]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: fix no lock protection for ctx->cq_extra
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 struct file *file_in;
627 loff_t off_out;
628 loff_t off_in;
629 u64 len;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455
1456 switch (req->opcode) {
1457 case IORING_OP_SPLICE:
1458 case IORING_OP_TEE:
1459 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1460 req->work.flags |= IO_WQ_WORK_UNBOUND;
1461 break;
1462 }
1463 }
1464
1465 static void io_prep_async_link(struct io_kiocb *req)
1466 {
1467 struct io_kiocb *cur;
1468
1469 if (req->flags & REQ_F_LINK_TIMEOUT) {
1470 struct io_ring_ctx *ctx = req->ctx;
1471
1472 spin_lock_irq(&ctx->timeout_lock);
1473 io_for_each_link(cur, req)
1474 io_prep_async_work(cur);
1475 spin_unlock_irq(&ctx->timeout_lock);
1476 } else {
1477 io_for_each_link(cur, req)
1478 io_prep_async_work(cur);
1479 }
1480 }
1481
1482 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1483 {
1484 struct io_ring_ctx *ctx = req->ctx;
1485 struct io_kiocb *link = io_prep_linked_timeout(req);
1486 struct io_uring_task *tctx = req->task->io_uring;
1487
1488 /* must not take the lock, NULL it as a precaution */
1489 locked = NULL;
1490
1491 BUG_ON(!tctx);
1492 BUG_ON(!tctx->io_wq);
1493
1494 /* init ->work of the whole link before punting */
1495 io_prep_async_link(req);
1496
1497 /*
1498 * Not expected to happen, but if we do have a bug where this _can_
1499 * happen, catch it here and ensure the request is marked as
1500 * canceled. That will make io-wq go through the usual work cancel
1501 * procedure rather than attempt to run this request (or create a new
1502 * worker for it).
1503 */
1504 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1505 req->work.flags |= IO_WQ_WORK_CANCEL;
1506
1507 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1508 &req->work, req->flags);
1509 io_wq_enqueue(tctx->io_wq, &req->work);
1510 if (link)
1511 io_queue_linked_timeout(link);
1512 }
1513
1514 static void io_kill_timeout(struct io_kiocb *req, int status)
1515 __must_hold(&req->ctx->completion_lock)
1516 __must_hold(&req->ctx->timeout_lock)
1517 {
1518 struct io_timeout_data *io = req->async_data;
1519
1520 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1521 if (status)
1522 req_set_fail(req);
1523 atomic_set(&req->ctx->cq_timeouts,
1524 atomic_read(&req->ctx->cq_timeouts) + 1);
1525 list_del_init(&req->timeout.list);
1526 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1527 io_put_req_deferred(req);
1528 }
1529 }
1530
1531 static void io_queue_deferred(struct io_ring_ctx *ctx)
1532 {
1533 while (!list_empty(&ctx->defer_list)) {
1534 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1535 struct io_defer_entry, list);
1536
1537 if (req_need_defer(de->req, de->seq))
1538 break;
1539 list_del_init(&de->list);
1540 io_req_task_queue(de->req);
1541 kfree(de);
1542 }
1543 }
1544
1545 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1546 __must_hold(&ctx->completion_lock)
1547 {
1548 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1549
1550 spin_lock_irq(&ctx->timeout_lock);
1551 while (!list_empty(&ctx->timeout_list)) {
1552 u32 events_needed, events_got;
1553 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1554 struct io_kiocb, timeout.list);
1555
1556 if (io_is_timeout_noseq(req))
1557 break;
1558
1559 /*
1560 * Since seq can easily wrap around over time, subtract
1561 * the last seq at which timeouts were flushed before comparing.
1562 * Assuming not more than 2^31-1 events have happened since,
1563 * these subtractions won't have wrapped, so we can check if
1564 * target is in [last_seq, current_seq] by comparing the two.
1565 */
1566 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1567 events_got = seq - ctx->cq_last_tm_flush;
1568 if (events_got < events_needed)
1569 break;
1570
1571 list_del_init(&req->timeout.list);
1572 io_kill_timeout(req, 0);
1573 }
1574 ctx->cq_last_tm_flush = seq;
1575 spin_unlock_irq(&ctx->timeout_lock);
1576 }
1577
1578 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1579 {
1580 if (ctx->off_timeout_used)
1581 io_flush_timeouts(ctx);
1582 if (ctx->drain_active)
1583 io_queue_deferred(ctx);
1584 }
1585
1586 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1587 {
1588 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1589 __io_commit_cqring_flush(ctx);
1590 /* order cqe stores with ring update */
1591 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1592 }
1593
1594 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1595 {
1596 struct io_rings *r = ctx->rings;
1597
1598 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1599 }
1600
1601 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1602 {
1603 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1604 }
1605
1606 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1607 {
1608 struct io_rings *rings = ctx->rings;
1609 unsigned tail, mask = ctx->cq_entries - 1;
1610
1611 /*
1612 * writes to the cq entry need to come after reading head; the
1613 * control dependency is enough as we're using WRITE_ONCE to
1614 * fill the cq entry
1615 */
1616 if (__io_cqring_events(ctx) == ctx->cq_entries)
1617 return NULL;
1618
1619 tail = ctx->cached_cq_tail++;
1620 return &rings->cqes[tail & mask];
1621 }
1622
1623 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1624 {
1625 if (likely(!ctx->cq_ev_fd))
1626 return false;
1627 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1628 return false;
1629 return !ctx->eventfd_async || io_wq_current_is_worker();
1630 }
1631
1632 /*
1633 * This should only get called when at least one event has been posted.
1634 * Some applications rely on the eventfd notification count only changing
1635 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1636 * 1:1 relationship between how many times this function is called (and
1637 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1638 */
1639 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1640 {
1641 /*
1642 * wake_up_all() may seem excessive, but io_wake_function() and
1643 * io_should_wake() handle the termination of the loop and only
1644 * wake as many waiters as we need to.
1645 */
1646 if (wq_has_sleeper(&ctx->cq_wait))
1647 wake_up_all(&ctx->cq_wait);
1648 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1649 wake_up(&ctx->sq_data->wait);
1650 if (io_should_trigger_evfd(ctx))
1651 eventfd_signal(ctx->cq_ev_fd, 1);
1652 if (waitqueue_active(&ctx->poll_wait))
1653 wake_up_interruptible(&ctx->poll_wait);
1654 }
1655
1656 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1657 {
1658 /* see waitqueue_active() comment */
1659 smp_mb();
1660
1661 if (ctx->flags & IORING_SETUP_SQPOLL) {
1662 if (waitqueue_active(&ctx->cq_wait))
1663 wake_up_all(&ctx->cq_wait);
1664 }
1665 if (io_should_trigger_evfd(ctx))
1666 eventfd_signal(ctx->cq_ev_fd, 1);
1667 if (waitqueue_active(&ctx->poll_wait))
1668 wake_up_interruptible(&ctx->poll_wait);
1669 }
1670
1671 /* Returns true if there are no backlogged entries after the flush */
1672 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1673 {
1674 bool all_flushed, posted;
1675
1676 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1677 return false;
1678
1679 posted = false;
1680 spin_lock(&ctx->completion_lock);
1681 while (!list_empty(&ctx->cq_overflow_list)) {
1682 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1683 struct io_overflow_cqe *ocqe;
1684
1685 if (!cqe && !force)
1686 break;
1687 ocqe = list_first_entry(&ctx->cq_overflow_list,
1688 struct io_overflow_cqe, list);
1689 if (cqe)
1690 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1691 else
1692 io_account_cq_overflow(ctx);
1693
1694 posted = true;
1695 list_del(&ocqe->list);
1696 kfree(ocqe);
1697 }
1698
1699 all_flushed = list_empty(&ctx->cq_overflow_list);
1700 if (all_flushed) {
1701 clear_bit(0, &ctx->check_cq_overflow);
1702 WRITE_ONCE(ctx->rings->sq_flags,
1703 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1704 }
1705
1706 if (posted)
1707 io_commit_cqring(ctx);
1708 spin_unlock(&ctx->completion_lock);
1709 if (posted)
1710 io_cqring_ev_posted(ctx);
1711 return all_flushed;
1712 }
1713
1714 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1715 {
1716 bool ret = true;
1717
1718 if (test_bit(0, &ctx->check_cq_overflow)) {
1719 /* iopoll syncs against uring_lock, not completion_lock */
1720 if (ctx->flags & IORING_SETUP_IOPOLL)
1721 mutex_lock(&ctx->uring_lock);
1722 ret = __io_cqring_overflow_flush(ctx, false);
1723 if (ctx->flags & IORING_SETUP_IOPOLL)
1724 mutex_unlock(&ctx->uring_lock);
1725 }
1726
1727 return ret;
1728 }
1729
1730 /* must to be called somewhat shortly after putting a request */
1731 static inline void io_put_task(struct task_struct *task, int nr)
1732 {
1733 struct io_uring_task *tctx = task->io_uring;
1734
1735 if (likely(task == current)) {
1736 tctx->cached_refs += nr;
1737 } else {
1738 percpu_counter_sub(&tctx->inflight, nr);
1739 if (unlikely(atomic_read(&tctx->in_idle)))
1740 wake_up(&tctx->wait);
1741 put_task_struct_many(task, nr);
1742 }
1743 }
1744
1745 static void io_task_refs_refill(struct io_uring_task *tctx)
1746 {
1747 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1748
1749 percpu_counter_add(&tctx->inflight, refill);
1750 refcount_add(refill, &current->usage);
1751 tctx->cached_refs += refill;
1752 }
1753
1754 static inline void io_get_task_refs(int nr)
1755 {
1756 struct io_uring_task *tctx = current->io_uring;
1757
1758 tctx->cached_refs -= nr;
1759 if (unlikely(tctx->cached_refs < 0))
1760 io_task_refs_refill(tctx);
1761 }
1762
1763 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1764 {
1765 struct io_uring_task *tctx = task->io_uring;
1766 unsigned int refs = tctx->cached_refs;
1767
1768 if (refs) {
1769 tctx->cached_refs = 0;
1770 percpu_counter_sub(&tctx->inflight, refs);
1771 put_task_struct_many(task, refs);
1772 }
1773 }
1774
1775 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1776 long res, unsigned int cflags)
1777 {
1778 struct io_overflow_cqe *ocqe;
1779
1780 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1781 if (!ocqe) {
1782 /*
1783 * If we're in ring overflow flush mode, or in task cancel mode,
1784 * or cannot allocate an overflow entry, then we need to drop it
1785 * on the floor.
1786 */
1787 io_account_cq_overflow(ctx);
1788 return false;
1789 }
1790 if (list_empty(&ctx->cq_overflow_list)) {
1791 set_bit(0, &ctx->check_cq_overflow);
1792 WRITE_ONCE(ctx->rings->sq_flags,
1793 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1794
1795 }
1796 ocqe->cqe.user_data = user_data;
1797 ocqe->cqe.res = res;
1798 ocqe->cqe.flags = cflags;
1799 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1800 return true;
1801 }
1802
1803 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1804 long res, unsigned int cflags)
1805 {
1806 struct io_uring_cqe *cqe;
1807
1808 trace_io_uring_complete(ctx, user_data, res, cflags);
1809
1810 /*
1811 * If we can't get a cq entry, userspace overflowed the
1812 * submission (by quite a lot). Increment the overflow count in
1813 * the ring.
1814 */
1815 cqe = io_get_cqe(ctx);
1816 if (likely(cqe)) {
1817 WRITE_ONCE(cqe->user_data, user_data);
1818 WRITE_ONCE(cqe->res, res);
1819 WRITE_ONCE(cqe->flags, cflags);
1820 return true;
1821 }
1822 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1823 }
1824
1825 /* not as hot to bloat with inlining */
1826 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1827 long res, unsigned int cflags)
1828 {
1829 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1830 }
1831
1832 static void io_req_complete_post(struct io_kiocb *req, long res,
1833 unsigned int cflags)
1834 {
1835 struct io_ring_ctx *ctx = req->ctx;
1836
1837 spin_lock(&ctx->completion_lock);
1838 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1839 /*
1840 * If we're the last reference to this request, add to our locked
1841 * free_list cache.
1842 */
1843 if (req_ref_put_and_test(req)) {
1844 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1845 if (req->flags & IO_DISARM_MASK)
1846 io_disarm_next(req);
1847 if (req->link) {
1848 io_req_task_queue(req->link);
1849 req->link = NULL;
1850 }
1851 }
1852 io_dismantle_req(req);
1853 io_put_task(req->task, 1);
1854 list_add(&req->inflight_entry, &ctx->locked_free_list);
1855 ctx->locked_free_nr++;
1856 } else {
1857 if (!percpu_ref_tryget(&ctx->refs))
1858 req = NULL;
1859 }
1860 io_commit_cqring(ctx);
1861 spin_unlock(&ctx->completion_lock);
1862
1863 if (req) {
1864 io_cqring_ev_posted(ctx);
1865 percpu_ref_put(&ctx->refs);
1866 }
1867 }
1868
1869 static inline bool io_req_needs_clean(struct io_kiocb *req)
1870 {
1871 return req->flags & IO_REQ_CLEAN_FLAGS;
1872 }
1873
1874 static void io_req_complete_state(struct io_kiocb *req, long res,
1875 unsigned int cflags)
1876 {
1877 if (io_req_needs_clean(req))
1878 io_clean_op(req);
1879 req->result = res;
1880 req->compl.cflags = cflags;
1881 req->flags |= REQ_F_COMPLETE_INLINE;
1882 }
1883
1884 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1885 long res, unsigned cflags)
1886 {
1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 io_req_complete_state(req, res, cflags);
1889 else
1890 io_req_complete_post(req, res, cflags);
1891 }
1892
1893 static inline void io_req_complete(struct io_kiocb *req, long res)
1894 {
1895 __io_req_complete(req, 0, res, 0);
1896 }
1897
1898 static void io_req_complete_failed(struct io_kiocb *req, long res)
1899 {
1900 req_set_fail(req);
1901 io_req_complete_post(req, res, 0);
1902 }
1903
1904 static void io_req_complete_fail_submit(struct io_kiocb *req)
1905 {
1906 /*
1907 * We don't submit, fail them all, for that replace hardlinks with
1908 * normal links. Extra REQ_F_LINK is tolerated.
1909 */
1910 req->flags &= ~REQ_F_HARDLINK;
1911 req->flags |= REQ_F_LINK;
1912 io_req_complete_failed(req, req->result);
1913 }
1914
1915 /*
1916 * Don't initialise the fields below on every allocation, but do that in
1917 * advance and keep them valid across allocations.
1918 */
1919 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1920 {
1921 req->ctx = ctx;
1922 req->link = NULL;
1923 req->async_data = NULL;
1924 /* not necessary, but safer to zero */
1925 req->result = 0;
1926 }
1927
1928 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1929 struct io_submit_state *state)
1930 {
1931 spin_lock(&ctx->completion_lock);
1932 list_splice_init(&ctx->locked_free_list, &state->free_list);
1933 ctx->locked_free_nr = 0;
1934 spin_unlock(&ctx->completion_lock);
1935 }
1936
1937 /* Returns true IFF there are requests in the cache */
1938 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1939 {
1940 struct io_submit_state *state = &ctx->submit_state;
1941 int nr;
1942
1943 /*
1944 * If we have more than a batch's worth of requests in our IRQ side
1945 * locked cache, grab the lock and move them over to our submission
1946 * side cache.
1947 */
1948 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1949 io_flush_cached_locked_reqs(ctx, state);
1950
1951 nr = state->free_reqs;
1952 while (!list_empty(&state->free_list)) {
1953 struct io_kiocb *req = list_first_entry(&state->free_list,
1954 struct io_kiocb, inflight_entry);
1955
1956 list_del(&req->inflight_entry);
1957 state->reqs[nr++] = req;
1958 if (nr == ARRAY_SIZE(state->reqs))
1959 break;
1960 }
1961
1962 state->free_reqs = nr;
1963 return nr != 0;
1964 }
1965
1966 /*
1967 * A request might get retired back into the request caches even before opcode
1968 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1969 * Because of that, io_alloc_req() should be called only under ->uring_lock
1970 * and with extra caution to not get a request that is still worked on.
1971 */
1972 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1973 __must_hold(&ctx->uring_lock)
1974 {
1975 struct io_submit_state *state = &ctx->submit_state;
1976 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1977 int ret, i;
1978
1979 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1980
1981 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1982 goto got_req;
1983
1984 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1985 state->reqs);
1986
1987 /*
1988 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1989 * retry single alloc to be on the safe side.
1990 */
1991 if (unlikely(ret <= 0)) {
1992 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1993 if (!state->reqs[0])
1994 return NULL;
1995 ret = 1;
1996 }
1997
1998 for (i = 0; i < ret; i++)
1999 io_preinit_req(state->reqs[i], ctx);
2000 state->free_reqs = ret;
2001 got_req:
2002 state->free_reqs--;
2003 return state->reqs[state->free_reqs];
2004 }
2005
2006 static inline void io_put_file(struct file *file)
2007 {
2008 if (file)
2009 fput(file);
2010 }
2011
2012 static void io_dismantle_req(struct io_kiocb *req)
2013 {
2014 unsigned int flags = req->flags;
2015
2016 if (io_req_needs_clean(req))
2017 io_clean_op(req);
2018 if (!(flags & REQ_F_FIXED_FILE))
2019 io_put_file(req->file);
2020 if (req->fixed_rsrc_refs)
2021 percpu_ref_put(req->fixed_rsrc_refs);
2022 if (req->async_data) {
2023 kfree(req->async_data);
2024 req->async_data = NULL;
2025 }
2026 }
2027
2028 static void __io_free_req(struct io_kiocb *req)
2029 {
2030 struct io_ring_ctx *ctx = req->ctx;
2031
2032 io_dismantle_req(req);
2033 io_put_task(req->task, 1);
2034
2035 spin_lock(&ctx->completion_lock);
2036 list_add(&req->inflight_entry, &ctx->locked_free_list);
2037 ctx->locked_free_nr++;
2038 spin_unlock(&ctx->completion_lock);
2039
2040 percpu_ref_put(&ctx->refs);
2041 }
2042
2043 static inline void io_remove_next_linked(struct io_kiocb *req)
2044 {
2045 struct io_kiocb *nxt = req->link;
2046
2047 req->link = nxt->link;
2048 nxt->link = NULL;
2049 }
2050
2051 static bool io_kill_linked_timeout(struct io_kiocb *req)
2052 __must_hold(&req->ctx->completion_lock)
2053 __must_hold(&req->ctx->timeout_lock)
2054 {
2055 struct io_kiocb *link = req->link;
2056
2057 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2058 struct io_timeout_data *io = link->async_data;
2059
2060 io_remove_next_linked(req);
2061 link->timeout.head = NULL;
2062 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2063 list_del(&link->timeout.list);
2064 io_cqring_fill_event(link->ctx, link->user_data,
2065 -ECANCELED, 0);
2066 io_put_req_deferred(link);
2067 return true;
2068 }
2069 }
2070 return false;
2071 }
2072
2073 static void io_fail_links(struct io_kiocb *req)
2074 __must_hold(&req->ctx->completion_lock)
2075 {
2076 struct io_kiocb *nxt, *link = req->link;
2077
2078 req->link = NULL;
2079 while (link) {
2080 long res = -ECANCELED;
2081
2082 if (link->flags & REQ_F_FAIL)
2083 res = link->result;
2084
2085 nxt = link->link;
2086 link->link = NULL;
2087
2088 trace_io_uring_fail_link(req, link);
2089 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2090 io_put_req_deferred(link);
2091 link = nxt;
2092 }
2093 }
2094
2095 static bool io_disarm_next(struct io_kiocb *req)
2096 __must_hold(&req->ctx->completion_lock)
2097 {
2098 bool posted = false;
2099
2100 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2101 struct io_kiocb *link = req->link;
2102
2103 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2104 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2105 io_remove_next_linked(req);
2106 io_cqring_fill_event(link->ctx, link->user_data,
2107 -ECANCELED, 0);
2108 io_put_req_deferred(link);
2109 posted = true;
2110 }
2111 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2112 struct io_ring_ctx *ctx = req->ctx;
2113
2114 spin_lock_irq(&ctx->timeout_lock);
2115 posted = io_kill_linked_timeout(req);
2116 spin_unlock_irq(&ctx->timeout_lock);
2117 }
2118 if (unlikely((req->flags & REQ_F_FAIL) &&
2119 !(req->flags & REQ_F_HARDLINK))) {
2120 posted |= (req->link != NULL);
2121 io_fail_links(req);
2122 }
2123 return posted;
2124 }
2125
2126 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2127 {
2128 struct io_kiocb *nxt;
2129
2130 /*
2131 * If LINK is set, we have dependent requests in this chain. If we
2132 * didn't fail this request, queue the first one up, moving any other
2133 * dependencies to the next request. In case of failure, fail the rest
2134 * of the chain.
2135 */
2136 if (req->flags & IO_DISARM_MASK) {
2137 struct io_ring_ctx *ctx = req->ctx;
2138 bool posted;
2139
2140 spin_lock(&ctx->completion_lock);
2141 posted = io_disarm_next(req);
2142 if (posted)
2143 io_commit_cqring(req->ctx);
2144 spin_unlock(&ctx->completion_lock);
2145 if (posted)
2146 io_cqring_ev_posted(ctx);
2147 }
2148 nxt = req->link;
2149 req->link = NULL;
2150 return nxt;
2151 }
2152
2153 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2154 {
2155 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2156 return NULL;
2157 return __io_req_find_next(req);
2158 }
2159
2160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2161 {
2162 if (!ctx)
2163 return;
2164 if (*locked) {
2165 if (ctx->submit_state.compl_nr)
2166 io_submit_flush_completions(ctx);
2167 mutex_unlock(&ctx->uring_lock);
2168 *locked = false;
2169 }
2170 percpu_ref_put(&ctx->refs);
2171 }
2172
2173 static void tctx_task_work(struct callback_head *cb)
2174 {
2175 bool locked = false;
2176 struct io_ring_ctx *ctx = NULL;
2177 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2178 task_work);
2179
2180 while (1) {
2181 struct io_wq_work_node *node;
2182
2183 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2184 io_submit_flush_completions(ctx);
2185
2186 spin_lock_irq(&tctx->task_lock);
2187 node = tctx->task_list.first;
2188 INIT_WQ_LIST(&tctx->task_list);
2189 if (!node)
2190 tctx->task_running = false;
2191 spin_unlock_irq(&tctx->task_lock);
2192 if (!node)
2193 break;
2194
2195 do {
2196 struct io_wq_work_node *next = node->next;
2197 struct io_kiocb *req = container_of(node, struct io_kiocb,
2198 io_task_work.node);
2199
2200 if (req->ctx != ctx) {
2201 ctx_flush_and_put(ctx, &locked);
2202 ctx = req->ctx;
2203 /* if not contended, grab and improve batching */
2204 locked = mutex_trylock(&ctx->uring_lock);
2205 percpu_ref_get(&ctx->refs);
2206 }
2207 req->io_task_work.func(req, &locked);
2208 node = next;
2209 } while (node);
2210
2211 cond_resched();
2212 }
2213
2214 ctx_flush_and_put(ctx, &locked);
2215
2216 /* relaxed read is enough as only the task itself sets ->in_idle */
2217 if (unlikely(atomic_read(&tctx->in_idle)))
2218 io_uring_drop_tctx_refs(current);
2219 }
2220
2221 static void io_req_task_work_add(struct io_kiocb *req)
2222 {
2223 struct task_struct *tsk = req->task;
2224 struct io_uring_task *tctx = tsk->io_uring;
2225 enum task_work_notify_mode notify;
2226 struct io_wq_work_node *node;
2227 unsigned long flags;
2228 bool running;
2229
2230 WARN_ON_ONCE(!tctx);
2231
2232 spin_lock_irqsave(&tctx->task_lock, flags);
2233 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2234 running = tctx->task_running;
2235 if (!running)
2236 tctx->task_running = true;
2237 spin_unlock_irqrestore(&tctx->task_lock, flags);
2238
2239 /* task_work already pending, we're done */
2240 if (running)
2241 return;
2242
2243 /*
2244 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2245 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2246 * processing task_work. There's no reliable way to tell if TWA_RESUME
2247 * will do the job.
2248 */
2249 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2250 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2251 wake_up_process(tsk);
2252 return;
2253 }
2254
2255 spin_lock_irqsave(&tctx->task_lock, flags);
2256 tctx->task_running = false;
2257 node = tctx->task_list.first;
2258 INIT_WQ_LIST(&tctx->task_list);
2259 spin_unlock_irqrestore(&tctx->task_lock, flags);
2260
2261 while (node) {
2262 req = container_of(node, struct io_kiocb, io_task_work.node);
2263 node = node->next;
2264 if (llist_add(&req->io_task_work.fallback_node,
2265 &req->ctx->fallback_llist))
2266 schedule_delayed_work(&req->ctx->fallback_work, 1);
2267 }
2268 }
2269
2270 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2271 {
2272 struct io_ring_ctx *ctx = req->ctx;
2273
2274 /* not needed for normal modes, but SQPOLL depends on it */
2275 io_tw_lock(ctx, locked);
2276 io_req_complete_failed(req, req->result);
2277 }
2278
2279 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2280 {
2281 struct io_ring_ctx *ctx = req->ctx;
2282
2283 io_tw_lock(ctx, locked);
2284 /* req->task == current here, checking PF_EXITING is safe */
2285 if (likely(!(req->task->flags & PF_EXITING)))
2286 __io_queue_sqe(req);
2287 else
2288 io_req_complete_failed(req, -EFAULT);
2289 }
2290
2291 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2292 {
2293 req->result = ret;
2294 req->io_task_work.func = io_req_task_cancel;
2295 io_req_task_work_add(req);
2296 }
2297
2298 static void io_req_task_queue(struct io_kiocb *req)
2299 {
2300 req->io_task_work.func = io_req_task_submit;
2301 io_req_task_work_add(req);
2302 }
2303
2304 static void io_req_task_queue_reissue(struct io_kiocb *req)
2305 {
2306 req->io_task_work.func = io_queue_async_work;
2307 io_req_task_work_add(req);
2308 }
2309
2310 static inline void io_queue_next(struct io_kiocb *req)
2311 {
2312 struct io_kiocb *nxt = io_req_find_next(req);
2313
2314 if (nxt)
2315 io_req_task_queue(nxt);
2316 }
2317
2318 static void io_free_req(struct io_kiocb *req)
2319 {
2320 io_queue_next(req);
2321 __io_free_req(req);
2322 }
2323
2324 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2325 {
2326 io_free_req(req);
2327 }
2328
2329 struct req_batch {
2330 struct task_struct *task;
2331 int task_refs;
2332 int ctx_refs;
2333 };
2334
2335 static inline void io_init_req_batch(struct req_batch *rb)
2336 {
2337 rb->task_refs = 0;
2338 rb->ctx_refs = 0;
2339 rb->task = NULL;
2340 }
2341
2342 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2343 struct req_batch *rb)
2344 {
2345 if (rb->ctx_refs)
2346 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2347 if (rb->task)
2348 io_put_task(rb->task, rb->task_refs);
2349 }
2350
2351 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2352 struct io_submit_state *state)
2353 {
2354 io_queue_next(req);
2355 io_dismantle_req(req);
2356
2357 if (req->task != rb->task) {
2358 if (rb->task)
2359 io_put_task(rb->task, rb->task_refs);
2360 rb->task = req->task;
2361 rb->task_refs = 0;
2362 }
2363 rb->task_refs++;
2364 rb->ctx_refs++;
2365
2366 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2367 state->reqs[state->free_reqs++] = req;
2368 else
2369 list_add(&req->inflight_entry, &state->free_list);
2370 }
2371
2372 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2373 __must_hold(&ctx->uring_lock)
2374 {
2375 struct io_submit_state *state = &ctx->submit_state;
2376 int i, nr = state->compl_nr;
2377 struct req_batch rb;
2378
2379 spin_lock(&ctx->completion_lock);
2380 for (i = 0; i < nr; i++) {
2381 struct io_kiocb *req = state->compl_reqs[i];
2382
2383 __io_cqring_fill_event(ctx, req->user_data, req->result,
2384 req->compl.cflags);
2385 }
2386 io_commit_cqring(ctx);
2387 spin_unlock(&ctx->completion_lock);
2388 io_cqring_ev_posted(ctx);
2389
2390 io_init_req_batch(&rb);
2391 for (i = 0; i < nr; i++) {
2392 struct io_kiocb *req = state->compl_reqs[i];
2393
2394 if (req_ref_put_and_test(req))
2395 io_req_free_batch(&rb, req, &ctx->submit_state);
2396 }
2397
2398 io_req_free_batch_finish(ctx, &rb);
2399 state->compl_nr = 0;
2400 }
2401
2402 /*
2403 * Drop reference to request, return next in chain (if there is one) if this
2404 * was the last reference to this request.
2405 */
2406 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2407 {
2408 struct io_kiocb *nxt = NULL;
2409
2410 if (req_ref_put_and_test(req)) {
2411 nxt = io_req_find_next(req);
2412 __io_free_req(req);
2413 }
2414 return nxt;
2415 }
2416
2417 static inline void io_put_req(struct io_kiocb *req)
2418 {
2419 if (req_ref_put_and_test(req))
2420 io_free_req(req);
2421 }
2422
2423 static inline void io_put_req_deferred(struct io_kiocb *req)
2424 {
2425 if (req_ref_put_and_test(req)) {
2426 req->io_task_work.func = io_free_req_work;
2427 io_req_task_work_add(req);
2428 }
2429 }
2430
2431 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2432 {
2433 /* See comment at the top of this file */
2434 smp_rmb();
2435 return __io_cqring_events(ctx);
2436 }
2437
2438 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2439 {
2440 struct io_rings *rings = ctx->rings;
2441
2442 /* make sure SQ entry isn't read before tail */
2443 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2444 }
2445
2446 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2447 {
2448 unsigned int cflags;
2449
2450 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2451 cflags |= IORING_CQE_F_BUFFER;
2452 req->flags &= ~REQ_F_BUFFER_SELECTED;
2453 kfree(kbuf);
2454 return cflags;
2455 }
2456
2457 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2458 {
2459 struct io_buffer *kbuf;
2460
2461 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2462 return 0;
2463 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2464 return io_put_kbuf(req, kbuf);
2465 }
2466
2467 static inline bool io_run_task_work(void)
2468 {
2469 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2470 __set_current_state(TASK_RUNNING);
2471 tracehook_notify_signal();
2472 return true;
2473 }
2474
2475 return false;
2476 }
2477
2478 /*
2479 * Find and free completed poll iocbs
2480 */
2481 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2482 struct list_head *done)
2483 {
2484 struct req_batch rb;
2485 struct io_kiocb *req;
2486
2487 /* order with ->result store in io_complete_rw_iopoll() */
2488 smp_rmb();
2489
2490 io_init_req_batch(&rb);
2491 while (!list_empty(done)) {
2492 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2493 list_del(&req->inflight_entry);
2494
2495 __io_cqring_fill_event(ctx, req->user_data, req->result,
2496 io_put_rw_kbuf(req));
2497 (*nr_events)++;
2498
2499 if (req_ref_put_and_test(req))
2500 io_req_free_batch(&rb, req, &ctx->submit_state);
2501 }
2502
2503 io_commit_cqring(ctx);
2504 io_cqring_ev_posted_iopoll(ctx);
2505 io_req_free_batch_finish(ctx, &rb);
2506 }
2507
2508 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2509 long min)
2510 {
2511 struct io_kiocb *req, *tmp;
2512 LIST_HEAD(done);
2513 bool spin;
2514
2515 /*
2516 * Only spin for completions if we don't have multiple devices hanging
2517 * off our complete list, and we're under the requested amount.
2518 */
2519 spin = !ctx->poll_multi_queue && *nr_events < min;
2520
2521 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2522 struct kiocb *kiocb = &req->rw.kiocb;
2523 int ret;
2524
2525 /*
2526 * Move completed and retryable entries to our local lists.
2527 * If we find a request that requires polling, break out
2528 * and complete those lists first, if we have entries there.
2529 */
2530 if (READ_ONCE(req->iopoll_completed)) {
2531 list_move_tail(&req->inflight_entry, &done);
2532 continue;
2533 }
2534 if (!list_empty(&done))
2535 break;
2536
2537 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2538 if (unlikely(ret < 0))
2539 return ret;
2540 else if (ret)
2541 spin = false;
2542
2543 /* iopoll may have completed current req */
2544 if (READ_ONCE(req->iopoll_completed))
2545 list_move_tail(&req->inflight_entry, &done);
2546 }
2547
2548 if (!list_empty(&done))
2549 io_iopoll_complete(ctx, nr_events, &done);
2550
2551 return 0;
2552 }
2553
2554 /*
2555 * We can't just wait for polled events to come to us, we have to actively
2556 * find and complete them.
2557 */
2558 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2559 {
2560 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2561 return;
2562
2563 mutex_lock(&ctx->uring_lock);
2564 while (!list_empty(&ctx->iopoll_list)) {
2565 unsigned int nr_events = 0;
2566
2567 io_do_iopoll(ctx, &nr_events, 0);
2568
2569 /* let it sleep and repeat later if can't complete a request */
2570 if (nr_events == 0)
2571 break;
2572 /*
2573 * Ensure we allow local-to-the-cpu processing to take place,
2574 * in this case we need to ensure that we reap all events.
2575 * Also let task_work, etc. to progress by releasing the mutex
2576 */
2577 if (need_resched()) {
2578 mutex_unlock(&ctx->uring_lock);
2579 cond_resched();
2580 mutex_lock(&ctx->uring_lock);
2581 }
2582 }
2583 mutex_unlock(&ctx->uring_lock);
2584 }
2585
2586 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2587 {
2588 unsigned int nr_events = 0;
2589 int ret = 0;
2590
2591 /*
2592 * We disallow the app entering submit/complete with polling, but we
2593 * still need to lock the ring to prevent racing with polled issue
2594 * that got punted to a workqueue.
2595 */
2596 mutex_lock(&ctx->uring_lock);
2597 /*
2598 * Don't enter poll loop if we already have events pending.
2599 * If we do, we can potentially be spinning for commands that
2600 * already triggered a CQE (eg in error).
2601 */
2602 if (test_bit(0, &ctx->check_cq_overflow))
2603 __io_cqring_overflow_flush(ctx, false);
2604 if (io_cqring_events(ctx))
2605 goto out;
2606 do {
2607 /*
2608 * If a submit got punted to a workqueue, we can have the
2609 * application entering polling for a command before it gets
2610 * issued. That app will hold the uring_lock for the duration
2611 * of the poll right here, so we need to take a breather every
2612 * now and then to ensure that the issue has a chance to add
2613 * the poll to the issued list. Otherwise we can spin here
2614 * forever, while the workqueue is stuck trying to acquire the
2615 * very same mutex.
2616 */
2617 if (list_empty(&ctx->iopoll_list)) {
2618 u32 tail = ctx->cached_cq_tail;
2619
2620 mutex_unlock(&ctx->uring_lock);
2621 io_run_task_work();
2622 mutex_lock(&ctx->uring_lock);
2623
2624 /* some requests don't go through iopoll_list */
2625 if (tail != ctx->cached_cq_tail ||
2626 list_empty(&ctx->iopoll_list))
2627 break;
2628 }
2629 ret = io_do_iopoll(ctx, &nr_events, min);
2630 } while (!ret && nr_events < min && !need_resched());
2631 out:
2632 mutex_unlock(&ctx->uring_lock);
2633 return ret;
2634 }
2635
2636 static void kiocb_end_write(struct io_kiocb *req)
2637 {
2638 /*
2639 * Tell lockdep we inherited freeze protection from submission
2640 * thread.
2641 */
2642 if (req->flags & REQ_F_ISREG) {
2643 struct super_block *sb = file_inode(req->file)->i_sb;
2644
2645 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2646 sb_end_write(sb);
2647 }
2648 }
2649
2650 #ifdef CONFIG_BLOCK
2651 static bool io_resubmit_prep(struct io_kiocb *req)
2652 {
2653 struct io_async_rw *rw = req->async_data;
2654
2655 if (!rw)
2656 return !io_req_prep_async(req);
2657 iov_iter_restore(&rw->iter, &rw->iter_state);
2658 return true;
2659 }
2660
2661 static bool io_rw_should_reissue(struct io_kiocb *req)
2662 {
2663 umode_t mode = file_inode(req->file)->i_mode;
2664 struct io_ring_ctx *ctx = req->ctx;
2665
2666 if (!S_ISBLK(mode) && !S_ISREG(mode))
2667 return false;
2668 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2669 !(ctx->flags & IORING_SETUP_IOPOLL)))
2670 return false;
2671 /*
2672 * If ref is dying, we might be running poll reap from the exit work.
2673 * Don't attempt to reissue from that path, just let it fail with
2674 * -EAGAIN.
2675 */
2676 if (percpu_ref_is_dying(&ctx->refs))
2677 return false;
2678 /*
2679 * Play it safe and assume not safe to re-import and reissue if we're
2680 * not in the original thread group (or in task context).
2681 */
2682 if (!same_thread_group(req->task, current) || !in_task())
2683 return false;
2684 return true;
2685 }
2686 #else
2687 static bool io_resubmit_prep(struct io_kiocb *req)
2688 {
2689 return false;
2690 }
2691 static bool io_rw_should_reissue(struct io_kiocb *req)
2692 {
2693 return false;
2694 }
2695 #endif
2696
2697 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2698 {
2699 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2700 kiocb_end_write(req);
2701 if (res != req->result) {
2702 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2703 io_rw_should_reissue(req)) {
2704 req->flags |= REQ_F_REISSUE;
2705 return true;
2706 }
2707 req_set_fail(req);
2708 req->result = res;
2709 }
2710 return false;
2711 }
2712
2713 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2714 {
2715 unsigned int cflags = io_put_rw_kbuf(req);
2716 long res = req->result;
2717
2718 if (*locked) {
2719 struct io_ring_ctx *ctx = req->ctx;
2720 struct io_submit_state *state = &ctx->submit_state;
2721
2722 io_req_complete_state(req, res, cflags);
2723 state->compl_reqs[state->compl_nr++] = req;
2724 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2725 io_submit_flush_completions(ctx);
2726 } else {
2727 io_req_complete_post(req, res, cflags);
2728 }
2729 }
2730
2731 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2732 unsigned int issue_flags)
2733 {
2734 if (__io_complete_rw_common(req, res))
2735 return;
2736 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2737 }
2738
2739 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2740 {
2741 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2742
2743 if (__io_complete_rw_common(req, res))
2744 return;
2745 req->result = res;
2746 req->io_task_work.func = io_req_task_complete;
2747 io_req_task_work_add(req);
2748 }
2749
2750 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2751 {
2752 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2753
2754 if (kiocb->ki_flags & IOCB_WRITE)
2755 kiocb_end_write(req);
2756 if (unlikely(res != req->result)) {
2757 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2758 req->flags |= REQ_F_REISSUE;
2759 return;
2760 }
2761 }
2762
2763 WRITE_ONCE(req->result, res);
2764 /* order with io_iopoll_complete() checking ->result */
2765 smp_wmb();
2766 WRITE_ONCE(req->iopoll_completed, 1);
2767 }
2768
2769 /*
2770 * After the iocb has been issued, it's safe to be found on the poll list.
2771 * Adding the kiocb to the list AFTER submission ensures that we don't
2772 * find it from a io_do_iopoll() thread before the issuer is done
2773 * accessing the kiocb cookie.
2774 */
2775 static void io_iopoll_req_issued(struct io_kiocb *req)
2776 {
2777 struct io_ring_ctx *ctx = req->ctx;
2778 const bool in_async = io_wq_current_is_worker();
2779
2780 /* workqueue context doesn't hold uring_lock, grab it now */
2781 if (unlikely(in_async))
2782 mutex_lock(&ctx->uring_lock);
2783
2784 /*
2785 * Track whether we have multiple files in our lists. This will impact
2786 * how we do polling eventually, not spinning if we're on potentially
2787 * different devices.
2788 */
2789 if (list_empty(&ctx->iopoll_list)) {
2790 ctx->poll_multi_queue = false;
2791 } else if (!ctx->poll_multi_queue) {
2792 struct io_kiocb *list_req;
2793 unsigned int queue_num0, queue_num1;
2794
2795 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2796 inflight_entry);
2797
2798 if (list_req->file != req->file) {
2799 ctx->poll_multi_queue = true;
2800 } else {
2801 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2802 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2803 if (queue_num0 != queue_num1)
2804 ctx->poll_multi_queue = true;
2805 }
2806 }
2807
2808 /*
2809 * For fast devices, IO may have already completed. If it has, add
2810 * it to the front so we find it first.
2811 */
2812 if (READ_ONCE(req->iopoll_completed))
2813 list_add(&req->inflight_entry, &ctx->iopoll_list);
2814 else
2815 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2816
2817 if (unlikely(in_async)) {
2818 /*
2819 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2820 * in sq thread task context or in io worker task context. If
2821 * current task context is sq thread, we don't need to check
2822 * whether should wake up sq thread.
2823 */
2824 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2825 wq_has_sleeper(&ctx->sq_data->wait))
2826 wake_up(&ctx->sq_data->wait);
2827
2828 mutex_unlock(&ctx->uring_lock);
2829 }
2830 }
2831
2832 static bool io_bdev_nowait(struct block_device *bdev)
2833 {
2834 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2835 }
2836
2837 /*
2838 * If we tracked the file through the SCM inflight mechanism, we could support
2839 * any file. For now, just ensure that anything potentially problematic is done
2840 * inline.
2841 */
2842 static bool __io_file_supports_nowait(struct file *file, int rw)
2843 {
2844 umode_t mode = file_inode(file)->i_mode;
2845
2846 if (S_ISBLK(mode)) {
2847 if (IS_ENABLED(CONFIG_BLOCK) &&
2848 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2849 return true;
2850 return false;
2851 }
2852 if (S_ISSOCK(mode))
2853 return true;
2854 if (S_ISREG(mode)) {
2855 if (IS_ENABLED(CONFIG_BLOCK) &&
2856 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2857 file->f_op != &io_uring_fops)
2858 return true;
2859 return false;
2860 }
2861
2862 /* any ->read/write should understand O_NONBLOCK */
2863 if (file->f_flags & O_NONBLOCK)
2864 return true;
2865
2866 if (!(file->f_mode & FMODE_NOWAIT))
2867 return false;
2868
2869 if (rw == READ)
2870 return file->f_op->read_iter != NULL;
2871
2872 return file->f_op->write_iter != NULL;
2873 }
2874
2875 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2876 {
2877 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2878 return true;
2879 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2880 return true;
2881
2882 return __io_file_supports_nowait(req->file, rw);
2883 }
2884
2885 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2886 int rw)
2887 {
2888 struct io_ring_ctx *ctx = req->ctx;
2889 struct kiocb *kiocb = &req->rw.kiocb;
2890 struct file *file = req->file;
2891 unsigned ioprio;
2892 int ret;
2893
2894 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2895 req->flags |= REQ_F_ISREG;
2896
2897 kiocb->ki_pos = READ_ONCE(sqe->off);
2898 if (kiocb->ki_pos == -1) {
2899 if (!(file->f_mode & FMODE_STREAM)) {
2900 req->flags |= REQ_F_CUR_POS;
2901 kiocb->ki_pos = file->f_pos;
2902 } else {
2903 kiocb->ki_pos = 0;
2904 }
2905 }
2906 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2907 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2908 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2909 if (unlikely(ret))
2910 return ret;
2911
2912 /*
2913 * If the file is marked O_NONBLOCK, still allow retry for it if it
2914 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2915 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2916 */
2917 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2918 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2919 req->flags |= REQ_F_NOWAIT;
2920
2921 ioprio = READ_ONCE(sqe->ioprio);
2922 if (ioprio) {
2923 ret = ioprio_check_cap(ioprio);
2924 if (ret)
2925 return ret;
2926
2927 kiocb->ki_ioprio = ioprio;
2928 } else
2929 kiocb->ki_ioprio = get_current_ioprio();
2930
2931 if (ctx->flags & IORING_SETUP_IOPOLL) {
2932 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2933 !kiocb->ki_filp->f_op->iopoll)
2934 return -EOPNOTSUPP;
2935
2936 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2937 kiocb->ki_complete = io_complete_rw_iopoll;
2938 req->iopoll_completed = 0;
2939 } else {
2940 if (kiocb->ki_flags & IOCB_HIPRI)
2941 return -EINVAL;
2942 kiocb->ki_complete = io_complete_rw;
2943 }
2944
2945 if (req->opcode == IORING_OP_READ_FIXED ||
2946 req->opcode == IORING_OP_WRITE_FIXED) {
2947 req->imu = NULL;
2948 io_req_set_rsrc_node(req);
2949 }
2950
2951 req->rw.addr = READ_ONCE(sqe->addr);
2952 req->rw.len = READ_ONCE(sqe->len);
2953 req->buf_index = READ_ONCE(sqe->buf_index);
2954 return 0;
2955 }
2956
2957 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2958 {
2959 switch (ret) {
2960 case -EIOCBQUEUED:
2961 break;
2962 case -ERESTARTSYS:
2963 case -ERESTARTNOINTR:
2964 case -ERESTARTNOHAND:
2965 case -ERESTART_RESTARTBLOCK:
2966 /*
2967 * We can't just restart the syscall, since previously
2968 * submitted sqes may already be in progress. Just fail this
2969 * IO with EINTR.
2970 */
2971 ret = -EINTR;
2972 fallthrough;
2973 default:
2974 kiocb->ki_complete(kiocb, ret, 0);
2975 }
2976 }
2977
2978 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2979 unsigned int issue_flags)
2980 {
2981 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2982 struct io_async_rw *io = req->async_data;
2983
2984 /* add previously done IO, if any */
2985 if (io && io->bytes_done > 0) {
2986 if (ret < 0)
2987 ret = io->bytes_done;
2988 else
2989 ret += io->bytes_done;
2990 }
2991
2992 if (req->flags & REQ_F_CUR_POS)
2993 req->file->f_pos = kiocb->ki_pos;
2994 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2995 __io_complete_rw(req, ret, 0, issue_flags);
2996 else
2997 io_rw_done(kiocb, ret);
2998
2999 if (req->flags & REQ_F_REISSUE) {
3000 req->flags &= ~REQ_F_REISSUE;
3001 if (io_resubmit_prep(req)) {
3002 io_req_task_queue_reissue(req);
3003 } else {
3004 unsigned int cflags = io_put_rw_kbuf(req);
3005 struct io_ring_ctx *ctx = req->ctx;
3006
3007 req_set_fail(req);
3008 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3009 mutex_lock(&ctx->uring_lock);
3010 __io_req_complete(req, issue_flags, ret, cflags);
3011 mutex_unlock(&ctx->uring_lock);
3012 } else {
3013 __io_req_complete(req, issue_flags, ret, cflags);
3014 }
3015 }
3016 }
3017 }
3018
3019 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3020 struct io_mapped_ubuf *imu)
3021 {
3022 size_t len = req->rw.len;
3023 u64 buf_end, buf_addr = req->rw.addr;
3024 size_t offset;
3025
3026 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3027 return -EFAULT;
3028 /* not inside the mapped region */
3029 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3030 return -EFAULT;
3031
3032 /*
3033 * May not be a start of buffer, set size appropriately
3034 * and advance us to the beginning.
3035 */
3036 offset = buf_addr - imu->ubuf;
3037 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3038
3039 if (offset) {
3040 /*
3041 * Don't use iov_iter_advance() here, as it's really slow for
3042 * using the latter parts of a big fixed buffer - it iterates
3043 * over each segment manually. We can cheat a bit here, because
3044 * we know that:
3045 *
3046 * 1) it's a BVEC iter, we set it up
3047 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3048 * first and last bvec
3049 *
3050 * So just find our index, and adjust the iterator afterwards.
3051 * If the offset is within the first bvec (or the whole first
3052 * bvec, just use iov_iter_advance(). This makes it easier
3053 * since we can just skip the first segment, which may not
3054 * be PAGE_SIZE aligned.
3055 */
3056 const struct bio_vec *bvec = imu->bvec;
3057
3058 if (offset <= bvec->bv_len) {
3059 iov_iter_advance(iter, offset);
3060 } else {
3061 unsigned long seg_skip;
3062
3063 /* skip first vec */
3064 offset -= bvec->bv_len;
3065 seg_skip = 1 + (offset >> PAGE_SHIFT);
3066
3067 iter->bvec = bvec + seg_skip;
3068 iter->nr_segs -= seg_skip;
3069 iter->count -= bvec->bv_len + offset;
3070 iter->iov_offset = offset & ~PAGE_MASK;
3071 }
3072 }
3073
3074 return 0;
3075 }
3076
3077 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3078 {
3079 struct io_ring_ctx *ctx = req->ctx;
3080 struct io_mapped_ubuf *imu = req->imu;
3081 u16 index, buf_index = req->buf_index;
3082
3083 if (likely(!imu)) {
3084 if (unlikely(buf_index >= ctx->nr_user_bufs))
3085 return -EFAULT;
3086 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3087 imu = READ_ONCE(ctx->user_bufs[index]);
3088 req->imu = imu;
3089 }
3090 return __io_import_fixed(req, rw, iter, imu);
3091 }
3092
3093 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3094 {
3095 if (needs_lock)
3096 mutex_unlock(&ctx->uring_lock);
3097 }
3098
3099 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3100 {
3101 /*
3102 * "Normal" inline submissions always hold the uring_lock, since we
3103 * grab it from the system call. Same is true for the SQPOLL offload.
3104 * The only exception is when we've detached the request and issue it
3105 * from an async worker thread, grab the lock for that case.
3106 */
3107 if (needs_lock)
3108 mutex_lock(&ctx->uring_lock);
3109 }
3110
3111 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3112 int bgid, struct io_buffer *kbuf,
3113 bool needs_lock)
3114 {
3115 struct io_buffer *head;
3116
3117 if (req->flags & REQ_F_BUFFER_SELECTED)
3118 return kbuf;
3119
3120 io_ring_submit_lock(req->ctx, needs_lock);
3121
3122 lockdep_assert_held(&req->ctx->uring_lock);
3123
3124 head = xa_load(&req->ctx->io_buffers, bgid);
3125 if (head) {
3126 if (!list_empty(&head->list)) {
3127 kbuf = list_last_entry(&head->list, struct io_buffer,
3128 list);
3129 list_del(&kbuf->list);
3130 } else {
3131 kbuf = head;
3132 xa_erase(&req->ctx->io_buffers, bgid);
3133 }
3134 if (*len > kbuf->len)
3135 *len = kbuf->len;
3136 } else {
3137 kbuf = ERR_PTR(-ENOBUFS);
3138 }
3139
3140 io_ring_submit_unlock(req->ctx, needs_lock);
3141
3142 return kbuf;
3143 }
3144
3145 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3146 bool needs_lock)
3147 {
3148 struct io_buffer *kbuf;
3149 u16 bgid;
3150
3151 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3152 bgid = req->buf_index;
3153 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3154 if (IS_ERR(kbuf))
3155 return kbuf;
3156 req->rw.addr = (u64) (unsigned long) kbuf;
3157 req->flags |= REQ_F_BUFFER_SELECTED;
3158 return u64_to_user_ptr(kbuf->addr);
3159 }
3160
3161 #ifdef CONFIG_COMPAT
3162 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3163 bool needs_lock)
3164 {
3165 struct compat_iovec __user *uiov;
3166 compat_ssize_t clen;
3167 void __user *buf;
3168 ssize_t len;
3169
3170 uiov = u64_to_user_ptr(req->rw.addr);
3171 if (!access_ok(uiov, sizeof(*uiov)))
3172 return -EFAULT;
3173 if (__get_user(clen, &uiov->iov_len))
3174 return -EFAULT;
3175 if (clen < 0)
3176 return -EINVAL;
3177
3178 len = clen;
3179 buf = io_rw_buffer_select(req, &len, needs_lock);
3180 if (IS_ERR(buf))
3181 return PTR_ERR(buf);
3182 iov[0].iov_base = buf;
3183 iov[0].iov_len = (compat_size_t) len;
3184 return 0;
3185 }
3186 #endif
3187
3188 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3189 bool needs_lock)
3190 {
3191 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3192 void __user *buf;
3193 ssize_t len;
3194
3195 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3196 return -EFAULT;
3197
3198 len = iov[0].iov_len;
3199 if (len < 0)
3200 return -EINVAL;
3201 buf = io_rw_buffer_select(req, &len, needs_lock);
3202 if (IS_ERR(buf))
3203 return PTR_ERR(buf);
3204 iov[0].iov_base = buf;
3205 iov[0].iov_len = len;
3206 return 0;
3207 }
3208
3209 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3210 bool needs_lock)
3211 {
3212 if (req->flags & REQ_F_BUFFER_SELECTED) {
3213 struct io_buffer *kbuf;
3214
3215 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3216 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3217 iov[0].iov_len = kbuf->len;
3218 return 0;
3219 }
3220 if (req->rw.len != 1)
3221 return -EINVAL;
3222
3223 #ifdef CONFIG_COMPAT
3224 if (req->ctx->compat)
3225 return io_compat_import(req, iov, needs_lock);
3226 #endif
3227
3228 return __io_iov_buffer_select(req, iov, needs_lock);
3229 }
3230
3231 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3232 struct iov_iter *iter, bool needs_lock)
3233 {
3234 void __user *buf = u64_to_user_ptr(req->rw.addr);
3235 size_t sqe_len = req->rw.len;
3236 u8 opcode = req->opcode;
3237 ssize_t ret;
3238
3239 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3240 *iovec = NULL;
3241 return io_import_fixed(req, rw, iter);
3242 }
3243
3244 /* buffer index only valid with fixed read/write, or buffer select */
3245 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3246 return -EINVAL;
3247
3248 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3249 if (req->flags & REQ_F_BUFFER_SELECT) {
3250 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3251 if (IS_ERR(buf))
3252 return PTR_ERR(buf);
3253 req->rw.len = sqe_len;
3254 }
3255
3256 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3257 *iovec = NULL;
3258 return ret;
3259 }
3260
3261 if (req->flags & REQ_F_BUFFER_SELECT) {
3262 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3263 if (!ret)
3264 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3265 *iovec = NULL;
3266 return ret;
3267 }
3268
3269 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3270 req->ctx->compat);
3271 }
3272
3273 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3274 {
3275 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3276 }
3277
3278 /*
3279 * For files that don't have ->read_iter() and ->write_iter(), handle them
3280 * by looping over ->read() or ->write() manually.
3281 */
3282 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3283 {
3284 struct kiocb *kiocb = &req->rw.kiocb;
3285 struct file *file = req->file;
3286 ssize_t ret = 0;
3287
3288 /*
3289 * Don't support polled IO through this interface, and we can't
3290 * support non-blocking either. For the latter, this just causes
3291 * the kiocb to be handled from an async context.
3292 */
3293 if (kiocb->ki_flags & IOCB_HIPRI)
3294 return -EOPNOTSUPP;
3295 if (kiocb->ki_flags & IOCB_NOWAIT)
3296 return -EAGAIN;
3297
3298 while (iov_iter_count(iter)) {
3299 struct iovec iovec;
3300 ssize_t nr;
3301
3302 if (!iov_iter_is_bvec(iter)) {
3303 iovec = iov_iter_iovec(iter);
3304 } else {
3305 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3306 iovec.iov_len = req->rw.len;
3307 }
3308
3309 if (rw == READ) {
3310 nr = file->f_op->read(file, iovec.iov_base,
3311 iovec.iov_len, io_kiocb_ppos(kiocb));
3312 } else {
3313 nr = file->f_op->write(file, iovec.iov_base,
3314 iovec.iov_len, io_kiocb_ppos(kiocb));
3315 }
3316
3317 if (nr < 0) {
3318 if (!ret)
3319 ret = nr;
3320 break;
3321 }
3322 if (!iov_iter_is_bvec(iter)) {
3323 iov_iter_advance(iter, nr);
3324 } else {
3325 req->rw.len -= nr;
3326 req->rw.addr += nr;
3327 }
3328 ret += nr;
3329 if (nr != iovec.iov_len)
3330 break;
3331 }
3332
3333 return ret;
3334 }
3335
3336 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3337 const struct iovec *fast_iov, struct iov_iter *iter)
3338 {
3339 struct io_async_rw *rw = req->async_data;
3340
3341 memcpy(&rw->iter, iter, sizeof(*iter));
3342 rw->free_iovec = iovec;
3343 rw->bytes_done = 0;
3344 /* can only be fixed buffers, no need to do anything */
3345 if (iov_iter_is_bvec(iter))
3346 return;
3347 if (!iovec) {
3348 unsigned iov_off = 0;
3349
3350 rw->iter.iov = rw->fast_iov;
3351 if (iter->iov != fast_iov) {
3352 iov_off = iter->iov - fast_iov;
3353 rw->iter.iov += iov_off;
3354 }
3355 if (rw->fast_iov != fast_iov)
3356 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3357 sizeof(struct iovec) * iter->nr_segs);
3358 } else {
3359 req->flags |= REQ_F_NEED_CLEANUP;
3360 }
3361 }
3362
3363 static inline int io_alloc_async_data(struct io_kiocb *req)
3364 {
3365 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3366 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3367 return req->async_data == NULL;
3368 }
3369
3370 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3371 const struct iovec *fast_iov,
3372 struct iov_iter *iter, bool force)
3373 {
3374 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3375 return 0;
3376 if (!req->async_data) {
3377 struct io_async_rw *iorw;
3378
3379 if (io_alloc_async_data(req)) {
3380 kfree(iovec);
3381 return -ENOMEM;
3382 }
3383
3384 io_req_map_rw(req, iovec, fast_iov, iter);
3385 iorw = req->async_data;
3386 /* we've copied and mapped the iter, ensure state is saved */
3387 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3388 }
3389 return 0;
3390 }
3391
3392 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3393 {
3394 struct io_async_rw *iorw = req->async_data;
3395 struct iovec *iov = iorw->fast_iov;
3396 int ret;
3397
3398 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3399 if (unlikely(ret < 0))
3400 return ret;
3401
3402 iorw->bytes_done = 0;
3403 iorw->free_iovec = iov;
3404 if (iov)
3405 req->flags |= REQ_F_NEED_CLEANUP;
3406 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3407 return 0;
3408 }
3409
3410 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3411 {
3412 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3413 return -EBADF;
3414 return io_prep_rw(req, sqe, READ);
3415 }
3416
3417 /*
3418 * This is our waitqueue callback handler, registered through lock_page_async()
3419 * when we initially tried to do the IO with the iocb armed our waitqueue.
3420 * This gets called when the page is unlocked, and we generally expect that to
3421 * happen when the page IO is completed and the page is now uptodate. This will
3422 * queue a task_work based retry of the operation, attempting to copy the data
3423 * again. If the latter fails because the page was NOT uptodate, then we will
3424 * do a thread based blocking retry of the operation. That's the unexpected
3425 * slow path.
3426 */
3427 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3428 int sync, void *arg)
3429 {
3430 struct wait_page_queue *wpq;
3431 struct io_kiocb *req = wait->private;
3432 struct wait_page_key *key = arg;
3433
3434 wpq = container_of(wait, struct wait_page_queue, wait);
3435
3436 if (!wake_page_match(wpq, key))
3437 return 0;
3438
3439 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3440 list_del_init(&wait->entry);
3441 io_req_task_queue(req);
3442 return 1;
3443 }
3444
3445 /*
3446 * This controls whether a given IO request should be armed for async page
3447 * based retry. If we return false here, the request is handed to the async
3448 * worker threads for retry. If we're doing buffered reads on a regular file,
3449 * we prepare a private wait_page_queue entry and retry the operation. This
3450 * will either succeed because the page is now uptodate and unlocked, or it
3451 * will register a callback when the page is unlocked at IO completion. Through
3452 * that callback, io_uring uses task_work to setup a retry of the operation.
3453 * That retry will attempt the buffered read again. The retry will generally
3454 * succeed, or in rare cases where it fails, we then fall back to using the
3455 * async worker threads for a blocking retry.
3456 */
3457 static bool io_rw_should_retry(struct io_kiocb *req)
3458 {
3459 struct io_async_rw *rw = req->async_data;
3460 struct wait_page_queue *wait = &rw->wpq;
3461 struct kiocb *kiocb = &req->rw.kiocb;
3462
3463 /* never retry for NOWAIT, we just complete with -EAGAIN */
3464 if (req->flags & REQ_F_NOWAIT)
3465 return false;
3466
3467 /* Only for buffered IO */
3468 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3469 return false;
3470
3471 /*
3472 * just use poll if we can, and don't attempt if the fs doesn't
3473 * support callback based unlocks
3474 */
3475 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3476 return false;
3477
3478 wait->wait.func = io_async_buf_func;
3479 wait->wait.private = req;
3480 wait->wait.flags = 0;
3481 INIT_LIST_HEAD(&wait->wait.entry);
3482 kiocb->ki_flags |= IOCB_WAITQ;
3483 kiocb->ki_flags &= ~IOCB_NOWAIT;
3484 kiocb->ki_waitq = wait;
3485 return true;
3486 }
3487
3488 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3489 {
3490 if (req->file->f_op->read_iter)
3491 return call_read_iter(req->file, &req->rw.kiocb, iter);
3492 else if (req->file->f_op->read)
3493 return loop_rw_iter(READ, req, iter);
3494 else
3495 return -EINVAL;
3496 }
3497
3498 static bool need_read_all(struct io_kiocb *req)
3499 {
3500 return req->flags & REQ_F_ISREG ||
3501 S_ISBLK(file_inode(req->file)->i_mode);
3502 }
3503
3504 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3505 {
3506 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3507 struct kiocb *kiocb = &req->rw.kiocb;
3508 struct iov_iter __iter, *iter = &__iter;
3509 struct io_async_rw *rw = req->async_data;
3510 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3511 struct iov_iter_state __state, *state;
3512 ssize_t ret, ret2;
3513
3514 if (rw) {
3515 iter = &rw->iter;
3516 state = &rw->iter_state;
3517 /*
3518 * We come here from an earlier attempt, restore our state to
3519 * match in case it doesn't. It's cheap enough that we don't
3520 * need to make this conditional.
3521 */
3522 iov_iter_restore(iter, state);
3523 iovec = NULL;
3524 } else {
3525 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3526 if (ret < 0)
3527 return ret;
3528 state = &__state;
3529 iov_iter_save_state(iter, state);
3530 }
3531 req->result = iov_iter_count(iter);
3532
3533 /* Ensure we clear previously set non-block flag */
3534 if (!force_nonblock)
3535 kiocb->ki_flags &= ~IOCB_NOWAIT;
3536 else
3537 kiocb->ki_flags |= IOCB_NOWAIT;
3538
3539 /* If the file doesn't support async, just async punt */
3540 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3541 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3542 return ret ?: -EAGAIN;
3543 }
3544
3545 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3546 if (unlikely(ret)) {
3547 kfree(iovec);
3548 return ret;
3549 }
3550
3551 ret = io_iter_do_read(req, iter);
3552
3553 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3554 req->flags &= ~REQ_F_REISSUE;
3555 /* IOPOLL retry should happen for io-wq threads */
3556 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3557 goto done;
3558 /* no retry on NONBLOCK nor RWF_NOWAIT */
3559 if (req->flags & REQ_F_NOWAIT)
3560 goto done;
3561 ret = 0;
3562 } else if (ret == -EIOCBQUEUED) {
3563 goto out_free;
3564 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3565 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3566 /* read all, failed, already did sync or don't want to retry */
3567 goto done;
3568 }
3569
3570 /*
3571 * Don't depend on the iter state matching what was consumed, or being
3572 * untouched in case of error. Restore it and we'll advance it
3573 * manually if we need to.
3574 */
3575 iov_iter_restore(iter, state);
3576
3577 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3578 if (ret2)
3579 return ret2;
3580
3581 iovec = NULL;
3582 rw = req->async_data;
3583 /*
3584 * Now use our persistent iterator and state, if we aren't already.
3585 * We've restored and mapped the iter to match.
3586 */
3587 if (iter != &rw->iter) {
3588 iter = &rw->iter;
3589 state = &rw->iter_state;
3590 }
3591
3592 do {
3593 /*
3594 * We end up here because of a partial read, either from
3595 * above or inside this loop. Advance the iter by the bytes
3596 * that were consumed.
3597 */
3598 iov_iter_advance(iter, ret);
3599 if (!iov_iter_count(iter))
3600 break;
3601 rw->bytes_done += ret;
3602 iov_iter_save_state(iter, state);
3603
3604 /* if we can retry, do so with the callbacks armed */
3605 if (!io_rw_should_retry(req)) {
3606 kiocb->ki_flags &= ~IOCB_WAITQ;
3607 return -EAGAIN;
3608 }
3609
3610 /*
3611 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3612 * we get -EIOCBQUEUED, then we'll get a notification when the
3613 * desired page gets unlocked. We can also get a partial read
3614 * here, and if we do, then just retry at the new offset.
3615 */
3616 ret = io_iter_do_read(req, iter);
3617 if (ret == -EIOCBQUEUED)
3618 return 0;
3619 /* we got some bytes, but not all. retry. */
3620 kiocb->ki_flags &= ~IOCB_WAITQ;
3621 iov_iter_restore(iter, state);
3622 } while (ret > 0);
3623 done:
3624 kiocb_done(kiocb, ret, issue_flags);
3625 out_free:
3626 /* it's faster to check here then delegate to kfree */
3627 if (iovec)
3628 kfree(iovec);
3629 return 0;
3630 }
3631
3632 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3633 {
3634 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3635 return -EBADF;
3636 return io_prep_rw(req, sqe, WRITE);
3637 }
3638
3639 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3640 {
3641 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3642 struct kiocb *kiocb = &req->rw.kiocb;
3643 struct iov_iter __iter, *iter = &__iter;
3644 struct io_async_rw *rw = req->async_data;
3645 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3646 struct iov_iter_state __state, *state;
3647 ssize_t ret, ret2;
3648
3649 if (rw) {
3650 iter = &rw->iter;
3651 state = &rw->iter_state;
3652 iov_iter_restore(iter, state);
3653 iovec = NULL;
3654 } else {
3655 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3656 if (ret < 0)
3657 return ret;
3658 state = &__state;
3659 iov_iter_save_state(iter, state);
3660 }
3661 req->result = iov_iter_count(iter);
3662
3663 /* Ensure we clear previously set non-block flag */
3664 if (!force_nonblock)
3665 kiocb->ki_flags &= ~IOCB_NOWAIT;
3666 else
3667 kiocb->ki_flags |= IOCB_NOWAIT;
3668
3669 /* If the file doesn't support async, just async punt */
3670 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3671 goto copy_iov;
3672
3673 /* file path doesn't support NOWAIT for non-direct_IO */
3674 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3675 (req->flags & REQ_F_ISREG))
3676 goto copy_iov;
3677
3678 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3679 if (unlikely(ret))
3680 goto out_free;
3681
3682 /*
3683 * Open-code file_start_write here to grab freeze protection,
3684 * which will be released by another thread in
3685 * io_complete_rw(). Fool lockdep by telling it the lock got
3686 * released so that it doesn't complain about the held lock when
3687 * we return to userspace.
3688 */
3689 if (req->flags & REQ_F_ISREG) {
3690 sb_start_write(file_inode(req->file)->i_sb);
3691 __sb_writers_release(file_inode(req->file)->i_sb,
3692 SB_FREEZE_WRITE);
3693 }
3694 kiocb->ki_flags |= IOCB_WRITE;
3695
3696 if (req->file->f_op->write_iter)
3697 ret2 = call_write_iter(req->file, kiocb, iter);
3698 else if (req->file->f_op->write)
3699 ret2 = loop_rw_iter(WRITE, req, iter);
3700 else
3701 ret2 = -EINVAL;
3702
3703 if (req->flags & REQ_F_REISSUE) {
3704 req->flags &= ~REQ_F_REISSUE;
3705 ret2 = -EAGAIN;
3706 }
3707
3708 /*
3709 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3710 * retry them without IOCB_NOWAIT.
3711 */
3712 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3713 ret2 = -EAGAIN;
3714 /* no retry on NONBLOCK nor RWF_NOWAIT */
3715 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3716 goto done;
3717 if (!force_nonblock || ret2 != -EAGAIN) {
3718 /* IOPOLL retry should happen for io-wq threads */
3719 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3720 goto copy_iov;
3721 done:
3722 kiocb_done(kiocb, ret2, issue_flags);
3723 } else {
3724 copy_iov:
3725 iov_iter_restore(iter, state);
3726 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3727 return ret ?: -EAGAIN;
3728 }
3729 out_free:
3730 /* it's reportedly faster than delegating the null check to kfree() */
3731 if (iovec)
3732 kfree(iovec);
3733 return ret;
3734 }
3735
3736 static int io_renameat_prep(struct io_kiocb *req,
3737 const struct io_uring_sqe *sqe)
3738 {
3739 struct io_rename *ren = &req->rename;
3740 const char __user *oldf, *newf;
3741
3742 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3743 return -EINVAL;
3744 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3745 return -EINVAL;
3746 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3747 return -EBADF;
3748
3749 ren->old_dfd = READ_ONCE(sqe->fd);
3750 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3751 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3752 ren->new_dfd = READ_ONCE(sqe->len);
3753 ren->flags = READ_ONCE(sqe->rename_flags);
3754
3755 ren->oldpath = getname(oldf);
3756 if (IS_ERR(ren->oldpath))
3757 return PTR_ERR(ren->oldpath);
3758
3759 ren->newpath = getname(newf);
3760 if (IS_ERR(ren->newpath)) {
3761 putname(ren->oldpath);
3762 return PTR_ERR(ren->newpath);
3763 }
3764
3765 req->flags |= REQ_F_NEED_CLEANUP;
3766 return 0;
3767 }
3768
3769 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3770 {
3771 struct io_rename *ren = &req->rename;
3772 int ret;
3773
3774 if (issue_flags & IO_URING_F_NONBLOCK)
3775 return -EAGAIN;
3776
3777 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3778 ren->newpath, ren->flags);
3779
3780 req->flags &= ~REQ_F_NEED_CLEANUP;
3781 if (ret < 0)
3782 req_set_fail(req);
3783 io_req_complete(req, ret);
3784 return 0;
3785 }
3786
3787 static int io_unlinkat_prep(struct io_kiocb *req,
3788 const struct io_uring_sqe *sqe)
3789 {
3790 struct io_unlink *un = &req->unlink;
3791 const char __user *fname;
3792
3793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3794 return -EINVAL;
3795 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3796 sqe->splice_fd_in)
3797 return -EINVAL;
3798 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3799 return -EBADF;
3800
3801 un->dfd = READ_ONCE(sqe->fd);
3802
3803 un->flags = READ_ONCE(sqe->unlink_flags);
3804 if (un->flags & ~AT_REMOVEDIR)
3805 return -EINVAL;
3806
3807 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3808 un->filename = getname(fname);
3809 if (IS_ERR(un->filename))
3810 return PTR_ERR(un->filename);
3811
3812 req->flags |= REQ_F_NEED_CLEANUP;
3813 return 0;
3814 }
3815
3816 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3817 {
3818 struct io_unlink *un = &req->unlink;
3819 int ret;
3820
3821 if (issue_flags & IO_URING_F_NONBLOCK)
3822 return -EAGAIN;
3823
3824 if (un->flags & AT_REMOVEDIR)
3825 ret = do_rmdir(un->dfd, un->filename);
3826 else
3827 ret = do_unlinkat(un->dfd, un->filename);
3828
3829 req->flags &= ~REQ_F_NEED_CLEANUP;
3830 if (ret < 0)
3831 req_set_fail(req);
3832 io_req_complete(req, ret);
3833 return 0;
3834 }
3835
3836 static int io_mkdirat_prep(struct io_kiocb *req,
3837 const struct io_uring_sqe *sqe)
3838 {
3839 struct io_mkdir *mkd = &req->mkdir;
3840 const char __user *fname;
3841
3842 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3843 return -EINVAL;
3844 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3845 sqe->splice_fd_in)
3846 return -EINVAL;
3847 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3848 return -EBADF;
3849
3850 mkd->dfd = READ_ONCE(sqe->fd);
3851 mkd->mode = READ_ONCE(sqe->len);
3852
3853 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3854 mkd->filename = getname(fname);
3855 if (IS_ERR(mkd->filename))
3856 return PTR_ERR(mkd->filename);
3857
3858 req->flags |= REQ_F_NEED_CLEANUP;
3859 return 0;
3860 }
3861
3862 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3863 {
3864 struct io_mkdir *mkd = &req->mkdir;
3865 int ret;
3866
3867 if (issue_flags & IO_URING_F_NONBLOCK)
3868 return -EAGAIN;
3869
3870 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3871
3872 req->flags &= ~REQ_F_NEED_CLEANUP;
3873 if (ret < 0)
3874 req_set_fail(req);
3875 io_req_complete(req, ret);
3876 return 0;
3877 }
3878
3879 static int io_symlinkat_prep(struct io_kiocb *req,
3880 const struct io_uring_sqe *sqe)
3881 {
3882 struct io_symlink *sl = &req->symlink;
3883 const char __user *oldpath, *newpath;
3884
3885 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3886 return -EINVAL;
3887 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3888 sqe->splice_fd_in)
3889 return -EINVAL;
3890 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3891 return -EBADF;
3892
3893 sl->new_dfd = READ_ONCE(sqe->fd);
3894 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3895 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3896
3897 sl->oldpath = getname(oldpath);
3898 if (IS_ERR(sl->oldpath))
3899 return PTR_ERR(sl->oldpath);
3900
3901 sl->newpath = getname(newpath);
3902 if (IS_ERR(sl->newpath)) {
3903 putname(sl->oldpath);
3904 return PTR_ERR(sl->newpath);
3905 }
3906
3907 req->flags |= REQ_F_NEED_CLEANUP;
3908 return 0;
3909 }
3910
3911 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3912 {
3913 struct io_symlink *sl = &req->symlink;
3914 int ret;
3915
3916 if (issue_flags & IO_URING_F_NONBLOCK)
3917 return -EAGAIN;
3918
3919 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3920
3921 req->flags &= ~REQ_F_NEED_CLEANUP;
3922 if (ret < 0)
3923 req_set_fail(req);
3924 io_req_complete(req, ret);
3925 return 0;
3926 }
3927
3928 static int io_linkat_prep(struct io_kiocb *req,
3929 const struct io_uring_sqe *sqe)
3930 {
3931 struct io_hardlink *lnk = &req->hardlink;
3932 const char __user *oldf, *newf;
3933
3934 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3935 return -EINVAL;
3936 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3937 return -EINVAL;
3938 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3939 return -EBADF;
3940
3941 lnk->old_dfd = READ_ONCE(sqe->fd);
3942 lnk->new_dfd = READ_ONCE(sqe->len);
3943 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3944 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3945 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3946
3947 lnk->oldpath = getname(oldf);
3948 if (IS_ERR(lnk->oldpath))
3949 return PTR_ERR(lnk->oldpath);
3950
3951 lnk->newpath = getname(newf);
3952 if (IS_ERR(lnk->newpath)) {
3953 putname(lnk->oldpath);
3954 return PTR_ERR(lnk->newpath);
3955 }
3956
3957 req->flags |= REQ_F_NEED_CLEANUP;
3958 return 0;
3959 }
3960
3961 static int io_linkat(struct io_kiocb *req, int issue_flags)
3962 {
3963 struct io_hardlink *lnk = &req->hardlink;
3964 int ret;
3965
3966 if (issue_flags & IO_URING_F_NONBLOCK)
3967 return -EAGAIN;
3968
3969 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3970 lnk->newpath, lnk->flags);
3971
3972 req->flags &= ~REQ_F_NEED_CLEANUP;
3973 if (ret < 0)
3974 req_set_fail(req);
3975 io_req_complete(req, ret);
3976 return 0;
3977 }
3978
3979 static int io_shutdown_prep(struct io_kiocb *req,
3980 const struct io_uring_sqe *sqe)
3981 {
3982 #if defined(CONFIG_NET)
3983 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3984 return -EINVAL;
3985 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3986 sqe->buf_index || sqe->splice_fd_in))
3987 return -EINVAL;
3988
3989 req->shutdown.how = READ_ONCE(sqe->len);
3990 return 0;
3991 #else
3992 return -EOPNOTSUPP;
3993 #endif
3994 }
3995
3996 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3997 {
3998 #if defined(CONFIG_NET)
3999 struct socket *sock;
4000 int ret;
4001
4002 if (issue_flags & IO_URING_F_NONBLOCK)
4003 return -EAGAIN;
4004
4005 sock = sock_from_file(req->file);
4006 if (unlikely(!sock))
4007 return -ENOTSOCK;
4008
4009 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4010 if (ret < 0)
4011 req_set_fail(req);
4012 io_req_complete(req, ret);
4013 return 0;
4014 #else
4015 return -EOPNOTSUPP;
4016 #endif
4017 }
4018
4019 static int __io_splice_prep(struct io_kiocb *req,
4020 const struct io_uring_sqe *sqe)
4021 {
4022 struct io_splice *sp = &req->splice;
4023 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4024
4025 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4026 return -EINVAL;
4027
4028 sp->file_in = NULL;
4029 sp->len = READ_ONCE(sqe->len);
4030 sp->flags = READ_ONCE(sqe->splice_flags);
4031
4032 if (unlikely(sp->flags & ~valid_flags))
4033 return -EINVAL;
4034
4035 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
4036 (sp->flags & SPLICE_F_FD_IN_FIXED));
4037 if (!sp->file_in)
4038 return -EBADF;
4039 req->flags |= REQ_F_NEED_CLEANUP;
4040 return 0;
4041 }
4042
4043 static int io_tee_prep(struct io_kiocb *req,
4044 const struct io_uring_sqe *sqe)
4045 {
4046 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4047 return -EINVAL;
4048 return __io_splice_prep(req, sqe);
4049 }
4050
4051 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4052 {
4053 struct io_splice *sp = &req->splice;
4054 struct file *in = sp->file_in;
4055 struct file *out = sp->file_out;
4056 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4057 long ret = 0;
4058
4059 if (issue_flags & IO_URING_F_NONBLOCK)
4060 return -EAGAIN;
4061 if (sp->len)
4062 ret = do_tee(in, out, sp->len, flags);
4063
4064 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4065 io_put_file(in);
4066 req->flags &= ~REQ_F_NEED_CLEANUP;
4067
4068 if (ret != sp->len)
4069 req_set_fail(req);
4070 io_req_complete(req, ret);
4071 return 0;
4072 }
4073
4074 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4075 {
4076 struct io_splice *sp = &req->splice;
4077
4078 sp->off_in = READ_ONCE(sqe->splice_off_in);
4079 sp->off_out = READ_ONCE(sqe->off);
4080 return __io_splice_prep(req, sqe);
4081 }
4082
4083 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4084 {
4085 struct io_splice *sp = &req->splice;
4086 struct file *in = sp->file_in;
4087 struct file *out = sp->file_out;
4088 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4089 loff_t *poff_in, *poff_out;
4090 long ret = 0;
4091
4092 if (issue_flags & IO_URING_F_NONBLOCK)
4093 return -EAGAIN;
4094
4095 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4096 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4097
4098 if (sp->len)
4099 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4100
4101 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4102 io_put_file(in);
4103 req->flags &= ~REQ_F_NEED_CLEANUP;
4104
4105 if (ret != sp->len)
4106 req_set_fail(req);
4107 io_req_complete(req, ret);
4108 return 0;
4109 }
4110
4111 /*
4112 * IORING_OP_NOP just posts a completion event, nothing else.
4113 */
4114 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4115 {
4116 struct io_ring_ctx *ctx = req->ctx;
4117
4118 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4119 return -EINVAL;
4120
4121 __io_req_complete(req, issue_flags, 0, 0);
4122 return 0;
4123 }
4124
4125 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4126 {
4127 struct io_ring_ctx *ctx = req->ctx;
4128
4129 if (!req->file)
4130 return -EBADF;
4131
4132 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4133 return -EINVAL;
4134 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4135 sqe->splice_fd_in))
4136 return -EINVAL;
4137
4138 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4139 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4140 return -EINVAL;
4141
4142 req->sync.off = READ_ONCE(sqe->off);
4143 req->sync.len = READ_ONCE(sqe->len);
4144 return 0;
4145 }
4146
4147 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4148 {
4149 loff_t end = req->sync.off + req->sync.len;
4150 int ret;
4151
4152 /* fsync always requires a blocking context */
4153 if (issue_flags & IO_URING_F_NONBLOCK)
4154 return -EAGAIN;
4155
4156 ret = vfs_fsync_range(req->file, req->sync.off,
4157 end > 0 ? end : LLONG_MAX,
4158 req->sync.flags & IORING_FSYNC_DATASYNC);
4159 if (ret < 0)
4160 req_set_fail(req);
4161 io_req_complete(req, ret);
4162 return 0;
4163 }
4164
4165 static int io_fallocate_prep(struct io_kiocb *req,
4166 const struct io_uring_sqe *sqe)
4167 {
4168 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4169 sqe->splice_fd_in)
4170 return -EINVAL;
4171 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4172 return -EINVAL;
4173
4174 req->sync.off = READ_ONCE(sqe->off);
4175 req->sync.len = READ_ONCE(sqe->addr);
4176 req->sync.mode = READ_ONCE(sqe->len);
4177 return 0;
4178 }
4179
4180 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4181 {
4182 int ret;
4183
4184 /* fallocate always requiring blocking context */
4185 if (issue_flags & IO_URING_F_NONBLOCK)
4186 return -EAGAIN;
4187 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4188 req->sync.len);
4189 if (ret < 0)
4190 req_set_fail(req);
4191 io_req_complete(req, ret);
4192 return 0;
4193 }
4194
4195 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4196 {
4197 const char __user *fname;
4198 int ret;
4199
4200 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4201 return -EINVAL;
4202 if (unlikely(sqe->ioprio || sqe->buf_index))
4203 return -EINVAL;
4204 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4205 return -EBADF;
4206
4207 /* open.how should be already initialised */
4208 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4209 req->open.how.flags |= O_LARGEFILE;
4210
4211 req->open.dfd = READ_ONCE(sqe->fd);
4212 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4213 req->open.filename = getname(fname);
4214 if (IS_ERR(req->open.filename)) {
4215 ret = PTR_ERR(req->open.filename);
4216 req->open.filename = NULL;
4217 return ret;
4218 }
4219
4220 req->open.file_slot = READ_ONCE(sqe->file_index);
4221 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4222 return -EINVAL;
4223
4224 req->open.nofile = rlimit(RLIMIT_NOFILE);
4225 req->flags |= REQ_F_NEED_CLEANUP;
4226 return 0;
4227 }
4228
4229 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4230 {
4231 u64 mode = READ_ONCE(sqe->len);
4232 u64 flags = READ_ONCE(sqe->open_flags);
4233
4234 req->open.how = build_open_how(flags, mode);
4235 return __io_openat_prep(req, sqe);
4236 }
4237
4238 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4239 {
4240 struct open_how __user *how;
4241 size_t len;
4242 int ret;
4243
4244 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4245 len = READ_ONCE(sqe->len);
4246 if (len < OPEN_HOW_SIZE_VER0)
4247 return -EINVAL;
4248
4249 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4250 len);
4251 if (ret)
4252 return ret;
4253
4254 return __io_openat_prep(req, sqe);
4255 }
4256
4257 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4258 {
4259 struct open_flags op;
4260 struct file *file;
4261 bool resolve_nonblock, nonblock_set;
4262 bool fixed = !!req->open.file_slot;
4263 int ret;
4264
4265 ret = build_open_flags(&req->open.how, &op);
4266 if (ret)
4267 goto err;
4268 nonblock_set = op.open_flag & O_NONBLOCK;
4269 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4270 if (issue_flags & IO_URING_F_NONBLOCK) {
4271 /*
4272 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4273 * it'll always -EAGAIN
4274 */
4275 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4276 return -EAGAIN;
4277 op.lookup_flags |= LOOKUP_CACHED;
4278 op.open_flag |= O_NONBLOCK;
4279 }
4280
4281 if (!fixed) {
4282 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4283 if (ret < 0)
4284 goto err;
4285 }
4286
4287 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4288 if (IS_ERR(file)) {
4289 /*
4290 * We could hang on to this 'fd' on retrying, but seems like
4291 * marginal gain for something that is now known to be a slower
4292 * path. So just put it, and we'll get a new one when we retry.
4293 */
4294 if (!fixed)
4295 put_unused_fd(ret);
4296
4297 ret = PTR_ERR(file);
4298 /* only retry if RESOLVE_CACHED wasn't already set by application */
4299 if (ret == -EAGAIN &&
4300 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4301 return -EAGAIN;
4302 goto err;
4303 }
4304
4305 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4306 file->f_flags &= ~O_NONBLOCK;
4307 fsnotify_open(file);
4308
4309 if (!fixed)
4310 fd_install(ret, file);
4311 else
4312 ret = io_install_fixed_file(req, file, issue_flags,
4313 req->open.file_slot - 1);
4314 err:
4315 putname(req->open.filename);
4316 req->flags &= ~REQ_F_NEED_CLEANUP;
4317 if (ret < 0)
4318 req_set_fail(req);
4319 __io_req_complete(req, issue_flags, ret, 0);
4320 return 0;
4321 }
4322
4323 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4324 {
4325 return io_openat2(req, issue_flags);
4326 }
4327
4328 static int io_remove_buffers_prep(struct io_kiocb *req,
4329 const struct io_uring_sqe *sqe)
4330 {
4331 struct io_provide_buf *p = &req->pbuf;
4332 u64 tmp;
4333
4334 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4335 sqe->splice_fd_in)
4336 return -EINVAL;
4337
4338 tmp = READ_ONCE(sqe->fd);
4339 if (!tmp || tmp > USHRT_MAX)
4340 return -EINVAL;
4341
4342 memset(p, 0, sizeof(*p));
4343 p->nbufs = tmp;
4344 p->bgid = READ_ONCE(sqe->buf_group);
4345 return 0;
4346 }
4347
4348 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4349 int bgid, unsigned nbufs)
4350 {
4351 unsigned i = 0;
4352
4353 /* shouldn't happen */
4354 if (!nbufs)
4355 return 0;
4356
4357 /* the head kbuf is the list itself */
4358 while (!list_empty(&buf->list)) {
4359 struct io_buffer *nxt;
4360
4361 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4362 list_del(&nxt->list);
4363 kfree(nxt);
4364 if (++i == nbufs)
4365 return i;
4366 cond_resched();
4367 }
4368 i++;
4369 kfree(buf);
4370 xa_erase(&ctx->io_buffers, bgid);
4371
4372 return i;
4373 }
4374
4375 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4376 {
4377 struct io_provide_buf *p = &req->pbuf;
4378 struct io_ring_ctx *ctx = req->ctx;
4379 struct io_buffer *head;
4380 int ret = 0;
4381 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4382
4383 io_ring_submit_lock(ctx, !force_nonblock);
4384
4385 lockdep_assert_held(&ctx->uring_lock);
4386
4387 ret = -ENOENT;
4388 head = xa_load(&ctx->io_buffers, p->bgid);
4389 if (head)
4390 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4391 if (ret < 0)
4392 req_set_fail(req);
4393
4394 /* complete before unlock, IOPOLL may need the lock */
4395 __io_req_complete(req, issue_flags, ret, 0);
4396 io_ring_submit_unlock(ctx, !force_nonblock);
4397 return 0;
4398 }
4399
4400 static int io_provide_buffers_prep(struct io_kiocb *req,
4401 const struct io_uring_sqe *sqe)
4402 {
4403 unsigned long size, tmp_check;
4404 struct io_provide_buf *p = &req->pbuf;
4405 u64 tmp;
4406
4407 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4408 return -EINVAL;
4409
4410 tmp = READ_ONCE(sqe->fd);
4411 if (!tmp || tmp > USHRT_MAX)
4412 return -E2BIG;
4413 p->nbufs = tmp;
4414 p->addr = READ_ONCE(sqe->addr);
4415 p->len = READ_ONCE(sqe->len);
4416
4417 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4418 &size))
4419 return -EOVERFLOW;
4420 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4421 return -EOVERFLOW;
4422
4423 size = (unsigned long)p->len * p->nbufs;
4424 if (!access_ok(u64_to_user_ptr(p->addr), size))
4425 return -EFAULT;
4426
4427 p->bgid = READ_ONCE(sqe->buf_group);
4428 tmp = READ_ONCE(sqe->off);
4429 if (tmp > USHRT_MAX)
4430 return -E2BIG;
4431 p->bid = tmp;
4432 return 0;
4433 }
4434
4435 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4436 {
4437 struct io_buffer *buf;
4438 u64 addr = pbuf->addr;
4439 int i, bid = pbuf->bid;
4440
4441 for (i = 0; i < pbuf->nbufs; i++) {
4442 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4443 if (!buf)
4444 break;
4445
4446 buf->addr = addr;
4447 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4448 buf->bid = bid;
4449 addr += pbuf->len;
4450 bid++;
4451 if (!*head) {
4452 INIT_LIST_HEAD(&buf->list);
4453 *head = buf;
4454 } else {
4455 list_add_tail(&buf->list, &(*head)->list);
4456 }
4457 cond_resched();
4458 }
4459
4460 return i ? i : -ENOMEM;
4461 }
4462
4463 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4464 {
4465 struct io_provide_buf *p = &req->pbuf;
4466 struct io_ring_ctx *ctx = req->ctx;
4467 struct io_buffer *head, *list;
4468 int ret = 0;
4469 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4470
4471 io_ring_submit_lock(ctx, !force_nonblock);
4472
4473 lockdep_assert_held(&ctx->uring_lock);
4474
4475 list = head = xa_load(&ctx->io_buffers, p->bgid);
4476
4477 ret = io_add_buffers(p, &head);
4478 if (ret >= 0 && !list) {
4479 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4480 if (ret < 0)
4481 __io_remove_buffers(ctx, head, p->bgid, -1U);
4482 }
4483 if (ret < 0)
4484 req_set_fail(req);
4485 /* complete before unlock, IOPOLL may need the lock */
4486 __io_req_complete(req, issue_flags, ret, 0);
4487 io_ring_submit_unlock(ctx, !force_nonblock);
4488 return 0;
4489 }
4490
4491 static int io_epoll_ctl_prep(struct io_kiocb *req,
4492 const struct io_uring_sqe *sqe)
4493 {
4494 #if defined(CONFIG_EPOLL)
4495 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4496 return -EINVAL;
4497 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4498 return -EINVAL;
4499
4500 req->epoll.epfd = READ_ONCE(sqe->fd);
4501 req->epoll.op = READ_ONCE(sqe->len);
4502 req->epoll.fd = READ_ONCE(sqe->off);
4503
4504 if (ep_op_has_event(req->epoll.op)) {
4505 struct epoll_event __user *ev;
4506
4507 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4508 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4509 return -EFAULT;
4510 }
4511
4512 return 0;
4513 #else
4514 return -EOPNOTSUPP;
4515 #endif
4516 }
4517
4518 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4519 {
4520 #if defined(CONFIG_EPOLL)
4521 struct io_epoll *ie = &req->epoll;
4522 int ret;
4523 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4524
4525 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4526 if (force_nonblock && ret == -EAGAIN)
4527 return -EAGAIN;
4528
4529 if (ret < 0)
4530 req_set_fail(req);
4531 __io_req_complete(req, issue_flags, ret, 0);
4532 return 0;
4533 #else
4534 return -EOPNOTSUPP;
4535 #endif
4536 }
4537
4538 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4539 {
4540 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4541 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4542 return -EINVAL;
4543 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4544 return -EINVAL;
4545
4546 req->madvise.addr = READ_ONCE(sqe->addr);
4547 req->madvise.len = READ_ONCE(sqe->len);
4548 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4549 return 0;
4550 #else
4551 return -EOPNOTSUPP;
4552 #endif
4553 }
4554
4555 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4556 {
4557 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4558 struct io_madvise *ma = &req->madvise;
4559 int ret;
4560
4561 if (issue_flags & IO_URING_F_NONBLOCK)
4562 return -EAGAIN;
4563
4564 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4565 if (ret < 0)
4566 req_set_fail(req);
4567 io_req_complete(req, ret);
4568 return 0;
4569 #else
4570 return -EOPNOTSUPP;
4571 #endif
4572 }
4573
4574 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4575 {
4576 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4577 return -EINVAL;
4578 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4579 return -EINVAL;
4580
4581 req->fadvise.offset = READ_ONCE(sqe->off);
4582 req->fadvise.len = READ_ONCE(sqe->len);
4583 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4584 return 0;
4585 }
4586
4587 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4588 {
4589 struct io_fadvise *fa = &req->fadvise;
4590 int ret;
4591
4592 if (issue_flags & IO_URING_F_NONBLOCK) {
4593 switch (fa->advice) {
4594 case POSIX_FADV_NORMAL:
4595 case POSIX_FADV_RANDOM:
4596 case POSIX_FADV_SEQUENTIAL:
4597 break;
4598 default:
4599 return -EAGAIN;
4600 }
4601 }
4602
4603 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4604 if (ret < 0)
4605 req_set_fail(req);
4606 __io_req_complete(req, issue_flags, ret, 0);
4607 return 0;
4608 }
4609
4610 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4611 {
4612 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4613 return -EINVAL;
4614 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4615 return -EINVAL;
4616 if (req->flags & REQ_F_FIXED_FILE)
4617 return -EBADF;
4618
4619 req->statx.dfd = READ_ONCE(sqe->fd);
4620 req->statx.mask = READ_ONCE(sqe->len);
4621 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4622 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4623 req->statx.flags = READ_ONCE(sqe->statx_flags);
4624
4625 return 0;
4626 }
4627
4628 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4629 {
4630 struct io_statx *ctx = &req->statx;
4631 int ret;
4632
4633 if (issue_flags & IO_URING_F_NONBLOCK)
4634 return -EAGAIN;
4635
4636 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4637 ctx->buffer);
4638
4639 if (ret < 0)
4640 req_set_fail(req);
4641 io_req_complete(req, ret);
4642 return 0;
4643 }
4644
4645 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4646 {
4647 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4648 return -EINVAL;
4649 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4650 sqe->rw_flags || sqe->buf_index)
4651 return -EINVAL;
4652 if (req->flags & REQ_F_FIXED_FILE)
4653 return -EBADF;
4654
4655 req->close.fd = READ_ONCE(sqe->fd);
4656 req->close.file_slot = READ_ONCE(sqe->file_index);
4657 if (req->close.file_slot && req->close.fd)
4658 return -EINVAL;
4659
4660 return 0;
4661 }
4662
4663 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4664 {
4665 struct files_struct *files = current->files;
4666 struct io_close *close = &req->close;
4667 struct fdtable *fdt;
4668 struct file *file = NULL;
4669 int ret = -EBADF;
4670
4671 if (req->close.file_slot) {
4672 ret = io_close_fixed(req, issue_flags);
4673 goto err;
4674 }
4675
4676 spin_lock(&files->file_lock);
4677 fdt = files_fdtable(files);
4678 if (close->fd >= fdt->max_fds) {
4679 spin_unlock(&files->file_lock);
4680 goto err;
4681 }
4682 file = fdt->fd[close->fd];
4683 if (!file || file->f_op == &io_uring_fops) {
4684 spin_unlock(&files->file_lock);
4685 file = NULL;
4686 goto err;
4687 }
4688
4689 /* if the file has a flush method, be safe and punt to async */
4690 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4691 spin_unlock(&files->file_lock);
4692 return -EAGAIN;
4693 }
4694
4695 ret = __close_fd_get_file(close->fd, &file);
4696 spin_unlock(&files->file_lock);
4697 if (ret < 0) {
4698 if (ret == -ENOENT)
4699 ret = -EBADF;
4700 goto err;
4701 }
4702
4703 /* No ->flush() or already async, safely close from here */
4704 ret = filp_close(file, current->files);
4705 err:
4706 if (ret < 0)
4707 req_set_fail(req);
4708 if (file)
4709 fput(file);
4710 __io_req_complete(req, issue_flags, ret, 0);
4711 return 0;
4712 }
4713
4714 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4715 {
4716 struct io_ring_ctx *ctx = req->ctx;
4717
4718 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4719 return -EINVAL;
4720 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4721 sqe->splice_fd_in))
4722 return -EINVAL;
4723
4724 req->sync.off = READ_ONCE(sqe->off);
4725 req->sync.len = READ_ONCE(sqe->len);
4726 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4727 return 0;
4728 }
4729
4730 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4731 {
4732 int ret;
4733
4734 /* sync_file_range always requires a blocking context */
4735 if (issue_flags & IO_URING_F_NONBLOCK)
4736 return -EAGAIN;
4737
4738 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4739 req->sync.flags);
4740 if (ret < 0)
4741 req_set_fail(req);
4742 io_req_complete(req, ret);
4743 return 0;
4744 }
4745
4746 #if defined(CONFIG_NET)
4747 static int io_setup_async_msg(struct io_kiocb *req,
4748 struct io_async_msghdr *kmsg)
4749 {
4750 struct io_async_msghdr *async_msg = req->async_data;
4751
4752 if (async_msg)
4753 return -EAGAIN;
4754 if (io_alloc_async_data(req)) {
4755 kfree(kmsg->free_iov);
4756 return -ENOMEM;
4757 }
4758 async_msg = req->async_data;
4759 req->flags |= REQ_F_NEED_CLEANUP;
4760 memcpy(async_msg, kmsg, sizeof(*kmsg));
4761 async_msg->msg.msg_name = &async_msg->addr;
4762 /* if were using fast_iov, set it to the new one */
4763 if (!async_msg->free_iov)
4764 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4765
4766 return -EAGAIN;
4767 }
4768
4769 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4770 struct io_async_msghdr *iomsg)
4771 {
4772 iomsg->msg.msg_name = &iomsg->addr;
4773 iomsg->free_iov = iomsg->fast_iov;
4774 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4775 req->sr_msg.msg_flags, &iomsg->free_iov);
4776 }
4777
4778 static int io_sendmsg_prep_async(struct io_kiocb *req)
4779 {
4780 int ret;
4781
4782 ret = io_sendmsg_copy_hdr(req, req->async_data);
4783 if (!ret)
4784 req->flags |= REQ_F_NEED_CLEANUP;
4785 return ret;
4786 }
4787
4788 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4789 {
4790 struct io_sr_msg *sr = &req->sr_msg;
4791
4792 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4793 return -EINVAL;
4794
4795 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4796 sr->len = READ_ONCE(sqe->len);
4797 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4798 if (sr->msg_flags & MSG_DONTWAIT)
4799 req->flags |= REQ_F_NOWAIT;
4800
4801 #ifdef CONFIG_COMPAT
4802 if (req->ctx->compat)
4803 sr->msg_flags |= MSG_CMSG_COMPAT;
4804 #endif
4805 return 0;
4806 }
4807
4808 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4809 {
4810 struct io_async_msghdr iomsg, *kmsg;
4811 struct socket *sock;
4812 unsigned flags;
4813 int min_ret = 0;
4814 int ret;
4815
4816 sock = sock_from_file(req->file);
4817 if (unlikely(!sock))
4818 return -ENOTSOCK;
4819
4820 kmsg = req->async_data;
4821 if (!kmsg) {
4822 ret = io_sendmsg_copy_hdr(req, &iomsg);
4823 if (ret)
4824 return ret;
4825 kmsg = &iomsg;
4826 }
4827
4828 flags = req->sr_msg.msg_flags;
4829 if (issue_flags & IO_URING_F_NONBLOCK)
4830 flags |= MSG_DONTWAIT;
4831 if (flags & MSG_WAITALL)
4832 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4833
4834 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4835 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4836 return io_setup_async_msg(req, kmsg);
4837 if (ret == -ERESTARTSYS)
4838 ret = -EINTR;
4839
4840 /* fast path, check for non-NULL to avoid function call */
4841 if (kmsg->free_iov)
4842 kfree(kmsg->free_iov);
4843 req->flags &= ~REQ_F_NEED_CLEANUP;
4844 if (ret < min_ret)
4845 req_set_fail(req);
4846 __io_req_complete(req, issue_flags, ret, 0);
4847 return 0;
4848 }
4849
4850 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4851 {
4852 struct io_sr_msg *sr = &req->sr_msg;
4853 struct msghdr msg;
4854 struct iovec iov;
4855 struct socket *sock;
4856 unsigned flags;
4857 int min_ret = 0;
4858 int ret;
4859
4860 sock = sock_from_file(req->file);
4861 if (unlikely(!sock))
4862 return -ENOTSOCK;
4863
4864 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4865 if (unlikely(ret))
4866 return ret;
4867
4868 msg.msg_name = NULL;
4869 msg.msg_control = NULL;
4870 msg.msg_controllen = 0;
4871 msg.msg_namelen = 0;
4872
4873 flags = req->sr_msg.msg_flags;
4874 if (issue_flags & IO_URING_F_NONBLOCK)
4875 flags |= MSG_DONTWAIT;
4876 if (flags & MSG_WAITALL)
4877 min_ret = iov_iter_count(&msg.msg_iter);
4878
4879 msg.msg_flags = flags;
4880 ret = sock_sendmsg(sock, &msg);
4881 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4882 return -EAGAIN;
4883 if (ret == -ERESTARTSYS)
4884 ret = -EINTR;
4885
4886 if (ret < min_ret)
4887 req_set_fail(req);
4888 __io_req_complete(req, issue_flags, ret, 0);
4889 return 0;
4890 }
4891
4892 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4893 struct io_async_msghdr *iomsg)
4894 {
4895 struct io_sr_msg *sr = &req->sr_msg;
4896 struct iovec __user *uiov;
4897 size_t iov_len;
4898 int ret;
4899
4900 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4901 &iomsg->uaddr, &uiov, &iov_len);
4902 if (ret)
4903 return ret;
4904
4905 if (req->flags & REQ_F_BUFFER_SELECT) {
4906 if (iov_len > 1)
4907 return -EINVAL;
4908 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4909 return -EFAULT;
4910 sr->len = iomsg->fast_iov[0].iov_len;
4911 iomsg->free_iov = NULL;
4912 } else {
4913 iomsg->free_iov = iomsg->fast_iov;
4914 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4915 &iomsg->free_iov, &iomsg->msg.msg_iter,
4916 false);
4917 if (ret > 0)
4918 ret = 0;
4919 }
4920
4921 return ret;
4922 }
4923
4924 #ifdef CONFIG_COMPAT
4925 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4926 struct io_async_msghdr *iomsg)
4927 {
4928 struct io_sr_msg *sr = &req->sr_msg;
4929 struct compat_iovec __user *uiov;
4930 compat_uptr_t ptr;
4931 compat_size_t len;
4932 int ret;
4933
4934 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4935 &ptr, &len);
4936 if (ret)
4937 return ret;
4938
4939 uiov = compat_ptr(ptr);
4940 if (req->flags & REQ_F_BUFFER_SELECT) {
4941 compat_ssize_t clen;
4942
4943 if (len > 1)
4944 return -EINVAL;
4945 if (!access_ok(uiov, sizeof(*uiov)))
4946 return -EFAULT;
4947 if (__get_user(clen, &uiov->iov_len))
4948 return -EFAULT;
4949 if (clen < 0)
4950 return -EINVAL;
4951 sr->len = clen;
4952 iomsg->free_iov = NULL;
4953 } else {
4954 iomsg->free_iov = iomsg->fast_iov;
4955 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4956 UIO_FASTIOV, &iomsg->free_iov,
4957 &iomsg->msg.msg_iter, true);
4958 if (ret < 0)
4959 return ret;
4960 }
4961
4962 return 0;
4963 }
4964 #endif
4965
4966 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4967 struct io_async_msghdr *iomsg)
4968 {
4969 iomsg->msg.msg_name = &iomsg->addr;
4970
4971 #ifdef CONFIG_COMPAT
4972 if (req->ctx->compat)
4973 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4974 #endif
4975
4976 return __io_recvmsg_copy_hdr(req, iomsg);
4977 }
4978
4979 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4980 bool needs_lock)
4981 {
4982 struct io_sr_msg *sr = &req->sr_msg;
4983 struct io_buffer *kbuf;
4984
4985 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4986 if (IS_ERR(kbuf))
4987 return kbuf;
4988
4989 sr->kbuf = kbuf;
4990 req->flags |= REQ_F_BUFFER_SELECTED;
4991 return kbuf;
4992 }
4993
4994 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4995 {
4996 return io_put_kbuf(req, req->sr_msg.kbuf);
4997 }
4998
4999 static int io_recvmsg_prep_async(struct io_kiocb *req)
5000 {
5001 int ret;
5002
5003 ret = io_recvmsg_copy_hdr(req, req->async_data);
5004 if (!ret)
5005 req->flags |= REQ_F_NEED_CLEANUP;
5006 return ret;
5007 }
5008
5009 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5010 {
5011 struct io_sr_msg *sr = &req->sr_msg;
5012
5013 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5014 return -EINVAL;
5015
5016 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5017 sr->len = READ_ONCE(sqe->len);
5018 sr->bgid = READ_ONCE(sqe->buf_group);
5019 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5020 if (sr->msg_flags & MSG_DONTWAIT)
5021 req->flags |= REQ_F_NOWAIT;
5022
5023 #ifdef CONFIG_COMPAT
5024 if (req->ctx->compat)
5025 sr->msg_flags |= MSG_CMSG_COMPAT;
5026 #endif
5027 return 0;
5028 }
5029
5030 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5031 {
5032 struct io_async_msghdr iomsg, *kmsg;
5033 struct socket *sock;
5034 struct io_buffer *kbuf;
5035 unsigned flags;
5036 int min_ret = 0;
5037 int ret, cflags = 0;
5038 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5039
5040 sock = sock_from_file(req->file);
5041 if (unlikely(!sock))
5042 return -ENOTSOCK;
5043
5044 kmsg = req->async_data;
5045 if (!kmsg) {
5046 ret = io_recvmsg_copy_hdr(req, &iomsg);
5047 if (ret)
5048 return ret;
5049 kmsg = &iomsg;
5050 }
5051
5052 if (req->flags & REQ_F_BUFFER_SELECT) {
5053 kbuf = io_recv_buffer_select(req, !force_nonblock);
5054 if (IS_ERR(kbuf))
5055 return PTR_ERR(kbuf);
5056 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5057 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5058 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5059 1, req->sr_msg.len);
5060 }
5061
5062 flags = req->sr_msg.msg_flags;
5063 if (force_nonblock)
5064 flags |= MSG_DONTWAIT;
5065 if (flags & MSG_WAITALL)
5066 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5067
5068 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5069 kmsg->uaddr, flags);
5070 if (force_nonblock && ret == -EAGAIN)
5071 return io_setup_async_msg(req, kmsg);
5072 if (ret == -ERESTARTSYS)
5073 ret = -EINTR;
5074
5075 if (req->flags & REQ_F_BUFFER_SELECTED)
5076 cflags = io_put_recv_kbuf(req);
5077 /* fast path, check for non-NULL to avoid function call */
5078 if (kmsg->free_iov)
5079 kfree(kmsg->free_iov);
5080 req->flags &= ~REQ_F_NEED_CLEANUP;
5081 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5082 req_set_fail(req);
5083 __io_req_complete(req, issue_flags, ret, cflags);
5084 return 0;
5085 }
5086
5087 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5088 {
5089 struct io_buffer *kbuf;
5090 struct io_sr_msg *sr = &req->sr_msg;
5091 struct msghdr msg;
5092 void __user *buf = sr->buf;
5093 struct socket *sock;
5094 struct iovec iov;
5095 unsigned flags;
5096 int min_ret = 0;
5097 int ret, cflags = 0;
5098 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5099
5100 sock = sock_from_file(req->file);
5101 if (unlikely(!sock))
5102 return -ENOTSOCK;
5103
5104 if (req->flags & REQ_F_BUFFER_SELECT) {
5105 kbuf = io_recv_buffer_select(req, !force_nonblock);
5106 if (IS_ERR(kbuf))
5107 return PTR_ERR(kbuf);
5108 buf = u64_to_user_ptr(kbuf->addr);
5109 }
5110
5111 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5112 if (unlikely(ret))
5113 goto out_free;
5114
5115 msg.msg_name = NULL;
5116 msg.msg_control = NULL;
5117 msg.msg_controllen = 0;
5118 msg.msg_namelen = 0;
5119 msg.msg_iocb = NULL;
5120 msg.msg_flags = 0;
5121
5122 flags = req->sr_msg.msg_flags;
5123 if (force_nonblock)
5124 flags |= MSG_DONTWAIT;
5125 if (flags & MSG_WAITALL)
5126 min_ret = iov_iter_count(&msg.msg_iter);
5127
5128 ret = sock_recvmsg(sock, &msg, flags);
5129 if (force_nonblock && ret == -EAGAIN)
5130 return -EAGAIN;
5131 if (ret == -ERESTARTSYS)
5132 ret = -EINTR;
5133 out_free:
5134 if (req->flags & REQ_F_BUFFER_SELECTED)
5135 cflags = io_put_recv_kbuf(req);
5136 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5137 req_set_fail(req);
5138 __io_req_complete(req, issue_flags, ret, cflags);
5139 return 0;
5140 }
5141
5142 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5143 {
5144 struct io_accept *accept = &req->accept;
5145
5146 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5147 return -EINVAL;
5148 if (sqe->ioprio || sqe->len || sqe->buf_index)
5149 return -EINVAL;
5150
5151 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5152 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5153 accept->flags = READ_ONCE(sqe->accept_flags);
5154 accept->nofile = rlimit(RLIMIT_NOFILE);
5155
5156 accept->file_slot = READ_ONCE(sqe->file_index);
5157 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5158 (accept->flags & SOCK_CLOEXEC)))
5159 return -EINVAL;
5160 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5161 return -EINVAL;
5162 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5163 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5164 return 0;
5165 }
5166
5167 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5168 {
5169 struct io_accept *accept = &req->accept;
5170 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5171 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5172 bool fixed = !!accept->file_slot;
5173 struct file *file;
5174 int ret, fd;
5175
5176 if (req->file->f_flags & O_NONBLOCK)
5177 req->flags |= REQ_F_NOWAIT;
5178
5179 if (!fixed) {
5180 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5181 if (unlikely(fd < 0))
5182 return fd;
5183 }
5184 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5185 accept->flags);
5186 if (IS_ERR(file)) {
5187 if (!fixed)
5188 put_unused_fd(fd);
5189 ret = PTR_ERR(file);
5190 if (ret == -EAGAIN && force_nonblock)
5191 return -EAGAIN;
5192 if (ret == -ERESTARTSYS)
5193 ret = -EINTR;
5194 req_set_fail(req);
5195 } else if (!fixed) {
5196 fd_install(fd, file);
5197 ret = fd;
5198 } else {
5199 ret = io_install_fixed_file(req, file, issue_flags,
5200 accept->file_slot - 1);
5201 }
5202 __io_req_complete(req, issue_flags, ret, 0);
5203 return 0;
5204 }
5205
5206 static int io_connect_prep_async(struct io_kiocb *req)
5207 {
5208 struct io_async_connect *io = req->async_data;
5209 struct io_connect *conn = &req->connect;
5210
5211 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5212 }
5213
5214 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5215 {
5216 struct io_connect *conn = &req->connect;
5217
5218 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5219 return -EINVAL;
5220 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5221 sqe->splice_fd_in)
5222 return -EINVAL;
5223
5224 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5225 conn->addr_len = READ_ONCE(sqe->addr2);
5226 return 0;
5227 }
5228
5229 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5230 {
5231 struct io_async_connect __io, *io;
5232 unsigned file_flags;
5233 int ret;
5234 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5235
5236 if (req->async_data) {
5237 io = req->async_data;
5238 } else {
5239 ret = move_addr_to_kernel(req->connect.addr,
5240 req->connect.addr_len,
5241 &__io.address);
5242 if (ret)
5243 goto out;
5244 io = &__io;
5245 }
5246
5247 file_flags = force_nonblock ? O_NONBLOCK : 0;
5248
5249 ret = __sys_connect_file(req->file, &io->address,
5250 req->connect.addr_len, file_flags);
5251 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5252 if (req->async_data)
5253 return -EAGAIN;
5254 if (io_alloc_async_data(req)) {
5255 ret = -ENOMEM;
5256 goto out;
5257 }
5258 memcpy(req->async_data, &__io, sizeof(__io));
5259 return -EAGAIN;
5260 }
5261 if (ret == -ERESTARTSYS)
5262 ret = -EINTR;
5263 out:
5264 if (ret < 0)
5265 req_set_fail(req);
5266 __io_req_complete(req, issue_flags, ret, 0);
5267 return 0;
5268 }
5269 #else /* !CONFIG_NET */
5270 #define IO_NETOP_FN(op) \
5271 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5272 { \
5273 return -EOPNOTSUPP; \
5274 }
5275
5276 #define IO_NETOP_PREP(op) \
5277 IO_NETOP_FN(op) \
5278 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5279 { \
5280 return -EOPNOTSUPP; \
5281 } \
5282
5283 #define IO_NETOP_PREP_ASYNC(op) \
5284 IO_NETOP_PREP(op) \
5285 static int io_##op##_prep_async(struct io_kiocb *req) \
5286 { \
5287 return -EOPNOTSUPP; \
5288 }
5289
5290 IO_NETOP_PREP_ASYNC(sendmsg);
5291 IO_NETOP_PREP_ASYNC(recvmsg);
5292 IO_NETOP_PREP_ASYNC(connect);
5293 IO_NETOP_PREP(accept);
5294 IO_NETOP_FN(send);
5295 IO_NETOP_FN(recv);
5296 #endif /* CONFIG_NET */
5297
5298 struct io_poll_table {
5299 struct poll_table_struct pt;
5300 struct io_kiocb *req;
5301 int nr_entries;
5302 int error;
5303 };
5304
5305 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5306 __poll_t mask, io_req_tw_func_t func)
5307 {
5308 /* for instances that support it check for an event match first: */
5309 if (mask && !(mask & poll->events))
5310 return 0;
5311
5312 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5313
5314 list_del_init(&poll->wait.entry);
5315
5316 req->result = mask;
5317 req->io_task_work.func = func;
5318
5319 /*
5320 * If this fails, then the task is exiting. When a task exits, the
5321 * work gets canceled, so just cancel this request as well instead
5322 * of executing it. We can't safely execute it anyway, as we may not
5323 * have the needed state needed for it anyway.
5324 */
5325 io_req_task_work_add(req);
5326 return 1;
5327 }
5328
5329 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5330 __acquires(&req->ctx->completion_lock)
5331 {
5332 struct io_ring_ctx *ctx = req->ctx;
5333
5334 /* req->task == current here, checking PF_EXITING is safe */
5335 if (unlikely(req->task->flags & PF_EXITING))
5336 WRITE_ONCE(poll->canceled, true);
5337
5338 if (!req->result && !READ_ONCE(poll->canceled)) {
5339 struct poll_table_struct pt = { ._key = poll->events };
5340
5341 req->result = vfs_poll(req->file, &pt) & poll->events;
5342 }
5343
5344 spin_lock(&ctx->completion_lock);
5345 if (!req->result && !READ_ONCE(poll->canceled)) {
5346 add_wait_queue(poll->head, &poll->wait);
5347 return true;
5348 }
5349
5350 return false;
5351 }
5352
5353 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5354 {
5355 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5356 if (req->opcode == IORING_OP_POLL_ADD)
5357 return req->async_data;
5358 return req->apoll->double_poll;
5359 }
5360
5361 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5362 {
5363 if (req->opcode == IORING_OP_POLL_ADD)
5364 return &req->poll;
5365 return &req->apoll->poll;
5366 }
5367
5368 static void io_poll_remove_double(struct io_kiocb *req)
5369 __must_hold(&req->ctx->completion_lock)
5370 {
5371 struct io_poll_iocb *poll = io_poll_get_double(req);
5372
5373 lockdep_assert_held(&req->ctx->completion_lock);
5374
5375 if (poll && poll->head) {
5376 struct wait_queue_head *head = poll->head;
5377
5378 spin_lock_irq(&head->lock);
5379 list_del_init(&poll->wait.entry);
5380 if (poll->wait.private)
5381 req_ref_put(req);
5382 poll->head = NULL;
5383 spin_unlock_irq(&head->lock);
5384 }
5385 }
5386
5387 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5388 __must_hold(&req->ctx->completion_lock)
5389 {
5390 struct io_ring_ctx *ctx = req->ctx;
5391 unsigned flags = IORING_CQE_F_MORE;
5392 int error;
5393
5394 if (READ_ONCE(req->poll.canceled)) {
5395 error = -ECANCELED;
5396 req->poll.events |= EPOLLONESHOT;
5397 } else {
5398 error = mangle_poll(mask);
5399 }
5400 if (req->poll.events & EPOLLONESHOT)
5401 flags = 0;
5402 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5403 req->poll.events |= EPOLLONESHOT;
5404 flags = 0;
5405 }
5406 if (flags & IORING_CQE_F_MORE)
5407 ctx->cq_extra++;
5408
5409 return !(flags & IORING_CQE_F_MORE);
5410 }
5411
5412 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5413 __must_hold(&req->ctx->completion_lock)
5414 {
5415 bool done;
5416
5417 done = __io_poll_complete(req, mask);
5418 io_commit_cqring(req->ctx);
5419 return done;
5420 }
5421
5422 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5423 {
5424 struct io_ring_ctx *ctx = req->ctx;
5425 struct io_kiocb *nxt;
5426
5427 if (io_poll_rewait(req, &req->poll)) {
5428 spin_unlock(&ctx->completion_lock);
5429 } else {
5430 bool done;
5431
5432 if (req->poll.done) {
5433 spin_unlock(&ctx->completion_lock);
5434 return;
5435 }
5436 done = __io_poll_complete(req, req->result);
5437 if (done) {
5438 io_poll_remove_double(req);
5439 hash_del(&req->hash_node);
5440 req->poll.done = true;
5441 } else {
5442 req->result = 0;
5443 add_wait_queue(req->poll.head, &req->poll.wait);
5444 }
5445 io_commit_cqring(ctx);
5446 spin_unlock(&ctx->completion_lock);
5447 io_cqring_ev_posted(ctx);
5448
5449 if (done) {
5450 nxt = io_put_req_find_next(req);
5451 if (nxt)
5452 io_req_task_submit(nxt, locked);
5453 }
5454 }
5455 }
5456
5457 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5458 int sync, void *key)
5459 {
5460 struct io_kiocb *req = wait->private;
5461 struct io_poll_iocb *poll = io_poll_get_single(req);
5462 __poll_t mask = key_to_poll(key);
5463 unsigned long flags;
5464
5465 /* for instances that support it check for an event match first: */
5466 if (mask && !(mask & poll->events))
5467 return 0;
5468 if (!(poll->events & EPOLLONESHOT))
5469 return poll->wait.func(&poll->wait, mode, sync, key);
5470
5471 list_del_init(&wait->entry);
5472
5473 if (poll->head) {
5474 bool done;
5475
5476 spin_lock_irqsave(&poll->head->lock, flags);
5477 done = list_empty(&poll->wait.entry);
5478 if (!done)
5479 list_del_init(&poll->wait.entry);
5480 /* make sure double remove sees this as being gone */
5481 wait->private = NULL;
5482 spin_unlock_irqrestore(&poll->head->lock, flags);
5483 if (!done) {
5484 /* use wait func handler, so it matches the rq type */
5485 poll->wait.func(&poll->wait, mode, sync, key);
5486 }
5487 }
5488 req_ref_put(req);
5489 return 1;
5490 }
5491
5492 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5493 wait_queue_func_t wake_func)
5494 {
5495 poll->head = NULL;
5496 poll->done = false;
5497 poll->canceled = false;
5498 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5499 /* mask in events that we always want/need */
5500 poll->events = events | IO_POLL_UNMASK;
5501 INIT_LIST_HEAD(&poll->wait.entry);
5502 init_waitqueue_func_entry(&poll->wait, wake_func);
5503 }
5504
5505 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5506 struct wait_queue_head *head,
5507 struct io_poll_iocb **poll_ptr)
5508 {
5509 struct io_kiocb *req = pt->req;
5510
5511 /*
5512 * The file being polled uses multiple waitqueues for poll handling
5513 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5514 * if this happens.
5515 */
5516 if (unlikely(pt->nr_entries)) {
5517 struct io_poll_iocb *poll_one = poll;
5518
5519 /* double add on the same waitqueue head, ignore */
5520 if (poll_one->head == head)
5521 return;
5522 /* already have a 2nd entry, fail a third attempt */
5523 if (*poll_ptr) {
5524 if ((*poll_ptr)->head == head)
5525 return;
5526 pt->error = -EINVAL;
5527 return;
5528 }
5529 /*
5530 * Can't handle multishot for double wait for now, turn it
5531 * into one-shot mode.
5532 */
5533 if (!(poll_one->events & EPOLLONESHOT))
5534 poll_one->events |= EPOLLONESHOT;
5535 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5536 if (!poll) {
5537 pt->error = -ENOMEM;
5538 return;
5539 }
5540 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5541 req_ref_get(req);
5542 poll->wait.private = req;
5543 *poll_ptr = poll;
5544 }
5545
5546 pt->nr_entries++;
5547 poll->head = head;
5548
5549 if (poll->events & EPOLLEXCLUSIVE)
5550 add_wait_queue_exclusive(head, &poll->wait);
5551 else
5552 add_wait_queue(head, &poll->wait);
5553 }
5554
5555 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5556 struct poll_table_struct *p)
5557 {
5558 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5559 struct async_poll *apoll = pt->req->apoll;
5560
5561 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5562 }
5563
5564 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5565 {
5566 struct async_poll *apoll = req->apoll;
5567 struct io_ring_ctx *ctx = req->ctx;
5568
5569 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5570
5571 if (io_poll_rewait(req, &apoll->poll)) {
5572 spin_unlock(&ctx->completion_lock);
5573 return;
5574 }
5575
5576 hash_del(&req->hash_node);
5577 io_poll_remove_double(req);
5578 apoll->poll.done = true;
5579 spin_unlock(&ctx->completion_lock);
5580
5581 if (!READ_ONCE(apoll->poll.canceled))
5582 io_req_task_submit(req, locked);
5583 else
5584 io_req_complete_failed(req, -ECANCELED);
5585 }
5586
5587 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5588 void *key)
5589 {
5590 struct io_kiocb *req = wait->private;
5591 struct io_poll_iocb *poll = &req->apoll->poll;
5592
5593 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5594 key_to_poll(key));
5595
5596 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5597 }
5598
5599 static void io_poll_req_insert(struct io_kiocb *req)
5600 {
5601 struct io_ring_ctx *ctx = req->ctx;
5602 struct hlist_head *list;
5603
5604 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5605 hlist_add_head(&req->hash_node, list);
5606 }
5607
5608 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5609 struct io_poll_iocb *poll,
5610 struct io_poll_table *ipt, __poll_t mask,
5611 wait_queue_func_t wake_func)
5612 __acquires(&ctx->completion_lock)
5613 {
5614 struct io_ring_ctx *ctx = req->ctx;
5615 bool cancel = false;
5616
5617 INIT_HLIST_NODE(&req->hash_node);
5618 io_init_poll_iocb(poll, mask, wake_func);
5619 poll->file = req->file;
5620 poll->wait.private = req;
5621
5622 ipt->pt._key = mask;
5623 ipt->req = req;
5624 ipt->error = 0;
5625 ipt->nr_entries = 0;
5626
5627 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5628 if (unlikely(!ipt->nr_entries) && !ipt->error)
5629 ipt->error = -EINVAL;
5630
5631 spin_lock(&ctx->completion_lock);
5632 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5633 io_poll_remove_double(req);
5634 if (likely(poll->head)) {
5635 spin_lock_irq(&poll->head->lock);
5636 if (unlikely(list_empty(&poll->wait.entry))) {
5637 if (ipt->error)
5638 cancel = true;
5639 ipt->error = 0;
5640 mask = 0;
5641 }
5642 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5643 list_del_init(&poll->wait.entry);
5644 else if (cancel)
5645 WRITE_ONCE(poll->canceled, true);
5646 else if (!poll->done) /* actually waiting for an event */
5647 io_poll_req_insert(req);
5648 spin_unlock_irq(&poll->head->lock);
5649 }
5650
5651 return mask;
5652 }
5653
5654 enum {
5655 IO_APOLL_OK,
5656 IO_APOLL_ABORTED,
5657 IO_APOLL_READY
5658 };
5659
5660 static int io_arm_poll_handler(struct io_kiocb *req)
5661 {
5662 const struct io_op_def *def = &io_op_defs[req->opcode];
5663 struct io_ring_ctx *ctx = req->ctx;
5664 struct async_poll *apoll;
5665 struct io_poll_table ipt;
5666 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5667 int rw;
5668
5669 if (!req->file || !file_can_poll(req->file))
5670 return IO_APOLL_ABORTED;
5671 if (req->flags & REQ_F_POLLED)
5672 return IO_APOLL_ABORTED;
5673 if (!def->pollin && !def->pollout)
5674 return IO_APOLL_ABORTED;
5675
5676 if (def->pollin) {
5677 rw = READ;
5678 mask |= POLLIN | POLLRDNORM;
5679
5680 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5681 if ((req->opcode == IORING_OP_RECVMSG) &&
5682 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5683 mask &= ~POLLIN;
5684 } else {
5685 rw = WRITE;
5686 mask |= POLLOUT | POLLWRNORM;
5687 }
5688
5689 /* if we can't nonblock try, then no point in arming a poll handler */
5690 if (!io_file_supports_nowait(req, rw))
5691 return IO_APOLL_ABORTED;
5692
5693 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5694 if (unlikely(!apoll))
5695 return IO_APOLL_ABORTED;
5696 apoll->double_poll = NULL;
5697 req->apoll = apoll;
5698 req->flags |= REQ_F_POLLED;
5699 ipt.pt._qproc = io_async_queue_proc;
5700 io_req_set_refcount(req);
5701
5702 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5703 io_async_wake);
5704 spin_unlock(&ctx->completion_lock);
5705 if (ret || ipt.error)
5706 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5707
5708 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5709 mask, apoll->poll.events);
5710 return IO_APOLL_OK;
5711 }
5712
5713 static bool __io_poll_remove_one(struct io_kiocb *req,
5714 struct io_poll_iocb *poll, bool do_cancel)
5715 __must_hold(&req->ctx->completion_lock)
5716 {
5717 bool do_complete = false;
5718
5719 if (!poll->head)
5720 return false;
5721 spin_lock_irq(&poll->head->lock);
5722 if (do_cancel)
5723 WRITE_ONCE(poll->canceled, true);
5724 if (!list_empty(&poll->wait.entry)) {
5725 list_del_init(&poll->wait.entry);
5726 do_complete = true;
5727 }
5728 spin_unlock_irq(&poll->head->lock);
5729 hash_del(&req->hash_node);
5730 return do_complete;
5731 }
5732
5733 static bool io_poll_remove_one(struct io_kiocb *req)
5734 __must_hold(&req->ctx->completion_lock)
5735 {
5736 bool do_complete;
5737
5738 io_poll_remove_double(req);
5739 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5740
5741 if (do_complete) {
5742 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5743 io_commit_cqring(req->ctx);
5744 req_set_fail(req);
5745 io_put_req_deferred(req);
5746 }
5747 return do_complete;
5748 }
5749
5750 /*
5751 * Returns true if we found and killed one or more poll requests
5752 */
5753 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5754 bool cancel_all)
5755 {
5756 struct hlist_node *tmp;
5757 struct io_kiocb *req;
5758 int posted = 0, i;
5759
5760 spin_lock(&ctx->completion_lock);
5761 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5762 struct hlist_head *list;
5763
5764 list = &ctx->cancel_hash[i];
5765 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5766 if (io_match_task_safe(req, tsk, cancel_all))
5767 posted += io_poll_remove_one(req);
5768 }
5769 }
5770 spin_unlock(&ctx->completion_lock);
5771
5772 if (posted)
5773 io_cqring_ev_posted(ctx);
5774
5775 return posted != 0;
5776 }
5777
5778 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5779 bool poll_only)
5780 __must_hold(&ctx->completion_lock)
5781 {
5782 struct hlist_head *list;
5783 struct io_kiocb *req;
5784
5785 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5786 hlist_for_each_entry(req, list, hash_node) {
5787 if (sqe_addr != req->user_data)
5788 continue;
5789 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5790 continue;
5791 return req;
5792 }
5793 return NULL;
5794 }
5795
5796 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5797 bool poll_only)
5798 __must_hold(&ctx->completion_lock)
5799 {
5800 struct io_kiocb *req;
5801
5802 req = io_poll_find(ctx, sqe_addr, poll_only);
5803 if (!req)
5804 return -ENOENT;
5805 if (io_poll_remove_one(req))
5806 return 0;
5807
5808 return -EALREADY;
5809 }
5810
5811 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5812 unsigned int flags)
5813 {
5814 u32 events;
5815
5816 events = READ_ONCE(sqe->poll32_events);
5817 #ifdef __BIG_ENDIAN
5818 events = swahw32(events);
5819 #endif
5820 if (!(flags & IORING_POLL_ADD_MULTI))
5821 events |= EPOLLONESHOT;
5822 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5823 }
5824
5825 static int io_poll_update_prep(struct io_kiocb *req,
5826 const struct io_uring_sqe *sqe)
5827 {
5828 struct io_poll_update *upd = &req->poll_update;
5829 u32 flags;
5830
5831 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5832 return -EINVAL;
5833 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5834 return -EINVAL;
5835 flags = READ_ONCE(sqe->len);
5836 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5837 IORING_POLL_ADD_MULTI))
5838 return -EINVAL;
5839 /* meaningless without update */
5840 if (flags == IORING_POLL_ADD_MULTI)
5841 return -EINVAL;
5842
5843 upd->old_user_data = READ_ONCE(sqe->addr);
5844 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5845 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5846
5847 upd->new_user_data = READ_ONCE(sqe->off);
5848 if (!upd->update_user_data && upd->new_user_data)
5849 return -EINVAL;
5850 if (upd->update_events)
5851 upd->events = io_poll_parse_events(sqe, flags);
5852 else if (sqe->poll32_events)
5853 return -EINVAL;
5854
5855 return 0;
5856 }
5857
5858 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5859 void *key)
5860 {
5861 struct io_kiocb *req = wait->private;
5862 struct io_poll_iocb *poll = &req->poll;
5863
5864 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5865 }
5866
5867 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5868 struct poll_table_struct *p)
5869 {
5870 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5871
5872 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5873 }
5874
5875 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5876 {
5877 struct io_poll_iocb *poll = &req->poll;
5878 u32 flags;
5879
5880 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5881 return -EINVAL;
5882 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5883 return -EINVAL;
5884 flags = READ_ONCE(sqe->len);
5885 if (flags & ~IORING_POLL_ADD_MULTI)
5886 return -EINVAL;
5887
5888 io_req_set_refcount(req);
5889 poll->events = io_poll_parse_events(sqe, flags);
5890 return 0;
5891 }
5892
5893 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5894 {
5895 struct io_poll_iocb *poll = &req->poll;
5896 struct io_ring_ctx *ctx = req->ctx;
5897 struct io_poll_table ipt;
5898 __poll_t mask;
5899 bool done;
5900
5901 ipt.pt._qproc = io_poll_queue_proc;
5902
5903 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5904 io_poll_wake);
5905
5906 if (mask) { /* no async, we'd stolen it */
5907 ipt.error = 0;
5908 done = io_poll_complete(req, mask);
5909 }
5910 spin_unlock(&ctx->completion_lock);
5911
5912 if (mask) {
5913 io_cqring_ev_posted(ctx);
5914 if (done)
5915 io_put_req(req);
5916 }
5917 return ipt.error;
5918 }
5919
5920 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5921 {
5922 struct io_ring_ctx *ctx = req->ctx;
5923 struct io_kiocb *preq;
5924 bool completing;
5925 int ret;
5926
5927 spin_lock(&ctx->completion_lock);
5928 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5929 if (!preq) {
5930 ret = -ENOENT;
5931 goto err;
5932 }
5933
5934 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5935 completing = true;
5936 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5937 goto err;
5938 }
5939
5940 /*
5941 * Don't allow racy completion with singleshot, as we cannot safely
5942 * update those. For multishot, if we're racing with completion, just
5943 * let completion re-add it.
5944 */
5945 io_poll_remove_double(preq);
5946 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5947 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5948 ret = -EALREADY;
5949 goto err;
5950 }
5951 /* we now have a detached poll request. reissue. */
5952 ret = 0;
5953 err:
5954 if (ret < 0) {
5955 spin_unlock(&ctx->completion_lock);
5956 req_set_fail(req);
5957 io_req_complete(req, ret);
5958 return 0;
5959 }
5960 /* only mask one event flags, keep behavior flags */
5961 if (req->poll_update.update_events) {
5962 preq->poll.events &= ~0xffff;
5963 preq->poll.events |= req->poll_update.events & 0xffff;
5964 preq->poll.events |= IO_POLL_UNMASK;
5965 }
5966 if (req->poll_update.update_user_data)
5967 preq->user_data = req->poll_update.new_user_data;
5968 spin_unlock(&ctx->completion_lock);
5969
5970 /* complete update request, we're done with it */
5971 io_req_complete(req, ret);
5972
5973 if (!completing) {
5974 ret = io_poll_add(preq, issue_flags);
5975 if (ret < 0) {
5976 req_set_fail(preq);
5977 io_req_complete(preq, ret);
5978 }
5979 }
5980 return 0;
5981 }
5982
5983 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5984 {
5985 req_set_fail(req);
5986 io_req_complete_post(req, -ETIME, 0);
5987 }
5988
5989 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5990 {
5991 struct io_timeout_data *data = container_of(timer,
5992 struct io_timeout_data, timer);
5993 struct io_kiocb *req = data->req;
5994 struct io_ring_ctx *ctx = req->ctx;
5995 unsigned long flags;
5996
5997 spin_lock_irqsave(&ctx->timeout_lock, flags);
5998 list_del_init(&req->timeout.list);
5999 atomic_set(&req->ctx->cq_timeouts,
6000 atomic_read(&req->ctx->cq_timeouts) + 1);
6001 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6002
6003 req->io_task_work.func = io_req_task_timeout;
6004 io_req_task_work_add(req);
6005 return HRTIMER_NORESTART;
6006 }
6007
6008 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6009 __u64 user_data)
6010 __must_hold(&ctx->timeout_lock)
6011 {
6012 struct io_timeout_data *io;
6013 struct io_kiocb *req;
6014 bool found = false;
6015
6016 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6017 found = user_data == req->user_data;
6018 if (found)
6019 break;
6020 }
6021 if (!found)
6022 return ERR_PTR(-ENOENT);
6023
6024 io = req->async_data;
6025 if (hrtimer_try_to_cancel(&io->timer) == -1)
6026 return ERR_PTR(-EALREADY);
6027 list_del_init(&req->timeout.list);
6028 return req;
6029 }
6030
6031 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6032 __must_hold(&ctx->completion_lock)
6033 __must_hold(&ctx->timeout_lock)
6034 {
6035 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6036
6037 if (IS_ERR(req))
6038 return PTR_ERR(req);
6039
6040 req_set_fail(req);
6041 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6042 io_put_req_deferred(req);
6043 return 0;
6044 }
6045
6046 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6047 {
6048 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6049 case IORING_TIMEOUT_BOOTTIME:
6050 return CLOCK_BOOTTIME;
6051 case IORING_TIMEOUT_REALTIME:
6052 return CLOCK_REALTIME;
6053 default:
6054 /* can't happen, vetted at prep time */
6055 WARN_ON_ONCE(1);
6056 fallthrough;
6057 case 0:
6058 return CLOCK_MONOTONIC;
6059 }
6060 }
6061
6062 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6063 struct timespec64 *ts, enum hrtimer_mode mode)
6064 __must_hold(&ctx->timeout_lock)
6065 {
6066 struct io_timeout_data *io;
6067 struct io_kiocb *req;
6068 bool found = false;
6069
6070 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6071 found = user_data == req->user_data;
6072 if (found)
6073 break;
6074 }
6075 if (!found)
6076 return -ENOENT;
6077
6078 io = req->async_data;
6079 if (hrtimer_try_to_cancel(&io->timer) == -1)
6080 return -EALREADY;
6081 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6082 io->timer.function = io_link_timeout_fn;
6083 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6084 return 0;
6085 }
6086
6087 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6088 struct timespec64 *ts, enum hrtimer_mode mode)
6089 __must_hold(&ctx->timeout_lock)
6090 {
6091 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6092 struct io_timeout_data *data;
6093
6094 if (IS_ERR(req))
6095 return PTR_ERR(req);
6096
6097 req->timeout.off = 0; /* noseq */
6098 data = req->async_data;
6099 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6100 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6101 data->timer.function = io_timeout_fn;
6102 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6103 return 0;
6104 }
6105
6106 static int io_timeout_remove_prep(struct io_kiocb *req,
6107 const struct io_uring_sqe *sqe)
6108 {
6109 struct io_timeout_rem *tr = &req->timeout_rem;
6110
6111 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6112 return -EINVAL;
6113 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6114 return -EINVAL;
6115 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6116 return -EINVAL;
6117
6118 tr->ltimeout = false;
6119 tr->addr = READ_ONCE(sqe->addr);
6120 tr->flags = READ_ONCE(sqe->timeout_flags);
6121 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6122 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6123 return -EINVAL;
6124 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6125 tr->ltimeout = true;
6126 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6127 return -EINVAL;
6128 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6129 return -EFAULT;
6130 } else if (tr->flags) {
6131 /* timeout removal doesn't support flags */
6132 return -EINVAL;
6133 }
6134
6135 return 0;
6136 }
6137
6138 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6139 {
6140 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6141 : HRTIMER_MODE_REL;
6142 }
6143
6144 /*
6145 * Remove or update an existing timeout command
6146 */
6147 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6148 {
6149 struct io_timeout_rem *tr = &req->timeout_rem;
6150 struct io_ring_ctx *ctx = req->ctx;
6151 int ret;
6152
6153 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6154 spin_lock(&ctx->completion_lock);
6155 spin_lock_irq(&ctx->timeout_lock);
6156 ret = io_timeout_cancel(ctx, tr->addr);
6157 spin_unlock_irq(&ctx->timeout_lock);
6158 spin_unlock(&ctx->completion_lock);
6159 } else {
6160 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6161
6162 spin_lock_irq(&ctx->timeout_lock);
6163 if (tr->ltimeout)
6164 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6165 else
6166 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6167 spin_unlock_irq(&ctx->timeout_lock);
6168 }
6169
6170 if (ret < 0)
6171 req_set_fail(req);
6172 io_req_complete_post(req, ret, 0);
6173 return 0;
6174 }
6175
6176 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6177 bool is_timeout_link)
6178 {
6179 struct io_timeout_data *data;
6180 unsigned flags;
6181 u32 off = READ_ONCE(sqe->off);
6182
6183 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6184 return -EINVAL;
6185 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6186 sqe->splice_fd_in)
6187 return -EINVAL;
6188 if (off && is_timeout_link)
6189 return -EINVAL;
6190 flags = READ_ONCE(sqe->timeout_flags);
6191 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6192 return -EINVAL;
6193 /* more than one clock specified is invalid, obviously */
6194 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6195 return -EINVAL;
6196
6197 INIT_LIST_HEAD(&req->timeout.list);
6198 req->timeout.off = off;
6199 if (unlikely(off && !req->ctx->off_timeout_used))
6200 req->ctx->off_timeout_used = true;
6201
6202 if (!req->async_data && io_alloc_async_data(req))
6203 return -ENOMEM;
6204
6205 data = req->async_data;
6206 data->req = req;
6207 data->flags = flags;
6208
6209 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6210 return -EFAULT;
6211
6212 data->mode = io_translate_timeout_mode(flags);
6213 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6214
6215 if (is_timeout_link) {
6216 struct io_submit_link *link = &req->ctx->submit_state.link;
6217
6218 if (!link->head)
6219 return -EINVAL;
6220 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6221 return -EINVAL;
6222 req->timeout.head = link->last;
6223 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6224 }
6225 return 0;
6226 }
6227
6228 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6229 {
6230 struct io_ring_ctx *ctx = req->ctx;
6231 struct io_timeout_data *data = req->async_data;
6232 struct list_head *entry;
6233 u32 tail, off = req->timeout.off;
6234
6235 spin_lock_irq(&ctx->timeout_lock);
6236
6237 /*
6238 * sqe->off holds how many events that need to occur for this
6239 * timeout event to be satisfied. If it isn't set, then this is
6240 * a pure timeout request, sequence isn't used.
6241 */
6242 if (io_is_timeout_noseq(req)) {
6243 entry = ctx->timeout_list.prev;
6244 goto add;
6245 }
6246
6247 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6248 req->timeout.target_seq = tail + off;
6249
6250 /* Update the last seq here in case io_flush_timeouts() hasn't.
6251 * This is safe because ->completion_lock is held, and submissions
6252 * and completions are never mixed in the same ->completion_lock section.
6253 */
6254 ctx->cq_last_tm_flush = tail;
6255
6256 /*
6257 * Insertion sort, ensuring the first entry in the list is always
6258 * the one we need first.
6259 */
6260 list_for_each_prev(entry, &ctx->timeout_list) {
6261 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6262 timeout.list);
6263
6264 if (io_is_timeout_noseq(nxt))
6265 continue;
6266 /* nxt.seq is behind @tail, otherwise would've been completed */
6267 if (off >= nxt->timeout.target_seq - tail)
6268 break;
6269 }
6270 add:
6271 list_add(&req->timeout.list, entry);
6272 data->timer.function = io_timeout_fn;
6273 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6274 spin_unlock_irq(&ctx->timeout_lock);
6275 return 0;
6276 }
6277
6278 struct io_cancel_data {
6279 struct io_ring_ctx *ctx;
6280 u64 user_data;
6281 };
6282
6283 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6284 {
6285 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6286 struct io_cancel_data *cd = data;
6287
6288 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6289 }
6290
6291 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6292 struct io_ring_ctx *ctx)
6293 {
6294 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6295 enum io_wq_cancel cancel_ret;
6296 int ret = 0;
6297
6298 if (!tctx || !tctx->io_wq)
6299 return -ENOENT;
6300
6301 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6302 switch (cancel_ret) {
6303 case IO_WQ_CANCEL_OK:
6304 ret = 0;
6305 break;
6306 case IO_WQ_CANCEL_RUNNING:
6307 ret = -EALREADY;
6308 break;
6309 case IO_WQ_CANCEL_NOTFOUND:
6310 ret = -ENOENT;
6311 break;
6312 }
6313
6314 return ret;
6315 }
6316
6317 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6318 {
6319 struct io_ring_ctx *ctx = req->ctx;
6320 int ret;
6321
6322 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6323
6324 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6325 if (ret != -ENOENT)
6326 return ret;
6327
6328 spin_lock(&ctx->completion_lock);
6329 spin_lock_irq(&ctx->timeout_lock);
6330 ret = io_timeout_cancel(ctx, sqe_addr);
6331 spin_unlock_irq(&ctx->timeout_lock);
6332 if (ret != -ENOENT)
6333 goto out;
6334 ret = io_poll_cancel(ctx, sqe_addr, false);
6335 out:
6336 spin_unlock(&ctx->completion_lock);
6337 return ret;
6338 }
6339
6340 static int io_async_cancel_prep(struct io_kiocb *req,
6341 const struct io_uring_sqe *sqe)
6342 {
6343 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6344 return -EINVAL;
6345 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6346 return -EINVAL;
6347 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6348 sqe->splice_fd_in)
6349 return -EINVAL;
6350
6351 req->cancel.addr = READ_ONCE(sqe->addr);
6352 return 0;
6353 }
6354
6355 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6356 {
6357 struct io_ring_ctx *ctx = req->ctx;
6358 u64 sqe_addr = req->cancel.addr;
6359 struct io_tctx_node *node;
6360 int ret;
6361
6362 ret = io_try_cancel_userdata(req, sqe_addr);
6363 if (ret != -ENOENT)
6364 goto done;
6365
6366 /* slow path, try all io-wq's */
6367 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6368 ret = -ENOENT;
6369 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6370 struct io_uring_task *tctx = node->task->io_uring;
6371
6372 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6373 if (ret != -ENOENT)
6374 break;
6375 }
6376 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6377 done:
6378 if (ret < 0)
6379 req_set_fail(req);
6380 io_req_complete_post(req, ret, 0);
6381 return 0;
6382 }
6383
6384 static int io_rsrc_update_prep(struct io_kiocb *req,
6385 const struct io_uring_sqe *sqe)
6386 {
6387 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6388 return -EINVAL;
6389 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6390 return -EINVAL;
6391
6392 req->rsrc_update.offset = READ_ONCE(sqe->off);
6393 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6394 if (!req->rsrc_update.nr_args)
6395 return -EINVAL;
6396 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6397 return 0;
6398 }
6399
6400 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6401 {
6402 struct io_ring_ctx *ctx = req->ctx;
6403 struct io_uring_rsrc_update2 up;
6404 int ret;
6405
6406 up.offset = req->rsrc_update.offset;
6407 up.data = req->rsrc_update.arg;
6408 up.nr = 0;
6409 up.tags = 0;
6410 up.resv = 0;
6411
6412 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6413 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6414 &up, req->rsrc_update.nr_args);
6415 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6416
6417 if (ret < 0)
6418 req_set_fail(req);
6419 __io_req_complete(req, issue_flags, ret, 0);
6420 return 0;
6421 }
6422
6423 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6424 {
6425 switch (req->opcode) {
6426 case IORING_OP_NOP:
6427 return 0;
6428 case IORING_OP_READV:
6429 case IORING_OP_READ_FIXED:
6430 case IORING_OP_READ:
6431 return io_read_prep(req, sqe);
6432 case IORING_OP_WRITEV:
6433 case IORING_OP_WRITE_FIXED:
6434 case IORING_OP_WRITE:
6435 return io_write_prep(req, sqe);
6436 case IORING_OP_POLL_ADD:
6437 return io_poll_add_prep(req, sqe);
6438 case IORING_OP_POLL_REMOVE:
6439 return io_poll_update_prep(req, sqe);
6440 case IORING_OP_FSYNC:
6441 return io_fsync_prep(req, sqe);
6442 case IORING_OP_SYNC_FILE_RANGE:
6443 return io_sfr_prep(req, sqe);
6444 case IORING_OP_SENDMSG:
6445 case IORING_OP_SEND:
6446 return io_sendmsg_prep(req, sqe);
6447 case IORING_OP_RECVMSG:
6448 case IORING_OP_RECV:
6449 return io_recvmsg_prep(req, sqe);
6450 case IORING_OP_CONNECT:
6451 return io_connect_prep(req, sqe);
6452 case IORING_OP_TIMEOUT:
6453 return io_timeout_prep(req, sqe, false);
6454 case IORING_OP_TIMEOUT_REMOVE:
6455 return io_timeout_remove_prep(req, sqe);
6456 case IORING_OP_ASYNC_CANCEL:
6457 return io_async_cancel_prep(req, sqe);
6458 case IORING_OP_LINK_TIMEOUT:
6459 return io_timeout_prep(req, sqe, true);
6460 case IORING_OP_ACCEPT:
6461 return io_accept_prep(req, sqe);
6462 case IORING_OP_FALLOCATE:
6463 return io_fallocate_prep(req, sqe);
6464 case IORING_OP_OPENAT:
6465 return io_openat_prep(req, sqe);
6466 case IORING_OP_CLOSE:
6467 return io_close_prep(req, sqe);
6468 case IORING_OP_FILES_UPDATE:
6469 return io_rsrc_update_prep(req, sqe);
6470 case IORING_OP_STATX:
6471 return io_statx_prep(req, sqe);
6472 case IORING_OP_FADVISE:
6473 return io_fadvise_prep(req, sqe);
6474 case IORING_OP_MADVISE:
6475 return io_madvise_prep(req, sqe);
6476 case IORING_OP_OPENAT2:
6477 return io_openat2_prep(req, sqe);
6478 case IORING_OP_EPOLL_CTL:
6479 return io_epoll_ctl_prep(req, sqe);
6480 case IORING_OP_SPLICE:
6481 return io_splice_prep(req, sqe);
6482 case IORING_OP_PROVIDE_BUFFERS:
6483 return io_provide_buffers_prep(req, sqe);
6484 case IORING_OP_REMOVE_BUFFERS:
6485 return io_remove_buffers_prep(req, sqe);
6486 case IORING_OP_TEE:
6487 return io_tee_prep(req, sqe);
6488 case IORING_OP_SHUTDOWN:
6489 return io_shutdown_prep(req, sqe);
6490 case IORING_OP_RENAMEAT:
6491 return io_renameat_prep(req, sqe);
6492 case IORING_OP_UNLINKAT:
6493 return io_unlinkat_prep(req, sqe);
6494 case IORING_OP_MKDIRAT:
6495 return io_mkdirat_prep(req, sqe);
6496 case IORING_OP_SYMLINKAT:
6497 return io_symlinkat_prep(req, sqe);
6498 case IORING_OP_LINKAT:
6499 return io_linkat_prep(req, sqe);
6500 }
6501
6502 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6503 req->opcode);
6504 return -EINVAL;
6505 }
6506
6507 static int io_req_prep_async(struct io_kiocb *req)
6508 {
6509 if (!io_op_defs[req->opcode].needs_async_setup)
6510 return 0;
6511 if (WARN_ON_ONCE(req->async_data))
6512 return -EFAULT;
6513 if (io_alloc_async_data(req))
6514 return -EAGAIN;
6515
6516 switch (req->opcode) {
6517 case IORING_OP_READV:
6518 return io_rw_prep_async(req, READ);
6519 case IORING_OP_WRITEV:
6520 return io_rw_prep_async(req, WRITE);
6521 case IORING_OP_SENDMSG:
6522 return io_sendmsg_prep_async(req);
6523 case IORING_OP_RECVMSG:
6524 return io_recvmsg_prep_async(req);
6525 case IORING_OP_CONNECT:
6526 return io_connect_prep_async(req);
6527 }
6528 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6529 req->opcode);
6530 return -EFAULT;
6531 }
6532
6533 static u32 io_get_sequence(struct io_kiocb *req)
6534 {
6535 u32 seq = req->ctx->cached_sq_head;
6536
6537 /* need original cached_sq_head, but it was increased for each req */
6538 io_for_each_link(req, req)
6539 seq--;
6540 return seq;
6541 }
6542
6543 static bool io_drain_req(struct io_kiocb *req)
6544 {
6545 struct io_kiocb *pos;
6546 struct io_ring_ctx *ctx = req->ctx;
6547 struct io_defer_entry *de;
6548 int ret;
6549 u32 seq;
6550
6551 if (req->flags & REQ_F_FAIL) {
6552 io_req_complete_fail_submit(req);
6553 return true;
6554 }
6555
6556 /*
6557 * If we need to drain a request in the middle of a link, drain the
6558 * head request and the next request/link after the current link.
6559 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6560 * maintained for every request of our link.
6561 */
6562 if (ctx->drain_next) {
6563 req->flags |= REQ_F_IO_DRAIN;
6564 ctx->drain_next = false;
6565 }
6566 /* not interested in head, start from the first linked */
6567 io_for_each_link(pos, req->link) {
6568 if (pos->flags & REQ_F_IO_DRAIN) {
6569 ctx->drain_next = true;
6570 req->flags |= REQ_F_IO_DRAIN;
6571 break;
6572 }
6573 }
6574
6575 /* Still need defer if there is pending req in defer list. */
6576 spin_lock(&ctx->completion_lock);
6577 if (likely(list_empty_careful(&ctx->defer_list) &&
6578 !(req->flags & REQ_F_IO_DRAIN))) {
6579 spin_unlock(&ctx->completion_lock);
6580 ctx->drain_active = false;
6581 return false;
6582 }
6583 spin_unlock(&ctx->completion_lock);
6584
6585 seq = io_get_sequence(req);
6586 /* Still a chance to pass the sequence check */
6587 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6588 return false;
6589
6590 ret = io_req_prep_async(req);
6591 if (ret)
6592 goto fail;
6593 io_prep_async_link(req);
6594 de = kmalloc(sizeof(*de), GFP_KERNEL);
6595 if (!de) {
6596 ret = -ENOMEM;
6597 fail:
6598 io_req_complete_failed(req, ret);
6599 return true;
6600 }
6601
6602 spin_lock(&ctx->completion_lock);
6603 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6604 spin_unlock(&ctx->completion_lock);
6605 kfree(de);
6606 io_queue_async_work(req, NULL);
6607 return true;
6608 }
6609
6610 trace_io_uring_defer(ctx, req, req->user_data);
6611 de->req = req;
6612 de->seq = seq;
6613 list_add_tail(&de->list, &ctx->defer_list);
6614 spin_unlock(&ctx->completion_lock);
6615 return true;
6616 }
6617
6618 static void io_clean_op(struct io_kiocb *req)
6619 {
6620 if (req->flags & REQ_F_BUFFER_SELECTED) {
6621 switch (req->opcode) {
6622 case IORING_OP_READV:
6623 case IORING_OP_READ_FIXED:
6624 case IORING_OP_READ:
6625 kfree((void *)(unsigned long)req->rw.addr);
6626 break;
6627 case IORING_OP_RECVMSG:
6628 case IORING_OP_RECV:
6629 kfree(req->sr_msg.kbuf);
6630 break;
6631 }
6632 }
6633
6634 if (req->flags & REQ_F_NEED_CLEANUP) {
6635 switch (req->opcode) {
6636 case IORING_OP_READV:
6637 case IORING_OP_READ_FIXED:
6638 case IORING_OP_READ:
6639 case IORING_OP_WRITEV:
6640 case IORING_OP_WRITE_FIXED:
6641 case IORING_OP_WRITE: {
6642 struct io_async_rw *io = req->async_data;
6643
6644 kfree(io->free_iovec);
6645 break;
6646 }
6647 case IORING_OP_RECVMSG:
6648 case IORING_OP_SENDMSG: {
6649 struct io_async_msghdr *io = req->async_data;
6650
6651 kfree(io->free_iov);
6652 break;
6653 }
6654 case IORING_OP_SPLICE:
6655 case IORING_OP_TEE:
6656 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6657 io_put_file(req->splice.file_in);
6658 break;
6659 case IORING_OP_OPENAT:
6660 case IORING_OP_OPENAT2:
6661 if (req->open.filename)
6662 putname(req->open.filename);
6663 break;
6664 case IORING_OP_RENAMEAT:
6665 putname(req->rename.oldpath);
6666 putname(req->rename.newpath);
6667 break;
6668 case IORING_OP_UNLINKAT:
6669 putname(req->unlink.filename);
6670 break;
6671 case IORING_OP_MKDIRAT:
6672 putname(req->mkdir.filename);
6673 break;
6674 case IORING_OP_SYMLINKAT:
6675 putname(req->symlink.oldpath);
6676 putname(req->symlink.newpath);
6677 break;
6678 case IORING_OP_LINKAT:
6679 putname(req->hardlink.oldpath);
6680 putname(req->hardlink.newpath);
6681 break;
6682 }
6683 }
6684 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6685 kfree(req->apoll->double_poll);
6686 kfree(req->apoll);
6687 req->apoll = NULL;
6688 }
6689 if (req->flags & REQ_F_INFLIGHT) {
6690 struct io_uring_task *tctx = req->task->io_uring;
6691
6692 atomic_dec(&tctx->inflight_tracked);
6693 }
6694 if (req->flags & REQ_F_CREDS)
6695 put_cred(req->creds);
6696
6697 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6698 }
6699
6700 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6701 {
6702 struct io_ring_ctx *ctx = req->ctx;
6703 const struct cred *creds = NULL;
6704 int ret;
6705
6706 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6707 creds = override_creds(req->creds);
6708
6709 switch (req->opcode) {
6710 case IORING_OP_NOP:
6711 ret = io_nop(req, issue_flags);
6712 break;
6713 case IORING_OP_READV:
6714 case IORING_OP_READ_FIXED:
6715 case IORING_OP_READ:
6716 ret = io_read(req, issue_flags);
6717 break;
6718 case IORING_OP_WRITEV:
6719 case IORING_OP_WRITE_FIXED:
6720 case IORING_OP_WRITE:
6721 ret = io_write(req, issue_flags);
6722 break;
6723 case IORING_OP_FSYNC:
6724 ret = io_fsync(req, issue_flags);
6725 break;
6726 case IORING_OP_POLL_ADD:
6727 ret = io_poll_add(req, issue_flags);
6728 break;
6729 case IORING_OP_POLL_REMOVE:
6730 ret = io_poll_update(req, issue_flags);
6731 break;
6732 case IORING_OP_SYNC_FILE_RANGE:
6733 ret = io_sync_file_range(req, issue_flags);
6734 break;
6735 case IORING_OP_SENDMSG:
6736 ret = io_sendmsg(req, issue_flags);
6737 break;
6738 case IORING_OP_SEND:
6739 ret = io_send(req, issue_flags);
6740 break;
6741 case IORING_OP_RECVMSG:
6742 ret = io_recvmsg(req, issue_flags);
6743 break;
6744 case IORING_OP_RECV:
6745 ret = io_recv(req, issue_flags);
6746 break;
6747 case IORING_OP_TIMEOUT:
6748 ret = io_timeout(req, issue_flags);
6749 break;
6750 case IORING_OP_TIMEOUT_REMOVE:
6751 ret = io_timeout_remove(req, issue_flags);
6752 break;
6753 case IORING_OP_ACCEPT:
6754 ret = io_accept(req, issue_flags);
6755 break;
6756 case IORING_OP_CONNECT:
6757 ret = io_connect(req, issue_flags);
6758 break;
6759 case IORING_OP_ASYNC_CANCEL:
6760 ret = io_async_cancel(req, issue_flags);
6761 break;
6762 case IORING_OP_FALLOCATE:
6763 ret = io_fallocate(req, issue_flags);
6764 break;
6765 case IORING_OP_OPENAT:
6766 ret = io_openat(req, issue_flags);
6767 break;
6768 case IORING_OP_CLOSE:
6769 ret = io_close(req, issue_flags);
6770 break;
6771 case IORING_OP_FILES_UPDATE:
6772 ret = io_files_update(req, issue_flags);
6773 break;
6774 case IORING_OP_STATX:
6775 ret = io_statx(req, issue_flags);
6776 break;
6777 case IORING_OP_FADVISE:
6778 ret = io_fadvise(req, issue_flags);
6779 break;
6780 case IORING_OP_MADVISE:
6781 ret = io_madvise(req, issue_flags);
6782 break;
6783 case IORING_OP_OPENAT2:
6784 ret = io_openat2(req, issue_flags);
6785 break;
6786 case IORING_OP_EPOLL_CTL:
6787 ret = io_epoll_ctl(req, issue_flags);
6788 break;
6789 case IORING_OP_SPLICE:
6790 ret = io_splice(req, issue_flags);
6791 break;
6792 case IORING_OP_PROVIDE_BUFFERS:
6793 ret = io_provide_buffers(req, issue_flags);
6794 break;
6795 case IORING_OP_REMOVE_BUFFERS:
6796 ret = io_remove_buffers(req, issue_flags);
6797 break;
6798 case IORING_OP_TEE:
6799 ret = io_tee(req, issue_flags);
6800 break;
6801 case IORING_OP_SHUTDOWN:
6802 ret = io_shutdown(req, issue_flags);
6803 break;
6804 case IORING_OP_RENAMEAT:
6805 ret = io_renameat(req, issue_flags);
6806 break;
6807 case IORING_OP_UNLINKAT:
6808 ret = io_unlinkat(req, issue_flags);
6809 break;
6810 case IORING_OP_MKDIRAT:
6811 ret = io_mkdirat(req, issue_flags);
6812 break;
6813 case IORING_OP_SYMLINKAT:
6814 ret = io_symlinkat(req, issue_flags);
6815 break;
6816 case IORING_OP_LINKAT:
6817 ret = io_linkat(req, issue_flags);
6818 break;
6819 default:
6820 ret = -EINVAL;
6821 break;
6822 }
6823
6824 if (creds)
6825 revert_creds(creds);
6826 if (ret)
6827 return ret;
6828 /* If the op doesn't have a file, we're not polling for it */
6829 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6830 io_iopoll_req_issued(req);
6831
6832 return 0;
6833 }
6834
6835 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6836 {
6837 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6838
6839 req = io_put_req_find_next(req);
6840 return req ? &req->work : NULL;
6841 }
6842
6843 static void io_wq_submit_work(struct io_wq_work *work)
6844 {
6845 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6846 struct io_kiocb *timeout;
6847 int ret = 0;
6848
6849 /* one will be dropped by ->io_free_work() after returning to io-wq */
6850 if (!(req->flags & REQ_F_REFCOUNT))
6851 __io_req_set_refcount(req, 2);
6852 else
6853 req_ref_get(req);
6854
6855 timeout = io_prep_linked_timeout(req);
6856 if (timeout)
6857 io_queue_linked_timeout(timeout);
6858
6859 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6860 if (work->flags & IO_WQ_WORK_CANCEL)
6861 ret = -ECANCELED;
6862
6863 if (!ret) {
6864 do {
6865 ret = io_issue_sqe(req, 0);
6866 /*
6867 * We can get EAGAIN for polled IO even though we're
6868 * forcing a sync submission from here, since we can't
6869 * wait for request slots on the block side.
6870 */
6871 if (ret != -EAGAIN)
6872 break;
6873 cond_resched();
6874 } while (1);
6875 }
6876
6877 /* avoid locking problems by failing it from a clean context */
6878 if (ret)
6879 io_req_task_queue_fail(req, ret);
6880 }
6881
6882 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6883 unsigned i)
6884 {
6885 return &table->files[i];
6886 }
6887
6888 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6889 int index)
6890 {
6891 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6892
6893 return (struct file *) (slot->file_ptr & FFS_MASK);
6894 }
6895
6896 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6897 {
6898 unsigned long file_ptr = (unsigned long) file;
6899
6900 if (__io_file_supports_nowait(file, READ))
6901 file_ptr |= FFS_ASYNC_READ;
6902 if (__io_file_supports_nowait(file, WRITE))
6903 file_ptr |= FFS_ASYNC_WRITE;
6904 if (S_ISREG(file_inode(file)->i_mode))
6905 file_ptr |= FFS_ISREG;
6906 file_slot->file_ptr = file_ptr;
6907 }
6908
6909 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6910 struct io_kiocb *req, int fd)
6911 {
6912 struct file *file;
6913 unsigned long file_ptr;
6914
6915 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6916 return NULL;
6917 fd = array_index_nospec(fd, ctx->nr_user_files);
6918 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6919 file = (struct file *) (file_ptr & FFS_MASK);
6920 file_ptr &= ~FFS_MASK;
6921 /* mask in overlapping REQ_F and FFS bits */
6922 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6923 io_req_set_rsrc_node(req);
6924 return file;
6925 }
6926
6927 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6928 struct io_kiocb *req, int fd)
6929 {
6930 struct file *file = fget(fd);
6931
6932 trace_io_uring_file_get(ctx, fd);
6933
6934 /* we don't allow fixed io_uring files */
6935 if (file && unlikely(file->f_op == &io_uring_fops))
6936 io_req_track_inflight(req);
6937 return file;
6938 }
6939
6940 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6941 struct io_kiocb *req, int fd, bool fixed)
6942 {
6943 if (fixed)
6944 return io_file_get_fixed(ctx, req, fd);
6945 else
6946 return io_file_get_normal(ctx, req, fd);
6947 }
6948
6949 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6950 {
6951 struct io_kiocb *prev = req->timeout.prev;
6952 int ret = -ENOENT;
6953
6954 if (prev) {
6955 if (!(req->task->flags & PF_EXITING))
6956 ret = io_try_cancel_userdata(req, prev->user_data);
6957 io_req_complete_post(req, ret ?: -ETIME, 0);
6958 io_put_req(prev);
6959 } else {
6960 io_req_complete_post(req, -ETIME, 0);
6961 }
6962 }
6963
6964 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6965 {
6966 struct io_timeout_data *data = container_of(timer,
6967 struct io_timeout_data, timer);
6968 struct io_kiocb *prev, *req = data->req;
6969 struct io_ring_ctx *ctx = req->ctx;
6970 unsigned long flags;
6971
6972 spin_lock_irqsave(&ctx->timeout_lock, flags);
6973 prev = req->timeout.head;
6974 req->timeout.head = NULL;
6975
6976 /*
6977 * We don't expect the list to be empty, that will only happen if we
6978 * race with the completion of the linked work.
6979 */
6980 if (prev) {
6981 io_remove_next_linked(prev);
6982 if (!req_ref_inc_not_zero(prev))
6983 prev = NULL;
6984 }
6985 list_del(&req->timeout.list);
6986 req->timeout.prev = prev;
6987 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6988
6989 req->io_task_work.func = io_req_task_link_timeout;
6990 io_req_task_work_add(req);
6991 return HRTIMER_NORESTART;
6992 }
6993
6994 static void io_queue_linked_timeout(struct io_kiocb *req)
6995 {
6996 struct io_ring_ctx *ctx = req->ctx;
6997
6998 spin_lock_irq(&ctx->timeout_lock);
6999 /*
7000 * If the back reference is NULL, then our linked request finished
7001 * before we got a chance to setup the timer
7002 */
7003 if (req->timeout.head) {
7004 struct io_timeout_data *data = req->async_data;
7005
7006 data->timer.function = io_link_timeout_fn;
7007 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7008 data->mode);
7009 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7010 }
7011 spin_unlock_irq(&ctx->timeout_lock);
7012 /* drop submission reference */
7013 io_put_req(req);
7014 }
7015
7016 static void __io_queue_sqe(struct io_kiocb *req)
7017 __must_hold(&req->ctx->uring_lock)
7018 {
7019 struct io_kiocb *linked_timeout;
7020 int ret;
7021
7022 issue_sqe:
7023 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7024
7025 /*
7026 * We async punt it if the file wasn't marked NOWAIT, or if the file
7027 * doesn't support non-blocking read/write attempts
7028 */
7029 if (likely(!ret)) {
7030 if (req->flags & REQ_F_COMPLETE_INLINE) {
7031 struct io_ring_ctx *ctx = req->ctx;
7032 struct io_submit_state *state = &ctx->submit_state;
7033
7034 state->compl_reqs[state->compl_nr++] = req;
7035 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7036 io_submit_flush_completions(ctx);
7037 return;
7038 }
7039
7040 linked_timeout = io_prep_linked_timeout(req);
7041 if (linked_timeout)
7042 io_queue_linked_timeout(linked_timeout);
7043 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7044 linked_timeout = io_prep_linked_timeout(req);
7045
7046 switch (io_arm_poll_handler(req)) {
7047 case IO_APOLL_READY:
7048 if (linked_timeout)
7049 io_queue_linked_timeout(linked_timeout);
7050 goto issue_sqe;
7051 case IO_APOLL_ABORTED:
7052 /*
7053 * Queued up for async execution, worker will release
7054 * submit reference when the iocb is actually submitted.
7055 */
7056 io_queue_async_work(req, NULL);
7057 break;
7058 }
7059
7060 if (linked_timeout)
7061 io_queue_linked_timeout(linked_timeout);
7062 } else {
7063 io_req_complete_failed(req, ret);
7064 }
7065 }
7066
7067 static inline void io_queue_sqe(struct io_kiocb *req)
7068 __must_hold(&req->ctx->uring_lock)
7069 {
7070 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7071 return;
7072
7073 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7074 __io_queue_sqe(req);
7075 } else if (req->flags & REQ_F_FAIL) {
7076 io_req_complete_fail_submit(req);
7077 } else {
7078 int ret = io_req_prep_async(req);
7079
7080 if (unlikely(ret))
7081 io_req_complete_failed(req, ret);
7082 else
7083 io_queue_async_work(req, NULL);
7084 }
7085 }
7086
7087 /*
7088 * Check SQE restrictions (opcode and flags).
7089 *
7090 * Returns 'true' if SQE is allowed, 'false' otherwise.
7091 */
7092 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7093 struct io_kiocb *req,
7094 unsigned int sqe_flags)
7095 {
7096 if (likely(!ctx->restricted))
7097 return true;
7098
7099 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7100 return false;
7101
7102 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7103 ctx->restrictions.sqe_flags_required)
7104 return false;
7105
7106 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7107 ctx->restrictions.sqe_flags_required))
7108 return false;
7109
7110 return true;
7111 }
7112
7113 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7114 const struct io_uring_sqe *sqe)
7115 __must_hold(&ctx->uring_lock)
7116 {
7117 struct io_submit_state *state;
7118 unsigned int sqe_flags;
7119 int personality, ret = 0;
7120
7121 /* req is partially pre-initialised, see io_preinit_req() */
7122 req->opcode = READ_ONCE(sqe->opcode);
7123 /* same numerical values with corresponding REQ_F_*, safe to copy */
7124 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7125 req->user_data = READ_ONCE(sqe->user_data);
7126 req->file = NULL;
7127 req->fixed_rsrc_refs = NULL;
7128 req->task = current;
7129
7130 /* enforce forwards compatibility on users */
7131 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7132 return -EINVAL;
7133 if (unlikely(req->opcode >= IORING_OP_LAST))
7134 return -EINVAL;
7135 if (!io_check_restriction(ctx, req, sqe_flags))
7136 return -EACCES;
7137
7138 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7139 !io_op_defs[req->opcode].buffer_select)
7140 return -EOPNOTSUPP;
7141 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7142 ctx->drain_active = true;
7143
7144 personality = READ_ONCE(sqe->personality);
7145 if (personality) {
7146 req->creds = xa_load(&ctx->personalities, personality);
7147 if (!req->creds)
7148 return -EINVAL;
7149 get_cred(req->creds);
7150 req->flags |= REQ_F_CREDS;
7151 }
7152 state = &ctx->submit_state;
7153
7154 /*
7155 * Plug now if we have more than 1 IO left after this, and the target
7156 * is potentially a read/write to block based storage.
7157 */
7158 if (!state->plug_started && state->ios_left > 1 &&
7159 io_op_defs[req->opcode].plug) {
7160 blk_start_plug(&state->plug);
7161 state->plug_started = true;
7162 }
7163
7164 if (io_op_defs[req->opcode].needs_file) {
7165 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7166 (sqe_flags & IOSQE_FIXED_FILE));
7167 if (unlikely(!req->file))
7168 ret = -EBADF;
7169 }
7170
7171 state->ios_left--;
7172 return ret;
7173 }
7174
7175 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7176 const struct io_uring_sqe *sqe)
7177 __must_hold(&ctx->uring_lock)
7178 {
7179 struct io_submit_link *link = &ctx->submit_state.link;
7180 int ret;
7181
7182 ret = io_init_req(ctx, req, sqe);
7183 if (unlikely(ret)) {
7184 fail_req:
7185 /* fail even hard links since we don't submit */
7186 if (link->head) {
7187 /*
7188 * we can judge a link req is failed or cancelled by if
7189 * REQ_F_FAIL is set, but the head is an exception since
7190 * it may be set REQ_F_FAIL because of other req's failure
7191 * so let's leverage req->result to distinguish if a head
7192 * is set REQ_F_FAIL because of its failure or other req's
7193 * failure so that we can set the correct ret code for it.
7194 * init result here to avoid affecting the normal path.
7195 */
7196 if (!(link->head->flags & REQ_F_FAIL))
7197 req_fail_link_node(link->head, -ECANCELED);
7198 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7199 /*
7200 * the current req is a normal req, we should return
7201 * error and thus break the submittion loop.
7202 */
7203 io_req_complete_failed(req, ret);
7204 return ret;
7205 }
7206 req_fail_link_node(req, ret);
7207 } else {
7208 ret = io_req_prep(req, sqe);
7209 if (unlikely(ret))
7210 goto fail_req;
7211 }
7212
7213 /* don't need @sqe from now on */
7214 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7215 req->flags, true,
7216 ctx->flags & IORING_SETUP_SQPOLL);
7217
7218 /*
7219 * If we already have a head request, queue this one for async
7220 * submittal once the head completes. If we don't have a head but
7221 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7222 * submitted sync once the chain is complete. If none of those
7223 * conditions are true (normal request), then just queue it.
7224 */
7225 if (link->head) {
7226 struct io_kiocb *head = link->head;
7227
7228 if (!(req->flags & REQ_F_FAIL)) {
7229 ret = io_req_prep_async(req);
7230 if (unlikely(ret)) {
7231 req_fail_link_node(req, ret);
7232 if (!(head->flags & REQ_F_FAIL))
7233 req_fail_link_node(head, -ECANCELED);
7234 }
7235 }
7236 trace_io_uring_link(ctx, req, head);
7237 link->last->link = req;
7238 link->last = req;
7239
7240 /* last request of a link, enqueue the link */
7241 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7242 link->head = NULL;
7243 io_queue_sqe(head);
7244 }
7245 } else {
7246 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7247 link->head = req;
7248 link->last = req;
7249 } else {
7250 io_queue_sqe(req);
7251 }
7252 }
7253
7254 return 0;
7255 }
7256
7257 /*
7258 * Batched submission is done, ensure local IO is flushed out.
7259 */
7260 static void io_submit_state_end(struct io_submit_state *state,
7261 struct io_ring_ctx *ctx)
7262 {
7263 if (state->link.head)
7264 io_queue_sqe(state->link.head);
7265 if (state->compl_nr)
7266 io_submit_flush_completions(ctx);
7267 if (state->plug_started)
7268 blk_finish_plug(&state->plug);
7269 }
7270
7271 /*
7272 * Start submission side cache.
7273 */
7274 static void io_submit_state_start(struct io_submit_state *state,
7275 unsigned int max_ios)
7276 {
7277 state->plug_started = false;
7278 state->ios_left = max_ios;
7279 /* set only head, no need to init link_last in advance */
7280 state->link.head = NULL;
7281 }
7282
7283 static void io_commit_sqring(struct io_ring_ctx *ctx)
7284 {
7285 struct io_rings *rings = ctx->rings;
7286
7287 /*
7288 * Ensure any loads from the SQEs are done at this point,
7289 * since once we write the new head, the application could
7290 * write new data to them.
7291 */
7292 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7293 }
7294
7295 /*
7296 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7297 * that is mapped by userspace. This means that care needs to be taken to
7298 * ensure that reads are stable, as we cannot rely on userspace always
7299 * being a good citizen. If members of the sqe are validated and then later
7300 * used, it's important that those reads are done through READ_ONCE() to
7301 * prevent a re-load down the line.
7302 */
7303 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7304 {
7305 unsigned head, mask = ctx->sq_entries - 1;
7306 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7307
7308 /*
7309 * The cached sq head (or cq tail) serves two purposes:
7310 *
7311 * 1) allows us to batch the cost of updating the user visible
7312 * head updates.
7313 * 2) allows the kernel side to track the head on its own, even
7314 * though the application is the one updating it.
7315 */
7316 head = READ_ONCE(ctx->sq_array[sq_idx]);
7317 if (likely(head < ctx->sq_entries))
7318 return &ctx->sq_sqes[head];
7319
7320 /* drop invalid entries */
7321 ctx->cq_extra--;
7322 WRITE_ONCE(ctx->rings->sq_dropped,
7323 READ_ONCE(ctx->rings->sq_dropped) + 1);
7324 return NULL;
7325 }
7326
7327 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7328 __must_hold(&ctx->uring_lock)
7329 {
7330 int submitted = 0;
7331
7332 /* make sure SQ entry isn't read before tail */
7333 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7334 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7335 return -EAGAIN;
7336 io_get_task_refs(nr);
7337
7338 io_submit_state_start(&ctx->submit_state, nr);
7339 while (submitted < nr) {
7340 const struct io_uring_sqe *sqe;
7341 struct io_kiocb *req;
7342
7343 req = io_alloc_req(ctx);
7344 if (unlikely(!req)) {
7345 if (!submitted)
7346 submitted = -EAGAIN;
7347 break;
7348 }
7349 sqe = io_get_sqe(ctx);
7350 if (unlikely(!sqe)) {
7351 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7352 break;
7353 }
7354 /* will complete beyond this point, count as submitted */
7355 submitted++;
7356 if (io_submit_sqe(ctx, req, sqe))
7357 break;
7358 }
7359
7360 if (unlikely(submitted != nr)) {
7361 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7362 int unused = nr - ref_used;
7363
7364 current->io_uring->cached_refs += unused;
7365 percpu_ref_put_many(&ctx->refs, unused);
7366 }
7367
7368 io_submit_state_end(&ctx->submit_state, ctx);
7369 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7370 io_commit_sqring(ctx);
7371
7372 return submitted;
7373 }
7374
7375 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7376 {
7377 return READ_ONCE(sqd->state);
7378 }
7379
7380 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7381 {
7382 /* Tell userspace we may need a wakeup call */
7383 spin_lock(&ctx->completion_lock);
7384 WRITE_ONCE(ctx->rings->sq_flags,
7385 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7386 spin_unlock(&ctx->completion_lock);
7387 }
7388
7389 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7390 {
7391 spin_lock(&ctx->completion_lock);
7392 WRITE_ONCE(ctx->rings->sq_flags,
7393 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7394 spin_unlock(&ctx->completion_lock);
7395 }
7396
7397 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7398 {
7399 unsigned int to_submit;
7400 int ret = 0;
7401
7402 to_submit = io_sqring_entries(ctx);
7403 /* if we're handling multiple rings, cap submit size for fairness */
7404 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7405 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7406
7407 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7408 unsigned nr_events = 0;
7409 const struct cred *creds = NULL;
7410
7411 if (ctx->sq_creds != current_cred())
7412 creds = override_creds(ctx->sq_creds);
7413
7414 mutex_lock(&ctx->uring_lock);
7415 if (!list_empty(&ctx->iopoll_list))
7416 io_do_iopoll(ctx, &nr_events, 0);
7417
7418 /*
7419 * Don't submit if refs are dying, good for io_uring_register(),
7420 * but also it is relied upon by io_ring_exit_work()
7421 */
7422 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7423 !(ctx->flags & IORING_SETUP_R_DISABLED))
7424 ret = io_submit_sqes(ctx, to_submit);
7425 mutex_unlock(&ctx->uring_lock);
7426
7427 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7428 wake_up(&ctx->sqo_sq_wait);
7429 if (creds)
7430 revert_creds(creds);
7431 }
7432
7433 return ret;
7434 }
7435
7436 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7437 {
7438 struct io_ring_ctx *ctx;
7439 unsigned sq_thread_idle = 0;
7440
7441 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7442 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7443 sqd->sq_thread_idle = sq_thread_idle;
7444 }
7445
7446 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7447 {
7448 bool did_sig = false;
7449 struct ksignal ksig;
7450
7451 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7452 signal_pending(current)) {
7453 mutex_unlock(&sqd->lock);
7454 if (signal_pending(current))
7455 did_sig = get_signal(&ksig);
7456 cond_resched();
7457 mutex_lock(&sqd->lock);
7458 }
7459 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7460 }
7461
7462 static int io_sq_thread(void *data)
7463 {
7464 struct io_sq_data *sqd = data;
7465 struct io_ring_ctx *ctx;
7466 unsigned long timeout = 0;
7467 char buf[TASK_COMM_LEN];
7468 DEFINE_WAIT(wait);
7469
7470 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7471 set_task_comm(current, buf);
7472
7473 if (sqd->sq_cpu != -1)
7474 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7475 else
7476 set_cpus_allowed_ptr(current, cpu_online_mask);
7477 current->flags |= PF_NO_SETAFFINITY;
7478
7479 mutex_lock(&sqd->lock);
7480 while (1) {
7481 bool cap_entries, sqt_spin = false;
7482
7483 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7484 if (io_sqd_handle_event(sqd))
7485 break;
7486 timeout = jiffies + sqd->sq_thread_idle;
7487 }
7488
7489 cap_entries = !list_is_singular(&sqd->ctx_list);
7490 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7491 int ret = __io_sq_thread(ctx, cap_entries);
7492
7493 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7494 sqt_spin = true;
7495 }
7496 if (io_run_task_work())
7497 sqt_spin = true;
7498
7499 if (sqt_spin || !time_after(jiffies, timeout)) {
7500 cond_resched();
7501 if (sqt_spin)
7502 timeout = jiffies + sqd->sq_thread_idle;
7503 continue;
7504 }
7505
7506 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7507 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7508 bool needs_sched = true;
7509
7510 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7511 io_ring_set_wakeup_flag(ctx);
7512
7513 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7514 !list_empty_careful(&ctx->iopoll_list)) {
7515 needs_sched = false;
7516 break;
7517 }
7518 if (io_sqring_entries(ctx)) {
7519 needs_sched = false;
7520 break;
7521 }
7522 }
7523
7524 if (needs_sched) {
7525 mutex_unlock(&sqd->lock);
7526 schedule();
7527 mutex_lock(&sqd->lock);
7528 }
7529 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7530 io_ring_clear_wakeup_flag(ctx);
7531 }
7532
7533 finish_wait(&sqd->wait, &wait);
7534 timeout = jiffies + sqd->sq_thread_idle;
7535 }
7536
7537 io_uring_cancel_generic(true, sqd);
7538 sqd->thread = NULL;
7539 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7540 io_ring_set_wakeup_flag(ctx);
7541 io_run_task_work();
7542 mutex_unlock(&sqd->lock);
7543
7544 complete(&sqd->exited);
7545 do_exit(0);
7546 }
7547
7548 struct io_wait_queue {
7549 struct wait_queue_entry wq;
7550 struct io_ring_ctx *ctx;
7551 unsigned cq_tail;
7552 unsigned nr_timeouts;
7553 };
7554
7555 static inline bool io_should_wake(struct io_wait_queue *iowq)
7556 {
7557 struct io_ring_ctx *ctx = iowq->ctx;
7558 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7559
7560 /*
7561 * Wake up if we have enough events, or if a timeout occurred since we
7562 * started waiting. For timeouts, we always want to return to userspace,
7563 * regardless of event count.
7564 */
7565 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7566 }
7567
7568 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7569 int wake_flags, void *key)
7570 {
7571 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7572 wq);
7573
7574 /*
7575 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7576 * the task, and the next invocation will do it.
7577 */
7578 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7579 return autoremove_wake_function(curr, mode, wake_flags, key);
7580 return -1;
7581 }
7582
7583 static int io_run_task_work_sig(void)
7584 {
7585 if (io_run_task_work())
7586 return 1;
7587 if (!signal_pending(current))
7588 return 0;
7589 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7590 return -ERESTARTSYS;
7591 return -EINTR;
7592 }
7593
7594 /* when returns >0, the caller should retry */
7595 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7596 struct io_wait_queue *iowq,
7597 ktime_t timeout)
7598 {
7599 int ret;
7600
7601 /* make sure we run task_work before checking for signals */
7602 ret = io_run_task_work_sig();
7603 if (ret || io_should_wake(iowq))
7604 return ret;
7605 /* let the caller flush overflows, retry */
7606 if (test_bit(0, &ctx->check_cq_overflow))
7607 return 1;
7608
7609 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7610 return -ETIME;
7611 return 1;
7612 }
7613
7614 /*
7615 * Wait until events become available, if we don't already have some. The
7616 * application must reap them itself, as they reside on the shared cq ring.
7617 */
7618 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7619 const sigset_t __user *sig, size_t sigsz,
7620 struct __kernel_timespec __user *uts)
7621 {
7622 struct io_wait_queue iowq;
7623 struct io_rings *rings = ctx->rings;
7624 ktime_t timeout = KTIME_MAX;
7625 int ret;
7626
7627 do {
7628 io_cqring_overflow_flush(ctx);
7629 if (io_cqring_events(ctx) >= min_events)
7630 return 0;
7631 if (!io_run_task_work())
7632 break;
7633 } while (1);
7634
7635 if (uts) {
7636 struct timespec64 ts;
7637
7638 if (get_timespec64(&ts, uts))
7639 return -EFAULT;
7640 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7641 }
7642
7643 if (sig) {
7644 #ifdef CONFIG_COMPAT
7645 if (in_compat_syscall())
7646 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7647 sigsz);
7648 else
7649 #endif
7650 ret = set_user_sigmask(sig, sigsz);
7651
7652 if (ret)
7653 return ret;
7654 }
7655
7656 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7657 iowq.wq.private = current;
7658 INIT_LIST_HEAD(&iowq.wq.entry);
7659 iowq.ctx = ctx;
7660 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7661 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7662
7663 trace_io_uring_cqring_wait(ctx, min_events);
7664 do {
7665 /* if we can't even flush overflow, don't wait for more */
7666 if (!io_cqring_overflow_flush(ctx)) {
7667 ret = -EBUSY;
7668 break;
7669 }
7670 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7671 TASK_INTERRUPTIBLE);
7672 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7673 finish_wait(&ctx->cq_wait, &iowq.wq);
7674 cond_resched();
7675 } while (ret > 0);
7676
7677 restore_saved_sigmask_unless(ret == -EINTR);
7678
7679 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7680 }
7681
7682 static void io_free_page_table(void **table, size_t size)
7683 {
7684 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7685
7686 for (i = 0; i < nr_tables; i++)
7687 kfree(table[i]);
7688 kfree(table);
7689 }
7690
7691 static void **io_alloc_page_table(size_t size)
7692 {
7693 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7694 size_t init_size = size;
7695 void **table;
7696
7697 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7698 if (!table)
7699 return NULL;
7700
7701 for (i = 0; i < nr_tables; i++) {
7702 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7703
7704 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7705 if (!table[i]) {
7706 io_free_page_table(table, init_size);
7707 return NULL;
7708 }
7709 size -= this_size;
7710 }
7711 return table;
7712 }
7713
7714 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7715 {
7716 percpu_ref_exit(&ref_node->refs);
7717 kfree(ref_node);
7718 }
7719
7720 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7721 {
7722 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7723 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7724 unsigned long flags;
7725 bool first_add = false;
7726 unsigned long delay = HZ;
7727
7728 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7729 node->done = true;
7730
7731 /* if we are mid-quiesce then do not delay */
7732 if (node->rsrc_data->quiesce)
7733 delay = 0;
7734
7735 while (!list_empty(&ctx->rsrc_ref_list)) {
7736 node = list_first_entry(&ctx->rsrc_ref_list,
7737 struct io_rsrc_node, node);
7738 /* recycle ref nodes in order */
7739 if (!node->done)
7740 break;
7741 list_del(&node->node);
7742 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7743 }
7744 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7745
7746 if (first_add)
7747 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7748 }
7749
7750 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7751 {
7752 struct io_rsrc_node *ref_node;
7753
7754 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7755 if (!ref_node)
7756 return NULL;
7757
7758 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7759 0, GFP_KERNEL)) {
7760 kfree(ref_node);
7761 return NULL;
7762 }
7763 INIT_LIST_HEAD(&ref_node->node);
7764 INIT_LIST_HEAD(&ref_node->rsrc_list);
7765 ref_node->done = false;
7766 return ref_node;
7767 }
7768
7769 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7770 struct io_rsrc_data *data_to_kill)
7771 {
7772 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7773 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7774
7775 if (data_to_kill) {
7776 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7777
7778 rsrc_node->rsrc_data = data_to_kill;
7779 spin_lock_irq(&ctx->rsrc_ref_lock);
7780 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7781 spin_unlock_irq(&ctx->rsrc_ref_lock);
7782
7783 atomic_inc(&data_to_kill->refs);
7784 percpu_ref_kill(&rsrc_node->refs);
7785 ctx->rsrc_node = NULL;
7786 }
7787
7788 if (!ctx->rsrc_node) {
7789 ctx->rsrc_node = ctx->rsrc_backup_node;
7790 ctx->rsrc_backup_node = NULL;
7791 }
7792 }
7793
7794 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7795 {
7796 if (ctx->rsrc_backup_node)
7797 return 0;
7798 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7799 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7800 }
7801
7802 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7803 {
7804 int ret;
7805
7806 /* As we may drop ->uring_lock, other task may have started quiesce */
7807 if (data->quiesce)
7808 return -ENXIO;
7809
7810 data->quiesce = true;
7811 do {
7812 ret = io_rsrc_node_switch_start(ctx);
7813 if (ret)
7814 break;
7815 io_rsrc_node_switch(ctx, data);
7816
7817 /* kill initial ref, already quiesced if zero */
7818 if (atomic_dec_and_test(&data->refs))
7819 break;
7820 mutex_unlock(&ctx->uring_lock);
7821 flush_delayed_work(&ctx->rsrc_put_work);
7822 ret = wait_for_completion_interruptible(&data->done);
7823 if (!ret) {
7824 mutex_lock(&ctx->uring_lock);
7825 if (atomic_read(&data->refs) > 0) {
7826 /*
7827 * it has been revived by another thread while
7828 * we were unlocked
7829 */
7830 mutex_unlock(&ctx->uring_lock);
7831 } else {
7832 break;
7833 }
7834 }
7835
7836 atomic_inc(&data->refs);
7837 /* wait for all works potentially completing data->done */
7838 flush_delayed_work(&ctx->rsrc_put_work);
7839 reinit_completion(&data->done);
7840
7841 ret = io_run_task_work_sig();
7842 mutex_lock(&ctx->uring_lock);
7843 } while (ret >= 0);
7844 data->quiesce = false;
7845
7846 return ret;
7847 }
7848
7849 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7850 {
7851 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7852 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7853
7854 return &data->tags[table_idx][off];
7855 }
7856
7857 static void io_rsrc_data_free(struct io_rsrc_data *data)
7858 {
7859 size_t size = data->nr * sizeof(data->tags[0][0]);
7860
7861 if (data->tags)
7862 io_free_page_table((void **)data->tags, size);
7863 kfree(data);
7864 }
7865
7866 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7867 u64 __user *utags, unsigned nr,
7868 struct io_rsrc_data **pdata)
7869 {
7870 struct io_rsrc_data *data;
7871 int ret = -ENOMEM;
7872 unsigned i;
7873
7874 data = kzalloc(sizeof(*data), GFP_KERNEL);
7875 if (!data)
7876 return -ENOMEM;
7877 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7878 if (!data->tags) {
7879 kfree(data);
7880 return -ENOMEM;
7881 }
7882
7883 data->nr = nr;
7884 data->ctx = ctx;
7885 data->do_put = do_put;
7886 if (utags) {
7887 ret = -EFAULT;
7888 for (i = 0; i < nr; i++) {
7889 u64 *tag_slot = io_get_tag_slot(data, i);
7890
7891 if (copy_from_user(tag_slot, &utags[i],
7892 sizeof(*tag_slot)))
7893 goto fail;
7894 }
7895 }
7896
7897 atomic_set(&data->refs, 1);
7898 init_completion(&data->done);
7899 *pdata = data;
7900 return 0;
7901 fail:
7902 io_rsrc_data_free(data);
7903 return ret;
7904 }
7905
7906 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7907 {
7908 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7909 GFP_KERNEL_ACCOUNT);
7910 return !!table->files;
7911 }
7912
7913 static void io_free_file_tables(struct io_file_table *table)
7914 {
7915 kvfree(table->files);
7916 table->files = NULL;
7917 }
7918
7919 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7920 {
7921 #if defined(CONFIG_UNIX)
7922 if (ctx->ring_sock) {
7923 struct sock *sock = ctx->ring_sock->sk;
7924 struct sk_buff *skb;
7925
7926 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7927 kfree_skb(skb);
7928 }
7929 #else
7930 int i;
7931
7932 for (i = 0; i < ctx->nr_user_files; i++) {
7933 struct file *file;
7934
7935 file = io_file_from_index(ctx, i);
7936 if (file)
7937 fput(file);
7938 }
7939 #endif
7940 io_free_file_tables(&ctx->file_table);
7941 io_rsrc_data_free(ctx->file_data);
7942 ctx->file_data = NULL;
7943 ctx->nr_user_files = 0;
7944 }
7945
7946 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7947 {
7948 int ret;
7949
7950 if (!ctx->file_data)
7951 return -ENXIO;
7952 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7953 if (!ret)
7954 __io_sqe_files_unregister(ctx);
7955 return ret;
7956 }
7957
7958 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7959 __releases(&sqd->lock)
7960 {
7961 WARN_ON_ONCE(sqd->thread == current);
7962
7963 /*
7964 * Do the dance but not conditional clear_bit() because it'd race with
7965 * other threads incrementing park_pending and setting the bit.
7966 */
7967 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7968 if (atomic_dec_return(&sqd->park_pending))
7969 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7970 mutex_unlock(&sqd->lock);
7971 }
7972
7973 static void io_sq_thread_park(struct io_sq_data *sqd)
7974 __acquires(&sqd->lock)
7975 {
7976 WARN_ON_ONCE(sqd->thread == current);
7977
7978 atomic_inc(&sqd->park_pending);
7979 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7980 mutex_lock(&sqd->lock);
7981 if (sqd->thread)
7982 wake_up_process(sqd->thread);
7983 }
7984
7985 static void io_sq_thread_stop(struct io_sq_data *sqd)
7986 {
7987 WARN_ON_ONCE(sqd->thread == current);
7988 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7989
7990 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7991 mutex_lock(&sqd->lock);
7992 if (sqd->thread)
7993 wake_up_process(sqd->thread);
7994 mutex_unlock(&sqd->lock);
7995 wait_for_completion(&sqd->exited);
7996 }
7997
7998 static void io_put_sq_data(struct io_sq_data *sqd)
7999 {
8000 if (refcount_dec_and_test(&sqd->refs)) {
8001 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8002
8003 io_sq_thread_stop(sqd);
8004 kfree(sqd);
8005 }
8006 }
8007
8008 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8009 {
8010 struct io_sq_data *sqd = ctx->sq_data;
8011
8012 if (sqd) {
8013 io_sq_thread_park(sqd);
8014 list_del_init(&ctx->sqd_list);
8015 io_sqd_update_thread_idle(sqd);
8016 io_sq_thread_unpark(sqd);
8017
8018 io_put_sq_data(sqd);
8019 ctx->sq_data = NULL;
8020 }
8021 }
8022
8023 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8024 {
8025 struct io_ring_ctx *ctx_attach;
8026 struct io_sq_data *sqd;
8027 struct fd f;
8028
8029 f = fdget(p->wq_fd);
8030 if (!f.file)
8031 return ERR_PTR(-ENXIO);
8032 if (f.file->f_op != &io_uring_fops) {
8033 fdput(f);
8034 return ERR_PTR(-EINVAL);
8035 }
8036
8037 ctx_attach = f.file->private_data;
8038 sqd = ctx_attach->sq_data;
8039 if (!sqd) {
8040 fdput(f);
8041 return ERR_PTR(-EINVAL);
8042 }
8043 if (sqd->task_tgid != current->tgid) {
8044 fdput(f);
8045 return ERR_PTR(-EPERM);
8046 }
8047
8048 refcount_inc(&sqd->refs);
8049 fdput(f);
8050 return sqd;
8051 }
8052
8053 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8054 bool *attached)
8055 {
8056 struct io_sq_data *sqd;
8057
8058 *attached = false;
8059 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8060 sqd = io_attach_sq_data(p);
8061 if (!IS_ERR(sqd)) {
8062 *attached = true;
8063 return sqd;
8064 }
8065 /* fall through for EPERM case, setup new sqd/task */
8066 if (PTR_ERR(sqd) != -EPERM)
8067 return sqd;
8068 }
8069
8070 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8071 if (!sqd)
8072 return ERR_PTR(-ENOMEM);
8073
8074 atomic_set(&sqd->park_pending, 0);
8075 refcount_set(&sqd->refs, 1);
8076 INIT_LIST_HEAD(&sqd->ctx_list);
8077 mutex_init(&sqd->lock);
8078 init_waitqueue_head(&sqd->wait);
8079 init_completion(&sqd->exited);
8080 return sqd;
8081 }
8082
8083 #if defined(CONFIG_UNIX)
8084 /*
8085 * Ensure the UNIX gc is aware of our file set, so we are certain that
8086 * the io_uring can be safely unregistered on process exit, even if we have
8087 * loops in the file referencing.
8088 */
8089 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8090 {
8091 struct sock *sk = ctx->ring_sock->sk;
8092 struct scm_fp_list *fpl;
8093 struct sk_buff *skb;
8094 int i, nr_files;
8095
8096 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8097 if (!fpl)
8098 return -ENOMEM;
8099
8100 skb = alloc_skb(0, GFP_KERNEL);
8101 if (!skb) {
8102 kfree(fpl);
8103 return -ENOMEM;
8104 }
8105
8106 skb->sk = sk;
8107
8108 nr_files = 0;
8109 fpl->user = get_uid(current_user());
8110 for (i = 0; i < nr; i++) {
8111 struct file *file = io_file_from_index(ctx, i + offset);
8112
8113 if (!file)
8114 continue;
8115 fpl->fp[nr_files] = get_file(file);
8116 unix_inflight(fpl->user, fpl->fp[nr_files]);
8117 nr_files++;
8118 }
8119
8120 if (nr_files) {
8121 fpl->max = SCM_MAX_FD;
8122 fpl->count = nr_files;
8123 UNIXCB(skb).fp = fpl;
8124 skb->destructor = unix_destruct_scm;
8125 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8126 skb_queue_head(&sk->sk_receive_queue, skb);
8127
8128 for (i = 0; i < nr_files; i++)
8129 fput(fpl->fp[i]);
8130 } else {
8131 kfree_skb(skb);
8132 kfree(fpl);
8133 }
8134
8135 return 0;
8136 }
8137
8138 /*
8139 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8140 * causes regular reference counting to break down. We rely on the UNIX
8141 * garbage collection to take care of this problem for us.
8142 */
8143 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8144 {
8145 unsigned left, total;
8146 int ret = 0;
8147
8148 total = 0;
8149 left = ctx->nr_user_files;
8150 while (left) {
8151 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8152
8153 ret = __io_sqe_files_scm(ctx, this_files, total);
8154 if (ret)
8155 break;
8156 left -= this_files;
8157 total += this_files;
8158 }
8159
8160 if (!ret)
8161 return 0;
8162
8163 while (total < ctx->nr_user_files) {
8164 struct file *file = io_file_from_index(ctx, total);
8165
8166 if (file)
8167 fput(file);
8168 total++;
8169 }
8170
8171 return ret;
8172 }
8173 #else
8174 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8175 {
8176 return 0;
8177 }
8178 #endif
8179
8180 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8181 {
8182 struct file *file = prsrc->file;
8183 #if defined(CONFIG_UNIX)
8184 struct sock *sock = ctx->ring_sock->sk;
8185 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8186 struct sk_buff *skb;
8187 int i;
8188
8189 __skb_queue_head_init(&list);
8190
8191 /*
8192 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8193 * remove this entry and rearrange the file array.
8194 */
8195 skb = skb_dequeue(head);
8196 while (skb) {
8197 struct scm_fp_list *fp;
8198
8199 fp = UNIXCB(skb).fp;
8200 for (i = 0; i < fp->count; i++) {
8201 int left;
8202
8203 if (fp->fp[i] != file)
8204 continue;
8205
8206 unix_notinflight(fp->user, fp->fp[i]);
8207 left = fp->count - 1 - i;
8208 if (left) {
8209 memmove(&fp->fp[i], &fp->fp[i + 1],
8210 left * sizeof(struct file *));
8211 }
8212 fp->count--;
8213 if (!fp->count) {
8214 kfree_skb(skb);
8215 skb = NULL;
8216 } else {
8217 __skb_queue_tail(&list, skb);
8218 }
8219 fput(file);
8220 file = NULL;
8221 break;
8222 }
8223
8224 if (!file)
8225 break;
8226
8227 __skb_queue_tail(&list, skb);
8228
8229 skb = skb_dequeue(head);
8230 }
8231
8232 if (skb_peek(&list)) {
8233 spin_lock_irq(&head->lock);
8234 while ((skb = __skb_dequeue(&list)) != NULL)
8235 __skb_queue_tail(head, skb);
8236 spin_unlock_irq(&head->lock);
8237 }
8238 #else
8239 fput(file);
8240 #endif
8241 }
8242
8243 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8244 {
8245 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8246 struct io_ring_ctx *ctx = rsrc_data->ctx;
8247 struct io_rsrc_put *prsrc, *tmp;
8248
8249 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8250 list_del(&prsrc->list);
8251
8252 if (prsrc->tag) {
8253 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8254
8255 io_ring_submit_lock(ctx, lock_ring);
8256 spin_lock(&ctx->completion_lock);
8257 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8258 ctx->cq_extra++;
8259 io_commit_cqring(ctx);
8260 spin_unlock(&ctx->completion_lock);
8261 io_cqring_ev_posted(ctx);
8262 io_ring_submit_unlock(ctx, lock_ring);
8263 }
8264
8265 rsrc_data->do_put(ctx, prsrc);
8266 kfree(prsrc);
8267 }
8268
8269 io_rsrc_node_destroy(ref_node);
8270 if (atomic_dec_and_test(&rsrc_data->refs))
8271 complete(&rsrc_data->done);
8272 }
8273
8274 static void io_rsrc_put_work(struct work_struct *work)
8275 {
8276 struct io_ring_ctx *ctx;
8277 struct llist_node *node;
8278
8279 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8280 node = llist_del_all(&ctx->rsrc_put_llist);
8281
8282 while (node) {
8283 struct io_rsrc_node *ref_node;
8284 struct llist_node *next = node->next;
8285
8286 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8287 __io_rsrc_put_work(ref_node);
8288 node = next;
8289 }
8290 }
8291
8292 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8293 unsigned nr_args, u64 __user *tags)
8294 {
8295 __s32 __user *fds = (__s32 __user *) arg;
8296 struct file *file;
8297 int fd, ret;
8298 unsigned i;
8299
8300 if (ctx->file_data)
8301 return -EBUSY;
8302 if (!nr_args)
8303 return -EINVAL;
8304 if (nr_args > IORING_MAX_FIXED_FILES)
8305 return -EMFILE;
8306 if (nr_args > rlimit(RLIMIT_NOFILE))
8307 return -EMFILE;
8308 ret = io_rsrc_node_switch_start(ctx);
8309 if (ret)
8310 return ret;
8311 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8312 &ctx->file_data);
8313 if (ret)
8314 return ret;
8315
8316 ret = -ENOMEM;
8317 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8318 goto out_free;
8319
8320 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8321 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8322 ret = -EFAULT;
8323 goto out_fput;
8324 }
8325 /* allow sparse sets */
8326 if (fd == -1) {
8327 ret = -EINVAL;
8328 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8329 goto out_fput;
8330 continue;
8331 }
8332
8333 file = fget(fd);
8334 ret = -EBADF;
8335 if (unlikely(!file))
8336 goto out_fput;
8337
8338 /*
8339 * Don't allow io_uring instances to be registered. If UNIX
8340 * isn't enabled, then this causes a reference cycle and this
8341 * instance can never get freed. If UNIX is enabled we'll
8342 * handle it just fine, but there's still no point in allowing
8343 * a ring fd as it doesn't support regular read/write anyway.
8344 */
8345 if (file->f_op == &io_uring_fops) {
8346 fput(file);
8347 goto out_fput;
8348 }
8349 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8350 }
8351
8352 ret = io_sqe_files_scm(ctx);
8353 if (ret) {
8354 __io_sqe_files_unregister(ctx);
8355 return ret;
8356 }
8357
8358 io_rsrc_node_switch(ctx, NULL);
8359 return ret;
8360 out_fput:
8361 for (i = 0; i < ctx->nr_user_files; i++) {
8362 file = io_file_from_index(ctx, i);
8363 if (file)
8364 fput(file);
8365 }
8366 io_free_file_tables(&ctx->file_table);
8367 ctx->nr_user_files = 0;
8368 out_free:
8369 io_rsrc_data_free(ctx->file_data);
8370 ctx->file_data = NULL;
8371 return ret;
8372 }
8373
8374 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8375 int index)
8376 {
8377 #if defined(CONFIG_UNIX)
8378 struct sock *sock = ctx->ring_sock->sk;
8379 struct sk_buff_head *head = &sock->sk_receive_queue;
8380 struct sk_buff *skb;
8381
8382 /*
8383 * See if we can merge this file into an existing skb SCM_RIGHTS
8384 * file set. If there's no room, fall back to allocating a new skb
8385 * and filling it in.
8386 */
8387 spin_lock_irq(&head->lock);
8388 skb = skb_peek(head);
8389 if (skb) {
8390 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8391
8392 if (fpl->count < SCM_MAX_FD) {
8393 __skb_unlink(skb, head);
8394 spin_unlock_irq(&head->lock);
8395 fpl->fp[fpl->count] = get_file(file);
8396 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8397 fpl->count++;
8398 spin_lock_irq(&head->lock);
8399 __skb_queue_head(head, skb);
8400 } else {
8401 skb = NULL;
8402 }
8403 }
8404 spin_unlock_irq(&head->lock);
8405
8406 if (skb) {
8407 fput(file);
8408 return 0;
8409 }
8410
8411 return __io_sqe_files_scm(ctx, 1, index);
8412 #else
8413 return 0;
8414 #endif
8415 }
8416
8417 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8418 struct io_rsrc_node *node, void *rsrc)
8419 {
8420 struct io_rsrc_put *prsrc;
8421
8422 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8423 if (!prsrc)
8424 return -ENOMEM;
8425
8426 prsrc->tag = *io_get_tag_slot(data, idx);
8427 prsrc->rsrc = rsrc;
8428 list_add(&prsrc->list, &node->rsrc_list);
8429 return 0;
8430 }
8431
8432 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8433 unsigned int issue_flags, u32 slot_index)
8434 {
8435 struct io_ring_ctx *ctx = req->ctx;
8436 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8437 bool needs_switch = false;
8438 struct io_fixed_file *file_slot;
8439 int ret = -EBADF;
8440
8441 io_ring_submit_lock(ctx, !force_nonblock);
8442 if (file->f_op == &io_uring_fops)
8443 goto err;
8444 ret = -ENXIO;
8445 if (!ctx->file_data)
8446 goto err;
8447 ret = -EINVAL;
8448 if (slot_index >= ctx->nr_user_files)
8449 goto err;
8450
8451 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8452 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8453
8454 if (file_slot->file_ptr) {
8455 struct file *old_file;
8456
8457 ret = io_rsrc_node_switch_start(ctx);
8458 if (ret)
8459 goto err;
8460
8461 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8462 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8463 ctx->rsrc_node, old_file);
8464 if (ret)
8465 goto err;
8466 file_slot->file_ptr = 0;
8467 needs_switch = true;
8468 }
8469
8470 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8471 io_fixed_file_set(file_slot, file);
8472 ret = io_sqe_file_register(ctx, file, slot_index);
8473 if (ret) {
8474 file_slot->file_ptr = 0;
8475 goto err;
8476 }
8477
8478 ret = 0;
8479 err:
8480 if (needs_switch)
8481 io_rsrc_node_switch(ctx, ctx->file_data);
8482 io_ring_submit_unlock(ctx, !force_nonblock);
8483 if (ret)
8484 fput(file);
8485 return ret;
8486 }
8487
8488 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8489 {
8490 unsigned int offset = req->close.file_slot - 1;
8491 struct io_ring_ctx *ctx = req->ctx;
8492 struct io_fixed_file *file_slot;
8493 struct file *file;
8494 int ret, i;
8495
8496 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8497 ret = -ENXIO;
8498 if (unlikely(!ctx->file_data))
8499 goto out;
8500 ret = -EINVAL;
8501 if (offset >= ctx->nr_user_files)
8502 goto out;
8503 ret = io_rsrc_node_switch_start(ctx);
8504 if (ret)
8505 goto out;
8506
8507 i = array_index_nospec(offset, ctx->nr_user_files);
8508 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8509 ret = -EBADF;
8510 if (!file_slot->file_ptr)
8511 goto out;
8512
8513 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8514 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8515 if (ret)
8516 goto out;
8517
8518 file_slot->file_ptr = 0;
8519 io_rsrc_node_switch(ctx, ctx->file_data);
8520 ret = 0;
8521 out:
8522 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8523 return ret;
8524 }
8525
8526 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8527 struct io_uring_rsrc_update2 *up,
8528 unsigned nr_args)
8529 {
8530 u64 __user *tags = u64_to_user_ptr(up->tags);
8531 __s32 __user *fds = u64_to_user_ptr(up->data);
8532 struct io_rsrc_data *data = ctx->file_data;
8533 struct io_fixed_file *file_slot;
8534 struct file *file;
8535 int fd, i, err = 0;
8536 unsigned int done;
8537 bool needs_switch = false;
8538
8539 if (!ctx->file_data)
8540 return -ENXIO;
8541 if (up->offset + nr_args > ctx->nr_user_files)
8542 return -EINVAL;
8543
8544 for (done = 0; done < nr_args; done++) {
8545 u64 tag = 0;
8546
8547 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8548 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8549 err = -EFAULT;
8550 break;
8551 }
8552 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8553 err = -EINVAL;
8554 break;
8555 }
8556 if (fd == IORING_REGISTER_FILES_SKIP)
8557 continue;
8558
8559 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8560 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8561
8562 if (file_slot->file_ptr) {
8563 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8564 err = io_queue_rsrc_removal(data, up->offset + done,
8565 ctx->rsrc_node, file);
8566 if (err)
8567 break;
8568 file_slot->file_ptr = 0;
8569 needs_switch = true;
8570 }
8571 if (fd != -1) {
8572 file = fget(fd);
8573 if (!file) {
8574 err = -EBADF;
8575 break;
8576 }
8577 /*
8578 * Don't allow io_uring instances to be registered. If
8579 * UNIX isn't enabled, then this causes a reference
8580 * cycle and this instance can never get freed. If UNIX
8581 * is enabled we'll handle it just fine, but there's
8582 * still no point in allowing a ring fd as it doesn't
8583 * support regular read/write anyway.
8584 */
8585 if (file->f_op == &io_uring_fops) {
8586 fput(file);
8587 err = -EBADF;
8588 break;
8589 }
8590 *io_get_tag_slot(data, up->offset + done) = tag;
8591 io_fixed_file_set(file_slot, file);
8592 err = io_sqe_file_register(ctx, file, i);
8593 if (err) {
8594 file_slot->file_ptr = 0;
8595 fput(file);
8596 break;
8597 }
8598 }
8599 }
8600
8601 if (needs_switch)
8602 io_rsrc_node_switch(ctx, data);
8603 return done ? done : err;
8604 }
8605
8606 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8607 struct task_struct *task)
8608 {
8609 struct io_wq_hash *hash;
8610 struct io_wq_data data;
8611 unsigned int concurrency;
8612
8613 mutex_lock(&ctx->uring_lock);
8614 hash = ctx->hash_map;
8615 if (!hash) {
8616 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8617 if (!hash) {
8618 mutex_unlock(&ctx->uring_lock);
8619 return ERR_PTR(-ENOMEM);
8620 }
8621 refcount_set(&hash->refs, 1);
8622 init_waitqueue_head(&hash->wait);
8623 ctx->hash_map = hash;
8624 }
8625 mutex_unlock(&ctx->uring_lock);
8626
8627 data.hash = hash;
8628 data.task = task;
8629 data.free_work = io_wq_free_work;
8630 data.do_work = io_wq_submit_work;
8631
8632 /* Do QD, or 4 * CPUS, whatever is smallest */
8633 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8634
8635 return io_wq_create(concurrency, &data);
8636 }
8637
8638 static int io_uring_alloc_task_context(struct task_struct *task,
8639 struct io_ring_ctx *ctx)
8640 {
8641 struct io_uring_task *tctx;
8642 int ret;
8643
8644 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8645 if (unlikely(!tctx))
8646 return -ENOMEM;
8647
8648 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8649 if (unlikely(ret)) {
8650 kfree(tctx);
8651 return ret;
8652 }
8653
8654 tctx->io_wq = io_init_wq_offload(ctx, task);
8655 if (IS_ERR(tctx->io_wq)) {
8656 ret = PTR_ERR(tctx->io_wq);
8657 percpu_counter_destroy(&tctx->inflight);
8658 kfree(tctx);
8659 return ret;
8660 }
8661
8662 xa_init(&tctx->xa);
8663 init_waitqueue_head(&tctx->wait);
8664 atomic_set(&tctx->in_idle, 0);
8665 atomic_set(&tctx->inflight_tracked, 0);
8666 task->io_uring = tctx;
8667 spin_lock_init(&tctx->task_lock);
8668 INIT_WQ_LIST(&tctx->task_list);
8669 init_task_work(&tctx->task_work, tctx_task_work);
8670 return 0;
8671 }
8672
8673 void __io_uring_free(struct task_struct *tsk)
8674 {
8675 struct io_uring_task *tctx = tsk->io_uring;
8676
8677 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8678 WARN_ON_ONCE(tctx->io_wq);
8679 WARN_ON_ONCE(tctx->cached_refs);
8680
8681 percpu_counter_destroy(&tctx->inflight);
8682 kfree(tctx);
8683 tsk->io_uring = NULL;
8684 }
8685
8686 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8687 struct io_uring_params *p)
8688 {
8689 int ret;
8690
8691 /* Retain compatibility with failing for an invalid attach attempt */
8692 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8693 IORING_SETUP_ATTACH_WQ) {
8694 struct fd f;
8695
8696 f = fdget(p->wq_fd);
8697 if (!f.file)
8698 return -ENXIO;
8699 if (f.file->f_op != &io_uring_fops) {
8700 fdput(f);
8701 return -EINVAL;
8702 }
8703 fdput(f);
8704 }
8705 if (ctx->flags & IORING_SETUP_SQPOLL) {
8706 struct task_struct *tsk;
8707 struct io_sq_data *sqd;
8708 bool attached;
8709
8710 sqd = io_get_sq_data(p, &attached);
8711 if (IS_ERR(sqd)) {
8712 ret = PTR_ERR(sqd);
8713 goto err;
8714 }
8715
8716 ctx->sq_creds = get_current_cred();
8717 ctx->sq_data = sqd;
8718 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8719 if (!ctx->sq_thread_idle)
8720 ctx->sq_thread_idle = HZ;
8721
8722 io_sq_thread_park(sqd);
8723 list_add(&ctx->sqd_list, &sqd->ctx_list);
8724 io_sqd_update_thread_idle(sqd);
8725 /* don't attach to a dying SQPOLL thread, would be racy */
8726 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8727 io_sq_thread_unpark(sqd);
8728
8729 if (ret < 0)
8730 goto err;
8731 if (attached)
8732 return 0;
8733
8734 if (p->flags & IORING_SETUP_SQ_AFF) {
8735 int cpu = p->sq_thread_cpu;
8736
8737 ret = -EINVAL;
8738 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8739 goto err_sqpoll;
8740 sqd->sq_cpu = cpu;
8741 } else {
8742 sqd->sq_cpu = -1;
8743 }
8744
8745 sqd->task_pid = current->pid;
8746 sqd->task_tgid = current->tgid;
8747 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8748 if (IS_ERR(tsk)) {
8749 ret = PTR_ERR(tsk);
8750 goto err_sqpoll;
8751 }
8752
8753 sqd->thread = tsk;
8754 ret = io_uring_alloc_task_context(tsk, ctx);
8755 wake_up_new_task(tsk);
8756 if (ret)
8757 goto err;
8758 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8759 /* Can't have SQ_AFF without SQPOLL */
8760 ret = -EINVAL;
8761 goto err;
8762 }
8763
8764 return 0;
8765 err_sqpoll:
8766 complete(&ctx->sq_data->exited);
8767 err:
8768 io_sq_thread_finish(ctx);
8769 return ret;
8770 }
8771
8772 static inline void __io_unaccount_mem(struct user_struct *user,
8773 unsigned long nr_pages)
8774 {
8775 atomic_long_sub(nr_pages, &user->locked_vm);
8776 }
8777
8778 static inline int __io_account_mem(struct user_struct *user,
8779 unsigned long nr_pages)
8780 {
8781 unsigned long page_limit, cur_pages, new_pages;
8782
8783 /* Don't allow more pages than we can safely lock */
8784 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8785
8786 do {
8787 cur_pages = atomic_long_read(&user->locked_vm);
8788 new_pages = cur_pages + nr_pages;
8789 if (new_pages > page_limit)
8790 return -ENOMEM;
8791 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8792 new_pages) != cur_pages);
8793
8794 return 0;
8795 }
8796
8797 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8798 {
8799 if (ctx->user)
8800 __io_unaccount_mem(ctx->user, nr_pages);
8801
8802 if (ctx->mm_account)
8803 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8804 }
8805
8806 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8807 {
8808 int ret;
8809
8810 if (ctx->user) {
8811 ret = __io_account_mem(ctx->user, nr_pages);
8812 if (ret)
8813 return ret;
8814 }
8815
8816 if (ctx->mm_account)
8817 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8818
8819 return 0;
8820 }
8821
8822 static void io_mem_free(void *ptr)
8823 {
8824 struct page *page;
8825
8826 if (!ptr)
8827 return;
8828
8829 page = virt_to_head_page(ptr);
8830 if (put_page_testzero(page))
8831 free_compound_page(page);
8832 }
8833
8834 static void *io_mem_alloc(size_t size)
8835 {
8836 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8837
8838 return (void *) __get_free_pages(gfp, get_order(size));
8839 }
8840
8841 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8842 size_t *sq_offset)
8843 {
8844 struct io_rings *rings;
8845 size_t off, sq_array_size;
8846
8847 off = struct_size(rings, cqes, cq_entries);
8848 if (off == SIZE_MAX)
8849 return SIZE_MAX;
8850
8851 #ifdef CONFIG_SMP
8852 off = ALIGN(off, SMP_CACHE_BYTES);
8853 if (off == 0)
8854 return SIZE_MAX;
8855 #endif
8856
8857 if (sq_offset)
8858 *sq_offset = off;
8859
8860 sq_array_size = array_size(sizeof(u32), sq_entries);
8861 if (sq_array_size == SIZE_MAX)
8862 return SIZE_MAX;
8863
8864 if (check_add_overflow(off, sq_array_size, &off))
8865 return SIZE_MAX;
8866
8867 return off;
8868 }
8869
8870 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8871 {
8872 struct io_mapped_ubuf *imu = *slot;
8873 unsigned int i;
8874
8875 if (imu != ctx->dummy_ubuf) {
8876 for (i = 0; i < imu->nr_bvecs; i++)
8877 unpin_user_page(imu->bvec[i].bv_page);
8878 if (imu->acct_pages)
8879 io_unaccount_mem(ctx, imu->acct_pages);
8880 kvfree(imu);
8881 }
8882 *slot = NULL;
8883 }
8884
8885 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8886 {
8887 io_buffer_unmap(ctx, &prsrc->buf);
8888 prsrc->buf = NULL;
8889 }
8890
8891 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8892 {
8893 unsigned int i;
8894
8895 for (i = 0; i < ctx->nr_user_bufs; i++)
8896 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8897 kfree(ctx->user_bufs);
8898 io_rsrc_data_free(ctx->buf_data);
8899 ctx->user_bufs = NULL;
8900 ctx->buf_data = NULL;
8901 ctx->nr_user_bufs = 0;
8902 }
8903
8904 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8905 {
8906 int ret;
8907
8908 if (!ctx->buf_data)
8909 return -ENXIO;
8910
8911 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8912 if (!ret)
8913 __io_sqe_buffers_unregister(ctx);
8914 return ret;
8915 }
8916
8917 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8918 void __user *arg, unsigned index)
8919 {
8920 struct iovec __user *src;
8921
8922 #ifdef CONFIG_COMPAT
8923 if (ctx->compat) {
8924 struct compat_iovec __user *ciovs;
8925 struct compat_iovec ciov;
8926
8927 ciovs = (struct compat_iovec __user *) arg;
8928 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8929 return -EFAULT;
8930
8931 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8932 dst->iov_len = ciov.iov_len;
8933 return 0;
8934 }
8935 #endif
8936 src = (struct iovec __user *) arg;
8937 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8938 return -EFAULT;
8939 return 0;
8940 }
8941
8942 /*
8943 * Not super efficient, but this is just a registration time. And we do cache
8944 * the last compound head, so generally we'll only do a full search if we don't
8945 * match that one.
8946 *
8947 * We check if the given compound head page has already been accounted, to
8948 * avoid double accounting it. This allows us to account the full size of the
8949 * page, not just the constituent pages of a huge page.
8950 */
8951 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8952 int nr_pages, struct page *hpage)
8953 {
8954 int i, j;
8955
8956 /* check current page array */
8957 for (i = 0; i < nr_pages; i++) {
8958 if (!PageCompound(pages[i]))
8959 continue;
8960 if (compound_head(pages[i]) == hpage)
8961 return true;
8962 }
8963
8964 /* check previously registered pages */
8965 for (i = 0; i < ctx->nr_user_bufs; i++) {
8966 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8967
8968 for (j = 0; j < imu->nr_bvecs; j++) {
8969 if (!PageCompound(imu->bvec[j].bv_page))
8970 continue;
8971 if (compound_head(imu->bvec[j].bv_page) == hpage)
8972 return true;
8973 }
8974 }
8975
8976 return false;
8977 }
8978
8979 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8980 int nr_pages, struct io_mapped_ubuf *imu,
8981 struct page **last_hpage)
8982 {
8983 int i, ret;
8984
8985 imu->acct_pages = 0;
8986 for (i = 0; i < nr_pages; i++) {
8987 if (!PageCompound(pages[i])) {
8988 imu->acct_pages++;
8989 } else {
8990 struct page *hpage;
8991
8992 hpage = compound_head(pages[i]);
8993 if (hpage == *last_hpage)
8994 continue;
8995 *last_hpage = hpage;
8996 if (headpage_already_acct(ctx, pages, i, hpage))
8997 continue;
8998 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8999 }
9000 }
9001
9002 if (!imu->acct_pages)
9003 return 0;
9004
9005 ret = io_account_mem(ctx, imu->acct_pages);
9006 if (ret)
9007 imu->acct_pages = 0;
9008 return ret;
9009 }
9010
9011 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9012 struct io_mapped_ubuf **pimu,
9013 struct page **last_hpage)
9014 {
9015 struct io_mapped_ubuf *imu = NULL;
9016 struct vm_area_struct **vmas = NULL;
9017 struct page **pages = NULL;
9018 unsigned long off, start, end, ubuf;
9019 size_t size;
9020 int ret, pret, nr_pages, i;
9021
9022 if (!iov->iov_base) {
9023 *pimu = ctx->dummy_ubuf;
9024 return 0;
9025 }
9026
9027 ubuf = (unsigned long) iov->iov_base;
9028 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9029 start = ubuf >> PAGE_SHIFT;
9030 nr_pages = end - start;
9031
9032 *pimu = NULL;
9033 ret = -ENOMEM;
9034
9035 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9036 if (!pages)
9037 goto done;
9038
9039 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9040 GFP_KERNEL);
9041 if (!vmas)
9042 goto done;
9043
9044 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9045 if (!imu)
9046 goto done;
9047
9048 ret = 0;
9049 mmap_read_lock(current->mm);
9050 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9051 pages, vmas);
9052 if (pret == nr_pages) {
9053 /* don't support file backed memory */
9054 for (i = 0; i < nr_pages; i++) {
9055 struct vm_area_struct *vma = vmas[i];
9056
9057 if (vma_is_shmem(vma))
9058 continue;
9059 if (vma->vm_file &&
9060 !is_file_hugepages(vma->vm_file)) {
9061 ret = -EOPNOTSUPP;
9062 break;
9063 }
9064 }
9065 } else {
9066 ret = pret < 0 ? pret : -EFAULT;
9067 }
9068 mmap_read_unlock(current->mm);
9069 if (ret) {
9070 /*
9071 * if we did partial map, or found file backed vmas,
9072 * release any pages we did get
9073 */
9074 if (pret > 0)
9075 unpin_user_pages(pages, pret);
9076 goto done;
9077 }
9078
9079 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9080 if (ret) {
9081 unpin_user_pages(pages, pret);
9082 goto done;
9083 }
9084
9085 off = ubuf & ~PAGE_MASK;
9086 size = iov->iov_len;
9087 for (i = 0; i < nr_pages; i++) {
9088 size_t vec_len;
9089
9090 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9091 imu->bvec[i].bv_page = pages[i];
9092 imu->bvec[i].bv_len = vec_len;
9093 imu->bvec[i].bv_offset = off;
9094 off = 0;
9095 size -= vec_len;
9096 }
9097 /* store original address for later verification */
9098 imu->ubuf = ubuf;
9099 imu->ubuf_end = ubuf + iov->iov_len;
9100 imu->nr_bvecs = nr_pages;
9101 *pimu = imu;
9102 ret = 0;
9103 done:
9104 if (ret)
9105 kvfree(imu);
9106 kvfree(pages);
9107 kvfree(vmas);
9108 return ret;
9109 }
9110
9111 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9112 {
9113 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9114 return ctx->user_bufs ? 0 : -ENOMEM;
9115 }
9116
9117 static int io_buffer_validate(struct iovec *iov)
9118 {
9119 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9120
9121 /*
9122 * Don't impose further limits on the size and buffer
9123 * constraints here, we'll -EINVAL later when IO is
9124 * submitted if they are wrong.
9125 */
9126 if (!iov->iov_base)
9127 return iov->iov_len ? -EFAULT : 0;
9128 if (!iov->iov_len)
9129 return -EFAULT;
9130
9131 /* arbitrary limit, but we need something */
9132 if (iov->iov_len > SZ_1G)
9133 return -EFAULT;
9134
9135 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9136 return -EOVERFLOW;
9137
9138 return 0;
9139 }
9140
9141 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9142 unsigned int nr_args, u64 __user *tags)
9143 {
9144 struct page *last_hpage = NULL;
9145 struct io_rsrc_data *data;
9146 int i, ret;
9147 struct iovec iov;
9148
9149 if (ctx->user_bufs)
9150 return -EBUSY;
9151 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9152 return -EINVAL;
9153 ret = io_rsrc_node_switch_start(ctx);
9154 if (ret)
9155 return ret;
9156 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9157 if (ret)
9158 return ret;
9159 ret = io_buffers_map_alloc(ctx, nr_args);
9160 if (ret) {
9161 io_rsrc_data_free(data);
9162 return ret;
9163 }
9164
9165 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9166 ret = io_copy_iov(ctx, &iov, arg, i);
9167 if (ret)
9168 break;
9169 ret = io_buffer_validate(&iov);
9170 if (ret)
9171 break;
9172 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9173 ret = -EINVAL;
9174 break;
9175 }
9176
9177 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9178 &last_hpage);
9179 if (ret)
9180 break;
9181 }
9182
9183 WARN_ON_ONCE(ctx->buf_data);
9184
9185 ctx->buf_data = data;
9186 if (ret)
9187 __io_sqe_buffers_unregister(ctx);
9188 else
9189 io_rsrc_node_switch(ctx, NULL);
9190 return ret;
9191 }
9192
9193 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9194 struct io_uring_rsrc_update2 *up,
9195 unsigned int nr_args)
9196 {
9197 u64 __user *tags = u64_to_user_ptr(up->tags);
9198 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9199 struct page *last_hpage = NULL;
9200 bool needs_switch = false;
9201 __u32 done;
9202 int i, err;
9203
9204 if (!ctx->buf_data)
9205 return -ENXIO;
9206 if (up->offset + nr_args > ctx->nr_user_bufs)
9207 return -EINVAL;
9208
9209 for (done = 0; done < nr_args; done++) {
9210 struct io_mapped_ubuf *imu;
9211 int offset = up->offset + done;
9212 u64 tag = 0;
9213
9214 err = io_copy_iov(ctx, &iov, iovs, done);
9215 if (err)
9216 break;
9217 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9218 err = -EFAULT;
9219 break;
9220 }
9221 err = io_buffer_validate(&iov);
9222 if (err)
9223 break;
9224 if (!iov.iov_base && tag) {
9225 err = -EINVAL;
9226 break;
9227 }
9228 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9229 if (err)
9230 break;
9231
9232 i = array_index_nospec(offset, ctx->nr_user_bufs);
9233 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9234 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9235 ctx->rsrc_node, ctx->user_bufs[i]);
9236 if (unlikely(err)) {
9237 io_buffer_unmap(ctx, &imu);
9238 break;
9239 }
9240 ctx->user_bufs[i] = NULL;
9241 needs_switch = true;
9242 }
9243
9244 ctx->user_bufs[i] = imu;
9245 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9246 }
9247
9248 if (needs_switch)
9249 io_rsrc_node_switch(ctx, ctx->buf_data);
9250 return done ? done : err;
9251 }
9252
9253 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9254 {
9255 __s32 __user *fds = arg;
9256 int fd;
9257
9258 if (ctx->cq_ev_fd)
9259 return -EBUSY;
9260
9261 if (copy_from_user(&fd, fds, sizeof(*fds)))
9262 return -EFAULT;
9263
9264 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9265 if (IS_ERR(ctx->cq_ev_fd)) {
9266 int ret = PTR_ERR(ctx->cq_ev_fd);
9267
9268 ctx->cq_ev_fd = NULL;
9269 return ret;
9270 }
9271
9272 return 0;
9273 }
9274
9275 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9276 {
9277 if (ctx->cq_ev_fd) {
9278 eventfd_ctx_put(ctx->cq_ev_fd);
9279 ctx->cq_ev_fd = NULL;
9280 return 0;
9281 }
9282
9283 return -ENXIO;
9284 }
9285
9286 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9287 {
9288 struct io_buffer *buf;
9289 unsigned long index;
9290
9291 xa_for_each(&ctx->io_buffers, index, buf)
9292 __io_remove_buffers(ctx, buf, index, -1U);
9293 }
9294
9295 static void io_req_cache_free(struct list_head *list)
9296 {
9297 struct io_kiocb *req, *nxt;
9298
9299 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9300 list_del(&req->inflight_entry);
9301 kmem_cache_free(req_cachep, req);
9302 }
9303 }
9304
9305 static void io_req_caches_free(struct io_ring_ctx *ctx)
9306 {
9307 struct io_submit_state *state = &ctx->submit_state;
9308
9309 mutex_lock(&ctx->uring_lock);
9310
9311 if (state->free_reqs) {
9312 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9313 state->free_reqs = 0;
9314 }
9315
9316 io_flush_cached_locked_reqs(ctx, state);
9317 io_req_cache_free(&state->free_list);
9318 mutex_unlock(&ctx->uring_lock);
9319 }
9320
9321 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9322 {
9323 if (data && !atomic_dec_and_test(&data->refs))
9324 wait_for_completion(&data->done);
9325 }
9326
9327 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9328 {
9329 io_sq_thread_finish(ctx);
9330
9331 if (ctx->mm_account) {
9332 mmdrop(ctx->mm_account);
9333 ctx->mm_account = NULL;
9334 }
9335
9336 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9337 io_wait_rsrc_data(ctx->buf_data);
9338 io_wait_rsrc_data(ctx->file_data);
9339
9340 mutex_lock(&ctx->uring_lock);
9341 if (ctx->buf_data)
9342 __io_sqe_buffers_unregister(ctx);
9343 if (ctx->file_data)
9344 __io_sqe_files_unregister(ctx);
9345 if (ctx->rings)
9346 __io_cqring_overflow_flush(ctx, true);
9347 mutex_unlock(&ctx->uring_lock);
9348 io_eventfd_unregister(ctx);
9349 io_destroy_buffers(ctx);
9350 if (ctx->sq_creds)
9351 put_cred(ctx->sq_creds);
9352
9353 /* there are no registered resources left, nobody uses it */
9354 if (ctx->rsrc_node)
9355 io_rsrc_node_destroy(ctx->rsrc_node);
9356 if (ctx->rsrc_backup_node)
9357 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9358 flush_delayed_work(&ctx->rsrc_put_work);
9359
9360 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9361 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9362
9363 #if defined(CONFIG_UNIX)
9364 if (ctx->ring_sock) {
9365 ctx->ring_sock->file = NULL; /* so that iput() is called */
9366 sock_release(ctx->ring_sock);
9367 }
9368 #endif
9369 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9370
9371 io_mem_free(ctx->rings);
9372 io_mem_free(ctx->sq_sqes);
9373
9374 percpu_ref_exit(&ctx->refs);
9375 free_uid(ctx->user);
9376 io_req_caches_free(ctx);
9377 if (ctx->hash_map)
9378 io_wq_put_hash(ctx->hash_map);
9379 kfree(ctx->cancel_hash);
9380 kfree(ctx->dummy_ubuf);
9381 kfree(ctx);
9382 }
9383
9384 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9385 {
9386 struct io_ring_ctx *ctx = file->private_data;
9387 __poll_t mask = 0;
9388
9389 poll_wait(file, &ctx->poll_wait, wait);
9390 /*
9391 * synchronizes with barrier from wq_has_sleeper call in
9392 * io_commit_cqring
9393 */
9394 smp_rmb();
9395 if (!io_sqring_full(ctx))
9396 mask |= EPOLLOUT | EPOLLWRNORM;
9397
9398 /*
9399 * Don't flush cqring overflow list here, just do a simple check.
9400 * Otherwise there could possible be ABBA deadlock:
9401 * CPU0 CPU1
9402 * ---- ----
9403 * lock(&ctx->uring_lock);
9404 * lock(&ep->mtx);
9405 * lock(&ctx->uring_lock);
9406 * lock(&ep->mtx);
9407 *
9408 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9409 * pushs them to do the flush.
9410 */
9411 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9412 mask |= EPOLLIN | EPOLLRDNORM;
9413
9414 return mask;
9415 }
9416
9417 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9418 {
9419 const struct cred *creds;
9420
9421 creds = xa_erase(&ctx->personalities, id);
9422 if (creds) {
9423 put_cred(creds);
9424 return 0;
9425 }
9426
9427 return -EINVAL;
9428 }
9429
9430 struct io_tctx_exit {
9431 struct callback_head task_work;
9432 struct completion completion;
9433 struct io_ring_ctx *ctx;
9434 };
9435
9436 static void io_tctx_exit_cb(struct callback_head *cb)
9437 {
9438 struct io_uring_task *tctx = current->io_uring;
9439 struct io_tctx_exit *work;
9440
9441 work = container_of(cb, struct io_tctx_exit, task_work);
9442 /*
9443 * When @in_idle, we're in cancellation and it's racy to remove the
9444 * node. It'll be removed by the end of cancellation, just ignore it.
9445 */
9446 if (!atomic_read(&tctx->in_idle))
9447 io_uring_del_tctx_node((unsigned long)work->ctx);
9448 complete(&work->completion);
9449 }
9450
9451 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9452 {
9453 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9454
9455 return req->ctx == data;
9456 }
9457
9458 static void io_ring_exit_work(struct work_struct *work)
9459 {
9460 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9461 unsigned long timeout = jiffies + HZ * 60 * 5;
9462 unsigned long interval = HZ / 20;
9463 struct io_tctx_exit exit;
9464 struct io_tctx_node *node;
9465 int ret;
9466
9467 /*
9468 * If we're doing polled IO and end up having requests being
9469 * submitted async (out-of-line), then completions can come in while
9470 * we're waiting for refs to drop. We need to reap these manually,
9471 * as nobody else will be looking for them.
9472 */
9473 do {
9474 io_uring_try_cancel_requests(ctx, NULL, true);
9475 if (ctx->sq_data) {
9476 struct io_sq_data *sqd = ctx->sq_data;
9477 struct task_struct *tsk;
9478
9479 io_sq_thread_park(sqd);
9480 tsk = sqd->thread;
9481 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9482 io_wq_cancel_cb(tsk->io_uring->io_wq,
9483 io_cancel_ctx_cb, ctx, true);
9484 io_sq_thread_unpark(sqd);
9485 }
9486
9487 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9488 /* there is little hope left, don't run it too often */
9489 interval = HZ * 60;
9490 }
9491 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9492
9493 init_completion(&exit.completion);
9494 init_task_work(&exit.task_work, io_tctx_exit_cb);
9495 exit.ctx = ctx;
9496 /*
9497 * Some may use context even when all refs and requests have been put,
9498 * and they are free to do so while still holding uring_lock or
9499 * completion_lock, see io_req_task_submit(). Apart from other work,
9500 * this lock/unlock section also waits them to finish.
9501 */
9502 mutex_lock(&ctx->uring_lock);
9503 while (!list_empty(&ctx->tctx_list)) {
9504 WARN_ON_ONCE(time_after(jiffies, timeout));
9505
9506 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9507 ctx_node);
9508 /* don't spin on a single task if cancellation failed */
9509 list_rotate_left(&ctx->tctx_list);
9510 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9511 if (WARN_ON_ONCE(ret))
9512 continue;
9513 wake_up_process(node->task);
9514
9515 mutex_unlock(&ctx->uring_lock);
9516 wait_for_completion(&exit.completion);
9517 mutex_lock(&ctx->uring_lock);
9518 }
9519 mutex_unlock(&ctx->uring_lock);
9520 spin_lock(&ctx->completion_lock);
9521 spin_unlock(&ctx->completion_lock);
9522
9523 io_ring_ctx_free(ctx);
9524 }
9525
9526 /* Returns true if we found and killed one or more timeouts */
9527 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9528 bool cancel_all)
9529 {
9530 struct io_kiocb *req, *tmp;
9531 int canceled = 0;
9532
9533 spin_lock(&ctx->completion_lock);
9534 spin_lock_irq(&ctx->timeout_lock);
9535 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9536 if (io_match_task(req, tsk, cancel_all)) {
9537 io_kill_timeout(req, -ECANCELED);
9538 canceled++;
9539 }
9540 }
9541 spin_unlock_irq(&ctx->timeout_lock);
9542 if (canceled != 0)
9543 io_commit_cqring(ctx);
9544 spin_unlock(&ctx->completion_lock);
9545 if (canceled != 0)
9546 io_cqring_ev_posted(ctx);
9547 return canceled != 0;
9548 }
9549
9550 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9551 {
9552 unsigned long index;
9553 struct creds *creds;
9554
9555 mutex_lock(&ctx->uring_lock);
9556 percpu_ref_kill(&ctx->refs);
9557 if (ctx->rings)
9558 __io_cqring_overflow_flush(ctx, true);
9559 xa_for_each(&ctx->personalities, index, creds)
9560 io_unregister_personality(ctx, index);
9561 mutex_unlock(&ctx->uring_lock);
9562
9563 io_kill_timeouts(ctx, NULL, true);
9564 io_poll_remove_all(ctx, NULL, true);
9565
9566 /* if we failed setting up the ctx, we might not have any rings */
9567 io_iopoll_try_reap_events(ctx);
9568
9569 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9570 /*
9571 * Use system_unbound_wq to avoid spawning tons of event kworkers
9572 * if we're exiting a ton of rings at the same time. It just adds
9573 * noise and overhead, there's no discernable change in runtime
9574 * over using system_wq.
9575 */
9576 queue_work(system_unbound_wq, &ctx->exit_work);
9577 }
9578
9579 static int io_uring_release(struct inode *inode, struct file *file)
9580 {
9581 struct io_ring_ctx *ctx = file->private_data;
9582
9583 file->private_data = NULL;
9584 io_ring_ctx_wait_and_kill(ctx);
9585 return 0;
9586 }
9587
9588 struct io_task_cancel {
9589 struct task_struct *task;
9590 bool all;
9591 };
9592
9593 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9594 {
9595 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9596 struct io_task_cancel *cancel = data;
9597
9598 return io_match_task_safe(req, cancel->task, cancel->all);
9599 }
9600
9601 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9602 struct task_struct *task, bool cancel_all)
9603 {
9604 struct io_defer_entry *de;
9605 LIST_HEAD(list);
9606
9607 spin_lock(&ctx->completion_lock);
9608 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9609 if (io_match_task_safe(de->req, task, cancel_all)) {
9610 list_cut_position(&list, &ctx->defer_list, &de->list);
9611 break;
9612 }
9613 }
9614 spin_unlock(&ctx->completion_lock);
9615 if (list_empty(&list))
9616 return false;
9617
9618 while (!list_empty(&list)) {
9619 de = list_first_entry(&list, struct io_defer_entry, list);
9620 list_del_init(&de->list);
9621 io_req_complete_failed(de->req, -ECANCELED);
9622 kfree(de);
9623 }
9624 return true;
9625 }
9626
9627 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9628 {
9629 struct io_tctx_node *node;
9630 enum io_wq_cancel cret;
9631 bool ret = false;
9632
9633 mutex_lock(&ctx->uring_lock);
9634 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9635 struct io_uring_task *tctx = node->task->io_uring;
9636
9637 /*
9638 * io_wq will stay alive while we hold uring_lock, because it's
9639 * killed after ctx nodes, which requires to take the lock.
9640 */
9641 if (!tctx || !tctx->io_wq)
9642 continue;
9643 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9644 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9645 }
9646 mutex_unlock(&ctx->uring_lock);
9647
9648 return ret;
9649 }
9650
9651 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9652 struct task_struct *task,
9653 bool cancel_all)
9654 {
9655 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9656 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9657
9658 while (1) {
9659 enum io_wq_cancel cret;
9660 bool ret = false;
9661
9662 if (!task) {
9663 ret |= io_uring_try_cancel_iowq(ctx);
9664 } else if (tctx && tctx->io_wq) {
9665 /*
9666 * Cancels requests of all rings, not only @ctx, but
9667 * it's fine as the task is in exit/exec.
9668 */
9669 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9670 &cancel, true);
9671 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9672 }
9673
9674 /* SQPOLL thread does its own polling */
9675 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9676 (ctx->sq_data && ctx->sq_data->thread == current)) {
9677 while (!list_empty_careful(&ctx->iopoll_list)) {
9678 io_iopoll_try_reap_events(ctx);
9679 ret = true;
9680 }
9681 }
9682
9683 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9684 ret |= io_poll_remove_all(ctx, task, cancel_all);
9685 ret |= io_kill_timeouts(ctx, task, cancel_all);
9686 if (task)
9687 ret |= io_run_task_work();
9688 if (!ret)
9689 break;
9690 cond_resched();
9691 }
9692 }
9693
9694 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9695 {
9696 struct io_uring_task *tctx = current->io_uring;
9697 struct io_tctx_node *node;
9698 int ret;
9699
9700 if (unlikely(!tctx)) {
9701 ret = io_uring_alloc_task_context(current, ctx);
9702 if (unlikely(ret))
9703 return ret;
9704
9705 tctx = current->io_uring;
9706 if (ctx->iowq_limits_set) {
9707 unsigned int limits[2] = { ctx->iowq_limits[0],
9708 ctx->iowq_limits[1], };
9709
9710 ret = io_wq_max_workers(tctx->io_wq, limits);
9711 if (ret)
9712 return ret;
9713 }
9714 }
9715 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9716 node = kmalloc(sizeof(*node), GFP_KERNEL);
9717 if (!node)
9718 return -ENOMEM;
9719 node->ctx = ctx;
9720 node->task = current;
9721
9722 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9723 node, GFP_KERNEL));
9724 if (ret) {
9725 kfree(node);
9726 return ret;
9727 }
9728
9729 mutex_lock(&ctx->uring_lock);
9730 list_add(&node->ctx_node, &ctx->tctx_list);
9731 mutex_unlock(&ctx->uring_lock);
9732 }
9733 tctx->last = ctx;
9734 return 0;
9735 }
9736
9737 /*
9738 * Note that this task has used io_uring. We use it for cancelation purposes.
9739 */
9740 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9741 {
9742 struct io_uring_task *tctx = current->io_uring;
9743
9744 if (likely(tctx && tctx->last == ctx))
9745 return 0;
9746 return __io_uring_add_tctx_node(ctx);
9747 }
9748
9749 /*
9750 * Remove this io_uring_file -> task mapping.
9751 */
9752 static void io_uring_del_tctx_node(unsigned long index)
9753 {
9754 struct io_uring_task *tctx = current->io_uring;
9755 struct io_tctx_node *node;
9756
9757 if (!tctx)
9758 return;
9759 node = xa_erase(&tctx->xa, index);
9760 if (!node)
9761 return;
9762
9763 WARN_ON_ONCE(current != node->task);
9764 WARN_ON_ONCE(list_empty(&node->ctx_node));
9765
9766 mutex_lock(&node->ctx->uring_lock);
9767 list_del(&node->ctx_node);
9768 mutex_unlock(&node->ctx->uring_lock);
9769
9770 if (tctx->last == node->ctx)
9771 tctx->last = NULL;
9772 kfree(node);
9773 }
9774
9775 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9776 {
9777 struct io_wq *wq = tctx->io_wq;
9778 struct io_tctx_node *node;
9779 unsigned long index;
9780
9781 xa_for_each(&tctx->xa, index, node) {
9782 io_uring_del_tctx_node(index);
9783 cond_resched();
9784 }
9785 if (wq) {
9786 /*
9787 * Must be after io_uring_del_task_file() (removes nodes under
9788 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9789 */
9790 io_wq_put_and_exit(wq);
9791 tctx->io_wq = NULL;
9792 }
9793 }
9794
9795 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9796 {
9797 if (tracked)
9798 return atomic_read(&tctx->inflight_tracked);
9799 return percpu_counter_sum(&tctx->inflight);
9800 }
9801
9802 /*
9803 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9804 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9805 */
9806 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9807 {
9808 struct io_uring_task *tctx = current->io_uring;
9809 struct io_ring_ctx *ctx;
9810 s64 inflight;
9811 DEFINE_WAIT(wait);
9812
9813 WARN_ON_ONCE(sqd && sqd->thread != current);
9814
9815 if (!current->io_uring)
9816 return;
9817 if (tctx->io_wq)
9818 io_wq_exit_start(tctx->io_wq);
9819
9820 atomic_inc(&tctx->in_idle);
9821 do {
9822 io_uring_drop_tctx_refs(current);
9823 /* read completions before cancelations */
9824 inflight = tctx_inflight(tctx, !cancel_all);
9825 if (!inflight)
9826 break;
9827
9828 if (!sqd) {
9829 struct io_tctx_node *node;
9830 unsigned long index;
9831
9832 xa_for_each(&tctx->xa, index, node) {
9833 /* sqpoll task will cancel all its requests */
9834 if (node->ctx->sq_data)
9835 continue;
9836 io_uring_try_cancel_requests(node->ctx, current,
9837 cancel_all);
9838 }
9839 } else {
9840 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9841 io_uring_try_cancel_requests(ctx, current,
9842 cancel_all);
9843 }
9844
9845 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9846 io_run_task_work();
9847 io_uring_drop_tctx_refs(current);
9848
9849 /*
9850 * If we've seen completions, retry without waiting. This
9851 * avoids a race where a completion comes in before we did
9852 * prepare_to_wait().
9853 */
9854 if (inflight == tctx_inflight(tctx, !cancel_all))
9855 schedule();
9856 finish_wait(&tctx->wait, &wait);
9857 } while (1);
9858
9859 io_uring_clean_tctx(tctx);
9860 if (cancel_all) {
9861 /*
9862 * We shouldn't run task_works after cancel, so just leave
9863 * ->in_idle set for normal exit.
9864 */
9865 atomic_dec(&tctx->in_idle);
9866 /* for exec all current's requests should be gone, kill tctx */
9867 __io_uring_free(current);
9868 }
9869 }
9870
9871 void __io_uring_cancel(bool cancel_all)
9872 {
9873 io_uring_cancel_generic(cancel_all, NULL);
9874 }
9875
9876 static void *io_uring_validate_mmap_request(struct file *file,
9877 loff_t pgoff, size_t sz)
9878 {
9879 struct io_ring_ctx *ctx = file->private_data;
9880 loff_t offset = pgoff << PAGE_SHIFT;
9881 struct page *page;
9882 void *ptr;
9883
9884 switch (offset) {
9885 case IORING_OFF_SQ_RING:
9886 case IORING_OFF_CQ_RING:
9887 ptr = ctx->rings;
9888 break;
9889 case IORING_OFF_SQES:
9890 ptr = ctx->sq_sqes;
9891 break;
9892 default:
9893 return ERR_PTR(-EINVAL);
9894 }
9895
9896 page = virt_to_head_page(ptr);
9897 if (sz > page_size(page))
9898 return ERR_PTR(-EINVAL);
9899
9900 return ptr;
9901 }
9902
9903 #ifdef CONFIG_MMU
9904
9905 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9906 {
9907 size_t sz = vma->vm_end - vma->vm_start;
9908 unsigned long pfn;
9909 void *ptr;
9910
9911 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9912 if (IS_ERR(ptr))
9913 return PTR_ERR(ptr);
9914
9915 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9916 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9917 }
9918
9919 #else /* !CONFIG_MMU */
9920
9921 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9922 {
9923 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9924 }
9925
9926 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9927 {
9928 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9929 }
9930
9931 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9932 unsigned long addr, unsigned long len,
9933 unsigned long pgoff, unsigned long flags)
9934 {
9935 void *ptr;
9936
9937 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9938 if (IS_ERR(ptr))
9939 return PTR_ERR(ptr);
9940
9941 return (unsigned long) ptr;
9942 }
9943
9944 #endif /* !CONFIG_MMU */
9945
9946 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9947 {
9948 DEFINE_WAIT(wait);
9949
9950 do {
9951 if (!io_sqring_full(ctx))
9952 break;
9953 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9954
9955 if (!io_sqring_full(ctx))
9956 break;
9957 schedule();
9958 } while (!signal_pending(current));
9959
9960 finish_wait(&ctx->sqo_sq_wait, &wait);
9961 return 0;
9962 }
9963
9964 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9965 struct __kernel_timespec __user **ts,
9966 const sigset_t __user **sig)
9967 {
9968 struct io_uring_getevents_arg arg;
9969
9970 /*
9971 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9972 * is just a pointer to the sigset_t.
9973 */
9974 if (!(flags & IORING_ENTER_EXT_ARG)) {
9975 *sig = (const sigset_t __user *) argp;
9976 *ts = NULL;
9977 return 0;
9978 }
9979
9980 /*
9981 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9982 * timespec and sigset_t pointers if good.
9983 */
9984 if (*argsz != sizeof(arg))
9985 return -EINVAL;
9986 if (copy_from_user(&arg, argp, sizeof(arg)))
9987 return -EFAULT;
9988 *sig = u64_to_user_ptr(arg.sigmask);
9989 *argsz = arg.sigmask_sz;
9990 *ts = u64_to_user_ptr(arg.ts);
9991 return 0;
9992 }
9993
9994 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9995 u32, min_complete, u32, flags, const void __user *, argp,
9996 size_t, argsz)
9997 {
9998 struct io_ring_ctx *ctx;
9999 int submitted = 0;
10000 struct fd f;
10001 long ret;
10002
10003 io_run_task_work();
10004
10005 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10006 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10007 return -EINVAL;
10008
10009 f = fdget(fd);
10010 if (unlikely(!f.file))
10011 return -EBADF;
10012
10013 ret = -EOPNOTSUPP;
10014 if (unlikely(f.file->f_op != &io_uring_fops))
10015 goto out_fput;
10016
10017 ret = -ENXIO;
10018 ctx = f.file->private_data;
10019 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10020 goto out_fput;
10021
10022 ret = -EBADFD;
10023 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10024 goto out;
10025
10026 /*
10027 * For SQ polling, the thread will do all submissions and completions.
10028 * Just return the requested submit count, and wake the thread if
10029 * we were asked to.
10030 */
10031 ret = 0;
10032 if (ctx->flags & IORING_SETUP_SQPOLL) {
10033 io_cqring_overflow_flush(ctx);
10034
10035 if (unlikely(ctx->sq_data->thread == NULL)) {
10036 ret = -EOWNERDEAD;
10037 goto out;
10038 }
10039 if (flags & IORING_ENTER_SQ_WAKEUP)
10040 wake_up(&ctx->sq_data->wait);
10041 if (flags & IORING_ENTER_SQ_WAIT) {
10042 ret = io_sqpoll_wait_sq(ctx);
10043 if (ret)
10044 goto out;
10045 }
10046 submitted = to_submit;
10047 } else if (to_submit) {
10048 ret = io_uring_add_tctx_node(ctx);
10049 if (unlikely(ret))
10050 goto out;
10051 mutex_lock(&ctx->uring_lock);
10052 submitted = io_submit_sqes(ctx, to_submit);
10053 mutex_unlock(&ctx->uring_lock);
10054
10055 if (submitted != to_submit)
10056 goto out;
10057 }
10058 if (flags & IORING_ENTER_GETEVENTS) {
10059 const sigset_t __user *sig;
10060 struct __kernel_timespec __user *ts;
10061
10062 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10063 if (unlikely(ret))
10064 goto out;
10065
10066 min_complete = min(min_complete, ctx->cq_entries);
10067
10068 /*
10069 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10070 * space applications don't need to do io completion events
10071 * polling again, they can rely on io_sq_thread to do polling
10072 * work, which can reduce cpu usage and uring_lock contention.
10073 */
10074 if (ctx->flags & IORING_SETUP_IOPOLL &&
10075 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10076 ret = io_iopoll_check(ctx, min_complete);
10077 } else {
10078 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10079 }
10080 }
10081
10082 out:
10083 percpu_ref_put(&ctx->refs);
10084 out_fput:
10085 fdput(f);
10086 return submitted ? submitted : ret;
10087 }
10088
10089 #ifdef CONFIG_PROC_FS
10090 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10091 const struct cred *cred)
10092 {
10093 struct user_namespace *uns = seq_user_ns(m);
10094 struct group_info *gi;
10095 kernel_cap_t cap;
10096 unsigned __capi;
10097 int g;
10098
10099 seq_printf(m, "%5d\n", id);
10100 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10101 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10102 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10103 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10104 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10105 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10106 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10107 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10108 seq_puts(m, "\n\tGroups:\t");
10109 gi = cred->group_info;
10110 for (g = 0; g < gi->ngroups; g++) {
10111 seq_put_decimal_ull(m, g ? " " : "",
10112 from_kgid_munged(uns, gi->gid[g]));
10113 }
10114 seq_puts(m, "\n\tCapEff:\t");
10115 cap = cred->cap_effective;
10116 CAP_FOR_EACH_U32(__capi)
10117 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10118 seq_putc(m, '\n');
10119 return 0;
10120 }
10121
10122 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10123 {
10124 struct io_sq_data *sq = NULL;
10125 bool has_lock;
10126 int i;
10127
10128 /*
10129 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10130 * since fdinfo case grabs it in the opposite direction of normal use
10131 * cases. If we fail to get the lock, we just don't iterate any
10132 * structures that could be going away outside the io_uring mutex.
10133 */
10134 has_lock = mutex_trylock(&ctx->uring_lock);
10135
10136 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10137 sq = ctx->sq_data;
10138 if (!sq->thread)
10139 sq = NULL;
10140 }
10141
10142 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10143 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10144 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10145 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10146 struct file *f = io_file_from_index(ctx, i);
10147
10148 if (f)
10149 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10150 else
10151 seq_printf(m, "%5u: <none>\n", i);
10152 }
10153 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10154 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10155 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10156 unsigned int len = buf->ubuf_end - buf->ubuf;
10157
10158 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10159 }
10160 if (has_lock && !xa_empty(&ctx->personalities)) {
10161 unsigned long index;
10162 const struct cred *cred;
10163
10164 seq_printf(m, "Personalities:\n");
10165 xa_for_each(&ctx->personalities, index, cred)
10166 io_uring_show_cred(m, index, cred);
10167 }
10168 seq_printf(m, "PollList:\n");
10169 spin_lock(&ctx->completion_lock);
10170 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10171 struct hlist_head *list = &ctx->cancel_hash[i];
10172 struct io_kiocb *req;
10173
10174 hlist_for_each_entry(req, list, hash_node)
10175 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10176 req->task->task_works != NULL);
10177 }
10178 spin_unlock(&ctx->completion_lock);
10179 if (has_lock)
10180 mutex_unlock(&ctx->uring_lock);
10181 }
10182
10183 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10184 {
10185 struct io_ring_ctx *ctx = f->private_data;
10186
10187 if (percpu_ref_tryget(&ctx->refs)) {
10188 __io_uring_show_fdinfo(ctx, m);
10189 percpu_ref_put(&ctx->refs);
10190 }
10191 }
10192 #endif
10193
10194 static const struct file_operations io_uring_fops = {
10195 .release = io_uring_release,
10196 .mmap = io_uring_mmap,
10197 #ifndef CONFIG_MMU
10198 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10199 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10200 #endif
10201 .poll = io_uring_poll,
10202 #ifdef CONFIG_PROC_FS
10203 .show_fdinfo = io_uring_show_fdinfo,
10204 #endif
10205 };
10206
10207 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10208 struct io_uring_params *p)
10209 {
10210 struct io_rings *rings;
10211 size_t size, sq_array_offset;
10212
10213 /* make sure these are sane, as we already accounted them */
10214 ctx->sq_entries = p->sq_entries;
10215 ctx->cq_entries = p->cq_entries;
10216
10217 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10218 if (size == SIZE_MAX)
10219 return -EOVERFLOW;
10220
10221 rings = io_mem_alloc(size);
10222 if (!rings)
10223 return -ENOMEM;
10224
10225 ctx->rings = rings;
10226 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10227 rings->sq_ring_mask = p->sq_entries - 1;
10228 rings->cq_ring_mask = p->cq_entries - 1;
10229 rings->sq_ring_entries = p->sq_entries;
10230 rings->cq_ring_entries = p->cq_entries;
10231
10232 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10233 if (size == SIZE_MAX) {
10234 io_mem_free(ctx->rings);
10235 ctx->rings = NULL;
10236 return -EOVERFLOW;
10237 }
10238
10239 ctx->sq_sqes = io_mem_alloc(size);
10240 if (!ctx->sq_sqes) {
10241 io_mem_free(ctx->rings);
10242 ctx->rings = NULL;
10243 return -ENOMEM;
10244 }
10245
10246 return 0;
10247 }
10248
10249 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10250 {
10251 int ret, fd;
10252
10253 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10254 if (fd < 0)
10255 return fd;
10256
10257 ret = io_uring_add_tctx_node(ctx);
10258 if (ret) {
10259 put_unused_fd(fd);
10260 return ret;
10261 }
10262 fd_install(fd, file);
10263 return fd;
10264 }
10265
10266 /*
10267 * Allocate an anonymous fd, this is what constitutes the application
10268 * visible backing of an io_uring instance. The application mmaps this
10269 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10270 * we have to tie this fd to a socket for file garbage collection purposes.
10271 */
10272 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10273 {
10274 struct file *file;
10275 #if defined(CONFIG_UNIX)
10276 int ret;
10277
10278 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10279 &ctx->ring_sock);
10280 if (ret)
10281 return ERR_PTR(ret);
10282 #endif
10283
10284 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10285 O_RDWR | O_CLOEXEC);
10286 #if defined(CONFIG_UNIX)
10287 if (IS_ERR(file)) {
10288 sock_release(ctx->ring_sock);
10289 ctx->ring_sock = NULL;
10290 } else {
10291 ctx->ring_sock->file = file;
10292 }
10293 #endif
10294 return file;
10295 }
10296
10297 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10298 struct io_uring_params __user *params)
10299 {
10300 struct io_ring_ctx *ctx;
10301 struct file *file;
10302 int ret;
10303
10304 if (!entries)
10305 return -EINVAL;
10306 if (entries > IORING_MAX_ENTRIES) {
10307 if (!(p->flags & IORING_SETUP_CLAMP))
10308 return -EINVAL;
10309 entries = IORING_MAX_ENTRIES;
10310 }
10311
10312 /*
10313 * Use twice as many entries for the CQ ring. It's possible for the
10314 * application to drive a higher depth than the size of the SQ ring,
10315 * since the sqes are only used at submission time. This allows for
10316 * some flexibility in overcommitting a bit. If the application has
10317 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10318 * of CQ ring entries manually.
10319 */
10320 p->sq_entries = roundup_pow_of_two(entries);
10321 if (p->flags & IORING_SETUP_CQSIZE) {
10322 /*
10323 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10324 * to a power-of-two, if it isn't already. We do NOT impose
10325 * any cq vs sq ring sizing.
10326 */
10327 if (!p->cq_entries)
10328 return -EINVAL;
10329 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10330 if (!(p->flags & IORING_SETUP_CLAMP))
10331 return -EINVAL;
10332 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10333 }
10334 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10335 if (p->cq_entries < p->sq_entries)
10336 return -EINVAL;
10337 } else {
10338 p->cq_entries = 2 * p->sq_entries;
10339 }
10340
10341 ctx = io_ring_ctx_alloc(p);
10342 if (!ctx)
10343 return -ENOMEM;
10344 ctx->compat = in_compat_syscall();
10345 if (!capable(CAP_IPC_LOCK))
10346 ctx->user = get_uid(current_user());
10347
10348 /*
10349 * This is just grabbed for accounting purposes. When a process exits,
10350 * the mm is exited and dropped before the files, hence we need to hang
10351 * on to this mm purely for the purposes of being able to unaccount
10352 * memory (locked/pinned vm). It's not used for anything else.
10353 */
10354 mmgrab(current->mm);
10355 ctx->mm_account = current->mm;
10356
10357 ret = io_allocate_scq_urings(ctx, p);
10358 if (ret)
10359 goto err;
10360
10361 ret = io_sq_offload_create(ctx, p);
10362 if (ret)
10363 goto err;
10364 /* always set a rsrc node */
10365 ret = io_rsrc_node_switch_start(ctx);
10366 if (ret)
10367 goto err;
10368 io_rsrc_node_switch(ctx, NULL);
10369
10370 memset(&p->sq_off, 0, sizeof(p->sq_off));
10371 p->sq_off.head = offsetof(struct io_rings, sq.head);
10372 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10373 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10374 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10375 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10376 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10377 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10378
10379 memset(&p->cq_off, 0, sizeof(p->cq_off));
10380 p->cq_off.head = offsetof(struct io_rings, cq.head);
10381 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10382 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10383 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10384 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10385 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10386 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10387
10388 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10389 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10390 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10391 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10392 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10393 IORING_FEAT_RSRC_TAGS;
10394
10395 if (copy_to_user(params, p, sizeof(*p))) {
10396 ret = -EFAULT;
10397 goto err;
10398 }
10399
10400 file = io_uring_get_file(ctx);
10401 if (IS_ERR(file)) {
10402 ret = PTR_ERR(file);
10403 goto err;
10404 }
10405
10406 /*
10407 * Install ring fd as the very last thing, so we don't risk someone
10408 * having closed it before we finish setup
10409 */
10410 ret = io_uring_install_fd(ctx, file);
10411 if (ret < 0) {
10412 /* fput will clean it up */
10413 fput(file);
10414 return ret;
10415 }
10416
10417 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10418 return ret;
10419 err:
10420 io_ring_ctx_wait_and_kill(ctx);
10421 return ret;
10422 }
10423
10424 /*
10425 * Sets up an aio uring context, and returns the fd. Applications asks for a
10426 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10427 * params structure passed in.
10428 */
10429 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10430 {
10431 struct io_uring_params p;
10432 int i;
10433
10434 if (copy_from_user(&p, params, sizeof(p)))
10435 return -EFAULT;
10436 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10437 if (p.resv[i])
10438 return -EINVAL;
10439 }
10440
10441 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10442 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10443 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10444 IORING_SETUP_R_DISABLED))
10445 return -EINVAL;
10446
10447 return io_uring_create(entries, &p, params);
10448 }
10449
10450 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10451 struct io_uring_params __user *, params)
10452 {
10453 return io_uring_setup(entries, params);
10454 }
10455
10456 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10457 {
10458 struct io_uring_probe *p;
10459 size_t size;
10460 int i, ret;
10461
10462 size = struct_size(p, ops, nr_args);
10463 if (size == SIZE_MAX)
10464 return -EOVERFLOW;
10465 p = kzalloc(size, GFP_KERNEL);
10466 if (!p)
10467 return -ENOMEM;
10468
10469 ret = -EFAULT;
10470 if (copy_from_user(p, arg, size))
10471 goto out;
10472 ret = -EINVAL;
10473 if (memchr_inv(p, 0, size))
10474 goto out;
10475
10476 p->last_op = IORING_OP_LAST - 1;
10477 if (nr_args > IORING_OP_LAST)
10478 nr_args = IORING_OP_LAST;
10479
10480 for (i = 0; i < nr_args; i++) {
10481 p->ops[i].op = i;
10482 if (!io_op_defs[i].not_supported)
10483 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10484 }
10485 p->ops_len = i;
10486
10487 ret = 0;
10488 if (copy_to_user(arg, p, size))
10489 ret = -EFAULT;
10490 out:
10491 kfree(p);
10492 return ret;
10493 }
10494
10495 static int io_register_personality(struct io_ring_ctx *ctx)
10496 {
10497 const struct cred *creds;
10498 u32 id;
10499 int ret;
10500
10501 creds = get_current_cred();
10502
10503 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10504 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10505 if (ret < 0) {
10506 put_cred(creds);
10507 return ret;
10508 }
10509 return id;
10510 }
10511
10512 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10513 unsigned int nr_args)
10514 {
10515 struct io_uring_restriction *res;
10516 size_t size;
10517 int i, ret;
10518
10519 /* Restrictions allowed only if rings started disabled */
10520 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10521 return -EBADFD;
10522
10523 /* We allow only a single restrictions registration */
10524 if (ctx->restrictions.registered)
10525 return -EBUSY;
10526
10527 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10528 return -EINVAL;
10529
10530 size = array_size(nr_args, sizeof(*res));
10531 if (size == SIZE_MAX)
10532 return -EOVERFLOW;
10533
10534 res = memdup_user(arg, size);
10535 if (IS_ERR(res))
10536 return PTR_ERR(res);
10537
10538 ret = 0;
10539
10540 for (i = 0; i < nr_args; i++) {
10541 switch (res[i].opcode) {
10542 case IORING_RESTRICTION_REGISTER_OP:
10543 if (res[i].register_op >= IORING_REGISTER_LAST) {
10544 ret = -EINVAL;
10545 goto out;
10546 }
10547
10548 __set_bit(res[i].register_op,
10549 ctx->restrictions.register_op);
10550 break;
10551 case IORING_RESTRICTION_SQE_OP:
10552 if (res[i].sqe_op >= IORING_OP_LAST) {
10553 ret = -EINVAL;
10554 goto out;
10555 }
10556
10557 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10558 break;
10559 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10560 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10561 break;
10562 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10563 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10564 break;
10565 default:
10566 ret = -EINVAL;
10567 goto out;
10568 }
10569 }
10570
10571 out:
10572 /* Reset all restrictions if an error happened */
10573 if (ret != 0)
10574 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10575 else
10576 ctx->restrictions.registered = true;
10577
10578 kfree(res);
10579 return ret;
10580 }
10581
10582 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10583 {
10584 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10585 return -EBADFD;
10586
10587 if (ctx->restrictions.registered)
10588 ctx->restricted = 1;
10589
10590 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10591 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10592 wake_up(&ctx->sq_data->wait);
10593 return 0;
10594 }
10595
10596 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10597 struct io_uring_rsrc_update2 *up,
10598 unsigned nr_args)
10599 {
10600 __u32 tmp;
10601 int err;
10602
10603 if (up->resv)
10604 return -EINVAL;
10605 if (check_add_overflow(up->offset, nr_args, &tmp))
10606 return -EOVERFLOW;
10607 err = io_rsrc_node_switch_start(ctx);
10608 if (err)
10609 return err;
10610
10611 switch (type) {
10612 case IORING_RSRC_FILE:
10613 return __io_sqe_files_update(ctx, up, nr_args);
10614 case IORING_RSRC_BUFFER:
10615 return __io_sqe_buffers_update(ctx, up, nr_args);
10616 }
10617 return -EINVAL;
10618 }
10619
10620 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10621 unsigned nr_args)
10622 {
10623 struct io_uring_rsrc_update2 up;
10624
10625 if (!nr_args)
10626 return -EINVAL;
10627 memset(&up, 0, sizeof(up));
10628 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10629 return -EFAULT;
10630 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10631 }
10632
10633 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10634 unsigned size, unsigned type)
10635 {
10636 struct io_uring_rsrc_update2 up;
10637
10638 if (size != sizeof(up))
10639 return -EINVAL;
10640 if (copy_from_user(&up, arg, sizeof(up)))
10641 return -EFAULT;
10642 if (!up.nr || up.resv)
10643 return -EINVAL;
10644 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10645 }
10646
10647 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10648 unsigned int size, unsigned int type)
10649 {
10650 struct io_uring_rsrc_register rr;
10651
10652 /* keep it extendible */
10653 if (size != sizeof(rr))
10654 return -EINVAL;
10655
10656 memset(&rr, 0, sizeof(rr));
10657 if (copy_from_user(&rr, arg, size))
10658 return -EFAULT;
10659 if (!rr.nr || rr.resv || rr.resv2)
10660 return -EINVAL;
10661
10662 switch (type) {
10663 case IORING_RSRC_FILE:
10664 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10665 rr.nr, u64_to_user_ptr(rr.tags));
10666 case IORING_RSRC_BUFFER:
10667 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10668 rr.nr, u64_to_user_ptr(rr.tags));
10669 }
10670 return -EINVAL;
10671 }
10672
10673 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10674 unsigned len)
10675 {
10676 struct io_uring_task *tctx = current->io_uring;
10677 cpumask_var_t new_mask;
10678 int ret;
10679
10680 if (!tctx || !tctx->io_wq)
10681 return -EINVAL;
10682
10683 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10684 return -ENOMEM;
10685
10686 cpumask_clear(new_mask);
10687 if (len > cpumask_size())
10688 len = cpumask_size();
10689
10690 if (copy_from_user(new_mask, arg, len)) {
10691 free_cpumask_var(new_mask);
10692 return -EFAULT;
10693 }
10694
10695 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10696 free_cpumask_var(new_mask);
10697 return ret;
10698 }
10699
10700 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10701 {
10702 struct io_uring_task *tctx = current->io_uring;
10703
10704 if (!tctx || !tctx->io_wq)
10705 return -EINVAL;
10706
10707 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10708 }
10709
10710 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10711 void __user *arg)
10712 __must_hold(&ctx->uring_lock)
10713 {
10714 struct io_tctx_node *node;
10715 struct io_uring_task *tctx = NULL;
10716 struct io_sq_data *sqd = NULL;
10717 __u32 new_count[2];
10718 int i, ret;
10719
10720 if (copy_from_user(new_count, arg, sizeof(new_count)))
10721 return -EFAULT;
10722 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10723 if (new_count[i] > INT_MAX)
10724 return -EINVAL;
10725
10726 if (ctx->flags & IORING_SETUP_SQPOLL) {
10727 sqd = ctx->sq_data;
10728 if (sqd) {
10729 /*
10730 * Observe the correct sqd->lock -> ctx->uring_lock
10731 * ordering. Fine to drop uring_lock here, we hold
10732 * a ref to the ctx.
10733 */
10734 refcount_inc(&sqd->refs);
10735 mutex_unlock(&ctx->uring_lock);
10736 mutex_lock(&sqd->lock);
10737 mutex_lock(&ctx->uring_lock);
10738 if (sqd->thread)
10739 tctx = sqd->thread->io_uring;
10740 }
10741 } else {
10742 tctx = current->io_uring;
10743 }
10744
10745 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10746
10747 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10748 if (new_count[i])
10749 ctx->iowq_limits[i] = new_count[i];
10750 ctx->iowq_limits_set = true;
10751
10752 ret = -EINVAL;
10753 if (tctx && tctx->io_wq) {
10754 ret = io_wq_max_workers(tctx->io_wq, new_count);
10755 if (ret)
10756 goto err;
10757 } else {
10758 memset(new_count, 0, sizeof(new_count));
10759 }
10760
10761 if (sqd) {
10762 mutex_unlock(&sqd->lock);
10763 io_put_sq_data(sqd);
10764 }
10765
10766 if (copy_to_user(arg, new_count, sizeof(new_count)))
10767 return -EFAULT;
10768
10769 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10770 if (sqd)
10771 return 0;
10772
10773 /* now propagate the restriction to all registered users */
10774 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10775 struct io_uring_task *tctx = node->task->io_uring;
10776
10777 if (WARN_ON_ONCE(!tctx->io_wq))
10778 continue;
10779
10780 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10781 new_count[i] = ctx->iowq_limits[i];
10782 /* ignore errors, it always returns zero anyway */
10783 (void)io_wq_max_workers(tctx->io_wq, new_count);
10784 }
10785 return 0;
10786 err:
10787 if (sqd) {
10788 mutex_unlock(&sqd->lock);
10789 io_put_sq_data(sqd);
10790 }
10791 return ret;
10792 }
10793
10794 static bool io_register_op_must_quiesce(int op)
10795 {
10796 switch (op) {
10797 case IORING_REGISTER_BUFFERS:
10798 case IORING_UNREGISTER_BUFFERS:
10799 case IORING_REGISTER_FILES:
10800 case IORING_UNREGISTER_FILES:
10801 case IORING_REGISTER_FILES_UPDATE:
10802 case IORING_REGISTER_PROBE:
10803 case IORING_REGISTER_PERSONALITY:
10804 case IORING_UNREGISTER_PERSONALITY:
10805 case IORING_REGISTER_FILES2:
10806 case IORING_REGISTER_FILES_UPDATE2:
10807 case IORING_REGISTER_BUFFERS2:
10808 case IORING_REGISTER_BUFFERS_UPDATE:
10809 case IORING_REGISTER_IOWQ_AFF:
10810 case IORING_UNREGISTER_IOWQ_AFF:
10811 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10812 return false;
10813 default:
10814 return true;
10815 }
10816 }
10817
10818 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10819 {
10820 long ret;
10821
10822 percpu_ref_kill(&ctx->refs);
10823
10824 /*
10825 * Drop uring mutex before waiting for references to exit. If another
10826 * thread is currently inside io_uring_enter() it might need to grab the
10827 * uring_lock to make progress. If we hold it here across the drain
10828 * wait, then we can deadlock. It's safe to drop the mutex here, since
10829 * no new references will come in after we've killed the percpu ref.
10830 */
10831 mutex_unlock(&ctx->uring_lock);
10832 do {
10833 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10834 if (!ret)
10835 break;
10836 ret = io_run_task_work_sig();
10837 } while (ret >= 0);
10838 mutex_lock(&ctx->uring_lock);
10839
10840 if (ret)
10841 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10842 return ret;
10843 }
10844
10845 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10846 void __user *arg, unsigned nr_args)
10847 __releases(ctx->uring_lock)
10848 __acquires(ctx->uring_lock)
10849 {
10850 int ret;
10851
10852 /*
10853 * We're inside the ring mutex, if the ref is already dying, then
10854 * someone else killed the ctx or is already going through
10855 * io_uring_register().
10856 */
10857 if (percpu_ref_is_dying(&ctx->refs))
10858 return -ENXIO;
10859
10860 if (ctx->restricted) {
10861 if (opcode >= IORING_REGISTER_LAST)
10862 return -EINVAL;
10863 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10864 if (!test_bit(opcode, ctx->restrictions.register_op))
10865 return -EACCES;
10866 }
10867
10868 if (io_register_op_must_quiesce(opcode)) {
10869 ret = io_ctx_quiesce(ctx);
10870 if (ret)
10871 return ret;
10872 }
10873
10874 switch (opcode) {
10875 case IORING_REGISTER_BUFFERS:
10876 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10877 break;
10878 case IORING_UNREGISTER_BUFFERS:
10879 ret = -EINVAL;
10880 if (arg || nr_args)
10881 break;
10882 ret = io_sqe_buffers_unregister(ctx);
10883 break;
10884 case IORING_REGISTER_FILES:
10885 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10886 break;
10887 case IORING_UNREGISTER_FILES:
10888 ret = -EINVAL;
10889 if (arg || nr_args)
10890 break;
10891 ret = io_sqe_files_unregister(ctx);
10892 break;
10893 case IORING_REGISTER_FILES_UPDATE:
10894 ret = io_register_files_update(ctx, arg, nr_args);
10895 break;
10896 case IORING_REGISTER_EVENTFD:
10897 case IORING_REGISTER_EVENTFD_ASYNC:
10898 ret = -EINVAL;
10899 if (nr_args != 1)
10900 break;
10901 ret = io_eventfd_register(ctx, arg);
10902 if (ret)
10903 break;
10904 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10905 ctx->eventfd_async = 1;
10906 else
10907 ctx->eventfd_async = 0;
10908 break;
10909 case IORING_UNREGISTER_EVENTFD:
10910 ret = -EINVAL;
10911 if (arg || nr_args)
10912 break;
10913 ret = io_eventfd_unregister(ctx);
10914 break;
10915 case IORING_REGISTER_PROBE:
10916 ret = -EINVAL;
10917 if (!arg || nr_args > 256)
10918 break;
10919 ret = io_probe(ctx, arg, nr_args);
10920 break;
10921 case IORING_REGISTER_PERSONALITY:
10922 ret = -EINVAL;
10923 if (arg || nr_args)
10924 break;
10925 ret = io_register_personality(ctx);
10926 break;
10927 case IORING_UNREGISTER_PERSONALITY:
10928 ret = -EINVAL;
10929 if (arg)
10930 break;
10931 ret = io_unregister_personality(ctx, nr_args);
10932 break;
10933 case IORING_REGISTER_ENABLE_RINGS:
10934 ret = -EINVAL;
10935 if (arg || nr_args)
10936 break;
10937 ret = io_register_enable_rings(ctx);
10938 break;
10939 case IORING_REGISTER_RESTRICTIONS:
10940 ret = io_register_restrictions(ctx, arg, nr_args);
10941 break;
10942 case IORING_REGISTER_FILES2:
10943 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10944 break;
10945 case IORING_REGISTER_FILES_UPDATE2:
10946 ret = io_register_rsrc_update(ctx, arg, nr_args,
10947 IORING_RSRC_FILE);
10948 break;
10949 case IORING_REGISTER_BUFFERS2:
10950 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10951 break;
10952 case IORING_REGISTER_BUFFERS_UPDATE:
10953 ret = io_register_rsrc_update(ctx, arg, nr_args,
10954 IORING_RSRC_BUFFER);
10955 break;
10956 case IORING_REGISTER_IOWQ_AFF:
10957 ret = -EINVAL;
10958 if (!arg || !nr_args)
10959 break;
10960 ret = io_register_iowq_aff(ctx, arg, nr_args);
10961 break;
10962 case IORING_UNREGISTER_IOWQ_AFF:
10963 ret = -EINVAL;
10964 if (arg || nr_args)
10965 break;
10966 ret = io_unregister_iowq_aff(ctx);
10967 break;
10968 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10969 ret = -EINVAL;
10970 if (!arg || nr_args != 2)
10971 break;
10972 ret = io_register_iowq_max_workers(ctx, arg);
10973 break;
10974 default:
10975 ret = -EINVAL;
10976 break;
10977 }
10978
10979 if (io_register_op_must_quiesce(opcode)) {
10980 /* bring the ctx back to life */
10981 percpu_ref_reinit(&ctx->refs);
10982 reinit_completion(&ctx->ref_comp);
10983 }
10984 return ret;
10985 }
10986
10987 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10988 void __user *, arg, unsigned int, nr_args)
10989 {
10990 struct io_ring_ctx *ctx;
10991 long ret = -EBADF;
10992 struct fd f;
10993
10994 f = fdget(fd);
10995 if (!f.file)
10996 return -EBADF;
10997
10998 ret = -EOPNOTSUPP;
10999 if (f.file->f_op != &io_uring_fops)
11000 goto out_fput;
11001
11002 ctx = f.file->private_data;
11003
11004 io_run_task_work();
11005
11006 mutex_lock(&ctx->uring_lock);
11007 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11008 mutex_unlock(&ctx->uring_lock);
11009 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11010 ctx->cq_ev_fd != NULL, ret);
11011 out_fput:
11012 fdput(f);
11013 return ret;
11014 }
11015
11016 static int __init io_uring_init(void)
11017 {
11018 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11019 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11020 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11021 } while (0)
11022
11023 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11024 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11025 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11026 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11027 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11028 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11029 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11030 BUILD_BUG_SQE_ELEM(8, __u64, off);
11031 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11032 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11033 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11034 BUILD_BUG_SQE_ELEM(24, __u32, len);
11035 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11036 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11037 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11038 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11039 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11040 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11041 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11042 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11043 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11044 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11045 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11046 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11047 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11048 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11049 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11050 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11051 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11052 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11053 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11054 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11055 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11056
11057 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11058 sizeof(struct io_uring_rsrc_update));
11059 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11060 sizeof(struct io_uring_rsrc_update2));
11061
11062 /* ->buf_index is u16 */
11063 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11064
11065 /* should fit into one byte */
11066 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11067
11068 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11069 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11070
11071 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11072 SLAB_ACCOUNT);
11073 return 0;
11074 };
11075 __initcall(io_uring_init);