]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
Merge tag 'drm-coc-for-v4.12-rc1' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
159
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
164 #endif
165
166 if (security_inode_alloc(inode))
167 goto out;
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173
174 atomic_set(&inode->i_dio_count, 0);
175
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
178 mapping->flags = 0;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
241 }
242
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
257 }
258
259 static void destroy_inode(struct inode *inode)
260 {
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
267 }
268
269 /**
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
272 *
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
279 */
280 void drop_nlink(struct inode *inode)
281 {
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288
289 /**
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
296 */
297 void clear_nlink(struct inode *inode)
298 {
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 }
304 EXPORT_SYMBOL(clear_nlink);
305
306 /**
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
310 *
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
313 */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
322
323 inode->__i_nlink = nlink;
324 }
325 }
326 EXPORT_SYMBOL(set_nlink);
327
328 /**
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
335 */
336 void inc_nlink(struct inode *inode)
337 {
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341 }
342
343 inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346
347 void address_space_init_once(struct address_space *mapping)
348 {
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374 }
375 EXPORT_SYMBOL(inode_init_once);
376
377 static void init_once(void *foo)
378 {
379 struct inode *inode = (struct inode *) foo;
380
381 inode_init_once(inode);
382 }
383
384 /*
385 * inode->i_lock must be held
386 */
387 void __iget(struct inode *inode)
388 {
389 atomic_inc(&inode->i_count);
390 }
391
392 /*
393 * get additional reference to inode; caller must already hold one.
394 */
395 void ihold(struct inode *inode)
396 {
397 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 this_cpu_inc(nr_unused);
405 }
406
407 /*
408 * Add inode to LRU if needed (inode is unused and clean).
409 *
410 * Needs inode->i_lock held.
411 */
412 void inode_add_lru(struct inode *inode)
413 {
414 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
415 I_FREEING | I_WILL_FREE)) &&
416 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
417 inode_lru_list_add(inode);
418 }
419
420
421 static void inode_lru_list_del(struct inode *inode)
422 {
423
424 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
425 this_cpu_dec(nr_unused);
426 }
427
428 /**
429 * inode_sb_list_add - add inode to the superblock list of inodes
430 * @inode: inode to add
431 */
432 void inode_sb_list_add(struct inode *inode)
433 {
434 spin_lock(&inode->i_sb->s_inode_list_lock);
435 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
436 spin_unlock(&inode->i_sb->s_inode_list_lock);
437 }
438 EXPORT_SYMBOL_GPL(inode_sb_list_add);
439
440 static inline void inode_sb_list_del(struct inode *inode)
441 {
442 if (!list_empty(&inode->i_sb_list)) {
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_del_init(&inode->i_sb_list);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 }
448
449 static unsigned long hash(struct super_block *sb, unsigned long hashval)
450 {
451 unsigned long tmp;
452
453 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
454 L1_CACHE_BYTES;
455 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
456 return tmp & i_hash_mask;
457 }
458
459 /**
460 * __insert_inode_hash - hash an inode
461 * @inode: unhashed inode
462 * @hashval: unsigned long value used to locate this object in the
463 * inode_hashtable.
464 *
465 * Add an inode to the inode hash for this superblock.
466 */
467 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
468 {
469 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
470
471 spin_lock(&inode_hash_lock);
472 spin_lock(&inode->i_lock);
473 hlist_add_head(&inode->i_hash, b);
474 spin_unlock(&inode->i_lock);
475 spin_unlock(&inode_hash_lock);
476 }
477 EXPORT_SYMBOL(__insert_inode_hash);
478
479 /**
480 * __remove_inode_hash - remove an inode from the hash
481 * @inode: inode to unhash
482 *
483 * Remove an inode from the superblock.
484 */
485 void __remove_inode_hash(struct inode *inode)
486 {
487 spin_lock(&inode_hash_lock);
488 spin_lock(&inode->i_lock);
489 hlist_del_init(&inode->i_hash);
490 spin_unlock(&inode->i_lock);
491 spin_unlock(&inode_hash_lock);
492 }
493 EXPORT_SYMBOL(__remove_inode_hash);
494
495 void clear_inode(struct inode *inode)
496 {
497 might_sleep();
498 /*
499 * We have to cycle tree_lock here because reclaim can be still in the
500 * process of removing the last page (in __delete_from_page_cache())
501 * and we must not free mapping under it.
502 */
503 spin_lock_irq(&inode->i_data.tree_lock);
504 BUG_ON(inode->i_data.nrpages);
505 BUG_ON(inode->i_data.nrexceptional);
506 spin_unlock_irq(&inode->i_data.tree_lock);
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
510 BUG_ON(!list_empty(&inode->i_wb_list));
511 /* don't need i_lock here, no concurrent mods to i_state */
512 inode->i_state = I_FREEING | I_CLEAR;
513 }
514 EXPORT_SYMBOL(clear_inode);
515
516 /*
517 * Free the inode passed in, removing it from the lists it is still connected
518 * to. We remove any pages still attached to the inode and wait for any IO that
519 * is still in progress before finally destroying the inode.
520 *
521 * An inode must already be marked I_FREEING so that we avoid the inode being
522 * moved back onto lists if we race with other code that manipulates the lists
523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
524 *
525 * An inode must already be removed from the LRU list before being evicted from
526 * the cache. This should occur atomically with setting the I_FREEING state
527 * flag, so no inodes here should ever be on the LRU when being evicted.
528 */
529 static void evict(struct inode *inode)
530 {
531 const struct super_operations *op = inode->i_sb->s_op;
532
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(!list_empty(&inode->i_lru));
535
536 if (!list_empty(&inode->i_io_list))
537 inode_io_list_del(inode);
538
539 inode_sb_list_del(inode);
540
541 /*
542 * Wait for flusher thread to be done with the inode so that filesystem
543 * does not start destroying it while writeback is still running. Since
544 * the inode has I_FREEING set, flusher thread won't start new work on
545 * the inode. We just have to wait for running writeback to finish.
546 */
547 inode_wait_for_writeback(inode);
548
549 if (op->evict_inode) {
550 op->evict_inode(inode);
551 } else {
552 truncate_inode_pages_final(&inode->i_data);
553 clear_inode(inode);
554 }
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 bd_forget(inode);
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 cd_forget(inode);
559
560 remove_inode_hash(inode);
561
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
566
567 destroy_inode(inode);
568 }
569
570 /*
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
573 *
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
576 */
577 static void dispose_list(struct list_head *head)
578 {
579 while (!list_empty(head)) {
580 struct inode *inode;
581
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
584
585 evict(inode);
586 cond_resched();
587 }
588 }
589
590 /**
591 * evict_inodes - evict all evictable inodes for a superblock
592 * @sb: superblock to operate on
593 *
594 * Make sure that no inodes with zero refcount are retained. This is
595 * called by superblock shutdown after having MS_ACTIVE flag removed,
596 * so any inode reaching zero refcount during or after that call will
597 * be immediately evicted.
598 */
599 void evict_inodes(struct super_block *sb)
600 {
601 struct inode *inode, *next;
602 LIST_HEAD(dispose);
603
604 again:
605 spin_lock(&sb->s_inode_list_lock);
606 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
607 if (atomic_read(&inode->i_count))
608 continue;
609
610 spin_lock(&inode->i_lock);
611 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
612 spin_unlock(&inode->i_lock);
613 continue;
614 }
615
616 inode->i_state |= I_FREEING;
617 inode_lru_list_del(inode);
618 spin_unlock(&inode->i_lock);
619 list_add(&inode->i_lru, &dispose);
620
621 /*
622 * We can have a ton of inodes to evict at unmount time given
623 * enough memory, check to see if we need to go to sleep for a
624 * bit so we don't livelock.
625 */
626 if (need_resched()) {
627 spin_unlock(&sb->s_inode_list_lock);
628 cond_resched();
629 dispose_list(&dispose);
630 goto again;
631 }
632 }
633 spin_unlock(&sb->s_inode_list_lock);
634
635 dispose_list(&dispose);
636 }
637
638 /**
639 * invalidate_inodes - attempt to free all inodes on a superblock
640 * @sb: superblock to operate on
641 * @kill_dirty: flag to guide handling of dirty inodes
642 *
643 * Attempts to free all inodes for a given superblock. If there were any
644 * busy inodes return a non-zero value, else zero.
645 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
646 * them as busy.
647 */
648 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
649 {
650 int busy = 0;
651 struct inode *inode, *next;
652 LIST_HEAD(dispose);
653
654 spin_lock(&sb->s_inode_list_lock);
655 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
656 spin_lock(&inode->i_lock);
657 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
658 spin_unlock(&inode->i_lock);
659 continue;
660 }
661 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
662 spin_unlock(&inode->i_lock);
663 busy = 1;
664 continue;
665 }
666 if (atomic_read(&inode->i_count)) {
667 spin_unlock(&inode->i_lock);
668 busy = 1;
669 continue;
670 }
671
672 inode->i_state |= I_FREEING;
673 inode_lru_list_del(inode);
674 spin_unlock(&inode->i_lock);
675 list_add(&inode->i_lru, &dispose);
676 }
677 spin_unlock(&sb->s_inode_list_lock);
678
679 dispose_list(&dispose);
680
681 return busy;
682 }
683
684 /*
685 * Isolate the inode from the LRU in preparation for freeing it.
686 *
687 * Any inodes which are pinned purely because of attached pagecache have their
688 * pagecache removed. If the inode has metadata buffers attached to
689 * mapping->private_list then try to remove them.
690 *
691 * If the inode has the I_REFERENCED flag set, then it means that it has been
692 * used recently - the flag is set in iput_final(). When we encounter such an
693 * inode, clear the flag and move it to the back of the LRU so it gets another
694 * pass through the LRU before it gets reclaimed. This is necessary because of
695 * the fact we are doing lazy LRU updates to minimise lock contention so the
696 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
697 * with this flag set because they are the inodes that are out of order.
698 */
699 static enum lru_status inode_lru_isolate(struct list_head *item,
700 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
701 {
702 struct list_head *freeable = arg;
703 struct inode *inode = container_of(item, struct inode, i_lru);
704
705 /*
706 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
707 * If we fail to get the lock, just skip it.
708 */
709 if (!spin_trylock(&inode->i_lock))
710 return LRU_SKIP;
711
712 /*
713 * Referenced or dirty inodes are still in use. Give them another pass
714 * through the LRU as we canot reclaim them now.
715 */
716 if (atomic_read(&inode->i_count) ||
717 (inode->i_state & ~I_REFERENCED)) {
718 list_lru_isolate(lru, &inode->i_lru);
719 spin_unlock(&inode->i_lock);
720 this_cpu_dec(nr_unused);
721 return LRU_REMOVED;
722 }
723
724 /* recently referenced inodes get one more pass */
725 if (inode->i_state & I_REFERENCED) {
726 inode->i_state &= ~I_REFERENCED;
727 spin_unlock(&inode->i_lock);
728 return LRU_ROTATE;
729 }
730
731 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
732 __iget(inode);
733 spin_unlock(&inode->i_lock);
734 spin_unlock(lru_lock);
735 if (remove_inode_buffers(inode)) {
736 unsigned long reap;
737 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
738 if (current_is_kswapd())
739 __count_vm_events(KSWAPD_INODESTEAL, reap);
740 else
741 __count_vm_events(PGINODESTEAL, reap);
742 if (current->reclaim_state)
743 current->reclaim_state->reclaimed_slab += reap;
744 }
745 iput(inode);
746 spin_lock(lru_lock);
747 return LRU_RETRY;
748 }
749
750 WARN_ON(inode->i_state & I_NEW);
751 inode->i_state |= I_FREEING;
752 list_lru_isolate_move(lru, &inode->i_lru, freeable);
753 spin_unlock(&inode->i_lock);
754
755 this_cpu_dec(nr_unused);
756 return LRU_REMOVED;
757 }
758
759 /*
760 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
761 * This is called from the superblock shrinker function with a number of inodes
762 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
763 * then are freed outside inode_lock by dispose_list().
764 */
765 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
766 {
767 LIST_HEAD(freeable);
768 long freed;
769
770 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
771 inode_lru_isolate, &freeable);
772 dispose_list(&freeable);
773 return freed;
774 }
775
776 static void __wait_on_freeing_inode(struct inode *inode);
777 /*
778 * Called with the inode lock held.
779 */
780 static struct inode *find_inode(struct super_block *sb,
781 struct hlist_head *head,
782 int (*test)(struct inode *, void *),
783 void *data)
784 {
785 struct inode *inode = NULL;
786
787 repeat:
788 hlist_for_each_entry(inode, head, i_hash) {
789 if (inode->i_sb != sb)
790 continue;
791 if (!test(inode, data))
792 continue;
793 spin_lock(&inode->i_lock);
794 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
795 __wait_on_freeing_inode(inode);
796 goto repeat;
797 }
798 __iget(inode);
799 spin_unlock(&inode->i_lock);
800 return inode;
801 }
802 return NULL;
803 }
804
805 /*
806 * find_inode_fast is the fast path version of find_inode, see the comment at
807 * iget_locked for details.
808 */
809 static struct inode *find_inode_fast(struct super_block *sb,
810 struct hlist_head *head, unsigned long ino)
811 {
812 struct inode *inode = NULL;
813
814 repeat:
815 hlist_for_each_entry(inode, head, i_hash) {
816 if (inode->i_ino != ino)
817 continue;
818 if (inode->i_sb != sb)
819 continue;
820 spin_lock(&inode->i_lock);
821 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
822 __wait_on_freeing_inode(inode);
823 goto repeat;
824 }
825 __iget(inode);
826 spin_unlock(&inode->i_lock);
827 return inode;
828 }
829 return NULL;
830 }
831
832 /*
833 * Each cpu owns a range of LAST_INO_BATCH numbers.
834 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
835 * to renew the exhausted range.
836 *
837 * This does not significantly increase overflow rate because every CPU can
838 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
839 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
840 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
841 * overflow rate by 2x, which does not seem too significant.
842 *
843 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
844 * error if st_ino won't fit in target struct field. Use 32bit counter
845 * here to attempt to avoid that.
846 */
847 #define LAST_INO_BATCH 1024
848 static DEFINE_PER_CPU(unsigned int, last_ino);
849
850 unsigned int get_next_ino(void)
851 {
852 unsigned int *p = &get_cpu_var(last_ino);
853 unsigned int res = *p;
854
855 #ifdef CONFIG_SMP
856 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
857 static atomic_t shared_last_ino;
858 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
859
860 res = next - LAST_INO_BATCH;
861 }
862 #endif
863
864 res++;
865 /* get_next_ino should not provide a 0 inode number */
866 if (unlikely(!res))
867 res++;
868 *p = res;
869 put_cpu_var(last_ino);
870 return res;
871 }
872 EXPORT_SYMBOL(get_next_ino);
873
874 /**
875 * new_inode_pseudo - obtain an inode
876 * @sb: superblock
877 *
878 * Allocates a new inode for given superblock.
879 * Inode wont be chained in superblock s_inodes list
880 * This means :
881 * - fs can't be unmount
882 * - quotas, fsnotify, writeback can't work
883 */
884 struct inode *new_inode_pseudo(struct super_block *sb)
885 {
886 struct inode *inode = alloc_inode(sb);
887
888 if (inode) {
889 spin_lock(&inode->i_lock);
890 inode->i_state = 0;
891 spin_unlock(&inode->i_lock);
892 INIT_LIST_HEAD(&inode->i_sb_list);
893 }
894 return inode;
895 }
896
897 /**
898 * new_inode - obtain an inode
899 * @sb: superblock
900 *
901 * Allocates a new inode for given superblock. The default gfp_mask
902 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
903 * If HIGHMEM pages are unsuitable or it is known that pages allocated
904 * for the page cache are not reclaimable or migratable,
905 * mapping_set_gfp_mask() must be called with suitable flags on the
906 * newly created inode's mapping
907 *
908 */
909 struct inode *new_inode(struct super_block *sb)
910 {
911 struct inode *inode;
912
913 spin_lock_prefetch(&sb->s_inode_list_lock);
914
915 inode = new_inode_pseudo(sb);
916 if (inode)
917 inode_sb_list_add(inode);
918 return inode;
919 }
920 EXPORT_SYMBOL(new_inode);
921
922 #ifdef CONFIG_DEBUG_LOCK_ALLOC
923 void lockdep_annotate_inode_mutex_key(struct inode *inode)
924 {
925 if (S_ISDIR(inode->i_mode)) {
926 struct file_system_type *type = inode->i_sb->s_type;
927
928 /* Set new key only if filesystem hasn't already changed it */
929 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
930 /*
931 * ensure nobody is actually holding i_mutex
932 */
933 // mutex_destroy(&inode->i_mutex);
934 init_rwsem(&inode->i_rwsem);
935 lockdep_set_class(&inode->i_rwsem,
936 &type->i_mutex_dir_key);
937 }
938 }
939 }
940 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
941 #endif
942
943 /**
944 * unlock_new_inode - clear the I_NEW state and wake up any waiters
945 * @inode: new inode to unlock
946 *
947 * Called when the inode is fully initialised to clear the new state of the
948 * inode and wake up anyone waiting for the inode to finish initialisation.
949 */
950 void unlock_new_inode(struct inode *inode)
951 {
952 lockdep_annotate_inode_mutex_key(inode);
953 spin_lock(&inode->i_lock);
954 WARN_ON(!(inode->i_state & I_NEW));
955 inode->i_state &= ~I_NEW;
956 smp_mb();
957 wake_up_bit(&inode->i_state, __I_NEW);
958 spin_unlock(&inode->i_lock);
959 }
960 EXPORT_SYMBOL(unlock_new_inode);
961
962 /**
963 * lock_two_nondirectories - take two i_mutexes on non-directory objects
964 *
965 * Lock any non-NULL argument that is not a directory.
966 * Zero, one or two objects may be locked by this function.
967 *
968 * @inode1: first inode to lock
969 * @inode2: second inode to lock
970 */
971 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
972 {
973 if (inode1 > inode2)
974 swap(inode1, inode2);
975
976 if (inode1 && !S_ISDIR(inode1->i_mode))
977 inode_lock(inode1);
978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
980 }
981 EXPORT_SYMBOL(lock_two_nondirectories);
982
983 /**
984 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
985 * @inode1: first inode to unlock
986 * @inode2: second inode to unlock
987 */
988 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
989 {
990 if (inode1 && !S_ISDIR(inode1->i_mode))
991 inode_unlock(inode1);
992 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
993 inode_unlock(inode2);
994 }
995 EXPORT_SYMBOL(unlock_two_nondirectories);
996
997 /**
998 * iget5_locked - obtain an inode from a mounted file system
999 * @sb: super block of file system
1000 * @hashval: hash value (usually inode number) to get
1001 * @test: callback used for comparisons between inodes
1002 * @set: callback used to initialize a new struct inode
1003 * @data: opaque data pointer to pass to @test and @set
1004 *
1005 * Search for the inode specified by @hashval and @data in the inode cache,
1006 * and if present it is return it with an increased reference count. This is
1007 * a generalized version of iget_locked() for file systems where the inode
1008 * number is not sufficient for unique identification of an inode.
1009 *
1010 * If the inode is not in cache, allocate a new inode and return it locked,
1011 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1012 * before unlocking it via unlock_new_inode().
1013 *
1014 * Note both @test and @set are called with the inode_hash_lock held, so can't
1015 * sleep.
1016 */
1017 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1018 int (*test)(struct inode *, void *),
1019 int (*set)(struct inode *, void *), void *data)
1020 {
1021 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1022 struct inode *inode;
1023 again:
1024 spin_lock(&inode_hash_lock);
1025 inode = find_inode(sb, head, test, data);
1026 spin_unlock(&inode_hash_lock);
1027
1028 if (inode) {
1029 wait_on_inode(inode);
1030 if (unlikely(inode_unhashed(inode))) {
1031 iput(inode);
1032 goto again;
1033 }
1034 return inode;
1035 }
1036
1037 inode = alloc_inode(sb);
1038 if (inode) {
1039 struct inode *old;
1040
1041 spin_lock(&inode_hash_lock);
1042 /* We released the lock, so.. */
1043 old = find_inode(sb, head, test, data);
1044 if (!old) {
1045 if (set(inode, data))
1046 goto set_failed;
1047
1048 spin_lock(&inode->i_lock);
1049 inode->i_state = I_NEW;
1050 hlist_add_head(&inode->i_hash, head);
1051 spin_unlock(&inode->i_lock);
1052 inode_sb_list_add(inode);
1053 spin_unlock(&inode_hash_lock);
1054
1055 /* Return the locked inode with I_NEW set, the
1056 * caller is responsible for filling in the contents
1057 */
1058 return inode;
1059 }
1060
1061 /*
1062 * Uhhuh, somebody else created the same inode under
1063 * us. Use the old inode instead of the one we just
1064 * allocated.
1065 */
1066 spin_unlock(&inode_hash_lock);
1067 destroy_inode(inode);
1068 inode = old;
1069 wait_on_inode(inode);
1070 if (unlikely(inode_unhashed(inode))) {
1071 iput(inode);
1072 goto again;
1073 }
1074 }
1075 return inode;
1076
1077 set_failed:
1078 spin_unlock(&inode_hash_lock);
1079 destroy_inode(inode);
1080 return NULL;
1081 }
1082 EXPORT_SYMBOL(iget5_locked);
1083
1084 /**
1085 * iget_locked - obtain an inode from a mounted file system
1086 * @sb: super block of file system
1087 * @ino: inode number to get
1088 *
1089 * Search for the inode specified by @ino in the inode cache and if present
1090 * return it with an increased reference count. This is for file systems
1091 * where the inode number is sufficient for unique identification of an inode.
1092 *
1093 * If the inode is not in cache, allocate a new inode and return it locked,
1094 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1095 * before unlocking it via unlock_new_inode().
1096 */
1097 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1098 {
1099 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1100 struct inode *inode;
1101 again:
1102 spin_lock(&inode_hash_lock);
1103 inode = find_inode_fast(sb, head, ino);
1104 spin_unlock(&inode_hash_lock);
1105 if (inode) {
1106 wait_on_inode(inode);
1107 if (unlikely(inode_unhashed(inode))) {
1108 iput(inode);
1109 goto again;
1110 }
1111 return inode;
1112 }
1113
1114 inode = alloc_inode(sb);
1115 if (inode) {
1116 struct inode *old;
1117
1118 spin_lock(&inode_hash_lock);
1119 /* We released the lock, so.. */
1120 old = find_inode_fast(sb, head, ino);
1121 if (!old) {
1122 inode->i_ino = ino;
1123 spin_lock(&inode->i_lock);
1124 inode->i_state = I_NEW;
1125 hlist_add_head(&inode->i_hash, head);
1126 spin_unlock(&inode->i_lock);
1127 inode_sb_list_add(inode);
1128 spin_unlock(&inode_hash_lock);
1129
1130 /* Return the locked inode with I_NEW set, the
1131 * caller is responsible for filling in the contents
1132 */
1133 return inode;
1134 }
1135
1136 /*
1137 * Uhhuh, somebody else created the same inode under
1138 * us. Use the old inode instead of the one we just
1139 * allocated.
1140 */
1141 spin_unlock(&inode_hash_lock);
1142 destroy_inode(inode);
1143 inode = old;
1144 wait_on_inode(inode);
1145 if (unlikely(inode_unhashed(inode))) {
1146 iput(inode);
1147 goto again;
1148 }
1149 }
1150 return inode;
1151 }
1152 EXPORT_SYMBOL(iget_locked);
1153
1154 /*
1155 * search the inode cache for a matching inode number.
1156 * If we find one, then the inode number we are trying to
1157 * allocate is not unique and so we should not use it.
1158 *
1159 * Returns 1 if the inode number is unique, 0 if it is not.
1160 */
1161 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1162 {
1163 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1164 struct inode *inode;
1165
1166 spin_lock(&inode_hash_lock);
1167 hlist_for_each_entry(inode, b, i_hash) {
1168 if (inode->i_ino == ino && inode->i_sb == sb) {
1169 spin_unlock(&inode_hash_lock);
1170 return 0;
1171 }
1172 }
1173 spin_unlock(&inode_hash_lock);
1174
1175 return 1;
1176 }
1177
1178 /**
1179 * iunique - get a unique inode number
1180 * @sb: superblock
1181 * @max_reserved: highest reserved inode number
1182 *
1183 * Obtain an inode number that is unique on the system for a given
1184 * superblock. This is used by file systems that have no natural
1185 * permanent inode numbering system. An inode number is returned that
1186 * is higher than the reserved limit but unique.
1187 *
1188 * BUGS:
1189 * With a large number of inodes live on the file system this function
1190 * currently becomes quite slow.
1191 */
1192 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1193 {
1194 /*
1195 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1196 * error if st_ino won't fit in target struct field. Use 32bit counter
1197 * here to attempt to avoid that.
1198 */
1199 static DEFINE_SPINLOCK(iunique_lock);
1200 static unsigned int counter;
1201 ino_t res;
1202
1203 spin_lock(&iunique_lock);
1204 do {
1205 if (counter <= max_reserved)
1206 counter = max_reserved + 1;
1207 res = counter++;
1208 } while (!test_inode_iunique(sb, res));
1209 spin_unlock(&iunique_lock);
1210
1211 return res;
1212 }
1213 EXPORT_SYMBOL(iunique);
1214
1215 struct inode *igrab(struct inode *inode)
1216 {
1217 spin_lock(&inode->i_lock);
1218 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1219 __iget(inode);
1220 spin_unlock(&inode->i_lock);
1221 } else {
1222 spin_unlock(&inode->i_lock);
1223 /*
1224 * Handle the case where s_op->clear_inode is not been
1225 * called yet, and somebody is calling igrab
1226 * while the inode is getting freed.
1227 */
1228 inode = NULL;
1229 }
1230 return inode;
1231 }
1232 EXPORT_SYMBOL(igrab);
1233
1234 /**
1235 * ilookup5_nowait - search for an inode in the inode cache
1236 * @sb: super block of file system to search
1237 * @hashval: hash value (usually inode number) to search for
1238 * @test: callback used for comparisons between inodes
1239 * @data: opaque data pointer to pass to @test
1240 *
1241 * Search for the inode specified by @hashval and @data in the inode cache.
1242 * If the inode is in the cache, the inode is returned with an incremented
1243 * reference count.
1244 *
1245 * Note: I_NEW is not waited upon so you have to be very careful what you do
1246 * with the returned inode. You probably should be using ilookup5() instead.
1247 *
1248 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1249 */
1250 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1251 int (*test)(struct inode *, void *), void *data)
1252 {
1253 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1254 struct inode *inode;
1255
1256 spin_lock(&inode_hash_lock);
1257 inode = find_inode(sb, head, test, data);
1258 spin_unlock(&inode_hash_lock);
1259
1260 return inode;
1261 }
1262 EXPORT_SYMBOL(ilookup5_nowait);
1263
1264 /**
1265 * ilookup5 - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @hashval: hash value (usually inode number) to search for
1268 * @test: callback used for comparisons between inodes
1269 * @data: opaque data pointer to pass to @test
1270 *
1271 * Search for the inode specified by @hashval and @data in the inode cache,
1272 * and if the inode is in the cache, return the inode with an incremented
1273 * reference count. Waits on I_NEW before returning the inode.
1274 * returned with an incremented reference count.
1275 *
1276 * This is a generalized version of ilookup() for file systems where the
1277 * inode number is not sufficient for unique identification of an inode.
1278 *
1279 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1280 */
1281 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1282 int (*test)(struct inode *, void *), void *data)
1283 {
1284 struct inode *inode;
1285 again:
1286 inode = ilookup5_nowait(sb, hashval, test, data);
1287 if (inode) {
1288 wait_on_inode(inode);
1289 if (unlikely(inode_unhashed(inode))) {
1290 iput(inode);
1291 goto again;
1292 }
1293 }
1294 return inode;
1295 }
1296 EXPORT_SYMBOL(ilookup5);
1297
1298 /**
1299 * ilookup - search for an inode in the inode cache
1300 * @sb: super block of file system to search
1301 * @ino: inode number to search for
1302 *
1303 * Search for the inode @ino in the inode cache, and if the inode is in the
1304 * cache, the inode is returned with an incremented reference count.
1305 */
1306 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1307 {
1308 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1309 struct inode *inode;
1310 again:
1311 spin_lock(&inode_hash_lock);
1312 inode = find_inode_fast(sb, head, ino);
1313 spin_unlock(&inode_hash_lock);
1314
1315 if (inode) {
1316 wait_on_inode(inode);
1317 if (unlikely(inode_unhashed(inode))) {
1318 iput(inode);
1319 goto again;
1320 }
1321 }
1322 return inode;
1323 }
1324 EXPORT_SYMBOL(ilookup);
1325
1326 /**
1327 * find_inode_nowait - find an inode in the inode cache
1328 * @sb: super block of file system to search
1329 * @hashval: hash value (usually inode number) to search for
1330 * @match: callback used for comparisons between inodes
1331 * @data: opaque data pointer to pass to @match
1332 *
1333 * Search for the inode specified by @hashval and @data in the inode
1334 * cache, where the helper function @match will return 0 if the inode
1335 * does not match, 1 if the inode does match, and -1 if the search
1336 * should be stopped. The @match function must be responsible for
1337 * taking the i_lock spin_lock and checking i_state for an inode being
1338 * freed or being initialized, and incrementing the reference count
1339 * before returning 1. It also must not sleep, since it is called with
1340 * the inode_hash_lock spinlock held.
1341 *
1342 * This is a even more generalized version of ilookup5() when the
1343 * function must never block --- find_inode() can block in
1344 * __wait_on_freeing_inode() --- or when the caller can not increment
1345 * the reference count because the resulting iput() might cause an
1346 * inode eviction. The tradeoff is that the @match funtion must be
1347 * very carefully implemented.
1348 */
1349 struct inode *find_inode_nowait(struct super_block *sb,
1350 unsigned long hashval,
1351 int (*match)(struct inode *, unsigned long,
1352 void *),
1353 void *data)
1354 {
1355 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1356 struct inode *inode, *ret_inode = NULL;
1357 int mval;
1358
1359 spin_lock(&inode_hash_lock);
1360 hlist_for_each_entry(inode, head, i_hash) {
1361 if (inode->i_sb != sb)
1362 continue;
1363 mval = match(inode, hashval, data);
1364 if (mval == 0)
1365 continue;
1366 if (mval == 1)
1367 ret_inode = inode;
1368 goto out;
1369 }
1370 out:
1371 spin_unlock(&inode_hash_lock);
1372 return ret_inode;
1373 }
1374 EXPORT_SYMBOL(find_inode_nowait);
1375
1376 int insert_inode_locked(struct inode *inode)
1377 {
1378 struct super_block *sb = inode->i_sb;
1379 ino_t ino = inode->i_ino;
1380 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381
1382 while (1) {
1383 struct inode *old = NULL;
1384 spin_lock(&inode_hash_lock);
1385 hlist_for_each_entry(old, head, i_hash) {
1386 if (old->i_ino != ino)
1387 continue;
1388 if (old->i_sb != sb)
1389 continue;
1390 spin_lock(&old->i_lock);
1391 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1392 spin_unlock(&old->i_lock);
1393 continue;
1394 }
1395 break;
1396 }
1397 if (likely(!old)) {
1398 spin_lock(&inode->i_lock);
1399 inode->i_state |= I_NEW;
1400 hlist_add_head(&inode->i_hash, head);
1401 spin_unlock(&inode->i_lock);
1402 spin_unlock(&inode_hash_lock);
1403 return 0;
1404 }
1405 __iget(old);
1406 spin_unlock(&old->i_lock);
1407 spin_unlock(&inode_hash_lock);
1408 wait_on_inode(old);
1409 if (unlikely(!inode_unhashed(old))) {
1410 iput(old);
1411 return -EBUSY;
1412 }
1413 iput(old);
1414 }
1415 }
1416 EXPORT_SYMBOL(insert_inode_locked);
1417
1418 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1419 int (*test)(struct inode *, void *), void *data)
1420 {
1421 struct super_block *sb = inode->i_sb;
1422 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1423
1424 while (1) {
1425 struct inode *old = NULL;
1426
1427 spin_lock(&inode_hash_lock);
1428 hlist_for_each_entry(old, head, i_hash) {
1429 if (old->i_sb != sb)
1430 continue;
1431 if (!test(old, data))
1432 continue;
1433 spin_lock(&old->i_lock);
1434 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1435 spin_unlock(&old->i_lock);
1436 continue;
1437 }
1438 break;
1439 }
1440 if (likely(!old)) {
1441 spin_lock(&inode->i_lock);
1442 inode->i_state |= I_NEW;
1443 hlist_add_head(&inode->i_hash, head);
1444 spin_unlock(&inode->i_lock);
1445 spin_unlock(&inode_hash_lock);
1446 return 0;
1447 }
1448 __iget(old);
1449 spin_unlock(&old->i_lock);
1450 spin_unlock(&inode_hash_lock);
1451 wait_on_inode(old);
1452 if (unlikely(!inode_unhashed(old))) {
1453 iput(old);
1454 return -EBUSY;
1455 }
1456 iput(old);
1457 }
1458 }
1459 EXPORT_SYMBOL(insert_inode_locked4);
1460
1461
1462 int generic_delete_inode(struct inode *inode)
1463 {
1464 return 1;
1465 }
1466 EXPORT_SYMBOL(generic_delete_inode);
1467
1468 /*
1469 * Called when we're dropping the last reference
1470 * to an inode.
1471 *
1472 * Call the FS "drop_inode()" function, defaulting to
1473 * the legacy UNIX filesystem behaviour. If it tells
1474 * us to evict inode, do so. Otherwise, retain inode
1475 * in cache if fs is alive, sync and evict if fs is
1476 * shutting down.
1477 */
1478 static void iput_final(struct inode *inode)
1479 {
1480 struct super_block *sb = inode->i_sb;
1481 const struct super_operations *op = inode->i_sb->s_op;
1482 int drop;
1483
1484 WARN_ON(inode->i_state & I_NEW);
1485
1486 if (op->drop_inode)
1487 drop = op->drop_inode(inode);
1488 else
1489 drop = generic_drop_inode(inode);
1490
1491 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1492 inode->i_state |= I_REFERENCED;
1493 inode_add_lru(inode);
1494 spin_unlock(&inode->i_lock);
1495 return;
1496 }
1497
1498 if (!drop) {
1499 inode->i_state |= I_WILL_FREE;
1500 spin_unlock(&inode->i_lock);
1501 write_inode_now(inode, 1);
1502 spin_lock(&inode->i_lock);
1503 WARN_ON(inode->i_state & I_NEW);
1504 inode->i_state &= ~I_WILL_FREE;
1505 }
1506
1507 inode->i_state |= I_FREEING;
1508 if (!list_empty(&inode->i_lru))
1509 inode_lru_list_del(inode);
1510 spin_unlock(&inode->i_lock);
1511
1512 evict(inode);
1513 }
1514
1515 /**
1516 * iput - put an inode
1517 * @inode: inode to put
1518 *
1519 * Puts an inode, dropping its usage count. If the inode use count hits
1520 * zero, the inode is then freed and may also be destroyed.
1521 *
1522 * Consequently, iput() can sleep.
1523 */
1524 void iput(struct inode *inode)
1525 {
1526 if (!inode)
1527 return;
1528 BUG_ON(inode->i_state & I_CLEAR);
1529 retry:
1530 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1531 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1532 atomic_inc(&inode->i_count);
1533 inode->i_state &= ~I_DIRTY_TIME;
1534 spin_unlock(&inode->i_lock);
1535 trace_writeback_lazytime_iput(inode);
1536 mark_inode_dirty_sync(inode);
1537 goto retry;
1538 }
1539 iput_final(inode);
1540 }
1541 }
1542 EXPORT_SYMBOL(iput);
1543
1544 /**
1545 * bmap - find a block number in a file
1546 * @inode: inode of file
1547 * @block: block to find
1548 *
1549 * Returns the block number on the device holding the inode that
1550 * is the disk block number for the block of the file requested.
1551 * That is, asked for block 4 of inode 1 the function will return the
1552 * disk block relative to the disk start that holds that block of the
1553 * file.
1554 */
1555 sector_t bmap(struct inode *inode, sector_t block)
1556 {
1557 sector_t res = 0;
1558 if (inode->i_mapping->a_ops->bmap)
1559 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1560 return res;
1561 }
1562 EXPORT_SYMBOL(bmap);
1563
1564 /*
1565 * Update times in overlayed inode from underlying real inode
1566 */
1567 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1568 bool rcu)
1569 {
1570 if (!rcu) {
1571 struct inode *realinode = d_real_inode(dentry);
1572
1573 if (unlikely(inode != realinode) &&
1574 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1575 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1576 inode->i_mtime = realinode->i_mtime;
1577 inode->i_ctime = realinode->i_ctime;
1578 }
1579 }
1580 }
1581
1582 /*
1583 * With relative atime, only update atime if the previous atime is
1584 * earlier than either the ctime or mtime or if at least a day has
1585 * passed since the last atime update.
1586 */
1587 static int relatime_need_update(const struct path *path, struct inode *inode,
1588 struct timespec now, bool rcu)
1589 {
1590
1591 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1592 return 1;
1593
1594 update_ovl_inode_times(path->dentry, inode, rcu);
1595 /*
1596 * Is mtime younger than atime? If yes, update atime:
1597 */
1598 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1599 return 1;
1600 /*
1601 * Is ctime younger than atime? If yes, update atime:
1602 */
1603 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1604 return 1;
1605
1606 /*
1607 * Is the previous atime value older than a day? If yes,
1608 * update atime:
1609 */
1610 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1611 return 1;
1612 /*
1613 * Good, we can skip the atime update:
1614 */
1615 return 0;
1616 }
1617
1618 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1619 {
1620 int iflags = I_DIRTY_TIME;
1621
1622 if (flags & S_ATIME)
1623 inode->i_atime = *time;
1624 if (flags & S_VERSION)
1625 inode_inc_iversion(inode);
1626 if (flags & S_CTIME)
1627 inode->i_ctime = *time;
1628 if (flags & S_MTIME)
1629 inode->i_mtime = *time;
1630
1631 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1632 iflags |= I_DIRTY_SYNC;
1633 __mark_inode_dirty(inode, iflags);
1634 return 0;
1635 }
1636 EXPORT_SYMBOL(generic_update_time);
1637
1638 /*
1639 * This does the actual work of updating an inodes time or version. Must have
1640 * had called mnt_want_write() before calling this.
1641 */
1642 static int update_time(struct inode *inode, struct timespec *time, int flags)
1643 {
1644 int (*update_time)(struct inode *, struct timespec *, int);
1645
1646 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1647 generic_update_time;
1648
1649 return update_time(inode, time, flags);
1650 }
1651
1652 /**
1653 * touch_atime - update the access time
1654 * @path: the &struct path to update
1655 * @inode: inode to update
1656 *
1657 * Update the accessed time on an inode and mark it for writeback.
1658 * This function automatically handles read only file systems and media,
1659 * as well as the "noatime" flag and inode specific "noatime" markers.
1660 */
1661 bool __atime_needs_update(const struct path *path, struct inode *inode,
1662 bool rcu)
1663 {
1664 struct vfsmount *mnt = path->mnt;
1665 struct timespec now;
1666
1667 if (inode->i_flags & S_NOATIME)
1668 return false;
1669
1670 /* Atime updates will likely cause i_uid and i_gid to be written
1671 * back improprely if their true value is unknown to the vfs.
1672 */
1673 if (HAS_UNMAPPED_ID(inode))
1674 return false;
1675
1676 if (IS_NOATIME(inode))
1677 return false;
1678 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1679 return false;
1680
1681 if (mnt->mnt_flags & MNT_NOATIME)
1682 return false;
1683 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1684 return false;
1685
1686 now = current_time(inode);
1687
1688 if (!relatime_need_update(path, inode, now, rcu))
1689 return false;
1690
1691 if (timespec_equal(&inode->i_atime, &now))
1692 return false;
1693
1694 return true;
1695 }
1696
1697 void touch_atime(const struct path *path)
1698 {
1699 struct vfsmount *mnt = path->mnt;
1700 struct inode *inode = d_inode(path->dentry);
1701 struct timespec now;
1702
1703 if (!__atime_needs_update(path, inode, false))
1704 return;
1705
1706 if (!sb_start_write_trylock(inode->i_sb))
1707 return;
1708
1709 if (__mnt_want_write(mnt) != 0)
1710 goto skip_update;
1711 /*
1712 * File systems can error out when updating inodes if they need to
1713 * allocate new space to modify an inode (such is the case for
1714 * Btrfs), but since we touch atime while walking down the path we
1715 * really don't care if we failed to update the atime of the file,
1716 * so just ignore the return value.
1717 * We may also fail on filesystems that have the ability to make parts
1718 * of the fs read only, e.g. subvolumes in Btrfs.
1719 */
1720 now = current_time(inode);
1721 update_time(inode, &now, S_ATIME);
1722 __mnt_drop_write(mnt);
1723 skip_update:
1724 sb_end_write(inode->i_sb);
1725 }
1726 EXPORT_SYMBOL(touch_atime);
1727
1728 /*
1729 * The logic we want is
1730 *
1731 * if suid or (sgid and xgrp)
1732 * remove privs
1733 */
1734 int should_remove_suid(struct dentry *dentry)
1735 {
1736 umode_t mode = d_inode(dentry)->i_mode;
1737 int kill = 0;
1738
1739 /* suid always must be killed */
1740 if (unlikely(mode & S_ISUID))
1741 kill = ATTR_KILL_SUID;
1742
1743 /*
1744 * sgid without any exec bits is just a mandatory locking mark; leave
1745 * it alone. If some exec bits are set, it's a real sgid; kill it.
1746 */
1747 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1748 kill |= ATTR_KILL_SGID;
1749
1750 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1751 return kill;
1752
1753 return 0;
1754 }
1755 EXPORT_SYMBOL(should_remove_suid);
1756
1757 /*
1758 * Return mask of changes for notify_change() that need to be done as a
1759 * response to write or truncate. Return 0 if nothing has to be changed.
1760 * Negative value on error (change should be denied).
1761 */
1762 int dentry_needs_remove_privs(struct dentry *dentry)
1763 {
1764 struct inode *inode = d_inode(dentry);
1765 int mask = 0;
1766 int ret;
1767
1768 if (IS_NOSEC(inode))
1769 return 0;
1770
1771 mask = should_remove_suid(dentry);
1772 ret = security_inode_need_killpriv(dentry);
1773 if (ret < 0)
1774 return ret;
1775 if (ret)
1776 mask |= ATTR_KILL_PRIV;
1777 return mask;
1778 }
1779
1780 static int __remove_privs(struct dentry *dentry, int kill)
1781 {
1782 struct iattr newattrs;
1783
1784 newattrs.ia_valid = ATTR_FORCE | kill;
1785 /*
1786 * Note we call this on write, so notify_change will not
1787 * encounter any conflicting delegations:
1788 */
1789 return notify_change(dentry, &newattrs, NULL);
1790 }
1791
1792 /*
1793 * Remove special file priviledges (suid, capabilities) when file is written
1794 * to or truncated.
1795 */
1796 int file_remove_privs(struct file *file)
1797 {
1798 struct dentry *dentry = file_dentry(file);
1799 struct inode *inode = file_inode(file);
1800 int kill;
1801 int error = 0;
1802
1803 /* Fast path for nothing security related */
1804 if (IS_NOSEC(inode))
1805 return 0;
1806
1807 kill = dentry_needs_remove_privs(dentry);
1808 if (kill < 0)
1809 return kill;
1810 if (kill)
1811 error = __remove_privs(dentry, kill);
1812 if (!error)
1813 inode_has_no_xattr(inode);
1814
1815 return error;
1816 }
1817 EXPORT_SYMBOL(file_remove_privs);
1818
1819 /**
1820 * file_update_time - update mtime and ctime time
1821 * @file: file accessed
1822 *
1823 * Update the mtime and ctime members of an inode and mark the inode
1824 * for writeback. Note that this function is meant exclusively for
1825 * usage in the file write path of filesystems, and filesystems may
1826 * choose to explicitly ignore update via this function with the
1827 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1828 * timestamps are handled by the server. This can return an error for
1829 * file systems who need to allocate space in order to update an inode.
1830 */
1831
1832 int file_update_time(struct file *file)
1833 {
1834 struct inode *inode = file_inode(file);
1835 struct timespec now;
1836 int sync_it = 0;
1837 int ret;
1838
1839 /* First try to exhaust all avenues to not sync */
1840 if (IS_NOCMTIME(inode))
1841 return 0;
1842
1843 now = current_time(inode);
1844 if (!timespec_equal(&inode->i_mtime, &now))
1845 sync_it = S_MTIME;
1846
1847 if (!timespec_equal(&inode->i_ctime, &now))
1848 sync_it |= S_CTIME;
1849
1850 if (IS_I_VERSION(inode))
1851 sync_it |= S_VERSION;
1852
1853 if (!sync_it)
1854 return 0;
1855
1856 /* Finally allowed to write? Takes lock. */
1857 if (__mnt_want_write_file(file))
1858 return 0;
1859
1860 ret = update_time(inode, &now, sync_it);
1861 __mnt_drop_write_file(file);
1862
1863 return ret;
1864 }
1865 EXPORT_SYMBOL(file_update_time);
1866
1867 int inode_needs_sync(struct inode *inode)
1868 {
1869 if (IS_SYNC(inode))
1870 return 1;
1871 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1872 return 1;
1873 return 0;
1874 }
1875 EXPORT_SYMBOL(inode_needs_sync);
1876
1877 /*
1878 * If we try to find an inode in the inode hash while it is being
1879 * deleted, we have to wait until the filesystem completes its
1880 * deletion before reporting that it isn't found. This function waits
1881 * until the deletion _might_ have completed. Callers are responsible
1882 * to recheck inode state.
1883 *
1884 * It doesn't matter if I_NEW is not set initially, a call to
1885 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1886 * will DTRT.
1887 */
1888 static void __wait_on_freeing_inode(struct inode *inode)
1889 {
1890 wait_queue_head_t *wq;
1891 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1892 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1893 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1894 spin_unlock(&inode->i_lock);
1895 spin_unlock(&inode_hash_lock);
1896 schedule();
1897 finish_wait(wq, &wait.wait);
1898 spin_lock(&inode_hash_lock);
1899 }
1900
1901 static __initdata unsigned long ihash_entries;
1902 static int __init set_ihash_entries(char *str)
1903 {
1904 if (!str)
1905 return 0;
1906 ihash_entries = simple_strtoul(str, &str, 0);
1907 return 1;
1908 }
1909 __setup("ihash_entries=", set_ihash_entries);
1910
1911 /*
1912 * Initialize the waitqueues and inode hash table.
1913 */
1914 void __init inode_init_early(void)
1915 {
1916 unsigned int loop;
1917
1918 /* If hashes are distributed across NUMA nodes, defer
1919 * hash allocation until vmalloc space is available.
1920 */
1921 if (hashdist)
1922 return;
1923
1924 inode_hashtable =
1925 alloc_large_system_hash("Inode-cache",
1926 sizeof(struct hlist_head),
1927 ihash_entries,
1928 14,
1929 HASH_EARLY,
1930 &i_hash_shift,
1931 &i_hash_mask,
1932 0,
1933 0);
1934
1935 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1936 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1937 }
1938
1939 void __init inode_init(void)
1940 {
1941 unsigned int loop;
1942
1943 /* inode slab cache */
1944 inode_cachep = kmem_cache_create("inode_cache",
1945 sizeof(struct inode),
1946 0,
1947 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1948 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1949 init_once);
1950
1951 /* Hash may have been set up in inode_init_early */
1952 if (!hashdist)
1953 return;
1954
1955 inode_hashtable =
1956 alloc_large_system_hash("Inode-cache",
1957 sizeof(struct hlist_head),
1958 ihash_entries,
1959 14,
1960 0,
1961 &i_hash_shift,
1962 &i_hash_mask,
1963 0,
1964 0);
1965
1966 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1967 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1968 }
1969
1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1971 {
1972 inode->i_mode = mode;
1973 if (S_ISCHR(mode)) {
1974 inode->i_fop = &def_chr_fops;
1975 inode->i_rdev = rdev;
1976 } else if (S_ISBLK(mode)) {
1977 inode->i_fop = &def_blk_fops;
1978 inode->i_rdev = rdev;
1979 } else if (S_ISFIFO(mode))
1980 inode->i_fop = &pipefifo_fops;
1981 else if (S_ISSOCK(mode))
1982 ; /* leave it no_open_fops */
1983 else
1984 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1985 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1986 inode->i_ino);
1987 }
1988 EXPORT_SYMBOL(init_special_inode);
1989
1990 /**
1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1992 * @inode: New inode
1993 * @dir: Directory inode
1994 * @mode: mode of the new inode
1995 */
1996 void inode_init_owner(struct inode *inode, const struct inode *dir,
1997 umode_t mode)
1998 {
1999 inode->i_uid = current_fsuid();
2000 if (dir && dir->i_mode & S_ISGID) {
2001 inode->i_gid = dir->i_gid;
2002 if (S_ISDIR(mode))
2003 mode |= S_ISGID;
2004 } else
2005 inode->i_gid = current_fsgid();
2006 inode->i_mode = mode;
2007 }
2008 EXPORT_SYMBOL(inode_init_owner);
2009
2010 /**
2011 * inode_owner_or_capable - check current task permissions to inode
2012 * @inode: inode being checked
2013 *
2014 * Return true if current either has CAP_FOWNER in a namespace with the
2015 * inode owner uid mapped, or owns the file.
2016 */
2017 bool inode_owner_or_capable(const struct inode *inode)
2018 {
2019 struct user_namespace *ns;
2020
2021 if (uid_eq(current_fsuid(), inode->i_uid))
2022 return true;
2023
2024 ns = current_user_ns();
2025 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2026 return true;
2027 return false;
2028 }
2029 EXPORT_SYMBOL(inode_owner_or_capable);
2030
2031 /*
2032 * Direct i/o helper functions
2033 */
2034 static void __inode_dio_wait(struct inode *inode)
2035 {
2036 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2037 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2038
2039 do {
2040 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2041 if (atomic_read(&inode->i_dio_count))
2042 schedule();
2043 } while (atomic_read(&inode->i_dio_count));
2044 finish_wait(wq, &q.wait);
2045 }
2046
2047 /**
2048 * inode_dio_wait - wait for outstanding DIO requests to finish
2049 * @inode: inode to wait for
2050 *
2051 * Waits for all pending direct I/O requests to finish so that we can
2052 * proceed with a truncate or equivalent operation.
2053 *
2054 * Must be called under a lock that serializes taking new references
2055 * to i_dio_count, usually by inode->i_mutex.
2056 */
2057 void inode_dio_wait(struct inode *inode)
2058 {
2059 if (atomic_read(&inode->i_dio_count))
2060 __inode_dio_wait(inode);
2061 }
2062 EXPORT_SYMBOL(inode_dio_wait);
2063
2064 /*
2065 * inode_set_flags - atomically set some inode flags
2066 *
2067 * Note: the caller should be holding i_mutex, or else be sure that
2068 * they have exclusive access to the inode structure (i.e., while the
2069 * inode is being instantiated). The reason for the cmpxchg() loop
2070 * --- which wouldn't be necessary if all code paths which modify
2071 * i_flags actually followed this rule, is that there is at least one
2072 * code path which doesn't today so we use cmpxchg() out of an abundance
2073 * of caution.
2074 *
2075 * In the long run, i_mutex is overkill, and we should probably look
2076 * at using the i_lock spinlock to protect i_flags, and then make sure
2077 * it is so documented in include/linux/fs.h and that all code follows
2078 * the locking convention!!
2079 */
2080 void inode_set_flags(struct inode *inode, unsigned int flags,
2081 unsigned int mask)
2082 {
2083 unsigned int old_flags, new_flags;
2084
2085 WARN_ON_ONCE(flags & ~mask);
2086 do {
2087 old_flags = ACCESS_ONCE(inode->i_flags);
2088 new_flags = (old_flags & ~mask) | flags;
2089 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2090 new_flags) != old_flags));
2091 }
2092 EXPORT_SYMBOL(inode_set_flags);
2093
2094 void inode_nohighmem(struct inode *inode)
2095 {
2096 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2097 }
2098 EXPORT_SYMBOL(inode_nohighmem);
2099
2100 /**
2101 * current_time - Return FS time
2102 * @inode: inode.
2103 *
2104 * Return the current time truncated to the time granularity supported by
2105 * the fs.
2106 *
2107 * Note that inode and inode->sb cannot be NULL.
2108 * Otherwise, the function warns and returns time without truncation.
2109 */
2110 struct timespec current_time(struct inode *inode)
2111 {
2112 struct timespec now = current_kernel_time();
2113
2114 if (unlikely(!inode->i_sb)) {
2115 WARN(1, "current_time() called with uninitialized super_block in the inode");
2116 return now;
2117 }
2118
2119 return timespec_trunc(now, inode->i_sb->s_time_gran);
2120 }
2121 EXPORT_SYMBOL(current_time);