]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring/io-wq: return 2-step work swap scheme
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct io_ring_ctx;
199
200 struct io_rsrc_put {
201 struct list_head list;
202 union {
203 void *rsrc;
204 struct file *file;
205 };
206 };
207
208 struct fixed_rsrc_table {
209 struct file **files;
210 };
211
212 struct fixed_rsrc_ref_node {
213 struct percpu_ref refs;
214 struct list_head node;
215 struct list_head rsrc_list;
216 struct fixed_rsrc_data *rsrc_data;
217 void (*rsrc_put)(struct io_ring_ctx *ctx,
218 struct io_rsrc_put *prsrc);
219 struct llist_node llist;
220 bool done;
221 };
222
223 struct fixed_rsrc_data {
224 struct fixed_rsrc_table *table;
225 struct io_ring_ctx *ctx;
226
227 struct fixed_rsrc_ref_node *node;
228 struct percpu_ref refs;
229 struct completion done;
230 };
231
232 struct io_buffer {
233 struct list_head list;
234 __u64 addr;
235 __s32 len;
236 __u16 bid;
237 };
238
239 struct io_restriction {
240 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
241 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
242 u8 sqe_flags_allowed;
243 u8 sqe_flags_required;
244 bool registered;
245 };
246
247 struct io_sq_data {
248 refcount_t refs;
249 struct mutex lock;
250
251 /* ctx's that are using this sqd */
252 struct list_head ctx_list;
253 struct list_head ctx_new_list;
254 struct mutex ctx_lock;
255
256 struct task_struct *thread;
257 struct wait_queue_head wait;
258
259 unsigned sq_thread_idle;
260 };
261
262 struct io_ring_ctx {
263 struct {
264 struct percpu_ref refs;
265 } ____cacheline_aligned_in_smp;
266
267 struct {
268 unsigned int flags;
269 unsigned int compat: 1;
270 unsigned int limit_mem: 1;
271 unsigned int cq_overflow_flushed: 1;
272 unsigned int drain_next: 1;
273 unsigned int eventfd_async: 1;
274 unsigned int restricted: 1;
275 unsigned int sqo_dead: 1;
276
277 /*
278 * Ring buffer of indices into array of io_uring_sqe, which is
279 * mmapped by the application using the IORING_OFF_SQES offset.
280 *
281 * This indirection could e.g. be used to assign fixed
282 * io_uring_sqe entries to operations and only submit them to
283 * the queue when needed.
284 *
285 * The kernel modifies neither the indices array nor the entries
286 * array.
287 */
288 u32 *sq_array;
289 unsigned cached_sq_head;
290 unsigned sq_entries;
291 unsigned sq_mask;
292 unsigned sq_thread_idle;
293 unsigned cached_sq_dropped;
294 unsigned cached_cq_overflow;
295 unsigned long sq_check_overflow;
296
297 struct list_head defer_list;
298 struct list_head timeout_list;
299 struct list_head cq_overflow_list;
300
301 struct io_uring_sqe *sq_sqes;
302 } ____cacheline_aligned_in_smp;
303
304 struct io_rings *rings;
305
306 /* IO offload */
307 struct io_wq *io_wq;
308
309 /*
310 * For SQPOLL usage - we hold a reference to the parent task, so we
311 * have access to the ->files
312 */
313 struct task_struct *sqo_task;
314
315 /* Only used for accounting purposes */
316 struct mm_struct *mm_account;
317
318 #ifdef CONFIG_BLK_CGROUP
319 struct cgroup_subsys_state *sqo_blkcg_css;
320 #endif
321
322 struct io_sq_data *sq_data; /* if using sq thread polling */
323
324 struct wait_queue_head sqo_sq_wait;
325 struct list_head sqd_list;
326
327 /*
328 * If used, fixed file set. Writers must ensure that ->refs is dead,
329 * readers must ensure that ->refs is alive as long as the file* is
330 * used. Only updated through io_uring_register(2).
331 */
332 struct fixed_rsrc_data *file_data;
333 unsigned nr_user_files;
334
335 /* if used, fixed mapped user buffers */
336 unsigned nr_user_bufs;
337 struct io_mapped_ubuf *user_bufs;
338
339 struct user_struct *user;
340
341 const struct cred *creds;
342
343 #ifdef CONFIG_AUDIT
344 kuid_t loginuid;
345 unsigned int sessionid;
346 #endif
347
348 struct completion ref_comp;
349 struct completion sq_thread_comp;
350
351 /* if all else fails... */
352 struct io_kiocb *fallback_req;
353
354 #if defined(CONFIG_UNIX)
355 struct socket *ring_sock;
356 #endif
357
358 struct idr io_buffer_idr;
359
360 struct idr personality_idr;
361
362 struct {
363 unsigned cached_cq_tail;
364 unsigned cq_entries;
365 unsigned cq_mask;
366 atomic_t cq_timeouts;
367 unsigned cq_last_tm_flush;
368 unsigned long cq_check_overflow;
369 struct wait_queue_head cq_wait;
370 struct fasync_struct *cq_fasync;
371 struct eventfd_ctx *cq_ev_fd;
372 } ____cacheline_aligned_in_smp;
373
374 struct {
375 struct mutex uring_lock;
376 wait_queue_head_t wait;
377 } ____cacheline_aligned_in_smp;
378
379 struct {
380 spinlock_t completion_lock;
381
382 /*
383 * ->iopoll_list is protected by the ctx->uring_lock for
384 * io_uring instances that don't use IORING_SETUP_SQPOLL.
385 * For SQPOLL, only the single threaded io_sq_thread() will
386 * manipulate the list, hence no extra locking is needed there.
387 */
388 struct list_head iopoll_list;
389 struct hlist_head *cancel_hash;
390 unsigned cancel_hash_bits;
391 bool poll_multi_file;
392
393 spinlock_t inflight_lock;
394 struct list_head inflight_list;
395 } ____cacheline_aligned_in_smp;
396
397 struct delayed_work rsrc_put_work;
398 struct llist_head rsrc_put_llist;
399 struct list_head rsrc_ref_list;
400 spinlock_t rsrc_ref_lock;
401
402 struct work_struct exit_work;
403 struct io_restriction restrictions;
404 };
405
406 /*
407 * First field must be the file pointer in all the
408 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
409 */
410 struct io_poll_iocb {
411 struct file *file;
412 struct wait_queue_head *head;
413 __poll_t events;
414 bool done;
415 bool canceled;
416 struct wait_queue_entry wait;
417 };
418
419 struct io_poll_remove {
420 struct file *file;
421 u64 addr;
422 };
423
424 struct io_close {
425 struct file *file;
426 int fd;
427 };
428
429 struct io_timeout_data {
430 struct io_kiocb *req;
431 struct hrtimer timer;
432 struct timespec64 ts;
433 enum hrtimer_mode mode;
434 };
435
436 struct io_accept {
437 struct file *file;
438 struct sockaddr __user *addr;
439 int __user *addr_len;
440 int flags;
441 unsigned long nofile;
442 };
443
444 struct io_sync {
445 struct file *file;
446 loff_t len;
447 loff_t off;
448 int flags;
449 int mode;
450 };
451
452 struct io_cancel {
453 struct file *file;
454 u64 addr;
455 };
456
457 struct io_timeout {
458 struct file *file;
459 u32 off;
460 u32 target_seq;
461 struct list_head list;
462 /* head of the link, used by linked timeouts only */
463 struct io_kiocb *head;
464 };
465
466 struct io_timeout_rem {
467 struct file *file;
468 u64 addr;
469
470 /* timeout update */
471 struct timespec64 ts;
472 u32 flags;
473 };
474
475 struct io_rw {
476 /* NOTE: kiocb has the file as the first member, so don't do it here */
477 struct kiocb kiocb;
478 u64 addr;
479 u64 len;
480 };
481
482 struct io_connect {
483 struct file *file;
484 struct sockaddr __user *addr;
485 int addr_len;
486 };
487
488 struct io_sr_msg {
489 struct file *file;
490 union {
491 struct user_msghdr __user *umsg;
492 void __user *buf;
493 };
494 int msg_flags;
495 int bgid;
496 size_t len;
497 struct io_buffer *kbuf;
498 };
499
500 struct io_open {
501 struct file *file;
502 int dfd;
503 struct filename *filename;
504 struct open_how how;
505 unsigned long nofile;
506 };
507
508 struct io_rsrc_update {
509 struct file *file;
510 u64 arg;
511 u32 nr_args;
512 u32 offset;
513 };
514
515 struct io_fadvise {
516 struct file *file;
517 u64 offset;
518 u32 len;
519 u32 advice;
520 };
521
522 struct io_madvise {
523 struct file *file;
524 u64 addr;
525 u32 len;
526 u32 advice;
527 };
528
529 struct io_epoll {
530 struct file *file;
531 int epfd;
532 int op;
533 int fd;
534 struct epoll_event event;
535 };
536
537 struct io_splice {
538 struct file *file_out;
539 struct file *file_in;
540 loff_t off_out;
541 loff_t off_in;
542 u64 len;
543 unsigned int flags;
544 };
545
546 struct io_provide_buf {
547 struct file *file;
548 __u64 addr;
549 __s32 len;
550 __u32 bgid;
551 __u16 nbufs;
552 __u16 bid;
553 };
554
555 struct io_statx {
556 struct file *file;
557 int dfd;
558 unsigned int mask;
559 unsigned int flags;
560 const char __user *filename;
561 struct statx __user *buffer;
562 };
563
564 struct io_shutdown {
565 struct file *file;
566 int how;
567 };
568
569 struct io_rename {
570 struct file *file;
571 int old_dfd;
572 int new_dfd;
573 struct filename *oldpath;
574 struct filename *newpath;
575 int flags;
576 };
577
578 struct io_unlink {
579 struct file *file;
580 int dfd;
581 int flags;
582 struct filename *filename;
583 };
584
585 struct io_completion {
586 struct file *file;
587 struct list_head list;
588 int cflags;
589 };
590
591 struct io_async_connect {
592 struct sockaddr_storage address;
593 };
594
595 struct io_async_msghdr {
596 struct iovec fast_iov[UIO_FASTIOV];
597 struct iovec *iov;
598 struct sockaddr __user *uaddr;
599 struct msghdr msg;
600 struct sockaddr_storage addr;
601 };
602
603 struct io_async_rw {
604 struct iovec fast_iov[UIO_FASTIOV];
605 const struct iovec *free_iovec;
606 struct iov_iter iter;
607 size_t bytes_done;
608 struct wait_page_queue wpq;
609 };
610
611 enum {
612 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
613 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
614 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
615 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
616 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
617 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
618
619 REQ_F_FAIL_LINK_BIT,
620 REQ_F_INFLIGHT_BIT,
621 REQ_F_CUR_POS_BIT,
622 REQ_F_NOWAIT_BIT,
623 REQ_F_LINK_TIMEOUT_BIT,
624 REQ_F_ISREG_BIT,
625 REQ_F_NEED_CLEANUP_BIT,
626 REQ_F_POLLED_BIT,
627 REQ_F_BUFFER_SELECTED_BIT,
628 REQ_F_NO_FILE_TABLE_BIT,
629 REQ_F_WORK_INITIALIZED_BIT,
630 REQ_F_LTIMEOUT_ACTIVE_BIT,
631 REQ_F_COMPLETE_INLINE_BIT,
632
633 /* not a real bit, just to check we're not overflowing the space */
634 __REQ_F_LAST_BIT,
635 };
636
637 enum {
638 /* ctx owns file */
639 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
640 /* drain existing IO first */
641 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
642 /* linked sqes */
643 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
644 /* doesn't sever on completion < 0 */
645 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
646 /* IOSQE_ASYNC */
647 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
648 /* IOSQE_BUFFER_SELECT */
649 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
650
651 /* fail rest of links */
652 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
653 /* on inflight list */
654 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
655 /* read/write uses file position */
656 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
657 /* must not punt to workers */
658 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
659 /* has or had linked timeout */
660 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
661 /* regular file */
662 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
663 /* needs cleanup */
664 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
665 /* already went through poll handler */
666 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
667 /* buffer already selected */
668 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
669 /* doesn't need file table for this request */
670 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
671 /* io_wq_work is initialized */
672 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
673 /* linked timeout is active, i.e. prepared by link's head */
674 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
675 /* completion is deferred through io_comp_state */
676 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
677 };
678
679 struct async_poll {
680 struct io_poll_iocb poll;
681 struct io_poll_iocb *double_poll;
682 };
683
684 /*
685 * NOTE! Each of the iocb union members has the file pointer
686 * as the first entry in their struct definition. So you can
687 * access the file pointer through any of the sub-structs,
688 * or directly as just 'ki_filp' in this struct.
689 */
690 struct io_kiocb {
691 union {
692 struct file *file;
693 struct io_rw rw;
694 struct io_poll_iocb poll;
695 struct io_poll_remove poll_remove;
696 struct io_accept accept;
697 struct io_sync sync;
698 struct io_cancel cancel;
699 struct io_timeout timeout;
700 struct io_timeout_rem timeout_rem;
701 struct io_connect connect;
702 struct io_sr_msg sr_msg;
703 struct io_open open;
704 struct io_close close;
705 struct io_rsrc_update rsrc_update;
706 struct io_fadvise fadvise;
707 struct io_madvise madvise;
708 struct io_epoll epoll;
709 struct io_splice splice;
710 struct io_provide_buf pbuf;
711 struct io_statx statx;
712 struct io_shutdown shutdown;
713 struct io_rename rename;
714 struct io_unlink unlink;
715 /* use only after cleaning per-op data, see io_clean_op() */
716 struct io_completion compl;
717 };
718
719 /* opcode allocated if it needs to store data for async defer */
720 void *async_data;
721 u8 opcode;
722 /* polled IO has completed */
723 u8 iopoll_completed;
724
725 u16 buf_index;
726 u32 result;
727
728 struct io_ring_ctx *ctx;
729 unsigned int flags;
730 refcount_t refs;
731 struct task_struct *task;
732 u64 user_data;
733
734 struct io_kiocb *link;
735 struct percpu_ref *fixed_rsrc_refs;
736
737 /*
738 * 1. used with ctx->iopoll_list with reads/writes
739 * 2. to track reqs with ->files (see io_op_def::file_table)
740 */
741 struct list_head inflight_entry;
742 struct callback_head task_work;
743 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
744 struct hlist_node hash_node;
745 struct async_poll *apoll;
746 struct io_wq_work work;
747 };
748
749 struct io_defer_entry {
750 struct list_head list;
751 struct io_kiocb *req;
752 u32 seq;
753 };
754
755 #define IO_IOPOLL_BATCH 8
756
757 struct io_comp_state {
758 unsigned int nr;
759 struct list_head list;
760 struct io_ring_ctx *ctx;
761 };
762
763 struct io_submit_state {
764 struct blk_plug plug;
765
766 /*
767 * io_kiocb alloc cache
768 */
769 void *reqs[IO_IOPOLL_BATCH];
770 unsigned int free_reqs;
771
772 bool plug_started;
773
774 /*
775 * Batch completion logic
776 */
777 struct io_comp_state comp;
778
779 /*
780 * File reference cache
781 */
782 struct file *file;
783 unsigned int fd;
784 unsigned int file_refs;
785 unsigned int ios_left;
786 };
787
788 struct io_op_def {
789 /* needs req->file assigned */
790 unsigned needs_file : 1;
791 /* hash wq insertion if file is a regular file */
792 unsigned hash_reg_file : 1;
793 /* unbound wq insertion if file is a non-regular file */
794 unsigned unbound_nonreg_file : 1;
795 /* opcode is not supported by this kernel */
796 unsigned not_supported : 1;
797 /* set if opcode supports polled "wait" */
798 unsigned pollin : 1;
799 unsigned pollout : 1;
800 /* op supports buffer selection */
801 unsigned buffer_select : 1;
802 /* must always have async data allocated */
803 unsigned needs_async_data : 1;
804 /* should block plug */
805 unsigned plug : 1;
806 /* size of async data needed, if any */
807 unsigned short async_size;
808 unsigned work_flags;
809 };
810
811 static const struct io_op_def io_op_defs[] = {
812 [IORING_OP_NOP] = {},
813 [IORING_OP_READV] = {
814 .needs_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollin = 1,
817 .buffer_select = 1,
818 .needs_async_data = 1,
819 .plug = 1,
820 .async_size = sizeof(struct io_async_rw),
821 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
822 },
823 [IORING_OP_WRITEV] = {
824 .needs_file = 1,
825 .hash_reg_file = 1,
826 .unbound_nonreg_file = 1,
827 .pollout = 1,
828 .needs_async_data = 1,
829 .plug = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
832 IO_WQ_WORK_FSIZE,
833 },
834 [IORING_OP_FSYNC] = {
835 .needs_file = 1,
836 .work_flags = IO_WQ_WORK_BLKCG,
837 },
838 [IORING_OP_READ_FIXED] = {
839 .needs_file = 1,
840 .unbound_nonreg_file = 1,
841 .pollin = 1,
842 .plug = 1,
843 .async_size = sizeof(struct io_async_rw),
844 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
845 },
846 [IORING_OP_WRITE_FIXED] = {
847 .needs_file = 1,
848 .hash_reg_file = 1,
849 .unbound_nonreg_file = 1,
850 .pollout = 1,
851 .plug = 1,
852 .async_size = sizeof(struct io_async_rw),
853 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
854 IO_WQ_WORK_MM,
855 },
856 [IORING_OP_POLL_ADD] = {
857 .needs_file = 1,
858 .unbound_nonreg_file = 1,
859 },
860 [IORING_OP_POLL_REMOVE] = {},
861 [IORING_OP_SYNC_FILE_RANGE] = {
862 .needs_file = 1,
863 .work_flags = IO_WQ_WORK_BLKCG,
864 },
865 [IORING_OP_SENDMSG] = {
866 .needs_file = 1,
867 .unbound_nonreg_file = 1,
868 .pollout = 1,
869 .needs_async_data = 1,
870 .async_size = sizeof(struct io_async_msghdr),
871 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
872 },
873 [IORING_OP_RECVMSG] = {
874 .needs_file = 1,
875 .unbound_nonreg_file = 1,
876 .pollin = 1,
877 .buffer_select = 1,
878 .needs_async_data = 1,
879 .async_size = sizeof(struct io_async_msghdr),
880 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
881 },
882 [IORING_OP_TIMEOUT] = {
883 .needs_async_data = 1,
884 .async_size = sizeof(struct io_timeout_data),
885 .work_flags = IO_WQ_WORK_MM,
886 },
887 [IORING_OP_TIMEOUT_REMOVE] = {
888 /* used by timeout updates' prep() */
889 .work_flags = IO_WQ_WORK_MM,
890 },
891 [IORING_OP_ACCEPT] = {
892 .needs_file = 1,
893 .unbound_nonreg_file = 1,
894 .pollin = 1,
895 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
896 },
897 [IORING_OP_ASYNC_CANCEL] = {},
898 [IORING_OP_LINK_TIMEOUT] = {
899 .needs_async_data = 1,
900 .async_size = sizeof(struct io_timeout_data),
901 .work_flags = IO_WQ_WORK_MM,
902 },
903 [IORING_OP_CONNECT] = {
904 .needs_file = 1,
905 .unbound_nonreg_file = 1,
906 .pollout = 1,
907 .needs_async_data = 1,
908 .async_size = sizeof(struct io_async_connect),
909 .work_flags = IO_WQ_WORK_MM,
910 },
911 [IORING_OP_FALLOCATE] = {
912 .needs_file = 1,
913 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
914 },
915 [IORING_OP_OPENAT] = {
916 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
917 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
918 },
919 [IORING_OP_CLOSE] = {
920 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
921 },
922 [IORING_OP_FILES_UPDATE] = {
923 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
924 },
925 [IORING_OP_STATX] = {
926 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
927 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
928 },
929 [IORING_OP_READ] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollin = 1,
933 .buffer_select = 1,
934 .plug = 1,
935 .async_size = sizeof(struct io_async_rw),
936 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
937 },
938 [IORING_OP_WRITE] = {
939 .needs_file = 1,
940 .unbound_nonreg_file = 1,
941 .pollout = 1,
942 .plug = 1,
943 .async_size = sizeof(struct io_async_rw),
944 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
945 IO_WQ_WORK_FSIZE,
946 },
947 [IORING_OP_FADVISE] = {
948 .needs_file = 1,
949 .work_flags = IO_WQ_WORK_BLKCG,
950 },
951 [IORING_OP_MADVISE] = {
952 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
953 },
954 [IORING_OP_SEND] = {
955 .needs_file = 1,
956 .unbound_nonreg_file = 1,
957 .pollout = 1,
958 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
959 },
960 [IORING_OP_RECV] = {
961 .needs_file = 1,
962 .unbound_nonreg_file = 1,
963 .pollin = 1,
964 .buffer_select = 1,
965 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
966 },
967 [IORING_OP_OPENAT2] = {
968 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
969 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
970 },
971 [IORING_OP_EPOLL_CTL] = {
972 .unbound_nonreg_file = 1,
973 .work_flags = IO_WQ_WORK_FILES,
974 },
975 [IORING_OP_SPLICE] = {
976 .needs_file = 1,
977 .hash_reg_file = 1,
978 .unbound_nonreg_file = 1,
979 .work_flags = IO_WQ_WORK_BLKCG,
980 },
981 [IORING_OP_PROVIDE_BUFFERS] = {},
982 [IORING_OP_REMOVE_BUFFERS] = {},
983 [IORING_OP_TEE] = {
984 .needs_file = 1,
985 .hash_reg_file = 1,
986 .unbound_nonreg_file = 1,
987 },
988 [IORING_OP_SHUTDOWN] = {
989 .needs_file = 1,
990 },
991 [IORING_OP_RENAMEAT] = {
992 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
993 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
994 },
995 [IORING_OP_UNLINKAT] = {
996 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
997 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
998 },
999 };
1000
1001 enum io_mem_account {
1002 ACCT_LOCKED,
1003 ACCT_PINNED,
1004 };
1005
1006 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1007 struct task_struct *task,
1008 struct files_struct *files);
1009 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
1010 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
1011 struct io_ring_ctx *ctx);
1012 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
1013 struct fixed_rsrc_ref_node *ref_node);
1014
1015 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1016 struct io_comp_state *cs);
1017 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1018 static void io_put_req(struct io_kiocb *req);
1019 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1020 static void io_double_put_req(struct io_kiocb *req);
1021 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1022 static void __io_queue_linked_timeout(struct io_kiocb *req);
1023 static void io_queue_linked_timeout(struct io_kiocb *req);
1024 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1025 struct io_uring_rsrc_update *ip,
1026 unsigned nr_args);
1027 static void __io_clean_op(struct io_kiocb *req);
1028 static struct file *io_file_get(struct io_submit_state *state,
1029 struct io_kiocb *req, int fd, bool fixed);
1030 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1031 static void io_rsrc_put_work(struct work_struct *work);
1032
1033 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
1034 struct iov_iter *iter, bool needs_lock);
1035 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1036 const struct iovec *fast_iov,
1037 struct iov_iter *iter, bool force);
1038 static void io_req_task_queue(struct io_kiocb *req);
1039
1040 static struct kmem_cache *req_cachep;
1041
1042 static const struct file_operations io_uring_fops;
1043
1044 struct sock *io_uring_get_socket(struct file *file)
1045 {
1046 #if defined(CONFIG_UNIX)
1047 if (file->f_op == &io_uring_fops) {
1048 struct io_ring_ctx *ctx = file->private_data;
1049
1050 return ctx->ring_sock->sk;
1051 }
1052 #endif
1053 return NULL;
1054 }
1055 EXPORT_SYMBOL(io_uring_get_socket);
1056
1057 #define io_for_each_link(pos, head) \
1058 for (pos = (head); pos; pos = pos->link)
1059
1060 static inline void io_clean_op(struct io_kiocb *req)
1061 {
1062 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1063 __io_clean_op(req);
1064 }
1065
1066 static inline void io_set_resource_node(struct io_kiocb *req)
1067 {
1068 struct io_ring_ctx *ctx = req->ctx;
1069
1070 if (!req->fixed_rsrc_refs) {
1071 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1072 percpu_ref_get(req->fixed_rsrc_refs);
1073 }
1074 }
1075
1076 static bool io_match_task(struct io_kiocb *head,
1077 struct task_struct *task,
1078 struct files_struct *files)
1079 {
1080 struct io_kiocb *req;
1081
1082 if (task && head->task != task) {
1083 /* in terms of cancelation, always match if req task is dead */
1084 if (head->task->flags & PF_EXITING)
1085 return true;
1086 return false;
1087 }
1088 if (!files)
1089 return true;
1090
1091 io_for_each_link(req, head) {
1092 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1093 continue;
1094 if (req->file && req->file->f_op == &io_uring_fops)
1095 return true;
1096 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1097 req->work.identity->files == files)
1098 return true;
1099 }
1100 return false;
1101 }
1102
1103 static void io_sq_thread_drop_mm_files(void)
1104 {
1105 struct files_struct *files = current->files;
1106 struct mm_struct *mm = current->mm;
1107
1108 if (mm) {
1109 kthread_unuse_mm(mm);
1110 mmput(mm);
1111 current->mm = NULL;
1112 }
1113 if (files) {
1114 struct nsproxy *nsproxy = current->nsproxy;
1115
1116 task_lock(current);
1117 current->files = NULL;
1118 current->nsproxy = NULL;
1119 task_unlock(current);
1120 put_files_struct(files);
1121 put_nsproxy(nsproxy);
1122 }
1123 }
1124
1125 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1126 {
1127 if (current->flags & PF_EXITING)
1128 return -EFAULT;
1129
1130 if (!current->files) {
1131 struct files_struct *files;
1132 struct nsproxy *nsproxy;
1133
1134 task_lock(ctx->sqo_task);
1135 files = ctx->sqo_task->files;
1136 if (!files) {
1137 task_unlock(ctx->sqo_task);
1138 return -EOWNERDEAD;
1139 }
1140 atomic_inc(&files->count);
1141 get_nsproxy(ctx->sqo_task->nsproxy);
1142 nsproxy = ctx->sqo_task->nsproxy;
1143 task_unlock(ctx->sqo_task);
1144
1145 task_lock(current);
1146 current->files = files;
1147 current->nsproxy = nsproxy;
1148 task_unlock(current);
1149 }
1150 return 0;
1151 }
1152
1153 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1154 {
1155 struct mm_struct *mm;
1156
1157 if (current->flags & PF_EXITING)
1158 return -EFAULT;
1159 if (current->mm)
1160 return 0;
1161
1162 /* Should never happen */
1163 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1164 return -EFAULT;
1165
1166 task_lock(ctx->sqo_task);
1167 mm = ctx->sqo_task->mm;
1168 if (unlikely(!mm || !mmget_not_zero(mm)))
1169 mm = NULL;
1170 task_unlock(ctx->sqo_task);
1171
1172 if (mm) {
1173 kthread_use_mm(mm);
1174 return 0;
1175 }
1176
1177 return -EFAULT;
1178 }
1179
1180 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1181 struct io_kiocb *req)
1182 {
1183 const struct io_op_def *def = &io_op_defs[req->opcode];
1184 int ret;
1185
1186 if (def->work_flags & IO_WQ_WORK_MM) {
1187 ret = __io_sq_thread_acquire_mm(ctx);
1188 if (unlikely(ret))
1189 return ret;
1190 }
1191
1192 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1193 ret = __io_sq_thread_acquire_files(ctx);
1194 if (unlikely(ret))
1195 return ret;
1196 }
1197
1198 return 0;
1199 }
1200
1201 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1202 struct cgroup_subsys_state **cur_css)
1203
1204 {
1205 #ifdef CONFIG_BLK_CGROUP
1206 /* puts the old one when swapping */
1207 if (*cur_css != ctx->sqo_blkcg_css) {
1208 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1209 *cur_css = ctx->sqo_blkcg_css;
1210 }
1211 #endif
1212 }
1213
1214 static void io_sq_thread_unassociate_blkcg(void)
1215 {
1216 #ifdef CONFIG_BLK_CGROUP
1217 kthread_associate_blkcg(NULL);
1218 #endif
1219 }
1220
1221 static inline void req_set_fail_links(struct io_kiocb *req)
1222 {
1223 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1224 req->flags |= REQ_F_FAIL_LINK;
1225 }
1226
1227 /*
1228 * None of these are dereferenced, they are simply used to check if any of
1229 * them have changed. If we're under current and check they are still the
1230 * same, we're fine to grab references to them for actual out-of-line use.
1231 */
1232 static void io_init_identity(struct io_identity *id)
1233 {
1234 id->files = current->files;
1235 id->mm = current->mm;
1236 #ifdef CONFIG_BLK_CGROUP
1237 rcu_read_lock();
1238 id->blkcg_css = blkcg_css();
1239 rcu_read_unlock();
1240 #endif
1241 id->creds = current_cred();
1242 id->nsproxy = current->nsproxy;
1243 id->fs = current->fs;
1244 id->fsize = rlimit(RLIMIT_FSIZE);
1245 #ifdef CONFIG_AUDIT
1246 id->loginuid = current->loginuid;
1247 id->sessionid = current->sessionid;
1248 #endif
1249 refcount_set(&id->count, 1);
1250 }
1251
1252 static inline void __io_req_init_async(struct io_kiocb *req)
1253 {
1254 memset(&req->work, 0, sizeof(req->work));
1255 req->flags |= REQ_F_WORK_INITIALIZED;
1256 }
1257
1258 /*
1259 * Note: must call io_req_init_async() for the first time you
1260 * touch any members of io_wq_work.
1261 */
1262 static inline void io_req_init_async(struct io_kiocb *req)
1263 {
1264 struct io_uring_task *tctx = current->io_uring;
1265
1266 if (req->flags & REQ_F_WORK_INITIALIZED)
1267 return;
1268
1269 __io_req_init_async(req);
1270
1271 /* Grab a ref if this isn't our static identity */
1272 req->work.identity = tctx->identity;
1273 if (tctx->identity != &tctx->__identity)
1274 refcount_inc(&req->work.identity->count);
1275 }
1276
1277 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1278 {
1279 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1280
1281 complete(&ctx->ref_comp);
1282 }
1283
1284 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1285 {
1286 return !req->timeout.off;
1287 }
1288
1289 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1290 {
1291 struct io_ring_ctx *ctx;
1292 int hash_bits;
1293
1294 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1295 if (!ctx)
1296 return NULL;
1297
1298 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1299 if (!ctx->fallback_req)
1300 goto err;
1301
1302 /*
1303 * Use 5 bits less than the max cq entries, that should give us around
1304 * 32 entries per hash list if totally full and uniformly spread.
1305 */
1306 hash_bits = ilog2(p->cq_entries);
1307 hash_bits -= 5;
1308 if (hash_bits <= 0)
1309 hash_bits = 1;
1310 ctx->cancel_hash_bits = hash_bits;
1311 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1312 GFP_KERNEL);
1313 if (!ctx->cancel_hash)
1314 goto err;
1315 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1316
1317 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1318 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1319 goto err;
1320
1321 ctx->flags = p->flags;
1322 init_waitqueue_head(&ctx->sqo_sq_wait);
1323 INIT_LIST_HEAD(&ctx->sqd_list);
1324 init_waitqueue_head(&ctx->cq_wait);
1325 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1326 init_completion(&ctx->ref_comp);
1327 init_completion(&ctx->sq_thread_comp);
1328 idr_init(&ctx->io_buffer_idr);
1329 idr_init(&ctx->personality_idr);
1330 mutex_init(&ctx->uring_lock);
1331 init_waitqueue_head(&ctx->wait);
1332 spin_lock_init(&ctx->completion_lock);
1333 INIT_LIST_HEAD(&ctx->iopoll_list);
1334 INIT_LIST_HEAD(&ctx->defer_list);
1335 INIT_LIST_HEAD(&ctx->timeout_list);
1336 spin_lock_init(&ctx->inflight_lock);
1337 INIT_LIST_HEAD(&ctx->inflight_list);
1338 spin_lock_init(&ctx->rsrc_ref_lock);
1339 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1340 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1341 init_llist_head(&ctx->rsrc_put_llist);
1342 return ctx;
1343 err:
1344 if (ctx->fallback_req)
1345 kmem_cache_free(req_cachep, ctx->fallback_req);
1346 kfree(ctx->cancel_hash);
1347 kfree(ctx);
1348 return NULL;
1349 }
1350
1351 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1352 {
1353 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1354 struct io_ring_ctx *ctx = req->ctx;
1355
1356 return seq != ctx->cached_cq_tail
1357 + READ_ONCE(ctx->cached_cq_overflow);
1358 }
1359
1360 return false;
1361 }
1362
1363 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1364 {
1365 if (req->work.identity == &tctx->__identity)
1366 return;
1367 if (refcount_dec_and_test(&req->work.identity->count))
1368 kfree(req->work.identity);
1369 }
1370
1371 static void io_req_clean_work(struct io_kiocb *req)
1372 {
1373 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1374 return;
1375
1376 if (req->work.flags & IO_WQ_WORK_MM)
1377 mmdrop(req->work.identity->mm);
1378 #ifdef CONFIG_BLK_CGROUP
1379 if (req->work.flags & IO_WQ_WORK_BLKCG)
1380 css_put(req->work.identity->blkcg_css);
1381 #endif
1382 if (req->work.flags & IO_WQ_WORK_CREDS)
1383 put_cred(req->work.identity->creds);
1384 if (req->work.flags & IO_WQ_WORK_FS) {
1385 struct fs_struct *fs = req->work.identity->fs;
1386
1387 spin_lock(&req->work.identity->fs->lock);
1388 if (--fs->users)
1389 fs = NULL;
1390 spin_unlock(&req->work.identity->fs->lock);
1391 if (fs)
1392 free_fs_struct(fs);
1393 }
1394 if (req->work.flags & IO_WQ_WORK_FILES) {
1395 put_files_struct(req->work.identity->files);
1396 put_nsproxy(req->work.identity->nsproxy);
1397 }
1398 if (req->flags & REQ_F_INFLIGHT) {
1399 struct io_ring_ctx *ctx = req->ctx;
1400 struct io_uring_task *tctx = req->task->io_uring;
1401 unsigned long flags;
1402
1403 spin_lock_irqsave(&ctx->inflight_lock, flags);
1404 list_del(&req->inflight_entry);
1405 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1406 req->flags &= ~REQ_F_INFLIGHT;
1407 if (atomic_read(&tctx->in_idle))
1408 wake_up(&tctx->wait);
1409 }
1410
1411 req->flags &= ~REQ_F_WORK_INITIALIZED;
1412 req->work.flags &= ~(IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG | IO_WQ_WORK_FS |
1413 IO_WQ_WORK_CREDS | IO_WQ_WORK_FILES);
1414 io_put_identity(req->task->io_uring, req);
1415 }
1416
1417 /*
1418 * Create a private copy of io_identity, since some fields don't match
1419 * the current context.
1420 */
1421 static bool io_identity_cow(struct io_kiocb *req)
1422 {
1423 struct io_uring_task *tctx = current->io_uring;
1424 const struct cred *creds = NULL;
1425 struct io_identity *id;
1426
1427 if (req->work.flags & IO_WQ_WORK_CREDS)
1428 creds = req->work.identity->creds;
1429
1430 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1431 if (unlikely(!id)) {
1432 req->work.flags |= IO_WQ_WORK_CANCEL;
1433 return false;
1434 }
1435
1436 /*
1437 * We can safely just re-init the creds we copied Either the field
1438 * matches the current one, or we haven't grabbed it yet. The only
1439 * exception is ->creds, through registered personalities, so handle
1440 * that one separately.
1441 */
1442 io_init_identity(id);
1443 if (creds)
1444 id->creds = creds;
1445
1446 /* add one for this request */
1447 refcount_inc(&id->count);
1448
1449 /* drop tctx and req identity references, if needed */
1450 if (tctx->identity != &tctx->__identity &&
1451 refcount_dec_and_test(&tctx->identity->count))
1452 kfree(tctx->identity);
1453 if (req->work.identity != &tctx->__identity &&
1454 refcount_dec_and_test(&req->work.identity->count))
1455 kfree(req->work.identity);
1456
1457 req->work.identity = id;
1458 tctx->identity = id;
1459 return true;
1460 }
1461
1462 static void io_req_track_inflight(struct io_kiocb *req)
1463 {
1464 struct io_ring_ctx *ctx = req->ctx;
1465
1466 if (!(req->flags & REQ_F_INFLIGHT)) {
1467 io_req_init_async(req);
1468 req->flags |= REQ_F_INFLIGHT;
1469
1470 spin_lock_irq(&ctx->inflight_lock);
1471 list_add(&req->inflight_entry, &ctx->inflight_list);
1472 spin_unlock_irq(&ctx->inflight_lock);
1473 }
1474 }
1475
1476 static bool io_grab_identity(struct io_kiocb *req)
1477 {
1478 const struct io_op_def *def = &io_op_defs[req->opcode];
1479 struct io_identity *id = req->work.identity;
1480
1481 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1482 if (id->fsize != rlimit(RLIMIT_FSIZE))
1483 return false;
1484 req->work.flags |= IO_WQ_WORK_FSIZE;
1485 }
1486 #ifdef CONFIG_BLK_CGROUP
1487 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1488 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1489 rcu_read_lock();
1490 if (id->blkcg_css != blkcg_css()) {
1491 rcu_read_unlock();
1492 return false;
1493 }
1494 /*
1495 * This should be rare, either the cgroup is dying or the task
1496 * is moving cgroups. Just punt to root for the handful of ios.
1497 */
1498 if (css_tryget_online(id->blkcg_css))
1499 req->work.flags |= IO_WQ_WORK_BLKCG;
1500 rcu_read_unlock();
1501 }
1502 #endif
1503 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1504 if (id->creds != current_cred())
1505 return false;
1506 get_cred(id->creds);
1507 req->work.flags |= IO_WQ_WORK_CREDS;
1508 }
1509 #ifdef CONFIG_AUDIT
1510 if (!uid_eq(current->loginuid, id->loginuid) ||
1511 current->sessionid != id->sessionid)
1512 return false;
1513 #endif
1514 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1515 (def->work_flags & IO_WQ_WORK_FS)) {
1516 if (current->fs != id->fs)
1517 return false;
1518 spin_lock(&id->fs->lock);
1519 if (!id->fs->in_exec) {
1520 id->fs->users++;
1521 req->work.flags |= IO_WQ_WORK_FS;
1522 } else {
1523 req->work.flags |= IO_WQ_WORK_CANCEL;
1524 }
1525 spin_unlock(&current->fs->lock);
1526 }
1527 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1528 (def->work_flags & IO_WQ_WORK_FILES) &&
1529 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1530 if (id->files != current->files ||
1531 id->nsproxy != current->nsproxy)
1532 return false;
1533 atomic_inc(&id->files->count);
1534 get_nsproxy(id->nsproxy);
1535 req->work.flags |= IO_WQ_WORK_FILES;
1536 io_req_track_inflight(req);
1537 }
1538 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1539 (def->work_flags & IO_WQ_WORK_MM)) {
1540 if (id->mm != current->mm)
1541 return false;
1542 mmgrab(id->mm);
1543 req->work.flags |= IO_WQ_WORK_MM;
1544 }
1545
1546 return true;
1547 }
1548
1549 static void io_prep_async_work(struct io_kiocb *req)
1550 {
1551 const struct io_op_def *def = &io_op_defs[req->opcode];
1552 struct io_ring_ctx *ctx = req->ctx;
1553
1554 io_req_init_async(req);
1555
1556 if (req->flags & REQ_F_FORCE_ASYNC)
1557 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1558
1559 if (req->flags & REQ_F_ISREG) {
1560 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1561 io_wq_hash_work(&req->work, file_inode(req->file));
1562 } else {
1563 if (def->unbound_nonreg_file)
1564 req->work.flags |= IO_WQ_WORK_UNBOUND;
1565 }
1566
1567 /* if we fail grabbing identity, we must COW, regrab, and retry */
1568 if (io_grab_identity(req))
1569 return;
1570
1571 if (!io_identity_cow(req))
1572 return;
1573
1574 /* can't fail at this point */
1575 if (!io_grab_identity(req))
1576 WARN_ON(1);
1577 }
1578
1579 static void io_prep_async_link(struct io_kiocb *req)
1580 {
1581 struct io_kiocb *cur;
1582
1583 io_for_each_link(cur, req)
1584 io_prep_async_work(cur);
1585 }
1586
1587 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1588 {
1589 struct io_ring_ctx *ctx = req->ctx;
1590 struct io_kiocb *link = io_prep_linked_timeout(req);
1591
1592 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1593 &req->work, req->flags);
1594 io_wq_enqueue(ctx->io_wq, &req->work);
1595 return link;
1596 }
1597
1598 static void io_queue_async_work(struct io_kiocb *req)
1599 {
1600 struct io_kiocb *link;
1601
1602 /* init ->work of the whole link before punting */
1603 io_prep_async_link(req);
1604 link = __io_queue_async_work(req);
1605
1606 if (link)
1607 io_queue_linked_timeout(link);
1608 }
1609
1610 static void io_kill_timeout(struct io_kiocb *req)
1611 {
1612 struct io_timeout_data *io = req->async_data;
1613 int ret;
1614
1615 ret = hrtimer_try_to_cancel(&io->timer);
1616 if (ret != -1) {
1617 atomic_set(&req->ctx->cq_timeouts,
1618 atomic_read(&req->ctx->cq_timeouts) + 1);
1619 list_del_init(&req->timeout.list);
1620 io_cqring_fill_event(req, 0);
1621 io_put_req_deferred(req, 1);
1622 }
1623 }
1624
1625 /*
1626 * Returns true if we found and killed one or more timeouts
1627 */
1628 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1629 struct files_struct *files)
1630 {
1631 struct io_kiocb *req, *tmp;
1632 int canceled = 0;
1633
1634 spin_lock_irq(&ctx->completion_lock);
1635 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1636 if (io_match_task(req, tsk, files)) {
1637 io_kill_timeout(req);
1638 canceled++;
1639 }
1640 }
1641 spin_unlock_irq(&ctx->completion_lock);
1642 return canceled != 0;
1643 }
1644
1645 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1646 {
1647 do {
1648 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1649 struct io_defer_entry, list);
1650
1651 if (req_need_defer(de->req, de->seq))
1652 break;
1653 list_del_init(&de->list);
1654 io_req_task_queue(de->req);
1655 kfree(de);
1656 } while (!list_empty(&ctx->defer_list));
1657 }
1658
1659 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1660 {
1661 u32 seq;
1662
1663 if (list_empty(&ctx->timeout_list))
1664 return;
1665
1666 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1667
1668 do {
1669 u32 events_needed, events_got;
1670 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1671 struct io_kiocb, timeout.list);
1672
1673 if (io_is_timeout_noseq(req))
1674 break;
1675
1676 /*
1677 * Since seq can easily wrap around over time, subtract
1678 * the last seq at which timeouts were flushed before comparing.
1679 * Assuming not more than 2^31-1 events have happened since,
1680 * these subtractions won't have wrapped, so we can check if
1681 * target is in [last_seq, current_seq] by comparing the two.
1682 */
1683 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1684 events_got = seq - ctx->cq_last_tm_flush;
1685 if (events_got < events_needed)
1686 break;
1687
1688 list_del_init(&req->timeout.list);
1689 io_kill_timeout(req);
1690 } while (!list_empty(&ctx->timeout_list));
1691
1692 ctx->cq_last_tm_flush = seq;
1693 }
1694
1695 static void io_commit_cqring(struct io_ring_ctx *ctx)
1696 {
1697 io_flush_timeouts(ctx);
1698
1699 /* order cqe stores with ring update */
1700 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1701
1702 if (unlikely(!list_empty(&ctx->defer_list)))
1703 __io_queue_deferred(ctx);
1704 }
1705
1706 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1707 {
1708 struct io_rings *r = ctx->rings;
1709
1710 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1711 }
1712
1713 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1714 {
1715 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1716 }
1717
1718 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1719 {
1720 struct io_rings *rings = ctx->rings;
1721 unsigned tail;
1722
1723 /*
1724 * writes to the cq entry need to come after reading head; the
1725 * control dependency is enough as we're using WRITE_ONCE to
1726 * fill the cq entry
1727 */
1728 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1729 return NULL;
1730
1731 tail = ctx->cached_cq_tail++;
1732 return &rings->cqes[tail & ctx->cq_mask];
1733 }
1734
1735 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1736 {
1737 if (!ctx->cq_ev_fd)
1738 return false;
1739 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1740 return false;
1741 if (!ctx->eventfd_async)
1742 return true;
1743 return io_wq_current_is_worker();
1744 }
1745
1746 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1747 {
1748 /* see waitqueue_active() comment */
1749 smp_mb();
1750
1751 if (waitqueue_active(&ctx->wait))
1752 wake_up(&ctx->wait);
1753 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1754 wake_up(&ctx->sq_data->wait);
1755 if (io_should_trigger_evfd(ctx))
1756 eventfd_signal(ctx->cq_ev_fd, 1);
1757 if (waitqueue_active(&ctx->cq_wait)) {
1758 wake_up_interruptible(&ctx->cq_wait);
1759 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1760 }
1761 }
1762
1763 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1764 {
1765 /* see waitqueue_active() comment */
1766 smp_mb();
1767
1768 if (ctx->flags & IORING_SETUP_SQPOLL) {
1769 if (waitqueue_active(&ctx->wait))
1770 wake_up(&ctx->wait);
1771 }
1772 if (io_should_trigger_evfd(ctx))
1773 eventfd_signal(ctx->cq_ev_fd, 1);
1774 if (waitqueue_active(&ctx->cq_wait)) {
1775 wake_up_interruptible(&ctx->cq_wait);
1776 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1777 }
1778 }
1779
1780 /* Returns true if there are no backlogged entries after the flush */
1781 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1782 struct task_struct *tsk,
1783 struct files_struct *files)
1784 {
1785 struct io_rings *rings = ctx->rings;
1786 struct io_kiocb *req, *tmp;
1787 struct io_uring_cqe *cqe;
1788 unsigned long flags;
1789 bool all_flushed, posted;
1790 LIST_HEAD(list);
1791
1792 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1793 return false;
1794
1795 posted = false;
1796 spin_lock_irqsave(&ctx->completion_lock, flags);
1797 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1798 if (!io_match_task(req, tsk, files))
1799 continue;
1800
1801 cqe = io_get_cqring(ctx);
1802 if (!cqe && !force)
1803 break;
1804
1805 list_move(&req->compl.list, &list);
1806 if (cqe) {
1807 WRITE_ONCE(cqe->user_data, req->user_data);
1808 WRITE_ONCE(cqe->res, req->result);
1809 WRITE_ONCE(cqe->flags, req->compl.cflags);
1810 } else {
1811 ctx->cached_cq_overflow++;
1812 WRITE_ONCE(ctx->rings->cq_overflow,
1813 ctx->cached_cq_overflow);
1814 }
1815 posted = true;
1816 }
1817
1818 all_flushed = list_empty(&ctx->cq_overflow_list);
1819 if (all_flushed) {
1820 clear_bit(0, &ctx->sq_check_overflow);
1821 clear_bit(0, &ctx->cq_check_overflow);
1822 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1823 }
1824
1825 if (posted)
1826 io_commit_cqring(ctx);
1827 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1828 if (posted)
1829 io_cqring_ev_posted(ctx);
1830
1831 while (!list_empty(&list)) {
1832 req = list_first_entry(&list, struct io_kiocb, compl.list);
1833 list_del(&req->compl.list);
1834 io_put_req(req);
1835 }
1836
1837 return all_flushed;
1838 }
1839
1840 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1841 struct task_struct *tsk,
1842 struct files_struct *files)
1843 {
1844 if (test_bit(0, &ctx->cq_check_overflow)) {
1845 /* iopoll syncs against uring_lock, not completion_lock */
1846 if (ctx->flags & IORING_SETUP_IOPOLL)
1847 mutex_lock(&ctx->uring_lock);
1848 __io_cqring_overflow_flush(ctx, force, tsk, files);
1849 if (ctx->flags & IORING_SETUP_IOPOLL)
1850 mutex_unlock(&ctx->uring_lock);
1851 }
1852 }
1853
1854 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1855 {
1856 struct io_ring_ctx *ctx = req->ctx;
1857 struct io_uring_cqe *cqe;
1858
1859 trace_io_uring_complete(ctx, req->user_data, res);
1860
1861 /*
1862 * If we can't get a cq entry, userspace overflowed the
1863 * submission (by quite a lot). Increment the overflow count in
1864 * the ring.
1865 */
1866 cqe = io_get_cqring(ctx);
1867 if (likely(cqe)) {
1868 WRITE_ONCE(cqe->user_data, req->user_data);
1869 WRITE_ONCE(cqe->res, res);
1870 WRITE_ONCE(cqe->flags, cflags);
1871 } else if (ctx->cq_overflow_flushed ||
1872 atomic_read(&req->task->io_uring->in_idle)) {
1873 /*
1874 * If we're in ring overflow flush mode, or in task cancel mode,
1875 * then we cannot store the request for later flushing, we need
1876 * to drop it on the floor.
1877 */
1878 ctx->cached_cq_overflow++;
1879 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1880 } else {
1881 if (list_empty(&ctx->cq_overflow_list)) {
1882 set_bit(0, &ctx->sq_check_overflow);
1883 set_bit(0, &ctx->cq_check_overflow);
1884 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1885 }
1886 io_clean_op(req);
1887 req->result = res;
1888 req->compl.cflags = cflags;
1889 refcount_inc(&req->refs);
1890 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1891 }
1892 }
1893
1894 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1895 {
1896 __io_cqring_fill_event(req, res, 0);
1897 }
1898
1899 static void io_req_complete_post(struct io_kiocb *req, long res,
1900 unsigned int cflags)
1901 {
1902 struct io_ring_ctx *ctx = req->ctx;
1903 unsigned long flags;
1904
1905 spin_lock_irqsave(&ctx->completion_lock, flags);
1906 __io_cqring_fill_event(req, res, cflags);
1907 io_commit_cqring(ctx);
1908 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1909
1910 io_cqring_ev_posted(ctx);
1911 }
1912
1913 static inline void io_req_complete_nostate(struct io_kiocb *req, long res,
1914 unsigned int cflags)
1915 {
1916 io_req_complete_post(req, res, cflags);
1917 io_put_req(req);
1918 }
1919
1920 static void io_submit_flush_completions(struct io_comp_state *cs)
1921 {
1922 struct io_ring_ctx *ctx = cs->ctx;
1923
1924 spin_lock_irq(&ctx->completion_lock);
1925 while (!list_empty(&cs->list)) {
1926 struct io_kiocb *req;
1927
1928 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1929 list_del(&req->compl.list);
1930 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1931
1932 /*
1933 * io_free_req() doesn't care about completion_lock unless one
1934 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1935 * because of a potential deadlock with req->work.fs->lock
1936 * We defer both, completion and submission refs.
1937 */
1938 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1939 |REQ_F_WORK_INITIALIZED)) {
1940 spin_unlock_irq(&ctx->completion_lock);
1941 io_double_put_req(req);
1942 spin_lock_irq(&ctx->completion_lock);
1943 } else {
1944 io_double_put_req(req);
1945 }
1946 }
1947 io_commit_cqring(ctx);
1948 spin_unlock_irq(&ctx->completion_lock);
1949
1950 io_cqring_ev_posted(ctx);
1951 cs->nr = 0;
1952 }
1953
1954 static void io_req_complete_state(struct io_kiocb *req, long res,
1955 unsigned int cflags, struct io_comp_state *cs)
1956 {
1957 io_clean_op(req);
1958 req->result = res;
1959 req->compl.cflags = cflags;
1960 req->flags |= REQ_F_COMPLETE_INLINE;
1961 }
1962
1963 static inline void __io_req_complete(struct io_kiocb *req, long res,
1964 unsigned cflags, struct io_comp_state *cs)
1965 {
1966 if (!cs)
1967 io_req_complete_nostate(req, res, cflags);
1968 else
1969 io_req_complete_state(req, res, cflags, cs);
1970 }
1971
1972 static inline void io_req_complete(struct io_kiocb *req, long res)
1973 {
1974 __io_req_complete(req, res, 0, NULL);
1975 }
1976
1977 static inline bool io_is_fallback_req(struct io_kiocb *req)
1978 {
1979 return req == (struct io_kiocb *)
1980 ((unsigned long) req->ctx->fallback_req & ~1UL);
1981 }
1982
1983 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1984 {
1985 struct io_kiocb *req;
1986
1987 req = ctx->fallback_req;
1988 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1989 return req;
1990
1991 return NULL;
1992 }
1993
1994 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1995 struct io_submit_state *state)
1996 {
1997 if (!state->free_reqs) {
1998 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1999 size_t sz;
2000 int ret;
2001
2002 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
2003 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
2004
2005 /*
2006 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2007 * retry single alloc to be on the safe side.
2008 */
2009 if (unlikely(ret <= 0)) {
2010 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2011 if (!state->reqs[0])
2012 return io_get_fallback_req(ctx);
2013 ret = 1;
2014 }
2015 state->free_reqs = ret;
2016 }
2017
2018 state->free_reqs--;
2019 return state->reqs[state->free_reqs];
2020 }
2021
2022 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2023 bool fixed)
2024 {
2025 if (!fixed)
2026 fput(file);
2027 }
2028
2029 static void io_dismantle_req(struct io_kiocb *req)
2030 {
2031 io_clean_op(req);
2032
2033 if (req->async_data)
2034 kfree(req->async_data);
2035 if (req->file)
2036 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2037 if (req->fixed_rsrc_refs)
2038 percpu_ref_put(req->fixed_rsrc_refs);
2039 io_req_clean_work(req);
2040 }
2041
2042 static inline void io_put_task(struct task_struct *task, int nr)
2043 {
2044 struct io_uring_task *tctx = task->io_uring;
2045
2046 percpu_counter_sub(&tctx->inflight, nr);
2047 if (unlikely(atomic_read(&tctx->in_idle)))
2048 wake_up(&tctx->wait);
2049 put_task_struct_many(task, nr);
2050 }
2051
2052 static void __io_free_req(struct io_kiocb *req)
2053 {
2054 struct io_ring_ctx *ctx = req->ctx;
2055
2056 io_dismantle_req(req);
2057 io_put_task(req->task, 1);
2058
2059 if (likely(!io_is_fallback_req(req)))
2060 kmem_cache_free(req_cachep, req);
2061 else
2062 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2063 percpu_ref_put(&ctx->refs);
2064 }
2065
2066 static inline void io_remove_next_linked(struct io_kiocb *req)
2067 {
2068 struct io_kiocb *nxt = req->link;
2069
2070 req->link = nxt->link;
2071 nxt->link = NULL;
2072 }
2073
2074 static void io_kill_linked_timeout(struct io_kiocb *req)
2075 {
2076 struct io_ring_ctx *ctx = req->ctx;
2077 struct io_kiocb *link;
2078 bool cancelled = false;
2079 unsigned long flags;
2080
2081 spin_lock_irqsave(&ctx->completion_lock, flags);
2082 link = req->link;
2083
2084 /*
2085 * Can happen if a linked timeout fired and link had been like
2086 * req -> link t-out -> link t-out [-> ...]
2087 */
2088 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2089 struct io_timeout_data *io = link->async_data;
2090 int ret;
2091
2092 io_remove_next_linked(req);
2093 link->timeout.head = NULL;
2094 ret = hrtimer_try_to_cancel(&io->timer);
2095 if (ret != -1) {
2096 io_cqring_fill_event(link, -ECANCELED);
2097 io_commit_cqring(ctx);
2098 cancelled = true;
2099 }
2100 }
2101 req->flags &= ~REQ_F_LINK_TIMEOUT;
2102 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2103
2104 if (cancelled) {
2105 io_cqring_ev_posted(ctx);
2106 io_put_req(link);
2107 }
2108 }
2109
2110
2111 static void io_fail_links(struct io_kiocb *req)
2112 {
2113 struct io_kiocb *link, *nxt;
2114 struct io_ring_ctx *ctx = req->ctx;
2115 unsigned long flags;
2116
2117 spin_lock_irqsave(&ctx->completion_lock, flags);
2118 link = req->link;
2119 req->link = NULL;
2120
2121 while (link) {
2122 nxt = link->link;
2123 link->link = NULL;
2124
2125 trace_io_uring_fail_link(req, link);
2126 io_cqring_fill_event(link, -ECANCELED);
2127
2128 /*
2129 * It's ok to free under spinlock as they're not linked anymore,
2130 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2131 * work.fs->lock.
2132 */
2133 if (link->flags & REQ_F_WORK_INITIALIZED)
2134 io_put_req_deferred(link, 2);
2135 else
2136 io_double_put_req(link);
2137 link = nxt;
2138 }
2139 io_commit_cqring(ctx);
2140 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2141
2142 io_cqring_ev_posted(ctx);
2143 }
2144
2145 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2146 {
2147 if (req->flags & REQ_F_LINK_TIMEOUT)
2148 io_kill_linked_timeout(req);
2149
2150 /*
2151 * If LINK is set, we have dependent requests in this chain. If we
2152 * didn't fail this request, queue the first one up, moving any other
2153 * dependencies to the next request. In case of failure, fail the rest
2154 * of the chain.
2155 */
2156 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2157 struct io_kiocb *nxt = req->link;
2158
2159 req->link = NULL;
2160 return nxt;
2161 }
2162 io_fail_links(req);
2163 return NULL;
2164 }
2165
2166 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2167 {
2168 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2169 return NULL;
2170 return __io_req_find_next(req);
2171 }
2172
2173 static int io_req_task_work_add(struct io_kiocb *req)
2174 {
2175 struct task_struct *tsk = req->task;
2176 struct io_ring_ctx *ctx = req->ctx;
2177 enum task_work_notify_mode notify;
2178 int ret;
2179
2180 if (tsk->flags & PF_EXITING)
2181 return -ESRCH;
2182
2183 /*
2184 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2185 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2186 * processing task_work. There's no reliable way to tell if TWA_RESUME
2187 * will do the job.
2188 */
2189 notify = TWA_NONE;
2190 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2191 notify = TWA_SIGNAL;
2192
2193 ret = task_work_add(tsk, &req->task_work, notify);
2194 if (!ret)
2195 wake_up_process(tsk);
2196
2197 return ret;
2198 }
2199
2200 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2201 void (*cb)(struct callback_head *))
2202 {
2203 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2204
2205 init_task_work(&req->task_work, cb);
2206 task_work_add(tsk, &req->task_work, TWA_NONE);
2207 wake_up_process(tsk);
2208 }
2209
2210 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2211 {
2212 struct io_ring_ctx *ctx = req->ctx;
2213
2214 spin_lock_irq(&ctx->completion_lock);
2215 io_cqring_fill_event(req, error);
2216 io_commit_cqring(ctx);
2217 spin_unlock_irq(&ctx->completion_lock);
2218
2219 io_cqring_ev_posted(ctx);
2220 req_set_fail_links(req);
2221 io_double_put_req(req);
2222 }
2223
2224 static void io_req_task_cancel(struct callback_head *cb)
2225 {
2226 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2227 struct io_ring_ctx *ctx = req->ctx;
2228
2229 __io_req_task_cancel(req, -ECANCELED);
2230 percpu_ref_put(&ctx->refs);
2231 }
2232
2233 static void __io_req_task_submit(struct io_kiocb *req)
2234 {
2235 struct io_ring_ctx *ctx = req->ctx;
2236
2237 mutex_lock(&ctx->uring_lock);
2238 if (!ctx->sqo_dead &&
2239 !__io_sq_thread_acquire_mm(ctx) &&
2240 !__io_sq_thread_acquire_files(ctx))
2241 __io_queue_sqe(req, NULL);
2242 else
2243 __io_req_task_cancel(req, -EFAULT);
2244 mutex_unlock(&ctx->uring_lock);
2245 }
2246
2247 static void io_req_task_submit(struct callback_head *cb)
2248 {
2249 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2250 struct io_ring_ctx *ctx = req->ctx;
2251
2252 __io_req_task_submit(req);
2253 percpu_ref_put(&ctx->refs);
2254 }
2255
2256 static void io_req_task_queue(struct io_kiocb *req)
2257 {
2258 int ret;
2259
2260 init_task_work(&req->task_work, io_req_task_submit);
2261 percpu_ref_get(&req->ctx->refs);
2262
2263 ret = io_req_task_work_add(req);
2264 if (unlikely(ret))
2265 io_req_task_work_add_fallback(req, io_req_task_cancel);
2266 }
2267
2268 static inline void io_queue_next(struct io_kiocb *req)
2269 {
2270 struct io_kiocb *nxt = io_req_find_next(req);
2271
2272 if (nxt)
2273 io_req_task_queue(nxt);
2274 }
2275
2276 static void io_free_req(struct io_kiocb *req)
2277 {
2278 io_queue_next(req);
2279 __io_free_req(req);
2280 }
2281
2282 struct req_batch {
2283 void *reqs[IO_IOPOLL_BATCH];
2284 int to_free;
2285
2286 struct task_struct *task;
2287 int task_refs;
2288 };
2289
2290 static inline void io_init_req_batch(struct req_batch *rb)
2291 {
2292 rb->to_free = 0;
2293 rb->task_refs = 0;
2294 rb->task = NULL;
2295 }
2296
2297 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2298 struct req_batch *rb)
2299 {
2300 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2301 percpu_ref_put_many(&ctx->refs, rb->to_free);
2302 rb->to_free = 0;
2303 }
2304
2305 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2306 struct req_batch *rb)
2307 {
2308 if (rb->to_free)
2309 __io_req_free_batch_flush(ctx, rb);
2310 if (rb->task) {
2311 io_put_task(rb->task, rb->task_refs);
2312 rb->task = NULL;
2313 }
2314 }
2315
2316 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2317 {
2318 if (unlikely(io_is_fallback_req(req))) {
2319 io_free_req(req);
2320 return;
2321 }
2322 io_queue_next(req);
2323
2324 if (req->task != rb->task) {
2325 if (rb->task)
2326 io_put_task(rb->task, rb->task_refs);
2327 rb->task = req->task;
2328 rb->task_refs = 0;
2329 }
2330 rb->task_refs++;
2331
2332 io_dismantle_req(req);
2333 rb->reqs[rb->to_free++] = req;
2334 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2335 __io_req_free_batch_flush(req->ctx, rb);
2336 }
2337
2338 /*
2339 * Drop reference to request, return next in chain (if there is one) if this
2340 * was the last reference to this request.
2341 */
2342 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2343 {
2344 struct io_kiocb *nxt = NULL;
2345
2346 if (refcount_dec_and_test(&req->refs)) {
2347 nxt = io_req_find_next(req);
2348 __io_free_req(req);
2349 }
2350 return nxt;
2351 }
2352
2353 static void io_put_req(struct io_kiocb *req)
2354 {
2355 if (refcount_dec_and_test(&req->refs))
2356 io_free_req(req);
2357 }
2358
2359 static void io_put_req_deferred_cb(struct callback_head *cb)
2360 {
2361 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2362
2363 io_free_req(req);
2364 }
2365
2366 static void io_free_req_deferred(struct io_kiocb *req)
2367 {
2368 int ret;
2369
2370 init_task_work(&req->task_work, io_put_req_deferred_cb);
2371 ret = io_req_task_work_add(req);
2372 if (unlikely(ret))
2373 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2374 }
2375
2376 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2377 {
2378 if (refcount_sub_and_test(refs, &req->refs))
2379 io_free_req_deferred(req);
2380 }
2381
2382 static void io_double_put_req(struct io_kiocb *req)
2383 {
2384 /* drop both submit and complete references */
2385 if (refcount_sub_and_test(2, &req->refs))
2386 io_free_req(req);
2387 }
2388
2389 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2390 {
2391 /* See comment at the top of this file */
2392 smp_rmb();
2393 return __io_cqring_events(ctx);
2394 }
2395
2396 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2397 {
2398 struct io_rings *rings = ctx->rings;
2399
2400 /* make sure SQ entry isn't read before tail */
2401 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2402 }
2403
2404 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2405 {
2406 unsigned int cflags;
2407
2408 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2409 cflags |= IORING_CQE_F_BUFFER;
2410 req->flags &= ~REQ_F_BUFFER_SELECTED;
2411 kfree(kbuf);
2412 return cflags;
2413 }
2414
2415 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2416 {
2417 struct io_buffer *kbuf;
2418
2419 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2420 return io_put_kbuf(req, kbuf);
2421 }
2422
2423 static inline bool io_run_task_work(void)
2424 {
2425 /*
2426 * Not safe to run on exiting task, and the task_work handling will
2427 * not add work to such a task.
2428 */
2429 if (unlikely(current->flags & PF_EXITING))
2430 return false;
2431 if (current->task_works) {
2432 __set_current_state(TASK_RUNNING);
2433 task_work_run();
2434 return true;
2435 }
2436
2437 return false;
2438 }
2439
2440 static void io_iopoll_queue(struct list_head *again)
2441 {
2442 struct io_kiocb *req;
2443
2444 do {
2445 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2446 list_del(&req->inflight_entry);
2447 __io_complete_rw(req, -EAGAIN, 0, NULL);
2448 } while (!list_empty(again));
2449 }
2450
2451 /*
2452 * Find and free completed poll iocbs
2453 */
2454 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2455 struct list_head *done)
2456 {
2457 struct req_batch rb;
2458 struct io_kiocb *req;
2459 LIST_HEAD(again);
2460
2461 /* order with ->result store in io_complete_rw_iopoll() */
2462 smp_rmb();
2463
2464 io_init_req_batch(&rb);
2465 while (!list_empty(done)) {
2466 int cflags = 0;
2467
2468 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2469 if (READ_ONCE(req->result) == -EAGAIN) {
2470 req->result = 0;
2471 req->iopoll_completed = 0;
2472 list_move_tail(&req->inflight_entry, &again);
2473 continue;
2474 }
2475 list_del(&req->inflight_entry);
2476
2477 if (req->flags & REQ_F_BUFFER_SELECTED)
2478 cflags = io_put_rw_kbuf(req);
2479
2480 __io_cqring_fill_event(req, req->result, cflags);
2481 (*nr_events)++;
2482
2483 if (refcount_dec_and_test(&req->refs))
2484 io_req_free_batch(&rb, req);
2485 }
2486
2487 io_commit_cqring(ctx);
2488 io_cqring_ev_posted_iopoll(ctx);
2489 io_req_free_batch_finish(ctx, &rb);
2490
2491 if (!list_empty(&again))
2492 io_iopoll_queue(&again);
2493 }
2494
2495 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2496 long min)
2497 {
2498 struct io_kiocb *req, *tmp;
2499 LIST_HEAD(done);
2500 bool spin;
2501 int ret;
2502
2503 /*
2504 * Only spin for completions if we don't have multiple devices hanging
2505 * off our complete list, and we're under the requested amount.
2506 */
2507 spin = !ctx->poll_multi_file && *nr_events < min;
2508
2509 ret = 0;
2510 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2511 struct kiocb *kiocb = &req->rw.kiocb;
2512
2513 /*
2514 * Move completed and retryable entries to our local lists.
2515 * If we find a request that requires polling, break out
2516 * and complete those lists first, if we have entries there.
2517 */
2518 if (READ_ONCE(req->iopoll_completed)) {
2519 list_move_tail(&req->inflight_entry, &done);
2520 continue;
2521 }
2522 if (!list_empty(&done))
2523 break;
2524
2525 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2526 if (ret < 0)
2527 break;
2528
2529 /* iopoll may have completed current req */
2530 if (READ_ONCE(req->iopoll_completed))
2531 list_move_tail(&req->inflight_entry, &done);
2532
2533 if (ret && spin)
2534 spin = false;
2535 ret = 0;
2536 }
2537
2538 if (!list_empty(&done))
2539 io_iopoll_complete(ctx, nr_events, &done);
2540
2541 return ret;
2542 }
2543
2544 /*
2545 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2546 * non-spinning poll check - we'll still enter the driver poll loop, but only
2547 * as a non-spinning completion check.
2548 */
2549 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2550 long min)
2551 {
2552 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2553 int ret;
2554
2555 ret = io_do_iopoll(ctx, nr_events, min);
2556 if (ret < 0)
2557 return ret;
2558 if (*nr_events >= min)
2559 return 0;
2560 }
2561
2562 return 1;
2563 }
2564
2565 /*
2566 * We can't just wait for polled events to come to us, we have to actively
2567 * find and complete them.
2568 */
2569 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2570 {
2571 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2572 return;
2573
2574 mutex_lock(&ctx->uring_lock);
2575 while (!list_empty(&ctx->iopoll_list)) {
2576 unsigned int nr_events = 0;
2577
2578 io_do_iopoll(ctx, &nr_events, 0);
2579
2580 /* let it sleep and repeat later if can't complete a request */
2581 if (nr_events == 0)
2582 break;
2583 /*
2584 * Ensure we allow local-to-the-cpu processing to take place,
2585 * in this case we need to ensure that we reap all events.
2586 * Also let task_work, etc. to progress by releasing the mutex
2587 */
2588 if (need_resched()) {
2589 mutex_unlock(&ctx->uring_lock);
2590 cond_resched();
2591 mutex_lock(&ctx->uring_lock);
2592 }
2593 }
2594 mutex_unlock(&ctx->uring_lock);
2595 }
2596
2597 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2598 {
2599 unsigned int nr_events = 0;
2600 int iters = 0, ret = 0;
2601
2602 /*
2603 * We disallow the app entering submit/complete with polling, but we
2604 * still need to lock the ring to prevent racing with polled issue
2605 * that got punted to a workqueue.
2606 */
2607 mutex_lock(&ctx->uring_lock);
2608 do {
2609 /*
2610 * Don't enter poll loop if we already have events pending.
2611 * If we do, we can potentially be spinning for commands that
2612 * already triggered a CQE (eg in error).
2613 */
2614 if (test_bit(0, &ctx->cq_check_overflow))
2615 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2616 if (io_cqring_events(ctx))
2617 break;
2618
2619 /*
2620 * If a submit got punted to a workqueue, we can have the
2621 * application entering polling for a command before it gets
2622 * issued. That app will hold the uring_lock for the duration
2623 * of the poll right here, so we need to take a breather every
2624 * now and then to ensure that the issue has a chance to add
2625 * the poll to the issued list. Otherwise we can spin here
2626 * forever, while the workqueue is stuck trying to acquire the
2627 * very same mutex.
2628 */
2629 if (!(++iters & 7)) {
2630 mutex_unlock(&ctx->uring_lock);
2631 io_run_task_work();
2632 mutex_lock(&ctx->uring_lock);
2633 }
2634
2635 ret = io_iopoll_getevents(ctx, &nr_events, min);
2636 if (ret <= 0)
2637 break;
2638 ret = 0;
2639 } while (min && !nr_events && !need_resched());
2640
2641 mutex_unlock(&ctx->uring_lock);
2642 return ret;
2643 }
2644
2645 static void kiocb_end_write(struct io_kiocb *req)
2646 {
2647 /*
2648 * Tell lockdep we inherited freeze protection from submission
2649 * thread.
2650 */
2651 if (req->flags & REQ_F_ISREG) {
2652 struct inode *inode = file_inode(req->file);
2653
2654 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2655 }
2656 file_end_write(req->file);
2657 }
2658
2659 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2660 struct io_comp_state *cs)
2661 {
2662 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2663 int cflags = 0;
2664
2665 if (kiocb->ki_flags & IOCB_WRITE)
2666 kiocb_end_write(req);
2667
2668 if (res != req->result)
2669 req_set_fail_links(req);
2670 if (req->flags & REQ_F_BUFFER_SELECTED)
2671 cflags = io_put_rw_kbuf(req);
2672 __io_req_complete(req, res, cflags, cs);
2673 }
2674
2675 #ifdef CONFIG_BLOCK
2676 static bool io_resubmit_prep(struct io_kiocb *req)
2677 {
2678 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2679 int rw, ret = -ECANCELED;
2680 struct iov_iter iter;
2681
2682 /* already prepared */
2683 if (req->async_data)
2684 return true;
2685
2686 switch (req->opcode) {
2687 case IORING_OP_READV:
2688 case IORING_OP_READ_FIXED:
2689 case IORING_OP_READ:
2690 rw = READ;
2691 break;
2692 case IORING_OP_WRITEV:
2693 case IORING_OP_WRITE_FIXED:
2694 case IORING_OP_WRITE:
2695 rw = WRITE;
2696 break;
2697 default:
2698 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2699 req->opcode);
2700 return false;
2701 }
2702
2703 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2704 if (ret < 0)
2705 return false;
2706 return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2707 }
2708 #endif
2709
2710 static bool io_rw_reissue(struct io_kiocb *req, long res)
2711 {
2712 #ifdef CONFIG_BLOCK
2713 umode_t mode;
2714 int ret;
2715
2716 if (res != -EAGAIN && res != -EOPNOTSUPP)
2717 return false;
2718 mode = file_inode(req->file)->i_mode;
2719 if (!S_ISBLK(mode) && !S_ISREG(mode))
2720 return false;
2721 if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
2722 return false;
2723
2724 lockdep_assert_held(&req->ctx->uring_lock);
2725
2726 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2727
2728 if (!ret && io_resubmit_prep(req)) {
2729 refcount_inc(&req->refs);
2730 io_queue_async_work(req);
2731 return true;
2732 }
2733 req_set_fail_links(req);
2734 #endif
2735 return false;
2736 }
2737
2738 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2739 struct io_comp_state *cs)
2740 {
2741 if (!io_rw_reissue(req, res))
2742 io_complete_rw_common(&req->rw.kiocb, res, cs);
2743 }
2744
2745 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2746 {
2747 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2748
2749 __io_complete_rw(req, res, res2, NULL);
2750 }
2751
2752 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2753 {
2754 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2755
2756 if (kiocb->ki_flags & IOCB_WRITE)
2757 kiocb_end_write(req);
2758
2759 if (res != -EAGAIN && res != req->result)
2760 req_set_fail_links(req);
2761
2762 WRITE_ONCE(req->result, res);
2763 /* order with io_poll_complete() checking ->result */
2764 smp_wmb();
2765 WRITE_ONCE(req->iopoll_completed, 1);
2766 }
2767
2768 /*
2769 * After the iocb has been issued, it's safe to be found on the poll list.
2770 * Adding the kiocb to the list AFTER submission ensures that we don't
2771 * find it from a io_iopoll_getevents() thread before the issuer is done
2772 * accessing the kiocb cookie.
2773 */
2774 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2775 {
2776 struct io_ring_ctx *ctx = req->ctx;
2777
2778 /*
2779 * Track whether we have multiple files in our lists. This will impact
2780 * how we do polling eventually, not spinning if we're on potentially
2781 * different devices.
2782 */
2783 if (list_empty(&ctx->iopoll_list)) {
2784 ctx->poll_multi_file = false;
2785 } else if (!ctx->poll_multi_file) {
2786 struct io_kiocb *list_req;
2787
2788 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2789 inflight_entry);
2790 if (list_req->file != req->file)
2791 ctx->poll_multi_file = true;
2792 }
2793
2794 /*
2795 * For fast devices, IO may have already completed. If it has, add
2796 * it to the front so we find it first.
2797 */
2798 if (READ_ONCE(req->iopoll_completed))
2799 list_add(&req->inflight_entry, &ctx->iopoll_list);
2800 else
2801 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2802
2803 /*
2804 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2805 * task context or in io worker task context. If current task context is
2806 * sq thread, we don't need to check whether should wake up sq thread.
2807 */
2808 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2809 wq_has_sleeper(&ctx->sq_data->wait))
2810 wake_up(&ctx->sq_data->wait);
2811 }
2812
2813 static inline void io_state_file_put(struct io_submit_state *state)
2814 {
2815 if (state->file_refs) {
2816 fput_many(state->file, state->file_refs);
2817 state->file_refs = 0;
2818 }
2819 }
2820
2821 /*
2822 * Get as many references to a file as we have IOs left in this submission,
2823 * assuming most submissions are for one file, or at least that each file
2824 * has more than one submission.
2825 */
2826 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2827 {
2828 if (!state)
2829 return fget(fd);
2830
2831 if (state->file_refs) {
2832 if (state->fd == fd) {
2833 state->file_refs--;
2834 return state->file;
2835 }
2836 io_state_file_put(state);
2837 }
2838 state->file = fget_many(fd, state->ios_left);
2839 if (unlikely(!state->file))
2840 return NULL;
2841
2842 state->fd = fd;
2843 state->file_refs = state->ios_left - 1;
2844 return state->file;
2845 }
2846
2847 static bool io_bdev_nowait(struct block_device *bdev)
2848 {
2849 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2850 }
2851
2852 /*
2853 * If we tracked the file through the SCM inflight mechanism, we could support
2854 * any file. For now, just ensure that anything potentially problematic is done
2855 * inline.
2856 */
2857 static bool io_file_supports_async(struct file *file, int rw)
2858 {
2859 umode_t mode = file_inode(file)->i_mode;
2860
2861 if (S_ISBLK(mode)) {
2862 if (IS_ENABLED(CONFIG_BLOCK) &&
2863 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2864 return true;
2865 return false;
2866 }
2867 if (S_ISCHR(mode) || S_ISSOCK(mode))
2868 return true;
2869 if (S_ISREG(mode)) {
2870 if (IS_ENABLED(CONFIG_BLOCK) &&
2871 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2872 file->f_op != &io_uring_fops)
2873 return true;
2874 return false;
2875 }
2876
2877 /* any ->read/write should understand O_NONBLOCK */
2878 if (file->f_flags & O_NONBLOCK)
2879 return true;
2880
2881 if (!(file->f_mode & FMODE_NOWAIT))
2882 return false;
2883
2884 if (rw == READ)
2885 return file->f_op->read_iter != NULL;
2886
2887 return file->f_op->write_iter != NULL;
2888 }
2889
2890 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2891 {
2892 struct io_ring_ctx *ctx = req->ctx;
2893 struct kiocb *kiocb = &req->rw.kiocb;
2894 struct file *file = req->file;
2895 unsigned ioprio;
2896 int ret;
2897
2898 if (S_ISREG(file_inode(file)->i_mode))
2899 req->flags |= REQ_F_ISREG;
2900
2901 kiocb->ki_pos = READ_ONCE(sqe->off);
2902 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2903 req->flags |= REQ_F_CUR_POS;
2904 kiocb->ki_pos = file->f_pos;
2905 }
2906 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2907 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2908 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2909 if (unlikely(ret))
2910 return ret;
2911
2912 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2913 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2914 req->flags |= REQ_F_NOWAIT;
2915
2916 ioprio = READ_ONCE(sqe->ioprio);
2917 if (ioprio) {
2918 ret = ioprio_check_cap(ioprio);
2919 if (ret)
2920 return ret;
2921
2922 kiocb->ki_ioprio = ioprio;
2923 } else
2924 kiocb->ki_ioprio = get_current_ioprio();
2925
2926 if (ctx->flags & IORING_SETUP_IOPOLL) {
2927 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2928 !kiocb->ki_filp->f_op->iopoll)
2929 return -EOPNOTSUPP;
2930
2931 kiocb->ki_flags |= IOCB_HIPRI;
2932 kiocb->ki_complete = io_complete_rw_iopoll;
2933 req->iopoll_completed = 0;
2934 } else {
2935 if (kiocb->ki_flags & IOCB_HIPRI)
2936 return -EINVAL;
2937 kiocb->ki_complete = io_complete_rw;
2938 }
2939
2940 req->rw.addr = READ_ONCE(sqe->addr);
2941 req->rw.len = READ_ONCE(sqe->len);
2942 req->buf_index = READ_ONCE(sqe->buf_index);
2943 return 0;
2944 }
2945
2946 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2947 {
2948 switch (ret) {
2949 case -EIOCBQUEUED:
2950 break;
2951 case -ERESTARTSYS:
2952 case -ERESTARTNOINTR:
2953 case -ERESTARTNOHAND:
2954 case -ERESTART_RESTARTBLOCK:
2955 /*
2956 * We can't just restart the syscall, since previously
2957 * submitted sqes may already be in progress. Just fail this
2958 * IO with EINTR.
2959 */
2960 ret = -EINTR;
2961 fallthrough;
2962 default:
2963 kiocb->ki_complete(kiocb, ret, 0);
2964 }
2965 }
2966
2967 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2968 struct io_comp_state *cs)
2969 {
2970 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2971 struct io_async_rw *io = req->async_data;
2972
2973 /* add previously done IO, if any */
2974 if (io && io->bytes_done > 0) {
2975 if (ret < 0)
2976 ret = io->bytes_done;
2977 else
2978 ret += io->bytes_done;
2979 }
2980
2981 if (req->flags & REQ_F_CUR_POS)
2982 req->file->f_pos = kiocb->ki_pos;
2983 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2984 __io_complete_rw(req, ret, 0, cs);
2985 else
2986 io_rw_done(kiocb, ret);
2987 }
2988
2989 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2990 {
2991 struct io_ring_ctx *ctx = req->ctx;
2992 size_t len = req->rw.len;
2993 struct io_mapped_ubuf *imu;
2994 u16 index, buf_index = req->buf_index;
2995 size_t offset;
2996 u64 buf_addr;
2997
2998 if (unlikely(buf_index >= ctx->nr_user_bufs))
2999 return -EFAULT;
3000 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3001 imu = &ctx->user_bufs[index];
3002 buf_addr = req->rw.addr;
3003
3004 /* overflow */
3005 if (buf_addr + len < buf_addr)
3006 return -EFAULT;
3007 /* not inside the mapped region */
3008 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3009 return -EFAULT;
3010
3011 /*
3012 * May not be a start of buffer, set size appropriately
3013 * and advance us to the beginning.
3014 */
3015 offset = buf_addr - imu->ubuf;
3016 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3017
3018 if (offset) {
3019 /*
3020 * Don't use iov_iter_advance() here, as it's really slow for
3021 * using the latter parts of a big fixed buffer - it iterates
3022 * over each segment manually. We can cheat a bit here, because
3023 * we know that:
3024 *
3025 * 1) it's a BVEC iter, we set it up
3026 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3027 * first and last bvec
3028 *
3029 * So just find our index, and adjust the iterator afterwards.
3030 * If the offset is within the first bvec (or the whole first
3031 * bvec, just use iov_iter_advance(). This makes it easier
3032 * since we can just skip the first segment, which may not
3033 * be PAGE_SIZE aligned.
3034 */
3035 const struct bio_vec *bvec = imu->bvec;
3036
3037 if (offset <= bvec->bv_len) {
3038 iov_iter_advance(iter, offset);
3039 } else {
3040 unsigned long seg_skip;
3041
3042 /* skip first vec */
3043 offset -= bvec->bv_len;
3044 seg_skip = 1 + (offset >> PAGE_SHIFT);
3045
3046 iter->bvec = bvec + seg_skip;
3047 iter->nr_segs -= seg_skip;
3048 iter->count -= bvec->bv_len + offset;
3049 iter->iov_offset = offset & ~PAGE_MASK;
3050 }
3051 }
3052
3053 return 0;
3054 }
3055
3056 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3057 {
3058 if (needs_lock)
3059 mutex_unlock(&ctx->uring_lock);
3060 }
3061
3062 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3063 {
3064 /*
3065 * "Normal" inline submissions always hold the uring_lock, since we
3066 * grab it from the system call. Same is true for the SQPOLL offload.
3067 * The only exception is when we've detached the request and issue it
3068 * from an async worker thread, grab the lock for that case.
3069 */
3070 if (needs_lock)
3071 mutex_lock(&ctx->uring_lock);
3072 }
3073
3074 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3075 int bgid, struct io_buffer *kbuf,
3076 bool needs_lock)
3077 {
3078 struct io_buffer *head;
3079
3080 if (req->flags & REQ_F_BUFFER_SELECTED)
3081 return kbuf;
3082
3083 io_ring_submit_lock(req->ctx, needs_lock);
3084
3085 lockdep_assert_held(&req->ctx->uring_lock);
3086
3087 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3088 if (head) {
3089 if (!list_empty(&head->list)) {
3090 kbuf = list_last_entry(&head->list, struct io_buffer,
3091 list);
3092 list_del(&kbuf->list);
3093 } else {
3094 kbuf = head;
3095 idr_remove(&req->ctx->io_buffer_idr, bgid);
3096 }
3097 if (*len > kbuf->len)
3098 *len = kbuf->len;
3099 } else {
3100 kbuf = ERR_PTR(-ENOBUFS);
3101 }
3102
3103 io_ring_submit_unlock(req->ctx, needs_lock);
3104
3105 return kbuf;
3106 }
3107
3108 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3109 bool needs_lock)
3110 {
3111 struct io_buffer *kbuf;
3112 u16 bgid;
3113
3114 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3115 bgid = req->buf_index;
3116 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3117 if (IS_ERR(kbuf))
3118 return kbuf;
3119 req->rw.addr = (u64) (unsigned long) kbuf;
3120 req->flags |= REQ_F_BUFFER_SELECTED;
3121 return u64_to_user_ptr(kbuf->addr);
3122 }
3123
3124 #ifdef CONFIG_COMPAT
3125 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3126 bool needs_lock)
3127 {
3128 struct compat_iovec __user *uiov;
3129 compat_ssize_t clen;
3130 void __user *buf;
3131 ssize_t len;
3132
3133 uiov = u64_to_user_ptr(req->rw.addr);
3134 if (!access_ok(uiov, sizeof(*uiov)))
3135 return -EFAULT;
3136 if (__get_user(clen, &uiov->iov_len))
3137 return -EFAULT;
3138 if (clen < 0)
3139 return -EINVAL;
3140
3141 len = clen;
3142 buf = io_rw_buffer_select(req, &len, needs_lock);
3143 if (IS_ERR(buf))
3144 return PTR_ERR(buf);
3145 iov[0].iov_base = buf;
3146 iov[0].iov_len = (compat_size_t) len;
3147 return 0;
3148 }
3149 #endif
3150
3151 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3152 bool needs_lock)
3153 {
3154 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3155 void __user *buf;
3156 ssize_t len;
3157
3158 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3159 return -EFAULT;
3160
3161 len = iov[0].iov_len;
3162 if (len < 0)
3163 return -EINVAL;
3164 buf = io_rw_buffer_select(req, &len, needs_lock);
3165 if (IS_ERR(buf))
3166 return PTR_ERR(buf);
3167 iov[0].iov_base = buf;
3168 iov[0].iov_len = len;
3169 return 0;
3170 }
3171
3172 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3173 bool needs_lock)
3174 {
3175 if (req->flags & REQ_F_BUFFER_SELECTED) {
3176 struct io_buffer *kbuf;
3177
3178 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3179 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3180 iov[0].iov_len = kbuf->len;
3181 return 0;
3182 }
3183 if (req->rw.len != 1)
3184 return -EINVAL;
3185
3186 #ifdef CONFIG_COMPAT
3187 if (req->ctx->compat)
3188 return io_compat_import(req, iov, needs_lock);
3189 #endif
3190
3191 return __io_iov_buffer_select(req, iov, needs_lock);
3192 }
3193
3194 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3195 struct iov_iter *iter, bool needs_lock)
3196 {
3197 void __user *buf = u64_to_user_ptr(req->rw.addr);
3198 size_t sqe_len = req->rw.len;
3199 u8 opcode = req->opcode;
3200 ssize_t ret;
3201
3202 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3203 *iovec = NULL;
3204 return io_import_fixed(req, rw, iter);
3205 }
3206
3207 /* buffer index only valid with fixed read/write, or buffer select */
3208 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3209 return -EINVAL;
3210
3211 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3212 if (req->flags & REQ_F_BUFFER_SELECT) {
3213 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3214 if (IS_ERR(buf))
3215 return PTR_ERR(buf);
3216 req->rw.len = sqe_len;
3217 }
3218
3219 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3220 *iovec = NULL;
3221 return ret;
3222 }
3223
3224 if (req->flags & REQ_F_BUFFER_SELECT) {
3225 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3226 if (!ret)
3227 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3228 *iovec = NULL;
3229 return ret;
3230 }
3231
3232 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3233 req->ctx->compat);
3234 }
3235
3236 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3237 {
3238 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3239 }
3240
3241 /*
3242 * For files that don't have ->read_iter() and ->write_iter(), handle them
3243 * by looping over ->read() or ->write() manually.
3244 */
3245 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3246 {
3247 struct kiocb *kiocb = &req->rw.kiocb;
3248 struct file *file = req->file;
3249 ssize_t ret = 0;
3250
3251 /*
3252 * Don't support polled IO through this interface, and we can't
3253 * support non-blocking either. For the latter, this just causes
3254 * the kiocb to be handled from an async context.
3255 */
3256 if (kiocb->ki_flags & IOCB_HIPRI)
3257 return -EOPNOTSUPP;
3258 if (kiocb->ki_flags & IOCB_NOWAIT)
3259 return -EAGAIN;
3260
3261 while (iov_iter_count(iter)) {
3262 struct iovec iovec;
3263 ssize_t nr;
3264
3265 if (!iov_iter_is_bvec(iter)) {
3266 iovec = iov_iter_iovec(iter);
3267 } else {
3268 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3269 iovec.iov_len = req->rw.len;
3270 }
3271
3272 if (rw == READ) {
3273 nr = file->f_op->read(file, iovec.iov_base,
3274 iovec.iov_len, io_kiocb_ppos(kiocb));
3275 } else {
3276 nr = file->f_op->write(file, iovec.iov_base,
3277 iovec.iov_len, io_kiocb_ppos(kiocb));
3278 }
3279
3280 if (nr < 0) {
3281 if (!ret)
3282 ret = nr;
3283 break;
3284 }
3285 ret += nr;
3286 if (nr != iovec.iov_len)
3287 break;
3288 req->rw.len -= nr;
3289 req->rw.addr += nr;
3290 iov_iter_advance(iter, nr);
3291 }
3292
3293 return ret;
3294 }
3295
3296 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3297 const struct iovec *fast_iov, struct iov_iter *iter)
3298 {
3299 struct io_async_rw *rw = req->async_data;
3300
3301 memcpy(&rw->iter, iter, sizeof(*iter));
3302 rw->free_iovec = iovec;
3303 rw->bytes_done = 0;
3304 /* can only be fixed buffers, no need to do anything */
3305 if (iov_iter_is_bvec(iter))
3306 return;
3307 if (!iovec) {
3308 unsigned iov_off = 0;
3309
3310 rw->iter.iov = rw->fast_iov;
3311 if (iter->iov != fast_iov) {
3312 iov_off = iter->iov - fast_iov;
3313 rw->iter.iov += iov_off;
3314 }
3315 if (rw->fast_iov != fast_iov)
3316 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3317 sizeof(struct iovec) * iter->nr_segs);
3318 } else {
3319 req->flags |= REQ_F_NEED_CLEANUP;
3320 }
3321 }
3322
3323 static inline int __io_alloc_async_data(struct io_kiocb *req)
3324 {
3325 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3326 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3327 return req->async_data == NULL;
3328 }
3329
3330 static int io_alloc_async_data(struct io_kiocb *req)
3331 {
3332 if (!io_op_defs[req->opcode].needs_async_data)
3333 return 0;
3334
3335 return __io_alloc_async_data(req);
3336 }
3337
3338 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3339 const struct iovec *fast_iov,
3340 struct iov_iter *iter, bool force)
3341 {
3342 if (!force && !io_op_defs[req->opcode].needs_async_data)
3343 return 0;
3344 if (!req->async_data) {
3345 if (__io_alloc_async_data(req)) {
3346 kfree(iovec);
3347 return -ENOMEM;
3348 }
3349
3350 io_req_map_rw(req, iovec, fast_iov, iter);
3351 }
3352 return 0;
3353 }
3354
3355 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3356 {
3357 struct io_async_rw *iorw = req->async_data;
3358 struct iovec *iov = iorw->fast_iov;
3359 int ret;
3360
3361 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3362 if (unlikely(ret < 0))
3363 return ret;
3364
3365 iorw->bytes_done = 0;
3366 iorw->free_iovec = iov;
3367 if (iov)
3368 req->flags |= REQ_F_NEED_CLEANUP;
3369 return 0;
3370 }
3371
3372 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3373 {
3374 ssize_t ret;
3375
3376 ret = io_prep_rw(req, sqe);
3377 if (ret)
3378 return ret;
3379
3380 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3381 return -EBADF;
3382
3383 /* either don't need iovec imported or already have it */
3384 if (!req->async_data)
3385 return 0;
3386 return io_rw_prep_async(req, READ);
3387 }
3388
3389 /*
3390 * This is our waitqueue callback handler, registered through lock_page_async()
3391 * when we initially tried to do the IO with the iocb armed our waitqueue.
3392 * This gets called when the page is unlocked, and we generally expect that to
3393 * happen when the page IO is completed and the page is now uptodate. This will
3394 * queue a task_work based retry of the operation, attempting to copy the data
3395 * again. If the latter fails because the page was NOT uptodate, then we will
3396 * do a thread based blocking retry of the operation. That's the unexpected
3397 * slow path.
3398 */
3399 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3400 int sync, void *arg)
3401 {
3402 struct wait_page_queue *wpq;
3403 struct io_kiocb *req = wait->private;
3404 struct wait_page_key *key = arg;
3405 int ret;
3406
3407 wpq = container_of(wait, struct wait_page_queue, wait);
3408
3409 if (!wake_page_match(wpq, key))
3410 return 0;
3411
3412 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3413 list_del_init(&wait->entry);
3414
3415 init_task_work(&req->task_work, io_req_task_submit);
3416 percpu_ref_get(&req->ctx->refs);
3417
3418 /* submit ref gets dropped, acquire a new one */
3419 refcount_inc(&req->refs);
3420 ret = io_req_task_work_add(req);
3421 if (unlikely(ret))
3422 io_req_task_work_add_fallback(req, io_req_task_cancel);
3423 return 1;
3424 }
3425
3426 /*
3427 * This controls whether a given IO request should be armed for async page
3428 * based retry. If we return false here, the request is handed to the async
3429 * worker threads for retry. If we're doing buffered reads on a regular file,
3430 * we prepare a private wait_page_queue entry and retry the operation. This
3431 * will either succeed because the page is now uptodate and unlocked, or it
3432 * will register a callback when the page is unlocked at IO completion. Through
3433 * that callback, io_uring uses task_work to setup a retry of the operation.
3434 * That retry will attempt the buffered read again. The retry will generally
3435 * succeed, or in rare cases where it fails, we then fall back to using the
3436 * async worker threads for a blocking retry.
3437 */
3438 static bool io_rw_should_retry(struct io_kiocb *req)
3439 {
3440 struct io_async_rw *rw = req->async_data;
3441 struct wait_page_queue *wait = &rw->wpq;
3442 struct kiocb *kiocb = &req->rw.kiocb;
3443
3444 /* never retry for NOWAIT, we just complete with -EAGAIN */
3445 if (req->flags & REQ_F_NOWAIT)
3446 return false;
3447
3448 /* Only for buffered IO */
3449 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3450 return false;
3451
3452 /*
3453 * just use poll if we can, and don't attempt if the fs doesn't
3454 * support callback based unlocks
3455 */
3456 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3457 return false;
3458
3459 wait->wait.func = io_async_buf_func;
3460 wait->wait.private = req;
3461 wait->wait.flags = 0;
3462 INIT_LIST_HEAD(&wait->wait.entry);
3463 kiocb->ki_flags |= IOCB_WAITQ;
3464 kiocb->ki_flags &= ~IOCB_NOWAIT;
3465 kiocb->ki_waitq = wait;
3466 return true;
3467 }
3468
3469 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3470 {
3471 if (req->file->f_op->read_iter)
3472 return call_read_iter(req->file, &req->rw.kiocb, iter);
3473 else if (req->file->f_op->read)
3474 return loop_rw_iter(READ, req, iter);
3475 else
3476 return -EINVAL;
3477 }
3478
3479 static int io_read(struct io_kiocb *req, bool force_nonblock,
3480 struct io_comp_state *cs)
3481 {
3482 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3483 struct kiocb *kiocb = &req->rw.kiocb;
3484 struct iov_iter __iter, *iter = &__iter;
3485 struct io_async_rw *rw = req->async_data;
3486 ssize_t io_size, ret, ret2;
3487
3488 if (rw) {
3489 iter = &rw->iter;
3490 iovec = NULL;
3491 } else {
3492 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3493 if (ret < 0)
3494 return ret;
3495 }
3496 io_size = iov_iter_count(iter);
3497 req->result = io_size;
3498
3499 /* Ensure we clear previously set non-block flag */
3500 if (!force_nonblock)
3501 kiocb->ki_flags &= ~IOCB_NOWAIT;
3502 else
3503 kiocb->ki_flags |= IOCB_NOWAIT;
3504
3505 /* If the file doesn't support async, just async punt */
3506 if (force_nonblock && !io_file_supports_async(req->file, READ)) {
3507 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3508 return ret ?: -EAGAIN;
3509 }
3510
3511 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3512 if (unlikely(ret)) {
3513 kfree(iovec);
3514 return ret;
3515 }
3516
3517 ret = io_iter_do_read(req, iter);
3518
3519 if (ret == -EIOCBQUEUED) {
3520 /* it's faster to check here then delegate to kfree */
3521 if (iovec)
3522 kfree(iovec);
3523 return 0;
3524 } else if (ret == -EAGAIN) {
3525 /* IOPOLL retry should happen for io-wq threads */
3526 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3527 goto done;
3528 /* no retry on NONBLOCK nor RWF_NOWAIT */
3529 if (req->flags & REQ_F_NOWAIT)
3530 goto done;
3531 /* some cases will consume bytes even on error returns */
3532 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3533 ret = 0;
3534 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3535 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3536 /* read all, failed, already did sync or don't want to retry */
3537 goto done;
3538 }
3539
3540 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3541 if (ret2)
3542 return ret2;
3543
3544 rw = req->async_data;
3545 /* now use our persistent iterator, if we aren't already */
3546 iter = &rw->iter;
3547
3548 do {
3549 io_size -= ret;
3550 rw->bytes_done += ret;
3551 /* if we can retry, do so with the callbacks armed */
3552 if (!io_rw_should_retry(req)) {
3553 kiocb->ki_flags &= ~IOCB_WAITQ;
3554 return -EAGAIN;
3555 }
3556
3557 /*
3558 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3559 * we get -EIOCBQUEUED, then we'll get a notification when the
3560 * desired page gets unlocked. We can also get a partial read
3561 * here, and if we do, then just retry at the new offset.
3562 */
3563 ret = io_iter_do_read(req, iter);
3564 if (ret == -EIOCBQUEUED)
3565 return 0;
3566 /* we got some bytes, but not all. retry. */
3567 } while (ret > 0 && ret < io_size);
3568 done:
3569 kiocb_done(kiocb, ret, cs);
3570 return 0;
3571 }
3572
3573 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3574 {
3575 ssize_t ret;
3576
3577 ret = io_prep_rw(req, sqe);
3578 if (ret)
3579 return ret;
3580
3581 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3582 return -EBADF;
3583
3584 /* either don't need iovec imported or already have it */
3585 if (!req->async_data)
3586 return 0;
3587 return io_rw_prep_async(req, WRITE);
3588 }
3589
3590 static int io_write(struct io_kiocb *req, bool force_nonblock,
3591 struct io_comp_state *cs)
3592 {
3593 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3594 struct kiocb *kiocb = &req->rw.kiocb;
3595 struct iov_iter __iter, *iter = &__iter;
3596 struct io_async_rw *rw = req->async_data;
3597 ssize_t ret, ret2, io_size;
3598
3599 if (rw) {
3600 iter = &rw->iter;
3601 iovec = NULL;
3602 } else {
3603 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3604 if (ret < 0)
3605 return ret;
3606 }
3607 io_size = iov_iter_count(iter);
3608 req->result = io_size;
3609
3610 /* Ensure we clear previously set non-block flag */
3611 if (!force_nonblock)
3612 kiocb->ki_flags &= ~IOCB_NOWAIT;
3613 else
3614 kiocb->ki_flags |= IOCB_NOWAIT;
3615
3616 /* If the file doesn't support async, just async punt */
3617 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3618 goto copy_iov;
3619
3620 /* file path doesn't support NOWAIT for non-direct_IO */
3621 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3622 (req->flags & REQ_F_ISREG))
3623 goto copy_iov;
3624
3625 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3626 if (unlikely(ret))
3627 goto out_free;
3628
3629 /*
3630 * Open-code file_start_write here to grab freeze protection,
3631 * which will be released by another thread in
3632 * io_complete_rw(). Fool lockdep by telling it the lock got
3633 * released so that it doesn't complain about the held lock when
3634 * we return to userspace.
3635 */
3636 if (req->flags & REQ_F_ISREG) {
3637 sb_start_write(file_inode(req->file)->i_sb);
3638 __sb_writers_release(file_inode(req->file)->i_sb,
3639 SB_FREEZE_WRITE);
3640 }
3641 kiocb->ki_flags |= IOCB_WRITE;
3642
3643 if (req->file->f_op->write_iter)
3644 ret2 = call_write_iter(req->file, kiocb, iter);
3645 else if (req->file->f_op->write)
3646 ret2 = loop_rw_iter(WRITE, req, iter);
3647 else
3648 ret2 = -EINVAL;
3649
3650 /*
3651 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3652 * retry them without IOCB_NOWAIT.
3653 */
3654 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3655 ret2 = -EAGAIN;
3656 /* no retry on NONBLOCK nor RWF_NOWAIT */
3657 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3658 goto done;
3659 if (!force_nonblock || ret2 != -EAGAIN) {
3660 /* IOPOLL retry should happen for io-wq threads */
3661 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3662 goto copy_iov;
3663 done:
3664 kiocb_done(kiocb, ret2, cs);
3665 } else {
3666 copy_iov:
3667 /* some cases will consume bytes even on error returns */
3668 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3669 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3670 return ret ?: -EAGAIN;
3671 }
3672 out_free:
3673 /* it's reportedly faster than delegating the null check to kfree() */
3674 if (iovec)
3675 kfree(iovec);
3676 return ret;
3677 }
3678
3679 static int io_renameat_prep(struct io_kiocb *req,
3680 const struct io_uring_sqe *sqe)
3681 {
3682 struct io_rename *ren = &req->rename;
3683 const char __user *oldf, *newf;
3684
3685 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3686 return -EBADF;
3687
3688 ren->old_dfd = READ_ONCE(sqe->fd);
3689 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3690 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3691 ren->new_dfd = READ_ONCE(sqe->len);
3692 ren->flags = READ_ONCE(sqe->rename_flags);
3693
3694 ren->oldpath = getname(oldf);
3695 if (IS_ERR(ren->oldpath))
3696 return PTR_ERR(ren->oldpath);
3697
3698 ren->newpath = getname(newf);
3699 if (IS_ERR(ren->newpath)) {
3700 putname(ren->oldpath);
3701 return PTR_ERR(ren->newpath);
3702 }
3703
3704 req->flags |= REQ_F_NEED_CLEANUP;
3705 return 0;
3706 }
3707
3708 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3709 {
3710 struct io_rename *ren = &req->rename;
3711 int ret;
3712
3713 if (force_nonblock)
3714 return -EAGAIN;
3715
3716 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3717 ren->newpath, ren->flags);
3718
3719 req->flags &= ~REQ_F_NEED_CLEANUP;
3720 if (ret < 0)
3721 req_set_fail_links(req);
3722 io_req_complete(req, ret);
3723 return 0;
3724 }
3725
3726 static int io_unlinkat_prep(struct io_kiocb *req,
3727 const struct io_uring_sqe *sqe)
3728 {
3729 struct io_unlink *un = &req->unlink;
3730 const char __user *fname;
3731
3732 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3733 return -EBADF;
3734
3735 un->dfd = READ_ONCE(sqe->fd);
3736
3737 un->flags = READ_ONCE(sqe->unlink_flags);
3738 if (un->flags & ~AT_REMOVEDIR)
3739 return -EINVAL;
3740
3741 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3742 un->filename = getname(fname);
3743 if (IS_ERR(un->filename))
3744 return PTR_ERR(un->filename);
3745
3746 req->flags |= REQ_F_NEED_CLEANUP;
3747 return 0;
3748 }
3749
3750 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3751 {
3752 struct io_unlink *un = &req->unlink;
3753 int ret;
3754
3755 if (force_nonblock)
3756 return -EAGAIN;
3757
3758 if (un->flags & AT_REMOVEDIR)
3759 ret = do_rmdir(un->dfd, un->filename);
3760 else
3761 ret = do_unlinkat(un->dfd, un->filename);
3762
3763 req->flags &= ~REQ_F_NEED_CLEANUP;
3764 if (ret < 0)
3765 req_set_fail_links(req);
3766 io_req_complete(req, ret);
3767 return 0;
3768 }
3769
3770 static int io_shutdown_prep(struct io_kiocb *req,
3771 const struct io_uring_sqe *sqe)
3772 {
3773 #if defined(CONFIG_NET)
3774 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3775 return -EINVAL;
3776 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3777 sqe->buf_index)
3778 return -EINVAL;
3779
3780 req->shutdown.how = READ_ONCE(sqe->len);
3781 return 0;
3782 #else
3783 return -EOPNOTSUPP;
3784 #endif
3785 }
3786
3787 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3788 {
3789 #if defined(CONFIG_NET)
3790 struct socket *sock;
3791 int ret;
3792
3793 if (force_nonblock)
3794 return -EAGAIN;
3795
3796 sock = sock_from_file(req->file);
3797 if (unlikely(!sock))
3798 return -ENOTSOCK;
3799
3800 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3801 if (ret < 0)
3802 req_set_fail_links(req);
3803 io_req_complete(req, ret);
3804 return 0;
3805 #else
3806 return -EOPNOTSUPP;
3807 #endif
3808 }
3809
3810 static int __io_splice_prep(struct io_kiocb *req,
3811 const struct io_uring_sqe *sqe)
3812 {
3813 struct io_splice* sp = &req->splice;
3814 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3815
3816 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3817 return -EINVAL;
3818
3819 sp->file_in = NULL;
3820 sp->len = READ_ONCE(sqe->len);
3821 sp->flags = READ_ONCE(sqe->splice_flags);
3822
3823 if (unlikely(sp->flags & ~valid_flags))
3824 return -EINVAL;
3825
3826 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3827 (sp->flags & SPLICE_F_FD_IN_FIXED));
3828 if (!sp->file_in)
3829 return -EBADF;
3830 req->flags |= REQ_F_NEED_CLEANUP;
3831
3832 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3833 /*
3834 * Splice operation will be punted aync, and here need to
3835 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3836 */
3837 io_req_init_async(req);
3838 req->work.flags |= IO_WQ_WORK_UNBOUND;
3839 }
3840
3841 return 0;
3842 }
3843
3844 static int io_tee_prep(struct io_kiocb *req,
3845 const struct io_uring_sqe *sqe)
3846 {
3847 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3848 return -EINVAL;
3849 return __io_splice_prep(req, sqe);
3850 }
3851
3852 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3853 {
3854 struct io_splice *sp = &req->splice;
3855 struct file *in = sp->file_in;
3856 struct file *out = sp->file_out;
3857 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3858 long ret = 0;
3859
3860 if (force_nonblock)
3861 return -EAGAIN;
3862 if (sp->len)
3863 ret = do_tee(in, out, sp->len, flags);
3864
3865 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3866 req->flags &= ~REQ_F_NEED_CLEANUP;
3867
3868 if (ret != sp->len)
3869 req_set_fail_links(req);
3870 io_req_complete(req, ret);
3871 return 0;
3872 }
3873
3874 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3875 {
3876 struct io_splice* sp = &req->splice;
3877
3878 sp->off_in = READ_ONCE(sqe->splice_off_in);
3879 sp->off_out = READ_ONCE(sqe->off);
3880 return __io_splice_prep(req, sqe);
3881 }
3882
3883 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3884 {
3885 struct io_splice *sp = &req->splice;
3886 struct file *in = sp->file_in;
3887 struct file *out = sp->file_out;
3888 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3889 loff_t *poff_in, *poff_out;
3890 long ret = 0;
3891
3892 if (force_nonblock)
3893 return -EAGAIN;
3894
3895 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3896 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3897
3898 if (sp->len)
3899 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3900
3901 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3902 req->flags &= ~REQ_F_NEED_CLEANUP;
3903
3904 if (ret != sp->len)
3905 req_set_fail_links(req);
3906 io_req_complete(req, ret);
3907 return 0;
3908 }
3909
3910 /*
3911 * IORING_OP_NOP just posts a completion event, nothing else.
3912 */
3913 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3914 {
3915 struct io_ring_ctx *ctx = req->ctx;
3916
3917 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3918 return -EINVAL;
3919
3920 __io_req_complete(req, 0, 0, cs);
3921 return 0;
3922 }
3923
3924 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3925 {
3926 struct io_ring_ctx *ctx = req->ctx;
3927
3928 if (!req->file)
3929 return -EBADF;
3930
3931 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3932 return -EINVAL;
3933 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3934 return -EINVAL;
3935
3936 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3937 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3938 return -EINVAL;
3939
3940 req->sync.off = READ_ONCE(sqe->off);
3941 req->sync.len = READ_ONCE(sqe->len);
3942 return 0;
3943 }
3944
3945 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3946 {
3947 loff_t end = req->sync.off + req->sync.len;
3948 int ret;
3949
3950 /* fsync always requires a blocking context */
3951 if (force_nonblock)
3952 return -EAGAIN;
3953
3954 ret = vfs_fsync_range(req->file, req->sync.off,
3955 end > 0 ? end : LLONG_MAX,
3956 req->sync.flags & IORING_FSYNC_DATASYNC);
3957 if (ret < 0)
3958 req_set_fail_links(req);
3959 io_req_complete(req, ret);
3960 return 0;
3961 }
3962
3963 static int io_fallocate_prep(struct io_kiocb *req,
3964 const struct io_uring_sqe *sqe)
3965 {
3966 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3967 return -EINVAL;
3968 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3969 return -EINVAL;
3970
3971 req->sync.off = READ_ONCE(sqe->off);
3972 req->sync.len = READ_ONCE(sqe->addr);
3973 req->sync.mode = READ_ONCE(sqe->len);
3974 return 0;
3975 }
3976
3977 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3978 {
3979 int ret;
3980
3981 /* fallocate always requiring blocking context */
3982 if (force_nonblock)
3983 return -EAGAIN;
3984 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3985 req->sync.len);
3986 if (ret < 0)
3987 req_set_fail_links(req);
3988 io_req_complete(req, ret);
3989 return 0;
3990 }
3991
3992 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3993 {
3994 const char __user *fname;
3995 int ret;
3996
3997 if (unlikely(sqe->ioprio || sqe->buf_index))
3998 return -EINVAL;
3999 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4000 return -EBADF;
4001
4002 /* open.how should be already initialised */
4003 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4004 req->open.how.flags |= O_LARGEFILE;
4005
4006 req->open.dfd = READ_ONCE(sqe->fd);
4007 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4008 req->open.filename = getname(fname);
4009 if (IS_ERR(req->open.filename)) {
4010 ret = PTR_ERR(req->open.filename);
4011 req->open.filename = NULL;
4012 return ret;
4013 }
4014 req->open.nofile = rlimit(RLIMIT_NOFILE);
4015 req->flags |= REQ_F_NEED_CLEANUP;
4016 return 0;
4017 }
4018
4019 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4020 {
4021 u64 flags, mode;
4022
4023 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4024 return -EINVAL;
4025 mode = READ_ONCE(sqe->len);
4026 flags = READ_ONCE(sqe->open_flags);
4027 req->open.how = build_open_how(flags, mode);
4028 return __io_openat_prep(req, sqe);
4029 }
4030
4031 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4032 {
4033 struct open_how __user *how;
4034 size_t len;
4035 int ret;
4036
4037 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4038 return -EINVAL;
4039 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4040 len = READ_ONCE(sqe->len);
4041 if (len < OPEN_HOW_SIZE_VER0)
4042 return -EINVAL;
4043
4044 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4045 len);
4046 if (ret)
4047 return ret;
4048
4049 return __io_openat_prep(req, sqe);
4050 }
4051
4052 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4053 {
4054 struct open_flags op;
4055 struct file *file;
4056 bool nonblock_set;
4057 bool resolve_nonblock;
4058 int ret;
4059
4060 ret = build_open_flags(&req->open.how, &op);
4061 if (ret)
4062 goto err;
4063 nonblock_set = op.open_flag & O_NONBLOCK;
4064 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4065 if (force_nonblock) {
4066 /*
4067 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4068 * it'll always -EAGAIN
4069 */
4070 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4071 return -EAGAIN;
4072 op.lookup_flags |= LOOKUP_CACHED;
4073 op.open_flag |= O_NONBLOCK;
4074 }
4075
4076 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4077 if (ret < 0)
4078 goto err;
4079
4080 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4081 /* only retry if RESOLVE_CACHED wasn't already set by application */
4082 if ((!resolve_nonblock && force_nonblock) && file == ERR_PTR(-EAGAIN)) {
4083 /*
4084 * We could hang on to this 'fd', but seems like marginal
4085 * gain for something that is now known to be a slower path.
4086 * So just put it, and we'll get a new one when we retry.
4087 */
4088 put_unused_fd(ret);
4089 return -EAGAIN;
4090 }
4091
4092 if (IS_ERR(file)) {
4093 put_unused_fd(ret);
4094 ret = PTR_ERR(file);
4095 } else {
4096 if (force_nonblock && !nonblock_set)
4097 file->f_flags &= ~O_NONBLOCK;
4098 fsnotify_open(file);
4099 fd_install(ret, file);
4100 }
4101 err:
4102 putname(req->open.filename);
4103 req->flags &= ~REQ_F_NEED_CLEANUP;
4104 if (ret < 0)
4105 req_set_fail_links(req);
4106 io_req_complete(req, ret);
4107 return 0;
4108 }
4109
4110 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4111 {
4112 return io_openat2(req, force_nonblock);
4113 }
4114
4115 static int io_remove_buffers_prep(struct io_kiocb *req,
4116 const struct io_uring_sqe *sqe)
4117 {
4118 struct io_provide_buf *p = &req->pbuf;
4119 u64 tmp;
4120
4121 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4122 return -EINVAL;
4123
4124 tmp = READ_ONCE(sqe->fd);
4125 if (!tmp || tmp > USHRT_MAX)
4126 return -EINVAL;
4127
4128 memset(p, 0, sizeof(*p));
4129 p->nbufs = tmp;
4130 p->bgid = READ_ONCE(sqe->buf_group);
4131 return 0;
4132 }
4133
4134 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4135 int bgid, unsigned nbufs)
4136 {
4137 unsigned i = 0;
4138
4139 /* shouldn't happen */
4140 if (!nbufs)
4141 return 0;
4142
4143 /* the head kbuf is the list itself */
4144 while (!list_empty(&buf->list)) {
4145 struct io_buffer *nxt;
4146
4147 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4148 list_del(&nxt->list);
4149 kfree(nxt);
4150 if (++i == nbufs)
4151 return i;
4152 }
4153 i++;
4154 kfree(buf);
4155 idr_remove(&ctx->io_buffer_idr, bgid);
4156
4157 return i;
4158 }
4159
4160 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4161 struct io_comp_state *cs)
4162 {
4163 struct io_provide_buf *p = &req->pbuf;
4164 struct io_ring_ctx *ctx = req->ctx;
4165 struct io_buffer *head;
4166 int ret = 0;
4167
4168 io_ring_submit_lock(ctx, !force_nonblock);
4169
4170 lockdep_assert_held(&ctx->uring_lock);
4171
4172 ret = -ENOENT;
4173 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4174 if (head)
4175 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4176 if (ret < 0)
4177 req_set_fail_links(req);
4178
4179 /* need to hold the lock to complete IOPOLL requests */
4180 if (ctx->flags & IORING_SETUP_IOPOLL) {
4181 __io_req_complete(req, ret, 0, cs);
4182 io_ring_submit_unlock(ctx, !force_nonblock);
4183 } else {
4184 io_ring_submit_unlock(ctx, !force_nonblock);
4185 __io_req_complete(req, ret, 0, cs);
4186 }
4187 return 0;
4188 }
4189
4190 static int io_provide_buffers_prep(struct io_kiocb *req,
4191 const struct io_uring_sqe *sqe)
4192 {
4193 struct io_provide_buf *p = &req->pbuf;
4194 u64 tmp;
4195
4196 if (sqe->ioprio || sqe->rw_flags)
4197 return -EINVAL;
4198
4199 tmp = READ_ONCE(sqe->fd);
4200 if (!tmp || tmp > USHRT_MAX)
4201 return -E2BIG;
4202 p->nbufs = tmp;
4203 p->addr = READ_ONCE(sqe->addr);
4204 p->len = READ_ONCE(sqe->len);
4205
4206 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4207 return -EFAULT;
4208
4209 p->bgid = READ_ONCE(sqe->buf_group);
4210 tmp = READ_ONCE(sqe->off);
4211 if (tmp > USHRT_MAX)
4212 return -E2BIG;
4213 p->bid = tmp;
4214 return 0;
4215 }
4216
4217 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4218 {
4219 struct io_buffer *buf;
4220 u64 addr = pbuf->addr;
4221 int i, bid = pbuf->bid;
4222
4223 for (i = 0; i < pbuf->nbufs; i++) {
4224 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4225 if (!buf)
4226 break;
4227
4228 buf->addr = addr;
4229 buf->len = pbuf->len;
4230 buf->bid = bid;
4231 addr += pbuf->len;
4232 bid++;
4233 if (!*head) {
4234 INIT_LIST_HEAD(&buf->list);
4235 *head = buf;
4236 } else {
4237 list_add_tail(&buf->list, &(*head)->list);
4238 }
4239 }
4240
4241 return i ? i : -ENOMEM;
4242 }
4243
4244 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4245 struct io_comp_state *cs)
4246 {
4247 struct io_provide_buf *p = &req->pbuf;
4248 struct io_ring_ctx *ctx = req->ctx;
4249 struct io_buffer *head, *list;
4250 int ret = 0;
4251
4252 io_ring_submit_lock(ctx, !force_nonblock);
4253
4254 lockdep_assert_held(&ctx->uring_lock);
4255
4256 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4257
4258 ret = io_add_buffers(p, &head);
4259 if (ret < 0)
4260 goto out;
4261
4262 if (!list) {
4263 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4264 GFP_KERNEL);
4265 if (ret < 0) {
4266 __io_remove_buffers(ctx, head, p->bgid, -1U);
4267 goto out;
4268 }
4269 }
4270 out:
4271 if (ret < 0)
4272 req_set_fail_links(req);
4273
4274 /* need to hold the lock to complete IOPOLL requests */
4275 if (ctx->flags & IORING_SETUP_IOPOLL) {
4276 __io_req_complete(req, ret, 0, cs);
4277 io_ring_submit_unlock(ctx, !force_nonblock);
4278 } else {
4279 io_ring_submit_unlock(ctx, !force_nonblock);
4280 __io_req_complete(req, ret, 0, cs);
4281 }
4282 return 0;
4283 }
4284
4285 static int io_epoll_ctl_prep(struct io_kiocb *req,
4286 const struct io_uring_sqe *sqe)
4287 {
4288 #if defined(CONFIG_EPOLL)
4289 if (sqe->ioprio || sqe->buf_index)
4290 return -EINVAL;
4291 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4292 return -EINVAL;
4293
4294 req->epoll.epfd = READ_ONCE(sqe->fd);
4295 req->epoll.op = READ_ONCE(sqe->len);
4296 req->epoll.fd = READ_ONCE(sqe->off);
4297
4298 if (ep_op_has_event(req->epoll.op)) {
4299 struct epoll_event __user *ev;
4300
4301 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4302 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4303 return -EFAULT;
4304 }
4305
4306 return 0;
4307 #else
4308 return -EOPNOTSUPP;
4309 #endif
4310 }
4311
4312 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4313 struct io_comp_state *cs)
4314 {
4315 #if defined(CONFIG_EPOLL)
4316 struct io_epoll *ie = &req->epoll;
4317 int ret;
4318
4319 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4320 if (force_nonblock && ret == -EAGAIN)
4321 return -EAGAIN;
4322
4323 if (ret < 0)
4324 req_set_fail_links(req);
4325 __io_req_complete(req, ret, 0, cs);
4326 return 0;
4327 #else
4328 return -EOPNOTSUPP;
4329 #endif
4330 }
4331
4332 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4333 {
4334 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4335 if (sqe->ioprio || sqe->buf_index || sqe->off)
4336 return -EINVAL;
4337 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4338 return -EINVAL;
4339
4340 req->madvise.addr = READ_ONCE(sqe->addr);
4341 req->madvise.len = READ_ONCE(sqe->len);
4342 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4343 return 0;
4344 #else
4345 return -EOPNOTSUPP;
4346 #endif
4347 }
4348
4349 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4350 {
4351 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4352 struct io_madvise *ma = &req->madvise;
4353 int ret;
4354
4355 if (force_nonblock)
4356 return -EAGAIN;
4357
4358 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4359 if (ret < 0)
4360 req_set_fail_links(req);
4361 io_req_complete(req, ret);
4362 return 0;
4363 #else
4364 return -EOPNOTSUPP;
4365 #endif
4366 }
4367
4368 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4369 {
4370 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4371 return -EINVAL;
4372 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4373 return -EINVAL;
4374
4375 req->fadvise.offset = READ_ONCE(sqe->off);
4376 req->fadvise.len = READ_ONCE(sqe->len);
4377 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4378 return 0;
4379 }
4380
4381 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4382 {
4383 struct io_fadvise *fa = &req->fadvise;
4384 int ret;
4385
4386 if (force_nonblock) {
4387 switch (fa->advice) {
4388 case POSIX_FADV_NORMAL:
4389 case POSIX_FADV_RANDOM:
4390 case POSIX_FADV_SEQUENTIAL:
4391 break;
4392 default:
4393 return -EAGAIN;
4394 }
4395 }
4396
4397 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4398 if (ret < 0)
4399 req_set_fail_links(req);
4400 io_req_complete(req, ret);
4401 return 0;
4402 }
4403
4404 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4405 {
4406 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4407 return -EINVAL;
4408 if (sqe->ioprio || sqe->buf_index)
4409 return -EINVAL;
4410 if (req->flags & REQ_F_FIXED_FILE)
4411 return -EBADF;
4412
4413 req->statx.dfd = READ_ONCE(sqe->fd);
4414 req->statx.mask = READ_ONCE(sqe->len);
4415 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4416 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4417 req->statx.flags = READ_ONCE(sqe->statx_flags);
4418
4419 return 0;
4420 }
4421
4422 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4423 {
4424 struct io_statx *ctx = &req->statx;
4425 int ret;
4426
4427 if (force_nonblock) {
4428 /* only need file table for an actual valid fd */
4429 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4430 req->flags |= REQ_F_NO_FILE_TABLE;
4431 return -EAGAIN;
4432 }
4433
4434 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4435 ctx->buffer);
4436
4437 if (ret < 0)
4438 req_set_fail_links(req);
4439 io_req_complete(req, ret);
4440 return 0;
4441 }
4442
4443 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4444 {
4445 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4446 return -EINVAL;
4447 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4448 sqe->rw_flags || sqe->buf_index)
4449 return -EINVAL;
4450 if (req->flags & REQ_F_FIXED_FILE)
4451 return -EBADF;
4452
4453 req->close.fd = READ_ONCE(sqe->fd);
4454 return 0;
4455 }
4456
4457 static int io_close(struct io_kiocb *req, bool force_nonblock,
4458 struct io_comp_state *cs)
4459 {
4460 struct files_struct *files = current->files;
4461 struct io_close *close = &req->close;
4462 struct fdtable *fdt;
4463 struct file *file;
4464 int ret;
4465
4466 file = NULL;
4467 ret = -EBADF;
4468 spin_lock(&files->file_lock);
4469 fdt = files_fdtable(files);
4470 if (close->fd >= fdt->max_fds) {
4471 spin_unlock(&files->file_lock);
4472 goto err;
4473 }
4474 file = fdt->fd[close->fd];
4475 if (!file) {
4476 spin_unlock(&files->file_lock);
4477 goto err;
4478 }
4479
4480 if (file->f_op == &io_uring_fops) {
4481 spin_unlock(&files->file_lock);
4482 file = NULL;
4483 goto err;
4484 }
4485
4486 /* if the file has a flush method, be safe and punt to async */
4487 if (file->f_op->flush && force_nonblock) {
4488 spin_unlock(&files->file_lock);
4489 return -EAGAIN;
4490 }
4491
4492 ret = __close_fd_get_file(close->fd, &file);
4493 spin_unlock(&files->file_lock);
4494 if (ret < 0) {
4495 if (ret == -ENOENT)
4496 ret = -EBADF;
4497 goto err;
4498 }
4499
4500 /* No ->flush() or already async, safely close from here */
4501 ret = filp_close(file, current->files);
4502 err:
4503 if (ret < 0)
4504 req_set_fail_links(req);
4505 if (file)
4506 fput(file);
4507 __io_req_complete(req, ret, 0, cs);
4508 return 0;
4509 }
4510
4511 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4512 {
4513 struct io_ring_ctx *ctx = req->ctx;
4514
4515 if (!req->file)
4516 return -EBADF;
4517
4518 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4519 return -EINVAL;
4520 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4521 return -EINVAL;
4522
4523 req->sync.off = READ_ONCE(sqe->off);
4524 req->sync.len = READ_ONCE(sqe->len);
4525 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4526 return 0;
4527 }
4528
4529 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4530 {
4531 int ret;
4532
4533 /* sync_file_range always requires a blocking context */
4534 if (force_nonblock)
4535 return -EAGAIN;
4536
4537 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4538 req->sync.flags);
4539 if (ret < 0)
4540 req_set_fail_links(req);
4541 io_req_complete(req, ret);
4542 return 0;
4543 }
4544
4545 #if defined(CONFIG_NET)
4546 static int io_setup_async_msg(struct io_kiocb *req,
4547 struct io_async_msghdr *kmsg)
4548 {
4549 struct io_async_msghdr *async_msg = req->async_data;
4550
4551 if (async_msg)
4552 return -EAGAIN;
4553 if (io_alloc_async_data(req)) {
4554 if (kmsg->iov != kmsg->fast_iov)
4555 kfree(kmsg->iov);
4556 return -ENOMEM;
4557 }
4558 async_msg = req->async_data;
4559 req->flags |= REQ_F_NEED_CLEANUP;
4560 memcpy(async_msg, kmsg, sizeof(*kmsg));
4561 return -EAGAIN;
4562 }
4563
4564 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4565 struct io_async_msghdr *iomsg)
4566 {
4567 iomsg->iov = iomsg->fast_iov;
4568 iomsg->msg.msg_name = &iomsg->addr;
4569 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4570 req->sr_msg.msg_flags, &iomsg->iov);
4571 }
4572
4573 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4574 {
4575 struct io_async_msghdr *async_msg = req->async_data;
4576 struct io_sr_msg *sr = &req->sr_msg;
4577 int ret;
4578
4579 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4580 return -EINVAL;
4581
4582 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4583 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4584 sr->len = READ_ONCE(sqe->len);
4585
4586 #ifdef CONFIG_COMPAT
4587 if (req->ctx->compat)
4588 sr->msg_flags |= MSG_CMSG_COMPAT;
4589 #endif
4590
4591 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4592 return 0;
4593 ret = io_sendmsg_copy_hdr(req, async_msg);
4594 if (!ret)
4595 req->flags |= REQ_F_NEED_CLEANUP;
4596 return ret;
4597 }
4598
4599 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4600 struct io_comp_state *cs)
4601 {
4602 struct io_async_msghdr iomsg, *kmsg;
4603 struct socket *sock;
4604 unsigned flags;
4605 int ret;
4606
4607 sock = sock_from_file(req->file);
4608 if (unlikely(!sock))
4609 return -ENOTSOCK;
4610
4611 if (req->async_data) {
4612 kmsg = req->async_data;
4613 kmsg->msg.msg_name = &kmsg->addr;
4614 /* if iov is set, it's allocated already */
4615 if (!kmsg->iov)
4616 kmsg->iov = kmsg->fast_iov;
4617 kmsg->msg.msg_iter.iov = kmsg->iov;
4618 } else {
4619 ret = io_sendmsg_copy_hdr(req, &iomsg);
4620 if (ret)
4621 return ret;
4622 kmsg = &iomsg;
4623 }
4624
4625 flags = req->sr_msg.msg_flags;
4626 if (flags & MSG_DONTWAIT)
4627 req->flags |= REQ_F_NOWAIT;
4628 else if (force_nonblock)
4629 flags |= MSG_DONTWAIT;
4630
4631 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4632 if (force_nonblock && ret == -EAGAIN)
4633 return io_setup_async_msg(req, kmsg);
4634 if (ret == -ERESTARTSYS)
4635 ret = -EINTR;
4636
4637 if (kmsg->iov != kmsg->fast_iov)
4638 kfree(kmsg->iov);
4639 req->flags &= ~REQ_F_NEED_CLEANUP;
4640 if (ret < 0)
4641 req_set_fail_links(req);
4642 __io_req_complete(req, ret, 0, cs);
4643 return 0;
4644 }
4645
4646 static int io_send(struct io_kiocb *req, bool force_nonblock,
4647 struct io_comp_state *cs)
4648 {
4649 struct io_sr_msg *sr = &req->sr_msg;
4650 struct msghdr msg;
4651 struct iovec iov;
4652 struct socket *sock;
4653 unsigned flags;
4654 int ret;
4655
4656 sock = sock_from_file(req->file);
4657 if (unlikely(!sock))
4658 return -ENOTSOCK;
4659
4660 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4661 if (unlikely(ret))
4662 return ret;
4663
4664 msg.msg_name = NULL;
4665 msg.msg_control = NULL;
4666 msg.msg_controllen = 0;
4667 msg.msg_namelen = 0;
4668
4669 flags = req->sr_msg.msg_flags;
4670 if (flags & MSG_DONTWAIT)
4671 req->flags |= REQ_F_NOWAIT;
4672 else if (force_nonblock)
4673 flags |= MSG_DONTWAIT;
4674
4675 msg.msg_flags = flags;
4676 ret = sock_sendmsg(sock, &msg);
4677 if (force_nonblock && ret == -EAGAIN)
4678 return -EAGAIN;
4679 if (ret == -ERESTARTSYS)
4680 ret = -EINTR;
4681
4682 if (ret < 0)
4683 req_set_fail_links(req);
4684 __io_req_complete(req, ret, 0, cs);
4685 return 0;
4686 }
4687
4688 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4689 struct io_async_msghdr *iomsg)
4690 {
4691 struct io_sr_msg *sr = &req->sr_msg;
4692 struct iovec __user *uiov;
4693 size_t iov_len;
4694 int ret;
4695
4696 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4697 &iomsg->uaddr, &uiov, &iov_len);
4698 if (ret)
4699 return ret;
4700
4701 if (req->flags & REQ_F_BUFFER_SELECT) {
4702 if (iov_len > 1)
4703 return -EINVAL;
4704 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4705 return -EFAULT;
4706 sr->len = iomsg->iov[0].iov_len;
4707 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4708 sr->len);
4709 iomsg->iov = NULL;
4710 } else {
4711 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4712 &iomsg->iov, &iomsg->msg.msg_iter,
4713 false);
4714 if (ret > 0)
4715 ret = 0;
4716 }
4717
4718 return ret;
4719 }
4720
4721 #ifdef CONFIG_COMPAT
4722 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4723 struct io_async_msghdr *iomsg)
4724 {
4725 struct compat_msghdr __user *msg_compat;
4726 struct io_sr_msg *sr = &req->sr_msg;
4727 struct compat_iovec __user *uiov;
4728 compat_uptr_t ptr;
4729 compat_size_t len;
4730 int ret;
4731
4732 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4733 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4734 &ptr, &len);
4735 if (ret)
4736 return ret;
4737
4738 uiov = compat_ptr(ptr);
4739 if (req->flags & REQ_F_BUFFER_SELECT) {
4740 compat_ssize_t clen;
4741
4742 if (len > 1)
4743 return -EINVAL;
4744 if (!access_ok(uiov, sizeof(*uiov)))
4745 return -EFAULT;
4746 if (__get_user(clen, &uiov->iov_len))
4747 return -EFAULT;
4748 if (clen < 0)
4749 return -EINVAL;
4750 sr->len = clen;
4751 iomsg->iov[0].iov_len = clen;
4752 iomsg->iov = NULL;
4753 } else {
4754 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4755 UIO_FASTIOV, &iomsg->iov,
4756 &iomsg->msg.msg_iter, true);
4757 if (ret < 0)
4758 return ret;
4759 }
4760
4761 return 0;
4762 }
4763 #endif
4764
4765 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4766 struct io_async_msghdr *iomsg)
4767 {
4768 iomsg->msg.msg_name = &iomsg->addr;
4769 iomsg->iov = iomsg->fast_iov;
4770
4771 #ifdef CONFIG_COMPAT
4772 if (req->ctx->compat)
4773 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4774 #endif
4775
4776 return __io_recvmsg_copy_hdr(req, iomsg);
4777 }
4778
4779 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4780 bool needs_lock)
4781 {
4782 struct io_sr_msg *sr = &req->sr_msg;
4783 struct io_buffer *kbuf;
4784
4785 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4786 if (IS_ERR(kbuf))
4787 return kbuf;
4788
4789 sr->kbuf = kbuf;
4790 req->flags |= REQ_F_BUFFER_SELECTED;
4791 return kbuf;
4792 }
4793
4794 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4795 {
4796 return io_put_kbuf(req, req->sr_msg.kbuf);
4797 }
4798
4799 static int io_recvmsg_prep(struct io_kiocb *req,
4800 const struct io_uring_sqe *sqe)
4801 {
4802 struct io_async_msghdr *async_msg = req->async_data;
4803 struct io_sr_msg *sr = &req->sr_msg;
4804 int ret;
4805
4806 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4807 return -EINVAL;
4808
4809 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4810 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4811 sr->len = READ_ONCE(sqe->len);
4812 sr->bgid = READ_ONCE(sqe->buf_group);
4813
4814 #ifdef CONFIG_COMPAT
4815 if (req->ctx->compat)
4816 sr->msg_flags |= MSG_CMSG_COMPAT;
4817 #endif
4818
4819 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4820 return 0;
4821 ret = io_recvmsg_copy_hdr(req, async_msg);
4822 if (!ret)
4823 req->flags |= REQ_F_NEED_CLEANUP;
4824 return ret;
4825 }
4826
4827 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4828 struct io_comp_state *cs)
4829 {
4830 struct io_async_msghdr iomsg, *kmsg;
4831 struct socket *sock;
4832 struct io_buffer *kbuf;
4833 unsigned flags;
4834 int ret, cflags = 0;
4835
4836 sock = sock_from_file(req->file);
4837 if (unlikely(!sock))
4838 return -ENOTSOCK;
4839
4840 if (req->async_data) {
4841 kmsg = req->async_data;
4842 kmsg->msg.msg_name = &kmsg->addr;
4843 /* if iov is set, it's allocated already */
4844 if (!kmsg->iov)
4845 kmsg->iov = kmsg->fast_iov;
4846 kmsg->msg.msg_iter.iov = kmsg->iov;
4847 } else {
4848 ret = io_recvmsg_copy_hdr(req, &iomsg);
4849 if (ret)
4850 return ret;
4851 kmsg = &iomsg;
4852 }
4853
4854 if (req->flags & REQ_F_BUFFER_SELECT) {
4855 kbuf = io_recv_buffer_select(req, !force_nonblock);
4856 if (IS_ERR(kbuf))
4857 return PTR_ERR(kbuf);
4858 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4859 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4860 1, req->sr_msg.len);
4861 }
4862
4863 flags = req->sr_msg.msg_flags;
4864 if (flags & MSG_DONTWAIT)
4865 req->flags |= REQ_F_NOWAIT;
4866 else if (force_nonblock)
4867 flags |= MSG_DONTWAIT;
4868
4869 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4870 kmsg->uaddr, flags);
4871 if (force_nonblock && ret == -EAGAIN)
4872 return io_setup_async_msg(req, kmsg);
4873 if (ret == -ERESTARTSYS)
4874 ret = -EINTR;
4875
4876 if (req->flags & REQ_F_BUFFER_SELECTED)
4877 cflags = io_put_recv_kbuf(req);
4878 if (kmsg->iov != kmsg->fast_iov)
4879 kfree(kmsg->iov);
4880 req->flags &= ~REQ_F_NEED_CLEANUP;
4881 if (ret < 0)
4882 req_set_fail_links(req);
4883 __io_req_complete(req, ret, cflags, cs);
4884 return 0;
4885 }
4886
4887 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4888 struct io_comp_state *cs)
4889 {
4890 struct io_buffer *kbuf;
4891 struct io_sr_msg *sr = &req->sr_msg;
4892 struct msghdr msg;
4893 void __user *buf = sr->buf;
4894 struct socket *sock;
4895 struct iovec iov;
4896 unsigned flags;
4897 int ret, cflags = 0;
4898
4899 sock = sock_from_file(req->file);
4900 if (unlikely(!sock))
4901 return -ENOTSOCK;
4902
4903 if (req->flags & REQ_F_BUFFER_SELECT) {
4904 kbuf = io_recv_buffer_select(req, !force_nonblock);
4905 if (IS_ERR(kbuf))
4906 return PTR_ERR(kbuf);
4907 buf = u64_to_user_ptr(kbuf->addr);
4908 }
4909
4910 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4911 if (unlikely(ret))
4912 goto out_free;
4913
4914 msg.msg_name = NULL;
4915 msg.msg_control = NULL;
4916 msg.msg_controllen = 0;
4917 msg.msg_namelen = 0;
4918 msg.msg_iocb = NULL;
4919 msg.msg_flags = 0;
4920
4921 flags = req->sr_msg.msg_flags;
4922 if (flags & MSG_DONTWAIT)
4923 req->flags |= REQ_F_NOWAIT;
4924 else if (force_nonblock)
4925 flags |= MSG_DONTWAIT;
4926
4927 ret = sock_recvmsg(sock, &msg, flags);
4928 if (force_nonblock && ret == -EAGAIN)
4929 return -EAGAIN;
4930 if (ret == -ERESTARTSYS)
4931 ret = -EINTR;
4932 out_free:
4933 if (req->flags & REQ_F_BUFFER_SELECTED)
4934 cflags = io_put_recv_kbuf(req);
4935 if (ret < 0)
4936 req_set_fail_links(req);
4937 __io_req_complete(req, ret, cflags, cs);
4938 return 0;
4939 }
4940
4941 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4942 {
4943 struct io_accept *accept = &req->accept;
4944
4945 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4946 return -EINVAL;
4947 if (sqe->ioprio || sqe->len || sqe->buf_index)
4948 return -EINVAL;
4949
4950 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4951 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4952 accept->flags = READ_ONCE(sqe->accept_flags);
4953 accept->nofile = rlimit(RLIMIT_NOFILE);
4954 return 0;
4955 }
4956
4957 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4958 struct io_comp_state *cs)
4959 {
4960 struct io_accept *accept = &req->accept;
4961 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4962 int ret;
4963
4964 if (req->file->f_flags & O_NONBLOCK)
4965 req->flags |= REQ_F_NOWAIT;
4966
4967 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4968 accept->addr_len, accept->flags,
4969 accept->nofile);
4970 if (ret == -EAGAIN && force_nonblock)
4971 return -EAGAIN;
4972 if (ret < 0) {
4973 if (ret == -ERESTARTSYS)
4974 ret = -EINTR;
4975 req_set_fail_links(req);
4976 }
4977 __io_req_complete(req, ret, 0, cs);
4978 return 0;
4979 }
4980
4981 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4982 {
4983 struct io_connect *conn = &req->connect;
4984 struct io_async_connect *io = req->async_data;
4985
4986 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4987 return -EINVAL;
4988 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4989 return -EINVAL;
4990
4991 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4992 conn->addr_len = READ_ONCE(sqe->addr2);
4993
4994 if (!io)
4995 return 0;
4996
4997 return move_addr_to_kernel(conn->addr, conn->addr_len,
4998 &io->address);
4999 }
5000
5001 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5002 struct io_comp_state *cs)
5003 {
5004 struct io_async_connect __io, *io;
5005 unsigned file_flags;
5006 int ret;
5007
5008 if (req->async_data) {
5009 io = req->async_data;
5010 } else {
5011 ret = move_addr_to_kernel(req->connect.addr,
5012 req->connect.addr_len,
5013 &__io.address);
5014 if (ret)
5015 goto out;
5016 io = &__io;
5017 }
5018
5019 file_flags = force_nonblock ? O_NONBLOCK : 0;
5020
5021 ret = __sys_connect_file(req->file, &io->address,
5022 req->connect.addr_len, file_flags);
5023 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5024 if (req->async_data)
5025 return -EAGAIN;
5026 if (io_alloc_async_data(req)) {
5027 ret = -ENOMEM;
5028 goto out;
5029 }
5030 io = req->async_data;
5031 memcpy(req->async_data, &__io, sizeof(__io));
5032 return -EAGAIN;
5033 }
5034 if (ret == -ERESTARTSYS)
5035 ret = -EINTR;
5036 out:
5037 if (ret < 0)
5038 req_set_fail_links(req);
5039 __io_req_complete(req, ret, 0, cs);
5040 return 0;
5041 }
5042 #else /* !CONFIG_NET */
5043 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5044 {
5045 return -EOPNOTSUPP;
5046 }
5047
5048 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5049 struct io_comp_state *cs)
5050 {
5051 return -EOPNOTSUPP;
5052 }
5053
5054 static int io_send(struct io_kiocb *req, bool force_nonblock,
5055 struct io_comp_state *cs)
5056 {
5057 return -EOPNOTSUPP;
5058 }
5059
5060 static int io_recvmsg_prep(struct io_kiocb *req,
5061 const struct io_uring_sqe *sqe)
5062 {
5063 return -EOPNOTSUPP;
5064 }
5065
5066 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5067 struct io_comp_state *cs)
5068 {
5069 return -EOPNOTSUPP;
5070 }
5071
5072 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5073 struct io_comp_state *cs)
5074 {
5075 return -EOPNOTSUPP;
5076 }
5077
5078 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5079 {
5080 return -EOPNOTSUPP;
5081 }
5082
5083 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5084 struct io_comp_state *cs)
5085 {
5086 return -EOPNOTSUPP;
5087 }
5088
5089 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5090 {
5091 return -EOPNOTSUPP;
5092 }
5093
5094 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5095 struct io_comp_state *cs)
5096 {
5097 return -EOPNOTSUPP;
5098 }
5099 #endif /* CONFIG_NET */
5100
5101 struct io_poll_table {
5102 struct poll_table_struct pt;
5103 struct io_kiocb *req;
5104 int error;
5105 };
5106
5107 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5108 __poll_t mask, task_work_func_t func)
5109 {
5110 int ret;
5111
5112 /* for instances that support it check for an event match first: */
5113 if (mask && !(mask & poll->events))
5114 return 0;
5115
5116 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5117
5118 list_del_init(&poll->wait.entry);
5119
5120 req->result = mask;
5121 init_task_work(&req->task_work, func);
5122 percpu_ref_get(&req->ctx->refs);
5123
5124 /*
5125 * If this fails, then the task is exiting. When a task exits, the
5126 * work gets canceled, so just cancel this request as well instead
5127 * of executing it. We can't safely execute it anyway, as we may not
5128 * have the needed state needed for it anyway.
5129 */
5130 ret = io_req_task_work_add(req);
5131 if (unlikely(ret)) {
5132 WRITE_ONCE(poll->canceled, true);
5133 io_req_task_work_add_fallback(req, func);
5134 }
5135 return 1;
5136 }
5137
5138 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5139 __acquires(&req->ctx->completion_lock)
5140 {
5141 struct io_ring_ctx *ctx = req->ctx;
5142
5143 if (!req->result && !READ_ONCE(poll->canceled)) {
5144 struct poll_table_struct pt = { ._key = poll->events };
5145
5146 req->result = vfs_poll(req->file, &pt) & poll->events;
5147 }
5148
5149 spin_lock_irq(&ctx->completion_lock);
5150 if (!req->result && !READ_ONCE(poll->canceled)) {
5151 add_wait_queue(poll->head, &poll->wait);
5152 return true;
5153 }
5154
5155 return false;
5156 }
5157
5158 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5159 {
5160 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5161 if (req->opcode == IORING_OP_POLL_ADD)
5162 return req->async_data;
5163 return req->apoll->double_poll;
5164 }
5165
5166 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5167 {
5168 if (req->opcode == IORING_OP_POLL_ADD)
5169 return &req->poll;
5170 return &req->apoll->poll;
5171 }
5172
5173 static void io_poll_remove_double(struct io_kiocb *req)
5174 {
5175 struct io_poll_iocb *poll = io_poll_get_double(req);
5176
5177 lockdep_assert_held(&req->ctx->completion_lock);
5178
5179 if (poll && poll->head) {
5180 struct wait_queue_head *head = poll->head;
5181
5182 spin_lock(&head->lock);
5183 list_del_init(&poll->wait.entry);
5184 if (poll->wait.private)
5185 refcount_dec(&req->refs);
5186 poll->head = NULL;
5187 spin_unlock(&head->lock);
5188 }
5189 }
5190
5191 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5192 {
5193 struct io_ring_ctx *ctx = req->ctx;
5194
5195 io_poll_remove_double(req);
5196 req->poll.done = true;
5197 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5198 io_commit_cqring(ctx);
5199 }
5200
5201 static void io_poll_task_func(struct callback_head *cb)
5202 {
5203 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5204 struct io_ring_ctx *ctx = req->ctx;
5205 struct io_kiocb *nxt;
5206
5207 if (io_poll_rewait(req, &req->poll)) {
5208 spin_unlock_irq(&ctx->completion_lock);
5209 } else {
5210 hash_del(&req->hash_node);
5211 io_poll_complete(req, req->result, 0);
5212 spin_unlock_irq(&ctx->completion_lock);
5213
5214 nxt = io_put_req_find_next(req);
5215 io_cqring_ev_posted(ctx);
5216 if (nxt)
5217 __io_req_task_submit(nxt);
5218 }
5219
5220 percpu_ref_put(&ctx->refs);
5221 }
5222
5223 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5224 int sync, void *key)
5225 {
5226 struct io_kiocb *req = wait->private;
5227 struct io_poll_iocb *poll = io_poll_get_single(req);
5228 __poll_t mask = key_to_poll(key);
5229
5230 /* for instances that support it check for an event match first: */
5231 if (mask && !(mask & poll->events))
5232 return 0;
5233
5234 list_del_init(&wait->entry);
5235
5236 if (poll && poll->head) {
5237 bool done;
5238
5239 spin_lock(&poll->head->lock);
5240 done = list_empty(&poll->wait.entry);
5241 if (!done)
5242 list_del_init(&poll->wait.entry);
5243 /* make sure double remove sees this as being gone */
5244 wait->private = NULL;
5245 spin_unlock(&poll->head->lock);
5246 if (!done) {
5247 /* use wait func handler, so it matches the rq type */
5248 poll->wait.func(&poll->wait, mode, sync, key);
5249 }
5250 }
5251 refcount_dec(&req->refs);
5252 return 1;
5253 }
5254
5255 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5256 wait_queue_func_t wake_func)
5257 {
5258 poll->head = NULL;
5259 poll->done = false;
5260 poll->canceled = false;
5261 poll->events = events;
5262 INIT_LIST_HEAD(&poll->wait.entry);
5263 init_waitqueue_func_entry(&poll->wait, wake_func);
5264 }
5265
5266 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5267 struct wait_queue_head *head,
5268 struct io_poll_iocb **poll_ptr)
5269 {
5270 struct io_kiocb *req = pt->req;
5271
5272 /*
5273 * If poll->head is already set, it's because the file being polled
5274 * uses multiple waitqueues for poll handling (eg one for read, one
5275 * for write). Setup a separate io_poll_iocb if this happens.
5276 */
5277 if (unlikely(poll->head)) {
5278 struct io_poll_iocb *poll_one = poll;
5279
5280 /* already have a 2nd entry, fail a third attempt */
5281 if (*poll_ptr) {
5282 pt->error = -EINVAL;
5283 return;
5284 }
5285 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5286 if (!poll) {
5287 pt->error = -ENOMEM;
5288 return;
5289 }
5290 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5291 refcount_inc(&req->refs);
5292 poll->wait.private = req;
5293 *poll_ptr = poll;
5294 }
5295
5296 pt->error = 0;
5297 poll->head = head;
5298
5299 if (poll->events & EPOLLEXCLUSIVE)
5300 add_wait_queue_exclusive(head, &poll->wait);
5301 else
5302 add_wait_queue(head, &poll->wait);
5303 }
5304
5305 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5306 struct poll_table_struct *p)
5307 {
5308 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5309 struct async_poll *apoll = pt->req->apoll;
5310
5311 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5312 }
5313
5314 static void io_async_task_func(struct callback_head *cb)
5315 {
5316 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5317 struct async_poll *apoll = req->apoll;
5318 struct io_ring_ctx *ctx = req->ctx;
5319
5320 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5321
5322 if (io_poll_rewait(req, &apoll->poll)) {
5323 spin_unlock_irq(&ctx->completion_lock);
5324 percpu_ref_put(&ctx->refs);
5325 return;
5326 }
5327
5328 /* If req is still hashed, it cannot have been canceled. Don't check. */
5329 if (hash_hashed(&req->hash_node))
5330 hash_del(&req->hash_node);
5331
5332 io_poll_remove_double(req);
5333 spin_unlock_irq(&ctx->completion_lock);
5334
5335 if (!READ_ONCE(apoll->poll.canceled))
5336 __io_req_task_submit(req);
5337 else
5338 __io_req_task_cancel(req, -ECANCELED);
5339
5340 percpu_ref_put(&ctx->refs);
5341 kfree(apoll->double_poll);
5342 kfree(apoll);
5343 }
5344
5345 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5346 void *key)
5347 {
5348 struct io_kiocb *req = wait->private;
5349 struct io_poll_iocb *poll = &req->apoll->poll;
5350
5351 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5352 key_to_poll(key));
5353
5354 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5355 }
5356
5357 static void io_poll_req_insert(struct io_kiocb *req)
5358 {
5359 struct io_ring_ctx *ctx = req->ctx;
5360 struct hlist_head *list;
5361
5362 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5363 hlist_add_head(&req->hash_node, list);
5364 }
5365
5366 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5367 struct io_poll_iocb *poll,
5368 struct io_poll_table *ipt, __poll_t mask,
5369 wait_queue_func_t wake_func)
5370 __acquires(&ctx->completion_lock)
5371 {
5372 struct io_ring_ctx *ctx = req->ctx;
5373 bool cancel = false;
5374
5375 INIT_HLIST_NODE(&req->hash_node);
5376 io_init_poll_iocb(poll, mask, wake_func);
5377 poll->file = req->file;
5378 poll->wait.private = req;
5379
5380 ipt->pt._key = mask;
5381 ipt->req = req;
5382 ipt->error = -EINVAL;
5383
5384 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5385
5386 spin_lock_irq(&ctx->completion_lock);
5387 if (likely(poll->head)) {
5388 spin_lock(&poll->head->lock);
5389 if (unlikely(list_empty(&poll->wait.entry))) {
5390 if (ipt->error)
5391 cancel = true;
5392 ipt->error = 0;
5393 mask = 0;
5394 }
5395 if (mask || ipt->error)
5396 list_del_init(&poll->wait.entry);
5397 else if (cancel)
5398 WRITE_ONCE(poll->canceled, true);
5399 else if (!poll->done) /* actually waiting for an event */
5400 io_poll_req_insert(req);
5401 spin_unlock(&poll->head->lock);
5402 }
5403
5404 return mask;
5405 }
5406
5407 static bool io_arm_poll_handler(struct io_kiocb *req)
5408 {
5409 const struct io_op_def *def = &io_op_defs[req->opcode];
5410 struct io_ring_ctx *ctx = req->ctx;
5411 struct async_poll *apoll;
5412 struct io_poll_table ipt;
5413 __poll_t mask, ret;
5414 int rw;
5415
5416 if (!req->file || !file_can_poll(req->file))
5417 return false;
5418 if (req->flags & REQ_F_POLLED)
5419 return false;
5420 if (def->pollin)
5421 rw = READ;
5422 else if (def->pollout)
5423 rw = WRITE;
5424 else
5425 return false;
5426 /* if we can't nonblock try, then no point in arming a poll handler */
5427 if (!io_file_supports_async(req->file, rw))
5428 return false;
5429
5430 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5431 if (unlikely(!apoll))
5432 return false;
5433 apoll->double_poll = NULL;
5434
5435 req->flags |= REQ_F_POLLED;
5436 req->apoll = apoll;
5437
5438 mask = 0;
5439 if (def->pollin)
5440 mask |= POLLIN | POLLRDNORM;
5441 if (def->pollout)
5442 mask |= POLLOUT | POLLWRNORM;
5443
5444 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5445 if ((req->opcode == IORING_OP_RECVMSG) &&
5446 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5447 mask &= ~POLLIN;
5448
5449 mask |= POLLERR | POLLPRI;
5450
5451 ipt.pt._qproc = io_async_queue_proc;
5452
5453 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5454 io_async_wake);
5455 if (ret || ipt.error) {
5456 io_poll_remove_double(req);
5457 spin_unlock_irq(&ctx->completion_lock);
5458 kfree(apoll->double_poll);
5459 kfree(apoll);
5460 return false;
5461 }
5462 spin_unlock_irq(&ctx->completion_lock);
5463 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5464 apoll->poll.events);
5465 return true;
5466 }
5467
5468 static bool __io_poll_remove_one(struct io_kiocb *req,
5469 struct io_poll_iocb *poll)
5470 {
5471 bool do_complete = false;
5472
5473 spin_lock(&poll->head->lock);
5474 WRITE_ONCE(poll->canceled, true);
5475 if (!list_empty(&poll->wait.entry)) {
5476 list_del_init(&poll->wait.entry);
5477 do_complete = true;
5478 }
5479 spin_unlock(&poll->head->lock);
5480 hash_del(&req->hash_node);
5481 return do_complete;
5482 }
5483
5484 static bool io_poll_remove_one(struct io_kiocb *req)
5485 {
5486 bool do_complete;
5487
5488 io_poll_remove_double(req);
5489
5490 if (req->opcode == IORING_OP_POLL_ADD) {
5491 do_complete = __io_poll_remove_one(req, &req->poll);
5492 } else {
5493 struct async_poll *apoll = req->apoll;
5494
5495 /* non-poll requests have submit ref still */
5496 do_complete = __io_poll_remove_one(req, &apoll->poll);
5497 if (do_complete) {
5498 io_put_req(req);
5499 kfree(apoll->double_poll);
5500 kfree(apoll);
5501 }
5502 }
5503
5504 if (do_complete) {
5505 io_cqring_fill_event(req, -ECANCELED);
5506 io_commit_cqring(req->ctx);
5507 req_set_fail_links(req);
5508 io_put_req_deferred(req, 1);
5509 }
5510
5511 return do_complete;
5512 }
5513
5514 /*
5515 * Returns true if we found and killed one or more poll requests
5516 */
5517 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5518 struct files_struct *files)
5519 {
5520 struct hlist_node *tmp;
5521 struct io_kiocb *req;
5522 int posted = 0, i;
5523
5524 spin_lock_irq(&ctx->completion_lock);
5525 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5526 struct hlist_head *list;
5527
5528 list = &ctx->cancel_hash[i];
5529 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5530 if (io_match_task(req, tsk, files))
5531 posted += io_poll_remove_one(req);
5532 }
5533 }
5534 spin_unlock_irq(&ctx->completion_lock);
5535
5536 if (posted)
5537 io_cqring_ev_posted(ctx);
5538
5539 return posted != 0;
5540 }
5541
5542 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5543 {
5544 struct hlist_head *list;
5545 struct io_kiocb *req;
5546
5547 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5548 hlist_for_each_entry(req, list, hash_node) {
5549 if (sqe_addr != req->user_data)
5550 continue;
5551 if (io_poll_remove_one(req))
5552 return 0;
5553 return -EALREADY;
5554 }
5555
5556 return -ENOENT;
5557 }
5558
5559 static int io_poll_remove_prep(struct io_kiocb *req,
5560 const struct io_uring_sqe *sqe)
5561 {
5562 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5563 return -EINVAL;
5564 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5565 sqe->poll_events)
5566 return -EINVAL;
5567
5568 req->poll_remove.addr = READ_ONCE(sqe->addr);
5569 return 0;
5570 }
5571
5572 /*
5573 * Find a running poll command that matches one specified in sqe->addr,
5574 * and remove it if found.
5575 */
5576 static int io_poll_remove(struct io_kiocb *req)
5577 {
5578 struct io_ring_ctx *ctx = req->ctx;
5579 int ret;
5580
5581 spin_lock_irq(&ctx->completion_lock);
5582 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5583 spin_unlock_irq(&ctx->completion_lock);
5584
5585 if (ret < 0)
5586 req_set_fail_links(req);
5587 io_req_complete(req, ret);
5588 return 0;
5589 }
5590
5591 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5592 void *key)
5593 {
5594 struct io_kiocb *req = wait->private;
5595 struct io_poll_iocb *poll = &req->poll;
5596
5597 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5598 }
5599
5600 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5601 struct poll_table_struct *p)
5602 {
5603 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5604
5605 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5606 }
5607
5608 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5609 {
5610 struct io_poll_iocb *poll = &req->poll;
5611 u32 events;
5612
5613 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5614 return -EINVAL;
5615 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5616 return -EINVAL;
5617
5618 events = READ_ONCE(sqe->poll32_events);
5619 #ifdef __BIG_ENDIAN
5620 events = swahw32(events);
5621 #endif
5622 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5623 (events & EPOLLEXCLUSIVE);
5624 return 0;
5625 }
5626
5627 static int io_poll_add(struct io_kiocb *req)
5628 {
5629 struct io_poll_iocb *poll = &req->poll;
5630 struct io_ring_ctx *ctx = req->ctx;
5631 struct io_poll_table ipt;
5632 __poll_t mask;
5633
5634 ipt.pt._qproc = io_poll_queue_proc;
5635
5636 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5637 io_poll_wake);
5638
5639 if (mask) { /* no async, we'd stolen it */
5640 ipt.error = 0;
5641 io_poll_complete(req, mask, 0);
5642 }
5643 spin_unlock_irq(&ctx->completion_lock);
5644
5645 if (mask) {
5646 io_cqring_ev_posted(ctx);
5647 io_put_req(req);
5648 }
5649 return ipt.error;
5650 }
5651
5652 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5653 {
5654 struct io_timeout_data *data = container_of(timer,
5655 struct io_timeout_data, timer);
5656 struct io_kiocb *req = data->req;
5657 struct io_ring_ctx *ctx = req->ctx;
5658 unsigned long flags;
5659
5660 spin_lock_irqsave(&ctx->completion_lock, flags);
5661 list_del_init(&req->timeout.list);
5662 atomic_set(&req->ctx->cq_timeouts,
5663 atomic_read(&req->ctx->cq_timeouts) + 1);
5664
5665 io_cqring_fill_event(req, -ETIME);
5666 io_commit_cqring(ctx);
5667 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5668
5669 io_cqring_ev_posted(ctx);
5670 req_set_fail_links(req);
5671 io_put_req(req);
5672 return HRTIMER_NORESTART;
5673 }
5674
5675 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5676 __u64 user_data)
5677 {
5678 struct io_timeout_data *io;
5679 struct io_kiocb *req;
5680 int ret = -ENOENT;
5681
5682 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5683 if (user_data == req->user_data) {
5684 ret = 0;
5685 break;
5686 }
5687 }
5688
5689 if (ret == -ENOENT)
5690 return ERR_PTR(ret);
5691
5692 io = req->async_data;
5693 ret = hrtimer_try_to_cancel(&io->timer);
5694 if (ret == -1)
5695 return ERR_PTR(-EALREADY);
5696 list_del_init(&req->timeout.list);
5697 return req;
5698 }
5699
5700 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5701 {
5702 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5703
5704 if (IS_ERR(req))
5705 return PTR_ERR(req);
5706
5707 req_set_fail_links(req);
5708 io_cqring_fill_event(req, -ECANCELED);
5709 io_put_req_deferred(req, 1);
5710 return 0;
5711 }
5712
5713 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5714 struct timespec64 *ts, enum hrtimer_mode mode)
5715 {
5716 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5717 struct io_timeout_data *data;
5718
5719 if (IS_ERR(req))
5720 return PTR_ERR(req);
5721
5722 req->timeout.off = 0; /* noseq */
5723 data = req->async_data;
5724 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5725 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5726 data->timer.function = io_timeout_fn;
5727 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5728 return 0;
5729 }
5730
5731 static int io_timeout_remove_prep(struct io_kiocb *req,
5732 const struct io_uring_sqe *sqe)
5733 {
5734 struct io_timeout_rem *tr = &req->timeout_rem;
5735
5736 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5737 return -EINVAL;
5738 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5739 return -EINVAL;
5740 if (sqe->ioprio || sqe->buf_index || sqe->len)
5741 return -EINVAL;
5742
5743 tr->addr = READ_ONCE(sqe->addr);
5744 tr->flags = READ_ONCE(sqe->timeout_flags);
5745 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5746 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5747 return -EINVAL;
5748 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5749 return -EFAULT;
5750 } else if (tr->flags) {
5751 /* timeout removal doesn't support flags */
5752 return -EINVAL;
5753 }
5754
5755 return 0;
5756 }
5757
5758 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5759 {
5760 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5761 : HRTIMER_MODE_REL;
5762 }
5763
5764 /*
5765 * Remove or update an existing timeout command
5766 */
5767 static int io_timeout_remove(struct io_kiocb *req)
5768 {
5769 struct io_timeout_rem *tr = &req->timeout_rem;
5770 struct io_ring_ctx *ctx = req->ctx;
5771 int ret;
5772
5773 spin_lock_irq(&ctx->completion_lock);
5774 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5775 ret = io_timeout_cancel(ctx, tr->addr);
5776 else
5777 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5778 io_translate_timeout_mode(tr->flags));
5779
5780 io_cqring_fill_event(req, ret);
5781 io_commit_cqring(ctx);
5782 spin_unlock_irq(&ctx->completion_lock);
5783 io_cqring_ev_posted(ctx);
5784 if (ret < 0)
5785 req_set_fail_links(req);
5786 io_put_req(req);
5787 return 0;
5788 }
5789
5790 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5791 bool is_timeout_link)
5792 {
5793 struct io_timeout_data *data;
5794 unsigned flags;
5795 u32 off = READ_ONCE(sqe->off);
5796
5797 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5798 return -EINVAL;
5799 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5800 return -EINVAL;
5801 if (off && is_timeout_link)
5802 return -EINVAL;
5803 flags = READ_ONCE(sqe->timeout_flags);
5804 if (flags & ~IORING_TIMEOUT_ABS)
5805 return -EINVAL;
5806
5807 req->timeout.off = off;
5808
5809 if (!req->async_data && io_alloc_async_data(req))
5810 return -ENOMEM;
5811
5812 data = req->async_data;
5813 data->req = req;
5814
5815 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5816 return -EFAULT;
5817
5818 data->mode = io_translate_timeout_mode(flags);
5819 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5820 return 0;
5821 }
5822
5823 static int io_timeout(struct io_kiocb *req)
5824 {
5825 struct io_ring_ctx *ctx = req->ctx;
5826 struct io_timeout_data *data = req->async_data;
5827 struct list_head *entry;
5828 u32 tail, off = req->timeout.off;
5829
5830 spin_lock_irq(&ctx->completion_lock);
5831
5832 /*
5833 * sqe->off holds how many events that need to occur for this
5834 * timeout event to be satisfied. If it isn't set, then this is
5835 * a pure timeout request, sequence isn't used.
5836 */
5837 if (io_is_timeout_noseq(req)) {
5838 entry = ctx->timeout_list.prev;
5839 goto add;
5840 }
5841
5842 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5843 req->timeout.target_seq = tail + off;
5844
5845 /* Update the last seq here in case io_flush_timeouts() hasn't.
5846 * This is safe because ->completion_lock is held, and submissions
5847 * and completions are never mixed in the same ->completion_lock section.
5848 */
5849 ctx->cq_last_tm_flush = tail;
5850
5851 /*
5852 * Insertion sort, ensuring the first entry in the list is always
5853 * the one we need first.
5854 */
5855 list_for_each_prev(entry, &ctx->timeout_list) {
5856 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5857 timeout.list);
5858
5859 if (io_is_timeout_noseq(nxt))
5860 continue;
5861 /* nxt.seq is behind @tail, otherwise would've been completed */
5862 if (off >= nxt->timeout.target_seq - tail)
5863 break;
5864 }
5865 add:
5866 list_add(&req->timeout.list, entry);
5867 data->timer.function = io_timeout_fn;
5868 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5869 spin_unlock_irq(&ctx->completion_lock);
5870 return 0;
5871 }
5872
5873 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5874 {
5875 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5876
5877 return req->user_data == (unsigned long) data;
5878 }
5879
5880 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5881 {
5882 enum io_wq_cancel cancel_ret;
5883 int ret = 0;
5884
5885 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5886 switch (cancel_ret) {
5887 case IO_WQ_CANCEL_OK:
5888 ret = 0;
5889 break;
5890 case IO_WQ_CANCEL_RUNNING:
5891 ret = -EALREADY;
5892 break;
5893 case IO_WQ_CANCEL_NOTFOUND:
5894 ret = -ENOENT;
5895 break;
5896 }
5897
5898 return ret;
5899 }
5900
5901 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5902 struct io_kiocb *req, __u64 sqe_addr,
5903 int success_ret)
5904 {
5905 unsigned long flags;
5906 int ret;
5907
5908 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5909 if (ret != -ENOENT) {
5910 spin_lock_irqsave(&ctx->completion_lock, flags);
5911 goto done;
5912 }
5913
5914 spin_lock_irqsave(&ctx->completion_lock, flags);
5915 ret = io_timeout_cancel(ctx, sqe_addr);
5916 if (ret != -ENOENT)
5917 goto done;
5918 ret = io_poll_cancel(ctx, sqe_addr);
5919 done:
5920 if (!ret)
5921 ret = success_ret;
5922 io_cqring_fill_event(req, ret);
5923 io_commit_cqring(ctx);
5924 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5925 io_cqring_ev_posted(ctx);
5926
5927 if (ret < 0)
5928 req_set_fail_links(req);
5929 io_put_req(req);
5930 }
5931
5932 static int io_async_cancel_prep(struct io_kiocb *req,
5933 const struct io_uring_sqe *sqe)
5934 {
5935 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5936 return -EINVAL;
5937 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5938 return -EINVAL;
5939 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5940 return -EINVAL;
5941
5942 req->cancel.addr = READ_ONCE(sqe->addr);
5943 return 0;
5944 }
5945
5946 static int io_async_cancel(struct io_kiocb *req)
5947 {
5948 struct io_ring_ctx *ctx = req->ctx;
5949
5950 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5951 return 0;
5952 }
5953
5954 static int io_rsrc_update_prep(struct io_kiocb *req,
5955 const struct io_uring_sqe *sqe)
5956 {
5957 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5958 return -EINVAL;
5959 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5960 return -EINVAL;
5961 if (sqe->ioprio || sqe->rw_flags)
5962 return -EINVAL;
5963
5964 req->rsrc_update.offset = READ_ONCE(sqe->off);
5965 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5966 if (!req->rsrc_update.nr_args)
5967 return -EINVAL;
5968 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5969 return 0;
5970 }
5971
5972 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5973 struct io_comp_state *cs)
5974 {
5975 struct io_ring_ctx *ctx = req->ctx;
5976 struct io_uring_rsrc_update up;
5977 int ret;
5978
5979 if (force_nonblock)
5980 return -EAGAIN;
5981
5982 up.offset = req->rsrc_update.offset;
5983 up.data = req->rsrc_update.arg;
5984
5985 mutex_lock(&ctx->uring_lock);
5986 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
5987 mutex_unlock(&ctx->uring_lock);
5988
5989 if (ret < 0)
5990 req_set_fail_links(req);
5991 __io_req_complete(req, ret, 0, cs);
5992 return 0;
5993 }
5994
5995 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5996 {
5997 switch (req->opcode) {
5998 case IORING_OP_NOP:
5999 return 0;
6000 case IORING_OP_READV:
6001 case IORING_OP_READ_FIXED:
6002 case IORING_OP_READ:
6003 return io_read_prep(req, sqe);
6004 case IORING_OP_WRITEV:
6005 case IORING_OP_WRITE_FIXED:
6006 case IORING_OP_WRITE:
6007 return io_write_prep(req, sqe);
6008 case IORING_OP_POLL_ADD:
6009 return io_poll_add_prep(req, sqe);
6010 case IORING_OP_POLL_REMOVE:
6011 return io_poll_remove_prep(req, sqe);
6012 case IORING_OP_FSYNC:
6013 return io_prep_fsync(req, sqe);
6014 case IORING_OP_SYNC_FILE_RANGE:
6015 return io_prep_sfr(req, sqe);
6016 case IORING_OP_SENDMSG:
6017 case IORING_OP_SEND:
6018 return io_sendmsg_prep(req, sqe);
6019 case IORING_OP_RECVMSG:
6020 case IORING_OP_RECV:
6021 return io_recvmsg_prep(req, sqe);
6022 case IORING_OP_CONNECT:
6023 return io_connect_prep(req, sqe);
6024 case IORING_OP_TIMEOUT:
6025 return io_timeout_prep(req, sqe, false);
6026 case IORING_OP_TIMEOUT_REMOVE:
6027 return io_timeout_remove_prep(req, sqe);
6028 case IORING_OP_ASYNC_CANCEL:
6029 return io_async_cancel_prep(req, sqe);
6030 case IORING_OP_LINK_TIMEOUT:
6031 return io_timeout_prep(req, sqe, true);
6032 case IORING_OP_ACCEPT:
6033 return io_accept_prep(req, sqe);
6034 case IORING_OP_FALLOCATE:
6035 return io_fallocate_prep(req, sqe);
6036 case IORING_OP_OPENAT:
6037 return io_openat_prep(req, sqe);
6038 case IORING_OP_CLOSE:
6039 return io_close_prep(req, sqe);
6040 case IORING_OP_FILES_UPDATE:
6041 return io_rsrc_update_prep(req, sqe);
6042 case IORING_OP_STATX:
6043 return io_statx_prep(req, sqe);
6044 case IORING_OP_FADVISE:
6045 return io_fadvise_prep(req, sqe);
6046 case IORING_OP_MADVISE:
6047 return io_madvise_prep(req, sqe);
6048 case IORING_OP_OPENAT2:
6049 return io_openat2_prep(req, sqe);
6050 case IORING_OP_EPOLL_CTL:
6051 return io_epoll_ctl_prep(req, sqe);
6052 case IORING_OP_SPLICE:
6053 return io_splice_prep(req, sqe);
6054 case IORING_OP_PROVIDE_BUFFERS:
6055 return io_provide_buffers_prep(req, sqe);
6056 case IORING_OP_REMOVE_BUFFERS:
6057 return io_remove_buffers_prep(req, sqe);
6058 case IORING_OP_TEE:
6059 return io_tee_prep(req, sqe);
6060 case IORING_OP_SHUTDOWN:
6061 return io_shutdown_prep(req, sqe);
6062 case IORING_OP_RENAMEAT:
6063 return io_renameat_prep(req, sqe);
6064 case IORING_OP_UNLINKAT:
6065 return io_unlinkat_prep(req, sqe);
6066 }
6067
6068 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6069 req->opcode);
6070 return-EINVAL;
6071 }
6072
6073 static int io_req_defer_prep(struct io_kiocb *req,
6074 const struct io_uring_sqe *sqe)
6075 {
6076 if (!sqe)
6077 return 0;
6078 if (io_alloc_async_data(req))
6079 return -EAGAIN;
6080 return io_req_prep(req, sqe);
6081 }
6082
6083 static u32 io_get_sequence(struct io_kiocb *req)
6084 {
6085 struct io_kiocb *pos;
6086 struct io_ring_ctx *ctx = req->ctx;
6087 u32 total_submitted, nr_reqs = 0;
6088
6089 io_for_each_link(pos, req)
6090 nr_reqs++;
6091
6092 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6093 return total_submitted - nr_reqs;
6094 }
6095
6096 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6097 {
6098 struct io_ring_ctx *ctx = req->ctx;
6099 struct io_defer_entry *de;
6100 int ret;
6101 u32 seq;
6102
6103 /* Still need defer if there is pending req in defer list. */
6104 if (likely(list_empty_careful(&ctx->defer_list) &&
6105 !(req->flags & REQ_F_IO_DRAIN)))
6106 return 0;
6107
6108 seq = io_get_sequence(req);
6109 /* Still a chance to pass the sequence check */
6110 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6111 return 0;
6112
6113 if (!req->async_data) {
6114 ret = io_req_defer_prep(req, sqe);
6115 if (ret)
6116 return ret;
6117 }
6118 io_prep_async_link(req);
6119 de = kmalloc(sizeof(*de), GFP_KERNEL);
6120 if (!de)
6121 return -ENOMEM;
6122
6123 spin_lock_irq(&ctx->completion_lock);
6124 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6125 spin_unlock_irq(&ctx->completion_lock);
6126 kfree(de);
6127 io_queue_async_work(req);
6128 return -EIOCBQUEUED;
6129 }
6130
6131 trace_io_uring_defer(ctx, req, req->user_data);
6132 de->req = req;
6133 de->seq = seq;
6134 list_add_tail(&de->list, &ctx->defer_list);
6135 spin_unlock_irq(&ctx->completion_lock);
6136 return -EIOCBQUEUED;
6137 }
6138
6139 static void __io_clean_op(struct io_kiocb *req)
6140 {
6141 if (req->flags & REQ_F_BUFFER_SELECTED) {
6142 switch (req->opcode) {
6143 case IORING_OP_READV:
6144 case IORING_OP_READ_FIXED:
6145 case IORING_OP_READ:
6146 kfree((void *)(unsigned long)req->rw.addr);
6147 break;
6148 case IORING_OP_RECVMSG:
6149 case IORING_OP_RECV:
6150 kfree(req->sr_msg.kbuf);
6151 break;
6152 }
6153 req->flags &= ~REQ_F_BUFFER_SELECTED;
6154 }
6155
6156 if (req->flags & REQ_F_NEED_CLEANUP) {
6157 switch (req->opcode) {
6158 case IORING_OP_READV:
6159 case IORING_OP_READ_FIXED:
6160 case IORING_OP_READ:
6161 case IORING_OP_WRITEV:
6162 case IORING_OP_WRITE_FIXED:
6163 case IORING_OP_WRITE: {
6164 struct io_async_rw *io = req->async_data;
6165 if (io->free_iovec)
6166 kfree(io->free_iovec);
6167 break;
6168 }
6169 case IORING_OP_RECVMSG:
6170 case IORING_OP_SENDMSG: {
6171 struct io_async_msghdr *io = req->async_data;
6172 if (io->iov != io->fast_iov)
6173 kfree(io->iov);
6174 break;
6175 }
6176 case IORING_OP_SPLICE:
6177 case IORING_OP_TEE:
6178 io_put_file(req, req->splice.file_in,
6179 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6180 break;
6181 case IORING_OP_OPENAT:
6182 case IORING_OP_OPENAT2:
6183 if (req->open.filename)
6184 putname(req->open.filename);
6185 break;
6186 case IORING_OP_RENAMEAT:
6187 putname(req->rename.oldpath);
6188 putname(req->rename.newpath);
6189 break;
6190 case IORING_OP_UNLINKAT:
6191 putname(req->unlink.filename);
6192 break;
6193 }
6194 req->flags &= ~REQ_F_NEED_CLEANUP;
6195 }
6196 }
6197
6198 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6199 struct io_comp_state *cs)
6200 {
6201 struct io_ring_ctx *ctx = req->ctx;
6202 int ret;
6203
6204 switch (req->opcode) {
6205 case IORING_OP_NOP:
6206 ret = io_nop(req, cs);
6207 break;
6208 case IORING_OP_READV:
6209 case IORING_OP_READ_FIXED:
6210 case IORING_OP_READ:
6211 ret = io_read(req, force_nonblock, cs);
6212 break;
6213 case IORING_OP_WRITEV:
6214 case IORING_OP_WRITE_FIXED:
6215 case IORING_OP_WRITE:
6216 ret = io_write(req, force_nonblock, cs);
6217 break;
6218 case IORING_OP_FSYNC:
6219 ret = io_fsync(req, force_nonblock);
6220 break;
6221 case IORING_OP_POLL_ADD:
6222 ret = io_poll_add(req);
6223 break;
6224 case IORING_OP_POLL_REMOVE:
6225 ret = io_poll_remove(req);
6226 break;
6227 case IORING_OP_SYNC_FILE_RANGE:
6228 ret = io_sync_file_range(req, force_nonblock);
6229 break;
6230 case IORING_OP_SENDMSG:
6231 ret = io_sendmsg(req, force_nonblock, cs);
6232 break;
6233 case IORING_OP_SEND:
6234 ret = io_send(req, force_nonblock, cs);
6235 break;
6236 case IORING_OP_RECVMSG:
6237 ret = io_recvmsg(req, force_nonblock, cs);
6238 break;
6239 case IORING_OP_RECV:
6240 ret = io_recv(req, force_nonblock, cs);
6241 break;
6242 case IORING_OP_TIMEOUT:
6243 ret = io_timeout(req);
6244 break;
6245 case IORING_OP_TIMEOUT_REMOVE:
6246 ret = io_timeout_remove(req);
6247 break;
6248 case IORING_OP_ACCEPT:
6249 ret = io_accept(req, force_nonblock, cs);
6250 break;
6251 case IORING_OP_CONNECT:
6252 ret = io_connect(req, force_nonblock, cs);
6253 break;
6254 case IORING_OP_ASYNC_CANCEL:
6255 ret = io_async_cancel(req);
6256 break;
6257 case IORING_OP_FALLOCATE:
6258 ret = io_fallocate(req, force_nonblock);
6259 break;
6260 case IORING_OP_OPENAT:
6261 ret = io_openat(req, force_nonblock);
6262 break;
6263 case IORING_OP_CLOSE:
6264 ret = io_close(req, force_nonblock, cs);
6265 break;
6266 case IORING_OP_FILES_UPDATE:
6267 ret = io_files_update(req, force_nonblock, cs);
6268 break;
6269 case IORING_OP_STATX:
6270 ret = io_statx(req, force_nonblock);
6271 break;
6272 case IORING_OP_FADVISE:
6273 ret = io_fadvise(req, force_nonblock);
6274 break;
6275 case IORING_OP_MADVISE:
6276 ret = io_madvise(req, force_nonblock);
6277 break;
6278 case IORING_OP_OPENAT2:
6279 ret = io_openat2(req, force_nonblock);
6280 break;
6281 case IORING_OP_EPOLL_CTL:
6282 ret = io_epoll_ctl(req, force_nonblock, cs);
6283 break;
6284 case IORING_OP_SPLICE:
6285 ret = io_splice(req, force_nonblock);
6286 break;
6287 case IORING_OP_PROVIDE_BUFFERS:
6288 ret = io_provide_buffers(req, force_nonblock, cs);
6289 break;
6290 case IORING_OP_REMOVE_BUFFERS:
6291 ret = io_remove_buffers(req, force_nonblock, cs);
6292 break;
6293 case IORING_OP_TEE:
6294 ret = io_tee(req, force_nonblock);
6295 break;
6296 case IORING_OP_SHUTDOWN:
6297 ret = io_shutdown(req, force_nonblock);
6298 break;
6299 case IORING_OP_RENAMEAT:
6300 ret = io_renameat(req, force_nonblock);
6301 break;
6302 case IORING_OP_UNLINKAT:
6303 ret = io_unlinkat(req, force_nonblock);
6304 break;
6305 default:
6306 ret = -EINVAL;
6307 break;
6308 }
6309
6310 if (ret)
6311 return ret;
6312
6313 /* If the op doesn't have a file, we're not polling for it */
6314 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6315 const bool in_async = io_wq_current_is_worker();
6316
6317 /* workqueue context doesn't hold uring_lock, grab it now */
6318 if (in_async)
6319 mutex_lock(&ctx->uring_lock);
6320
6321 io_iopoll_req_issued(req, in_async);
6322
6323 if (in_async)
6324 mutex_unlock(&ctx->uring_lock);
6325 }
6326
6327 return 0;
6328 }
6329
6330 static void io_wq_submit_work(struct io_wq_work *work)
6331 {
6332 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6333 struct io_kiocb *timeout;
6334 int ret = 0;
6335
6336 timeout = io_prep_linked_timeout(req);
6337 if (timeout)
6338 io_queue_linked_timeout(timeout);
6339
6340 if (work->flags & IO_WQ_WORK_CANCEL)
6341 ret = -ECANCELED;
6342
6343 if (!ret) {
6344 do {
6345 ret = io_issue_sqe(req, false, NULL);
6346 /*
6347 * We can get EAGAIN for polled IO even though we're
6348 * forcing a sync submission from here, since we can't
6349 * wait for request slots on the block side.
6350 */
6351 if (ret != -EAGAIN)
6352 break;
6353 cond_resched();
6354 } while (1);
6355 }
6356
6357 if (ret) {
6358 struct io_ring_ctx *lock_ctx = NULL;
6359
6360 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6361 lock_ctx = req->ctx;
6362
6363 /*
6364 * io_iopoll_complete() does not hold completion_lock to
6365 * complete polled io, so here for polled io, we can not call
6366 * io_req_complete() directly, otherwise there maybe concurrent
6367 * access to cqring, defer_list, etc, which is not safe. Given
6368 * that io_iopoll_complete() is always called under uring_lock,
6369 * so here for polled io, we also get uring_lock to complete
6370 * it.
6371 */
6372 if (lock_ctx)
6373 mutex_lock(&lock_ctx->uring_lock);
6374
6375 req_set_fail_links(req);
6376 io_req_complete(req, ret);
6377
6378 if (lock_ctx)
6379 mutex_unlock(&lock_ctx->uring_lock);
6380 }
6381 }
6382
6383 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6384 int index)
6385 {
6386 struct fixed_rsrc_table *table;
6387
6388 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6389 return table->files[index & IORING_FILE_TABLE_MASK];
6390 }
6391
6392 static struct file *io_file_get(struct io_submit_state *state,
6393 struct io_kiocb *req, int fd, bool fixed)
6394 {
6395 struct io_ring_ctx *ctx = req->ctx;
6396 struct file *file;
6397
6398 if (fixed) {
6399 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6400 return NULL;
6401 fd = array_index_nospec(fd, ctx->nr_user_files);
6402 file = io_file_from_index(ctx, fd);
6403 io_set_resource_node(req);
6404 } else {
6405 trace_io_uring_file_get(ctx, fd);
6406 file = __io_file_get(state, fd);
6407 }
6408
6409 if (file && unlikely(file->f_op == &io_uring_fops))
6410 io_req_track_inflight(req);
6411 return file;
6412 }
6413
6414 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6415 {
6416 struct io_timeout_data *data = container_of(timer,
6417 struct io_timeout_data, timer);
6418 struct io_kiocb *prev, *req = data->req;
6419 struct io_ring_ctx *ctx = req->ctx;
6420 unsigned long flags;
6421
6422 spin_lock_irqsave(&ctx->completion_lock, flags);
6423 prev = req->timeout.head;
6424 req->timeout.head = NULL;
6425
6426 /*
6427 * We don't expect the list to be empty, that will only happen if we
6428 * race with the completion of the linked work.
6429 */
6430 if (prev && refcount_inc_not_zero(&prev->refs))
6431 io_remove_next_linked(prev);
6432 else
6433 prev = NULL;
6434 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6435
6436 if (prev) {
6437 req_set_fail_links(prev);
6438 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6439 io_put_req_deferred(prev, 1);
6440 } else {
6441 io_req_complete_post(req, -ETIME, 0);
6442 io_put_req_deferred(req, 1);
6443 }
6444 return HRTIMER_NORESTART;
6445 }
6446
6447 static void __io_queue_linked_timeout(struct io_kiocb *req)
6448 {
6449 /*
6450 * If the back reference is NULL, then our linked request finished
6451 * before we got a chance to setup the timer
6452 */
6453 if (req->timeout.head) {
6454 struct io_timeout_data *data = req->async_data;
6455
6456 data->timer.function = io_link_timeout_fn;
6457 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6458 data->mode);
6459 }
6460 }
6461
6462 static void io_queue_linked_timeout(struct io_kiocb *req)
6463 {
6464 struct io_ring_ctx *ctx = req->ctx;
6465
6466 spin_lock_irq(&ctx->completion_lock);
6467 __io_queue_linked_timeout(req);
6468 spin_unlock_irq(&ctx->completion_lock);
6469
6470 /* drop submission reference */
6471 io_put_req(req);
6472 }
6473
6474 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6475 {
6476 struct io_kiocb *nxt = req->link;
6477
6478 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6479 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6480 return NULL;
6481
6482 nxt->timeout.head = req;
6483 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6484 req->flags |= REQ_F_LINK_TIMEOUT;
6485 return nxt;
6486 }
6487
6488 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6489 {
6490 struct io_kiocb *linked_timeout;
6491 const struct cred *old_creds = NULL;
6492 int ret;
6493
6494 again:
6495 linked_timeout = io_prep_linked_timeout(req);
6496
6497 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6498 (req->work.flags & IO_WQ_WORK_CREDS) &&
6499 req->work.identity->creds != current_cred()) {
6500 if (old_creds)
6501 revert_creds(old_creds);
6502 if (old_creds == req->work.identity->creds)
6503 old_creds = NULL; /* restored original creds */
6504 else
6505 old_creds = override_creds(req->work.identity->creds);
6506 }
6507
6508 ret = io_issue_sqe(req, true, cs);
6509
6510 /*
6511 * We async punt it if the file wasn't marked NOWAIT, or if the file
6512 * doesn't support non-blocking read/write attempts
6513 */
6514 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6515 if (!io_arm_poll_handler(req)) {
6516 /*
6517 * Queued up for async execution, worker will release
6518 * submit reference when the iocb is actually submitted.
6519 */
6520 io_queue_async_work(req);
6521 }
6522
6523 if (linked_timeout)
6524 io_queue_linked_timeout(linked_timeout);
6525 } else if (likely(!ret)) {
6526 /* drop submission reference */
6527 if (req->flags & REQ_F_COMPLETE_INLINE) {
6528 list_add_tail(&req->compl.list, &cs->list);
6529 if (++cs->nr >= 32)
6530 io_submit_flush_completions(cs);
6531 req = NULL;
6532 } else {
6533 req = io_put_req_find_next(req);
6534 }
6535
6536 if (linked_timeout)
6537 io_queue_linked_timeout(linked_timeout);
6538
6539 if (req) {
6540 if (!(req->flags & REQ_F_FORCE_ASYNC))
6541 goto again;
6542 io_queue_async_work(req);
6543 }
6544 } else {
6545 /* un-prep timeout, so it'll be killed as any other linked */
6546 req->flags &= ~REQ_F_LINK_TIMEOUT;
6547 req_set_fail_links(req);
6548 io_put_req(req);
6549 io_req_complete(req, ret);
6550 }
6551
6552 if (old_creds)
6553 revert_creds(old_creds);
6554 }
6555
6556 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6557 struct io_comp_state *cs)
6558 {
6559 int ret;
6560
6561 ret = io_req_defer(req, sqe);
6562 if (ret) {
6563 if (ret != -EIOCBQUEUED) {
6564 fail_req:
6565 req_set_fail_links(req);
6566 io_put_req(req);
6567 io_req_complete(req, ret);
6568 }
6569 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6570 if (!req->async_data) {
6571 ret = io_req_defer_prep(req, sqe);
6572 if (unlikely(ret))
6573 goto fail_req;
6574 }
6575 io_queue_async_work(req);
6576 } else {
6577 if (sqe) {
6578 ret = io_req_prep(req, sqe);
6579 if (unlikely(ret))
6580 goto fail_req;
6581 }
6582 __io_queue_sqe(req, cs);
6583 }
6584 }
6585
6586 static inline void io_queue_link_head(struct io_kiocb *req,
6587 struct io_comp_state *cs)
6588 {
6589 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6590 io_put_req(req);
6591 io_req_complete(req, -ECANCELED);
6592 } else
6593 io_queue_sqe(req, NULL, cs);
6594 }
6595
6596 struct io_submit_link {
6597 struct io_kiocb *head;
6598 struct io_kiocb *last;
6599 };
6600
6601 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6602 struct io_submit_link *link, struct io_comp_state *cs)
6603 {
6604 struct io_ring_ctx *ctx = req->ctx;
6605 int ret;
6606
6607 /*
6608 * If we already have a head request, queue this one for async
6609 * submittal once the head completes. If we don't have a head but
6610 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6611 * submitted sync once the chain is complete. If none of those
6612 * conditions are true (normal request), then just queue it.
6613 */
6614 if (link->head) {
6615 struct io_kiocb *head = link->head;
6616
6617 /*
6618 * Taking sequential execution of a link, draining both sides
6619 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6620 * requests in the link. So, it drains the head and the
6621 * next after the link request. The last one is done via
6622 * drain_next flag to persist the effect across calls.
6623 */
6624 if (req->flags & REQ_F_IO_DRAIN) {
6625 head->flags |= REQ_F_IO_DRAIN;
6626 ctx->drain_next = 1;
6627 }
6628 ret = io_req_defer_prep(req, sqe);
6629 if (unlikely(ret)) {
6630 /* fail even hard links since we don't submit */
6631 head->flags |= REQ_F_FAIL_LINK;
6632 return ret;
6633 }
6634 trace_io_uring_link(ctx, req, head);
6635 link->last->link = req;
6636 link->last = req;
6637
6638 /* last request of a link, enqueue the link */
6639 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6640 io_queue_link_head(head, cs);
6641 link->head = NULL;
6642 }
6643 } else {
6644 if (unlikely(ctx->drain_next)) {
6645 req->flags |= REQ_F_IO_DRAIN;
6646 ctx->drain_next = 0;
6647 }
6648 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6649 ret = io_req_defer_prep(req, sqe);
6650 if (unlikely(ret))
6651 req->flags |= REQ_F_FAIL_LINK;
6652 link->head = req;
6653 link->last = req;
6654 } else {
6655 io_queue_sqe(req, sqe, cs);
6656 }
6657 }
6658
6659 return 0;
6660 }
6661
6662 /*
6663 * Batched submission is done, ensure local IO is flushed out.
6664 */
6665 static void io_submit_state_end(struct io_submit_state *state)
6666 {
6667 if (!list_empty(&state->comp.list))
6668 io_submit_flush_completions(&state->comp);
6669 if (state->plug_started)
6670 blk_finish_plug(&state->plug);
6671 io_state_file_put(state);
6672 if (state->free_reqs)
6673 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6674 }
6675
6676 /*
6677 * Start submission side cache.
6678 */
6679 static void io_submit_state_start(struct io_submit_state *state,
6680 struct io_ring_ctx *ctx, unsigned int max_ios)
6681 {
6682 state->plug_started = false;
6683 state->comp.nr = 0;
6684 INIT_LIST_HEAD(&state->comp.list);
6685 state->comp.ctx = ctx;
6686 state->free_reqs = 0;
6687 state->file_refs = 0;
6688 state->ios_left = max_ios;
6689 }
6690
6691 static void io_commit_sqring(struct io_ring_ctx *ctx)
6692 {
6693 struct io_rings *rings = ctx->rings;
6694
6695 /*
6696 * Ensure any loads from the SQEs are done at this point,
6697 * since once we write the new head, the application could
6698 * write new data to them.
6699 */
6700 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6701 }
6702
6703 /*
6704 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6705 * that is mapped by userspace. This means that care needs to be taken to
6706 * ensure that reads are stable, as we cannot rely on userspace always
6707 * being a good citizen. If members of the sqe are validated and then later
6708 * used, it's important that those reads are done through READ_ONCE() to
6709 * prevent a re-load down the line.
6710 */
6711 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6712 {
6713 u32 *sq_array = ctx->sq_array;
6714 unsigned head;
6715
6716 /*
6717 * The cached sq head (or cq tail) serves two purposes:
6718 *
6719 * 1) allows us to batch the cost of updating the user visible
6720 * head updates.
6721 * 2) allows the kernel side to track the head on its own, even
6722 * though the application is the one updating it.
6723 */
6724 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6725 if (likely(head < ctx->sq_entries))
6726 return &ctx->sq_sqes[head];
6727
6728 /* drop invalid entries */
6729 ctx->cached_sq_dropped++;
6730 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6731 return NULL;
6732 }
6733
6734 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6735 {
6736 ctx->cached_sq_head++;
6737 }
6738
6739 /*
6740 * Check SQE restrictions (opcode and flags).
6741 *
6742 * Returns 'true' if SQE is allowed, 'false' otherwise.
6743 */
6744 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6745 struct io_kiocb *req,
6746 unsigned int sqe_flags)
6747 {
6748 if (!ctx->restricted)
6749 return true;
6750
6751 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6752 return false;
6753
6754 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6755 ctx->restrictions.sqe_flags_required)
6756 return false;
6757
6758 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6759 ctx->restrictions.sqe_flags_required))
6760 return false;
6761
6762 return true;
6763 }
6764
6765 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6766 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6767 IOSQE_BUFFER_SELECT)
6768
6769 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6770 const struct io_uring_sqe *sqe,
6771 struct io_submit_state *state)
6772 {
6773 unsigned int sqe_flags;
6774 int id, ret;
6775
6776 req->opcode = READ_ONCE(sqe->opcode);
6777 req->user_data = READ_ONCE(sqe->user_data);
6778 req->async_data = NULL;
6779 req->file = NULL;
6780 req->ctx = ctx;
6781 req->flags = 0;
6782 req->link = NULL;
6783 req->fixed_rsrc_refs = NULL;
6784 /* one is dropped after submission, the other at completion */
6785 refcount_set(&req->refs, 2);
6786 req->task = current;
6787 req->result = 0;
6788
6789 if (unlikely(req->opcode >= IORING_OP_LAST))
6790 return -EINVAL;
6791
6792 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6793 return -EFAULT;
6794
6795 sqe_flags = READ_ONCE(sqe->flags);
6796 /* enforce forwards compatibility on users */
6797 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6798 return -EINVAL;
6799
6800 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6801 return -EACCES;
6802
6803 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6804 !io_op_defs[req->opcode].buffer_select)
6805 return -EOPNOTSUPP;
6806
6807 id = READ_ONCE(sqe->personality);
6808 if (id) {
6809 struct io_identity *iod;
6810
6811 iod = idr_find(&ctx->personality_idr, id);
6812 if (unlikely(!iod))
6813 return -EINVAL;
6814 refcount_inc(&iod->count);
6815
6816 __io_req_init_async(req);
6817 get_cred(iod->creds);
6818 req->work.identity = iod;
6819 req->work.flags |= IO_WQ_WORK_CREDS;
6820 }
6821
6822 /* same numerical values with corresponding REQ_F_*, safe to copy */
6823 req->flags |= sqe_flags;
6824
6825 /*
6826 * Plug now if we have more than 1 IO left after this, and the target
6827 * is potentially a read/write to block based storage.
6828 */
6829 if (!state->plug_started && state->ios_left > 1 &&
6830 io_op_defs[req->opcode].plug) {
6831 blk_start_plug(&state->plug);
6832 state->plug_started = true;
6833 }
6834
6835 ret = 0;
6836 if (io_op_defs[req->opcode].needs_file) {
6837 bool fixed = req->flags & REQ_F_FIXED_FILE;
6838
6839 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6840 if (unlikely(!req->file))
6841 ret = -EBADF;
6842 }
6843
6844 state->ios_left--;
6845 return ret;
6846 }
6847
6848 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6849 {
6850 struct io_submit_state state;
6851 struct io_submit_link link;
6852 int i, submitted = 0;
6853
6854 /* if we have a backlog and couldn't flush it all, return BUSY */
6855 if (test_bit(0, &ctx->sq_check_overflow)) {
6856 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6857 return -EBUSY;
6858 }
6859
6860 /* make sure SQ entry isn't read before tail */
6861 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6862
6863 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6864 return -EAGAIN;
6865
6866 percpu_counter_add(&current->io_uring->inflight, nr);
6867 refcount_add(nr, &current->usage);
6868
6869 io_submit_state_start(&state, ctx, nr);
6870 link.head = NULL;
6871
6872 for (i = 0; i < nr; i++) {
6873 const struct io_uring_sqe *sqe;
6874 struct io_kiocb *req;
6875 int err;
6876
6877 sqe = io_get_sqe(ctx);
6878 if (unlikely(!sqe)) {
6879 io_consume_sqe(ctx);
6880 break;
6881 }
6882 req = io_alloc_req(ctx, &state);
6883 if (unlikely(!req)) {
6884 if (!submitted)
6885 submitted = -EAGAIN;
6886 break;
6887 }
6888 io_consume_sqe(ctx);
6889 /* will complete beyond this point, count as submitted */
6890 submitted++;
6891
6892 err = io_init_req(ctx, req, sqe, &state);
6893 if (unlikely(err)) {
6894 fail_req:
6895 io_put_req(req);
6896 io_req_complete(req, err);
6897 break;
6898 }
6899
6900 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6901 true, ctx->flags & IORING_SETUP_SQPOLL);
6902 err = io_submit_sqe(req, sqe, &link, &state.comp);
6903 if (err)
6904 goto fail_req;
6905 }
6906
6907 if (unlikely(submitted != nr)) {
6908 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6909 struct io_uring_task *tctx = current->io_uring;
6910 int unused = nr - ref_used;
6911
6912 percpu_ref_put_many(&ctx->refs, unused);
6913 percpu_counter_sub(&tctx->inflight, unused);
6914 put_task_struct_many(current, unused);
6915 }
6916 if (link.head)
6917 io_queue_link_head(link.head, &state.comp);
6918 io_submit_state_end(&state);
6919
6920 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6921 io_commit_sqring(ctx);
6922
6923 return submitted;
6924 }
6925
6926 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6927 {
6928 /* Tell userspace we may need a wakeup call */
6929 spin_lock_irq(&ctx->completion_lock);
6930 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6931 spin_unlock_irq(&ctx->completion_lock);
6932 }
6933
6934 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6935 {
6936 spin_lock_irq(&ctx->completion_lock);
6937 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6938 spin_unlock_irq(&ctx->completion_lock);
6939 }
6940
6941 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6942 {
6943 unsigned int to_submit;
6944 int ret = 0;
6945
6946 to_submit = io_sqring_entries(ctx);
6947 /* if we're handling multiple rings, cap submit size for fairness */
6948 if (cap_entries && to_submit > 8)
6949 to_submit = 8;
6950
6951 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6952 unsigned nr_events = 0;
6953
6954 mutex_lock(&ctx->uring_lock);
6955 if (!list_empty(&ctx->iopoll_list))
6956 io_do_iopoll(ctx, &nr_events, 0);
6957
6958 if (to_submit && !ctx->sqo_dead &&
6959 likely(!percpu_ref_is_dying(&ctx->refs)))
6960 ret = io_submit_sqes(ctx, to_submit);
6961 mutex_unlock(&ctx->uring_lock);
6962 }
6963
6964 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6965 wake_up(&ctx->sqo_sq_wait);
6966
6967 return ret;
6968 }
6969
6970 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6971 {
6972 struct io_ring_ctx *ctx;
6973 unsigned sq_thread_idle = 0;
6974
6975 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6976 if (sq_thread_idle < ctx->sq_thread_idle)
6977 sq_thread_idle = ctx->sq_thread_idle;
6978 }
6979
6980 sqd->sq_thread_idle = sq_thread_idle;
6981 }
6982
6983 static void io_sqd_init_new(struct io_sq_data *sqd)
6984 {
6985 struct io_ring_ctx *ctx;
6986
6987 while (!list_empty(&sqd->ctx_new_list)) {
6988 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6989 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6990 complete(&ctx->sq_thread_comp);
6991 }
6992
6993 io_sqd_update_thread_idle(sqd);
6994 }
6995
6996 static int io_sq_thread(void *data)
6997 {
6998 struct cgroup_subsys_state *cur_css = NULL;
6999 struct files_struct *old_files = current->files;
7000 struct nsproxy *old_nsproxy = current->nsproxy;
7001 const struct cred *old_cred = NULL;
7002 struct io_sq_data *sqd = data;
7003 struct io_ring_ctx *ctx;
7004 unsigned long timeout = 0;
7005 DEFINE_WAIT(wait);
7006
7007 task_lock(current);
7008 current->files = NULL;
7009 current->nsproxy = NULL;
7010 task_unlock(current);
7011
7012 while (!kthread_should_stop()) {
7013 int ret;
7014 bool cap_entries, sqt_spin, needs_sched;
7015
7016 /*
7017 * Any changes to the sqd lists are synchronized through the
7018 * kthread parking. This synchronizes the thread vs users,
7019 * the users are synchronized on the sqd->ctx_lock.
7020 */
7021 if (kthread_should_park()) {
7022 kthread_parkme();
7023 /*
7024 * When sq thread is unparked, in case the previous park operation
7025 * comes from io_put_sq_data(), which means that sq thread is going
7026 * to be stopped, so here needs to have a check.
7027 */
7028 if (kthread_should_stop())
7029 break;
7030 }
7031
7032 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7033 io_sqd_init_new(sqd);
7034 timeout = jiffies + sqd->sq_thread_idle;
7035 }
7036
7037 sqt_spin = false;
7038 cap_entries = !list_is_singular(&sqd->ctx_list);
7039 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7040 if (current->cred != ctx->creds) {
7041 if (old_cred)
7042 revert_creds(old_cred);
7043 old_cred = override_creds(ctx->creds);
7044 }
7045 io_sq_thread_associate_blkcg(ctx, &cur_css);
7046 #ifdef CONFIG_AUDIT
7047 current->loginuid = ctx->loginuid;
7048 current->sessionid = ctx->sessionid;
7049 #endif
7050
7051 ret = __io_sq_thread(ctx, cap_entries);
7052 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7053 sqt_spin = true;
7054
7055 io_sq_thread_drop_mm_files();
7056 }
7057
7058 if (sqt_spin || !time_after(jiffies, timeout)) {
7059 io_run_task_work();
7060 io_sq_thread_drop_mm_files();
7061 cond_resched();
7062 if (sqt_spin)
7063 timeout = jiffies + sqd->sq_thread_idle;
7064 continue;
7065 }
7066
7067 needs_sched = true;
7068 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7069 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7070 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7071 !list_empty_careful(&ctx->iopoll_list)) {
7072 needs_sched = false;
7073 break;
7074 }
7075 if (io_sqring_entries(ctx)) {
7076 needs_sched = false;
7077 break;
7078 }
7079 }
7080
7081 if (needs_sched && !kthread_should_park()) {
7082 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7083 io_ring_set_wakeup_flag(ctx);
7084
7085 schedule();
7086 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7087 io_ring_clear_wakeup_flag(ctx);
7088 }
7089
7090 finish_wait(&sqd->wait, &wait);
7091 timeout = jiffies + sqd->sq_thread_idle;
7092 }
7093
7094 io_run_task_work();
7095 io_sq_thread_drop_mm_files();
7096
7097 if (cur_css)
7098 io_sq_thread_unassociate_blkcg();
7099 if (old_cred)
7100 revert_creds(old_cred);
7101
7102 task_lock(current);
7103 current->files = old_files;
7104 current->nsproxy = old_nsproxy;
7105 task_unlock(current);
7106
7107 kthread_parkme();
7108
7109 return 0;
7110 }
7111
7112 struct io_wait_queue {
7113 struct wait_queue_entry wq;
7114 struct io_ring_ctx *ctx;
7115 unsigned to_wait;
7116 unsigned nr_timeouts;
7117 };
7118
7119 static inline bool io_should_wake(struct io_wait_queue *iowq)
7120 {
7121 struct io_ring_ctx *ctx = iowq->ctx;
7122
7123 /*
7124 * Wake up if we have enough events, or if a timeout occurred since we
7125 * started waiting. For timeouts, we always want to return to userspace,
7126 * regardless of event count.
7127 */
7128 return io_cqring_events(ctx) >= iowq->to_wait ||
7129 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7130 }
7131
7132 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7133 int wake_flags, void *key)
7134 {
7135 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7136 wq);
7137
7138 /*
7139 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7140 * the task, and the next invocation will do it.
7141 */
7142 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7143 return autoremove_wake_function(curr, mode, wake_flags, key);
7144 return -1;
7145 }
7146
7147 static int io_run_task_work_sig(void)
7148 {
7149 if (io_run_task_work())
7150 return 1;
7151 if (!signal_pending(current))
7152 return 0;
7153 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7154 return -ERESTARTSYS;
7155 return -EINTR;
7156 }
7157
7158 /* when returns >0, the caller should retry */
7159 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7160 struct io_wait_queue *iowq,
7161 signed long *timeout)
7162 {
7163 int ret;
7164
7165 /* make sure we run task_work before checking for signals */
7166 ret = io_run_task_work_sig();
7167 if (ret || io_should_wake(iowq))
7168 return ret;
7169 /* let the caller flush overflows, retry */
7170 if (test_bit(0, &ctx->cq_check_overflow))
7171 return 1;
7172
7173 *timeout = schedule_timeout(*timeout);
7174 return !*timeout ? -ETIME : 1;
7175 }
7176
7177 /*
7178 * Wait until events become available, if we don't already have some. The
7179 * application must reap them itself, as they reside on the shared cq ring.
7180 */
7181 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7182 const sigset_t __user *sig, size_t sigsz,
7183 struct __kernel_timespec __user *uts)
7184 {
7185 struct io_wait_queue iowq = {
7186 .wq = {
7187 .private = current,
7188 .func = io_wake_function,
7189 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7190 },
7191 .ctx = ctx,
7192 .to_wait = min_events,
7193 };
7194 struct io_rings *rings = ctx->rings;
7195 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7196 int ret;
7197
7198 do {
7199 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7200 if (io_cqring_events(ctx) >= min_events)
7201 return 0;
7202 if (!io_run_task_work())
7203 break;
7204 } while (1);
7205
7206 if (sig) {
7207 #ifdef CONFIG_COMPAT
7208 if (in_compat_syscall())
7209 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7210 sigsz);
7211 else
7212 #endif
7213 ret = set_user_sigmask(sig, sigsz);
7214
7215 if (ret)
7216 return ret;
7217 }
7218
7219 if (uts) {
7220 struct timespec64 ts;
7221
7222 if (get_timespec64(&ts, uts))
7223 return -EFAULT;
7224 timeout = timespec64_to_jiffies(&ts);
7225 }
7226
7227 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7228 trace_io_uring_cqring_wait(ctx, min_events);
7229 do {
7230 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7231 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7232 TASK_INTERRUPTIBLE);
7233 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7234 finish_wait(&ctx->wait, &iowq.wq);
7235 } while (ret > 0);
7236
7237 restore_saved_sigmask_unless(ret == -EINTR);
7238
7239 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7240 }
7241
7242 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7243 {
7244 #if defined(CONFIG_UNIX)
7245 if (ctx->ring_sock) {
7246 struct sock *sock = ctx->ring_sock->sk;
7247 struct sk_buff *skb;
7248
7249 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7250 kfree_skb(skb);
7251 }
7252 #else
7253 int i;
7254
7255 for (i = 0; i < ctx->nr_user_files; i++) {
7256 struct file *file;
7257
7258 file = io_file_from_index(ctx, i);
7259 if (file)
7260 fput(file);
7261 }
7262 #endif
7263 }
7264
7265 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7266 {
7267 struct fixed_rsrc_data *data;
7268
7269 data = container_of(ref, struct fixed_rsrc_data, refs);
7270 complete(&data->done);
7271 }
7272
7273 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7274 {
7275 spin_lock_bh(&ctx->rsrc_ref_lock);
7276 }
7277
7278 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7279 {
7280 spin_unlock_bh(&ctx->rsrc_ref_lock);
7281 }
7282
7283 static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
7284 struct fixed_rsrc_data *rsrc_data,
7285 struct fixed_rsrc_ref_node *ref_node)
7286 {
7287 io_rsrc_ref_lock(ctx);
7288 rsrc_data->node = ref_node;
7289 list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
7290 io_rsrc_ref_unlock(ctx);
7291 percpu_ref_get(&rsrc_data->refs);
7292 }
7293
7294 static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
7295 struct io_ring_ctx *ctx,
7296 struct fixed_rsrc_ref_node *backup_node)
7297 {
7298 struct fixed_rsrc_ref_node *ref_node;
7299 int ret;
7300
7301 io_rsrc_ref_lock(ctx);
7302 ref_node = data->node;
7303 io_rsrc_ref_unlock(ctx);
7304 if (ref_node)
7305 percpu_ref_kill(&ref_node->refs);
7306
7307 percpu_ref_kill(&data->refs);
7308
7309 /* wait for all refs nodes to complete */
7310 flush_delayed_work(&ctx->rsrc_put_work);
7311 do {
7312 ret = wait_for_completion_interruptible(&data->done);
7313 if (!ret)
7314 break;
7315 ret = io_run_task_work_sig();
7316 if (ret < 0) {
7317 percpu_ref_resurrect(&data->refs);
7318 reinit_completion(&data->done);
7319 io_sqe_rsrc_set_node(ctx, data, backup_node);
7320 return ret;
7321 }
7322 } while (1);
7323
7324 destroy_fixed_rsrc_ref_node(backup_node);
7325 return 0;
7326 }
7327
7328 static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
7329 {
7330 struct fixed_rsrc_data *data;
7331
7332 data = kzalloc(sizeof(*data), GFP_KERNEL);
7333 if (!data)
7334 return NULL;
7335
7336 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7337 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7338 kfree(data);
7339 return NULL;
7340 }
7341 data->ctx = ctx;
7342 init_completion(&data->done);
7343 return data;
7344 }
7345
7346 static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
7347 {
7348 percpu_ref_exit(&data->refs);
7349 kfree(data->table);
7350 kfree(data);
7351 }
7352
7353 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7354 {
7355 struct fixed_rsrc_data *data = ctx->file_data;
7356 struct fixed_rsrc_ref_node *backup_node;
7357 unsigned nr_tables, i;
7358 int ret;
7359
7360 if (!data)
7361 return -ENXIO;
7362 backup_node = alloc_fixed_rsrc_ref_node(ctx);
7363 if (!backup_node)
7364 return -ENOMEM;
7365 init_fixed_file_ref_node(ctx, backup_node);
7366
7367 ret = io_rsrc_ref_quiesce(data, ctx, backup_node);
7368 if (ret)
7369 return ret;
7370
7371 __io_sqe_files_unregister(ctx);
7372 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7373 for (i = 0; i < nr_tables; i++)
7374 kfree(data->table[i].files);
7375 free_fixed_rsrc_data(data);
7376 ctx->file_data = NULL;
7377 ctx->nr_user_files = 0;
7378 return 0;
7379 }
7380
7381 static void io_put_sq_data(struct io_sq_data *sqd)
7382 {
7383 if (refcount_dec_and_test(&sqd->refs)) {
7384 /*
7385 * The park is a bit of a work-around, without it we get
7386 * warning spews on shutdown with SQPOLL set and affinity
7387 * set to a single CPU.
7388 */
7389 if (sqd->thread) {
7390 kthread_park(sqd->thread);
7391 kthread_stop(sqd->thread);
7392 }
7393
7394 kfree(sqd);
7395 }
7396 }
7397
7398 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7399 {
7400 struct io_ring_ctx *ctx_attach;
7401 struct io_sq_data *sqd;
7402 struct fd f;
7403
7404 f = fdget(p->wq_fd);
7405 if (!f.file)
7406 return ERR_PTR(-ENXIO);
7407 if (f.file->f_op != &io_uring_fops) {
7408 fdput(f);
7409 return ERR_PTR(-EINVAL);
7410 }
7411
7412 ctx_attach = f.file->private_data;
7413 sqd = ctx_attach->sq_data;
7414 if (!sqd) {
7415 fdput(f);
7416 return ERR_PTR(-EINVAL);
7417 }
7418
7419 refcount_inc(&sqd->refs);
7420 fdput(f);
7421 return sqd;
7422 }
7423
7424 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7425 {
7426 struct io_sq_data *sqd;
7427
7428 if (p->flags & IORING_SETUP_ATTACH_WQ)
7429 return io_attach_sq_data(p);
7430
7431 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7432 if (!sqd)
7433 return ERR_PTR(-ENOMEM);
7434
7435 refcount_set(&sqd->refs, 1);
7436 INIT_LIST_HEAD(&sqd->ctx_list);
7437 INIT_LIST_HEAD(&sqd->ctx_new_list);
7438 mutex_init(&sqd->ctx_lock);
7439 mutex_init(&sqd->lock);
7440 init_waitqueue_head(&sqd->wait);
7441 return sqd;
7442 }
7443
7444 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7445 __releases(&sqd->lock)
7446 {
7447 if (!sqd->thread)
7448 return;
7449 kthread_unpark(sqd->thread);
7450 mutex_unlock(&sqd->lock);
7451 }
7452
7453 static void io_sq_thread_park(struct io_sq_data *sqd)
7454 __acquires(&sqd->lock)
7455 {
7456 if (!sqd->thread)
7457 return;
7458 mutex_lock(&sqd->lock);
7459 kthread_park(sqd->thread);
7460 }
7461
7462 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7463 {
7464 struct io_sq_data *sqd = ctx->sq_data;
7465
7466 if (sqd) {
7467 if (sqd->thread) {
7468 /*
7469 * We may arrive here from the error branch in
7470 * io_sq_offload_create() where the kthread is created
7471 * without being waked up, thus wake it up now to make
7472 * sure the wait will complete.
7473 */
7474 wake_up_process(sqd->thread);
7475 wait_for_completion(&ctx->sq_thread_comp);
7476
7477 io_sq_thread_park(sqd);
7478 }
7479
7480 mutex_lock(&sqd->ctx_lock);
7481 list_del(&ctx->sqd_list);
7482 io_sqd_update_thread_idle(sqd);
7483 mutex_unlock(&sqd->ctx_lock);
7484
7485 if (sqd->thread)
7486 io_sq_thread_unpark(sqd);
7487
7488 io_put_sq_data(sqd);
7489 ctx->sq_data = NULL;
7490 }
7491 }
7492
7493 static void io_finish_async(struct io_ring_ctx *ctx)
7494 {
7495 io_sq_thread_stop(ctx);
7496
7497 if (ctx->io_wq) {
7498 io_wq_destroy(ctx->io_wq);
7499 ctx->io_wq = NULL;
7500 }
7501 }
7502
7503 #if defined(CONFIG_UNIX)
7504 /*
7505 * Ensure the UNIX gc is aware of our file set, so we are certain that
7506 * the io_uring can be safely unregistered on process exit, even if we have
7507 * loops in the file referencing.
7508 */
7509 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7510 {
7511 struct sock *sk = ctx->ring_sock->sk;
7512 struct scm_fp_list *fpl;
7513 struct sk_buff *skb;
7514 int i, nr_files;
7515
7516 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7517 if (!fpl)
7518 return -ENOMEM;
7519
7520 skb = alloc_skb(0, GFP_KERNEL);
7521 if (!skb) {
7522 kfree(fpl);
7523 return -ENOMEM;
7524 }
7525
7526 skb->sk = sk;
7527
7528 nr_files = 0;
7529 fpl->user = get_uid(ctx->user);
7530 for (i = 0; i < nr; i++) {
7531 struct file *file = io_file_from_index(ctx, i + offset);
7532
7533 if (!file)
7534 continue;
7535 fpl->fp[nr_files] = get_file(file);
7536 unix_inflight(fpl->user, fpl->fp[nr_files]);
7537 nr_files++;
7538 }
7539
7540 if (nr_files) {
7541 fpl->max = SCM_MAX_FD;
7542 fpl->count = nr_files;
7543 UNIXCB(skb).fp = fpl;
7544 skb->destructor = unix_destruct_scm;
7545 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7546 skb_queue_head(&sk->sk_receive_queue, skb);
7547
7548 for (i = 0; i < nr_files; i++)
7549 fput(fpl->fp[i]);
7550 } else {
7551 kfree_skb(skb);
7552 kfree(fpl);
7553 }
7554
7555 return 0;
7556 }
7557
7558 /*
7559 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7560 * causes regular reference counting to break down. We rely on the UNIX
7561 * garbage collection to take care of this problem for us.
7562 */
7563 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7564 {
7565 unsigned left, total;
7566 int ret = 0;
7567
7568 total = 0;
7569 left = ctx->nr_user_files;
7570 while (left) {
7571 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7572
7573 ret = __io_sqe_files_scm(ctx, this_files, total);
7574 if (ret)
7575 break;
7576 left -= this_files;
7577 total += this_files;
7578 }
7579
7580 if (!ret)
7581 return 0;
7582
7583 while (total < ctx->nr_user_files) {
7584 struct file *file = io_file_from_index(ctx, total);
7585
7586 if (file)
7587 fput(file);
7588 total++;
7589 }
7590
7591 return ret;
7592 }
7593 #else
7594 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7595 {
7596 return 0;
7597 }
7598 #endif
7599
7600 static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
7601 unsigned nr_tables, unsigned nr_files)
7602 {
7603 int i;
7604
7605 for (i = 0; i < nr_tables; i++) {
7606 struct fixed_rsrc_table *table = &file_data->table[i];
7607 unsigned this_files;
7608
7609 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7610 table->files = kcalloc(this_files, sizeof(struct file *),
7611 GFP_KERNEL);
7612 if (!table->files)
7613 break;
7614 nr_files -= this_files;
7615 }
7616
7617 if (i == nr_tables)
7618 return 0;
7619
7620 for (i = 0; i < nr_tables; i++) {
7621 struct fixed_rsrc_table *table = &file_data->table[i];
7622 kfree(table->files);
7623 }
7624 return 1;
7625 }
7626
7627 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7628 {
7629 struct file *file = prsrc->file;
7630 #if defined(CONFIG_UNIX)
7631 struct sock *sock = ctx->ring_sock->sk;
7632 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7633 struct sk_buff *skb;
7634 int i;
7635
7636 __skb_queue_head_init(&list);
7637
7638 /*
7639 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7640 * remove this entry and rearrange the file array.
7641 */
7642 skb = skb_dequeue(head);
7643 while (skb) {
7644 struct scm_fp_list *fp;
7645
7646 fp = UNIXCB(skb).fp;
7647 for (i = 0; i < fp->count; i++) {
7648 int left;
7649
7650 if (fp->fp[i] != file)
7651 continue;
7652
7653 unix_notinflight(fp->user, fp->fp[i]);
7654 left = fp->count - 1 - i;
7655 if (left) {
7656 memmove(&fp->fp[i], &fp->fp[i + 1],
7657 left * sizeof(struct file *));
7658 }
7659 fp->count--;
7660 if (!fp->count) {
7661 kfree_skb(skb);
7662 skb = NULL;
7663 } else {
7664 __skb_queue_tail(&list, skb);
7665 }
7666 fput(file);
7667 file = NULL;
7668 break;
7669 }
7670
7671 if (!file)
7672 break;
7673
7674 __skb_queue_tail(&list, skb);
7675
7676 skb = skb_dequeue(head);
7677 }
7678
7679 if (skb_peek(&list)) {
7680 spin_lock_irq(&head->lock);
7681 while ((skb = __skb_dequeue(&list)) != NULL)
7682 __skb_queue_tail(head, skb);
7683 spin_unlock_irq(&head->lock);
7684 }
7685 #else
7686 fput(file);
7687 #endif
7688 }
7689
7690 static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
7691 {
7692 struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
7693 struct io_ring_ctx *ctx = rsrc_data->ctx;
7694 struct io_rsrc_put *prsrc, *tmp;
7695
7696 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7697 list_del(&prsrc->list);
7698 ref_node->rsrc_put(ctx, prsrc);
7699 kfree(prsrc);
7700 }
7701
7702 percpu_ref_exit(&ref_node->refs);
7703 kfree(ref_node);
7704 percpu_ref_put(&rsrc_data->refs);
7705 }
7706
7707 static void io_rsrc_put_work(struct work_struct *work)
7708 {
7709 struct io_ring_ctx *ctx;
7710 struct llist_node *node;
7711
7712 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7713 node = llist_del_all(&ctx->rsrc_put_llist);
7714
7715 while (node) {
7716 struct fixed_rsrc_ref_node *ref_node;
7717 struct llist_node *next = node->next;
7718
7719 ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
7720 __io_rsrc_put_work(ref_node);
7721 node = next;
7722 }
7723 }
7724
7725 static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
7726 unsigned i)
7727 {
7728 struct fixed_rsrc_table *table;
7729
7730 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7731 return &table->files[i & IORING_FILE_TABLE_MASK];
7732 }
7733
7734 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7735 {
7736 struct fixed_rsrc_ref_node *ref_node;
7737 struct fixed_rsrc_data *data;
7738 struct io_ring_ctx *ctx;
7739 bool first_add = false;
7740 int delay = HZ;
7741
7742 ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
7743 data = ref_node->rsrc_data;
7744 ctx = data->ctx;
7745
7746 io_rsrc_ref_lock(ctx);
7747 ref_node->done = true;
7748
7749 while (!list_empty(&ctx->rsrc_ref_list)) {
7750 ref_node = list_first_entry(&ctx->rsrc_ref_list,
7751 struct fixed_rsrc_ref_node, node);
7752 /* recycle ref nodes in order */
7753 if (!ref_node->done)
7754 break;
7755 list_del(&ref_node->node);
7756 first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
7757 }
7758 io_rsrc_ref_unlock(ctx);
7759
7760 if (percpu_ref_is_dying(&data->refs))
7761 delay = 0;
7762
7763 if (!delay)
7764 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7765 else if (first_add)
7766 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7767 }
7768
7769 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
7770 struct io_ring_ctx *ctx)
7771 {
7772 struct fixed_rsrc_ref_node *ref_node;
7773
7774 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7775 if (!ref_node)
7776 return NULL;
7777
7778 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7779 0, GFP_KERNEL)) {
7780 kfree(ref_node);
7781 return NULL;
7782 }
7783 INIT_LIST_HEAD(&ref_node->node);
7784 INIT_LIST_HEAD(&ref_node->rsrc_list);
7785 ref_node->done = false;
7786 return ref_node;
7787 }
7788
7789 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7790 struct fixed_rsrc_ref_node *ref_node)
7791 {
7792 ref_node->rsrc_data = ctx->file_data;
7793 ref_node->rsrc_put = io_ring_file_put;
7794 }
7795
7796 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
7797 {
7798 percpu_ref_exit(&ref_node->refs);
7799 kfree(ref_node);
7800 }
7801
7802
7803 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7804 unsigned nr_args)
7805 {
7806 __s32 __user *fds = (__s32 __user *) arg;
7807 unsigned nr_tables, i;
7808 struct file *file;
7809 int fd, ret = -ENOMEM;
7810 struct fixed_rsrc_ref_node *ref_node;
7811 struct fixed_rsrc_data *file_data;
7812
7813 if (ctx->file_data)
7814 return -EBUSY;
7815 if (!nr_args)
7816 return -EINVAL;
7817 if (nr_args > IORING_MAX_FIXED_FILES)
7818 return -EMFILE;
7819
7820 file_data = alloc_fixed_rsrc_data(ctx);
7821 if (!file_data)
7822 return -ENOMEM;
7823 ctx->file_data = file_data;
7824
7825 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7826 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7827 GFP_KERNEL);
7828 if (!file_data->table)
7829 goto out_free;
7830
7831 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7832 goto out_free;
7833
7834 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7835 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7836 ret = -EFAULT;
7837 goto out_fput;
7838 }
7839 /* allow sparse sets */
7840 if (fd == -1)
7841 continue;
7842
7843 file = fget(fd);
7844 ret = -EBADF;
7845 if (!file)
7846 goto out_fput;
7847
7848 /*
7849 * Don't allow io_uring instances to be registered. If UNIX
7850 * isn't enabled, then this causes a reference cycle and this
7851 * instance can never get freed. If UNIX is enabled we'll
7852 * handle it just fine, but there's still no point in allowing
7853 * a ring fd as it doesn't support regular read/write anyway.
7854 */
7855 if (file->f_op == &io_uring_fops) {
7856 fput(file);
7857 goto out_fput;
7858 }
7859 *io_fixed_file_slot(file_data, i) = file;
7860 }
7861
7862 ret = io_sqe_files_scm(ctx);
7863 if (ret) {
7864 io_sqe_files_unregister(ctx);
7865 return ret;
7866 }
7867
7868 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7869 if (!ref_node) {
7870 io_sqe_files_unregister(ctx);
7871 return -ENOMEM;
7872 }
7873 init_fixed_file_ref_node(ctx, ref_node);
7874
7875 io_sqe_rsrc_set_node(ctx, file_data, ref_node);
7876 return ret;
7877 out_fput:
7878 for (i = 0; i < ctx->nr_user_files; i++) {
7879 file = io_file_from_index(ctx, i);
7880 if (file)
7881 fput(file);
7882 }
7883 for (i = 0; i < nr_tables; i++)
7884 kfree(file_data->table[i].files);
7885 ctx->nr_user_files = 0;
7886 out_free:
7887 free_fixed_rsrc_data(ctx->file_data);
7888 ctx->file_data = NULL;
7889 return ret;
7890 }
7891
7892 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7893 int index)
7894 {
7895 #if defined(CONFIG_UNIX)
7896 struct sock *sock = ctx->ring_sock->sk;
7897 struct sk_buff_head *head = &sock->sk_receive_queue;
7898 struct sk_buff *skb;
7899
7900 /*
7901 * See if we can merge this file into an existing skb SCM_RIGHTS
7902 * file set. If there's no room, fall back to allocating a new skb
7903 * and filling it in.
7904 */
7905 spin_lock_irq(&head->lock);
7906 skb = skb_peek(head);
7907 if (skb) {
7908 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7909
7910 if (fpl->count < SCM_MAX_FD) {
7911 __skb_unlink(skb, head);
7912 spin_unlock_irq(&head->lock);
7913 fpl->fp[fpl->count] = get_file(file);
7914 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7915 fpl->count++;
7916 spin_lock_irq(&head->lock);
7917 __skb_queue_head(head, skb);
7918 } else {
7919 skb = NULL;
7920 }
7921 }
7922 spin_unlock_irq(&head->lock);
7923
7924 if (skb) {
7925 fput(file);
7926 return 0;
7927 }
7928
7929 return __io_sqe_files_scm(ctx, 1, index);
7930 #else
7931 return 0;
7932 #endif
7933 }
7934
7935 static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
7936 {
7937 struct io_rsrc_put *prsrc;
7938 struct fixed_rsrc_ref_node *ref_node = data->node;
7939
7940 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7941 if (!prsrc)
7942 return -ENOMEM;
7943
7944 prsrc->rsrc = rsrc;
7945 list_add(&prsrc->list, &ref_node->rsrc_list);
7946
7947 return 0;
7948 }
7949
7950 static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
7951 struct file *file)
7952 {
7953 return io_queue_rsrc_removal(data, (void *)file);
7954 }
7955
7956 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7957 struct io_uring_rsrc_update *up,
7958 unsigned nr_args)
7959 {
7960 struct fixed_rsrc_data *data = ctx->file_data;
7961 struct fixed_rsrc_ref_node *ref_node;
7962 struct file *file, **file_slot;
7963 __s32 __user *fds;
7964 int fd, i, err;
7965 __u32 done;
7966 bool needs_switch = false;
7967
7968 if (check_add_overflow(up->offset, nr_args, &done))
7969 return -EOVERFLOW;
7970 if (done > ctx->nr_user_files)
7971 return -EINVAL;
7972
7973 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7974 if (!ref_node)
7975 return -ENOMEM;
7976 init_fixed_file_ref_node(ctx, ref_node);
7977
7978 fds = u64_to_user_ptr(up->data);
7979 for (done = 0; done < nr_args; done++) {
7980 err = 0;
7981 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7982 err = -EFAULT;
7983 break;
7984 }
7985 if (fd == IORING_REGISTER_FILES_SKIP)
7986 continue;
7987
7988 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7989 file_slot = io_fixed_file_slot(ctx->file_data, i);
7990
7991 if (*file_slot) {
7992 err = io_queue_file_removal(data, *file_slot);
7993 if (err)
7994 break;
7995 *file_slot = NULL;
7996 needs_switch = true;
7997 }
7998 if (fd != -1) {
7999 file = fget(fd);
8000 if (!file) {
8001 err = -EBADF;
8002 break;
8003 }
8004 /*
8005 * Don't allow io_uring instances to be registered. If
8006 * UNIX isn't enabled, then this causes a reference
8007 * cycle and this instance can never get freed. If UNIX
8008 * is enabled we'll handle it just fine, but there's
8009 * still no point in allowing a ring fd as it doesn't
8010 * support regular read/write anyway.
8011 */
8012 if (file->f_op == &io_uring_fops) {
8013 fput(file);
8014 err = -EBADF;
8015 break;
8016 }
8017 err = io_sqe_file_register(ctx, file, i);
8018 if (err) {
8019 fput(file);
8020 break;
8021 }
8022 *file_slot = file;
8023 }
8024 }
8025
8026 if (needs_switch) {
8027 percpu_ref_kill(&data->node->refs);
8028 io_sqe_rsrc_set_node(ctx, data, ref_node);
8029 } else
8030 destroy_fixed_rsrc_ref_node(ref_node);
8031
8032 return done ? done : err;
8033 }
8034
8035 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8036 unsigned nr_args)
8037 {
8038 struct io_uring_rsrc_update up;
8039
8040 if (!ctx->file_data)
8041 return -ENXIO;
8042 if (!nr_args)
8043 return -EINVAL;
8044 if (copy_from_user(&up, arg, sizeof(up)))
8045 return -EFAULT;
8046 if (up.resv)
8047 return -EINVAL;
8048
8049 return __io_sqe_files_update(ctx, &up, nr_args);
8050 }
8051
8052 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8053 {
8054 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8055
8056 req = io_put_req_find_next(req);
8057 return req ? &req->work : NULL;
8058 }
8059
8060 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8061 struct io_uring_params *p)
8062 {
8063 struct io_wq_data data;
8064 struct fd f;
8065 struct io_ring_ctx *ctx_attach;
8066 unsigned int concurrency;
8067 int ret = 0;
8068
8069 data.user = ctx->user;
8070 data.free_work = io_free_work;
8071 data.do_work = io_wq_submit_work;
8072
8073 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8074 /* Do QD, or 4 * CPUS, whatever is smallest */
8075 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8076
8077 ctx->io_wq = io_wq_create(concurrency, &data);
8078 if (IS_ERR(ctx->io_wq)) {
8079 ret = PTR_ERR(ctx->io_wq);
8080 ctx->io_wq = NULL;
8081 }
8082 return ret;
8083 }
8084
8085 f = fdget(p->wq_fd);
8086 if (!f.file)
8087 return -EBADF;
8088
8089 if (f.file->f_op != &io_uring_fops) {
8090 ret = -EINVAL;
8091 goto out_fput;
8092 }
8093
8094 ctx_attach = f.file->private_data;
8095 /* @io_wq is protected by holding the fd */
8096 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8097 ret = -EINVAL;
8098 goto out_fput;
8099 }
8100
8101 ctx->io_wq = ctx_attach->io_wq;
8102 out_fput:
8103 fdput(f);
8104 return ret;
8105 }
8106
8107 static int io_uring_alloc_task_context(struct task_struct *task)
8108 {
8109 struct io_uring_task *tctx;
8110 int ret;
8111
8112 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8113 if (unlikely(!tctx))
8114 return -ENOMEM;
8115
8116 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8117 if (unlikely(ret)) {
8118 kfree(tctx);
8119 return ret;
8120 }
8121
8122 xa_init(&tctx->xa);
8123 init_waitqueue_head(&tctx->wait);
8124 tctx->last = NULL;
8125 atomic_set(&tctx->in_idle, 0);
8126 tctx->sqpoll = false;
8127 io_init_identity(&tctx->__identity);
8128 tctx->identity = &tctx->__identity;
8129 task->io_uring = tctx;
8130 return 0;
8131 }
8132
8133 void __io_uring_free(struct task_struct *tsk)
8134 {
8135 struct io_uring_task *tctx = tsk->io_uring;
8136
8137 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8138 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8139 if (tctx->identity != &tctx->__identity)
8140 kfree(tctx->identity);
8141 percpu_counter_destroy(&tctx->inflight);
8142 kfree(tctx);
8143 tsk->io_uring = NULL;
8144 }
8145
8146 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8147 struct io_uring_params *p)
8148 {
8149 int ret;
8150
8151 if (ctx->flags & IORING_SETUP_SQPOLL) {
8152 struct io_sq_data *sqd;
8153
8154 ret = -EPERM;
8155 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8156 goto err;
8157
8158 sqd = io_get_sq_data(p);
8159 if (IS_ERR(sqd)) {
8160 ret = PTR_ERR(sqd);
8161 goto err;
8162 }
8163
8164 ctx->sq_data = sqd;
8165 io_sq_thread_park(sqd);
8166 mutex_lock(&sqd->ctx_lock);
8167 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8168 mutex_unlock(&sqd->ctx_lock);
8169 io_sq_thread_unpark(sqd);
8170
8171 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8172 if (!ctx->sq_thread_idle)
8173 ctx->sq_thread_idle = HZ;
8174
8175 if (sqd->thread)
8176 goto done;
8177
8178 if (p->flags & IORING_SETUP_SQ_AFF) {
8179 int cpu = p->sq_thread_cpu;
8180
8181 ret = -EINVAL;
8182 if (cpu >= nr_cpu_ids)
8183 goto err;
8184 if (!cpu_online(cpu))
8185 goto err;
8186
8187 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8188 cpu, "io_uring-sq");
8189 } else {
8190 sqd->thread = kthread_create(io_sq_thread, sqd,
8191 "io_uring-sq");
8192 }
8193 if (IS_ERR(sqd->thread)) {
8194 ret = PTR_ERR(sqd->thread);
8195 sqd->thread = NULL;
8196 goto err;
8197 }
8198 ret = io_uring_alloc_task_context(sqd->thread);
8199 if (ret)
8200 goto err;
8201 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8202 /* Can't have SQ_AFF without SQPOLL */
8203 ret = -EINVAL;
8204 goto err;
8205 }
8206
8207 done:
8208 ret = io_init_wq_offload(ctx, p);
8209 if (ret)
8210 goto err;
8211
8212 return 0;
8213 err:
8214 io_finish_async(ctx);
8215 return ret;
8216 }
8217
8218 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8219 {
8220 struct io_sq_data *sqd = ctx->sq_data;
8221
8222 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8223 wake_up_process(sqd->thread);
8224 }
8225
8226 static inline void __io_unaccount_mem(struct user_struct *user,
8227 unsigned long nr_pages)
8228 {
8229 atomic_long_sub(nr_pages, &user->locked_vm);
8230 }
8231
8232 static inline int __io_account_mem(struct user_struct *user,
8233 unsigned long nr_pages)
8234 {
8235 unsigned long page_limit, cur_pages, new_pages;
8236
8237 /* Don't allow more pages than we can safely lock */
8238 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8239
8240 do {
8241 cur_pages = atomic_long_read(&user->locked_vm);
8242 new_pages = cur_pages + nr_pages;
8243 if (new_pages > page_limit)
8244 return -ENOMEM;
8245 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8246 new_pages) != cur_pages);
8247
8248 return 0;
8249 }
8250
8251 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8252 enum io_mem_account acct)
8253 {
8254 if (ctx->limit_mem)
8255 __io_unaccount_mem(ctx->user, nr_pages);
8256
8257 if (ctx->mm_account) {
8258 if (acct == ACCT_LOCKED) {
8259 mmap_write_lock(ctx->mm_account);
8260 ctx->mm_account->locked_vm -= nr_pages;
8261 mmap_write_unlock(ctx->mm_account);
8262 }else if (acct == ACCT_PINNED) {
8263 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8264 }
8265 }
8266 }
8267
8268 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8269 enum io_mem_account acct)
8270 {
8271 int ret;
8272
8273 if (ctx->limit_mem) {
8274 ret = __io_account_mem(ctx->user, nr_pages);
8275 if (ret)
8276 return ret;
8277 }
8278
8279 if (ctx->mm_account) {
8280 if (acct == ACCT_LOCKED) {
8281 mmap_write_lock(ctx->mm_account);
8282 ctx->mm_account->locked_vm += nr_pages;
8283 mmap_write_unlock(ctx->mm_account);
8284 } else if (acct == ACCT_PINNED) {
8285 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8286 }
8287 }
8288
8289 return 0;
8290 }
8291
8292 static void io_mem_free(void *ptr)
8293 {
8294 struct page *page;
8295
8296 if (!ptr)
8297 return;
8298
8299 page = virt_to_head_page(ptr);
8300 if (put_page_testzero(page))
8301 free_compound_page(page);
8302 }
8303
8304 static void *io_mem_alloc(size_t size)
8305 {
8306 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8307 __GFP_NORETRY;
8308
8309 return (void *) __get_free_pages(gfp_flags, get_order(size));
8310 }
8311
8312 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8313 size_t *sq_offset)
8314 {
8315 struct io_rings *rings;
8316 size_t off, sq_array_size;
8317
8318 off = struct_size(rings, cqes, cq_entries);
8319 if (off == SIZE_MAX)
8320 return SIZE_MAX;
8321
8322 #ifdef CONFIG_SMP
8323 off = ALIGN(off, SMP_CACHE_BYTES);
8324 if (off == 0)
8325 return SIZE_MAX;
8326 #endif
8327
8328 if (sq_offset)
8329 *sq_offset = off;
8330
8331 sq_array_size = array_size(sizeof(u32), sq_entries);
8332 if (sq_array_size == SIZE_MAX)
8333 return SIZE_MAX;
8334
8335 if (check_add_overflow(off, sq_array_size, &off))
8336 return SIZE_MAX;
8337
8338 return off;
8339 }
8340
8341 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8342 {
8343 size_t pages;
8344
8345 pages = (size_t)1 << get_order(
8346 rings_size(sq_entries, cq_entries, NULL));
8347 pages += (size_t)1 << get_order(
8348 array_size(sizeof(struct io_uring_sqe), sq_entries));
8349
8350 return pages;
8351 }
8352
8353 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8354 {
8355 int i, j;
8356
8357 if (!ctx->user_bufs)
8358 return -ENXIO;
8359
8360 for (i = 0; i < ctx->nr_user_bufs; i++) {
8361 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8362
8363 for (j = 0; j < imu->nr_bvecs; j++)
8364 unpin_user_page(imu->bvec[j].bv_page);
8365
8366 if (imu->acct_pages)
8367 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8368 kvfree(imu->bvec);
8369 imu->nr_bvecs = 0;
8370 }
8371
8372 kfree(ctx->user_bufs);
8373 ctx->user_bufs = NULL;
8374 ctx->nr_user_bufs = 0;
8375 return 0;
8376 }
8377
8378 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8379 void __user *arg, unsigned index)
8380 {
8381 struct iovec __user *src;
8382
8383 #ifdef CONFIG_COMPAT
8384 if (ctx->compat) {
8385 struct compat_iovec __user *ciovs;
8386 struct compat_iovec ciov;
8387
8388 ciovs = (struct compat_iovec __user *) arg;
8389 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8390 return -EFAULT;
8391
8392 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8393 dst->iov_len = ciov.iov_len;
8394 return 0;
8395 }
8396 #endif
8397 src = (struct iovec __user *) arg;
8398 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8399 return -EFAULT;
8400 return 0;
8401 }
8402
8403 /*
8404 * Not super efficient, but this is just a registration time. And we do cache
8405 * the last compound head, so generally we'll only do a full search if we don't
8406 * match that one.
8407 *
8408 * We check if the given compound head page has already been accounted, to
8409 * avoid double accounting it. This allows us to account the full size of the
8410 * page, not just the constituent pages of a huge page.
8411 */
8412 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8413 int nr_pages, struct page *hpage)
8414 {
8415 int i, j;
8416
8417 /* check current page array */
8418 for (i = 0; i < nr_pages; i++) {
8419 if (!PageCompound(pages[i]))
8420 continue;
8421 if (compound_head(pages[i]) == hpage)
8422 return true;
8423 }
8424
8425 /* check previously registered pages */
8426 for (i = 0; i < ctx->nr_user_bufs; i++) {
8427 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8428
8429 for (j = 0; j < imu->nr_bvecs; j++) {
8430 if (!PageCompound(imu->bvec[j].bv_page))
8431 continue;
8432 if (compound_head(imu->bvec[j].bv_page) == hpage)
8433 return true;
8434 }
8435 }
8436
8437 return false;
8438 }
8439
8440 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8441 int nr_pages, struct io_mapped_ubuf *imu,
8442 struct page **last_hpage)
8443 {
8444 int i, ret;
8445
8446 for (i = 0; i < nr_pages; i++) {
8447 if (!PageCompound(pages[i])) {
8448 imu->acct_pages++;
8449 } else {
8450 struct page *hpage;
8451
8452 hpage = compound_head(pages[i]);
8453 if (hpage == *last_hpage)
8454 continue;
8455 *last_hpage = hpage;
8456 if (headpage_already_acct(ctx, pages, i, hpage))
8457 continue;
8458 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8459 }
8460 }
8461
8462 if (!imu->acct_pages)
8463 return 0;
8464
8465 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8466 if (ret)
8467 imu->acct_pages = 0;
8468 return ret;
8469 }
8470
8471 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8472 struct io_mapped_ubuf *imu,
8473 struct page **last_hpage)
8474 {
8475 struct vm_area_struct **vmas = NULL;
8476 struct page **pages = NULL;
8477 unsigned long off, start, end, ubuf;
8478 size_t size;
8479 int ret, pret, nr_pages, i;
8480
8481 ubuf = (unsigned long) iov->iov_base;
8482 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8483 start = ubuf >> PAGE_SHIFT;
8484 nr_pages = end - start;
8485
8486 ret = -ENOMEM;
8487
8488 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8489 if (!pages)
8490 goto done;
8491
8492 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8493 GFP_KERNEL);
8494 if (!vmas)
8495 goto done;
8496
8497 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8498 GFP_KERNEL);
8499 if (!imu->bvec)
8500 goto done;
8501
8502 ret = 0;
8503 mmap_read_lock(current->mm);
8504 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8505 pages, vmas);
8506 if (pret == nr_pages) {
8507 /* don't support file backed memory */
8508 for (i = 0; i < nr_pages; i++) {
8509 struct vm_area_struct *vma = vmas[i];
8510
8511 if (vma->vm_file &&
8512 !is_file_hugepages(vma->vm_file)) {
8513 ret = -EOPNOTSUPP;
8514 break;
8515 }
8516 }
8517 } else {
8518 ret = pret < 0 ? pret : -EFAULT;
8519 }
8520 mmap_read_unlock(current->mm);
8521 if (ret) {
8522 /*
8523 * if we did partial map, or found file backed vmas,
8524 * release any pages we did get
8525 */
8526 if (pret > 0)
8527 unpin_user_pages(pages, pret);
8528 kvfree(imu->bvec);
8529 goto done;
8530 }
8531
8532 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8533 if (ret) {
8534 unpin_user_pages(pages, pret);
8535 kvfree(imu->bvec);
8536 goto done;
8537 }
8538
8539 off = ubuf & ~PAGE_MASK;
8540 size = iov->iov_len;
8541 for (i = 0; i < nr_pages; i++) {
8542 size_t vec_len;
8543
8544 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8545 imu->bvec[i].bv_page = pages[i];
8546 imu->bvec[i].bv_len = vec_len;
8547 imu->bvec[i].bv_offset = off;
8548 off = 0;
8549 size -= vec_len;
8550 }
8551 /* store original address for later verification */
8552 imu->ubuf = ubuf;
8553 imu->len = iov->iov_len;
8554 imu->nr_bvecs = nr_pages;
8555 ret = 0;
8556 done:
8557 kvfree(pages);
8558 kvfree(vmas);
8559 return ret;
8560 }
8561
8562 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8563 {
8564 if (ctx->user_bufs)
8565 return -EBUSY;
8566 if (!nr_args || nr_args > UIO_MAXIOV)
8567 return -EINVAL;
8568
8569 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8570 GFP_KERNEL);
8571 if (!ctx->user_bufs)
8572 return -ENOMEM;
8573
8574 return 0;
8575 }
8576
8577 static int io_buffer_validate(struct iovec *iov)
8578 {
8579 /*
8580 * Don't impose further limits on the size and buffer
8581 * constraints here, we'll -EINVAL later when IO is
8582 * submitted if they are wrong.
8583 */
8584 if (!iov->iov_base || !iov->iov_len)
8585 return -EFAULT;
8586
8587 /* arbitrary limit, but we need something */
8588 if (iov->iov_len > SZ_1G)
8589 return -EFAULT;
8590
8591 return 0;
8592 }
8593
8594 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8595 unsigned int nr_args)
8596 {
8597 int i, ret;
8598 struct iovec iov;
8599 struct page *last_hpage = NULL;
8600
8601 ret = io_buffers_map_alloc(ctx, nr_args);
8602 if (ret)
8603 return ret;
8604
8605 for (i = 0; i < nr_args; i++) {
8606 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8607
8608 ret = io_copy_iov(ctx, &iov, arg, i);
8609 if (ret)
8610 break;
8611
8612 ret = io_buffer_validate(&iov);
8613 if (ret)
8614 break;
8615
8616 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8617 if (ret)
8618 break;
8619
8620 ctx->nr_user_bufs++;
8621 }
8622
8623 if (ret)
8624 io_sqe_buffers_unregister(ctx);
8625
8626 return ret;
8627 }
8628
8629 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8630 {
8631 __s32 __user *fds = arg;
8632 int fd;
8633
8634 if (ctx->cq_ev_fd)
8635 return -EBUSY;
8636
8637 if (copy_from_user(&fd, fds, sizeof(*fds)))
8638 return -EFAULT;
8639
8640 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8641 if (IS_ERR(ctx->cq_ev_fd)) {
8642 int ret = PTR_ERR(ctx->cq_ev_fd);
8643 ctx->cq_ev_fd = NULL;
8644 return ret;
8645 }
8646
8647 return 0;
8648 }
8649
8650 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8651 {
8652 if (ctx->cq_ev_fd) {
8653 eventfd_ctx_put(ctx->cq_ev_fd);
8654 ctx->cq_ev_fd = NULL;
8655 return 0;
8656 }
8657
8658 return -ENXIO;
8659 }
8660
8661 static int __io_destroy_buffers(int id, void *p, void *data)
8662 {
8663 struct io_ring_ctx *ctx = data;
8664 struct io_buffer *buf = p;
8665
8666 __io_remove_buffers(ctx, buf, id, -1U);
8667 return 0;
8668 }
8669
8670 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8671 {
8672 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8673 idr_destroy(&ctx->io_buffer_idr);
8674 }
8675
8676 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8677 {
8678 io_finish_async(ctx);
8679 io_sqe_buffers_unregister(ctx);
8680
8681 if (ctx->sqo_task) {
8682 put_task_struct(ctx->sqo_task);
8683 ctx->sqo_task = NULL;
8684 mmdrop(ctx->mm_account);
8685 ctx->mm_account = NULL;
8686 }
8687
8688 #ifdef CONFIG_BLK_CGROUP
8689 if (ctx->sqo_blkcg_css)
8690 css_put(ctx->sqo_blkcg_css);
8691 #endif
8692
8693 io_sqe_files_unregister(ctx);
8694 io_eventfd_unregister(ctx);
8695 io_destroy_buffers(ctx);
8696 idr_destroy(&ctx->personality_idr);
8697
8698 #if defined(CONFIG_UNIX)
8699 if (ctx->ring_sock) {
8700 ctx->ring_sock->file = NULL; /* so that iput() is called */
8701 sock_release(ctx->ring_sock);
8702 }
8703 #endif
8704
8705 io_mem_free(ctx->rings);
8706 io_mem_free(ctx->sq_sqes);
8707
8708 percpu_ref_exit(&ctx->refs);
8709 free_uid(ctx->user);
8710 put_cred(ctx->creds);
8711 kfree(ctx->cancel_hash);
8712 kmem_cache_free(req_cachep, ctx->fallback_req);
8713 kfree(ctx);
8714 }
8715
8716 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8717 {
8718 struct io_ring_ctx *ctx = file->private_data;
8719 __poll_t mask = 0;
8720
8721 poll_wait(file, &ctx->cq_wait, wait);
8722 /*
8723 * synchronizes with barrier from wq_has_sleeper call in
8724 * io_commit_cqring
8725 */
8726 smp_rmb();
8727 if (!io_sqring_full(ctx))
8728 mask |= EPOLLOUT | EPOLLWRNORM;
8729 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8730 if (io_cqring_events(ctx))
8731 mask |= EPOLLIN | EPOLLRDNORM;
8732
8733 return mask;
8734 }
8735
8736 static int io_uring_fasync(int fd, struct file *file, int on)
8737 {
8738 struct io_ring_ctx *ctx = file->private_data;
8739
8740 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8741 }
8742
8743 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8744 {
8745 struct io_identity *iod;
8746
8747 iod = idr_remove(&ctx->personality_idr, id);
8748 if (iod) {
8749 put_cred(iod->creds);
8750 if (refcount_dec_and_test(&iod->count))
8751 kfree(iod);
8752 return 0;
8753 }
8754
8755 return -EINVAL;
8756 }
8757
8758 static int io_remove_personalities(int id, void *p, void *data)
8759 {
8760 struct io_ring_ctx *ctx = data;
8761
8762 io_unregister_personality(ctx, id);
8763 return 0;
8764 }
8765
8766 static void io_ring_exit_work(struct work_struct *work)
8767 {
8768 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8769 exit_work);
8770
8771 /*
8772 * If we're doing polled IO and end up having requests being
8773 * submitted async (out-of-line), then completions can come in while
8774 * we're waiting for refs to drop. We need to reap these manually,
8775 * as nobody else will be looking for them.
8776 */
8777 do {
8778 io_uring_try_cancel_requests(ctx, NULL, NULL);
8779 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8780 io_ring_ctx_free(ctx);
8781 }
8782
8783 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8784 {
8785 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8786
8787 return req->ctx == data;
8788 }
8789
8790 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8791 {
8792 mutex_lock(&ctx->uring_lock);
8793 percpu_ref_kill(&ctx->refs);
8794
8795 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8796 ctx->sqo_dead = 1;
8797
8798 /* if force is set, the ring is going away. always drop after that */
8799 ctx->cq_overflow_flushed = 1;
8800 if (ctx->rings)
8801 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8802 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8803 mutex_unlock(&ctx->uring_lock);
8804
8805 io_kill_timeouts(ctx, NULL, NULL);
8806 io_poll_remove_all(ctx, NULL, NULL);
8807
8808 if (ctx->io_wq)
8809 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8810
8811 /* if we failed setting up the ctx, we might not have any rings */
8812 io_iopoll_try_reap_events(ctx);
8813
8814 /*
8815 * Do this upfront, so we won't have a grace period where the ring
8816 * is closed but resources aren't reaped yet. This can cause
8817 * spurious failure in setting up a new ring.
8818 */
8819 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8820 ACCT_LOCKED);
8821
8822 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8823 /*
8824 * Use system_unbound_wq to avoid spawning tons of event kworkers
8825 * if we're exiting a ton of rings at the same time. It just adds
8826 * noise and overhead, there's no discernable change in runtime
8827 * over using system_wq.
8828 */
8829 queue_work(system_unbound_wq, &ctx->exit_work);
8830 }
8831
8832 static int io_uring_release(struct inode *inode, struct file *file)
8833 {
8834 struct io_ring_ctx *ctx = file->private_data;
8835
8836 file->private_data = NULL;
8837 io_ring_ctx_wait_and_kill(ctx);
8838 return 0;
8839 }
8840
8841 struct io_task_cancel {
8842 struct task_struct *task;
8843 struct files_struct *files;
8844 };
8845
8846 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8847 {
8848 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8849 struct io_task_cancel *cancel = data;
8850 bool ret;
8851
8852 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8853 unsigned long flags;
8854 struct io_ring_ctx *ctx = req->ctx;
8855
8856 /* protect against races with linked timeouts */
8857 spin_lock_irqsave(&ctx->completion_lock, flags);
8858 ret = io_match_task(req, cancel->task, cancel->files);
8859 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8860 } else {
8861 ret = io_match_task(req, cancel->task, cancel->files);
8862 }
8863 return ret;
8864 }
8865
8866 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8867 struct task_struct *task,
8868 struct files_struct *files)
8869 {
8870 struct io_defer_entry *de = NULL;
8871 LIST_HEAD(list);
8872
8873 spin_lock_irq(&ctx->completion_lock);
8874 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8875 if (io_match_task(de->req, task, files)) {
8876 list_cut_position(&list, &ctx->defer_list, &de->list);
8877 break;
8878 }
8879 }
8880 spin_unlock_irq(&ctx->completion_lock);
8881
8882 while (!list_empty(&list)) {
8883 de = list_first_entry(&list, struct io_defer_entry, list);
8884 list_del_init(&de->list);
8885 req_set_fail_links(de->req);
8886 io_put_req(de->req);
8887 io_req_complete(de->req, -ECANCELED);
8888 kfree(de);
8889 }
8890 }
8891
8892 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8893 struct task_struct *task,
8894 struct files_struct *files)
8895 {
8896 struct io_task_cancel cancel = { .task = task, .files = files, };
8897
8898 while (1) {
8899 enum io_wq_cancel cret;
8900 bool ret = false;
8901
8902 if (ctx->io_wq) {
8903 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8904 &cancel, true);
8905 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8906 }
8907
8908 /* SQPOLL thread does its own polling */
8909 if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
8910 while (!list_empty_careful(&ctx->iopoll_list)) {
8911 io_iopoll_try_reap_events(ctx);
8912 ret = true;
8913 }
8914 }
8915
8916 ret |= io_poll_remove_all(ctx, task, files);
8917 ret |= io_kill_timeouts(ctx, task, files);
8918 ret |= io_run_task_work();
8919 io_cqring_overflow_flush(ctx, true, task, files);
8920 if (!ret)
8921 break;
8922 cond_resched();
8923 }
8924 }
8925
8926 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8927 struct task_struct *task,
8928 struct files_struct *files)
8929 {
8930 struct io_kiocb *req;
8931 int cnt = 0;
8932
8933 spin_lock_irq(&ctx->inflight_lock);
8934 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8935 cnt += io_match_task(req, task, files);
8936 spin_unlock_irq(&ctx->inflight_lock);
8937 return cnt;
8938 }
8939
8940 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8941 struct task_struct *task,
8942 struct files_struct *files)
8943 {
8944 while (!list_empty_careful(&ctx->inflight_list)) {
8945 DEFINE_WAIT(wait);
8946 int inflight;
8947
8948 inflight = io_uring_count_inflight(ctx, task, files);
8949 if (!inflight)
8950 break;
8951
8952 io_uring_try_cancel_requests(ctx, task, files);
8953 prepare_to_wait(&task->io_uring->wait, &wait,
8954 TASK_UNINTERRUPTIBLE);
8955 if (inflight == io_uring_count_inflight(ctx, task, files))
8956 schedule();
8957 finish_wait(&task->io_uring->wait, &wait);
8958 }
8959 }
8960
8961 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8962 {
8963 mutex_lock(&ctx->uring_lock);
8964 ctx->sqo_dead = 1;
8965 mutex_unlock(&ctx->uring_lock);
8966
8967 /* make sure callers enter the ring to get error */
8968 if (ctx->rings)
8969 io_ring_set_wakeup_flag(ctx);
8970 }
8971
8972 /*
8973 * We need to iteratively cancel requests, in case a request has dependent
8974 * hard links. These persist even for failure of cancelations, hence keep
8975 * looping until none are found.
8976 */
8977 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8978 struct files_struct *files)
8979 {
8980 struct task_struct *task = current;
8981
8982 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8983 io_disable_sqo_submit(ctx);
8984 task = ctx->sq_data->thread;
8985 atomic_inc(&task->io_uring->in_idle);
8986 io_sq_thread_park(ctx->sq_data);
8987 }
8988
8989 io_cancel_defer_files(ctx, task, files);
8990
8991 io_uring_cancel_files(ctx, task, files);
8992 if (!files)
8993 io_uring_try_cancel_requests(ctx, task, NULL);
8994
8995 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8996 atomic_dec(&task->io_uring->in_idle);
8997 /*
8998 * If the files that are going away are the ones in the thread
8999 * identity, clear them out.
9000 */
9001 if (task->io_uring->identity->files == files)
9002 task->io_uring->identity->files = NULL;
9003 io_sq_thread_unpark(ctx->sq_data);
9004 }
9005 }
9006
9007 /*
9008 * Note that this task has used io_uring. We use it for cancelation purposes.
9009 */
9010 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9011 {
9012 struct io_uring_task *tctx = current->io_uring;
9013 int ret;
9014
9015 if (unlikely(!tctx)) {
9016 ret = io_uring_alloc_task_context(current);
9017 if (unlikely(ret))
9018 return ret;
9019 tctx = current->io_uring;
9020 }
9021 if (tctx->last != file) {
9022 void *old = xa_load(&tctx->xa, (unsigned long)file);
9023
9024 if (!old) {
9025 get_file(file);
9026 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9027 file, GFP_KERNEL));
9028 if (ret) {
9029 fput(file);
9030 return ret;
9031 }
9032
9033 /* one and only SQPOLL file note, held by sqo_task */
9034 WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
9035 current != ctx->sqo_task);
9036 }
9037 tctx->last = file;
9038 }
9039
9040 /*
9041 * This is race safe in that the task itself is doing this, hence it
9042 * cannot be going through the exit/cancel paths at the same time.
9043 * This cannot be modified while exit/cancel is running.
9044 */
9045 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9046 tctx->sqpoll = true;
9047
9048 return 0;
9049 }
9050
9051 /*
9052 * Remove this io_uring_file -> task mapping.
9053 */
9054 static void io_uring_del_task_file(struct file *file)
9055 {
9056 struct io_uring_task *tctx = current->io_uring;
9057
9058 if (tctx->last == file)
9059 tctx->last = NULL;
9060 file = xa_erase(&tctx->xa, (unsigned long)file);
9061 if (file)
9062 fput(file);
9063 }
9064
9065 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9066 {
9067 struct file *file;
9068 unsigned long index;
9069
9070 xa_for_each(&tctx->xa, index, file)
9071 io_uring_del_task_file(file);
9072 }
9073
9074 void __io_uring_files_cancel(struct files_struct *files)
9075 {
9076 struct io_uring_task *tctx = current->io_uring;
9077 struct file *file;
9078 unsigned long index;
9079
9080 /* make sure overflow events are dropped */
9081 atomic_inc(&tctx->in_idle);
9082 xa_for_each(&tctx->xa, index, file)
9083 io_uring_cancel_task_requests(file->private_data, files);
9084 atomic_dec(&tctx->in_idle);
9085
9086 if (files)
9087 io_uring_remove_task_files(tctx);
9088 }
9089
9090 static s64 tctx_inflight(struct io_uring_task *tctx)
9091 {
9092 unsigned long index;
9093 struct file *file;
9094 s64 inflight;
9095
9096 inflight = percpu_counter_sum(&tctx->inflight);
9097 if (!tctx->sqpoll)
9098 return inflight;
9099
9100 /*
9101 * If we have SQPOLL rings, then we need to iterate and find them, and
9102 * add the pending count for those.
9103 */
9104 xa_for_each(&tctx->xa, index, file) {
9105 struct io_ring_ctx *ctx = file->private_data;
9106
9107 if (ctx->flags & IORING_SETUP_SQPOLL) {
9108 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9109
9110 inflight += percpu_counter_sum(&__tctx->inflight);
9111 }
9112 }
9113
9114 return inflight;
9115 }
9116
9117 /*
9118 * Find any io_uring fd that this task has registered or done IO on, and cancel
9119 * requests.
9120 */
9121 void __io_uring_task_cancel(void)
9122 {
9123 struct io_uring_task *tctx = current->io_uring;
9124 DEFINE_WAIT(wait);
9125 s64 inflight;
9126
9127 /* make sure overflow events are dropped */
9128 atomic_inc(&tctx->in_idle);
9129
9130 /* trigger io_disable_sqo_submit() */
9131 if (tctx->sqpoll)
9132 __io_uring_files_cancel(NULL);
9133
9134 do {
9135 /* read completions before cancelations */
9136 inflight = tctx_inflight(tctx);
9137 if (!inflight)
9138 break;
9139 __io_uring_files_cancel(NULL);
9140
9141 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9142
9143 /*
9144 * If we've seen completions, retry without waiting. This
9145 * avoids a race where a completion comes in before we did
9146 * prepare_to_wait().
9147 */
9148 if (inflight == tctx_inflight(tctx))
9149 schedule();
9150 finish_wait(&tctx->wait, &wait);
9151 } while (1);
9152
9153 atomic_dec(&tctx->in_idle);
9154
9155 io_uring_remove_task_files(tctx);
9156 }
9157
9158 static int io_uring_flush(struct file *file, void *data)
9159 {
9160 struct io_uring_task *tctx = current->io_uring;
9161 struct io_ring_ctx *ctx = file->private_data;
9162
9163 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
9164 io_uring_cancel_task_requests(ctx, NULL);
9165
9166 if (!tctx)
9167 return 0;
9168
9169 /* we should have cancelled and erased it before PF_EXITING */
9170 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9171 xa_load(&tctx->xa, (unsigned long)file));
9172
9173 /*
9174 * fput() is pending, will be 2 if the only other ref is our potential
9175 * task file note. If the task is exiting, drop regardless of count.
9176 */
9177 if (atomic_long_read(&file->f_count) != 2)
9178 return 0;
9179
9180 if (ctx->flags & IORING_SETUP_SQPOLL) {
9181 /* there is only one file note, which is owned by sqo_task */
9182 WARN_ON_ONCE(ctx->sqo_task != current &&
9183 xa_load(&tctx->xa, (unsigned long)file));
9184 /* sqo_dead check is for when this happens after cancellation */
9185 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9186 !xa_load(&tctx->xa, (unsigned long)file));
9187
9188 io_disable_sqo_submit(ctx);
9189 }
9190
9191 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9192 io_uring_del_task_file(file);
9193 return 0;
9194 }
9195
9196 static void *io_uring_validate_mmap_request(struct file *file,
9197 loff_t pgoff, size_t sz)
9198 {
9199 struct io_ring_ctx *ctx = file->private_data;
9200 loff_t offset = pgoff << PAGE_SHIFT;
9201 struct page *page;
9202 void *ptr;
9203
9204 switch (offset) {
9205 case IORING_OFF_SQ_RING:
9206 case IORING_OFF_CQ_RING:
9207 ptr = ctx->rings;
9208 break;
9209 case IORING_OFF_SQES:
9210 ptr = ctx->sq_sqes;
9211 break;
9212 default:
9213 return ERR_PTR(-EINVAL);
9214 }
9215
9216 page = virt_to_head_page(ptr);
9217 if (sz > page_size(page))
9218 return ERR_PTR(-EINVAL);
9219
9220 return ptr;
9221 }
9222
9223 #ifdef CONFIG_MMU
9224
9225 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9226 {
9227 size_t sz = vma->vm_end - vma->vm_start;
9228 unsigned long pfn;
9229 void *ptr;
9230
9231 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9232 if (IS_ERR(ptr))
9233 return PTR_ERR(ptr);
9234
9235 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9236 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9237 }
9238
9239 #else /* !CONFIG_MMU */
9240
9241 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9242 {
9243 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9244 }
9245
9246 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9247 {
9248 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9249 }
9250
9251 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9252 unsigned long addr, unsigned long len,
9253 unsigned long pgoff, unsigned long flags)
9254 {
9255 void *ptr;
9256
9257 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9258 if (IS_ERR(ptr))
9259 return PTR_ERR(ptr);
9260
9261 return (unsigned long) ptr;
9262 }
9263
9264 #endif /* !CONFIG_MMU */
9265
9266 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9267 {
9268 int ret = 0;
9269 DEFINE_WAIT(wait);
9270
9271 do {
9272 if (!io_sqring_full(ctx))
9273 break;
9274
9275 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9276
9277 if (unlikely(ctx->sqo_dead)) {
9278 ret = -EOWNERDEAD;
9279 goto out;
9280 }
9281
9282 if (!io_sqring_full(ctx))
9283 break;
9284
9285 schedule();
9286 } while (!signal_pending(current));
9287
9288 finish_wait(&ctx->sqo_sq_wait, &wait);
9289 out:
9290 return ret;
9291 }
9292
9293 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9294 struct __kernel_timespec __user **ts,
9295 const sigset_t __user **sig)
9296 {
9297 struct io_uring_getevents_arg arg;
9298
9299 /*
9300 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9301 * is just a pointer to the sigset_t.
9302 */
9303 if (!(flags & IORING_ENTER_EXT_ARG)) {
9304 *sig = (const sigset_t __user *) argp;
9305 *ts = NULL;
9306 return 0;
9307 }
9308
9309 /*
9310 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9311 * timespec and sigset_t pointers if good.
9312 */
9313 if (*argsz != sizeof(arg))
9314 return -EINVAL;
9315 if (copy_from_user(&arg, argp, sizeof(arg)))
9316 return -EFAULT;
9317 *sig = u64_to_user_ptr(arg.sigmask);
9318 *argsz = arg.sigmask_sz;
9319 *ts = u64_to_user_ptr(arg.ts);
9320 return 0;
9321 }
9322
9323 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9324 u32, min_complete, u32, flags, const void __user *, argp,
9325 size_t, argsz)
9326 {
9327 struct io_ring_ctx *ctx;
9328 long ret = -EBADF;
9329 int submitted = 0;
9330 struct fd f;
9331
9332 io_run_task_work();
9333
9334 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9335 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9336 return -EINVAL;
9337
9338 f = fdget(fd);
9339 if (!f.file)
9340 return -EBADF;
9341
9342 ret = -EOPNOTSUPP;
9343 if (f.file->f_op != &io_uring_fops)
9344 goto out_fput;
9345
9346 ret = -ENXIO;
9347 ctx = f.file->private_data;
9348 if (!percpu_ref_tryget(&ctx->refs))
9349 goto out_fput;
9350
9351 ret = -EBADFD;
9352 if (ctx->flags & IORING_SETUP_R_DISABLED)
9353 goto out;
9354
9355 /*
9356 * For SQ polling, the thread will do all submissions and completions.
9357 * Just return the requested submit count, and wake the thread if
9358 * we were asked to.
9359 */
9360 ret = 0;
9361 if (ctx->flags & IORING_SETUP_SQPOLL) {
9362 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9363
9364 ret = -EOWNERDEAD;
9365 if (unlikely(ctx->sqo_dead))
9366 goto out;
9367 if (flags & IORING_ENTER_SQ_WAKEUP)
9368 wake_up(&ctx->sq_data->wait);
9369 if (flags & IORING_ENTER_SQ_WAIT) {
9370 ret = io_sqpoll_wait_sq(ctx);
9371 if (ret)
9372 goto out;
9373 }
9374 submitted = to_submit;
9375 } else if (to_submit) {
9376 ret = io_uring_add_task_file(ctx, f.file);
9377 if (unlikely(ret))
9378 goto out;
9379 mutex_lock(&ctx->uring_lock);
9380 submitted = io_submit_sqes(ctx, to_submit);
9381 mutex_unlock(&ctx->uring_lock);
9382
9383 if (submitted != to_submit)
9384 goto out;
9385 }
9386 if (flags & IORING_ENTER_GETEVENTS) {
9387 const sigset_t __user *sig;
9388 struct __kernel_timespec __user *ts;
9389
9390 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9391 if (unlikely(ret))
9392 goto out;
9393
9394 min_complete = min(min_complete, ctx->cq_entries);
9395
9396 /*
9397 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9398 * space applications don't need to do io completion events
9399 * polling again, they can rely on io_sq_thread to do polling
9400 * work, which can reduce cpu usage and uring_lock contention.
9401 */
9402 if (ctx->flags & IORING_SETUP_IOPOLL &&
9403 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9404 ret = io_iopoll_check(ctx, min_complete);
9405 } else {
9406 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9407 }
9408 }
9409
9410 out:
9411 percpu_ref_put(&ctx->refs);
9412 out_fput:
9413 fdput(f);
9414 return submitted ? submitted : ret;
9415 }
9416
9417 #ifdef CONFIG_PROC_FS
9418 static int io_uring_show_cred(int id, void *p, void *data)
9419 {
9420 struct io_identity *iod = p;
9421 const struct cred *cred = iod->creds;
9422 struct seq_file *m = data;
9423 struct user_namespace *uns = seq_user_ns(m);
9424 struct group_info *gi;
9425 kernel_cap_t cap;
9426 unsigned __capi;
9427 int g;
9428
9429 seq_printf(m, "%5d\n", id);
9430 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9431 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9432 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9433 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9434 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9435 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9436 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9437 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9438 seq_puts(m, "\n\tGroups:\t");
9439 gi = cred->group_info;
9440 for (g = 0; g < gi->ngroups; g++) {
9441 seq_put_decimal_ull(m, g ? " " : "",
9442 from_kgid_munged(uns, gi->gid[g]));
9443 }
9444 seq_puts(m, "\n\tCapEff:\t");
9445 cap = cred->cap_effective;
9446 CAP_FOR_EACH_U32(__capi)
9447 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9448 seq_putc(m, '\n');
9449 return 0;
9450 }
9451
9452 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9453 {
9454 struct io_sq_data *sq = NULL;
9455 bool has_lock;
9456 int i;
9457
9458 /*
9459 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9460 * since fdinfo case grabs it in the opposite direction of normal use
9461 * cases. If we fail to get the lock, we just don't iterate any
9462 * structures that could be going away outside the io_uring mutex.
9463 */
9464 has_lock = mutex_trylock(&ctx->uring_lock);
9465
9466 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9467 sq = ctx->sq_data;
9468
9469 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9470 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9471 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9472 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9473 struct file *f = *io_fixed_file_slot(ctx->file_data, i);
9474
9475 if (f)
9476 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9477 else
9478 seq_printf(m, "%5u: <none>\n", i);
9479 }
9480 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9481 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9482 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9483
9484 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9485 (unsigned int) buf->len);
9486 }
9487 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9488 seq_printf(m, "Personalities:\n");
9489 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9490 }
9491 seq_printf(m, "PollList:\n");
9492 spin_lock_irq(&ctx->completion_lock);
9493 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9494 struct hlist_head *list = &ctx->cancel_hash[i];
9495 struct io_kiocb *req;
9496
9497 hlist_for_each_entry(req, list, hash_node)
9498 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9499 req->task->task_works != NULL);
9500 }
9501 spin_unlock_irq(&ctx->completion_lock);
9502 if (has_lock)
9503 mutex_unlock(&ctx->uring_lock);
9504 }
9505
9506 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9507 {
9508 struct io_ring_ctx *ctx = f->private_data;
9509
9510 if (percpu_ref_tryget(&ctx->refs)) {
9511 __io_uring_show_fdinfo(ctx, m);
9512 percpu_ref_put(&ctx->refs);
9513 }
9514 }
9515 #endif
9516
9517 static const struct file_operations io_uring_fops = {
9518 .release = io_uring_release,
9519 .flush = io_uring_flush,
9520 .mmap = io_uring_mmap,
9521 #ifndef CONFIG_MMU
9522 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9523 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9524 #endif
9525 .poll = io_uring_poll,
9526 .fasync = io_uring_fasync,
9527 #ifdef CONFIG_PROC_FS
9528 .show_fdinfo = io_uring_show_fdinfo,
9529 #endif
9530 };
9531
9532 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9533 struct io_uring_params *p)
9534 {
9535 struct io_rings *rings;
9536 size_t size, sq_array_offset;
9537
9538 /* make sure these are sane, as we already accounted them */
9539 ctx->sq_entries = p->sq_entries;
9540 ctx->cq_entries = p->cq_entries;
9541
9542 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9543 if (size == SIZE_MAX)
9544 return -EOVERFLOW;
9545
9546 rings = io_mem_alloc(size);
9547 if (!rings)
9548 return -ENOMEM;
9549
9550 ctx->rings = rings;
9551 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9552 rings->sq_ring_mask = p->sq_entries - 1;
9553 rings->cq_ring_mask = p->cq_entries - 1;
9554 rings->sq_ring_entries = p->sq_entries;
9555 rings->cq_ring_entries = p->cq_entries;
9556 ctx->sq_mask = rings->sq_ring_mask;
9557 ctx->cq_mask = rings->cq_ring_mask;
9558
9559 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9560 if (size == SIZE_MAX) {
9561 io_mem_free(ctx->rings);
9562 ctx->rings = NULL;
9563 return -EOVERFLOW;
9564 }
9565
9566 ctx->sq_sqes = io_mem_alloc(size);
9567 if (!ctx->sq_sqes) {
9568 io_mem_free(ctx->rings);
9569 ctx->rings = NULL;
9570 return -ENOMEM;
9571 }
9572
9573 return 0;
9574 }
9575
9576 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9577 {
9578 int ret, fd;
9579
9580 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9581 if (fd < 0)
9582 return fd;
9583
9584 ret = io_uring_add_task_file(ctx, file);
9585 if (ret) {
9586 put_unused_fd(fd);
9587 return ret;
9588 }
9589 fd_install(fd, file);
9590 return fd;
9591 }
9592
9593 /*
9594 * Allocate an anonymous fd, this is what constitutes the application
9595 * visible backing of an io_uring instance. The application mmaps this
9596 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9597 * we have to tie this fd to a socket for file garbage collection purposes.
9598 */
9599 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9600 {
9601 struct file *file;
9602 #if defined(CONFIG_UNIX)
9603 int ret;
9604
9605 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9606 &ctx->ring_sock);
9607 if (ret)
9608 return ERR_PTR(ret);
9609 #endif
9610
9611 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9612 O_RDWR | O_CLOEXEC);
9613 #if defined(CONFIG_UNIX)
9614 if (IS_ERR(file)) {
9615 sock_release(ctx->ring_sock);
9616 ctx->ring_sock = NULL;
9617 } else {
9618 ctx->ring_sock->file = file;
9619 }
9620 #endif
9621 return file;
9622 }
9623
9624 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9625 struct io_uring_params __user *params)
9626 {
9627 struct user_struct *user = NULL;
9628 struct io_ring_ctx *ctx;
9629 struct file *file;
9630 bool limit_mem;
9631 int ret;
9632
9633 if (!entries)
9634 return -EINVAL;
9635 if (entries > IORING_MAX_ENTRIES) {
9636 if (!(p->flags & IORING_SETUP_CLAMP))
9637 return -EINVAL;
9638 entries = IORING_MAX_ENTRIES;
9639 }
9640
9641 /*
9642 * Use twice as many entries for the CQ ring. It's possible for the
9643 * application to drive a higher depth than the size of the SQ ring,
9644 * since the sqes are only used at submission time. This allows for
9645 * some flexibility in overcommitting a bit. If the application has
9646 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9647 * of CQ ring entries manually.
9648 */
9649 p->sq_entries = roundup_pow_of_two(entries);
9650 if (p->flags & IORING_SETUP_CQSIZE) {
9651 /*
9652 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9653 * to a power-of-two, if it isn't already. We do NOT impose
9654 * any cq vs sq ring sizing.
9655 */
9656 if (!p->cq_entries)
9657 return -EINVAL;
9658 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9659 if (!(p->flags & IORING_SETUP_CLAMP))
9660 return -EINVAL;
9661 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9662 }
9663 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9664 if (p->cq_entries < p->sq_entries)
9665 return -EINVAL;
9666 } else {
9667 p->cq_entries = 2 * p->sq_entries;
9668 }
9669
9670 user = get_uid(current_user());
9671 limit_mem = !capable(CAP_IPC_LOCK);
9672
9673 if (limit_mem) {
9674 ret = __io_account_mem(user,
9675 ring_pages(p->sq_entries, p->cq_entries));
9676 if (ret) {
9677 free_uid(user);
9678 return ret;
9679 }
9680 }
9681
9682 ctx = io_ring_ctx_alloc(p);
9683 if (!ctx) {
9684 if (limit_mem)
9685 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9686 p->cq_entries));
9687 free_uid(user);
9688 return -ENOMEM;
9689 }
9690 ctx->compat = in_compat_syscall();
9691 ctx->user = user;
9692 ctx->creds = get_current_cred();
9693 #ifdef CONFIG_AUDIT
9694 ctx->loginuid = current->loginuid;
9695 ctx->sessionid = current->sessionid;
9696 #endif
9697 ctx->sqo_task = get_task_struct(current);
9698
9699 /*
9700 * This is just grabbed for accounting purposes. When a process exits,
9701 * the mm is exited and dropped before the files, hence we need to hang
9702 * on to this mm purely for the purposes of being able to unaccount
9703 * memory (locked/pinned vm). It's not used for anything else.
9704 */
9705 mmgrab(current->mm);
9706 ctx->mm_account = current->mm;
9707
9708 #ifdef CONFIG_BLK_CGROUP
9709 /*
9710 * The sq thread will belong to the original cgroup it was inited in.
9711 * If the cgroup goes offline (e.g. disabling the io controller), then
9712 * issued bios will be associated with the closest cgroup later in the
9713 * block layer.
9714 */
9715 rcu_read_lock();
9716 ctx->sqo_blkcg_css = blkcg_css();
9717 ret = css_tryget_online(ctx->sqo_blkcg_css);
9718 rcu_read_unlock();
9719 if (!ret) {
9720 /* don't init against a dying cgroup, have the user try again */
9721 ctx->sqo_blkcg_css = NULL;
9722 ret = -ENODEV;
9723 goto err;
9724 }
9725 #endif
9726
9727 /*
9728 * Account memory _before_ installing the file descriptor. Once
9729 * the descriptor is installed, it can get closed at any time. Also
9730 * do this before hitting the general error path, as ring freeing
9731 * will un-account as well.
9732 */
9733 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9734 ACCT_LOCKED);
9735 ctx->limit_mem = limit_mem;
9736
9737 ret = io_allocate_scq_urings(ctx, p);
9738 if (ret)
9739 goto err;
9740
9741 ret = io_sq_offload_create(ctx, p);
9742 if (ret)
9743 goto err;
9744
9745 if (!(p->flags & IORING_SETUP_R_DISABLED))
9746 io_sq_offload_start(ctx);
9747
9748 memset(&p->sq_off, 0, sizeof(p->sq_off));
9749 p->sq_off.head = offsetof(struct io_rings, sq.head);
9750 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9751 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9752 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9753 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9754 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9755 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9756
9757 memset(&p->cq_off, 0, sizeof(p->cq_off));
9758 p->cq_off.head = offsetof(struct io_rings, cq.head);
9759 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9760 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9761 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9762 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9763 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9764 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9765
9766 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9767 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9768 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9769 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9770 IORING_FEAT_EXT_ARG;
9771
9772 if (copy_to_user(params, p, sizeof(*p))) {
9773 ret = -EFAULT;
9774 goto err;
9775 }
9776
9777 file = io_uring_get_file(ctx);
9778 if (IS_ERR(file)) {
9779 ret = PTR_ERR(file);
9780 goto err;
9781 }
9782
9783 /*
9784 * Install ring fd as the very last thing, so we don't risk someone
9785 * having closed it before we finish setup
9786 */
9787 ret = io_uring_install_fd(ctx, file);
9788 if (ret < 0) {
9789 io_disable_sqo_submit(ctx);
9790 /* fput will clean it up */
9791 fput(file);
9792 return ret;
9793 }
9794
9795 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9796 return ret;
9797 err:
9798 io_disable_sqo_submit(ctx);
9799 io_ring_ctx_wait_and_kill(ctx);
9800 return ret;
9801 }
9802
9803 /*
9804 * Sets up an aio uring context, and returns the fd. Applications asks for a
9805 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9806 * params structure passed in.
9807 */
9808 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9809 {
9810 struct io_uring_params p;
9811 int i;
9812
9813 if (copy_from_user(&p, params, sizeof(p)))
9814 return -EFAULT;
9815 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9816 if (p.resv[i])
9817 return -EINVAL;
9818 }
9819
9820 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9821 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9822 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9823 IORING_SETUP_R_DISABLED))
9824 return -EINVAL;
9825
9826 return io_uring_create(entries, &p, params);
9827 }
9828
9829 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9830 struct io_uring_params __user *, params)
9831 {
9832 return io_uring_setup(entries, params);
9833 }
9834
9835 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9836 {
9837 struct io_uring_probe *p;
9838 size_t size;
9839 int i, ret;
9840
9841 size = struct_size(p, ops, nr_args);
9842 if (size == SIZE_MAX)
9843 return -EOVERFLOW;
9844 p = kzalloc(size, GFP_KERNEL);
9845 if (!p)
9846 return -ENOMEM;
9847
9848 ret = -EFAULT;
9849 if (copy_from_user(p, arg, size))
9850 goto out;
9851 ret = -EINVAL;
9852 if (memchr_inv(p, 0, size))
9853 goto out;
9854
9855 p->last_op = IORING_OP_LAST - 1;
9856 if (nr_args > IORING_OP_LAST)
9857 nr_args = IORING_OP_LAST;
9858
9859 for (i = 0; i < nr_args; i++) {
9860 p->ops[i].op = i;
9861 if (!io_op_defs[i].not_supported)
9862 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9863 }
9864 p->ops_len = i;
9865
9866 ret = 0;
9867 if (copy_to_user(arg, p, size))
9868 ret = -EFAULT;
9869 out:
9870 kfree(p);
9871 return ret;
9872 }
9873
9874 static int io_register_personality(struct io_ring_ctx *ctx)
9875 {
9876 struct io_identity *id;
9877 int ret;
9878
9879 id = kmalloc(sizeof(*id), GFP_KERNEL);
9880 if (unlikely(!id))
9881 return -ENOMEM;
9882
9883 io_init_identity(id);
9884 id->creds = get_current_cred();
9885
9886 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9887 if (ret < 0) {
9888 put_cred(id->creds);
9889 kfree(id);
9890 }
9891 return ret;
9892 }
9893
9894 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9895 unsigned int nr_args)
9896 {
9897 struct io_uring_restriction *res;
9898 size_t size;
9899 int i, ret;
9900
9901 /* Restrictions allowed only if rings started disabled */
9902 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9903 return -EBADFD;
9904
9905 /* We allow only a single restrictions registration */
9906 if (ctx->restrictions.registered)
9907 return -EBUSY;
9908
9909 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9910 return -EINVAL;
9911
9912 size = array_size(nr_args, sizeof(*res));
9913 if (size == SIZE_MAX)
9914 return -EOVERFLOW;
9915
9916 res = memdup_user(arg, size);
9917 if (IS_ERR(res))
9918 return PTR_ERR(res);
9919
9920 ret = 0;
9921
9922 for (i = 0; i < nr_args; i++) {
9923 switch (res[i].opcode) {
9924 case IORING_RESTRICTION_REGISTER_OP:
9925 if (res[i].register_op >= IORING_REGISTER_LAST) {
9926 ret = -EINVAL;
9927 goto out;
9928 }
9929
9930 __set_bit(res[i].register_op,
9931 ctx->restrictions.register_op);
9932 break;
9933 case IORING_RESTRICTION_SQE_OP:
9934 if (res[i].sqe_op >= IORING_OP_LAST) {
9935 ret = -EINVAL;
9936 goto out;
9937 }
9938
9939 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9940 break;
9941 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9942 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9943 break;
9944 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9945 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9946 break;
9947 default:
9948 ret = -EINVAL;
9949 goto out;
9950 }
9951 }
9952
9953 out:
9954 /* Reset all restrictions if an error happened */
9955 if (ret != 0)
9956 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9957 else
9958 ctx->restrictions.registered = true;
9959
9960 kfree(res);
9961 return ret;
9962 }
9963
9964 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9965 {
9966 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9967 return -EBADFD;
9968
9969 if (ctx->restrictions.registered)
9970 ctx->restricted = 1;
9971
9972 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9973
9974 io_sq_offload_start(ctx);
9975
9976 return 0;
9977 }
9978
9979 static bool io_register_op_must_quiesce(int op)
9980 {
9981 switch (op) {
9982 case IORING_UNREGISTER_FILES:
9983 case IORING_REGISTER_FILES_UPDATE:
9984 case IORING_REGISTER_PROBE:
9985 case IORING_REGISTER_PERSONALITY:
9986 case IORING_UNREGISTER_PERSONALITY:
9987 return false;
9988 default:
9989 return true;
9990 }
9991 }
9992
9993 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9994 void __user *arg, unsigned nr_args)
9995 __releases(ctx->uring_lock)
9996 __acquires(ctx->uring_lock)
9997 {
9998 int ret;
9999
10000 /*
10001 * We're inside the ring mutex, if the ref is already dying, then
10002 * someone else killed the ctx or is already going through
10003 * io_uring_register().
10004 */
10005 if (percpu_ref_is_dying(&ctx->refs))
10006 return -ENXIO;
10007
10008 if (io_register_op_must_quiesce(opcode)) {
10009 percpu_ref_kill(&ctx->refs);
10010
10011 /*
10012 * Drop uring mutex before waiting for references to exit. If
10013 * another thread is currently inside io_uring_enter() it might
10014 * need to grab the uring_lock to make progress. If we hold it
10015 * here across the drain wait, then we can deadlock. It's safe
10016 * to drop the mutex here, since no new references will come in
10017 * after we've killed the percpu ref.
10018 */
10019 mutex_unlock(&ctx->uring_lock);
10020 do {
10021 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10022 if (!ret)
10023 break;
10024 ret = io_run_task_work_sig();
10025 if (ret < 0)
10026 break;
10027 } while (1);
10028
10029 mutex_lock(&ctx->uring_lock);
10030
10031 if (ret) {
10032 percpu_ref_resurrect(&ctx->refs);
10033 goto out_quiesce;
10034 }
10035 }
10036
10037 if (ctx->restricted) {
10038 if (opcode >= IORING_REGISTER_LAST) {
10039 ret = -EINVAL;
10040 goto out;
10041 }
10042
10043 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10044 ret = -EACCES;
10045 goto out;
10046 }
10047 }
10048
10049 switch (opcode) {
10050 case IORING_REGISTER_BUFFERS:
10051 ret = io_sqe_buffers_register(ctx, arg, nr_args);
10052 break;
10053 case IORING_UNREGISTER_BUFFERS:
10054 ret = -EINVAL;
10055 if (arg || nr_args)
10056 break;
10057 ret = io_sqe_buffers_unregister(ctx);
10058 break;
10059 case IORING_REGISTER_FILES:
10060 ret = io_sqe_files_register(ctx, arg, nr_args);
10061 break;
10062 case IORING_UNREGISTER_FILES:
10063 ret = -EINVAL;
10064 if (arg || nr_args)
10065 break;
10066 ret = io_sqe_files_unregister(ctx);
10067 break;
10068 case IORING_REGISTER_FILES_UPDATE:
10069 ret = io_sqe_files_update(ctx, arg, nr_args);
10070 break;
10071 case IORING_REGISTER_EVENTFD:
10072 case IORING_REGISTER_EVENTFD_ASYNC:
10073 ret = -EINVAL;
10074 if (nr_args != 1)
10075 break;
10076 ret = io_eventfd_register(ctx, arg);
10077 if (ret)
10078 break;
10079 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10080 ctx->eventfd_async = 1;
10081 else
10082 ctx->eventfd_async = 0;
10083 break;
10084 case IORING_UNREGISTER_EVENTFD:
10085 ret = -EINVAL;
10086 if (arg || nr_args)
10087 break;
10088 ret = io_eventfd_unregister(ctx);
10089 break;
10090 case IORING_REGISTER_PROBE:
10091 ret = -EINVAL;
10092 if (!arg || nr_args > 256)
10093 break;
10094 ret = io_probe(ctx, arg, nr_args);
10095 break;
10096 case IORING_REGISTER_PERSONALITY:
10097 ret = -EINVAL;
10098 if (arg || nr_args)
10099 break;
10100 ret = io_register_personality(ctx);
10101 break;
10102 case IORING_UNREGISTER_PERSONALITY:
10103 ret = -EINVAL;
10104 if (arg)
10105 break;
10106 ret = io_unregister_personality(ctx, nr_args);
10107 break;
10108 case IORING_REGISTER_ENABLE_RINGS:
10109 ret = -EINVAL;
10110 if (arg || nr_args)
10111 break;
10112 ret = io_register_enable_rings(ctx);
10113 break;
10114 case IORING_REGISTER_RESTRICTIONS:
10115 ret = io_register_restrictions(ctx, arg, nr_args);
10116 break;
10117 default:
10118 ret = -EINVAL;
10119 break;
10120 }
10121
10122 out:
10123 if (io_register_op_must_quiesce(opcode)) {
10124 /* bring the ctx back to life */
10125 percpu_ref_reinit(&ctx->refs);
10126 out_quiesce:
10127 reinit_completion(&ctx->ref_comp);
10128 }
10129 return ret;
10130 }
10131
10132 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10133 void __user *, arg, unsigned int, nr_args)
10134 {
10135 struct io_ring_ctx *ctx;
10136 long ret = -EBADF;
10137 struct fd f;
10138
10139 f = fdget(fd);
10140 if (!f.file)
10141 return -EBADF;
10142
10143 ret = -EOPNOTSUPP;
10144 if (f.file->f_op != &io_uring_fops)
10145 goto out_fput;
10146
10147 ctx = f.file->private_data;
10148
10149 mutex_lock(&ctx->uring_lock);
10150 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10151 mutex_unlock(&ctx->uring_lock);
10152 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10153 ctx->cq_ev_fd != NULL, ret);
10154 out_fput:
10155 fdput(f);
10156 return ret;
10157 }
10158
10159 static int __init io_uring_init(void)
10160 {
10161 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10162 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10163 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10164 } while (0)
10165
10166 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10167 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10168 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10169 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10170 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10171 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10172 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10173 BUILD_BUG_SQE_ELEM(8, __u64, off);
10174 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10175 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10176 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10177 BUILD_BUG_SQE_ELEM(24, __u32, len);
10178 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10179 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10180 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10181 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10182 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10183 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10184 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10185 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10186 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10187 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10188 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10189 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10190 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10191 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10192 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10193 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10194 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10195 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10196 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10197
10198 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10199 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10200 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10201 return 0;
10202 };
10203 __initcall(io_uring_init);