
973 * @inode1: first inode to lock
974 * @inode2: second inode to lock
975 */
976 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
977 {
978 if (inode1 > inode2)
979 swap(inode1, inode2);
980
981 if (inode1 && !S_ISDIR(inode1->i_mode))
982 inode_lock(inode1);
983 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
984 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
985 }
986 EXPORT_SYMBOL(lock_two_nondirectories);
987
988 /**
989 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
990 * @inode1: first inode to unlock
991 * @inode2: second inode to unlock
992 */
993 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
994 {
995 if (inode1 && !S_ISDIR(inode1->i_mode))
996 inode_unlock(inode1);
997 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
998 inode_unlock(inode2);
999 }
1000 EXPORT_SYMBOL(unlock_two_nondirectories);
1001
1002 /**
1003 * iget5_locked - obtain an inode from a mounted file system
1004 * @sb: super block of file system
1005 * @hashval: hash value (usually inode number) to get
1006 * @test: callback used for comparisons between inodes
1007 * @set: callback used to initialize a new struct inode
1008 * @data: opaque data pointer to pass to @test and @set
1009 *
1010 * Search for the inode specified by @hashval and @data in the inode cache,
1011 * and if present it is return it with an increased reference count. This is
1012 * a generalized version of iget_locked() for file systems where the inode
1013 * number is not sufficient for unique identification of an inode.
1014 *
1015 * If the inode is not in cache, allocate a new inode and return it locked,
1016 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1017 * before unlocking it via unlock_new_inode().
1018 *
1019 * Note both @test and @set are called with the inode_hash_lock held, so can't
1020 * sleep.
1021 */
1022 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1023 int (*test)(struct inode *, void *),
1024 int (*set)(struct inode *, void *), void *data)
1025 {
1026 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1027 struct inode *inode;
1028 again:
1029 spin_lock(&inode_hash_lock);
1030 inode = find_inode(sb, head, test, data);
1031 spin_unlock(&inode_hash_lock);
1032
1033 if (inode) {
1034 wait_on_inode(inode);
1035 if (unlikely(inode_unhashed(inode))) {
1036 iput(inode);
1037 goto again;
1038 }
1039 return inode;
1040 }
1041
1042 inode = alloc_inode(sb);
1043 if (inode) {
1044 struct inode *old;
1045
1046 spin_lock(&inode_hash_lock);
1047 /* We released the lock, so.. */
1048 old = find_inode(sb, head, test, data);
1049 if (!old) {
1050 if (set(inode, data))
1051 goto set_failed;
1052
1053 spin_lock(&inode->i_lock);
1054 inode->i_state = I_NEW;
1055 hlist_add_head(&inode->i_hash, head);
1056 spin_unlock(&inode->i_lock);
1057 inode_sb_list_add(inode);
1058 spin_unlock(&inode_hash_lock);
1059
1060 /* Return the locked inode with I_NEW set, the
1061 * caller is responsible for filling in the contents
1062 */
1063 return inode;
1064 }
1065
1066 /*
1067 * Uhhuh, somebody else created the same inode under
1068 * us. Use the old inode instead of the one we just
1069 * allocated.
1070 */
1071 spin_unlock(&inode_hash_lock);
1072 destroy_inode(inode);
1073 inode = old;
1074 wait_on_inode(inode);
1075 if (unlikely(inode_unhashed(inode))) {
1076 iput(inode);
1077 goto again;
1078 }
1079 }
1080 return inode;
1081
1082 set_failed:
1083 spin_unlock(&inode_hash_lock);
1084 destroy_inode(inode);
1085 return NULL;
1086 }
1087 EXPORT_SYMBOL(iget5_locked);
1088
1089 /**
1090 * iget_locked - obtain an inode from a mounted file system
1091 * @sb: super block of file system
1092 * @ino: inode number to get
1093 *
1094 * Search for the inode specified by @ino in the inode cache and if present
1095 * return it with an increased reference count. This is for file systems
1096 * where the inode number is sufficient for unique identification of an inode.
1097 *
1098 * If the inode is not in cache, allocate a new inode and return it locked,
1099 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1100 * before unlocking it via unlock_new_inode().
1101 */
1102 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1103 {
1104 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1105 struct inode *inode;
1106 again:
1107 spin_lock(&inode_hash_lock);
1108 inode = find_inode_fast(sb, head, ino);
1109 spin_unlock(&inode_hash_lock);
1110 if (inode) {
1111 wait_on_inode(inode);
1112 if (unlikely(inode_unhashed(inode))) {
1113 iput(inode);
1114 goto again;
1115 }
1116 return inode;
1117 }
1118
1119 inode = alloc_inode(sb);
1120 if (inode) {
1121 struct inode *old;
1122
1123 spin_lock(&inode_hash_lock);
1124 /* We released the lock, so.. */
1125 old = find_inode_fast(sb, head, ino);
1126 if (!old) {
1127 inode->i_ino = ino;
1128 spin_lock(&inode->i_lock);
1129 inode->i_state = I_NEW;
1130 hlist_add_head(&inode->i_hash, head);
1131 spin_unlock(&inode->i_lock);
1132 inode_sb_list_add(inode);
1133 spin_unlock(&inode_hash_lock);
1134
1135 /* Return the locked inode with I_NEW set, the
1136 * caller is responsible for filling in the contents
1137 */
1138 return inode;
1139 }
1140
1141 /*
1142 * Uhhuh, somebody else created the same inode under
1143 * us. Use the old inode instead of the one we just
1144 * allocated.
1145 */
1146 spin_unlock(&inode_hash_lock);
1147 destroy_inode(inode);
1148 inode = old;
1149 wait_on_inode(inode);
1150 if (unlikely(inode_unhashed(inode))) {
1151 iput(inode);
1152 goto again;
1153 }
1154 }
1155 return inode;
1156 }
1157 EXPORT_SYMBOL(iget_locked);
1158
1159 /*
1160 * search the inode cache for a matching inode number.
1161 * If we find one, then the inode number we are trying to
1162 * allocate is not unique and so we should not use it.
1163 *
1164 * Returns 1 if the inode number is unique, 0 if it is not.
1165 */
1166 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1167 {
1168 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1169 struct inode *inode;
1170
1171 spin_lock(&inode_hash_lock);
1172 hlist_for_each_entry(inode, b, i_hash) {
1173 if (inode->i_ino == ino && inode->i_sb == sb) {
1174 spin_unlock(&inode_hash_lock);
1175 return 0;
1176 }
1177 }
1178 spin_unlock(&inode_hash_lock);
1179
1180 return 1;
1181 }
1182
1183 /**
1184 * iunique - get a unique inode number
1185 * @sb: superblock
1186 * @max_reserved: highest reserved inode number
1187 *
1188 * Obtain an inode number that is unique on the system for a given
1189 * superblock. This is used by file systems that have no natural
1190 * permanent inode numbering system. An inode number is returned that
1191 * is higher than the reserved limit but unique.
1192 *
1193 * BUGS:
1194 * With a large number of inodes live on the file system this function
1195 * currently becomes quite slow.
1196 */
1197 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1198 {
1199 /*
1200 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1201 * error if st_ino won't fit in target struct field. Use 32bit counter
1202 * here to attempt to avoid that.
1203 */
1204 static DEFINE_SPINLOCK(iunique_lock);
1205 static unsigned int counter;
1206 ino_t res;
1207
1208 spin_lock(&iunique_lock);
1209 do {
1210 if (counter <= max_reserved)
1211 counter = max_reserved + 1;
1212 res = counter++;
1213 } while (!test_inode_iunique(sb, res));
1214 spin_unlock(&iunique_lock);
1215
1216 return res;
1217 }
1218 EXPORT_SYMBOL(iunique);
1219
1220 struct inode *igrab(struct inode *inode)
1221 {
1222 spin_lock(&inode->i_lock);
1223 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1224 __iget(inode);
1225 spin_unlock(&inode->i_lock);
1226 } else {
1227 spin_unlock(&inode->i_lock);
1228 /*
1229 * Handle the case where s_op->clear_inode is not been
1230 * called yet, and somebody is calling igrab
1231 * while the inode is getting freed.
1232 */
1233 inode = NULL;
1234 }
1235 return inode;
1236 }
1237 EXPORT_SYMBOL(igrab);
1238
1239 /**
1240 * ilookup5_nowait - search for an inode in the inode cache
1241 * @sb: super block of file system to search
1242 * @hashval: hash value (usually inode number) to search for
1243 * @test: callback used for comparisons between inodes
1244 * @data: opaque data pointer to pass to @test
1245 *
1246 * Search for the inode specified by @hashval and @data in the inode cache.
1247 * If the inode is in the cache, the inode is returned with an incremented
1248 * reference count.
1249 *
1250 * Note: I_NEW is not waited upon so you have to be very careful what you do
1251 * with the returned inode. You probably should be using ilookup5() instead.
1252 *
1253 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1254 */
1255 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1256 int (*test)(struct inode *, void *), void *data)
1257 {
1258 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1259 struct inode *inode;
1260
1261 spin_lock(&inode_hash_lock);
1262 inode = find_inode(sb, head, test, data);
1263 spin_unlock(&inode_hash_lock);
1264
1265 return inode;
1266 }
1267 EXPORT_SYMBOL(ilookup5_nowait);
1268
1269 /**
1270 * ilookup5 - search for an inode in the inode cache
1271 * @sb: super block of file system to search
1272 * @hashval: hash value (usually inode number) to search for
1273 * @test: callback used for comparisons between inodes
1274 * @data: opaque data pointer to pass to @test
1275 *
1276 * Search for the inode specified by @hashval and @data in the inode cache,
1277 * and if the inode is in the cache, return the inode with an incremented
1278 * reference count. Waits on I_NEW before returning the inode.
1279 * returned with an incremented reference count.
1280 *
1281 * This is a generalized version of ilookup() for file systems where the
1282 * inode number is not sufficient for unique identification of an inode.
1283 *
1284 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1285 */
1286 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1287 int (*test)(struct inode *, void *), void *data)
1288 {
1289 struct inode *inode;
1290 again:
1291 inode = ilookup5_nowait(sb, hashval, test, data);
1292 if (inode) {
1293 wait_on_inode(inode);
1294 if (unlikely(inode_unhashed(inode))) {
1295 iput(inode);
1296 goto again;
1297 }
1298 }
1299 return inode;
1300 }
1301 EXPORT_SYMBOL(ilookup5);
1302
1303 /**
1304 * ilookup - search for an inode in the inode cache
1305 * @sb: super block of file system to search
1306 * @ino: inode number to search for
1307 *
1308 * Search for the inode @ino in the inode cache, and if the inode is in the
1309 * cache, the inode is returned with an incremented reference count.
1310 */
1311 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1312 {
1313 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1314 struct inode *inode;
1315 again:
1316 spin_lock(&inode_hash_lock);
1317 inode = find_inode_fast(sb, head, ino);
1318 spin_unlock(&inode_hash_lock);
1319
1320 if (inode) {
1321 wait_on_inode(inode);
1322 if (unlikely(inode_unhashed(inode))) {
1323 iput(inode);
1324 goto again;
1325 }
1326 }
1327 return inode;
1328 }
1329 EXPORT_SYMBOL(ilookup);
1330
1331 /**
1332 * find_inode_nowait - find an inode in the inode cache
1333 * @sb: super block of file system to search
1334 * @hashval: hash value (usually inode number) to search for
1335 * @match: callback used for comparisons between inodes
1336 * @data: opaque data pointer to pass to @match
1337 *
1338 * Search for the inode specified by @hashval and @data in the inode
1339 * cache, where the helper function @match will return 0 if the inode
1340 * does not match, 1 if the inode does match, and -1 if the search
1341 * should be stopped. The @match function must be responsible for
1342 * taking the i_lock spin_lock and checking i_state for an inode being
1343 * freed or being initialized, and incrementing the reference count
1344 * before returning 1. It also must not sleep, since it is called with
1345 * the inode_hash_lock spinlock held.
1346 *
1347 * This is a even more generalized version of ilookup5() when the
1348 * function must never block --- find_inode() can block in
1349 * __wait_on_freeing_inode() --- or when the caller can not increment
1350 * the reference count because the resulting iput() might cause an
1351 * inode eviction. The tradeoff is that the @match funtion must be
1352 * very carefully implemented.
1353 */
1354 struct inode *find_inode_nowait(struct super_block *sb,
1355 unsigned long hashval,
1356 int (*match)(struct inode *, unsigned long,
1357 void *),
1358 void *data)
1359 {
1360 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1361 struct inode *inode, *ret_inode = NULL;
1362 int mval;
1363
1364 spin_lock(&inode_hash_lock);
1365 hlist_for_each_entry(inode, head, i_hash) {
1366 if (inode->i_sb != sb)
1367 continue;
1368 mval = match(inode, hashval, data);
1369 if (mval == 0)
1370 continue;
1371 if (mval == 1)
1372 ret_inode = inode;
1373 goto out;
1374 }
1375 out:
1376 spin_unlock(&inode_hash_lock);
1377 return ret_inode;
1378 }
1379 EXPORT_SYMBOL(find_inode_nowait);
1380
1381 int insert_inode_locked(struct inode *inode)
1382 {
1383 struct super_block *sb = inode->i_sb;
1384 ino_t ino = inode->i_ino;
1385 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1386
1387 while (1) {
1388 struct inode *old = NULL;
1389 spin_lock(&inode_hash_lock);
1390 hlist_for_each_entry(old, head, i_hash) {
1391 if (old->i_ino != ino)
1392 continue;
1393 if (old->i_sb != sb)
1394 continue;
1395 spin_lock(&old->i_lock);
1396 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1397 spin_unlock(&old->i_lock);
1398 continue;
1399 }
1400 break;
1401 }
1402 if (likely(!old)) {
1403 spin_lock(&inode->i_lock);
1404 inode->i_state |= I_NEW;
1405 hlist_add_head(&inode->i_hash, head);
1406 spin_unlock(&inode->i_lock);
1407 spin_unlock(&inode_hash_lock);
1408 return 0;
1409 }
1410 __iget(old);
1411 spin_unlock(&old->i_lock);
1412 spin_unlock(&inode_hash_lock);
1413 wait_on_inode(old);
1414 if (unlikely(!inode_unhashed(old))) {
1415 iput(old);
1416 return -EBUSY;
1417 }
1418 iput(old);
1419 }
1420 }
1421 EXPORT_SYMBOL(insert_inode_locked);
1422
1423 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1424 int (*test)(struct inode *, void *), void *data)
1425 {
1426 struct super_block *sb = inode->i_sb;
1427 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1428
1429 while (1) {
1430 struct inode *old = NULL;
1431
1432 spin_lock(&inode_hash_lock);
1433 hlist_for_each_entry(old, head, i_hash) {
1434 if (old->i_sb != sb)
1435 continue;
1436 if (!test(old, data))
1437 continue;
1438 spin_lock(&old->i_lock);
1439 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1440 spin_unlock(&old->i_lock);
1441 continue;
1442 }
1443 break;
1444 }
1445 if (likely(!old)) {
1446 spin_lock(&inode->i_lock);
1447 inode->i_state |= I_NEW;
1448 hlist_add_head(&inode->i_hash, head);
1449 spin_unlock(&inode->i_lock);
1450 spin_unlock(&inode_hash_lock);
1451 return 0;
1452 }
1453 __iget(old);
1454 spin_unlock(&old->i_lock);
1455 spin_unlock(&inode_hash_lock);
1456 wait_on_inode(old);
1457 if (unlikely(!inode_unhashed(old))) {
1458 iput(old);
1459 return -EBUSY;
1460 }
1461 iput(old);
1462 }
1463 }
1464 EXPORT_SYMBOL(insert_inode_locked4);
1465
1466
1467 int generic_delete_inode(struct inode *inode)
1468 {
1469 return 1;
1470 }
1471 EXPORT_SYMBOL(generic_delete_inode);
1472
1473 /*
1474 * Called when we're dropping the last reference
1475 * to an inode.
1476 *
1477 * Call the FS "drop_inode()" function, defaulting to
1478 * the legacy UNIX filesystem behaviour. If it tells
1479 * us to evict inode, do so. Otherwise, retain inode
1480 * in cache if fs is alive, sync and evict if fs is
1481 * shutting down.
1482 */
1483 static void iput_final(struct inode *inode)
1484 {
1485 struct super_block *sb = inode->i_sb;
1486 const struct super_operations *op = inode->i_sb->s_op;
1487 int drop;
1488
1489 WARN_ON(inode->i_state & I_NEW);
1490
1491 if (op->drop_inode)
1492 drop = op->drop_inode(inode);
1493 else
1494 drop = generic_drop_inode(inode);
1495
1496 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1497 inode_add_lru(inode);
1498 spin_unlock(&inode->i_lock);
1499 return;
1500 }
1501
1502 if (!drop) {
1503 inode->i_state |= I_WILL_FREE;
1504 spin_unlock(&inode->i_lock);
1505 write_inode_now(inode, 1);
1506 spin_lock(&inode->i_lock);
1507 WARN_ON(inode->i_state & I_NEW);
1508 inode->i_state &= ~I_WILL_FREE;
1509 }
1510
1511 inode->i_state |= I_FREEING;
1512 if (!list_empty(&inode->i_lru))
1513 inode_lru_list_del(inode);
1514 spin_unlock(&inode->i_lock);
1515
1516 evict(inode);
1517 }
1518
1519 /**
1520 * iput - put an inode
1521 * @inode: inode to put
1522 *
1523 * Puts an inode, dropping its usage count. If the inode use count hits
1524 * zero, the inode is then freed and may also be destroyed.
1525 *
1526 * Consequently, iput() can sleep.
1527 */
1528 void iput(struct inode *inode)
1529 {
1530 if (!inode)
1531 return;
1532 BUG_ON(inode->i_state & I_CLEAR);
1533 retry:
1534 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1535 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1536 atomic_inc(&inode->i_count);
1537 inode->i_state &= ~I_DIRTY_TIME;
1538 spin_unlock(&inode->i_lock);
1539 trace_writeback_lazytime_iput(inode);
1540 mark_inode_dirty_sync(inode);
1541 goto retry;
1542 }
1543 iput_final(inode);
1544 }
1545 }
1546 EXPORT_SYMBOL(iput);
1547
1548 /**
1549 * bmap - find a block number in a file
1550 * @inode: inode of file
1551 * @block: block to find
1552 *
1553 * Returns the block number on the device holding the inode that
1554 * is the disk block number for the block of the file requested.
1555 * That is, asked for block 4 of inode 1 the function will return the
1556 * disk block relative to the disk start that holds that block of the
1557 * file.
1558 */
1559 sector_t bmap(struct inode *inode, sector_t block)
1560 {
1561 sector_t res = 0;
1562 if (inode->i_mapping->a_ops->bmap)
1563 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1564 return res;
1565 }
1566 EXPORT_SYMBOL(bmap);
1567
1568 /*
1569 * Update times in overlayed inode from underlying real inode
1570 */
1571 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1572 bool rcu)
1573 {
1574 if (!rcu) {
1575 struct inode *realinode = d_real_inode(dentry);
1576
1577 if (unlikely(inode != realinode) &&
1578 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1579 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1580 inode->i_mtime = realinode->i_mtime;
1581 inode->i_ctime = realinode->i_ctime;
1582 }
1583 }
1584 }
1585
1586 /*
1587 * With relative atime, only update atime if the previous atime is
1588 * earlier than either the ctime or mtime or if at least a day has
1589 * passed since the last atime update.
1590 */
1591 static int relatime_need_update(const struct path *path, struct inode *inode,
1592 struct timespec now, bool rcu)
1593 {
1594
1595 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1596 return 1;
1597
1598 update_ovl_inode_times(path->dentry, inode, rcu);
1599 /*
1600 * Is mtime younger than atime? If yes, update atime:
1601 */
1602 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1603 return 1;
1604 /*
1605 * Is ctime younger than atime? If yes, update atime:
1606 */
1607 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1608 return 1;
1609
1610 /*
1611 * Is the previous atime value older than a day? If yes,
1612 * update atime:
1613 */
1614 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1615 return 1;
1616 /*
1617 * Good, we can skip the atime update:
1618 */
1619 return 0;
1620 }
1621
1622 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1623 {
1624 int iflags = I_DIRTY_TIME;
1625
1626 if (flags & S_ATIME)
1627 inode->i_atime = *time;
1628 if (flags & S_VERSION)
1629 inode_inc_iversion(inode);
1630 if (flags & S_CTIME)
1631 inode->i_ctime = *time;
1632 if (flags & S_MTIME)
1633 inode->i_mtime = *time;
1634
1635 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1636 iflags |= I_DIRTY_SYNC;
1637 __mark_inode_dirty(inode, iflags);
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(generic_update_time);
1641
1642 /*
1643 * This does the actual work of updating an inodes time or version. Must have
1644 * had called mnt_want_write() before calling this.
1645 */
1646 static int update_time(struct inode *inode, struct timespec *time, int flags)
1647 {
1648 int (*update_time)(struct inode *, struct timespec *, int);
1649
1650 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1651 generic_update_time;
1652
1653 return update_time(inode, time, flags);
1654 }
1655
1656 /**
1657 * touch_atime - update the access time
1658 * @path: the &struct path to update
1659 * @inode: inode to update
1660 *
1661 * Update the accessed time on an inode and mark it for writeback.
1662 * This function automatically handles read only file systems and media,
1663 * as well as the "noatime" flag and inode specific "noatime" markers.
1664 */
1665 bool __atime_needs_update(const struct path *path, struct inode *inode,
1666 bool rcu)
1667 {
1668 struct vfsmount *mnt = path->mnt;
1669 struct timespec now;
1670
1671 if (inode->i_flags & S_NOATIME)
1672 return false;
1673
1674 /* Atime updates will likely cause i_uid and i_gid to be written
1675 * back improprely if their true value is unknown to the vfs.
1676 */
1677 if (HAS_UNMAPPED_ID(inode))
1678 return false;
1679
1680 if (IS_NOATIME(inode))
1681 return false;
1682 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1683 return false;
1684
1685 if (mnt->mnt_flags & MNT_NOATIME)
1686 return false;
1687 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1688 return false;
1689
1690 now = current_time(inode);
1691
1692 if (!relatime_need_update(path, inode, now, rcu))
1693 return false;
1694
1695 if (timespec_equal(&inode->i_atime, &now))
1696 return false;
1697
1698 return true;
1699 }
1700
1701 void touch_atime(const struct path *path)
1702 {
1703 struct vfsmount *mnt = path->mnt;
1704 struct inode *inode = d_inode(path->dentry);
1705 struct timespec now;
1706
1707 if (!__atime_needs_update(path, inode, false))
1708 return;
1709
1710 if (!sb_start_write_trylock(inode->i_sb))
1711 return;
1712
1713 if (__mnt_want_write(mnt) != 0)
1714 goto skip_update;
1715 /*
1716 * File systems can error out when updating inodes if they need to
1717 * allocate new space to modify an inode (such is the case for
1718 * Btrfs), but since we touch atime while walking down the path we
1719 * really don't care if we failed to update the atime of the file,
1720 * so just ignore the return value.
1721 * We may also fail on filesystems that have the ability to make parts
1722 * of the fs read only, e.g. subvolumes in Btrfs.
1723 */
1724 now = current_time(inode);
1725 update_time(inode, &now, S_ATIME);
1726 __mnt_drop_write(mnt);
1727 skip_update:
1728 sb_end_write(inode->i_sb);
1729 }
1730 EXPORT_SYMBOL(touch_atime);
1731
1732 /*
1733 * The logic we want is
1734 *
1735 * if suid or (sgid and xgrp)
1736 * remove privs
1737 */
1738 int should_remove_suid(struct dentry *dentry)
1739 {
1740 umode_t mode = d_inode(dentry)->i_mode;
1741 int kill = 0;
1742
1743 /* suid always must be killed */
1744 if (unlikely(mode & S_ISUID))
1745 kill = ATTR_KILL_SUID;
1746
1747 /*
1748 * sgid without any exec bits is just a mandatory locking mark; leave
1749 * it alone. If some exec bits are set, it's a real sgid; kill it.
1750 */
1751 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1752 kill |= ATTR_KILL_SGID;
1753
1754 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1755 return kill;
1756
1757 return 0;
1758 }
1759 EXPORT_SYMBOL(should_remove_suid);
1760
1761 /*
1762 * Return mask of changes for notify_change() that need to be done as a
1763 * response to write or truncate. Return 0 if nothing has to be changed.
1764 * Negative value on error (change should be denied).
1765 */
1766 int dentry_needs_remove_privs(struct dentry *dentry)
1767 {
1768 struct inode *inode = d_inode(dentry);
1769 int mask = 0;
1770 int ret;
1771
1772 if (IS_NOSEC(inode))
1773 return 0;
1774
1775 mask = should_remove_suid(dentry);
1776 ret = security_inode_need_killpriv(dentry);
1777 if (ret < 0)
1778 return ret;
1779 if (ret)
1780 mask |= ATTR_KILL_PRIV;
1781 return mask;
1782 }
1783
1784 static int __remove_privs(struct dentry *dentry, int kill)
1785 {
1786 struct iattr newattrs;
1787
1788 newattrs.ia_valid = ATTR_FORCE | kill;
1789 /*
1790 * Note we call this on write, so notify_change will not
1791 * encounter any conflicting delegations:
1792 */
1793 return notify_change(dentry, &newattrs, NULL);
1794 }
1795
1796 /*
1797 * Remove special file priviledges (suid, capabilities) when file is written
1798 * to or truncated.
1799 */
1800 int file_remove_privs(struct file *file)
1801 {
1802 struct dentry *dentry = file_dentry(file);
1803 struct inode *inode = file_inode(file);
1804 int kill;
1805 int error = 0;
1806
1807 /* Fast path for nothing security related */
1808 if (IS_NOSEC(inode))
1809 return 0;
1810
1811 kill = dentry_needs_remove_privs(dentry);
1812 if (kill < 0)
1813 return kill;
1814 if (kill)
1815 error = __remove_privs(dentry, kill);
1816 if (!error)
1817 inode_has_no_xattr(inode);
1818
1819 return error;
1820 }
1821 EXPORT_SYMBOL(file_remove_privs);
1822
1823 /**
1824 * file_update_time - update mtime and ctime time
1825 * @file: file accessed
1826 *
1827 * Update the mtime and ctime members of an inode and mark the inode
1828 * for writeback. Note that this function is meant exclusively for
1829 * usage in the file write path of filesystems, and filesystems may
1830 * choose to explicitly ignore update via this function with the
1831 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1832 * timestamps are handled by the server. This can return an error for
1833 * file systems who need to allocate space in order to update an inode.
1834 */
1835
1836 int file_update_time(struct file *file)
1837 {
1838 struct inode *inode = file_inode(file);
1839 struct timespec now;
1840 int sync_it = 0;
1841 int ret;
1842
1843 /* First try to exhaust all avenues to not sync */
1844 if (IS_NOCMTIME(inode))
1845 return 0;
1846
1847 now = current_time(inode);
1848 if (!timespec_equal(&inode->i_mtime, &now))
1849 sync_it = S_MTIME;
1850
1851 if (!timespec_equal(&inode->i_ctime, &now))
1852 sync_it |= S_CTIME;
1853
1854 if (IS_I_VERSION(inode))
1855 sync_it |= S_VERSION;
1856
1857 if (!sync_it)
1858 return 0;
1859
1860 /* Finally allowed to write? Takes lock. */
1861 if (__mnt_want_write_file(file))
1862 return 0;
1863
1864 ret = update_time(inode, &now, sync_it);
1865 __mnt_drop_write_file(file);
1866
1867 return ret;
1868 }
1869 EXPORT_SYMBOL(file_update_time);
1870
1871 int inode_needs_sync(struct inode *inode)
1872 {
1873 if (IS_SYNC(inode))
1874 return 1;
1875 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1876 return 1;
1877 return 0;
1878 }
1879 EXPORT_SYMBOL(inode_needs_sync);
1880
1881 /*
1882 * If we try to find an inode in the inode hash while it is being
1883 * deleted, we have to wait until the filesystem completes its
1884 * deletion before reporting that it isn't found. This function waits
1885 * until the deletion _might_ have completed. Callers are responsible
1886 * to recheck inode state.
1887 *
1888 * It doesn't matter if I_NEW is not set initially, a call to
1889 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1890 * will DTRT.
1891 */
1892 static void __wait_on_freeing_inode(struct inode *inode)
1893 {
1894 wait_queue_head_t *wq;
1895 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1896 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1897 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1898 spin_unlock(&inode->i_lock);
1899 spin_unlock(&inode_hash_lock);
1900 schedule();
1901 finish_wait(wq, &wait.wait);
1902 spin_lock(&inode_hash_lock);
1903 }
1904
1905 static __initdata unsigned long ihash_entries;
1906 static int __init set_ihash_entries(char *str)
1907 {
1908 if (!str)
1909 return 0;
1910 ihash_entries = simple_strtoul(str, &str, 0);
1911 return 1;
1912 }
1913 __setup("ihash_entries=", set_ihash_entries);
1914
1915 /*
1916 * Initialize the waitqueues and inode hash table.
1917 */
1918 void __init inode_init_early(void)
1919 {
1920 unsigned int loop;
1921
1922 /* If hashes are distributed across NUMA nodes, defer
1923 * hash allocation until vmalloc space is available.
1924 */
1925 if (hashdist)
1926 return;
1927
1928 inode_hashtable =
1929 alloc_large_system_hash("Inode-cache",
1930 sizeof(struct hlist_head),
1931 ihash_entries,
1932 14,
1933 HASH_EARLY,
1934 &i_hash_shift,
1935 &i_hash_mask,
1936 0,
1937 0);
1938
1939 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1940 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1941 }
1942
1943 void __init inode_init(void)
1944 {
1945 unsigned int loop;
1946
1947 /* inode slab cache */
1948 inode_cachep = kmem_cache_create("inode_cache",
1949 sizeof(struct inode),
1950 0,
1951 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1952 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1953 init_once);
1954
1955 /* Hash may have been set up in inode_init_early */
1956 if (!hashdist)
1957 return;
1958
1959 inode_hashtable =
1960 alloc_large_system_hash("Inode-cache",
1961 sizeof(struct hlist_head),
1962 ihash_entries,
1963 14,
1964 0,
1965 &i_hash_shift,
1966 &i_hash_mask,
1967 0,
1968 0);
1969
1970 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1971 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1972 }
1973
1974 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1975 {
1976 inode->i_mode = mode;
1977 if (S_ISCHR(mode)) {
1978 inode->i_fop = &def_chr_fops;
1979 inode->i_rdev = rdev;
1980 } else if (S_ISBLK(mode)) {
1981 inode->i_fop = &def_blk_fops;
1982 inode->i_rdev = rdev;
1983 } else if (S_ISFIFO(mode))
1984 inode->i_fop = &pipefifo_fops;
1985 else if (S_ISSOCK(mode))
1986 ; /* leave it no_open_fops */
1987 else
1988 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1989 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1990 inode->i_ino);
1991 }
1992 EXPORT_SYMBOL(init_special_inode);
1993
1994 /**
1995 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1996 * @inode: New inode
1997 * @dir: Directory inode
1998 * @mode: mode of the new inode
1999 */
2000 void inode_init_owner(struct inode *inode, const struct inode *dir,
2001 umode_t mode)
2002 {
2003 inode->i_uid = current_fsuid();
2004 if (dir && dir->i_mode & S_ISGID) {
2005 inode->i_gid = dir->i_gid;
2006 if (S_ISDIR(mode))
2007 mode |= S_ISGID;
2008 } else
2009 inode->i_gid = current_fsgid();
2010 inode->i_mode = mode;
2011 }
2012 EXPORT_SYMBOL(inode_init_owner);
2013
2014 /**
2015 * inode_owner_or_capable - check current task permissions to inode
2016 * @inode: inode being checked
2017 *
2018 * Return true if current either has CAP_FOWNER in a namespace with the
2019 * inode owner uid mapped, or owns the file.
2020 */
2021 bool inode_owner_or_capable(const struct inode *inode)
2022 {
2023 struct user_namespace *ns;
2024
2025 if (uid_eq(current_fsuid(), inode->i_uid))
2026 return true;
2027
2028 ns = current_user_ns();
2029 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2030 return true;
2031 return false;
2032 }
2033 EXPORT_SYMBOL(inode_owner_or_capable);
2034
2035 /*
2036 * Direct i/o helper functions
2037 */
2038 static void __inode_dio_wait(struct inode *inode)
2039 {
2040 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2041 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2042
2043 do {
2044 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2045 if (atomic_read(&inode->i_dio_count))
2046 schedule();
2047 } while (atomic_read(&inode->i_dio_count));
2048 finish_wait(wq, &q.wait);
2049 }
2050
2051 /**
2052 * inode_dio_wait - wait for outstanding DIO requests to finish
2053 * @inode: inode to wait for
2054 *
2055 * Waits for all pending direct I/O requests to finish so that we can
2056 * proceed with a truncate or equivalent operation.
2057 *
2058 * Must be called under a lock that serializes taking new references
2059 * to i_dio_count, usually by inode->i_mutex.
2060 */
2061 void inode_dio_wait(struct inode *inode)
2062 {
2063 if (atomic_read(&inode->i_dio_count))
2064 __inode_dio_wait(inode);
2065 }
2066 EXPORT_SYMBOL(inode_dio_wait);
2067
2068 /*
2069 * inode_set_flags - atomically set some inode flags
2070 *
2071 * Note: the caller should be holding i_mutex, or else be sure that
2072 * they have exclusive access to the inode structure (i.e., while the
2073 * inode is being instantiated). The reason for the cmpxchg() loop
2074 * --- which wouldn't be necessary if all code paths which modify
2075 * i_flags actually followed this rule, is that there is at least one
2076 * code path which doesn't today so we use cmpxchg() out of an abundance
2077 * of caution.
2078 *
2079 * In the long run, i_mutex is overkill, and we should probably look
2080 * at using the i_lock spinlock to protect i_flags, and then make sure
2081 * it is so documented in include/linux/fs.h and that all code follows
2082 * the locking convention!!
2083 */
2084 void inode_set_flags(struct inode *inode, unsigned int flags,
2085 unsigned int mask)
2086 {
2087 unsigned int old_flags, new_flags;
2088
2089 WARN_ON_ONCE(flags & ~mask);
2090 do {
2091 old_flags = ACCESS_ONCE(inode->i_flags);
2092 new_flags = (old_flags & ~mask) | flags;
2093 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2094 new_flags) != old_flags));
2095 }
2096 EXPORT_SYMBOL(inode_set_flags);
2097
2098 void inode_nohighmem(struct inode *inode)
2099 {
2100 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2101 }
2102 EXPORT_SYMBOL(inode_nohighmem);
2103
2104 /**
2105 * current_time - Return FS time
2106 * @inode: inode.
2107 *
2108 * Return the current time truncated to the time granularity supported by
2109 * the fs.
2110 *
2111 * Note that inode and inode->sb cannot be NULL.
2112 * Otherwise, the function warns and returns time without truncation.
2113 */
2114 struct timespec current_time(struct inode *inode)
2115 {
2116 struct timespec now = current_kernel_time();
2117
2118 if (unlikely(!inode->i_sb)) {
2119 WARN(1, "current_time() called with uninitialized super_block in the inode");
2120 return now;
2121 }
2122
2123 return timespec_trunc(now, inode->i_sb->s_time_gran);
2124 }
2125 EXPORT_SYMBOL(current_time);