]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: name rsrc bits consistently
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92
93 /*
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
95 */
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
101 IORING_REGISTER_LAST + IORING_OP_LAST)
102
103 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
104 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
105 IOSQE_BUFFER_SELECT)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
193 };
194
195 struct io_mapped_ubuf {
196 u64 ubuf;
197 size_t len;
198 struct bio_vec *bvec;
199 unsigned int nr_bvecs;
200 unsigned long acct_pages;
201 };
202
203 struct io_ring_ctx;
204
205 struct io_overflow_cqe {
206 struct io_uring_cqe cqe;
207 struct list_head list;
208 };
209
210 struct io_rsrc_put {
211 struct list_head list;
212 union {
213 void *rsrc;
214 struct file *file;
215 };
216 };
217
218 struct fixed_rsrc_table {
219 struct file **files;
220 };
221
222 struct io_rsrc_node {
223 struct percpu_ref refs;
224 struct list_head node;
225 struct list_head rsrc_list;
226 struct io_rsrc_data *rsrc_data;
227 void (*rsrc_put)(struct io_ring_ctx *ctx,
228 struct io_rsrc_put *prsrc);
229 struct llist_node llist;
230 bool done;
231 };
232
233 struct io_rsrc_data {
234 struct fixed_rsrc_table *table;
235 struct io_ring_ctx *ctx;
236
237 struct io_rsrc_node *node;
238 struct percpu_ref refs;
239 struct completion done;
240 bool quiesce;
241 };
242
243 struct io_buffer {
244 struct list_head list;
245 __u64 addr;
246 __s32 len;
247 __u16 bid;
248 };
249
250 struct io_restriction {
251 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
252 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
253 u8 sqe_flags_allowed;
254 u8 sqe_flags_required;
255 bool registered;
256 };
257
258 enum {
259 IO_SQ_THREAD_SHOULD_STOP = 0,
260 IO_SQ_THREAD_SHOULD_PARK,
261 };
262
263 struct io_sq_data {
264 refcount_t refs;
265 atomic_t park_pending;
266 struct mutex lock;
267
268 /* ctx's that are using this sqd */
269 struct list_head ctx_list;
270
271 struct task_struct *thread;
272 struct wait_queue_head wait;
273
274 unsigned sq_thread_idle;
275 int sq_cpu;
276 pid_t task_pid;
277 pid_t task_tgid;
278
279 unsigned long state;
280 struct completion exited;
281 struct callback_head *park_task_work;
282 };
283
284 #define IO_IOPOLL_BATCH 8
285 #define IO_COMPL_BATCH 32
286 #define IO_REQ_CACHE_SIZE 32
287 #define IO_REQ_ALLOC_BATCH 8
288
289 struct io_comp_state {
290 struct io_kiocb *reqs[IO_COMPL_BATCH];
291 unsigned int nr;
292 unsigned int locked_free_nr;
293 /* inline/task_work completion list, under ->uring_lock */
294 struct list_head free_list;
295 /* IRQ completion list, under ->completion_lock */
296 struct list_head locked_free_list;
297 };
298
299 struct io_submit_link {
300 struct io_kiocb *head;
301 struct io_kiocb *last;
302 };
303
304 struct io_submit_state {
305 struct blk_plug plug;
306 struct io_submit_link link;
307
308 /*
309 * io_kiocb alloc cache
310 */
311 void *reqs[IO_REQ_CACHE_SIZE];
312 unsigned int free_reqs;
313
314 bool plug_started;
315
316 /*
317 * Batch completion logic
318 */
319 struct io_comp_state comp;
320
321 /*
322 * File reference cache
323 */
324 struct file *file;
325 unsigned int fd;
326 unsigned int file_refs;
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 struct {
332 struct percpu_ref refs;
333 } ____cacheline_aligned_in_smp;
334
335 struct {
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int cq_overflow_flushed: 1;
339 unsigned int drain_next: 1;
340 unsigned int eventfd_async: 1;
341 unsigned int restricted: 1;
342
343 /*
344 * Ring buffer of indices into array of io_uring_sqe, which is
345 * mmapped by the application using the IORING_OFF_SQES offset.
346 *
347 * This indirection could e.g. be used to assign fixed
348 * io_uring_sqe entries to operations and only submit them to
349 * the queue when needed.
350 *
351 * The kernel modifies neither the indices array nor the entries
352 * array.
353 */
354 u32 *sq_array;
355 unsigned cached_sq_head;
356 unsigned sq_entries;
357 unsigned sq_mask;
358 unsigned sq_thread_idle;
359 unsigned cached_sq_dropped;
360 unsigned cached_cq_overflow;
361 unsigned long sq_check_overflow;
362
363 /* hashed buffered write serialization */
364 struct io_wq_hash *hash_map;
365
366 struct list_head defer_list;
367 struct list_head timeout_list;
368 struct list_head cq_overflow_list;
369
370 struct io_uring_sqe *sq_sqes;
371 } ____cacheline_aligned_in_smp;
372
373 struct {
374 struct mutex uring_lock;
375 wait_queue_head_t wait;
376 } ____cacheline_aligned_in_smp;
377
378 struct io_submit_state submit_state;
379
380 struct io_rings *rings;
381
382 /* Only used for accounting purposes */
383 struct mm_struct *mm_account;
384
385 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
386 struct io_sq_data *sq_data; /* if using sq thread polling */
387
388 struct wait_queue_head sqo_sq_wait;
389 struct list_head sqd_list;
390
391 /*
392 * If used, fixed file set. Writers must ensure that ->refs is dead,
393 * readers must ensure that ->refs is alive as long as the file* is
394 * used. Only updated through io_uring_register(2).
395 */
396 struct io_rsrc_data *file_data;
397 unsigned nr_user_files;
398
399 /* if used, fixed mapped user buffers */
400 unsigned nr_user_bufs;
401 struct io_mapped_ubuf *user_bufs;
402
403 struct user_struct *user;
404
405 struct completion ref_comp;
406
407 #if defined(CONFIG_UNIX)
408 struct socket *ring_sock;
409 #endif
410
411 struct xarray io_buffers;
412
413 struct xarray personalities;
414 u32 pers_next;
415
416 struct {
417 unsigned cached_cq_tail;
418 unsigned cq_entries;
419 unsigned cq_mask;
420 atomic_t cq_timeouts;
421 unsigned cq_last_tm_flush;
422 unsigned long cq_check_overflow;
423 struct wait_queue_head cq_wait;
424 struct fasync_struct *cq_fasync;
425 struct eventfd_ctx *cq_ev_fd;
426 } ____cacheline_aligned_in_smp;
427
428 struct {
429 spinlock_t completion_lock;
430
431 /*
432 * ->iopoll_list is protected by the ctx->uring_lock for
433 * io_uring instances that don't use IORING_SETUP_SQPOLL.
434 * For SQPOLL, only the single threaded io_sq_thread() will
435 * manipulate the list, hence no extra locking is needed there.
436 */
437 struct list_head iopoll_list;
438 struct hlist_head *cancel_hash;
439 unsigned cancel_hash_bits;
440 bool poll_multi_file;
441
442 spinlock_t inflight_lock;
443 struct list_head inflight_list;
444 } ____cacheline_aligned_in_smp;
445
446 struct delayed_work rsrc_put_work;
447 struct llist_head rsrc_put_llist;
448 struct list_head rsrc_ref_list;
449 spinlock_t rsrc_ref_lock;
450 struct io_rsrc_node *rsrc_backup_node;
451
452 struct io_restriction restrictions;
453
454 /* exit task_work */
455 struct callback_head *exit_task_work;
456
457 struct wait_queue_head hash_wait;
458
459 /* Keep this last, we don't need it for the fast path */
460 struct work_struct exit_work;
461 struct list_head tctx_list;
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 struct xarray xa;
467 struct wait_queue_head wait;
468 const struct io_ring_ctx *last;
469 struct io_wq *io_wq;
470 struct percpu_counter inflight;
471 atomic_t in_idle;
472
473 spinlock_t task_lock;
474 struct io_wq_work_list task_list;
475 unsigned long task_state;
476 struct callback_head task_work;
477 };
478
479 /*
480 * First field must be the file pointer in all the
481 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
482 */
483 struct io_poll_iocb {
484 struct file *file;
485 struct wait_queue_head *head;
486 __poll_t events;
487 bool done;
488 bool canceled;
489 bool update_events;
490 bool update_user_data;
491 union {
492 struct wait_queue_entry wait;
493 struct {
494 u64 old_user_data;
495 u64 new_user_data;
496 };
497 };
498 };
499
500 struct io_poll_remove {
501 struct file *file;
502 u64 addr;
503 };
504
505 struct io_close {
506 struct file *file;
507 int fd;
508 };
509
510 struct io_timeout_data {
511 struct io_kiocb *req;
512 struct hrtimer timer;
513 struct timespec64 ts;
514 enum hrtimer_mode mode;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 unsigned long nofile;
523 };
524
525 struct io_sync {
526 struct file *file;
527 loff_t len;
528 loff_t off;
529 int flags;
530 int mode;
531 };
532
533 struct io_cancel {
534 struct file *file;
535 u64 addr;
536 };
537
538 struct io_timeout {
539 struct file *file;
540 u32 off;
541 u32 target_seq;
542 struct list_head list;
543 /* head of the link, used by linked timeouts only */
544 struct io_kiocb *head;
545 };
546
547 struct io_timeout_rem {
548 struct file *file;
549 u64 addr;
550
551 /* timeout update */
552 struct timespec64 ts;
553 u32 flags;
554 };
555
556 struct io_rw {
557 /* NOTE: kiocb has the file as the first member, so don't do it here */
558 struct kiocb kiocb;
559 u64 addr;
560 u64 len;
561 };
562
563 struct io_connect {
564 struct file *file;
565 struct sockaddr __user *addr;
566 int addr_len;
567 };
568
569 struct io_sr_msg {
570 struct file *file;
571 union {
572 struct user_msghdr __user *umsg;
573 void __user *buf;
574 };
575 int msg_flags;
576 int bgid;
577 size_t len;
578 struct io_buffer *kbuf;
579 };
580
581 struct io_open {
582 struct file *file;
583 int dfd;
584 struct filename *filename;
585 struct open_how how;
586 unsigned long nofile;
587 };
588
589 struct io_rsrc_update {
590 struct file *file;
591 u64 arg;
592 u32 nr_args;
593 u32 offset;
594 };
595
596 struct io_fadvise {
597 struct file *file;
598 u64 offset;
599 u32 len;
600 u32 advice;
601 };
602
603 struct io_madvise {
604 struct file *file;
605 u64 addr;
606 u32 len;
607 u32 advice;
608 };
609
610 struct io_epoll {
611 struct file *file;
612 int epfd;
613 int op;
614 int fd;
615 struct epoll_event event;
616 };
617
618 struct io_splice {
619 struct file *file_out;
620 struct file *file_in;
621 loff_t off_out;
622 loff_t off_in;
623 u64 len;
624 unsigned int flags;
625 };
626
627 struct io_provide_buf {
628 struct file *file;
629 __u64 addr;
630 __s32 len;
631 __u32 bgid;
632 __u16 nbufs;
633 __u16 bid;
634 };
635
636 struct io_statx {
637 struct file *file;
638 int dfd;
639 unsigned int mask;
640 unsigned int flags;
641 const char __user *filename;
642 struct statx __user *buffer;
643 };
644
645 struct io_shutdown {
646 struct file *file;
647 int how;
648 };
649
650 struct io_rename {
651 struct file *file;
652 int old_dfd;
653 int new_dfd;
654 struct filename *oldpath;
655 struct filename *newpath;
656 int flags;
657 };
658
659 struct io_unlink {
660 struct file *file;
661 int dfd;
662 int flags;
663 struct filename *filename;
664 };
665
666 struct io_completion {
667 struct file *file;
668 struct list_head list;
669 u32 cflags;
670 };
671
672 struct io_async_connect {
673 struct sockaddr_storage address;
674 };
675
676 struct io_async_msghdr {
677 struct iovec fast_iov[UIO_FASTIOV];
678 /* points to an allocated iov, if NULL we use fast_iov instead */
679 struct iovec *free_iov;
680 struct sockaddr __user *uaddr;
681 struct msghdr msg;
682 struct sockaddr_storage addr;
683 };
684
685 struct io_async_rw {
686 struct iovec fast_iov[UIO_FASTIOV];
687 const struct iovec *free_iovec;
688 struct iov_iter iter;
689 size_t bytes_done;
690 struct wait_page_queue wpq;
691 };
692
693 enum {
694 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
695 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
696 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
697 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
698 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
699 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
700
701 REQ_F_FAIL_LINK_BIT,
702 REQ_F_INFLIGHT_BIT,
703 REQ_F_CUR_POS_BIT,
704 REQ_F_NOWAIT_BIT,
705 REQ_F_LINK_TIMEOUT_BIT,
706 REQ_F_NEED_CLEANUP_BIT,
707 REQ_F_POLLED_BIT,
708 REQ_F_BUFFER_SELECTED_BIT,
709 REQ_F_LTIMEOUT_ACTIVE_BIT,
710 REQ_F_COMPLETE_INLINE_BIT,
711 REQ_F_REISSUE_BIT,
712 REQ_F_DONT_REISSUE_BIT,
713 /* keep async read/write and isreg together and in order */
714 REQ_F_ASYNC_READ_BIT,
715 REQ_F_ASYNC_WRITE_BIT,
716 REQ_F_ISREG_BIT,
717
718 /* not a real bit, just to check we're not overflowing the space */
719 __REQ_F_LAST_BIT,
720 };
721
722 enum {
723 /* ctx owns file */
724 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
725 /* drain existing IO first */
726 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
727 /* linked sqes */
728 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
729 /* doesn't sever on completion < 0 */
730 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
731 /* IOSQE_ASYNC */
732 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
733 /* IOSQE_BUFFER_SELECT */
734 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
735
736 /* fail rest of links */
737 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
738 /* on inflight list, should be cancelled and waited on exit reliably */
739 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
740 /* read/write uses file position */
741 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
742 /* must not punt to workers */
743 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
744 /* has or had linked timeout */
745 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
746 /* needs cleanup */
747 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
748 /* already went through poll handler */
749 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
750 /* buffer already selected */
751 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
752 /* linked timeout is active, i.e. prepared by link's head */
753 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
754 /* completion is deferred through io_comp_state */
755 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
756 /* caller should reissue async */
757 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
758 /* don't attempt request reissue, see io_rw_reissue() */
759 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
760 /* supports async reads */
761 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
762 /* supports async writes */
763 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
764 /* regular file */
765 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
766 };
767
768 struct async_poll {
769 struct io_poll_iocb poll;
770 struct io_poll_iocb *double_poll;
771 };
772
773 struct io_task_work {
774 struct io_wq_work_node node;
775 task_work_func_t func;
776 };
777
778 /*
779 * NOTE! Each of the iocb union members has the file pointer
780 * as the first entry in their struct definition. So you can
781 * access the file pointer through any of the sub-structs,
782 * or directly as just 'ki_filp' in this struct.
783 */
784 struct io_kiocb {
785 union {
786 struct file *file;
787 struct io_rw rw;
788 struct io_poll_iocb poll;
789 struct io_poll_remove poll_remove;
790 struct io_accept accept;
791 struct io_sync sync;
792 struct io_cancel cancel;
793 struct io_timeout timeout;
794 struct io_timeout_rem timeout_rem;
795 struct io_connect connect;
796 struct io_sr_msg sr_msg;
797 struct io_open open;
798 struct io_close close;
799 struct io_rsrc_update rsrc_update;
800 struct io_fadvise fadvise;
801 struct io_madvise madvise;
802 struct io_epoll epoll;
803 struct io_splice splice;
804 struct io_provide_buf pbuf;
805 struct io_statx statx;
806 struct io_shutdown shutdown;
807 struct io_rename rename;
808 struct io_unlink unlink;
809 /* use only after cleaning per-op data, see io_clean_op() */
810 struct io_completion compl;
811 };
812
813 /* opcode allocated if it needs to store data for async defer */
814 void *async_data;
815 u8 opcode;
816 /* polled IO has completed */
817 u8 iopoll_completed;
818
819 u16 buf_index;
820 u32 result;
821
822 struct io_ring_ctx *ctx;
823 unsigned int flags;
824 atomic_t refs;
825 struct task_struct *task;
826 u64 user_data;
827
828 struct io_kiocb *link;
829 struct percpu_ref *fixed_rsrc_refs;
830
831 /*
832 * 1. used with ctx->iopoll_list with reads/writes
833 * 2. to track reqs with ->files (see io_op_def::file_table)
834 */
835 struct list_head inflight_entry;
836 union {
837 struct io_task_work io_task_work;
838 struct callback_head task_work;
839 };
840 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
841 struct hlist_node hash_node;
842 struct async_poll *apoll;
843 struct io_wq_work work;
844 };
845
846 struct io_tctx_node {
847 struct list_head ctx_node;
848 struct task_struct *task;
849 struct io_ring_ctx *ctx;
850 };
851
852 struct io_defer_entry {
853 struct list_head list;
854 struct io_kiocb *req;
855 u32 seq;
856 };
857
858 struct io_op_def {
859 /* needs req->file assigned */
860 unsigned needs_file : 1;
861 /* hash wq insertion if file is a regular file */
862 unsigned hash_reg_file : 1;
863 /* unbound wq insertion if file is a non-regular file */
864 unsigned unbound_nonreg_file : 1;
865 /* opcode is not supported by this kernel */
866 unsigned not_supported : 1;
867 /* set if opcode supports polled "wait" */
868 unsigned pollin : 1;
869 unsigned pollout : 1;
870 /* op supports buffer selection */
871 unsigned buffer_select : 1;
872 /* do prep async if is going to be punted */
873 unsigned needs_async_setup : 1;
874 /* should block plug */
875 unsigned plug : 1;
876 /* size of async data needed, if any */
877 unsigned short async_size;
878 };
879
880 static const struct io_op_def io_op_defs[] = {
881 [IORING_OP_NOP] = {},
882 [IORING_OP_READV] = {
883 .needs_file = 1,
884 .unbound_nonreg_file = 1,
885 .pollin = 1,
886 .buffer_select = 1,
887 .needs_async_setup = 1,
888 .plug = 1,
889 .async_size = sizeof(struct io_async_rw),
890 },
891 [IORING_OP_WRITEV] = {
892 .needs_file = 1,
893 .hash_reg_file = 1,
894 .unbound_nonreg_file = 1,
895 .pollout = 1,
896 .needs_async_setup = 1,
897 .plug = 1,
898 .async_size = sizeof(struct io_async_rw),
899 },
900 [IORING_OP_FSYNC] = {
901 .needs_file = 1,
902 },
903 [IORING_OP_READ_FIXED] = {
904 .needs_file = 1,
905 .unbound_nonreg_file = 1,
906 .pollin = 1,
907 .plug = 1,
908 .async_size = sizeof(struct io_async_rw),
909 },
910 [IORING_OP_WRITE_FIXED] = {
911 .needs_file = 1,
912 .hash_reg_file = 1,
913 .unbound_nonreg_file = 1,
914 .pollout = 1,
915 .plug = 1,
916 .async_size = sizeof(struct io_async_rw),
917 },
918 [IORING_OP_POLL_ADD] = {
919 .needs_file = 1,
920 .unbound_nonreg_file = 1,
921 },
922 [IORING_OP_POLL_REMOVE] = {},
923 [IORING_OP_SYNC_FILE_RANGE] = {
924 .needs_file = 1,
925 },
926 [IORING_OP_SENDMSG] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollout = 1,
930 .needs_async_setup = 1,
931 .async_size = sizeof(struct io_async_msghdr),
932 },
933 [IORING_OP_RECVMSG] = {
934 .needs_file = 1,
935 .unbound_nonreg_file = 1,
936 .pollin = 1,
937 .buffer_select = 1,
938 .needs_async_setup = 1,
939 .async_size = sizeof(struct io_async_msghdr),
940 },
941 [IORING_OP_TIMEOUT] = {
942 .async_size = sizeof(struct io_timeout_data),
943 },
944 [IORING_OP_TIMEOUT_REMOVE] = {
945 /* used by timeout updates' prep() */
946 },
947 [IORING_OP_ACCEPT] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 },
952 [IORING_OP_ASYNC_CANCEL] = {},
953 [IORING_OP_LINK_TIMEOUT] = {
954 .async_size = sizeof(struct io_timeout_data),
955 },
956 [IORING_OP_CONNECT] = {
957 .needs_file = 1,
958 .unbound_nonreg_file = 1,
959 .pollout = 1,
960 .needs_async_setup = 1,
961 .async_size = sizeof(struct io_async_connect),
962 },
963 [IORING_OP_FALLOCATE] = {
964 .needs_file = 1,
965 },
966 [IORING_OP_OPENAT] = {},
967 [IORING_OP_CLOSE] = {},
968 [IORING_OP_FILES_UPDATE] = {},
969 [IORING_OP_STATX] = {},
970 [IORING_OP_READ] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollin = 1,
974 .buffer_select = 1,
975 .plug = 1,
976 .async_size = sizeof(struct io_async_rw),
977 },
978 [IORING_OP_WRITE] = {
979 .needs_file = 1,
980 .unbound_nonreg_file = 1,
981 .pollout = 1,
982 .plug = 1,
983 .async_size = sizeof(struct io_async_rw),
984 },
985 [IORING_OP_FADVISE] = {
986 .needs_file = 1,
987 },
988 [IORING_OP_MADVISE] = {},
989 [IORING_OP_SEND] = {
990 .needs_file = 1,
991 .unbound_nonreg_file = 1,
992 .pollout = 1,
993 },
994 [IORING_OP_RECV] = {
995 .needs_file = 1,
996 .unbound_nonreg_file = 1,
997 .pollin = 1,
998 .buffer_select = 1,
999 },
1000 [IORING_OP_OPENAT2] = {
1001 },
1002 [IORING_OP_EPOLL_CTL] = {
1003 .unbound_nonreg_file = 1,
1004 },
1005 [IORING_OP_SPLICE] = {
1006 .needs_file = 1,
1007 .hash_reg_file = 1,
1008 .unbound_nonreg_file = 1,
1009 },
1010 [IORING_OP_PROVIDE_BUFFERS] = {},
1011 [IORING_OP_REMOVE_BUFFERS] = {},
1012 [IORING_OP_TEE] = {
1013 .needs_file = 1,
1014 .hash_reg_file = 1,
1015 .unbound_nonreg_file = 1,
1016 },
1017 [IORING_OP_SHUTDOWN] = {
1018 .needs_file = 1,
1019 },
1020 [IORING_OP_RENAMEAT] = {},
1021 [IORING_OP_UNLINKAT] = {},
1022 };
1023
1024 static bool io_disarm_next(struct io_kiocb *req);
1025 static void io_uring_del_task_file(unsigned long index);
1026 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1027 struct task_struct *task,
1028 struct files_struct *files);
1029 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx);
1030 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node);
1031 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1032 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
1033
1034 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1035 static void io_put_req(struct io_kiocb *req);
1036 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1037 static void io_dismantle_req(struct io_kiocb *req);
1038 static void io_put_task(struct task_struct *task, int nr);
1039 static void io_queue_next(struct io_kiocb *req);
1040 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1041 static void io_queue_linked_timeout(struct io_kiocb *req);
1042 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1043 struct io_uring_rsrc_update *ip,
1044 unsigned nr_args);
1045 static void io_clean_op(struct io_kiocb *req);
1046 static struct file *io_file_get(struct io_submit_state *state,
1047 struct io_kiocb *req, int fd, bool fixed);
1048 static void __io_queue_sqe(struct io_kiocb *req);
1049 static void io_rsrc_put_work(struct work_struct *work);
1050
1051 static void io_req_task_queue(struct io_kiocb *req);
1052 static void io_submit_flush_completions(struct io_comp_state *cs,
1053 struct io_ring_ctx *ctx);
1054 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1055 static int io_req_prep_async(struct io_kiocb *req);
1056
1057 static struct kmem_cache *req_cachep;
1058
1059 static const struct file_operations io_uring_fops;
1060
1061 struct sock *io_uring_get_socket(struct file *file)
1062 {
1063 #if defined(CONFIG_UNIX)
1064 if (file->f_op == &io_uring_fops) {
1065 struct io_ring_ctx *ctx = file->private_data;
1066
1067 return ctx->ring_sock->sk;
1068 }
1069 #endif
1070 return NULL;
1071 }
1072 EXPORT_SYMBOL(io_uring_get_socket);
1073
1074 #define io_for_each_link(pos, head) \
1075 for (pos = (head); pos; pos = pos->link)
1076
1077 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1078 {
1079 struct io_ring_ctx *ctx = req->ctx;
1080
1081 if (!req->fixed_rsrc_refs) {
1082 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1083 percpu_ref_get(req->fixed_rsrc_refs);
1084 }
1085 }
1086
1087 static bool io_match_task(struct io_kiocb *head,
1088 struct task_struct *task,
1089 struct files_struct *files)
1090 {
1091 struct io_kiocb *req;
1092
1093 if (task && head->task != task)
1094 return false;
1095 if (!files)
1096 return true;
1097
1098 io_for_each_link(req, head) {
1099 if (req->flags & REQ_F_INFLIGHT)
1100 return true;
1101 }
1102 return false;
1103 }
1104
1105 static inline void req_set_fail_links(struct io_kiocb *req)
1106 {
1107 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1108 req->flags |= REQ_F_FAIL_LINK;
1109 }
1110
1111 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1112 {
1113 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1114
1115 complete(&ctx->ref_comp);
1116 }
1117
1118 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1119 {
1120 return !req->timeout.off;
1121 }
1122
1123 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1124 {
1125 struct io_ring_ctx *ctx;
1126 int hash_bits;
1127
1128 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1129 if (!ctx)
1130 return NULL;
1131
1132 /*
1133 * Use 5 bits less than the max cq entries, that should give us around
1134 * 32 entries per hash list if totally full and uniformly spread.
1135 */
1136 hash_bits = ilog2(p->cq_entries);
1137 hash_bits -= 5;
1138 if (hash_bits <= 0)
1139 hash_bits = 1;
1140 ctx->cancel_hash_bits = hash_bits;
1141 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1142 GFP_KERNEL);
1143 if (!ctx->cancel_hash)
1144 goto err;
1145 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1146
1147 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1148 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1149 goto err;
1150
1151 ctx->flags = p->flags;
1152 init_waitqueue_head(&ctx->sqo_sq_wait);
1153 INIT_LIST_HEAD(&ctx->sqd_list);
1154 init_waitqueue_head(&ctx->cq_wait);
1155 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1156 init_completion(&ctx->ref_comp);
1157 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1158 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1159 mutex_init(&ctx->uring_lock);
1160 init_waitqueue_head(&ctx->wait);
1161 spin_lock_init(&ctx->completion_lock);
1162 INIT_LIST_HEAD(&ctx->iopoll_list);
1163 INIT_LIST_HEAD(&ctx->defer_list);
1164 INIT_LIST_HEAD(&ctx->timeout_list);
1165 spin_lock_init(&ctx->inflight_lock);
1166 INIT_LIST_HEAD(&ctx->inflight_list);
1167 spin_lock_init(&ctx->rsrc_ref_lock);
1168 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1169 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1170 init_llist_head(&ctx->rsrc_put_llist);
1171 INIT_LIST_HEAD(&ctx->tctx_list);
1172 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1173 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1174 return ctx;
1175 err:
1176 kfree(ctx->cancel_hash);
1177 kfree(ctx);
1178 return NULL;
1179 }
1180
1181 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1182 {
1183 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1184 struct io_ring_ctx *ctx = req->ctx;
1185
1186 return seq != ctx->cached_cq_tail
1187 + READ_ONCE(ctx->cached_cq_overflow);
1188 }
1189
1190 return false;
1191 }
1192
1193 static void io_req_track_inflight(struct io_kiocb *req)
1194 {
1195 struct io_ring_ctx *ctx = req->ctx;
1196
1197 if (!(req->flags & REQ_F_INFLIGHT)) {
1198 req->flags |= REQ_F_INFLIGHT;
1199
1200 spin_lock_irq(&ctx->inflight_lock);
1201 list_add(&req->inflight_entry, &ctx->inflight_list);
1202 spin_unlock_irq(&ctx->inflight_lock);
1203 }
1204 }
1205
1206 static void io_prep_async_work(struct io_kiocb *req)
1207 {
1208 const struct io_op_def *def = &io_op_defs[req->opcode];
1209 struct io_ring_ctx *ctx = req->ctx;
1210
1211 if (!req->work.creds)
1212 req->work.creds = get_current_cred();
1213
1214 req->work.list.next = NULL;
1215 req->work.flags = 0;
1216 if (req->flags & REQ_F_FORCE_ASYNC)
1217 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1218
1219 if (req->flags & REQ_F_ISREG) {
1220 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1221 io_wq_hash_work(&req->work, file_inode(req->file));
1222 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1223 if (def->unbound_nonreg_file)
1224 req->work.flags |= IO_WQ_WORK_UNBOUND;
1225 }
1226
1227 switch (req->opcode) {
1228 case IORING_OP_SPLICE:
1229 case IORING_OP_TEE:
1230 /*
1231 * Splice operation will be punted aync, and here need to
1232 * modify io_wq_work.flags, so initialize io_wq_work firstly.
1233 */
1234 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1235 req->work.flags |= IO_WQ_WORK_UNBOUND;
1236 break;
1237 }
1238 }
1239
1240 static void io_prep_async_link(struct io_kiocb *req)
1241 {
1242 struct io_kiocb *cur;
1243
1244 io_for_each_link(cur, req)
1245 io_prep_async_work(cur);
1246 }
1247
1248 static void io_queue_async_work(struct io_kiocb *req)
1249 {
1250 struct io_ring_ctx *ctx = req->ctx;
1251 struct io_kiocb *link = io_prep_linked_timeout(req);
1252 struct io_uring_task *tctx = req->task->io_uring;
1253
1254 BUG_ON(!tctx);
1255 BUG_ON(!tctx->io_wq);
1256
1257 /* init ->work of the whole link before punting */
1258 io_prep_async_link(req);
1259 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1260 &req->work, req->flags);
1261 io_wq_enqueue(tctx->io_wq, &req->work);
1262 if (link)
1263 io_queue_linked_timeout(link);
1264 }
1265
1266 static void io_kill_timeout(struct io_kiocb *req, int status)
1267 {
1268 struct io_timeout_data *io = req->async_data;
1269 int ret;
1270
1271 ret = hrtimer_try_to_cancel(&io->timer);
1272 if (ret != -1) {
1273 atomic_set(&req->ctx->cq_timeouts,
1274 atomic_read(&req->ctx->cq_timeouts) + 1);
1275 list_del_init(&req->timeout.list);
1276 io_cqring_fill_event(req, status);
1277 io_put_req_deferred(req, 1);
1278 }
1279 }
1280
1281 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1282 {
1283 do {
1284 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1285 struct io_defer_entry, list);
1286
1287 if (req_need_defer(de->req, de->seq))
1288 break;
1289 list_del_init(&de->list);
1290 io_req_task_queue(de->req);
1291 kfree(de);
1292 } while (!list_empty(&ctx->defer_list));
1293 }
1294
1295 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1296 {
1297 u32 seq;
1298
1299 if (list_empty(&ctx->timeout_list))
1300 return;
1301
1302 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1303
1304 do {
1305 u32 events_needed, events_got;
1306 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1307 struct io_kiocb, timeout.list);
1308
1309 if (io_is_timeout_noseq(req))
1310 break;
1311
1312 /*
1313 * Since seq can easily wrap around over time, subtract
1314 * the last seq at which timeouts were flushed before comparing.
1315 * Assuming not more than 2^31-1 events have happened since,
1316 * these subtractions won't have wrapped, so we can check if
1317 * target is in [last_seq, current_seq] by comparing the two.
1318 */
1319 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1320 events_got = seq - ctx->cq_last_tm_flush;
1321 if (events_got < events_needed)
1322 break;
1323
1324 list_del_init(&req->timeout.list);
1325 io_kill_timeout(req, 0);
1326 } while (!list_empty(&ctx->timeout_list));
1327
1328 ctx->cq_last_tm_flush = seq;
1329 }
1330
1331 static void io_commit_cqring(struct io_ring_ctx *ctx)
1332 {
1333 io_flush_timeouts(ctx);
1334
1335 /* order cqe stores with ring update */
1336 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1337
1338 if (unlikely(!list_empty(&ctx->defer_list)))
1339 __io_queue_deferred(ctx);
1340 }
1341
1342 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1343 {
1344 struct io_rings *r = ctx->rings;
1345
1346 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1347 }
1348
1349 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1350 {
1351 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1352 }
1353
1354 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1355 {
1356 struct io_rings *rings = ctx->rings;
1357 unsigned tail;
1358
1359 /*
1360 * writes to the cq entry need to come after reading head; the
1361 * control dependency is enough as we're using WRITE_ONCE to
1362 * fill the cq entry
1363 */
1364 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1365 return NULL;
1366
1367 tail = ctx->cached_cq_tail++;
1368 return &rings->cqes[tail & ctx->cq_mask];
1369 }
1370
1371 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1372 {
1373 if (!ctx->cq_ev_fd)
1374 return false;
1375 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1376 return false;
1377 if (!ctx->eventfd_async)
1378 return true;
1379 return io_wq_current_is_worker();
1380 }
1381
1382 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1383 {
1384 /* see waitqueue_active() comment */
1385 smp_mb();
1386
1387 if (waitqueue_active(&ctx->wait))
1388 wake_up(&ctx->wait);
1389 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1390 wake_up(&ctx->sq_data->wait);
1391 if (io_should_trigger_evfd(ctx))
1392 eventfd_signal(ctx->cq_ev_fd, 1);
1393 if (waitqueue_active(&ctx->cq_wait)) {
1394 wake_up_interruptible(&ctx->cq_wait);
1395 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1396 }
1397 }
1398
1399 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1400 {
1401 /* see waitqueue_active() comment */
1402 smp_mb();
1403
1404 if (ctx->flags & IORING_SETUP_SQPOLL) {
1405 if (waitqueue_active(&ctx->wait))
1406 wake_up(&ctx->wait);
1407 }
1408 if (io_should_trigger_evfd(ctx))
1409 eventfd_signal(ctx->cq_ev_fd, 1);
1410 if (waitqueue_active(&ctx->cq_wait)) {
1411 wake_up_interruptible(&ctx->cq_wait);
1412 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1413 }
1414 }
1415
1416 /* Returns true if there are no backlogged entries after the flush */
1417 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1418 {
1419 struct io_rings *rings = ctx->rings;
1420 unsigned long flags;
1421 bool all_flushed, posted;
1422
1423 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1424 return false;
1425
1426 posted = false;
1427 spin_lock_irqsave(&ctx->completion_lock, flags);
1428 while (!list_empty(&ctx->cq_overflow_list)) {
1429 struct io_uring_cqe *cqe = io_get_cqring(ctx);
1430 struct io_overflow_cqe *ocqe;
1431
1432 if (!cqe && !force)
1433 break;
1434 ocqe = list_first_entry(&ctx->cq_overflow_list,
1435 struct io_overflow_cqe, list);
1436 if (cqe)
1437 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1438 else
1439 WRITE_ONCE(ctx->rings->cq_overflow,
1440 ++ctx->cached_cq_overflow);
1441 posted = true;
1442 list_del(&ocqe->list);
1443 kfree(ocqe);
1444 }
1445
1446 all_flushed = list_empty(&ctx->cq_overflow_list);
1447 if (all_flushed) {
1448 clear_bit(0, &ctx->sq_check_overflow);
1449 clear_bit(0, &ctx->cq_check_overflow);
1450 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1451 }
1452
1453 if (posted)
1454 io_commit_cqring(ctx);
1455 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1456 if (posted)
1457 io_cqring_ev_posted(ctx);
1458 return all_flushed;
1459 }
1460
1461 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1462 {
1463 bool ret = true;
1464
1465 if (test_bit(0, &ctx->cq_check_overflow)) {
1466 /* iopoll syncs against uring_lock, not completion_lock */
1467 if (ctx->flags & IORING_SETUP_IOPOLL)
1468 mutex_lock(&ctx->uring_lock);
1469 ret = __io_cqring_overflow_flush(ctx, force);
1470 if (ctx->flags & IORING_SETUP_IOPOLL)
1471 mutex_unlock(&ctx->uring_lock);
1472 }
1473
1474 return ret;
1475 }
1476
1477 /*
1478 * Shamelessly stolen from the mm implementation of page reference checking,
1479 * see commit f958d7b528b1 for details.
1480 */
1481 #define req_ref_zero_or_close_to_overflow(req) \
1482 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1483
1484 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1485 {
1486 return atomic_inc_not_zero(&req->refs);
1487 }
1488
1489 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1490 {
1491 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1492 return atomic_sub_and_test(refs, &req->refs);
1493 }
1494
1495 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1496 {
1497 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1498 return atomic_dec_and_test(&req->refs);
1499 }
1500
1501 static inline void req_ref_put(struct io_kiocb *req)
1502 {
1503 WARN_ON_ONCE(req_ref_put_and_test(req));
1504 }
1505
1506 static inline void req_ref_get(struct io_kiocb *req)
1507 {
1508 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1509 atomic_inc(&req->refs);
1510 }
1511
1512 static bool __io_cqring_fill_event(struct io_kiocb *req, long res,
1513 unsigned int cflags)
1514 {
1515 struct io_ring_ctx *ctx = req->ctx;
1516 struct io_uring_cqe *cqe;
1517
1518 trace_io_uring_complete(ctx, req->user_data, res, cflags);
1519
1520 /*
1521 * If we can't get a cq entry, userspace overflowed the
1522 * submission (by quite a lot). Increment the overflow count in
1523 * the ring.
1524 */
1525 cqe = io_get_cqring(ctx);
1526 if (likely(cqe)) {
1527 WRITE_ONCE(cqe->user_data, req->user_data);
1528 WRITE_ONCE(cqe->res, res);
1529 WRITE_ONCE(cqe->flags, cflags);
1530 return true;
1531 }
1532 if (!ctx->cq_overflow_flushed &&
1533 !atomic_read(&req->task->io_uring->in_idle)) {
1534 struct io_overflow_cqe *ocqe;
1535
1536 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1537 if (!ocqe)
1538 goto overflow;
1539 if (list_empty(&ctx->cq_overflow_list)) {
1540 set_bit(0, &ctx->sq_check_overflow);
1541 set_bit(0, &ctx->cq_check_overflow);
1542 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1543 }
1544 ocqe->cqe.user_data = req->user_data;
1545 ocqe->cqe.res = res;
1546 ocqe->cqe.flags = cflags;
1547 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1548 return true;
1549 }
1550 overflow:
1551 /*
1552 * If we're in ring overflow flush mode, or in task cancel mode,
1553 * or cannot allocate an overflow entry, then we need to drop it
1554 * on the floor.
1555 */
1556 WRITE_ONCE(ctx->rings->cq_overflow, ++ctx->cached_cq_overflow);
1557 return false;
1558 }
1559
1560 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1561 {
1562 __io_cqring_fill_event(req, res, 0);
1563 }
1564
1565 static void io_req_complete_post(struct io_kiocb *req, long res,
1566 unsigned int cflags)
1567 {
1568 struct io_ring_ctx *ctx = req->ctx;
1569 unsigned long flags;
1570
1571 spin_lock_irqsave(&ctx->completion_lock, flags);
1572 __io_cqring_fill_event(req, res, cflags);
1573 /*
1574 * If we're the last reference to this request, add to our locked
1575 * free_list cache.
1576 */
1577 if (req_ref_put_and_test(req)) {
1578 struct io_comp_state *cs = &ctx->submit_state.comp;
1579
1580 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1581 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK))
1582 io_disarm_next(req);
1583 if (req->link) {
1584 io_req_task_queue(req->link);
1585 req->link = NULL;
1586 }
1587 }
1588 io_dismantle_req(req);
1589 io_put_task(req->task, 1);
1590 list_add(&req->compl.list, &cs->locked_free_list);
1591 cs->locked_free_nr++;
1592 } else {
1593 if (!percpu_ref_tryget(&ctx->refs))
1594 req = NULL;
1595 }
1596 io_commit_cqring(ctx);
1597 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1598
1599 if (req) {
1600 io_cqring_ev_posted(ctx);
1601 percpu_ref_put(&ctx->refs);
1602 }
1603 }
1604
1605 static void io_req_complete_state(struct io_kiocb *req, long res,
1606 unsigned int cflags)
1607 {
1608 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1609 io_clean_op(req);
1610 req->result = res;
1611 req->compl.cflags = cflags;
1612 req->flags |= REQ_F_COMPLETE_INLINE;
1613 }
1614
1615 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1616 long res, unsigned cflags)
1617 {
1618 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1619 io_req_complete_state(req, res, cflags);
1620 else
1621 io_req_complete_post(req, res, cflags);
1622 }
1623
1624 static inline void io_req_complete(struct io_kiocb *req, long res)
1625 {
1626 __io_req_complete(req, 0, res, 0);
1627 }
1628
1629 static void io_req_complete_failed(struct io_kiocb *req, long res)
1630 {
1631 req_set_fail_links(req);
1632 io_put_req(req);
1633 io_req_complete_post(req, res, 0);
1634 }
1635
1636 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1637 struct io_comp_state *cs)
1638 {
1639 spin_lock_irq(&ctx->completion_lock);
1640 list_splice_init(&cs->locked_free_list, &cs->free_list);
1641 cs->locked_free_nr = 0;
1642 spin_unlock_irq(&ctx->completion_lock);
1643 }
1644
1645 /* Returns true IFF there are requests in the cache */
1646 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1647 {
1648 struct io_submit_state *state = &ctx->submit_state;
1649 struct io_comp_state *cs = &state->comp;
1650 int nr;
1651
1652 /*
1653 * If we have more than a batch's worth of requests in our IRQ side
1654 * locked cache, grab the lock and move them over to our submission
1655 * side cache.
1656 */
1657 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH)
1658 io_flush_cached_locked_reqs(ctx, cs);
1659
1660 nr = state->free_reqs;
1661 while (!list_empty(&cs->free_list)) {
1662 struct io_kiocb *req = list_first_entry(&cs->free_list,
1663 struct io_kiocb, compl.list);
1664
1665 list_del(&req->compl.list);
1666 state->reqs[nr++] = req;
1667 if (nr == ARRAY_SIZE(state->reqs))
1668 break;
1669 }
1670
1671 state->free_reqs = nr;
1672 return nr != 0;
1673 }
1674
1675 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1676 {
1677 struct io_submit_state *state = &ctx->submit_state;
1678
1679 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
1680
1681 if (!state->free_reqs) {
1682 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1683 int ret;
1684
1685 if (io_flush_cached_reqs(ctx))
1686 goto got_req;
1687
1688 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1689 state->reqs);
1690
1691 /*
1692 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1693 * retry single alloc to be on the safe side.
1694 */
1695 if (unlikely(ret <= 0)) {
1696 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1697 if (!state->reqs[0])
1698 return NULL;
1699 ret = 1;
1700 }
1701 state->free_reqs = ret;
1702 }
1703 got_req:
1704 state->free_reqs--;
1705 return state->reqs[state->free_reqs];
1706 }
1707
1708 static inline void io_put_file(struct file *file)
1709 {
1710 if (file)
1711 fput(file);
1712 }
1713
1714 static void io_dismantle_req(struct io_kiocb *req)
1715 {
1716 unsigned int flags = req->flags;
1717
1718 if (!(flags & REQ_F_FIXED_FILE))
1719 io_put_file(req->file);
1720 if (flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1721 REQ_F_INFLIGHT)) {
1722 io_clean_op(req);
1723
1724 if (req->flags & REQ_F_INFLIGHT) {
1725 struct io_ring_ctx *ctx = req->ctx;
1726 unsigned long flags;
1727
1728 spin_lock_irqsave(&ctx->inflight_lock, flags);
1729 list_del(&req->inflight_entry);
1730 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1731 req->flags &= ~REQ_F_INFLIGHT;
1732 }
1733 }
1734 if (req->fixed_rsrc_refs)
1735 percpu_ref_put(req->fixed_rsrc_refs);
1736 if (req->async_data)
1737 kfree(req->async_data);
1738 if (req->work.creds) {
1739 put_cred(req->work.creds);
1740 req->work.creds = NULL;
1741 }
1742 }
1743
1744 /* must to be called somewhat shortly after putting a request */
1745 static inline void io_put_task(struct task_struct *task, int nr)
1746 {
1747 struct io_uring_task *tctx = task->io_uring;
1748
1749 percpu_counter_sub(&tctx->inflight, nr);
1750 if (unlikely(atomic_read(&tctx->in_idle)))
1751 wake_up(&tctx->wait);
1752 put_task_struct_many(task, nr);
1753 }
1754
1755 static void __io_free_req(struct io_kiocb *req)
1756 {
1757 struct io_ring_ctx *ctx = req->ctx;
1758
1759 io_dismantle_req(req);
1760 io_put_task(req->task, 1);
1761
1762 kmem_cache_free(req_cachep, req);
1763 percpu_ref_put(&ctx->refs);
1764 }
1765
1766 static inline void io_remove_next_linked(struct io_kiocb *req)
1767 {
1768 struct io_kiocb *nxt = req->link;
1769
1770 req->link = nxt->link;
1771 nxt->link = NULL;
1772 }
1773
1774 static bool io_kill_linked_timeout(struct io_kiocb *req)
1775 __must_hold(&req->ctx->completion_lock)
1776 {
1777 struct io_kiocb *link = req->link;
1778
1779 /*
1780 * Can happen if a linked timeout fired and link had been like
1781 * req -> link t-out -> link t-out [-> ...]
1782 */
1783 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1784 struct io_timeout_data *io = link->async_data;
1785 int ret;
1786
1787 io_remove_next_linked(req);
1788 link->timeout.head = NULL;
1789 ret = hrtimer_try_to_cancel(&io->timer);
1790 if (ret != -1) {
1791 io_cqring_fill_event(link, -ECANCELED);
1792 io_put_req_deferred(link, 1);
1793 return true;
1794 }
1795 }
1796 return false;
1797 }
1798
1799 static void io_fail_links(struct io_kiocb *req)
1800 __must_hold(&req->ctx->completion_lock)
1801 {
1802 struct io_kiocb *nxt, *link = req->link;
1803
1804 req->link = NULL;
1805 while (link) {
1806 nxt = link->link;
1807 link->link = NULL;
1808
1809 trace_io_uring_fail_link(req, link);
1810 io_cqring_fill_event(link, -ECANCELED);
1811 io_put_req_deferred(link, 2);
1812 link = nxt;
1813 }
1814 }
1815
1816 static bool io_disarm_next(struct io_kiocb *req)
1817 __must_hold(&req->ctx->completion_lock)
1818 {
1819 bool posted = false;
1820
1821 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1822 posted = io_kill_linked_timeout(req);
1823 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
1824 posted |= (req->link != NULL);
1825 io_fail_links(req);
1826 }
1827 return posted;
1828 }
1829
1830 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1831 {
1832 struct io_kiocb *nxt;
1833
1834 /*
1835 * If LINK is set, we have dependent requests in this chain. If we
1836 * didn't fail this request, queue the first one up, moving any other
1837 * dependencies to the next request. In case of failure, fail the rest
1838 * of the chain.
1839 */
1840 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK)) {
1841 struct io_ring_ctx *ctx = req->ctx;
1842 unsigned long flags;
1843 bool posted;
1844
1845 spin_lock_irqsave(&ctx->completion_lock, flags);
1846 posted = io_disarm_next(req);
1847 if (posted)
1848 io_commit_cqring(req->ctx);
1849 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1850 if (posted)
1851 io_cqring_ev_posted(ctx);
1852 }
1853 nxt = req->link;
1854 req->link = NULL;
1855 return nxt;
1856 }
1857
1858 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1859 {
1860 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1861 return NULL;
1862 return __io_req_find_next(req);
1863 }
1864
1865 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1866 {
1867 if (!ctx)
1868 return;
1869 if (ctx->submit_state.comp.nr) {
1870 mutex_lock(&ctx->uring_lock);
1871 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
1872 mutex_unlock(&ctx->uring_lock);
1873 }
1874 percpu_ref_put(&ctx->refs);
1875 }
1876
1877 static bool __tctx_task_work(struct io_uring_task *tctx)
1878 {
1879 struct io_ring_ctx *ctx = NULL;
1880 struct io_wq_work_list list;
1881 struct io_wq_work_node *node;
1882
1883 if (wq_list_empty(&tctx->task_list))
1884 return false;
1885
1886 spin_lock_irq(&tctx->task_lock);
1887 list = tctx->task_list;
1888 INIT_WQ_LIST(&tctx->task_list);
1889 spin_unlock_irq(&tctx->task_lock);
1890
1891 node = list.first;
1892 while (node) {
1893 struct io_wq_work_node *next = node->next;
1894 struct io_kiocb *req;
1895
1896 req = container_of(node, struct io_kiocb, io_task_work.node);
1897 if (req->ctx != ctx) {
1898 ctx_flush_and_put(ctx);
1899 ctx = req->ctx;
1900 percpu_ref_get(&ctx->refs);
1901 }
1902
1903 req->task_work.func(&req->task_work);
1904 node = next;
1905 }
1906
1907 ctx_flush_and_put(ctx);
1908 return list.first != NULL;
1909 }
1910
1911 static void tctx_task_work(struct callback_head *cb)
1912 {
1913 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
1914
1915 clear_bit(0, &tctx->task_state);
1916
1917 while (__tctx_task_work(tctx))
1918 cond_resched();
1919 }
1920
1921 static int io_req_task_work_add(struct io_kiocb *req)
1922 {
1923 struct task_struct *tsk = req->task;
1924 struct io_uring_task *tctx = tsk->io_uring;
1925 enum task_work_notify_mode notify;
1926 struct io_wq_work_node *node, *prev;
1927 unsigned long flags;
1928 int ret = 0;
1929
1930 if (unlikely(tsk->flags & PF_EXITING))
1931 return -ESRCH;
1932
1933 WARN_ON_ONCE(!tctx);
1934
1935 spin_lock_irqsave(&tctx->task_lock, flags);
1936 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1937 spin_unlock_irqrestore(&tctx->task_lock, flags);
1938
1939 /* task_work already pending, we're done */
1940 if (test_bit(0, &tctx->task_state) ||
1941 test_and_set_bit(0, &tctx->task_state))
1942 return 0;
1943
1944 /*
1945 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1946 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1947 * processing task_work. There's no reliable way to tell if TWA_RESUME
1948 * will do the job.
1949 */
1950 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1951
1952 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1953 wake_up_process(tsk);
1954 return 0;
1955 }
1956
1957 /*
1958 * Slow path - we failed, find and delete work. if the work is not
1959 * in the list, it got run and we're fine.
1960 */
1961 spin_lock_irqsave(&tctx->task_lock, flags);
1962 wq_list_for_each(node, prev, &tctx->task_list) {
1963 if (&req->io_task_work.node == node) {
1964 wq_list_del(&tctx->task_list, node, prev);
1965 ret = 1;
1966 break;
1967 }
1968 }
1969 spin_unlock_irqrestore(&tctx->task_lock, flags);
1970 clear_bit(0, &tctx->task_state);
1971 return ret;
1972 }
1973
1974 static bool io_run_task_work_head(struct callback_head **work_head)
1975 {
1976 struct callback_head *work, *next;
1977 bool executed = false;
1978
1979 do {
1980 work = xchg(work_head, NULL);
1981 if (!work)
1982 break;
1983
1984 do {
1985 next = work->next;
1986 work->func(work);
1987 work = next;
1988 cond_resched();
1989 } while (work);
1990 executed = true;
1991 } while (1);
1992
1993 return executed;
1994 }
1995
1996 static void io_task_work_add_head(struct callback_head **work_head,
1997 struct callback_head *task_work)
1998 {
1999 struct callback_head *head;
2000
2001 do {
2002 head = READ_ONCE(*work_head);
2003 task_work->next = head;
2004 } while (cmpxchg(work_head, head, task_work) != head);
2005 }
2006
2007 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2008 task_work_func_t cb)
2009 {
2010 init_task_work(&req->task_work, cb);
2011 io_task_work_add_head(&req->ctx->exit_task_work, &req->task_work);
2012 }
2013
2014 static void io_req_task_cancel(struct callback_head *cb)
2015 {
2016 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2017 struct io_ring_ctx *ctx = req->ctx;
2018
2019 /* ctx is guaranteed to stay alive while we hold uring_lock */
2020 mutex_lock(&ctx->uring_lock);
2021 io_req_complete_failed(req, req->result);
2022 mutex_unlock(&ctx->uring_lock);
2023 }
2024
2025 static void __io_req_task_submit(struct io_kiocb *req)
2026 {
2027 struct io_ring_ctx *ctx = req->ctx;
2028
2029 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2030 mutex_lock(&ctx->uring_lock);
2031 if (!(current->flags & PF_EXITING) && !current->in_execve)
2032 __io_queue_sqe(req);
2033 else
2034 io_req_complete_failed(req, -EFAULT);
2035 mutex_unlock(&ctx->uring_lock);
2036 }
2037
2038 static void io_req_task_submit(struct callback_head *cb)
2039 {
2040 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2041
2042 __io_req_task_submit(req);
2043 }
2044
2045 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2046 {
2047 req->result = ret;
2048 req->task_work.func = io_req_task_cancel;
2049
2050 if (unlikely(io_req_task_work_add(req)))
2051 io_req_task_work_add_fallback(req, io_req_task_cancel);
2052 }
2053
2054 static void io_req_task_queue(struct io_kiocb *req)
2055 {
2056 req->task_work.func = io_req_task_submit;
2057
2058 if (unlikely(io_req_task_work_add(req)))
2059 io_req_task_queue_fail(req, -ECANCELED);
2060 }
2061
2062 static inline void io_queue_next(struct io_kiocb *req)
2063 {
2064 struct io_kiocb *nxt = io_req_find_next(req);
2065
2066 if (nxt)
2067 io_req_task_queue(nxt);
2068 }
2069
2070 static void io_free_req(struct io_kiocb *req)
2071 {
2072 io_queue_next(req);
2073 __io_free_req(req);
2074 }
2075
2076 struct req_batch {
2077 struct task_struct *task;
2078 int task_refs;
2079 int ctx_refs;
2080 };
2081
2082 static inline void io_init_req_batch(struct req_batch *rb)
2083 {
2084 rb->task_refs = 0;
2085 rb->ctx_refs = 0;
2086 rb->task = NULL;
2087 }
2088
2089 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2090 struct req_batch *rb)
2091 {
2092 if (rb->task)
2093 io_put_task(rb->task, rb->task_refs);
2094 if (rb->ctx_refs)
2095 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2096 }
2097
2098 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2099 struct io_submit_state *state)
2100 {
2101 io_queue_next(req);
2102 io_dismantle_req(req);
2103
2104 if (req->task != rb->task) {
2105 if (rb->task)
2106 io_put_task(rb->task, rb->task_refs);
2107 rb->task = req->task;
2108 rb->task_refs = 0;
2109 }
2110 rb->task_refs++;
2111 rb->ctx_refs++;
2112
2113 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2114 state->reqs[state->free_reqs++] = req;
2115 else
2116 list_add(&req->compl.list, &state->comp.free_list);
2117 }
2118
2119 static void io_submit_flush_completions(struct io_comp_state *cs,
2120 struct io_ring_ctx *ctx)
2121 {
2122 int i, nr = cs->nr;
2123 struct io_kiocb *req;
2124 struct req_batch rb;
2125
2126 io_init_req_batch(&rb);
2127 spin_lock_irq(&ctx->completion_lock);
2128 for (i = 0; i < nr; i++) {
2129 req = cs->reqs[i];
2130 __io_cqring_fill_event(req, req->result, req->compl.cflags);
2131 }
2132 io_commit_cqring(ctx);
2133 spin_unlock_irq(&ctx->completion_lock);
2134
2135 io_cqring_ev_posted(ctx);
2136 for (i = 0; i < nr; i++) {
2137 req = cs->reqs[i];
2138
2139 /* submission and completion refs */
2140 if (req_ref_sub_and_test(req, 2))
2141 io_req_free_batch(&rb, req, &ctx->submit_state);
2142 }
2143
2144 io_req_free_batch_finish(ctx, &rb);
2145 cs->nr = 0;
2146 }
2147
2148 /*
2149 * Drop reference to request, return next in chain (if there is one) if this
2150 * was the last reference to this request.
2151 */
2152 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2153 {
2154 struct io_kiocb *nxt = NULL;
2155
2156 if (req_ref_put_and_test(req)) {
2157 nxt = io_req_find_next(req);
2158 __io_free_req(req);
2159 }
2160 return nxt;
2161 }
2162
2163 static inline void io_put_req(struct io_kiocb *req)
2164 {
2165 if (req_ref_put_and_test(req))
2166 io_free_req(req);
2167 }
2168
2169 static void io_put_req_deferred_cb(struct callback_head *cb)
2170 {
2171 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2172
2173 io_free_req(req);
2174 }
2175
2176 static void io_free_req_deferred(struct io_kiocb *req)
2177 {
2178 req->task_work.func = io_put_req_deferred_cb;
2179 if (unlikely(io_req_task_work_add(req)))
2180 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2181 }
2182
2183 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2184 {
2185 if (req_ref_sub_and_test(req, refs))
2186 io_free_req_deferred(req);
2187 }
2188
2189 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2190 {
2191 /* See comment at the top of this file */
2192 smp_rmb();
2193 return __io_cqring_events(ctx);
2194 }
2195
2196 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2197 {
2198 struct io_rings *rings = ctx->rings;
2199
2200 /* make sure SQ entry isn't read before tail */
2201 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2202 }
2203
2204 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2205 {
2206 unsigned int cflags;
2207
2208 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2209 cflags |= IORING_CQE_F_BUFFER;
2210 req->flags &= ~REQ_F_BUFFER_SELECTED;
2211 kfree(kbuf);
2212 return cflags;
2213 }
2214
2215 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2216 {
2217 struct io_buffer *kbuf;
2218
2219 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2220 return io_put_kbuf(req, kbuf);
2221 }
2222
2223 static inline bool io_run_task_work(void)
2224 {
2225 /*
2226 * Not safe to run on exiting task, and the task_work handling will
2227 * not add work to such a task.
2228 */
2229 if (unlikely(current->flags & PF_EXITING))
2230 return false;
2231 if (current->task_works) {
2232 __set_current_state(TASK_RUNNING);
2233 task_work_run();
2234 return true;
2235 }
2236
2237 return false;
2238 }
2239
2240 /*
2241 * Find and free completed poll iocbs
2242 */
2243 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2244 struct list_head *done)
2245 {
2246 struct req_batch rb;
2247 struct io_kiocb *req;
2248
2249 /* order with ->result store in io_complete_rw_iopoll() */
2250 smp_rmb();
2251
2252 io_init_req_batch(&rb);
2253 while (!list_empty(done)) {
2254 int cflags = 0;
2255
2256 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2257 list_del(&req->inflight_entry);
2258
2259 if (READ_ONCE(req->result) == -EAGAIN &&
2260 !(req->flags & REQ_F_DONT_REISSUE)) {
2261 req->iopoll_completed = 0;
2262 req_ref_get(req);
2263 io_queue_async_work(req);
2264 continue;
2265 }
2266
2267 if (req->flags & REQ_F_BUFFER_SELECTED)
2268 cflags = io_put_rw_kbuf(req);
2269
2270 __io_cqring_fill_event(req, req->result, cflags);
2271 (*nr_events)++;
2272
2273 if (req_ref_put_and_test(req))
2274 io_req_free_batch(&rb, req, &ctx->submit_state);
2275 }
2276
2277 io_commit_cqring(ctx);
2278 io_cqring_ev_posted_iopoll(ctx);
2279 io_req_free_batch_finish(ctx, &rb);
2280 }
2281
2282 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2283 long min)
2284 {
2285 struct io_kiocb *req, *tmp;
2286 LIST_HEAD(done);
2287 bool spin;
2288 int ret;
2289
2290 /*
2291 * Only spin for completions if we don't have multiple devices hanging
2292 * off our complete list, and we're under the requested amount.
2293 */
2294 spin = !ctx->poll_multi_file && *nr_events < min;
2295
2296 ret = 0;
2297 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2298 struct kiocb *kiocb = &req->rw.kiocb;
2299
2300 /*
2301 * Move completed and retryable entries to our local lists.
2302 * If we find a request that requires polling, break out
2303 * and complete those lists first, if we have entries there.
2304 */
2305 if (READ_ONCE(req->iopoll_completed)) {
2306 list_move_tail(&req->inflight_entry, &done);
2307 continue;
2308 }
2309 if (!list_empty(&done))
2310 break;
2311
2312 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2313 if (ret < 0)
2314 break;
2315
2316 /* iopoll may have completed current req */
2317 if (READ_ONCE(req->iopoll_completed))
2318 list_move_tail(&req->inflight_entry, &done);
2319
2320 if (ret && spin)
2321 spin = false;
2322 ret = 0;
2323 }
2324
2325 if (!list_empty(&done))
2326 io_iopoll_complete(ctx, nr_events, &done);
2327
2328 return ret;
2329 }
2330
2331 /*
2332 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2333 * non-spinning poll check - we'll still enter the driver poll loop, but only
2334 * as a non-spinning completion check.
2335 */
2336 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2337 long min)
2338 {
2339 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2340 int ret;
2341
2342 ret = io_do_iopoll(ctx, nr_events, min);
2343 if (ret < 0)
2344 return ret;
2345 if (*nr_events >= min)
2346 return 0;
2347 }
2348
2349 return 1;
2350 }
2351
2352 /*
2353 * We can't just wait for polled events to come to us, we have to actively
2354 * find and complete them.
2355 */
2356 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2357 {
2358 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2359 return;
2360
2361 mutex_lock(&ctx->uring_lock);
2362 while (!list_empty(&ctx->iopoll_list)) {
2363 unsigned int nr_events = 0;
2364
2365 io_do_iopoll(ctx, &nr_events, 0);
2366
2367 /* let it sleep and repeat later if can't complete a request */
2368 if (nr_events == 0)
2369 break;
2370 /*
2371 * Ensure we allow local-to-the-cpu processing to take place,
2372 * in this case we need to ensure that we reap all events.
2373 * Also let task_work, etc. to progress by releasing the mutex
2374 */
2375 if (need_resched()) {
2376 mutex_unlock(&ctx->uring_lock);
2377 cond_resched();
2378 mutex_lock(&ctx->uring_lock);
2379 }
2380 }
2381 mutex_unlock(&ctx->uring_lock);
2382 }
2383
2384 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2385 {
2386 unsigned int nr_events = 0;
2387 int iters = 0, ret = 0;
2388
2389 /*
2390 * We disallow the app entering submit/complete with polling, but we
2391 * still need to lock the ring to prevent racing with polled issue
2392 * that got punted to a workqueue.
2393 */
2394 mutex_lock(&ctx->uring_lock);
2395 do {
2396 /*
2397 * Don't enter poll loop if we already have events pending.
2398 * If we do, we can potentially be spinning for commands that
2399 * already triggered a CQE (eg in error).
2400 */
2401 if (test_bit(0, &ctx->cq_check_overflow))
2402 __io_cqring_overflow_flush(ctx, false);
2403 if (io_cqring_events(ctx))
2404 break;
2405
2406 /*
2407 * If a submit got punted to a workqueue, we can have the
2408 * application entering polling for a command before it gets
2409 * issued. That app will hold the uring_lock for the duration
2410 * of the poll right here, so we need to take a breather every
2411 * now and then to ensure that the issue has a chance to add
2412 * the poll to the issued list. Otherwise we can spin here
2413 * forever, while the workqueue is stuck trying to acquire the
2414 * very same mutex.
2415 */
2416 if (!(++iters & 7)) {
2417 mutex_unlock(&ctx->uring_lock);
2418 io_run_task_work();
2419 mutex_lock(&ctx->uring_lock);
2420 }
2421
2422 ret = io_iopoll_getevents(ctx, &nr_events, min);
2423 if (ret <= 0)
2424 break;
2425 ret = 0;
2426 } while (min && !nr_events && !need_resched());
2427
2428 mutex_unlock(&ctx->uring_lock);
2429 return ret;
2430 }
2431
2432 static void kiocb_end_write(struct io_kiocb *req)
2433 {
2434 /*
2435 * Tell lockdep we inherited freeze protection from submission
2436 * thread.
2437 */
2438 if (req->flags & REQ_F_ISREG) {
2439 struct super_block *sb = file_inode(req->file)->i_sb;
2440
2441 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2442 sb_end_write(sb);
2443 }
2444 }
2445
2446 #ifdef CONFIG_BLOCK
2447 static bool io_resubmit_prep(struct io_kiocb *req)
2448 {
2449 struct io_async_rw *rw = req->async_data;
2450
2451 if (!rw)
2452 return !io_req_prep_async(req);
2453 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2454 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2455 return true;
2456 }
2457
2458 static bool io_rw_should_reissue(struct io_kiocb *req)
2459 {
2460 umode_t mode = file_inode(req->file)->i_mode;
2461 struct io_ring_ctx *ctx = req->ctx;
2462
2463 if (!S_ISBLK(mode) && !S_ISREG(mode))
2464 return false;
2465 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2466 !(ctx->flags & IORING_SETUP_IOPOLL)))
2467 return false;
2468 /*
2469 * If ref is dying, we might be running poll reap from the exit work.
2470 * Don't attempt to reissue from that path, just let it fail with
2471 * -EAGAIN.
2472 */
2473 if (percpu_ref_is_dying(&ctx->refs))
2474 return false;
2475 return true;
2476 }
2477 #else
2478 static bool io_rw_should_reissue(struct io_kiocb *req)
2479 {
2480 return false;
2481 }
2482 #endif
2483
2484 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2485 unsigned int issue_flags)
2486 {
2487 int cflags = 0;
2488
2489 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2490 kiocb_end_write(req);
2491 if (res != req->result) {
2492 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2493 io_rw_should_reissue(req)) {
2494 req->flags |= REQ_F_REISSUE;
2495 return;
2496 }
2497 req_set_fail_links(req);
2498 }
2499 if (req->flags & REQ_F_BUFFER_SELECTED)
2500 cflags = io_put_rw_kbuf(req);
2501 __io_req_complete(req, issue_flags, res, cflags);
2502 }
2503
2504 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2505 {
2506 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2507
2508 __io_complete_rw(req, res, res2, 0);
2509 }
2510
2511 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2512 {
2513 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2514
2515 if (kiocb->ki_flags & IOCB_WRITE)
2516 kiocb_end_write(req);
2517 if (unlikely(res != req->result)) {
2518 bool fail = true;
2519
2520 #ifdef CONFIG_BLOCK
2521 if (res == -EAGAIN && io_rw_should_reissue(req) &&
2522 io_resubmit_prep(req))
2523 fail = false;
2524 #endif
2525 if (fail) {
2526 req_set_fail_links(req);
2527 req->flags |= REQ_F_DONT_REISSUE;
2528 }
2529 }
2530
2531 WRITE_ONCE(req->result, res);
2532 /* order with io_iopoll_complete() checking ->result */
2533 smp_wmb();
2534 WRITE_ONCE(req->iopoll_completed, 1);
2535 }
2536
2537 /*
2538 * After the iocb has been issued, it's safe to be found on the poll list.
2539 * Adding the kiocb to the list AFTER submission ensures that we don't
2540 * find it from a io_iopoll_getevents() thread before the issuer is done
2541 * accessing the kiocb cookie.
2542 */
2543 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2544 {
2545 struct io_ring_ctx *ctx = req->ctx;
2546
2547 /*
2548 * Track whether we have multiple files in our lists. This will impact
2549 * how we do polling eventually, not spinning if we're on potentially
2550 * different devices.
2551 */
2552 if (list_empty(&ctx->iopoll_list)) {
2553 ctx->poll_multi_file = false;
2554 } else if (!ctx->poll_multi_file) {
2555 struct io_kiocb *list_req;
2556
2557 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2558 inflight_entry);
2559 if (list_req->file != req->file)
2560 ctx->poll_multi_file = true;
2561 }
2562
2563 /*
2564 * For fast devices, IO may have already completed. If it has, add
2565 * it to the front so we find it first.
2566 */
2567 if (READ_ONCE(req->iopoll_completed))
2568 list_add(&req->inflight_entry, &ctx->iopoll_list);
2569 else
2570 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2571
2572 /*
2573 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2574 * task context or in io worker task context. If current task context is
2575 * sq thread, we don't need to check whether should wake up sq thread.
2576 */
2577 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2578 wq_has_sleeper(&ctx->sq_data->wait))
2579 wake_up(&ctx->sq_data->wait);
2580 }
2581
2582 static inline void io_state_file_put(struct io_submit_state *state)
2583 {
2584 if (state->file_refs) {
2585 fput_many(state->file, state->file_refs);
2586 state->file_refs = 0;
2587 }
2588 }
2589
2590 /*
2591 * Get as many references to a file as we have IOs left in this submission,
2592 * assuming most submissions are for one file, or at least that each file
2593 * has more than one submission.
2594 */
2595 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2596 {
2597 if (!state)
2598 return fget(fd);
2599
2600 if (state->file_refs) {
2601 if (state->fd == fd) {
2602 state->file_refs--;
2603 return state->file;
2604 }
2605 io_state_file_put(state);
2606 }
2607 state->file = fget_many(fd, state->ios_left);
2608 if (unlikely(!state->file))
2609 return NULL;
2610
2611 state->fd = fd;
2612 state->file_refs = state->ios_left - 1;
2613 return state->file;
2614 }
2615
2616 static bool io_bdev_nowait(struct block_device *bdev)
2617 {
2618 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2619 }
2620
2621 /*
2622 * If we tracked the file through the SCM inflight mechanism, we could support
2623 * any file. For now, just ensure that anything potentially problematic is done
2624 * inline.
2625 */
2626 static bool __io_file_supports_async(struct file *file, int rw)
2627 {
2628 umode_t mode = file_inode(file)->i_mode;
2629
2630 if (S_ISBLK(mode)) {
2631 if (IS_ENABLED(CONFIG_BLOCK) &&
2632 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2633 return true;
2634 return false;
2635 }
2636 if (S_ISCHR(mode) || S_ISSOCK(mode))
2637 return true;
2638 if (S_ISREG(mode)) {
2639 if (IS_ENABLED(CONFIG_BLOCK) &&
2640 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2641 file->f_op != &io_uring_fops)
2642 return true;
2643 return false;
2644 }
2645
2646 /* any ->read/write should understand O_NONBLOCK */
2647 if (file->f_flags & O_NONBLOCK)
2648 return true;
2649
2650 if (!(file->f_mode & FMODE_NOWAIT))
2651 return false;
2652
2653 if (rw == READ)
2654 return file->f_op->read_iter != NULL;
2655
2656 return file->f_op->write_iter != NULL;
2657 }
2658
2659 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2660 {
2661 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2662 return true;
2663 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2664 return true;
2665
2666 return __io_file_supports_async(req->file, rw);
2667 }
2668
2669 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2670 {
2671 struct io_ring_ctx *ctx = req->ctx;
2672 struct kiocb *kiocb = &req->rw.kiocb;
2673 struct file *file = req->file;
2674 unsigned ioprio;
2675 int ret;
2676
2677 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2678 req->flags |= REQ_F_ISREG;
2679
2680 kiocb->ki_pos = READ_ONCE(sqe->off);
2681 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2682 req->flags |= REQ_F_CUR_POS;
2683 kiocb->ki_pos = file->f_pos;
2684 }
2685 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2686 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2687 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2688 if (unlikely(ret))
2689 return ret;
2690
2691 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2692 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2693 req->flags |= REQ_F_NOWAIT;
2694
2695 ioprio = READ_ONCE(sqe->ioprio);
2696 if (ioprio) {
2697 ret = ioprio_check_cap(ioprio);
2698 if (ret)
2699 return ret;
2700
2701 kiocb->ki_ioprio = ioprio;
2702 } else
2703 kiocb->ki_ioprio = get_current_ioprio();
2704
2705 if (ctx->flags & IORING_SETUP_IOPOLL) {
2706 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2707 !kiocb->ki_filp->f_op->iopoll)
2708 return -EOPNOTSUPP;
2709
2710 kiocb->ki_flags |= IOCB_HIPRI;
2711 kiocb->ki_complete = io_complete_rw_iopoll;
2712 req->iopoll_completed = 0;
2713 } else {
2714 if (kiocb->ki_flags & IOCB_HIPRI)
2715 return -EINVAL;
2716 kiocb->ki_complete = io_complete_rw;
2717 }
2718
2719 req->rw.addr = READ_ONCE(sqe->addr);
2720 req->rw.len = READ_ONCE(sqe->len);
2721 req->buf_index = READ_ONCE(sqe->buf_index);
2722 return 0;
2723 }
2724
2725 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2726 {
2727 switch (ret) {
2728 case -EIOCBQUEUED:
2729 break;
2730 case -ERESTARTSYS:
2731 case -ERESTARTNOINTR:
2732 case -ERESTARTNOHAND:
2733 case -ERESTART_RESTARTBLOCK:
2734 /*
2735 * We can't just restart the syscall, since previously
2736 * submitted sqes may already be in progress. Just fail this
2737 * IO with EINTR.
2738 */
2739 ret = -EINTR;
2740 fallthrough;
2741 default:
2742 kiocb->ki_complete(kiocb, ret, 0);
2743 }
2744 }
2745
2746 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2747 unsigned int issue_flags)
2748 {
2749 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2750 struct io_async_rw *io = req->async_data;
2751 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2752
2753 /* add previously done IO, if any */
2754 if (io && io->bytes_done > 0) {
2755 if (ret < 0)
2756 ret = io->bytes_done;
2757 else
2758 ret += io->bytes_done;
2759 }
2760
2761 if (req->flags & REQ_F_CUR_POS)
2762 req->file->f_pos = kiocb->ki_pos;
2763 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2764 __io_complete_rw(req, ret, 0, issue_flags);
2765 else
2766 io_rw_done(kiocb, ret);
2767
2768 if (check_reissue && req->flags & REQ_F_REISSUE) {
2769 req->flags &= ~REQ_F_REISSUE;
2770 if (!io_resubmit_prep(req)) {
2771 req_ref_get(req);
2772 io_queue_async_work(req);
2773 } else {
2774 int cflags = 0;
2775
2776 req_set_fail_links(req);
2777 if (req->flags & REQ_F_BUFFER_SELECTED)
2778 cflags = io_put_rw_kbuf(req);
2779 __io_req_complete(req, issue_flags, ret, cflags);
2780 }
2781 }
2782 }
2783
2784 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2785 {
2786 struct io_ring_ctx *ctx = req->ctx;
2787 size_t len = req->rw.len;
2788 struct io_mapped_ubuf *imu;
2789 u16 index, buf_index = req->buf_index;
2790 size_t offset;
2791 u64 buf_addr;
2792
2793 if (unlikely(buf_index >= ctx->nr_user_bufs))
2794 return -EFAULT;
2795 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2796 imu = &ctx->user_bufs[index];
2797 buf_addr = req->rw.addr;
2798
2799 /* overflow */
2800 if (buf_addr + len < buf_addr)
2801 return -EFAULT;
2802 /* not inside the mapped region */
2803 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2804 return -EFAULT;
2805
2806 /*
2807 * May not be a start of buffer, set size appropriately
2808 * and advance us to the beginning.
2809 */
2810 offset = buf_addr - imu->ubuf;
2811 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2812
2813 if (offset) {
2814 /*
2815 * Don't use iov_iter_advance() here, as it's really slow for
2816 * using the latter parts of a big fixed buffer - it iterates
2817 * over each segment manually. We can cheat a bit here, because
2818 * we know that:
2819 *
2820 * 1) it's a BVEC iter, we set it up
2821 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2822 * first and last bvec
2823 *
2824 * So just find our index, and adjust the iterator afterwards.
2825 * If the offset is within the first bvec (or the whole first
2826 * bvec, just use iov_iter_advance(). This makes it easier
2827 * since we can just skip the first segment, which may not
2828 * be PAGE_SIZE aligned.
2829 */
2830 const struct bio_vec *bvec = imu->bvec;
2831
2832 if (offset <= bvec->bv_len) {
2833 iov_iter_advance(iter, offset);
2834 } else {
2835 unsigned long seg_skip;
2836
2837 /* skip first vec */
2838 offset -= bvec->bv_len;
2839 seg_skip = 1 + (offset >> PAGE_SHIFT);
2840
2841 iter->bvec = bvec + seg_skip;
2842 iter->nr_segs -= seg_skip;
2843 iter->count -= bvec->bv_len + offset;
2844 iter->iov_offset = offset & ~PAGE_MASK;
2845 }
2846 }
2847
2848 return 0;
2849 }
2850
2851 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2852 {
2853 if (needs_lock)
2854 mutex_unlock(&ctx->uring_lock);
2855 }
2856
2857 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2858 {
2859 /*
2860 * "Normal" inline submissions always hold the uring_lock, since we
2861 * grab it from the system call. Same is true for the SQPOLL offload.
2862 * The only exception is when we've detached the request and issue it
2863 * from an async worker thread, grab the lock for that case.
2864 */
2865 if (needs_lock)
2866 mutex_lock(&ctx->uring_lock);
2867 }
2868
2869 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2870 int bgid, struct io_buffer *kbuf,
2871 bool needs_lock)
2872 {
2873 struct io_buffer *head;
2874
2875 if (req->flags & REQ_F_BUFFER_SELECTED)
2876 return kbuf;
2877
2878 io_ring_submit_lock(req->ctx, needs_lock);
2879
2880 lockdep_assert_held(&req->ctx->uring_lock);
2881
2882 head = xa_load(&req->ctx->io_buffers, bgid);
2883 if (head) {
2884 if (!list_empty(&head->list)) {
2885 kbuf = list_last_entry(&head->list, struct io_buffer,
2886 list);
2887 list_del(&kbuf->list);
2888 } else {
2889 kbuf = head;
2890 xa_erase(&req->ctx->io_buffers, bgid);
2891 }
2892 if (*len > kbuf->len)
2893 *len = kbuf->len;
2894 } else {
2895 kbuf = ERR_PTR(-ENOBUFS);
2896 }
2897
2898 io_ring_submit_unlock(req->ctx, needs_lock);
2899
2900 return kbuf;
2901 }
2902
2903 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2904 bool needs_lock)
2905 {
2906 struct io_buffer *kbuf;
2907 u16 bgid;
2908
2909 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2910 bgid = req->buf_index;
2911 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2912 if (IS_ERR(kbuf))
2913 return kbuf;
2914 req->rw.addr = (u64) (unsigned long) kbuf;
2915 req->flags |= REQ_F_BUFFER_SELECTED;
2916 return u64_to_user_ptr(kbuf->addr);
2917 }
2918
2919 #ifdef CONFIG_COMPAT
2920 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2921 bool needs_lock)
2922 {
2923 struct compat_iovec __user *uiov;
2924 compat_ssize_t clen;
2925 void __user *buf;
2926 ssize_t len;
2927
2928 uiov = u64_to_user_ptr(req->rw.addr);
2929 if (!access_ok(uiov, sizeof(*uiov)))
2930 return -EFAULT;
2931 if (__get_user(clen, &uiov->iov_len))
2932 return -EFAULT;
2933 if (clen < 0)
2934 return -EINVAL;
2935
2936 len = clen;
2937 buf = io_rw_buffer_select(req, &len, needs_lock);
2938 if (IS_ERR(buf))
2939 return PTR_ERR(buf);
2940 iov[0].iov_base = buf;
2941 iov[0].iov_len = (compat_size_t) len;
2942 return 0;
2943 }
2944 #endif
2945
2946 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2947 bool needs_lock)
2948 {
2949 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2950 void __user *buf;
2951 ssize_t len;
2952
2953 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2954 return -EFAULT;
2955
2956 len = iov[0].iov_len;
2957 if (len < 0)
2958 return -EINVAL;
2959 buf = io_rw_buffer_select(req, &len, needs_lock);
2960 if (IS_ERR(buf))
2961 return PTR_ERR(buf);
2962 iov[0].iov_base = buf;
2963 iov[0].iov_len = len;
2964 return 0;
2965 }
2966
2967 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2968 bool needs_lock)
2969 {
2970 if (req->flags & REQ_F_BUFFER_SELECTED) {
2971 struct io_buffer *kbuf;
2972
2973 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2974 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2975 iov[0].iov_len = kbuf->len;
2976 return 0;
2977 }
2978 if (req->rw.len != 1)
2979 return -EINVAL;
2980
2981 #ifdef CONFIG_COMPAT
2982 if (req->ctx->compat)
2983 return io_compat_import(req, iov, needs_lock);
2984 #endif
2985
2986 return __io_iov_buffer_select(req, iov, needs_lock);
2987 }
2988
2989 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2990 struct iov_iter *iter, bool needs_lock)
2991 {
2992 void __user *buf = u64_to_user_ptr(req->rw.addr);
2993 size_t sqe_len = req->rw.len;
2994 u8 opcode = req->opcode;
2995 ssize_t ret;
2996
2997 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2998 *iovec = NULL;
2999 return io_import_fixed(req, rw, iter);
3000 }
3001
3002 /* buffer index only valid with fixed read/write, or buffer select */
3003 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3004 return -EINVAL;
3005
3006 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3007 if (req->flags & REQ_F_BUFFER_SELECT) {
3008 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3009 if (IS_ERR(buf))
3010 return PTR_ERR(buf);
3011 req->rw.len = sqe_len;
3012 }
3013
3014 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3015 *iovec = NULL;
3016 return ret;
3017 }
3018
3019 if (req->flags & REQ_F_BUFFER_SELECT) {
3020 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3021 if (!ret)
3022 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3023 *iovec = NULL;
3024 return ret;
3025 }
3026
3027 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3028 req->ctx->compat);
3029 }
3030
3031 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3032 {
3033 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3034 }
3035
3036 /*
3037 * For files that don't have ->read_iter() and ->write_iter(), handle them
3038 * by looping over ->read() or ->write() manually.
3039 */
3040 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3041 {
3042 struct kiocb *kiocb = &req->rw.kiocb;
3043 struct file *file = req->file;
3044 ssize_t ret = 0;
3045
3046 /*
3047 * Don't support polled IO through this interface, and we can't
3048 * support non-blocking either. For the latter, this just causes
3049 * the kiocb to be handled from an async context.
3050 */
3051 if (kiocb->ki_flags & IOCB_HIPRI)
3052 return -EOPNOTSUPP;
3053 if (kiocb->ki_flags & IOCB_NOWAIT)
3054 return -EAGAIN;
3055
3056 while (iov_iter_count(iter)) {
3057 struct iovec iovec;
3058 ssize_t nr;
3059
3060 if (!iov_iter_is_bvec(iter)) {
3061 iovec = iov_iter_iovec(iter);
3062 } else {
3063 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3064 iovec.iov_len = req->rw.len;
3065 }
3066
3067 if (rw == READ) {
3068 nr = file->f_op->read(file, iovec.iov_base,
3069 iovec.iov_len, io_kiocb_ppos(kiocb));
3070 } else {
3071 nr = file->f_op->write(file, iovec.iov_base,
3072 iovec.iov_len, io_kiocb_ppos(kiocb));
3073 }
3074
3075 if (nr < 0) {
3076 if (!ret)
3077 ret = nr;
3078 break;
3079 }
3080 ret += nr;
3081 if (nr != iovec.iov_len)
3082 break;
3083 req->rw.len -= nr;
3084 req->rw.addr += nr;
3085 iov_iter_advance(iter, nr);
3086 }
3087
3088 return ret;
3089 }
3090
3091 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3092 const struct iovec *fast_iov, struct iov_iter *iter)
3093 {
3094 struct io_async_rw *rw = req->async_data;
3095
3096 memcpy(&rw->iter, iter, sizeof(*iter));
3097 rw->free_iovec = iovec;
3098 rw->bytes_done = 0;
3099 /* can only be fixed buffers, no need to do anything */
3100 if (iov_iter_is_bvec(iter))
3101 return;
3102 if (!iovec) {
3103 unsigned iov_off = 0;
3104
3105 rw->iter.iov = rw->fast_iov;
3106 if (iter->iov != fast_iov) {
3107 iov_off = iter->iov - fast_iov;
3108 rw->iter.iov += iov_off;
3109 }
3110 if (rw->fast_iov != fast_iov)
3111 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3112 sizeof(struct iovec) * iter->nr_segs);
3113 } else {
3114 req->flags |= REQ_F_NEED_CLEANUP;
3115 }
3116 }
3117
3118 static inline int io_alloc_async_data(struct io_kiocb *req)
3119 {
3120 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3121 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3122 return req->async_data == NULL;
3123 }
3124
3125 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3126 const struct iovec *fast_iov,
3127 struct iov_iter *iter, bool force)
3128 {
3129 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3130 return 0;
3131 if (!req->async_data) {
3132 if (io_alloc_async_data(req)) {
3133 kfree(iovec);
3134 return -ENOMEM;
3135 }
3136
3137 io_req_map_rw(req, iovec, fast_iov, iter);
3138 }
3139 return 0;
3140 }
3141
3142 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3143 {
3144 struct io_async_rw *iorw = req->async_data;
3145 struct iovec *iov = iorw->fast_iov;
3146 int ret;
3147
3148 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3149 if (unlikely(ret < 0))
3150 return ret;
3151
3152 iorw->bytes_done = 0;
3153 iorw->free_iovec = iov;
3154 if (iov)
3155 req->flags |= REQ_F_NEED_CLEANUP;
3156 return 0;
3157 }
3158
3159 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3160 {
3161 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3162 return -EBADF;
3163 return io_prep_rw(req, sqe);
3164 }
3165
3166 /*
3167 * This is our waitqueue callback handler, registered through lock_page_async()
3168 * when we initially tried to do the IO with the iocb armed our waitqueue.
3169 * This gets called when the page is unlocked, and we generally expect that to
3170 * happen when the page IO is completed and the page is now uptodate. This will
3171 * queue a task_work based retry of the operation, attempting to copy the data
3172 * again. If the latter fails because the page was NOT uptodate, then we will
3173 * do a thread based blocking retry of the operation. That's the unexpected
3174 * slow path.
3175 */
3176 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3177 int sync, void *arg)
3178 {
3179 struct wait_page_queue *wpq;
3180 struct io_kiocb *req = wait->private;
3181 struct wait_page_key *key = arg;
3182
3183 wpq = container_of(wait, struct wait_page_queue, wait);
3184
3185 if (!wake_page_match(wpq, key))
3186 return 0;
3187
3188 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3189 list_del_init(&wait->entry);
3190
3191 /* submit ref gets dropped, acquire a new one */
3192 req_ref_get(req);
3193 io_req_task_queue(req);
3194 return 1;
3195 }
3196
3197 /*
3198 * This controls whether a given IO request should be armed for async page
3199 * based retry. If we return false here, the request is handed to the async
3200 * worker threads for retry. If we're doing buffered reads on a regular file,
3201 * we prepare a private wait_page_queue entry and retry the operation. This
3202 * will either succeed because the page is now uptodate and unlocked, or it
3203 * will register a callback when the page is unlocked at IO completion. Through
3204 * that callback, io_uring uses task_work to setup a retry of the operation.
3205 * That retry will attempt the buffered read again. The retry will generally
3206 * succeed, or in rare cases where it fails, we then fall back to using the
3207 * async worker threads for a blocking retry.
3208 */
3209 static bool io_rw_should_retry(struct io_kiocb *req)
3210 {
3211 struct io_async_rw *rw = req->async_data;
3212 struct wait_page_queue *wait = &rw->wpq;
3213 struct kiocb *kiocb = &req->rw.kiocb;
3214
3215 /* never retry for NOWAIT, we just complete with -EAGAIN */
3216 if (req->flags & REQ_F_NOWAIT)
3217 return false;
3218
3219 /* Only for buffered IO */
3220 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3221 return false;
3222
3223 /*
3224 * just use poll if we can, and don't attempt if the fs doesn't
3225 * support callback based unlocks
3226 */
3227 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3228 return false;
3229
3230 wait->wait.func = io_async_buf_func;
3231 wait->wait.private = req;
3232 wait->wait.flags = 0;
3233 INIT_LIST_HEAD(&wait->wait.entry);
3234 kiocb->ki_flags |= IOCB_WAITQ;
3235 kiocb->ki_flags &= ~IOCB_NOWAIT;
3236 kiocb->ki_waitq = wait;
3237 return true;
3238 }
3239
3240 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3241 {
3242 if (req->file->f_op->read_iter)
3243 return call_read_iter(req->file, &req->rw.kiocb, iter);
3244 else if (req->file->f_op->read)
3245 return loop_rw_iter(READ, req, iter);
3246 else
3247 return -EINVAL;
3248 }
3249
3250 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3251 {
3252 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3253 struct kiocb *kiocb = &req->rw.kiocb;
3254 struct iov_iter __iter, *iter = &__iter;
3255 struct io_async_rw *rw = req->async_data;
3256 ssize_t io_size, ret, ret2;
3257 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3258
3259 if (rw) {
3260 iter = &rw->iter;
3261 iovec = NULL;
3262 } else {
3263 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3264 if (ret < 0)
3265 return ret;
3266 }
3267 io_size = iov_iter_count(iter);
3268 req->result = io_size;
3269
3270 /* Ensure we clear previously set non-block flag */
3271 if (!force_nonblock)
3272 kiocb->ki_flags &= ~IOCB_NOWAIT;
3273 else
3274 kiocb->ki_flags |= IOCB_NOWAIT;
3275
3276 /* If the file doesn't support async, just async punt */
3277 if (force_nonblock && !io_file_supports_async(req, READ)) {
3278 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3279 return ret ?: -EAGAIN;
3280 }
3281
3282 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3283 if (unlikely(ret)) {
3284 kfree(iovec);
3285 return ret;
3286 }
3287
3288 ret = io_iter_do_read(req, iter);
3289
3290 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3291 req->flags &= ~REQ_F_REISSUE;
3292 /* IOPOLL retry should happen for io-wq threads */
3293 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3294 goto done;
3295 /* no retry on NONBLOCK nor RWF_NOWAIT */
3296 if (req->flags & REQ_F_NOWAIT)
3297 goto done;
3298 /* some cases will consume bytes even on error returns */
3299 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3300 ret = 0;
3301 } else if (ret == -EIOCBQUEUED) {
3302 goto out_free;
3303 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3304 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3305 /* read all, failed, already did sync or don't want to retry */
3306 goto done;
3307 }
3308
3309 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3310 if (ret2)
3311 return ret2;
3312
3313 iovec = NULL;
3314 rw = req->async_data;
3315 /* now use our persistent iterator, if we aren't already */
3316 iter = &rw->iter;
3317
3318 do {
3319 io_size -= ret;
3320 rw->bytes_done += ret;
3321 /* if we can retry, do so with the callbacks armed */
3322 if (!io_rw_should_retry(req)) {
3323 kiocb->ki_flags &= ~IOCB_WAITQ;
3324 return -EAGAIN;
3325 }
3326
3327 /*
3328 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3329 * we get -EIOCBQUEUED, then we'll get a notification when the
3330 * desired page gets unlocked. We can also get a partial read
3331 * here, and if we do, then just retry at the new offset.
3332 */
3333 ret = io_iter_do_read(req, iter);
3334 if (ret == -EIOCBQUEUED)
3335 return 0;
3336 /* we got some bytes, but not all. retry. */
3337 kiocb->ki_flags &= ~IOCB_WAITQ;
3338 } while (ret > 0 && ret < io_size);
3339 done:
3340 kiocb_done(kiocb, ret, issue_flags);
3341 out_free:
3342 /* it's faster to check here then delegate to kfree */
3343 if (iovec)
3344 kfree(iovec);
3345 return 0;
3346 }
3347
3348 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3349 {
3350 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3351 return -EBADF;
3352 return io_prep_rw(req, sqe);
3353 }
3354
3355 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3356 {
3357 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3358 struct kiocb *kiocb = &req->rw.kiocb;
3359 struct iov_iter __iter, *iter = &__iter;
3360 struct io_async_rw *rw = req->async_data;
3361 ssize_t ret, ret2, io_size;
3362 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3363
3364 if (rw) {
3365 iter = &rw->iter;
3366 iovec = NULL;
3367 } else {
3368 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3369 if (ret < 0)
3370 return ret;
3371 }
3372 io_size = iov_iter_count(iter);
3373 req->result = io_size;
3374
3375 /* Ensure we clear previously set non-block flag */
3376 if (!force_nonblock)
3377 kiocb->ki_flags &= ~IOCB_NOWAIT;
3378 else
3379 kiocb->ki_flags |= IOCB_NOWAIT;
3380
3381 /* If the file doesn't support async, just async punt */
3382 if (force_nonblock && !io_file_supports_async(req, WRITE))
3383 goto copy_iov;
3384
3385 /* file path doesn't support NOWAIT for non-direct_IO */
3386 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3387 (req->flags & REQ_F_ISREG))
3388 goto copy_iov;
3389
3390 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3391 if (unlikely(ret))
3392 goto out_free;
3393
3394 /*
3395 * Open-code file_start_write here to grab freeze protection,
3396 * which will be released by another thread in
3397 * io_complete_rw(). Fool lockdep by telling it the lock got
3398 * released so that it doesn't complain about the held lock when
3399 * we return to userspace.
3400 */
3401 if (req->flags & REQ_F_ISREG) {
3402 sb_start_write(file_inode(req->file)->i_sb);
3403 __sb_writers_release(file_inode(req->file)->i_sb,
3404 SB_FREEZE_WRITE);
3405 }
3406 kiocb->ki_flags |= IOCB_WRITE;
3407
3408 if (req->file->f_op->write_iter)
3409 ret2 = call_write_iter(req->file, kiocb, iter);
3410 else if (req->file->f_op->write)
3411 ret2 = loop_rw_iter(WRITE, req, iter);
3412 else
3413 ret2 = -EINVAL;
3414
3415 if (req->flags & REQ_F_REISSUE) {
3416 req->flags &= ~REQ_F_REISSUE;
3417 ret2 = -EAGAIN;
3418 }
3419
3420 /*
3421 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3422 * retry them without IOCB_NOWAIT.
3423 */
3424 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3425 ret2 = -EAGAIN;
3426 /* no retry on NONBLOCK nor RWF_NOWAIT */
3427 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3428 goto done;
3429 if (!force_nonblock || ret2 != -EAGAIN) {
3430 /* IOPOLL retry should happen for io-wq threads */
3431 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3432 goto copy_iov;
3433 done:
3434 kiocb_done(kiocb, ret2, issue_flags);
3435 } else {
3436 copy_iov:
3437 /* some cases will consume bytes even on error returns */
3438 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3439 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3440 return ret ?: -EAGAIN;
3441 }
3442 out_free:
3443 /* it's reportedly faster than delegating the null check to kfree() */
3444 if (iovec)
3445 kfree(iovec);
3446 return ret;
3447 }
3448
3449 static int io_renameat_prep(struct io_kiocb *req,
3450 const struct io_uring_sqe *sqe)
3451 {
3452 struct io_rename *ren = &req->rename;
3453 const char __user *oldf, *newf;
3454
3455 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3456 return -EBADF;
3457
3458 ren->old_dfd = READ_ONCE(sqe->fd);
3459 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3460 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3461 ren->new_dfd = READ_ONCE(sqe->len);
3462 ren->flags = READ_ONCE(sqe->rename_flags);
3463
3464 ren->oldpath = getname(oldf);
3465 if (IS_ERR(ren->oldpath))
3466 return PTR_ERR(ren->oldpath);
3467
3468 ren->newpath = getname(newf);
3469 if (IS_ERR(ren->newpath)) {
3470 putname(ren->oldpath);
3471 return PTR_ERR(ren->newpath);
3472 }
3473
3474 req->flags |= REQ_F_NEED_CLEANUP;
3475 return 0;
3476 }
3477
3478 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3479 {
3480 struct io_rename *ren = &req->rename;
3481 int ret;
3482
3483 if (issue_flags & IO_URING_F_NONBLOCK)
3484 return -EAGAIN;
3485
3486 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3487 ren->newpath, ren->flags);
3488
3489 req->flags &= ~REQ_F_NEED_CLEANUP;
3490 if (ret < 0)
3491 req_set_fail_links(req);
3492 io_req_complete(req, ret);
3493 return 0;
3494 }
3495
3496 static int io_unlinkat_prep(struct io_kiocb *req,
3497 const struct io_uring_sqe *sqe)
3498 {
3499 struct io_unlink *un = &req->unlink;
3500 const char __user *fname;
3501
3502 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3503 return -EBADF;
3504
3505 un->dfd = READ_ONCE(sqe->fd);
3506
3507 un->flags = READ_ONCE(sqe->unlink_flags);
3508 if (un->flags & ~AT_REMOVEDIR)
3509 return -EINVAL;
3510
3511 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3512 un->filename = getname(fname);
3513 if (IS_ERR(un->filename))
3514 return PTR_ERR(un->filename);
3515
3516 req->flags |= REQ_F_NEED_CLEANUP;
3517 return 0;
3518 }
3519
3520 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3521 {
3522 struct io_unlink *un = &req->unlink;
3523 int ret;
3524
3525 if (issue_flags & IO_URING_F_NONBLOCK)
3526 return -EAGAIN;
3527
3528 if (un->flags & AT_REMOVEDIR)
3529 ret = do_rmdir(un->dfd, un->filename);
3530 else
3531 ret = do_unlinkat(un->dfd, un->filename);
3532
3533 req->flags &= ~REQ_F_NEED_CLEANUP;
3534 if (ret < 0)
3535 req_set_fail_links(req);
3536 io_req_complete(req, ret);
3537 return 0;
3538 }
3539
3540 static int io_shutdown_prep(struct io_kiocb *req,
3541 const struct io_uring_sqe *sqe)
3542 {
3543 #if defined(CONFIG_NET)
3544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3545 return -EINVAL;
3546 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3547 sqe->buf_index)
3548 return -EINVAL;
3549
3550 req->shutdown.how = READ_ONCE(sqe->len);
3551 return 0;
3552 #else
3553 return -EOPNOTSUPP;
3554 #endif
3555 }
3556
3557 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3558 {
3559 #if defined(CONFIG_NET)
3560 struct socket *sock;
3561 int ret;
3562
3563 if (issue_flags & IO_URING_F_NONBLOCK)
3564 return -EAGAIN;
3565
3566 sock = sock_from_file(req->file);
3567 if (unlikely(!sock))
3568 return -ENOTSOCK;
3569
3570 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3571 if (ret < 0)
3572 req_set_fail_links(req);
3573 io_req_complete(req, ret);
3574 return 0;
3575 #else
3576 return -EOPNOTSUPP;
3577 #endif
3578 }
3579
3580 static int __io_splice_prep(struct io_kiocb *req,
3581 const struct io_uring_sqe *sqe)
3582 {
3583 struct io_splice* sp = &req->splice;
3584 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3585
3586 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3587 return -EINVAL;
3588
3589 sp->file_in = NULL;
3590 sp->len = READ_ONCE(sqe->len);
3591 sp->flags = READ_ONCE(sqe->splice_flags);
3592
3593 if (unlikely(sp->flags & ~valid_flags))
3594 return -EINVAL;
3595
3596 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3597 (sp->flags & SPLICE_F_FD_IN_FIXED));
3598 if (!sp->file_in)
3599 return -EBADF;
3600 req->flags |= REQ_F_NEED_CLEANUP;
3601 return 0;
3602 }
3603
3604 static int io_tee_prep(struct io_kiocb *req,
3605 const struct io_uring_sqe *sqe)
3606 {
3607 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3608 return -EINVAL;
3609 return __io_splice_prep(req, sqe);
3610 }
3611
3612 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3613 {
3614 struct io_splice *sp = &req->splice;
3615 struct file *in = sp->file_in;
3616 struct file *out = sp->file_out;
3617 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3618 long ret = 0;
3619
3620 if (issue_flags & IO_URING_F_NONBLOCK)
3621 return -EAGAIN;
3622 if (sp->len)
3623 ret = do_tee(in, out, sp->len, flags);
3624
3625 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3626 io_put_file(in);
3627 req->flags &= ~REQ_F_NEED_CLEANUP;
3628
3629 if (ret != sp->len)
3630 req_set_fail_links(req);
3631 io_req_complete(req, ret);
3632 return 0;
3633 }
3634
3635 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3636 {
3637 struct io_splice* sp = &req->splice;
3638
3639 sp->off_in = READ_ONCE(sqe->splice_off_in);
3640 sp->off_out = READ_ONCE(sqe->off);
3641 return __io_splice_prep(req, sqe);
3642 }
3643
3644 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3645 {
3646 struct io_splice *sp = &req->splice;
3647 struct file *in = sp->file_in;
3648 struct file *out = sp->file_out;
3649 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3650 loff_t *poff_in, *poff_out;
3651 long ret = 0;
3652
3653 if (issue_flags & IO_URING_F_NONBLOCK)
3654 return -EAGAIN;
3655
3656 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3657 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3658
3659 if (sp->len)
3660 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3661
3662 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3663 io_put_file(in);
3664 req->flags &= ~REQ_F_NEED_CLEANUP;
3665
3666 if (ret != sp->len)
3667 req_set_fail_links(req);
3668 io_req_complete(req, ret);
3669 return 0;
3670 }
3671
3672 /*
3673 * IORING_OP_NOP just posts a completion event, nothing else.
3674 */
3675 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3676 {
3677 struct io_ring_ctx *ctx = req->ctx;
3678
3679 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3680 return -EINVAL;
3681
3682 __io_req_complete(req, issue_flags, 0, 0);
3683 return 0;
3684 }
3685
3686 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3687 {
3688 struct io_ring_ctx *ctx = req->ctx;
3689
3690 if (!req->file)
3691 return -EBADF;
3692
3693 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3694 return -EINVAL;
3695 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3696 return -EINVAL;
3697
3698 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3699 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3700 return -EINVAL;
3701
3702 req->sync.off = READ_ONCE(sqe->off);
3703 req->sync.len = READ_ONCE(sqe->len);
3704 return 0;
3705 }
3706
3707 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3708 {
3709 loff_t end = req->sync.off + req->sync.len;
3710 int ret;
3711
3712 /* fsync always requires a blocking context */
3713 if (issue_flags & IO_URING_F_NONBLOCK)
3714 return -EAGAIN;
3715
3716 ret = vfs_fsync_range(req->file, req->sync.off,
3717 end > 0 ? end : LLONG_MAX,
3718 req->sync.flags & IORING_FSYNC_DATASYNC);
3719 if (ret < 0)
3720 req_set_fail_links(req);
3721 io_req_complete(req, ret);
3722 return 0;
3723 }
3724
3725 static int io_fallocate_prep(struct io_kiocb *req,
3726 const struct io_uring_sqe *sqe)
3727 {
3728 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3729 return -EINVAL;
3730 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3731 return -EINVAL;
3732
3733 req->sync.off = READ_ONCE(sqe->off);
3734 req->sync.len = READ_ONCE(sqe->addr);
3735 req->sync.mode = READ_ONCE(sqe->len);
3736 return 0;
3737 }
3738
3739 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3740 {
3741 int ret;
3742
3743 /* fallocate always requiring blocking context */
3744 if (issue_flags & IO_URING_F_NONBLOCK)
3745 return -EAGAIN;
3746 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3747 req->sync.len);
3748 if (ret < 0)
3749 req_set_fail_links(req);
3750 io_req_complete(req, ret);
3751 return 0;
3752 }
3753
3754 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3755 {
3756 const char __user *fname;
3757 int ret;
3758
3759 if (unlikely(sqe->ioprio || sqe->buf_index))
3760 return -EINVAL;
3761 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3762 return -EBADF;
3763
3764 /* open.how should be already initialised */
3765 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3766 req->open.how.flags |= O_LARGEFILE;
3767
3768 req->open.dfd = READ_ONCE(sqe->fd);
3769 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3770 req->open.filename = getname(fname);
3771 if (IS_ERR(req->open.filename)) {
3772 ret = PTR_ERR(req->open.filename);
3773 req->open.filename = NULL;
3774 return ret;
3775 }
3776 req->open.nofile = rlimit(RLIMIT_NOFILE);
3777 req->flags |= REQ_F_NEED_CLEANUP;
3778 return 0;
3779 }
3780
3781 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3782 {
3783 u64 flags, mode;
3784
3785 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3786 return -EINVAL;
3787 mode = READ_ONCE(sqe->len);
3788 flags = READ_ONCE(sqe->open_flags);
3789 req->open.how = build_open_how(flags, mode);
3790 return __io_openat_prep(req, sqe);
3791 }
3792
3793 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3794 {
3795 struct open_how __user *how;
3796 size_t len;
3797 int ret;
3798
3799 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3800 return -EINVAL;
3801 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3802 len = READ_ONCE(sqe->len);
3803 if (len < OPEN_HOW_SIZE_VER0)
3804 return -EINVAL;
3805
3806 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3807 len);
3808 if (ret)
3809 return ret;
3810
3811 return __io_openat_prep(req, sqe);
3812 }
3813
3814 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3815 {
3816 struct open_flags op;
3817 struct file *file;
3818 bool nonblock_set;
3819 bool resolve_nonblock;
3820 int ret;
3821
3822 ret = build_open_flags(&req->open.how, &op);
3823 if (ret)
3824 goto err;
3825 nonblock_set = op.open_flag & O_NONBLOCK;
3826 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3827 if (issue_flags & IO_URING_F_NONBLOCK) {
3828 /*
3829 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3830 * it'll always -EAGAIN
3831 */
3832 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3833 return -EAGAIN;
3834 op.lookup_flags |= LOOKUP_CACHED;
3835 op.open_flag |= O_NONBLOCK;
3836 }
3837
3838 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3839 if (ret < 0)
3840 goto err;
3841
3842 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3843 /* only retry if RESOLVE_CACHED wasn't already set by application */
3844 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
3845 file == ERR_PTR(-EAGAIN)) {
3846 /*
3847 * We could hang on to this 'fd', but seems like marginal
3848 * gain for something that is now known to be a slower path.
3849 * So just put it, and we'll get a new one when we retry.
3850 */
3851 put_unused_fd(ret);
3852 return -EAGAIN;
3853 }
3854
3855 if (IS_ERR(file)) {
3856 put_unused_fd(ret);
3857 ret = PTR_ERR(file);
3858 } else {
3859 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3860 file->f_flags &= ~O_NONBLOCK;
3861 fsnotify_open(file);
3862 fd_install(ret, file);
3863 }
3864 err:
3865 putname(req->open.filename);
3866 req->flags &= ~REQ_F_NEED_CLEANUP;
3867 if (ret < 0)
3868 req_set_fail_links(req);
3869 io_req_complete(req, ret);
3870 return 0;
3871 }
3872
3873 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3874 {
3875 return io_openat2(req, issue_flags);
3876 }
3877
3878 static int io_remove_buffers_prep(struct io_kiocb *req,
3879 const struct io_uring_sqe *sqe)
3880 {
3881 struct io_provide_buf *p = &req->pbuf;
3882 u64 tmp;
3883
3884 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3885 return -EINVAL;
3886
3887 tmp = READ_ONCE(sqe->fd);
3888 if (!tmp || tmp > USHRT_MAX)
3889 return -EINVAL;
3890
3891 memset(p, 0, sizeof(*p));
3892 p->nbufs = tmp;
3893 p->bgid = READ_ONCE(sqe->buf_group);
3894 return 0;
3895 }
3896
3897 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3898 int bgid, unsigned nbufs)
3899 {
3900 unsigned i = 0;
3901
3902 /* shouldn't happen */
3903 if (!nbufs)
3904 return 0;
3905
3906 /* the head kbuf is the list itself */
3907 while (!list_empty(&buf->list)) {
3908 struct io_buffer *nxt;
3909
3910 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3911 list_del(&nxt->list);
3912 kfree(nxt);
3913 if (++i == nbufs)
3914 return i;
3915 }
3916 i++;
3917 kfree(buf);
3918 xa_erase(&ctx->io_buffers, bgid);
3919
3920 return i;
3921 }
3922
3923 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3924 {
3925 struct io_provide_buf *p = &req->pbuf;
3926 struct io_ring_ctx *ctx = req->ctx;
3927 struct io_buffer *head;
3928 int ret = 0;
3929 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3930
3931 io_ring_submit_lock(ctx, !force_nonblock);
3932
3933 lockdep_assert_held(&ctx->uring_lock);
3934
3935 ret = -ENOENT;
3936 head = xa_load(&ctx->io_buffers, p->bgid);
3937 if (head)
3938 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3939 if (ret < 0)
3940 req_set_fail_links(req);
3941
3942 /* complete before unlock, IOPOLL may need the lock */
3943 __io_req_complete(req, issue_flags, ret, 0);
3944 io_ring_submit_unlock(ctx, !force_nonblock);
3945 return 0;
3946 }
3947
3948 static int io_provide_buffers_prep(struct io_kiocb *req,
3949 const struct io_uring_sqe *sqe)
3950 {
3951 unsigned long size;
3952 struct io_provide_buf *p = &req->pbuf;
3953 u64 tmp;
3954
3955 if (sqe->ioprio || sqe->rw_flags)
3956 return -EINVAL;
3957
3958 tmp = READ_ONCE(sqe->fd);
3959 if (!tmp || tmp > USHRT_MAX)
3960 return -E2BIG;
3961 p->nbufs = tmp;
3962 p->addr = READ_ONCE(sqe->addr);
3963 p->len = READ_ONCE(sqe->len);
3964
3965 size = (unsigned long)p->len * p->nbufs;
3966 if (!access_ok(u64_to_user_ptr(p->addr), size))
3967 return -EFAULT;
3968
3969 p->bgid = READ_ONCE(sqe->buf_group);
3970 tmp = READ_ONCE(sqe->off);
3971 if (tmp > USHRT_MAX)
3972 return -E2BIG;
3973 p->bid = tmp;
3974 return 0;
3975 }
3976
3977 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3978 {
3979 struct io_buffer *buf;
3980 u64 addr = pbuf->addr;
3981 int i, bid = pbuf->bid;
3982
3983 for (i = 0; i < pbuf->nbufs; i++) {
3984 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3985 if (!buf)
3986 break;
3987
3988 buf->addr = addr;
3989 buf->len = pbuf->len;
3990 buf->bid = bid;
3991 addr += pbuf->len;
3992 bid++;
3993 if (!*head) {
3994 INIT_LIST_HEAD(&buf->list);
3995 *head = buf;
3996 } else {
3997 list_add_tail(&buf->list, &(*head)->list);
3998 }
3999 }
4000
4001 return i ? i : -ENOMEM;
4002 }
4003
4004 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4005 {
4006 struct io_provide_buf *p = &req->pbuf;
4007 struct io_ring_ctx *ctx = req->ctx;
4008 struct io_buffer *head, *list;
4009 int ret = 0;
4010 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4011
4012 io_ring_submit_lock(ctx, !force_nonblock);
4013
4014 lockdep_assert_held(&ctx->uring_lock);
4015
4016 list = head = xa_load(&ctx->io_buffers, p->bgid);
4017
4018 ret = io_add_buffers(p, &head);
4019 if (ret >= 0 && !list) {
4020 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4021 if (ret < 0)
4022 __io_remove_buffers(ctx, head, p->bgid, -1U);
4023 }
4024 if (ret < 0)
4025 req_set_fail_links(req);
4026 /* complete before unlock, IOPOLL may need the lock */
4027 __io_req_complete(req, issue_flags, ret, 0);
4028 io_ring_submit_unlock(ctx, !force_nonblock);
4029 return 0;
4030 }
4031
4032 static int io_epoll_ctl_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4034 {
4035 #if defined(CONFIG_EPOLL)
4036 if (sqe->ioprio || sqe->buf_index)
4037 return -EINVAL;
4038 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4039 return -EINVAL;
4040
4041 req->epoll.epfd = READ_ONCE(sqe->fd);
4042 req->epoll.op = READ_ONCE(sqe->len);
4043 req->epoll.fd = READ_ONCE(sqe->off);
4044
4045 if (ep_op_has_event(req->epoll.op)) {
4046 struct epoll_event __user *ev;
4047
4048 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4049 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4050 return -EFAULT;
4051 }
4052
4053 return 0;
4054 #else
4055 return -EOPNOTSUPP;
4056 #endif
4057 }
4058
4059 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4060 {
4061 #if defined(CONFIG_EPOLL)
4062 struct io_epoll *ie = &req->epoll;
4063 int ret;
4064 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4065
4066 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4067 if (force_nonblock && ret == -EAGAIN)
4068 return -EAGAIN;
4069
4070 if (ret < 0)
4071 req_set_fail_links(req);
4072 __io_req_complete(req, issue_flags, ret, 0);
4073 return 0;
4074 #else
4075 return -EOPNOTSUPP;
4076 #endif
4077 }
4078
4079 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4080 {
4081 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4082 if (sqe->ioprio || sqe->buf_index || sqe->off)
4083 return -EINVAL;
4084 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4085 return -EINVAL;
4086
4087 req->madvise.addr = READ_ONCE(sqe->addr);
4088 req->madvise.len = READ_ONCE(sqe->len);
4089 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4090 return 0;
4091 #else
4092 return -EOPNOTSUPP;
4093 #endif
4094 }
4095
4096 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4097 {
4098 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4099 struct io_madvise *ma = &req->madvise;
4100 int ret;
4101
4102 if (issue_flags & IO_URING_F_NONBLOCK)
4103 return -EAGAIN;
4104
4105 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4106 if (ret < 0)
4107 req_set_fail_links(req);
4108 io_req_complete(req, ret);
4109 return 0;
4110 #else
4111 return -EOPNOTSUPP;
4112 #endif
4113 }
4114
4115 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4116 {
4117 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4118 return -EINVAL;
4119 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4120 return -EINVAL;
4121
4122 req->fadvise.offset = READ_ONCE(sqe->off);
4123 req->fadvise.len = READ_ONCE(sqe->len);
4124 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4125 return 0;
4126 }
4127
4128 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4129 {
4130 struct io_fadvise *fa = &req->fadvise;
4131 int ret;
4132
4133 if (issue_flags & IO_URING_F_NONBLOCK) {
4134 switch (fa->advice) {
4135 case POSIX_FADV_NORMAL:
4136 case POSIX_FADV_RANDOM:
4137 case POSIX_FADV_SEQUENTIAL:
4138 break;
4139 default:
4140 return -EAGAIN;
4141 }
4142 }
4143
4144 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4145 if (ret < 0)
4146 req_set_fail_links(req);
4147 io_req_complete(req, ret);
4148 return 0;
4149 }
4150
4151 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4152 {
4153 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4154 return -EINVAL;
4155 if (sqe->ioprio || sqe->buf_index)
4156 return -EINVAL;
4157 if (req->flags & REQ_F_FIXED_FILE)
4158 return -EBADF;
4159
4160 req->statx.dfd = READ_ONCE(sqe->fd);
4161 req->statx.mask = READ_ONCE(sqe->len);
4162 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4163 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4164 req->statx.flags = READ_ONCE(sqe->statx_flags);
4165
4166 return 0;
4167 }
4168
4169 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4170 {
4171 struct io_statx *ctx = &req->statx;
4172 int ret;
4173
4174 if (issue_flags & IO_URING_F_NONBLOCK)
4175 return -EAGAIN;
4176
4177 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4178 ctx->buffer);
4179
4180 if (ret < 0)
4181 req_set_fail_links(req);
4182 io_req_complete(req, ret);
4183 return 0;
4184 }
4185
4186 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4187 {
4188 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4189 return -EINVAL;
4190 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4191 sqe->rw_flags || sqe->buf_index)
4192 return -EINVAL;
4193 if (req->flags & REQ_F_FIXED_FILE)
4194 return -EBADF;
4195
4196 req->close.fd = READ_ONCE(sqe->fd);
4197 return 0;
4198 }
4199
4200 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4201 {
4202 struct files_struct *files = current->files;
4203 struct io_close *close = &req->close;
4204 struct fdtable *fdt;
4205 struct file *file;
4206 int ret;
4207
4208 file = NULL;
4209 ret = -EBADF;
4210 spin_lock(&files->file_lock);
4211 fdt = files_fdtable(files);
4212 if (close->fd >= fdt->max_fds) {
4213 spin_unlock(&files->file_lock);
4214 goto err;
4215 }
4216 file = fdt->fd[close->fd];
4217 if (!file) {
4218 spin_unlock(&files->file_lock);
4219 goto err;
4220 }
4221
4222 if (file->f_op == &io_uring_fops) {
4223 spin_unlock(&files->file_lock);
4224 file = NULL;
4225 goto err;
4226 }
4227
4228 /* if the file has a flush method, be safe and punt to async */
4229 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4230 spin_unlock(&files->file_lock);
4231 return -EAGAIN;
4232 }
4233
4234 ret = __close_fd_get_file(close->fd, &file);
4235 spin_unlock(&files->file_lock);
4236 if (ret < 0) {
4237 if (ret == -ENOENT)
4238 ret = -EBADF;
4239 goto err;
4240 }
4241
4242 /* No ->flush() or already async, safely close from here */
4243 ret = filp_close(file, current->files);
4244 err:
4245 if (ret < 0)
4246 req_set_fail_links(req);
4247 if (file)
4248 fput(file);
4249 __io_req_complete(req, issue_flags, ret, 0);
4250 return 0;
4251 }
4252
4253 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4254 {
4255 struct io_ring_ctx *ctx = req->ctx;
4256
4257 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4258 return -EINVAL;
4259 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4260 return -EINVAL;
4261
4262 req->sync.off = READ_ONCE(sqe->off);
4263 req->sync.len = READ_ONCE(sqe->len);
4264 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4265 return 0;
4266 }
4267
4268 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4269 {
4270 int ret;
4271
4272 /* sync_file_range always requires a blocking context */
4273 if (issue_flags & IO_URING_F_NONBLOCK)
4274 return -EAGAIN;
4275
4276 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4277 req->sync.flags);
4278 if (ret < 0)
4279 req_set_fail_links(req);
4280 io_req_complete(req, ret);
4281 return 0;
4282 }
4283
4284 #if defined(CONFIG_NET)
4285 static int io_setup_async_msg(struct io_kiocb *req,
4286 struct io_async_msghdr *kmsg)
4287 {
4288 struct io_async_msghdr *async_msg = req->async_data;
4289
4290 if (async_msg)
4291 return -EAGAIN;
4292 if (io_alloc_async_data(req)) {
4293 kfree(kmsg->free_iov);
4294 return -ENOMEM;
4295 }
4296 async_msg = req->async_data;
4297 req->flags |= REQ_F_NEED_CLEANUP;
4298 memcpy(async_msg, kmsg, sizeof(*kmsg));
4299 async_msg->msg.msg_name = &async_msg->addr;
4300 /* if were using fast_iov, set it to the new one */
4301 if (!async_msg->free_iov)
4302 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4303
4304 return -EAGAIN;
4305 }
4306
4307 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4308 struct io_async_msghdr *iomsg)
4309 {
4310 iomsg->msg.msg_name = &iomsg->addr;
4311 iomsg->free_iov = iomsg->fast_iov;
4312 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4313 req->sr_msg.msg_flags, &iomsg->free_iov);
4314 }
4315
4316 static int io_sendmsg_prep_async(struct io_kiocb *req)
4317 {
4318 int ret;
4319
4320 ret = io_sendmsg_copy_hdr(req, req->async_data);
4321 if (!ret)
4322 req->flags |= REQ_F_NEED_CLEANUP;
4323 return ret;
4324 }
4325
4326 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4327 {
4328 struct io_sr_msg *sr = &req->sr_msg;
4329
4330 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4331 return -EINVAL;
4332
4333 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4334 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4335 sr->len = READ_ONCE(sqe->len);
4336
4337 #ifdef CONFIG_COMPAT
4338 if (req->ctx->compat)
4339 sr->msg_flags |= MSG_CMSG_COMPAT;
4340 #endif
4341 return 0;
4342 }
4343
4344 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4345 {
4346 struct io_async_msghdr iomsg, *kmsg;
4347 struct socket *sock;
4348 unsigned flags;
4349 int min_ret = 0;
4350 int ret;
4351
4352 sock = sock_from_file(req->file);
4353 if (unlikely(!sock))
4354 return -ENOTSOCK;
4355
4356 kmsg = req->async_data;
4357 if (!kmsg) {
4358 ret = io_sendmsg_copy_hdr(req, &iomsg);
4359 if (ret)
4360 return ret;
4361 kmsg = &iomsg;
4362 }
4363
4364 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4365 if (flags & MSG_DONTWAIT)
4366 req->flags |= REQ_F_NOWAIT;
4367 else if (issue_flags & IO_URING_F_NONBLOCK)
4368 flags |= MSG_DONTWAIT;
4369
4370 if (flags & MSG_WAITALL)
4371 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4372
4373 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4374 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4375 return io_setup_async_msg(req, kmsg);
4376 if (ret == -ERESTARTSYS)
4377 ret = -EINTR;
4378
4379 /* fast path, check for non-NULL to avoid function call */
4380 if (kmsg->free_iov)
4381 kfree(kmsg->free_iov);
4382 req->flags &= ~REQ_F_NEED_CLEANUP;
4383 if (ret < min_ret)
4384 req_set_fail_links(req);
4385 __io_req_complete(req, issue_flags, ret, 0);
4386 return 0;
4387 }
4388
4389 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4390 {
4391 struct io_sr_msg *sr = &req->sr_msg;
4392 struct msghdr msg;
4393 struct iovec iov;
4394 struct socket *sock;
4395 unsigned flags;
4396 int min_ret = 0;
4397 int ret;
4398
4399 sock = sock_from_file(req->file);
4400 if (unlikely(!sock))
4401 return -ENOTSOCK;
4402
4403 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4404 if (unlikely(ret))
4405 return ret;
4406
4407 msg.msg_name = NULL;
4408 msg.msg_control = NULL;
4409 msg.msg_controllen = 0;
4410 msg.msg_namelen = 0;
4411
4412 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4413 if (flags & MSG_DONTWAIT)
4414 req->flags |= REQ_F_NOWAIT;
4415 else if (issue_flags & IO_URING_F_NONBLOCK)
4416 flags |= MSG_DONTWAIT;
4417
4418 if (flags & MSG_WAITALL)
4419 min_ret = iov_iter_count(&msg.msg_iter);
4420
4421 msg.msg_flags = flags;
4422 ret = sock_sendmsg(sock, &msg);
4423 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4424 return -EAGAIN;
4425 if (ret == -ERESTARTSYS)
4426 ret = -EINTR;
4427
4428 if (ret < min_ret)
4429 req_set_fail_links(req);
4430 __io_req_complete(req, issue_flags, ret, 0);
4431 return 0;
4432 }
4433
4434 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4435 struct io_async_msghdr *iomsg)
4436 {
4437 struct io_sr_msg *sr = &req->sr_msg;
4438 struct iovec __user *uiov;
4439 size_t iov_len;
4440 int ret;
4441
4442 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4443 &iomsg->uaddr, &uiov, &iov_len);
4444 if (ret)
4445 return ret;
4446
4447 if (req->flags & REQ_F_BUFFER_SELECT) {
4448 if (iov_len > 1)
4449 return -EINVAL;
4450 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4451 return -EFAULT;
4452 sr->len = iomsg->fast_iov[0].iov_len;
4453 iomsg->free_iov = NULL;
4454 } else {
4455 iomsg->free_iov = iomsg->fast_iov;
4456 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4457 &iomsg->free_iov, &iomsg->msg.msg_iter,
4458 false);
4459 if (ret > 0)
4460 ret = 0;
4461 }
4462
4463 return ret;
4464 }
4465
4466 #ifdef CONFIG_COMPAT
4467 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4468 struct io_async_msghdr *iomsg)
4469 {
4470 struct compat_msghdr __user *msg_compat;
4471 struct io_sr_msg *sr = &req->sr_msg;
4472 struct compat_iovec __user *uiov;
4473 compat_uptr_t ptr;
4474 compat_size_t len;
4475 int ret;
4476
4477 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4478 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4479 &ptr, &len);
4480 if (ret)
4481 return ret;
4482
4483 uiov = compat_ptr(ptr);
4484 if (req->flags & REQ_F_BUFFER_SELECT) {
4485 compat_ssize_t clen;
4486
4487 if (len > 1)
4488 return -EINVAL;
4489 if (!access_ok(uiov, sizeof(*uiov)))
4490 return -EFAULT;
4491 if (__get_user(clen, &uiov->iov_len))
4492 return -EFAULT;
4493 if (clen < 0)
4494 return -EINVAL;
4495 sr->len = clen;
4496 iomsg->free_iov = NULL;
4497 } else {
4498 iomsg->free_iov = iomsg->fast_iov;
4499 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4500 UIO_FASTIOV, &iomsg->free_iov,
4501 &iomsg->msg.msg_iter, true);
4502 if (ret < 0)
4503 return ret;
4504 }
4505
4506 return 0;
4507 }
4508 #endif
4509
4510 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4511 struct io_async_msghdr *iomsg)
4512 {
4513 iomsg->msg.msg_name = &iomsg->addr;
4514
4515 #ifdef CONFIG_COMPAT
4516 if (req->ctx->compat)
4517 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4518 #endif
4519
4520 return __io_recvmsg_copy_hdr(req, iomsg);
4521 }
4522
4523 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4524 bool needs_lock)
4525 {
4526 struct io_sr_msg *sr = &req->sr_msg;
4527 struct io_buffer *kbuf;
4528
4529 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4530 if (IS_ERR(kbuf))
4531 return kbuf;
4532
4533 sr->kbuf = kbuf;
4534 req->flags |= REQ_F_BUFFER_SELECTED;
4535 return kbuf;
4536 }
4537
4538 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4539 {
4540 return io_put_kbuf(req, req->sr_msg.kbuf);
4541 }
4542
4543 static int io_recvmsg_prep_async(struct io_kiocb *req)
4544 {
4545 int ret;
4546
4547 ret = io_recvmsg_copy_hdr(req, req->async_data);
4548 if (!ret)
4549 req->flags |= REQ_F_NEED_CLEANUP;
4550 return ret;
4551 }
4552
4553 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4554 {
4555 struct io_sr_msg *sr = &req->sr_msg;
4556
4557 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4558 return -EINVAL;
4559
4560 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4561 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4562 sr->len = READ_ONCE(sqe->len);
4563 sr->bgid = READ_ONCE(sqe->buf_group);
4564
4565 #ifdef CONFIG_COMPAT
4566 if (req->ctx->compat)
4567 sr->msg_flags |= MSG_CMSG_COMPAT;
4568 #endif
4569 return 0;
4570 }
4571
4572 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4573 {
4574 struct io_async_msghdr iomsg, *kmsg;
4575 struct socket *sock;
4576 struct io_buffer *kbuf;
4577 unsigned flags;
4578 int min_ret = 0;
4579 int ret, cflags = 0;
4580 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4581
4582 sock = sock_from_file(req->file);
4583 if (unlikely(!sock))
4584 return -ENOTSOCK;
4585
4586 kmsg = req->async_data;
4587 if (!kmsg) {
4588 ret = io_recvmsg_copy_hdr(req, &iomsg);
4589 if (ret)
4590 return ret;
4591 kmsg = &iomsg;
4592 }
4593
4594 if (req->flags & REQ_F_BUFFER_SELECT) {
4595 kbuf = io_recv_buffer_select(req, !force_nonblock);
4596 if (IS_ERR(kbuf))
4597 return PTR_ERR(kbuf);
4598 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4599 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4600 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4601 1, req->sr_msg.len);
4602 }
4603
4604 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4605 if (flags & MSG_DONTWAIT)
4606 req->flags |= REQ_F_NOWAIT;
4607 else if (force_nonblock)
4608 flags |= MSG_DONTWAIT;
4609
4610 if (flags & MSG_WAITALL)
4611 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4612
4613 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4614 kmsg->uaddr, flags);
4615 if (force_nonblock && ret == -EAGAIN)
4616 return io_setup_async_msg(req, kmsg);
4617 if (ret == -ERESTARTSYS)
4618 ret = -EINTR;
4619
4620 if (req->flags & REQ_F_BUFFER_SELECTED)
4621 cflags = io_put_recv_kbuf(req);
4622 /* fast path, check for non-NULL to avoid function call */
4623 if (kmsg->free_iov)
4624 kfree(kmsg->free_iov);
4625 req->flags &= ~REQ_F_NEED_CLEANUP;
4626 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4627 req_set_fail_links(req);
4628 __io_req_complete(req, issue_flags, ret, cflags);
4629 return 0;
4630 }
4631
4632 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4633 {
4634 struct io_buffer *kbuf;
4635 struct io_sr_msg *sr = &req->sr_msg;
4636 struct msghdr msg;
4637 void __user *buf = sr->buf;
4638 struct socket *sock;
4639 struct iovec iov;
4640 unsigned flags;
4641 int min_ret = 0;
4642 int ret, cflags = 0;
4643 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4644
4645 sock = sock_from_file(req->file);
4646 if (unlikely(!sock))
4647 return -ENOTSOCK;
4648
4649 if (req->flags & REQ_F_BUFFER_SELECT) {
4650 kbuf = io_recv_buffer_select(req, !force_nonblock);
4651 if (IS_ERR(kbuf))
4652 return PTR_ERR(kbuf);
4653 buf = u64_to_user_ptr(kbuf->addr);
4654 }
4655
4656 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4657 if (unlikely(ret))
4658 goto out_free;
4659
4660 msg.msg_name = NULL;
4661 msg.msg_control = NULL;
4662 msg.msg_controllen = 0;
4663 msg.msg_namelen = 0;
4664 msg.msg_iocb = NULL;
4665 msg.msg_flags = 0;
4666
4667 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4668 if (flags & MSG_DONTWAIT)
4669 req->flags |= REQ_F_NOWAIT;
4670 else if (force_nonblock)
4671 flags |= MSG_DONTWAIT;
4672
4673 if (flags & MSG_WAITALL)
4674 min_ret = iov_iter_count(&msg.msg_iter);
4675
4676 ret = sock_recvmsg(sock, &msg, flags);
4677 if (force_nonblock && ret == -EAGAIN)
4678 return -EAGAIN;
4679 if (ret == -ERESTARTSYS)
4680 ret = -EINTR;
4681 out_free:
4682 if (req->flags & REQ_F_BUFFER_SELECTED)
4683 cflags = io_put_recv_kbuf(req);
4684 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4685 req_set_fail_links(req);
4686 __io_req_complete(req, issue_flags, ret, cflags);
4687 return 0;
4688 }
4689
4690 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4691 {
4692 struct io_accept *accept = &req->accept;
4693
4694 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4695 return -EINVAL;
4696 if (sqe->ioprio || sqe->len || sqe->buf_index)
4697 return -EINVAL;
4698
4699 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4700 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4701 accept->flags = READ_ONCE(sqe->accept_flags);
4702 accept->nofile = rlimit(RLIMIT_NOFILE);
4703 return 0;
4704 }
4705
4706 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4707 {
4708 struct io_accept *accept = &req->accept;
4709 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4710 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4711 int ret;
4712
4713 if (req->file->f_flags & O_NONBLOCK)
4714 req->flags |= REQ_F_NOWAIT;
4715
4716 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4717 accept->addr_len, accept->flags,
4718 accept->nofile);
4719 if (ret == -EAGAIN && force_nonblock)
4720 return -EAGAIN;
4721 if (ret < 0) {
4722 if (ret == -ERESTARTSYS)
4723 ret = -EINTR;
4724 req_set_fail_links(req);
4725 }
4726 __io_req_complete(req, issue_flags, ret, 0);
4727 return 0;
4728 }
4729
4730 static int io_connect_prep_async(struct io_kiocb *req)
4731 {
4732 struct io_async_connect *io = req->async_data;
4733 struct io_connect *conn = &req->connect;
4734
4735 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4736 }
4737
4738 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4739 {
4740 struct io_connect *conn = &req->connect;
4741
4742 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4743 return -EINVAL;
4744 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4745 return -EINVAL;
4746
4747 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4748 conn->addr_len = READ_ONCE(sqe->addr2);
4749 return 0;
4750 }
4751
4752 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4753 {
4754 struct io_async_connect __io, *io;
4755 unsigned file_flags;
4756 int ret;
4757 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4758
4759 if (req->async_data) {
4760 io = req->async_data;
4761 } else {
4762 ret = move_addr_to_kernel(req->connect.addr,
4763 req->connect.addr_len,
4764 &__io.address);
4765 if (ret)
4766 goto out;
4767 io = &__io;
4768 }
4769
4770 file_flags = force_nonblock ? O_NONBLOCK : 0;
4771
4772 ret = __sys_connect_file(req->file, &io->address,
4773 req->connect.addr_len, file_flags);
4774 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4775 if (req->async_data)
4776 return -EAGAIN;
4777 if (io_alloc_async_data(req)) {
4778 ret = -ENOMEM;
4779 goto out;
4780 }
4781 memcpy(req->async_data, &__io, sizeof(__io));
4782 return -EAGAIN;
4783 }
4784 if (ret == -ERESTARTSYS)
4785 ret = -EINTR;
4786 out:
4787 if (ret < 0)
4788 req_set_fail_links(req);
4789 __io_req_complete(req, issue_flags, ret, 0);
4790 return 0;
4791 }
4792 #else /* !CONFIG_NET */
4793 #define IO_NETOP_FN(op) \
4794 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4795 { \
4796 return -EOPNOTSUPP; \
4797 }
4798
4799 #define IO_NETOP_PREP(op) \
4800 IO_NETOP_FN(op) \
4801 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4802 { \
4803 return -EOPNOTSUPP; \
4804 } \
4805
4806 #define IO_NETOP_PREP_ASYNC(op) \
4807 IO_NETOP_PREP(op) \
4808 static int io_##op##_prep_async(struct io_kiocb *req) \
4809 { \
4810 return -EOPNOTSUPP; \
4811 }
4812
4813 IO_NETOP_PREP_ASYNC(sendmsg);
4814 IO_NETOP_PREP_ASYNC(recvmsg);
4815 IO_NETOP_PREP_ASYNC(connect);
4816 IO_NETOP_PREP(accept);
4817 IO_NETOP_FN(send);
4818 IO_NETOP_FN(recv);
4819 #endif /* CONFIG_NET */
4820
4821 struct io_poll_table {
4822 struct poll_table_struct pt;
4823 struct io_kiocb *req;
4824 int error;
4825 };
4826
4827 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4828 __poll_t mask, task_work_func_t func)
4829 {
4830 int ret;
4831
4832 /* for instances that support it check for an event match first: */
4833 if (mask && !(mask & poll->events))
4834 return 0;
4835
4836 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4837
4838 list_del_init(&poll->wait.entry);
4839
4840 req->result = mask;
4841 req->task_work.func = func;
4842
4843 /*
4844 * If this fails, then the task is exiting. When a task exits, the
4845 * work gets canceled, so just cancel this request as well instead
4846 * of executing it. We can't safely execute it anyway, as we may not
4847 * have the needed state needed for it anyway.
4848 */
4849 ret = io_req_task_work_add(req);
4850 if (unlikely(ret)) {
4851 WRITE_ONCE(poll->canceled, true);
4852 io_req_task_work_add_fallback(req, func);
4853 }
4854 return 1;
4855 }
4856
4857 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4858 __acquires(&req->ctx->completion_lock)
4859 {
4860 struct io_ring_ctx *ctx = req->ctx;
4861
4862 if (!req->result && !READ_ONCE(poll->canceled)) {
4863 struct poll_table_struct pt = { ._key = poll->events };
4864
4865 req->result = vfs_poll(req->file, &pt) & poll->events;
4866 }
4867
4868 spin_lock_irq(&ctx->completion_lock);
4869 if (!req->result && !READ_ONCE(poll->canceled)) {
4870 add_wait_queue(poll->head, &poll->wait);
4871 return true;
4872 }
4873
4874 return false;
4875 }
4876
4877 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4878 {
4879 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4880 if (req->opcode == IORING_OP_POLL_ADD)
4881 return req->async_data;
4882 return req->apoll->double_poll;
4883 }
4884
4885 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4886 {
4887 if (req->opcode == IORING_OP_POLL_ADD)
4888 return &req->poll;
4889 return &req->apoll->poll;
4890 }
4891
4892 static void io_poll_remove_double(struct io_kiocb *req)
4893 {
4894 struct io_poll_iocb *poll = io_poll_get_double(req);
4895
4896 lockdep_assert_held(&req->ctx->completion_lock);
4897
4898 if (poll && poll->head) {
4899 struct wait_queue_head *head = poll->head;
4900
4901 spin_lock(&head->lock);
4902 list_del_init(&poll->wait.entry);
4903 if (poll->wait.private)
4904 req_ref_put(req);
4905 poll->head = NULL;
4906 spin_unlock(&head->lock);
4907 }
4908 }
4909
4910 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4911 {
4912 struct io_ring_ctx *ctx = req->ctx;
4913 unsigned flags = IORING_CQE_F_MORE;
4914
4915 if (!error && req->poll.canceled) {
4916 error = -ECANCELED;
4917 req->poll.events |= EPOLLONESHOT;
4918 }
4919 if (!error)
4920 error = mangle_poll(mask);
4921 if (req->poll.events & EPOLLONESHOT)
4922 flags = 0;
4923 if (!__io_cqring_fill_event(req, error, flags)) {
4924 io_poll_remove_waitqs(req);
4925 req->poll.done = true;
4926 flags = 0;
4927 }
4928 io_commit_cqring(ctx);
4929 return !(flags & IORING_CQE_F_MORE);
4930 }
4931
4932 static void io_poll_task_func(struct callback_head *cb)
4933 {
4934 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4935 struct io_ring_ctx *ctx = req->ctx;
4936 struct io_kiocb *nxt;
4937
4938 if (io_poll_rewait(req, &req->poll)) {
4939 spin_unlock_irq(&ctx->completion_lock);
4940 } else {
4941 bool done, post_ev;
4942
4943 post_ev = done = io_poll_complete(req, req->result, 0);
4944 if (done) {
4945 hash_del(&req->hash_node);
4946 } else if (!(req->poll.events & EPOLLONESHOT)) {
4947 post_ev = true;
4948 req->result = 0;
4949 add_wait_queue(req->poll.head, &req->poll.wait);
4950 }
4951 spin_unlock_irq(&ctx->completion_lock);
4952
4953 if (post_ev)
4954 io_cqring_ev_posted(ctx);
4955 if (done) {
4956 nxt = io_put_req_find_next(req);
4957 if (nxt)
4958 __io_req_task_submit(nxt);
4959 }
4960 }
4961 }
4962
4963 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4964 int sync, void *key)
4965 {
4966 struct io_kiocb *req = wait->private;
4967 struct io_poll_iocb *poll = io_poll_get_single(req);
4968 __poll_t mask = key_to_poll(key);
4969
4970 /* for instances that support it check for an event match first: */
4971 if (mask && !(mask & poll->events))
4972 return 0;
4973 if (!(poll->events & EPOLLONESHOT))
4974 return poll->wait.func(&poll->wait, mode, sync, key);
4975
4976 list_del_init(&wait->entry);
4977
4978 if (poll && poll->head) {
4979 bool done;
4980
4981 spin_lock(&poll->head->lock);
4982 done = list_empty(&poll->wait.entry);
4983 if (!done)
4984 list_del_init(&poll->wait.entry);
4985 /* make sure double remove sees this as being gone */
4986 wait->private = NULL;
4987 spin_unlock(&poll->head->lock);
4988 if (!done) {
4989 /* use wait func handler, so it matches the rq type */
4990 poll->wait.func(&poll->wait, mode, sync, key);
4991 }
4992 }
4993 req_ref_put(req);
4994 return 1;
4995 }
4996
4997 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4998 wait_queue_func_t wake_func)
4999 {
5000 poll->head = NULL;
5001 poll->done = false;
5002 poll->canceled = false;
5003 poll->update_events = poll->update_user_data = false;
5004 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5005 /* mask in events that we always want/need */
5006 poll->events = events | IO_POLL_UNMASK;
5007 INIT_LIST_HEAD(&poll->wait.entry);
5008 init_waitqueue_func_entry(&poll->wait, wake_func);
5009 }
5010
5011 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5012 struct wait_queue_head *head,
5013 struct io_poll_iocb **poll_ptr)
5014 {
5015 struct io_kiocb *req = pt->req;
5016
5017 /*
5018 * If poll->head is already set, it's because the file being polled
5019 * uses multiple waitqueues for poll handling (eg one for read, one
5020 * for write). Setup a separate io_poll_iocb if this happens.
5021 */
5022 if (unlikely(poll->head)) {
5023 struct io_poll_iocb *poll_one = poll;
5024
5025 /* already have a 2nd entry, fail a third attempt */
5026 if (*poll_ptr) {
5027 pt->error = -EINVAL;
5028 return;
5029 }
5030 /* double add on the same waitqueue head, ignore */
5031 if (poll->head == head)
5032 return;
5033 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5034 if (!poll) {
5035 pt->error = -ENOMEM;
5036 return;
5037 }
5038 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5039 req_ref_get(req);
5040 poll->wait.private = req;
5041 *poll_ptr = poll;
5042 }
5043
5044 pt->error = 0;
5045 poll->head = head;
5046
5047 if (poll->events & EPOLLEXCLUSIVE)
5048 add_wait_queue_exclusive(head, &poll->wait);
5049 else
5050 add_wait_queue(head, &poll->wait);
5051 }
5052
5053 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5054 struct poll_table_struct *p)
5055 {
5056 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5057 struct async_poll *apoll = pt->req->apoll;
5058
5059 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5060 }
5061
5062 static void io_async_task_func(struct callback_head *cb)
5063 {
5064 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5065 struct async_poll *apoll = req->apoll;
5066 struct io_ring_ctx *ctx = req->ctx;
5067
5068 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5069
5070 if (io_poll_rewait(req, &apoll->poll)) {
5071 spin_unlock_irq(&ctx->completion_lock);
5072 return;
5073 }
5074
5075 /* If req is still hashed, it cannot have been canceled. Don't check. */
5076 if (hash_hashed(&req->hash_node))
5077 hash_del(&req->hash_node);
5078
5079 io_poll_remove_double(req);
5080 spin_unlock_irq(&ctx->completion_lock);
5081
5082 if (!READ_ONCE(apoll->poll.canceled))
5083 __io_req_task_submit(req);
5084 else
5085 io_req_complete_failed(req, -ECANCELED);
5086
5087 kfree(apoll->double_poll);
5088 kfree(apoll);
5089 }
5090
5091 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5092 void *key)
5093 {
5094 struct io_kiocb *req = wait->private;
5095 struct io_poll_iocb *poll = &req->apoll->poll;
5096
5097 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5098 key_to_poll(key));
5099
5100 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5101 }
5102
5103 static void io_poll_req_insert(struct io_kiocb *req)
5104 {
5105 struct io_ring_ctx *ctx = req->ctx;
5106 struct hlist_head *list;
5107
5108 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5109 hlist_add_head(&req->hash_node, list);
5110 }
5111
5112 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5113 struct io_poll_iocb *poll,
5114 struct io_poll_table *ipt, __poll_t mask,
5115 wait_queue_func_t wake_func)
5116 __acquires(&ctx->completion_lock)
5117 {
5118 struct io_ring_ctx *ctx = req->ctx;
5119 bool cancel = false;
5120
5121 INIT_HLIST_NODE(&req->hash_node);
5122 io_init_poll_iocb(poll, mask, wake_func);
5123 poll->file = req->file;
5124 poll->wait.private = req;
5125
5126 ipt->pt._key = mask;
5127 ipt->req = req;
5128 ipt->error = -EINVAL;
5129
5130 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5131
5132 spin_lock_irq(&ctx->completion_lock);
5133 if (likely(poll->head)) {
5134 spin_lock(&poll->head->lock);
5135 if (unlikely(list_empty(&poll->wait.entry))) {
5136 if (ipt->error)
5137 cancel = true;
5138 ipt->error = 0;
5139 mask = 0;
5140 }
5141 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5142 list_del_init(&poll->wait.entry);
5143 else if (cancel)
5144 WRITE_ONCE(poll->canceled, true);
5145 else if (!poll->done) /* actually waiting for an event */
5146 io_poll_req_insert(req);
5147 spin_unlock(&poll->head->lock);
5148 }
5149
5150 return mask;
5151 }
5152
5153 static bool io_arm_poll_handler(struct io_kiocb *req)
5154 {
5155 const struct io_op_def *def = &io_op_defs[req->opcode];
5156 struct io_ring_ctx *ctx = req->ctx;
5157 struct async_poll *apoll;
5158 struct io_poll_table ipt;
5159 __poll_t mask, ret;
5160 int rw;
5161
5162 if (!req->file || !file_can_poll(req->file))
5163 return false;
5164 if (req->flags & REQ_F_POLLED)
5165 return false;
5166 if (def->pollin)
5167 rw = READ;
5168 else if (def->pollout)
5169 rw = WRITE;
5170 else
5171 return false;
5172 /* if we can't nonblock try, then no point in arming a poll handler */
5173 if (!io_file_supports_async(req, rw))
5174 return false;
5175
5176 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5177 if (unlikely(!apoll))
5178 return false;
5179 apoll->double_poll = NULL;
5180
5181 req->flags |= REQ_F_POLLED;
5182 req->apoll = apoll;
5183
5184 mask = EPOLLONESHOT;
5185 if (def->pollin)
5186 mask |= POLLIN | POLLRDNORM;
5187 if (def->pollout)
5188 mask |= POLLOUT | POLLWRNORM;
5189
5190 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5191 if ((req->opcode == IORING_OP_RECVMSG) &&
5192 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5193 mask &= ~POLLIN;
5194
5195 mask |= POLLERR | POLLPRI;
5196
5197 ipt.pt._qproc = io_async_queue_proc;
5198
5199 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5200 io_async_wake);
5201 if (ret || ipt.error) {
5202 io_poll_remove_double(req);
5203 spin_unlock_irq(&ctx->completion_lock);
5204 kfree(apoll->double_poll);
5205 kfree(apoll);
5206 return false;
5207 }
5208 spin_unlock_irq(&ctx->completion_lock);
5209 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5210 apoll->poll.events);
5211 return true;
5212 }
5213
5214 static bool __io_poll_remove_one(struct io_kiocb *req,
5215 struct io_poll_iocb *poll, bool do_cancel)
5216 {
5217 bool do_complete = false;
5218
5219 if (!poll->head)
5220 return false;
5221 spin_lock(&poll->head->lock);
5222 if (do_cancel)
5223 WRITE_ONCE(poll->canceled, true);
5224 if (!list_empty(&poll->wait.entry)) {
5225 list_del_init(&poll->wait.entry);
5226 do_complete = true;
5227 }
5228 spin_unlock(&poll->head->lock);
5229 hash_del(&req->hash_node);
5230 return do_complete;
5231 }
5232
5233 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5234 {
5235 bool do_complete;
5236
5237 io_poll_remove_double(req);
5238
5239 if (req->opcode == IORING_OP_POLL_ADD) {
5240 do_complete = __io_poll_remove_one(req, &req->poll, true);
5241 } else {
5242 struct async_poll *apoll = req->apoll;
5243
5244 /* non-poll requests have submit ref still */
5245 do_complete = __io_poll_remove_one(req, &apoll->poll, true);
5246 if (do_complete) {
5247 io_put_req(req);
5248 kfree(apoll->double_poll);
5249 kfree(apoll);
5250 }
5251 }
5252
5253 return do_complete;
5254 }
5255
5256 static bool io_poll_remove_one(struct io_kiocb *req)
5257 {
5258 bool do_complete;
5259
5260 do_complete = io_poll_remove_waitqs(req);
5261 if (do_complete) {
5262 io_cqring_fill_event(req, -ECANCELED);
5263 io_commit_cqring(req->ctx);
5264 req_set_fail_links(req);
5265 io_put_req_deferred(req, 1);
5266 }
5267
5268 return do_complete;
5269 }
5270
5271 /*
5272 * Returns true if we found and killed one or more poll requests
5273 */
5274 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5275 struct files_struct *files)
5276 {
5277 struct hlist_node *tmp;
5278 struct io_kiocb *req;
5279 int posted = 0, i;
5280
5281 spin_lock_irq(&ctx->completion_lock);
5282 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5283 struct hlist_head *list;
5284
5285 list = &ctx->cancel_hash[i];
5286 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5287 if (io_match_task(req, tsk, files))
5288 posted += io_poll_remove_one(req);
5289 }
5290 }
5291 spin_unlock_irq(&ctx->completion_lock);
5292
5293 if (posted)
5294 io_cqring_ev_posted(ctx);
5295
5296 return posted != 0;
5297 }
5298
5299 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr)
5300 {
5301 struct hlist_head *list;
5302 struct io_kiocb *req;
5303
5304 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5305 hlist_for_each_entry(req, list, hash_node) {
5306 if (sqe_addr != req->user_data)
5307 continue;
5308 return req;
5309 }
5310
5311 return NULL;
5312 }
5313
5314 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5315 {
5316 struct io_kiocb *req;
5317
5318 req = io_poll_find(ctx, sqe_addr);
5319 if (!req)
5320 return -ENOENT;
5321 if (io_poll_remove_one(req))
5322 return 0;
5323
5324 return -EALREADY;
5325 }
5326
5327 static int io_poll_remove_prep(struct io_kiocb *req,
5328 const struct io_uring_sqe *sqe)
5329 {
5330 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5331 return -EINVAL;
5332 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5333 sqe->poll_events)
5334 return -EINVAL;
5335
5336 req->poll_remove.addr = READ_ONCE(sqe->addr);
5337 return 0;
5338 }
5339
5340 /*
5341 * Find a running poll command that matches one specified in sqe->addr,
5342 * and remove it if found.
5343 */
5344 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
5345 {
5346 struct io_ring_ctx *ctx = req->ctx;
5347 int ret;
5348
5349 spin_lock_irq(&ctx->completion_lock);
5350 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5351 spin_unlock_irq(&ctx->completion_lock);
5352
5353 if (ret < 0)
5354 req_set_fail_links(req);
5355 io_req_complete(req, ret);
5356 return 0;
5357 }
5358
5359 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5360 void *key)
5361 {
5362 struct io_kiocb *req = wait->private;
5363 struct io_poll_iocb *poll = &req->poll;
5364
5365 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5366 }
5367
5368 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5369 struct poll_table_struct *p)
5370 {
5371 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5372
5373 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5374 }
5375
5376 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5377 {
5378 struct io_poll_iocb *poll = &req->poll;
5379 u32 events, flags;
5380
5381 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5382 return -EINVAL;
5383 if (sqe->ioprio || sqe->buf_index)
5384 return -EINVAL;
5385 flags = READ_ONCE(sqe->len);
5386 if (flags & ~(IORING_POLL_ADD_MULTI | IORING_POLL_UPDATE_EVENTS |
5387 IORING_POLL_UPDATE_USER_DATA))
5388 return -EINVAL;
5389 events = READ_ONCE(sqe->poll32_events);
5390 #ifdef __BIG_ENDIAN
5391 events = swahw32(events);
5392 #endif
5393 if (!(flags & IORING_POLL_ADD_MULTI))
5394 events |= EPOLLONESHOT;
5395 poll->update_events = poll->update_user_data = false;
5396 if (flags & IORING_POLL_UPDATE_EVENTS) {
5397 poll->update_events = true;
5398 poll->old_user_data = READ_ONCE(sqe->addr);
5399 }
5400 if (flags & IORING_POLL_UPDATE_USER_DATA) {
5401 poll->update_user_data = true;
5402 poll->new_user_data = READ_ONCE(sqe->off);
5403 }
5404 if (!(poll->update_events || poll->update_user_data) &&
5405 (sqe->off || sqe->addr))
5406 return -EINVAL;
5407 poll->events = demangle_poll(events) |
5408 (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5409 return 0;
5410 }
5411
5412 static int __io_poll_add(struct io_kiocb *req)
5413 {
5414 struct io_poll_iocb *poll = &req->poll;
5415 struct io_ring_ctx *ctx = req->ctx;
5416 struct io_poll_table ipt;
5417 __poll_t mask;
5418
5419 ipt.pt._qproc = io_poll_queue_proc;
5420
5421 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5422 io_poll_wake);
5423
5424 if (mask) { /* no async, we'd stolen it */
5425 ipt.error = 0;
5426 io_poll_complete(req, mask, 0);
5427 }
5428 spin_unlock_irq(&ctx->completion_lock);
5429
5430 if (mask) {
5431 io_cqring_ev_posted(ctx);
5432 if (poll->events & EPOLLONESHOT)
5433 io_put_req(req);
5434 }
5435 return ipt.error;
5436 }
5437
5438 static int io_poll_update(struct io_kiocb *req)
5439 {
5440 struct io_ring_ctx *ctx = req->ctx;
5441 struct io_kiocb *preq;
5442 int ret;
5443
5444 spin_lock_irq(&ctx->completion_lock);
5445 preq = io_poll_find(ctx, req->poll.old_user_data);
5446 if (!preq) {
5447 ret = -ENOENT;
5448 goto err;
5449 } else if (preq->opcode != IORING_OP_POLL_ADD) {
5450 /* don't allow internal poll updates */
5451 ret = -EACCES;
5452 goto err;
5453 }
5454 if (!__io_poll_remove_one(preq, &preq->poll, false)) {
5455 if (preq->poll.events & EPOLLONESHOT) {
5456 ret = -EALREADY;
5457 goto err;
5458 }
5459 }
5460 /* we now have a detached poll request. reissue. */
5461 ret = 0;
5462 err:
5463 spin_unlock_irq(&ctx->completion_lock);
5464 if (ret < 0) {
5465 req_set_fail_links(req);
5466 io_req_complete(req, ret);
5467 return 0;
5468 }
5469 /* only mask one event flags, keep behavior flags */
5470 if (req->poll.update_events) {
5471 preq->poll.events &= ~0xffff;
5472 preq->poll.events |= req->poll.events & 0xffff;
5473 preq->poll.events |= IO_POLL_UNMASK;
5474 }
5475 if (req->poll.update_user_data)
5476 preq->user_data = req->poll.new_user_data;
5477
5478 /* complete update request, we're done with it */
5479 io_req_complete(req, ret);
5480
5481 ret = __io_poll_add(preq);
5482 if (ret < 0) {
5483 req_set_fail_links(preq);
5484 io_req_complete(preq, ret);
5485 }
5486 return 0;
5487 }
5488
5489 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5490 {
5491 if (!req->poll.update_events && !req->poll.update_user_data)
5492 return __io_poll_add(req);
5493 return io_poll_update(req);
5494 }
5495
5496 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5497 {
5498 struct io_timeout_data *data = container_of(timer,
5499 struct io_timeout_data, timer);
5500 struct io_kiocb *req = data->req;
5501 struct io_ring_ctx *ctx = req->ctx;
5502 unsigned long flags;
5503
5504 spin_lock_irqsave(&ctx->completion_lock, flags);
5505 list_del_init(&req->timeout.list);
5506 atomic_set(&req->ctx->cq_timeouts,
5507 atomic_read(&req->ctx->cq_timeouts) + 1);
5508
5509 io_cqring_fill_event(req, -ETIME);
5510 io_commit_cqring(ctx);
5511 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5512
5513 io_cqring_ev_posted(ctx);
5514 req_set_fail_links(req);
5515 io_put_req(req);
5516 return HRTIMER_NORESTART;
5517 }
5518
5519 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5520 __u64 user_data)
5521 {
5522 struct io_timeout_data *io;
5523 struct io_kiocb *req;
5524 int ret = -ENOENT;
5525
5526 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5527 if (user_data == req->user_data) {
5528 ret = 0;
5529 break;
5530 }
5531 }
5532
5533 if (ret == -ENOENT)
5534 return ERR_PTR(ret);
5535
5536 io = req->async_data;
5537 ret = hrtimer_try_to_cancel(&io->timer);
5538 if (ret == -1)
5539 return ERR_PTR(-EALREADY);
5540 list_del_init(&req->timeout.list);
5541 return req;
5542 }
5543
5544 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5545 {
5546 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5547
5548 if (IS_ERR(req))
5549 return PTR_ERR(req);
5550
5551 req_set_fail_links(req);
5552 io_cqring_fill_event(req, -ECANCELED);
5553 io_put_req_deferred(req, 1);
5554 return 0;
5555 }
5556
5557 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5558 struct timespec64 *ts, enum hrtimer_mode mode)
5559 {
5560 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5561 struct io_timeout_data *data;
5562
5563 if (IS_ERR(req))
5564 return PTR_ERR(req);
5565
5566 req->timeout.off = 0; /* noseq */
5567 data = req->async_data;
5568 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5569 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5570 data->timer.function = io_timeout_fn;
5571 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5572 return 0;
5573 }
5574
5575 static int io_timeout_remove_prep(struct io_kiocb *req,
5576 const struct io_uring_sqe *sqe)
5577 {
5578 struct io_timeout_rem *tr = &req->timeout_rem;
5579
5580 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5581 return -EINVAL;
5582 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5583 return -EINVAL;
5584 if (sqe->ioprio || sqe->buf_index || sqe->len)
5585 return -EINVAL;
5586
5587 tr->addr = READ_ONCE(sqe->addr);
5588 tr->flags = READ_ONCE(sqe->timeout_flags);
5589 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5590 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5591 return -EINVAL;
5592 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5593 return -EFAULT;
5594 } else if (tr->flags) {
5595 /* timeout removal doesn't support flags */
5596 return -EINVAL;
5597 }
5598
5599 return 0;
5600 }
5601
5602 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5603 {
5604 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5605 : HRTIMER_MODE_REL;
5606 }
5607
5608 /*
5609 * Remove or update an existing timeout command
5610 */
5611 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5612 {
5613 struct io_timeout_rem *tr = &req->timeout_rem;
5614 struct io_ring_ctx *ctx = req->ctx;
5615 int ret;
5616
5617 spin_lock_irq(&ctx->completion_lock);
5618 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5619 ret = io_timeout_cancel(ctx, tr->addr);
5620 else
5621 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5622 io_translate_timeout_mode(tr->flags));
5623
5624 io_cqring_fill_event(req, ret);
5625 io_commit_cqring(ctx);
5626 spin_unlock_irq(&ctx->completion_lock);
5627 io_cqring_ev_posted(ctx);
5628 if (ret < 0)
5629 req_set_fail_links(req);
5630 io_put_req(req);
5631 return 0;
5632 }
5633
5634 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5635 bool is_timeout_link)
5636 {
5637 struct io_timeout_data *data;
5638 unsigned flags;
5639 u32 off = READ_ONCE(sqe->off);
5640
5641 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5642 return -EINVAL;
5643 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5644 return -EINVAL;
5645 if (off && is_timeout_link)
5646 return -EINVAL;
5647 flags = READ_ONCE(sqe->timeout_flags);
5648 if (flags & ~IORING_TIMEOUT_ABS)
5649 return -EINVAL;
5650
5651 req->timeout.off = off;
5652
5653 if (!req->async_data && io_alloc_async_data(req))
5654 return -ENOMEM;
5655
5656 data = req->async_data;
5657 data->req = req;
5658
5659 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5660 return -EFAULT;
5661
5662 data->mode = io_translate_timeout_mode(flags);
5663 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5664 if (is_timeout_link)
5665 io_req_track_inflight(req);
5666 return 0;
5667 }
5668
5669 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5670 {
5671 struct io_ring_ctx *ctx = req->ctx;
5672 struct io_timeout_data *data = req->async_data;
5673 struct list_head *entry;
5674 u32 tail, off = req->timeout.off;
5675
5676 spin_lock_irq(&ctx->completion_lock);
5677
5678 /*
5679 * sqe->off holds how many events that need to occur for this
5680 * timeout event to be satisfied. If it isn't set, then this is
5681 * a pure timeout request, sequence isn't used.
5682 */
5683 if (io_is_timeout_noseq(req)) {
5684 entry = ctx->timeout_list.prev;
5685 goto add;
5686 }
5687
5688 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5689 req->timeout.target_seq = tail + off;
5690
5691 /* Update the last seq here in case io_flush_timeouts() hasn't.
5692 * This is safe because ->completion_lock is held, and submissions
5693 * and completions are never mixed in the same ->completion_lock section.
5694 */
5695 ctx->cq_last_tm_flush = tail;
5696
5697 /*
5698 * Insertion sort, ensuring the first entry in the list is always
5699 * the one we need first.
5700 */
5701 list_for_each_prev(entry, &ctx->timeout_list) {
5702 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5703 timeout.list);
5704
5705 if (io_is_timeout_noseq(nxt))
5706 continue;
5707 /* nxt.seq is behind @tail, otherwise would've been completed */
5708 if (off >= nxt->timeout.target_seq - tail)
5709 break;
5710 }
5711 add:
5712 list_add(&req->timeout.list, entry);
5713 data->timer.function = io_timeout_fn;
5714 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5715 spin_unlock_irq(&ctx->completion_lock);
5716 return 0;
5717 }
5718
5719 struct io_cancel_data {
5720 struct io_ring_ctx *ctx;
5721 u64 user_data;
5722 };
5723
5724 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5725 {
5726 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5727 struct io_cancel_data *cd = data;
5728
5729 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5730 }
5731
5732 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5733 struct io_ring_ctx *ctx)
5734 {
5735 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5736 enum io_wq_cancel cancel_ret;
5737 int ret = 0;
5738
5739 if (!tctx || !tctx->io_wq)
5740 return -ENOENT;
5741
5742 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5743 switch (cancel_ret) {
5744 case IO_WQ_CANCEL_OK:
5745 ret = 0;
5746 break;
5747 case IO_WQ_CANCEL_RUNNING:
5748 ret = -EALREADY;
5749 break;
5750 case IO_WQ_CANCEL_NOTFOUND:
5751 ret = -ENOENT;
5752 break;
5753 }
5754
5755 return ret;
5756 }
5757
5758 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5759 struct io_kiocb *req, __u64 sqe_addr,
5760 int success_ret)
5761 {
5762 unsigned long flags;
5763 int ret;
5764
5765 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5766 if (ret != -ENOENT) {
5767 spin_lock_irqsave(&ctx->completion_lock, flags);
5768 goto done;
5769 }
5770
5771 spin_lock_irqsave(&ctx->completion_lock, flags);
5772 ret = io_timeout_cancel(ctx, sqe_addr);
5773 if (ret != -ENOENT)
5774 goto done;
5775 ret = io_poll_cancel(ctx, sqe_addr);
5776 done:
5777 if (!ret)
5778 ret = success_ret;
5779 io_cqring_fill_event(req, ret);
5780 io_commit_cqring(ctx);
5781 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5782 io_cqring_ev_posted(ctx);
5783
5784 if (ret < 0)
5785 req_set_fail_links(req);
5786 io_put_req(req);
5787 }
5788
5789 static int io_async_cancel_prep(struct io_kiocb *req,
5790 const struct io_uring_sqe *sqe)
5791 {
5792 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5793 return -EINVAL;
5794 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5795 return -EINVAL;
5796 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5797 return -EINVAL;
5798
5799 req->cancel.addr = READ_ONCE(sqe->addr);
5800 return 0;
5801 }
5802
5803 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5804 {
5805 struct io_ring_ctx *ctx = req->ctx;
5806 u64 sqe_addr = req->cancel.addr;
5807 struct io_tctx_node *node;
5808 int ret;
5809
5810 /* tasks should wait for their io-wq threads, so safe w/o sync */
5811 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5812 spin_lock_irq(&ctx->completion_lock);
5813 if (ret != -ENOENT)
5814 goto done;
5815 ret = io_timeout_cancel(ctx, sqe_addr);
5816 if (ret != -ENOENT)
5817 goto done;
5818 ret = io_poll_cancel(ctx, sqe_addr);
5819 if (ret != -ENOENT)
5820 goto done;
5821 spin_unlock_irq(&ctx->completion_lock);
5822
5823 /* slow path, try all io-wq's */
5824 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5825 ret = -ENOENT;
5826 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5827 struct io_uring_task *tctx = node->task->io_uring;
5828
5829 if (!tctx || !tctx->io_wq)
5830 continue;
5831 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5832 if (ret != -ENOENT)
5833 break;
5834 }
5835 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5836
5837 spin_lock_irq(&ctx->completion_lock);
5838 done:
5839 io_cqring_fill_event(req, ret);
5840 io_commit_cqring(ctx);
5841 spin_unlock_irq(&ctx->completion_lock);
5842 io_cqring_ev_posted(ctx);
5843
5844 if (ret < 0)
5845 req_set_fail_links(req);
5846 io_put_req(req);
5847 return 0;
5848 }
5849
5850 static int io_rsrc_update_prep(struct io_kiocb *req,
5851 const struct io_uring_sqe *sqe)
5852 {
5853 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5854 return -EINVAL;
5855 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5856 return -EINVAL;
5857 if (sqe->ioprio || sqe->rw_flags)
5858 return -EINVAL;
5859
5860 req->rsrc_update.offset = READ_ONCE(sqe->off);
5861 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5862 if (!req->rsrc_update.nr_args)
5863 return -EINVAL;
5864 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5865 return 0;
5866 }
5867
5868 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5869 {
5870 struct io_ring_ctx *ctx = req->ctx;
5871 struct io_uring_rsrc_update up;
5872 int ret;
5873
5874 if (issue_flags & IO_URING_F_NONBLOCK)
5875 return -EAGAIN;
5876
5877 up.offset = req->rsrc_update.offset;
5878 up.data = req->rsrc_update.arg;
5879
5880 mutex_lock(&ctx->uring_lock);
5881 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
5882 mutex_unlock(&ctx->uring_lock);
5883
5884 if (ret < 0)
5885 req_set_fail_links(req);
5886 __io_req_complete(req, issue_flags, ret, 0);
5887 return 0;
5888 }
5889
5890 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5891 {
5892 switch (req->opcode) {
5893 case IORING_OP_NOP:
5894 return 0;
5895 case IORING_OP_READV:
5896 case IORING_OP_READ_FIXED:
5897 case IORING_OP_READ:
5898 return io_read_prep(req, sqe);
5899 case IORING_OP_WRITEV:
5900 case IORING_OP_WRITE_FIXED:
5901 case IORING_OP_WRITE:
5902 return io_write_prep(req, sqe);
5903 case IORING_OP_POLL_ADD:
5904 return io_poll_add_prep(req, sqe);
5905 case IORING_OP_POLL_REMOVE:
5906 return io_poll_remove_prep(req, sqe);
5907 case IORING_OP_FSYNC:
5908 return io_fsync_prep(req, sqe);
5909 case IORING_OP_SYNC_FILE_RANGE:
5910 return io_sfr_prep(req, sqe);
5911 case IORING_OP_SENDMSG:
5912 case IORING_OP_SEND:
5913 return io_sendmsg_prep(req, sqe);
5914 case IORING_OP_RECVMSG:
5915 case IORING_OP_RECV:
5916 return io_recvmsg_prep(req, sqe);
5917 case IORING_OP_CONNECT:
5918 return io_connect_prep(req, sqe);
5919 case IORING_OP_TIMEOUT:
5920 return io_timeout_prep(req, sqe, false);
5921 case IORING_OP_TIMEOUT_REMOVE:
5922 return io_timeout_remove_prep(req, sqe);
5923 case IORING_OP_ASYNC_CANCEL:
5924 return io_async_cancel_prep(req, sqe);
5925 case IORING_OP_LINK_TIMEOUT:
5926 return io_timeout_prep(req, sqe, true);
5927 case IORING_OP_ACCEPT:
5928 return io_accept_prep(req, sqe);
5929 case IORING_OP_FALLOCATE:
5930 return io_fallocate_prep(req, sqe);
5931 case IORING_OP_OPENAT:
5932 return io_openat_prep(req, sqe);
5933 case IORING_OP_CLOSE:
5934 return io_close_prep(req, sqe);
5935 case IORING_OP_FILES_UPDATE:
5936 return io_rsrc_update_prep(req, sqe);
5937 case IORING_OP_STATX:
5938 return io_statx_prep(req, sqe);
5939 case IORING_OP_FADVISE:
5940 return io_fadvise_prep(req, sqe);
5941 case IORING_OP_MADVISE:
5942 return io_madvise_prep(req, sqe);
5943 case IORING_OP_OPENAT2:
5944 return io_openat2_prep(req, sqe);
5945 case IORING_OP_EPOLL_CTL:
5946 return io_epoll_ctl_prep(req, sqe);
5947 case IORING_OP_SPLICE:
5948 return io_splice_prep(req, sqe);
5949 case IORING_OP_PROVIDE_BUFFERS:
5950 return io_provide_buffers_prep(req, sqe);
5951 case IORING_OP_REMOVE_BUFFERS:
5952 return io_remove_buffers_prep(req, sqe);
5953 case IORING_OP_TEE:
5954 return io_tee_prep(req, sqe);
5955 case IORING_OP_SHUTDOWN:
5956 return io_shutdown_prep(req, sqe);
5957 case IORING_OP_RENAMEAT:
5958 return io_renameat_prep(req, sqe);
5959 case IORING_OP_UNLINKAT:
5960 return io_unlinkat_prep(req, sqe);
5961 }
5962
5963 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5964 req->opcode);
5965 return-EINVAL;
5966 }
5967
5968 static int io_req_prep_async(struct io_kiocb *req)
5969 {
5970 if (!io_op_defs[req->opcode].needs_async_setup)
5971 return 0;
5972 if (WARN_ON_ONCE(req->async_data))
5973 return -EFAULT;
5974 if (io_alloc_async_data(req))
5975 return -EAGAIN;
5976
5977 switch (req->opcode) {
5978 case IORING_OP_READV:
5979 return io_rw_prep_async(req, READ);
5980 case IORING_OP_WRITEV:
5981 return io_rw_prep_async(req, WRITE);
5982 case IORING_OP_SENDMSG:
5983 return io_sendmsg_prep_async(req);
5984 case IORING_OP_RECVMSG:
5985 return io_recvmsg_prep_async(req);
5986 case IORING_OP_CONNECT:
5987 return io_connect_prep_async(req);
5988 }
5989 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5990 req->opcode);
5991 return -EFAULT;
5992 }
5993
5994 static u32 io_get_sequence(struct io_kiocb *req)
5995 {
5996 struct io_kiocb *pos;
5997 struct io_ring_ctx *ctx = req->ctx;
5998 u32 total_submitted, nr_reqs = 0;
5999
6000 io_for_each_link(pos, req)
6001 nr_reqs++;
6002
6003 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6004 return total_submitted - nr_reqs;
6005 }
6006
6007 static int io_req_defer(struct io_kiocb *req)
6008 {
6009 struct io_ring_ctx *ctx = req->ctx;
6010 struct io_defer_entry *de;
6011 int ret;
6012 u32 seq;
6013
6014 /* Still need defer if there is pending req in defer list. */
6015 if (likely(list_empty_careful(&ctx->defer_list) &&
6016 !(req->flags & REQ_F_IO_DRAIN)))
6017 return 0;
6018
6019 seq = io_get_sequence(req);
6020 /* Still a chance to pass the sequence check */
6021 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6022 return 0;
6023
6024 ret = io_req_prep_async(req);
6025 if (ret)
6026 return ret;
6027 io_prep_async_link(req);
6028 de = kmalloc(sizeof(*de), GFP_KERNEL);
6029 if (!de)
6030 return -ENOMEM;
6031
6032 spin_lock_irq(&ctx->completion_lock);
6033 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6034 spin_unlock_irq(&ctx->completion_lock);
6035 kfree(de);
6036 io_queue_async_work(req);
6037 return -EIOCBQUEUED;
6038 }
6039
6040 trace_io_uring_defer(ctx, req, req->user_data);
6041 de->req = req;
6042 de->seq = seq;
6043 list_add_tail(&de->list, &ctx->defer_list);
6044 spin_unlock_irq(&ctx->completion_lock);
6045 return -EIOCBQUEUED;
6046 }
6047
6048 static void io_clean_op(struct io_kiocb *req)
6049 {
6050 if (req->flags & REQ_F_BUFFER_SELECTED) {
6051 switch (req->opcode) {
6052 case IORING_OP_READV:
6053 case IORING_OP_READ_FIXED:
6054 case IORING_OP_READ:
6055 kfree((void *)(unsigned long)req->rw.addr);
6056 break;
6057 case IORING_OP_RECVMSG:
6058 case IORING_OP_RECV:
6059 kfree(req->sr_msg.kbuf);
6060 break;
6061 }
6062 req->flags &= ~REQ_F_BUFFER_SELECTED;
6063 }
6064
6065 if (req->flags & REQ_F_NEED_CLEANUP) {
6066 switch (req->opcode) {
6067 case IORING_OP_READV:
6068 case IORING_OP_READ_FIXED:
6069 case IORING_OP_READ:
6070 case IORING_OP_WRITEV:
6071 case IORING_OP_WRITE_FIXED:
6072 case IORING_OP_WRITE: {
6073 struct io_async_rw *io = req->async_data;
6074 if (io->free_iovec)
6075 kfree(io->free_iovec);
6076 break;
6077 }
6078 case IORING_OP_RECVMSG:
6079 case IORING_OP_SENDMSG: {
6080 struct io_async_msghdr *io = req->async_data;
6081
6082 kfree(io->free_iov);
6083 break;
6084 }
6085 case IORING_OP_SPLICE:
6086 case IORING_OP_TEE:
6087 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6088 io_put_file(req->splice.file_in);
6089 break;
6090 case IORING_OP_OPENAT:
6091 case IORING_OP_OPENAT2:
6092 if (req->open.filename)
6093 putname(req->open.filename);
6094 break;
6095 case IORING_OP_RENAMEAT:
6096 putname(req->rename.oldpath);
6097 putname(req->rename.newpath);
6098 break;
6099 case IORING_OP_UNLINKAT:
6100 putname(req->unlink.filename);
6101 break;
6102 }
6103 req->flags &= ~REQ_F_NEED_CLEANUP;
6104 }
6105 }
6106
6107 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6108 {
6109 struct io_ring_ctx *ctx = req->ctx;
6110 const struct cred *creds = NULL;
6111 int ret;
6112
6113 if (req->work.creds && req->work.creds != current_cred())
6114 creds = override_creds(req->work.creds);
6115
6116 switch (req->opcode) {
6117 case IORING_OP_NOP:
6118 ret = io_nop(req, issue_flags);
6119 break;
6120 case IORING_OP_READV:
6121 case IORING_OP_READ_FIXED:
6122 case IORING_OP_READ:
6123 ret = io_read(req, issue_flags);
6124 break;
6125 case IORING_OP_WRITEV:
6126 case IORING_OP_WRITE_FIXED:
6127 case IORING_OP_WRITE:
6128 ret = io_write(req, issue_flags);
6129 break;
6130 case IORING_OP_FSYNC:
6131 ret = io_fsync(req, issue_flags);
6132 break;
6133 case IORING_OP_POLL_ADD:
6134 ret = io_poll_add(req, issue_flags);
6135 break;
6136 case IORING_OP_POLL_REMOVE:
6137 ret = io_poll_remove(req, issue_flags);
6138 break;
6139 case IORING_OP_SYNC_FILE_RANGE:
6140 ret = io_sync_file_range(req, issue_flags);
6141 break;
6142 case IORING_OP_SENDMSG:
6143 ret = io_sendmsg(req, issue_flags);
6144 break;
6145 case IORING_OP_SEND:
6146 ret = io_send(req, issue_flags);
6147 break;
6148 case IORING_OP_RECVMSG:
6149 ret = io_recvmsg(req, issue_flags);
6150 break;
6151 case IORING_OP_RECV:
6152 ret = io_recv(req, issue_flags);
6153 break;
6154 case IORING_OP_TIMEOUT:
6155 ret = io_timeout(req, issue_flags);
6156 break;
6157 case IORING_OP_TIMEOUT_REMOVE:
6158 ret = io_timeout_remove(req, issue_flags);
6159 break;
6160 case IORING_OP_ACCEPT:
6161 ret = io_accept(req, issue_flags);
6162 break;
6163 case IORING_OP_CONNECT:
6164 ret = io_connect(req, issue_flags);
6165 break;
6166 case IORING_OP_ASYNC_CANCEL:
6167 ret = io_async_cancel(req, issue_flags);
6168 break;
6169 case IORING_OP_FALLOCATE:
6170 ret = io_fallocate(req, issue_flags);
6171 break;
6172 case IORING_OP_OPENAT:
6173 ret = io_openat(req, issue_flags);
6174 break;
6175 case IORING_OP_CLOSE:
6176 ret = io_close(req, issue_flags);
6177 break;
6178 case IORING_OP_FILES_UPDATE:
6179 ret = io_files_update(req, issue_flags);
6180 break;
6181 case IORING_OP_STATX:
6182 ret = io_statx(req, issue_flags);
6183 break;
6184 case IORING_OP_FADVISE:
6185 ret = io_fadvise(req, issue_flags);
6186 break;
6187 case IORING_OP_MADVISE:
6188 ret = io_madvise(req, issue_flags);
6189 break;
6190 case IORING_OP_OPENAT2:
6191 ret = io_openat2(req, issue_flags);
6192 break;
6193 case IORING_OP_EPOLL_CTL:
6194 ret = io_epoll_ctl(req, issue_flags);
6195 break;
6196 case IORING_OP_SPLICE:
6197 ret = io_splice(req, issue_flags);
6198 break;
6199 case IORING_OP_PROVIDE_BUFFERS:
6200 ret = io_provide_buffers(req, issue_flags);
6201 break;
6202 case IORING_OP_REMOVE_BUFFERS:
6203 ret = io_remove_buffers(req, issue_flags);
6204 break;
6205 case IORING_OP_TEE:
6206 ret = io_tee(req, issue_flags);
6207 break;
6208 case IORING_OP_SHUTDOWN:
6209 ret = io_shutdown(req, issue_flags);
6210 break;
6211 case IORING_OP_RENAMEAT:
6212 ret = io_renameat(req, issue_flags);
6213 break;
6214 case IORING_OP_UNLINKAT:
6215 ret = io_unlinkat(req, issue_flags);
6216 break;
6217 default:
6218 ret = -EINVAL;
6219 break;
6220 }
6221
6222 if (creds)
6223 revert_creds(creds);
6224
6225 if (ret)
6226 return ret;
6227
6228 /* If the op doesn't have a file, we're not polling for it */
6229 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6230 const bool in_async = io_wq_current_is_worker();
6231
6232 /* workqueue context doesn't hold uring_lock, grab it now */
6233 if (in_async)
6234 mutex_lock(&ctx->uring_lock);
6235
6236 io_iopoll_req_issued(req, in_async);
6237
6238 if (in_async)
6239 mutex_unlock(&ctx->uring_lock);
6240 }
6241
6242 return 0;
6243 }
6244
6245 static void io_wq_submit_work(struct io_wq_work *work)
6246 {
6247 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6248 struct io_kiocb *timeout;
6249 int ret = 0;
6250
6251 timeout = io_prep_linked_timeout(req);
6252 if (timeout)
6253 io_queue_linked_timeout(timeout);
6254
6255 if (work->flags & IO_WQ_WORK_CANCEL)
6256 ret = -ECANCELED;
6257
6258 if (!ret) {
6259 do {
6260 ret = io_issue_sqe(req, 0);
6261 /*
6262 * We can get EAGAIN for polled IO even though we're
6263 * forcing a sync submission from here, since we can't
6264 * wait for request slots on the block side.
6265 */
6266 if (ret != -EAGAIN)
6267 break;
6268 cond_resched();
6269 } while (1);
6270 }
6271
6272 /* avoid locking problems by failing it from a clean context */
6273 if (ret) {
6274 /* io-wq is going to take one down */
6275 req_ref_get(req);
6276 io_req_task_queue_fail(req, ret);
6277 }
6278 }
6279
6280 #define FFS_ASYNC_READ 0x1UL
6281 #define FFS_ASYNC_WRITE 0x2UL
6282 #ifdef CONFIG_64BIT
6283 #define FFS_ISREG 0x4UL
6284 #else
6285 #define FFS_ISREG 0x0UL
6286 #endif
6287 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6288
6289 static inline struct file **io_fixed_file_slot(struct io_rsrc_data *file_data,
6290 unsigned i)
6291 {
6292 struct fixed_rsrc_table *table;
6293
6294 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6295 return &table->files[i & IORING_FILE_TABLE_MASK];
6296 }
6297
6298 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6299 int index)
6300 {
6301 struct file **file_slot = io_fixed_file_slot(ctx->file_data, index);
6302
6303 return (struct file *) ((unsigned long) *file_slot & FFS_MASK);
6304 }
6305
6306 static struct file *io_file_get(struct io_submit_state *state,
6307 struct io_kiocb *req, int fd, bool fixed)
6308 {
6309 struct io_ring_ctx *ctx = req->ctx;
6310 struct file *file;
6311
6312 if (fixed) {
6313 unsigned long file_ptr;
6314
6315 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6316 return NULL;
6317 fd = array_index_nospec(fd, ctx->nr_user_files);
6318 file_ptr = (unsigned long) *io_fixed_file_slot(ctx->file_data, fd);
6319 file = (struct file *) (file_ptr & FFS_MASK);
6320 file_ptr &= ~FFS_MASK;
6321 /* mask in overlapping REQ_F and FFS bits */
6322 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6323 io_req_set_rsrc_node(req);
6324 } else {
6325 trace_io_uring_file_get(ctx, fd);
6326 file = __io_file_get(state, fd);
6327
6328 /* we don't allow fixed io_uring files */
6329 if (file && unlikely(file->f_op == &io_uring_fops))
6330 io_req_track_inflight(req);
6331 }
6332
6333 return file;
6334 }
6335
6336 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6337 {
6338 struct io_timeout_data *data = container_of(timer,
6339 struct io_timeout_data, timer);
6340 struct io_kiocb *prev, *req = data->req;
6341 struct io_ring_ctx *ctx = req->ctx;
6342 unsigned long flags;
6343
6344 spin_lock_irqsave(&ctx->completion_lock, flags);
6345 prev = req->timeout.head;
6346 req->timeout.head = NULL;
6347
6348 /*
6349 * We don't expect the list to be empty, that will only happen if we
6350 * race with the completion of the linked work.
6351 */
6352 if (prev && req_ref_inc_not_zero(prev))
6353 io_remove_next_linked(prev);
6354 else
6355 prev = NULL;
6356 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6357
6358 if (prev) {
6359 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6360 io_put_req_deferred(prev, 1);
6361 } else {
6362 io_req_complete_post(req, -ETIME, 0);
6363 io_put_req_deferred(req, 1);
6364 }
6365 return HRTIMER_NORESTART;
6366 }
6367
6368 static void io_queue_linked_timeout(struct io_kiocb *req)
6369 {
6370 struct io_ring_ctx *ctx = req->ctx;
6371
6372 spin_lock_irq(&ctx->completion_lock);
6373 /*
6374 * If the back reference is NULL, then our linked request finished
6375 * before we got a chance to setup the timer
6376 */
6377 if (req->timeout.head) {
6378 struct io_timeout_data *data = req->async_data;
6379
6380 data->timer.function = io_link_timeout_fn;
6381 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6382 data->mode);
6383 }
6384 spin_unlock_irq(&ctx->completion_lock);
6385 /* drop submission reference */
6386 io_put_req(req);
6387 }
6388
6389 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6390 {
6391 struct io_kiocb *nxt = req->link;
6392
6393 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6394 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6395 return NULL;
6396
6397 nxt->timeout.head = req;
6398 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6399 req->flags |= REQ_F_LINK_TIMEOUT;
6400 return nxt;
6401 }
6402
6403 static void __io_queue_sqe(struct io_kiocb *req)
6404 {
6405 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6406 int ret;
6407
6408 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6409
6410 /*
6411 * We async punt it if the file wasn't marked NOWAIT, or if the file
6412 * doesn't support non-blocking read/write attempts
6413 */
6414 if (likely(!ret)) {
6415 /* drop submission reference */
6416 if (req->flags & REQ_F_COMPLETE_INLINE) {
6417 struct io_ring_ctx *ctx = req->ctx;
6418 struct io_comp_state *cs = &ctx->submit_state.comp;
6419
6420 cs->reqs[cs->nr++] = req;
6421 if (cs->nr == ARRAY_SIZE(cs->reqs))
6422 io_submit_flush_completions(cs, ctx);
6423 } else {
6424 io_put_req(req);
6425 }
6426 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6427 if (!io_arm_poll_handler(req)) {
6428 /*
6429 * Queued up for async execution, worker will release
6430 * submit reference when the iocb is actually submitted.
6431 */
6432 io_queue_async_work(req);
6433 }
6434 } else {
6435 io_req_complete_failed(req, ret);
6436 }
6437 if (linked_timeout)
6438 io_queue_linked_timeout(linked_timeout);
6439 }
6440
6441 static void io_queue_sqe(struct io_kiocb *req)
6442 {
6443 int ret;
6444
6445 ret = io_req_defer(req);
6446 if (ret) {
6447 if (ret != -EIOCBQUEUED) {
6448 fail_req:
6449 io_req_complete_failed(req, ret);
6450 }
6451 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6452 ret = io_req_prep_async(req);
6453 if (unlikely(ret))
6454 goto fail_req;
6455 io_queue_async_work(req);
6456 } else {
6457 __io_queue_sqe(req);
6458 }
6459 }
6460
6461 /*
6462 * Check SQE restrictions (opcode and flags).
6463 *
6464 * Returns 'true' if SQE is allowed, 'false' otherwise.
6465 */
6466 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6467 struct io_kiocb *req,
6468 unsigned int sqe_flags)
6469 {
6470 if (!ctx->restricted)
6471 return true;
6472
6473 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6474 return false;
6475
6476 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6477 ctx->restrictions.sqe_flags_required)
6478 return false;
6479
6480 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6481 ctx->restrictions.sqe_flags_required))
6482 return false;
6483
6484 return true;
6485 }
6486
6487 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6488 const struct io_uring_sqe *sqe)
6489 {
6490 struct io_submit_state *state;
6491 unsigned int sqe_flags;
6492 int personality, ret = 0;
6493
6494 req->opcode = READ_ONCE(sqe->opcode);
6495 /* same numerical values with corresponding REQ_F_*, safe to copy */
6496 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6497 req->user_data = READ_ONCE(sqe->user_data);
6498 req->async_data = NULL;
6499 req->file = NULL;
6500 req->ctx = ctx;
6501 req->link = NULL;
6502 req->fixed_rsrc_refs = NULL;
6503 /* one is dropped after submission, the other at completion */
6504 atomic_set(&req->refs, 2);
6505 req->task = current;
6506 req->result = 0;
6507 req->work.creds = NULL;
6508
6509 /* enforce forwards compatibility on users */
6510 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
6511 req->flags = 0;
6512 return -EINVAL;
6513 }
6514
6515 if (unlikely(req->opcode >= IORING_OP_LAST))
6516 return -EINVAL;
6517
6518 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6519 return -EACCES;
6520
6521 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6522 !io_op_defs[req->opcode].buffer_select)
6523 return -EOPNOTSUPP;
6524
6525 personality = READ_ONCE(sqe->personality);
6526 if (personality) {
6527 req->work.creds = xa_load(&ctx->personalities, personality);
6528 if (!req->work.creds)
6529 return -EINVAL;
6530 get_cred(req->work.creds);
6531 }
6532 state = &ctx->submit_state;
6533
6534 /*
6535 * Plug now if we have more than 1 IO left after this, and the target
6536 * is potentially a read/write to block based storage.
6537 */
6538 if (!state->plug_started && state->ios_left > 1 &&
6539 io_op_defs[req->opcode].plug) {
6540 blk_start_plug(&state->plug);
6541 state->plug_started = true;
6542 }
6543
6544 if (io_op_defs[req->opcode].needs_file) {
6545 bool fixed = req->flags & REQ_F_FIXED_FILE;
6546
6547 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6548 if (unlikely(!req->file))
6549 ret = -EBADF;
6550 }
6551
6552 state->ios_left--;
6553 return ret;
6554 }
6555
6556 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6557 const struct io_uring_sqe *sqe)
6558 {
6559 struct io_submit_link *link = &ctx->submit_state.link;
6560 int ret;
6561
6562 ret = io_init_req(ctx, req, sqe);
6563 if (unlikely(ret)) {
6564 fail_req:
6565 if (link->head) {
6566 /* fail even hard links since we don't submit */
6567 link->head->flags |= REQ_F_FAIL_LINK;
6568 io_req_complete_failed(link->head, -ECANCELED);
6569 link->head = NULL;
6570 }
6571 io_req_complete_failed(req, ret);
6572 return ret;
6573 }
6574 ret = io_req_prep(req, sqe);
6575 if (unlikely(ret))
6576 goto fail_req;
6577
6578 /* don't need @sqe from now on */
6579 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6580 true, ctx->flags & IORING_SETUP_SQPOLL);
6581
6582 /*
6583 * If we already have a head request, queue this one for async
6584 * submittal once the head completes. If we don't have a head but
6585 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6586 * submitted sync once the chain is complete. If none of those
6587 * conditions are true (normal request), then just queue it.
6588 */
6589 if (link->head) {
6590 struct io_kiocb *head = link->head;
6591
6592 /*
6593 * Taking sequential execution of a link, draining both sides
6594 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6595 * requests in the link. So, it drains the head and the
6596 * next after the link request. The last one is done via
6597 * drain_next flag to persist the effect across calls.
6598 */
6599 if (req->flags & REQ_F_IO_DRAIN) {
6600 head->flags |= REQ_F_IO_DRAIN;
6601 ctx->drain_next = 1;
6602 }
6603 ret = io_req_prep_async(req);
6604 if (unlikely(ret))
6605 goto fail_req;
6606 trace_io_uring_link(ctx, req, head);
6607 link->last->link = req;
6608 link->last = req;
6609
6610 /* last request of a link, enqueue the link */
6611 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6612 io_queue_sqe(head);
6613 link->head = NULL;
6614 }
6615 } else {
6616 if (unlikely(ctx->drain_next)) {
6617 req->flags |= REQ_F_IO_DRAIN;
6618 ctx->drain_next = 0;
6619 }
6620 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6621 link->head = req;
6622 link->last = req;
6623 } else {
6624 io_queue_sqe(req);
6625 }
6626 }
6627
6628 return 0;
6629 }
6630
6631 /*
6632 * Batched submission is done, ensure local IO is flushed out.
6633 */
6634 static void io_submit_state_end(struct io_submit_state *state,
6635 struct io_ring_ctx *ctx)
6636 {
6637 if (state->link.head)
6638 io_queue_sqe(state->link.head);
6639 if (state->comp.nr)
6640 io_submit_flush_completions(&state->comp, ctx);
6641 if (state->plug_started)
6642 blk_finish_plug(&state->plug);
6643 io_state_file_put(state);
6644 }
6645
6646 /*
6647 * Start submission side cache.
6648 */
6649 static void io_submit_state_start(struct io_submit_state *state,
6650 unsigned int max_ios)
6651 {
6652 state->plug_started = false;
6653 state->ios_left = max_ios;
6654 /* set only head, no need to init link_last in advance */
6655 state->link.head = NULL;
6656 }
6657
6658 static void io_commit_sqring(struct io_ring_ctx *ctx)
6659 {
6660 struct io_rings *rings = ctx->rings;
6661
6662 /*
6663 * Ensure any loads from the SQEs are done at this point,
6664 * since once we write the new head, the application could
6665 * write new data to them.
6666 */
6667 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6668 }
6669
6670 /*
6671 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6672 * that is mapped by userspace. This means that care needs to be taken to
6673 * ensure that reads are stable, as we cannot rely on userspace always
6674 * being a good citizen. If members of the sqe are validated and then later
6675 * used, it's important that those reads are done through READ_ONCE() to
6676 * prevent a re-load down the line.
6677 */
6678 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6679 {
6680 u32 *sq_array = ctx->sq_array;
6681 unsigned head;
6682
6683 /*
6684 * The cached sq head (or cq tail) serves two purposes:
6685 *
6686 * 1) allows us to batch the cost of updating the user visible
6687 * head updates.
6688 * 2) allows the kernel side to track the head on its own, even
6689 * though the application is the one updating it.
6690 */
6691 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6692 if (likely(head < ctx->sq_entries))
6693 return &ctx->sq_sqes[head];
6694
6695 /* drop invalid entries */
6696 ctx->cached_sq_dropped++;
6697 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6698 return NULL;
6699 }
6700
6701 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6702 {
6703 int submitted = 0;
6704
6705 /* if we have a backlog and couldn't flush it all, return BUSY */
6706 if (test_bit(0, &ctx->sq_check_overflow)) {
6707 if (!__io_cqring_overflow_flush(ctx, false))
6708 return -EBUSY;
6709 }
6710
6711 /* make sure SQ entry isn't read before tail */
6712 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6713
6714 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6715 return -EAGAIN;
6716
6717 percpu_counter_add(&current->io_uring->inflight, nr);
6718 refcount_add(nr, &current->usage);
6719 io_submit_state_start(&ctx->submit_state, nr);
6720
6721 while (submitted < nr) {
6722 const struct io_uring_sqe *sqe;
6723 struct io_kiocb *req;
6724
6725 req = io_alloc_req(ctx);
6726 if (unlikely(!req)) {
6727 if (!submitted)
6728 submitted = -EAGAIN;
6729 break;
6730 }
6731 sqe = io_get_sqe(ctx);
6732 if (unlikely(!sqe)) {
6733 kmem_cache_free(req_cachep, req);
6734 break;
6735 }
6736 /* will complete beyond this point, count as submitted */
6737 submitted++;
6738 if (io_submit_sqe(ctx, req, sqe))
6739 break;
6740 }
6741
6742 if (unlikely(submitted != nr)) {
6743 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6744 struct io_uring_task *tctx = current->io_uring;
6745 int unused = nr - ref_used;
6746
6747 percpu_ref_put_many(&ctx->refs, unused);
6748 percpu_counter_sub(&tctx->inflight, unused);
6749 put_task_struct_many(current, unused);
6750 }
6751
6752 io_submit_state_end(&ctx->submit_state, ctx);
6753 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6754 io_commit_sqring(ctx);
6755
6756 return submitted;
6757 }
6758
6759 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6760 {
6761 /* Tell userspace we may need a wakeup call */
6762 spin_lock_irq(&ctx->completion_lock);
6763 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6764 spin_unlock_irq(&ctx->completion_lock);
6765 }
6766
6767 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6768 {
6769 spin_lock_irq(&ctx->completion_lock);
6770 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6771 spin_unlock_irq(&ctx->completion_lock);
6772 }
6773
6774 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6775 {
6776 unsigned int to_submit;
6777 int ret = 0;
6778
6779 to_submit = io_sqring_entries(ctx);
6780 /* if we're handling multiple rings, cap submit size for fairness */
6781 if (cap_entries && to_submit > 8)
6782 to_submit = 8;
6783
6784 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6785 unsigned nr_events = 0;
6786
6787 mutex_lock(&ctx->uring_lock);
6788 if (!list_empty(&ctx->iopoll_list))
6789 io_do_iopoll(ctx, &nr_events, 0);
6790
6791 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6792 !(ctx->flags & IORING_SETUP_R_DISABLED))
6793 ret = io_submit_sqes(ctx, to_submit);
6794 mutex_unlock(&ctx->uring_lock);
6795 }
6796
6797 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6798 wake_up(&ctx->sqo_sq_wait);
6799
6800 return ret;
6801 }
6802
6803 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6804 {
6805 struct io_ring_ctx *ctx;
6806 unsigned sq_thread_idle = 0;
6807
6808 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6809 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6810 sqd->sq_thread_idle = sq_thread_idle;
6811 }
6812
6813 static int io_sq_thread(void *data)
6814 {
6815 struct io_sq_data *sqd = data;
6816 struct io_ring_ctx *ctx;
6817 unsigned long timeout = 0;
6818 char buf[TASK_COMM_LEN];
6819 DEFINE_WAIT(wait);
6820
6821 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6822 set_task_comm(current, buf);
6823 current->pf_io_worker = NULL;
6824
6825 if (sqd->sq_cpu != -1)
6826 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6827 else
6828 set_cpus_allowed_ptr(current, cpu_online_mask);
6829 current->flags |= PF_NO_SETAFFINITY;
6830
6831 mutex_lock(&sqd->lock);
6832 while (!test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)) {
6833 int ret;
6834 bool cap_entries, sqt_spin, needs_sched;
6835
6836 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6837 signal_pending(current)) {
6838 bool did_sig = false;
6839
6840 mutex_unlock(&sqd->lock);
6841 if (signal_pending(current)) {
6842 struct ksignal ksig;
6843
6844 did_sig = get_signal(&ksig);
6845 }
6846 cond_resched();
6847 mutex_lock(&sqd->lock);
6848 if (did_sig)
6849 break;
6850 io_run_task_work();
6851 io_run_task_work_head(&sqd->park_task_work);
6852 timeout = jiffies + sqd->sq_thread_idle;
6853 continue;
6854 }
6855 sqt_spin = false;
6856 cap_entries = !list_is_singular(&sqd->ctx_list);
6857 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6858 const struct cred *creds = NULL;
6859
6860 if (ctx->sq_creds != current_cred())
6861 creds = override_creds(ctx->sq_creds);
6862 ret = __io_sq_thread(ctx, cap_entries);
6863 if (creds)
6864 revert_creds(creds);
6865 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6866 sqt_spin = true;
6867 }
6868
6869 if (sqt_spin || !time_after(jiffies, timeout)) {
6870 io_run_task_work();
6871 cond_resched();
6872 if (sqt_spin)
6873 timeout = jiffies + sqd->sq_thread_idle;
6874 continue;
6875 }
6876
6877 needs_sched = true;
6878 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6879 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6880 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6881 !list_empty_careful(&ctx->iopoll_list)) {
6882 needs_sched = false;
6883 break;
6884 }
6885 if (io_sqring_entries(ctx)) {
6886 needs_sched = false;
6887 break;
6888 }
6889 }
6890
6891 if (needs_sched && !test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state)) {
6892 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6893 io_ring_set_wakeup_flag(ctx);
6894
6895 mutex_unlock(&sqd->lock);
6896 schedule();
6897 mutex_lock(&sqd->lock);
6898 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6899 io_ring_clear_wakeup_flag(ctx);
6900 }
6901
6902 finish_wait(&sqd->wait, &wait);
6903 io_run_task_work_head(&sqd->park_task_work);
6904 timeout = jiffies + sqd->sq_thread_idle;
6905 }
6906
6907 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6908 io_uring_cancel_sqpoll(ctx);
6909 sqd->thread = NULL;
6910 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6911 io_ring_set_wakeup_flag(ctx);
6912 mutex_unlock(&sqd->lock);
6913
6914 io_run_task_work();
6915 io_run_task_work_head(&sqd->park_task_work);
6916 complete(&sqd->exited);
6917 do_exit(0);
6918 }
6919
6920 struct io_wait_queue {
6921 struct wait_queue_entry wq;
6922 struct io_ring_ctx *ctx;
6923 unsigned to_wait;
6924 unsigned nr_timeouts;
6925 };
6926
6927 static inline bool io_should_wake(struct io_wait_queue *iowq)
6928 {
6929 struct io_ring_ctx *ctx = iowq->ctx;
6930
6931 /*
6932 * Wake up if we have enough events, or if a timeout occurred since we
6933 * started waiting. For timeouts, we always want to return to userspace,
6934 * regardless of event count.
6935 */
6936 return io_cqring_events(ctx) >= iowq->to_wait ||
6937 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6938 }
6939
6940 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6941 int wake_flags, void *key)
6942 {
6943 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6944 wq);
6945
6946 /*
6947 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6948 * the task, and the next invocation will do it.
6949 */
6950 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
6951 return autoremove_wake_function(curr, mode, wake_flags, key);
6952 return -1;
6953 }
6954
6955 static int io_run_task_work_sig(void)
6956 {
6957 if (io_run_task_work())
6958 return 1;
6959 if (!signal_pending(current))
6960 return 0;
6961 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6962 return -ERESTARTSYS;
6963 return -EINTR;
6964 }
6965
6966 /* when returns >0, the caller should retry */
6967 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6968 struct io_wait_queue *iowq,
6969 signed long *timeout)
6970 {
6971 int ret;
6972
6973 /* make sure we run task_work before checking for signals */
6974 ret = io_run_task_work_sig();
6975 if (ret || io_should_wake(iowq))
6976 return ret;
6977 /* let the caller flush overflows, retry */
6978 if (test_bit(0, &ctx->cq_check_overflow))
6979 return 1;
6980
6981 *timeout = schedule_timeout(*timeout);
6982 return !*timeout ? -ETIME : 1;
6983 }
6984
6985 /*
6986 * Wait until events become available, if we don't already have some. The
6987 * application must reap them itself, as they reside on the shared cq ring.
6988 */
6989 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6990 const sigset_t __user *sig, size_t sigsz,
6991 struct __kernel_timespec __user *uts)
6992 {
6993 struct io_wait_queue iowq = {
6994 .wq = {
6995 .private = current,
6996 .func = io_wake_function,
6997 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6998 },
6999 .ctx = ctx,
7000 .to_wait = min_events,
7001 };
7002 struct io_rings *rings = ctx->rings;
7003 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7004 int ret;
7005
7006 do {
7007 io_cqring_overflow_flush(ctx, false);
7008 if (io_cqring_events(ctx) >= min_events)
7009 return 0;
7010 if (!io_run_task_work())
7011 break;
7012 } while (1);
7013
7014 if (sig) {
7015 #ifdef CONFIG_COMPAT
7016 if (in_compat_syscall())
7017 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7018 sigsz);
7019 else
7020 #endif
7021 ret = set_user_sigmask(sig, sigsz);
7022
7023 if (ret)
7024 return ret;
7025 }
7026
7027 if (uts) {
7028 struct timespec64 ts;
7029
7030 if (get_timespec64(&ts, uts))
7031 return -EFAULT;
7032 timeout = timespec64_to_jiffies(&ts);
7033 }
7034
7035 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7036 trace_io_uring_cqring_wait(ctx, min_events);
7037 do {
7038 /* if we can't even flush overflow, don't wait for more */
7039 if (!io_cqring_overflow_flush(ctx, false)) {
7040 ret = -EBUSY;
7041 break;
7042 }
7043 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7044 TASK_INTERRUPTIBLE);
7045 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7046 finish_wait(&ctx->wait, &iowq.wq);
7047 cond_resched();
7048 } while (ret > 0);
7049
7050 restore_saved_sigmask_unless(ret == -EINTR);
7051
7052 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7053 }
7054
7055 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7056 {
7057 #if defined(CONFIG_UNIX)
7058 if (ctx->ring_sock) {
7059 struct sock *sock = ctx->ring_sock->sk;
7060 struct sk_buff *skb;
7061
7062 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7063 kfree_skb(skb);
7064 }
7065 #else
7066 int i;
7067
7068 for (i = 0; i < ctx->nr_user_files; i++) {
7069 struct file *file;
7070
7071 file = io_file_from_index(ctx, i);
7072 if (file)
7073 fput(file);
7074 }
7075 #endif
7076 }
7077
7078 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7079 {
7080 struct io_rsrc_data *data = container_of(ref, struct io_rsrc_data, refs);
7081
7082 complete(&data->done);
7083 }
7084
7085 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7086 {
7087 spin_lock_bh(&ctx->rsrc_ref_lock);
7088 }
7089
7090 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7091 {
7092 spin_unlock_bh(&ctx->rsrc_ref_lock);
7093 }
7094
7095 static void io_rsrc_node_set(struct io_ring_ctx *ctx,
7096 struct io_rsrc_data *rsrc_data,
7097 struct io_rsrc_node *rsrc_node)
7098 {
7099 io_rsrc_ref_lock(ctx);
7100 rsrc_data->node = rsrc_node;
7101 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7102 io_rsrc_ref_unlock(ctx);
7103 percpu_ref_get(&rsrc_data->refs);
7104 }
7105
7106 static void io_rsrc_node_kill(struct io_ring_ctx *ctx, struct io_rsrc_data *data)
7107 {
7108 struct io_rsrc_node *ref_node = NULL;
7109
7110 io_rsrc_ref_lock(ctx);
7111 ref_node = data->node;
7112 data->node = NULL;
7113 io_rsrc_ref_unlock(ctx);
7114 if (ref_node)
7115 percpu_ref_kill(&ref_node->refs);
7116 }
7117
7118 static int io_rsrc_node_prealloc(struct io_ring_ctx *ctx)
7119 {
7120 if (ctx->rsrc_backup_node)
7121 return 0;
7122 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7123 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7124 }
7125
7126 static struct io_rsrc_node *
7127 io_rsrc_node_get(struct io_ring_ctx *ctx,
7128 struct io_rsrc_data *rsrc_data,
7129 void (*rsrc_put)(struct io_ring_ctx *ctx,
7130 struct io_rsrc_put *prsrc))
7131 {
7132 struct io_rsrc_node *node = ctx->rsrc_backup_node;
7133
7134 WARN_ON_ONCE(!node);
7135
7136 ctx->rsrc_backup_node = NULL;
7137 node->rsrc_data = rsrc_data;
7138 node->rsrc_put = rsrc_put;
7139 return node;
7140 }
7141
7142 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
7143 struct io_ring_ctx *ctx,
7144 void (*rsrc_put)(struct io_ring_ctx *ctx,
7145 struct io_rsrc_put *prsrc))
7146 {
7147 struct io_rsrc_node *node;
7148 int ret;
7149
7150 if (data->quiesce)
7151 return -ENXIO;
7152
7153 data->quiesce = true;
7154 do {
7155 ret = io_rsrc_node_prealloc(ctx);
7156 if (ret)
7157 break;
7158 io_rsrc_node_kill(ctx, data);
7159 percpu_ref_kill(&data->refs);
7160 flush_delayed_work(&ctx->rsrc_put_work);
7161
7162 ret = wait_for_completion_interruptible(&data->done);
7163 if (!ret)
7164 break;
7165
7166 percpu_ref_resurrect(&data->refs);
7167 node = io_rsrc_node_get(ctx, data, rsrc_put);
7168 io_rsrc_node_set(ctx, data, node);
7169 reinit_completion(&data->done);
7170
7171 mutex_unlock(&ctx->uring_lock);
7172 ret = io_run_task_work_sig();
7173 mutex_lock(&ctx->uring_lock);
7174 } while (ret >= 0);
7175 data->quiesce = false;
7176
7177 return ret;
7178 }
7179
7180 static struct io_rsrc_data *io_rsrc_data_alloc(struct io_ring_ctx *ctx)
7181 {
7182 struct io_rsrc_data *data;
7183
7184 data = kzalloc(sizeof(*data), GFP_KERNEL);
7185 if (!data)
7186 return NULL;
7187
7188 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7189 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7190 kfree(data);
7191 return NULL;
7192 }
7193 data->ctx = ctx;
7194 init_completion(&data->done);
7195 return data;
7196 }
7197
7198 static void io_rsrc_data_free(struct io_rsrc_data *data)
7199 {
7200 percpu_ref_exit(&data->refs);
7201 kfree(data->table);
7202 kfree(data);
7203 }
7204
7205 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7206 {
7207 struct io_rsrc_data *data = ctx->file_data;
7208 unsigned nr_tables, i;
7209 int ret;
7210
7211 /*
7212 * percpu_ref_is_dying() is to stop parallel files unregister
7213 * Since we possibly drop uring lock later in this function to
7214 * run task work.
7215 */
7216 if (!data || percpu_ref_is_dying(&data->refs))
7217 return -ENXIO;
7218 ret = io_rsrc_ref_quiesce(data, ctx, io_ring_file_put);
7219 if (ret)
7220 return ret;
7221
7222 __io_sqe_files_unregister(ctx);
7223 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7224 for (i = 0; i < nr_tables; i++)
7225 kfree(data->table[i].files);
7226 io_rsrc_data_free(data);
7227 ctx->file_data = NULL;
7228 ctx->nr_user_files = 0;
7229 return 0;
7230 }
7231
7232 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7233 __releases(&sqd->lock)
7234 {
7235 WARN_ON_ONCE(sqd->thread == current);
7236
7237 /*
7238 * Do the dance but not conditional clear_bit() because it'd race with
7239 * other threads incrementing park_pending and setting the bit.
7240 */
7241 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7242 if (atomic_dec_return(&sqd->park_pending))
7243 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7244 mutex_unlock(&sqd->lock);
7245 }
7246
7247 static void io_sq_thread_park(struct io_sq_data *sqd)
7248 __acquires(&sqd->lock)
7249 {
7250 WARN_ON_ONCE(sqd->thread == current);
7251
7252 atomic_inc(&sqd->park_pending);
7253 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7254 mutex_lock(&sqd->lock);
7255 if (sqd->thread)
7256 wake_up_process(sqd->thread);
7257 }
7258
7259 static void io_sq_thread_stop(struct io_sq_data *sqd)
7260 {
7261 WARN_ON_ONCE(sqd->thread == current);
7262
7263 mutex_lock(&sqd->lock);
7264 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7265 if (sqd->thread)
7266 wake_up_process(sqd->thread);
7267 mutex_unlock(&sqd->lock);
7268 wait_for_completion(&sqd->exited);
7269 }
7270
7271 static void io_put_sq_data(struct io_sq_data *sqd)
7272 {
7273 if (refcount_dec_and_test(&sqd->refs)) {
7274 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7275
7276 io_sq_thread_stop(sqd);
7277 kfree(sqd);
7278 }
7279 }
7280
7281 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7282 {
7283 struct io_sq_data *sqd = ctx->sq_data;
7284
7285 if (sqd) {
7286 io_sq_thread_park(sqd);
7287 list_del_init(&ctx->sqd_list);
7288 io_sqd_update_thread_idle(sqd);
7289 io_sq_thread_unpark(sqd);
7290
7291 io_put_sq_data(sqd);
7292 ctx->sq_data = NULL;
7293 if (ctx->sq_creds)
7294 put_cred(ctx->sq_creds);
7295 }
7296 }
7297
7298 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7299 {
7300 struct io_ring_ctx *ctx_attach;
7301 struct io_sq_data *sqd;
7302 struct fd f;
7303
7304 f = fdget(p->wq_fd);
7305 if (!f.file)
7306 return ERR_PTR(-ENXIO);
7307 if (f.file->f_op != &io_uring_fops) {
7308 fdput(f);
7309 return ERR_PTR(-EINVAL);
7310 }
7311
7312 ctx_attach = f.file->private_data;
7313 sqd = ctx_attach->sq_data;
7314 if (!sqd) {
7315 fdput(f);
7316 return ERR_PTR(-EINVAL);
7317 }
7318 if (sqd->task_tgid != current->tgid) {
7319 fdput(f);
7320 return ERR_PTR(-EPERM);
7321 }
7322
7323 refcount_inc(&sqd->refs);
7324 fdput(f);
7325 return sqd;
7326 }
7327
7328 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7329 bool *attached)
7330 {
7331 struct io_sq_data *sqd;
7332
7333 *attached = false;
7334 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7335 sqd = io_attach_sq_data(p);
7336 if (!IS_ERR(sqd)) {
7337 *attached = true;
7338 return sqd;
7339 }
7340 /* fall through for EPERM case, setup new sqd/task */
7341 if (PTR_ERR(sqd) != -EPERM)
7342 return sqd;
7343 }
7344
7345 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7346 if (!sqd)
7347 return ERR_PTR(-ENOMEM);
7348
7349 atomic_set(&sqd->park_pending, 0);
7350 refcount_set(&sqd->refs, 1);
7351 INIT_LIST_HEAD(&sqd->ctx_list);
7352 mutex_init(&sqd->lock);
7353 init_waitqueue_head(&sqd->wait);
7354 init_completion(&sqd->exited);
7355 return sqd;
7356 }
7357
7358 #if defined(CONFIG_UNIX)
7359 /*
7360 * Ensure the UNIX gc is aware of our file set, so we are certain that
7361 * the io_uring can be safely unregistered on process exit, even if we have
7362 * loops in the file referencing.
7363 */
7364 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7365 {
7366 struct sock *sk = ctx->ring_sock->sk;
7367 struct scm_fp_list *fpl;
7368 struct sk_buff *skb;
7369 int i, nr_files;
7370
7371 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7372 if (!fpl)
7373 return -ENOMEM;
7374
7375 skb = alloc_skb(0, GFP_KERNEL);
7376 if (!skb) {
7377 kfree(fpl);
7378 return -ENOMEM;
7379 }
7380
7381 skb->sk = sk;
7382
7383 nr_files = 0;
7384 fpl->user = get_uid(current_user());
7385 for (i = 0; i < nr; i++) {
7386 struct file *file = io_file_from_index(ctx, i + offset);
7387
7388 if (!file)
7389 continue;
7390 fpl->fp[nr_files] = get_file(file);
7391 unix_inflight(fpl->user, fpl->fp[nr_files]);
7392 nr_files++;
7393 }
7394
7395 if (nr_files) {
7396 fpl->max = SCM_MAX_FD;
7397 fpl->count = nr_files;
7398 UNIXCB(skb).fp = fpl;
7399 skb->destructor = unix_destruct_scm;
7400 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7401 skb_queue_head(&sk->sk_receive_queue, skb);
7402
7403 for (i = 0; i < nr_files; i++)
7404 fput(fpl->fp[i]);
7405 } else {
7406 kfree_skb(skb);
7407 kfree(fpl);
7408 }
7409
7410 return 0;
7411 }
7412
7413 /*
7414 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7415 * causes regular reference counting to break down. We rely on the UNIX
7416 * garbage collection to take care of this problem for us.
7417 */
7418 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7419 {
7420 unsigned left, total;
7421 int ret = 0;
7422
7423 total = 0;
7424 left = ctx->nr_user_files;
7425 while (left) {
7426 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7427
7428 ret = __io_sqe_files_scm(ctx, this_files, total);
7429 if (ret)
7430 break;
7431 left -= this_files;
7432 total += this_files;
7433 }
7434
7435 if (!ret)
7436 return 0;
7437
7438 while (total < ctx->nr_user_files) {
7439 struct file *file = io_file_from_index(ctx, total);
7440
7441 if (file)
7442 fput(file);
7443 total++;
7444 }
7445
7446 return ret;
7447 }
7448 #else
7449 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7450 {
7451 return 0;
7452 }
7453 #endif
7454
7455 static int io_sqe_alloc_file_tables(struct io_rsrc_data *file_data,
7456 unsigned nr_tables, unsigned nr_files)
7457 {
7458 int i;
7459
7460 for (i = 0; i < nr_tables; i++) {
7461 struct fixed_rsrc_table *table = &file_data->table[i];
7462 unsigned this_files;
7463
7464 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7465 table->files = kcalloc(this_files, sizeof(struct file *),
7466 GFP_KERNEL);
7467 if (!table->files)
7468 break;
7469 nr_files -= this_files;
7470 }
7471
7472 if (i == nr_tables)
7473 return 0;
7474
7475 for (i = 0; i < nr_tables; i++) {
7476 struct fixed_rsrc_table *table = &file_data->table[i];
7477 kfree(table->files);
7478 }
7479 return 1;
7480 }
7481
7482 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7483 {
7484 struct file *file = prsrc->file;
7485 #if defined(CONFIG_UNIX)
7486 struct sock *sock = ctx->ring_sock->sk;
7487 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7488 struct sk_buff *skb;
7489 int i;
7490
7491 __skb_queue_head_init(&list);
7492
7493 /*
7494 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7495 * remove this entry and rearrange the file array.
7496 */
7497 skb = skb_dequeue(head);
7498 while (skb) {
7499 struct scm_fp_list *fp;
7500
7501 fp = UNIXCB(skb).fp;
7502 for (i = 0; i < fp->count; i++) {
7503 int left;
7504
7505 if (fp->fp[i] != file)
7506 continue;
7507
7508 unix_notinflight(fp->user, fp->fp[i]);
7509 left = fp->count - 1 - i;
7510 if (left) {
7511 memmove(&fp->fp[i], &fp->fp[i + 1],
7512 left * sizeof(struct file *));
7513 }
7514 fp->count--;
7515 if (!fp->count) {
7516 kfree_skb(skb);
7517 skb = NULL;
7518 } else {
7519 __skb_queue_tail(&list, skb);
7520 }
7521 fput(file);
7522 file = NULL;
7523 break;
7524 }
7525
7526 if (!file)
7527 break;
7528
7529 __skb_queue_tail(&list, skb);
7530
7531 skb = skb_dequeue(head);
7532 }
7533
7534 if (skb_peek(&list)) {
7535 spin_lock_irq(&head->lock);
7536 while ((skb = __skb_dequeue(&list)) != NULL)
7537 __skb_queue_tail(head, skb);
7538 spin_unlock_irq(&head->lock);
7539 }
7540 #else
7541 fput(file);
7542 #endif
7543 }
7544
7545 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7546 {
7547 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7548 struct io_ring_ctx *ctx = rsrc_data->ctx;
7549 struct io_rsrc_put *prsrc, *tmp;
7550
7551 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7552 list_del(&prsrc->list);
7553 ref_node->rsrc_put(ctx, prsrc);
7554 kfree(prsrc);
7555 }
7556
7557 percpu_ref_exit(&ref_node->refs);
7558 kfree(ref_node);
7559 percpu_ref_put(&rsrc_data->refs);
7560 }
7561
7562 static void io_rsrc_put_work(struct work_struct *work)
7563 {
7564 struct io_ring_ctx *ctx;
7565 struct llist_node *node;
7566
7567 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7568 node = llist_del_all(&ctx->rsrc_put_llist);
7569
7570 while (node) {
7571 struct io_rsrc_node *ref_node;
7572 struct llist_node *next = node->next;
7573
7574 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7575 __io_rsrc_put_work(ref_node);
7576 node = next;
7577 }
7578 }
7579
7580 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7581 {
7582 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7583 struct io_rsrc_data *data = node->rsrc_data;
7584 struct io_ring_ctx *ctx = data->ctx;
7585 bool first_add = false;
7586 int delay = HZ;
7587
7588 io_rsrc_ref_lock(ctx);
7589 node->done = true;
7590
7591 while (!list_empty(&ctx->rsrc_ref_list)) {
7592 node = list_first_entry(&ctx->rsrc_ref_list,
7593 struct io_rsrc_node, node);
7594 /* recycle ref nodes in order */
7595 if (!node->done)
7596 break;
7597 list_del(&node->node);
7598 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7599 }
7600 io_rsrc_ref_unlock(ctx);
7601
7602 if (percpu_ref_is_dying(&data->refs))
7603 delay = 0;
7604
7605 if (!delay)
7606 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7607 else if (first_add)
7608 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7609 }
7610
7611 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7612 {
7613 struct io_rsrc_node *ref_node;
7614
7615 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7616 if (!ref_node)
7617 return NULL;
7618
7619 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7620 0, GFP_KERNEL)) {
7621 kfree(ref_node);
7622 return NULL;
7623 }
7624 INIT_LIST_HEAD(&ref_node->node);
7625 INIT_LIST_HEAD(&ref_node->rsrc_list);
7626 ref_node->done = false;
7627 return ref_node;
7628 }
7629
7630 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7631 struct io_rsrc_node *ref_node)
7632 {
7633 ref_node->rsrc_data = ctx->file_data;
7634 ref_node->rsrc_put = io_ring_file_put;
7635 }
7636
7637 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7638 {
7639 percpu_ref_exit(&ref_node->refs);
7640 kfree(ref_node);
7641 }
7642
7643 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7644 unsigned nr_args)
7645 {
7646 __s32 __user *fds = (__s32 __user *) arg;
7647 unsigned nr_tables, i;
7648 struct file *file;
7649 int fd, ret = -ENOMEM;
7650 struct io_rsrc_node *ref_node;
7651 struct io_rsrc_data *file_data;
7652
7653 if (ctx->file_data)
7654 return -EBUSY;
7655 if (!nr_args)
7656 return -EINVAL;
7657 if (nr_args > IORING_MAX_FIXED_FILES)
7658 return -EMFILE;
7659
7660 file_data = io_rsrc_data_alloc(ctx);
7661 if (!file_data)
7662 return -ENOMEM;
7663 ctx->file_data = file_data;
7664
7665 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7666 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7667 GFP_KERNEL);
7668 if (!file_data->table)
7669 goto out_free;
7670
7671 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7672 goto out_free;
7673
7674 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7675 unsigned long file_ptr;
7676
7677 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7678 ret = -EFAULT;
7679 goto out_fput;
7680 }
7681 /* allow sparse sets */
7682 if (fd == -1)
7683 continue;
7684
7685 file = fget(fd);
7686 ret = -EBADF;
7687 if (!file)
7688 goto out_fput;
7689
7690 /*
7691 * Don't allow io_uring instances to be registered. If UNIX
7692 * isn't enabled, then this causes a reference cycle and this
7693 * instance can never get freed. If UNIX is enabled we'll
7694 * handle it just fine, but there's still no point in allowing
7695 * a ring fd as it doesn't support regular read/write anyway.
7696 */
7697 if (file->f_op == &io_uring_fops) {
7698 fput(file);
7699 goto out_fput;
7700 }
7701 file_ptr = (unsigned long) file;
7702 if (__io_file_supports_async(file, READ))
7703 file_ptr |= FFS_ASYNC_READ;
7704 if (__io_file_supports_async(file, WRITE))
7705 file_ptr |= FFS_ASYNC_WRITE;
7706 if (S_ISREG(file_inode(file)->i_mode))
7707 file_ptr |= FFS_ISREG;
7708 *io_fixed_file_slot(file_data, i) = (struct file *) file_ptr;
7709 }
7710
7711 ret = io_sqe_files_scm(ctx);
7712 if (ret) {
7713 io_sqe_files_unregister(ctx);
7714 return ret;
7715 }
7716
7717 ref_node = io_rsrc_node_alloc(ctx);
7718 if (!ref_node) {
7719 io_sqe_files_unregister(ctx);
7720 return -ENOMEM;
7721 }
7722 init_fixed_file_ref_node(ctx, ref_node);
7723
7724 io_rsrc_node_set(ctx, file_data, ref_node);
7725 return ret;
7726 out_fput:
7727 for (i = 0; i < ctx->nr_user_files; i++) {
7728 file = io_file_from_index(ctx, i);
7729 if (file)
7730 fput(file);
7731 }
7732 for (i = 0; i < nr_tables; i++)
7733 kfree(file_data->table[i].files);
7734 ctx->nr_user_files = 0;
7735 out_free:
7736 io_rsrc_data_free(ctx->file_data);
7737 ctx->file_data = NULL;
7738 return ret;
7739 }
7740
7741 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7742 int index)
7743 {
7744 #if defined(CONFIG_UNIX)
7745 struct sock *sock = ctx->ring_sock->sk;
7746 struct sk_buff_head *head = &sock->sk_receive_queue;
7747 struct sk_buff *skb;
7748
7749 /*
7750 * See if we can merge this file into an existing skb SCM_RIGHTS
7751 * file set. If there's no room, fall back to allocating a new skb
7752 * and filling it in.
7753 */
7754 spin_lock_irq(&head->lock);
7755 skb = skb_peek(head);
7756 if (skb) {
7757 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7758
7759 if (fpl->count < SCM_MAX_FD) {
7760 __skb_unlink(skb, head);
7761 spin_unlock_irq(&head->lock);
7762 fpl->fp[fpl->count] = get_file(file);
7763 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7764 fpl->count++;
7765 spin_lock_irq(&head->lock);
7766 __skb_queue_head(head, skb);
7767 } else {
7768 skb = NULL;
7769 }
7770 }
7771 spin_unlock_irq(&head->lock);
7772
7773 if (skb) {
7774 fput(file);
7775 return 0;
7776 }
7777
7778 return __io_sqe_files_scm(ctx, 1, index);
7779 #else
7780 return 0;
7781 #endif
7782 }
7783
7784 static int io_queue_rsrc_removal(struct io_rsrc_data *data, void *rsrc)
7785 {
7786 struct io_rsrc_put *prsrc;
7787 struct io_rsrc_node *ref_node = data->node;
7788
7789 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7790 if (!prsrc)
7791 return -ENOMEM;
7792
7793 prsrc->rsrc = rsrc;
7794 list_add(&prsrc->list, &ref_node->rsrc_list);
7795
7796 return 0;
7797 }
7798
7799 static inline int io_queue_file_removal(struct io_rsrc_data *data,
7800 struct file *file)
7801 {
7802 return io_queue_rsrc_removal(data, (void *)file);
7803 }
7804
7805 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7806 struct io_uring_rsrc_update *up,
7807 unsigned nr_args)
7808 {
7809 struct io_rsrc_data *data = ctx->file_data;
7810 struct io_rsrc_node *ref_node;
7811 struct file *file, **file_slot;
7812 __s32 __user *fds;
7813 int fd, i, err;
7814 __u32 done;
7815 bool needs_switch = false;
7816
7817 if (check_add_overflow(up->offset, nr_args, &done))
7818 return -EOVERFLOW;
7819 if (done > ctx->nr_user_files)
7820 return -EINVAL;
7821 err = io_rsrc_node_prealloc(ctx);
7822 if (err)
7823 return err;
7824
7825 fds = u64_to_user_ptr(up->data);
7826 for (done = 0; done < nr_args; done++) {
7827 err = 0;
7828 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7829 err = -EFAULT;
7830 break;
7831 }
7832 if (fd == IORING_REGISTER_FILES_SKIP)
7833 continue;
7834
7835 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7836 file_slot = io_fixed_file_slot(ctx->file_data, i);
7837
7838 if (*file_slot) {
7839 file = (struct file *) ((unsigned long) *file_slot & FFS_MASK);
7840 err = io_queue_file_removal(data, file);
7841 if (err)
7842 break;
7843 *file_slot = NULL;
7844 needs_switch = true;
7845 }
7846 if (fd != -1) {
7847 file = fget(fd);
7848 if (!file) {
7849 err = -EBADF;
7850 break;
7851 }
7852 /*
7853 * Don't allow io_uring instances to be registered. If
7854 * UNIX isn't enabled, then this causes a reference
7855 * cycle and this instance can never get freed. If UNIX
7856 * is enabled we'll handle it just fine, but there's
7857 * still no point in allowing a ring fd as it doesn't
7858 * support regular read/write anyway.
7859 */
7860 if (file->f_op == &io_uring_fops) {
7861 fput(file);
7862 err = -EBADF;
7863 break;
7864 }
7865 *file_slot = file;
7866 err = io_sqe_file_register(ctx, file, i);
7867 if (err) {
7868 *file_slot = NULL;
7869 fput(file);
7870 break;
7871 }
7872 }
7873 }
7874
7875 if (needs_switch) {
7876 percpu_ref_kill(&data->node->refs);
7877 ref_node = io_rsrc_node_get(ctx, data, io_ring_file_put);
7878 io_rsrc_node_set(ctx, data, ref_node);
7879 }
7880 return done ? done : err;
7881 }
7882
7883 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7884 unsigned nr_args)
7885 {
7886 struct io_uring_rsrc_update up;
7887
7888 if (!ctx->file_data)
7889 return -ENXIO;
7890 if (!nr_args)
7891 return -EINVAL;
7892 if (copy_from_user(&up, arg, sizeof(up)))
7893 return -EFAULT;
7894 if (up.resv)
7895 return -EINVAL;
7896
7897 return __io_sqe_files_update(ctx, &up, nr_args);
7898 }
7899
7900 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7901 {
7902 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7903
7904 req = io_put_req_find_next(req);
7905 return req ? &req->work : NULL;
7906 }
7907
7908 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7909 struct task_struct *task)
7910 {
7911 struct io_wq_hash *hash;
7912 struct io_wq_data data;
7913 unsigned int concurrency;
7914
7915 hash = ctx->hash_map;
7916 if (!hash) {
7917 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7918 if (!hash)
7919 return ERR_PTR(-ENOMEM);
7920 refcount_set(&hash->refs, 1);
7921 init_waitqueue_head(&hash->wait);
7922 ctx->hash_map = hash;
7923 }
7924
7925 data.hash = hash;
7926 data.task = task;
7927 data.free_work = io_free_work;
7928 data.do_work = io_wq_submit_work;
7929
7930 /* Do QD, or 4 * CPUS, whatever is smallest */
7931 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7932
7933 return io_wq_create(concurrency, &data);
7934 }
7935
7936 static int io_uring_alloc_task_context(struct task_struct *task,
7937 struct io_ring_ctx *ctx)
7938 {
7939 struct io_uring_task *tctx;
7940 int ret;
7941
7942 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7943 if (unlikely(!tctx))
7944 return -ENOMEM;
7945
7946 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7947 if (unlikely(ret)) {
7948 kfree(tctx);
7949 return ret;
7950 }
7951
7952 tctx->io_wq = io_init_wq_offload(ctx, task);
7953 if (IS_ERR(tctx->io_wq)) {
7954 ret = PTR_ERR(tctx->io_wq);
7955 percpu_counter_destroy(&tctx->inflight);
7956 kfree(tctx);
7957 return ret;
7958 }
7959
7960 xa_init(&tctx->xa);
7961 init_waitqueue_head(&tctx->wait);
7962 tctx->last = NULL;
7963 atomic_set(&tctx->in_idle, 0);
7964 task->io_uring = tctx;
7965 spin_lock_init(&tctx->task_lock);
7966 INIT_WQ_LIST(&tctx->task_list);
7967 tctx->task_state = 0;
7968 init_task_work(&tctx->task_work, tctx_task_work);
7969 return 0;
7970 }
7971
7972 void __io_uring_free(struct task_struct *tsk)
7973 {
7974 struct io_uring_task *tctx = tsk->io_uring;
7975
7976 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7977 WARN_ON_ONCE(tctx->io_wq);
7978
7979 percpu_counter_destroy(&tctx->inflight);
7980 kfree(tctx);
7981 tsk->io_uring = NULL;
7982 }
7983
7984 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7985 struct io_uring_params *p)
7986 {
7987 int ret;
7988
7989 /* Retain compatibility with failing for an invalid attach attempt */
7990 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7991 IORING_SETUP_ATTACH_WQ) {
7992 struct fd f;
7993
7994 f = fdget(p->wq_fd);
7995 if (!f.file)
7996 return -ENXIO;
7997 if (f.file->f_op != &io_uring_fops) {
7998 fdput(f);
7999 return -EINVAL;
8000 }
8001 fdput(f);
8002 }
8003 if (ctx->flags & IORING_SETUP_SQPOLL) {
8004 struct task_struct *tsk;
8005 struct io_sq_data *sqd;
8006 bool attached;
8007
8008 sqd = io_get_sq_data(p, &attached);
8009 if (IS_ERR(sqd)) {
8010 ret = PTR_ERR(sqd);
8011 goto err;
8012 }
8013
8014 ctx->sq_creds = get_current_cred();
8015 ctx->sq_data = sqd;
8016 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8017 if (!ctx->sq_thread_idle)
8018 ctx->sq_thread_idle = HZ;
8019
8020 ret = 0;
8021 io_sq_thread_park(sqd);
8022 list_add(&ctx->sqd_list, &sqd->ctx_list);
8023 io_sqd_update_thread_idle(sqd);
8024 /* don't attach to a dying SQPOLL thread, would be racy */
8025 if (attached && !sqd->thread)
8026 ret = -ENXIO;
8027 io_sq_thread_unpark(sqd);
8028
8029 if (ret < 0)
8030 goto err;
8031 if (attached)
8032 return 0;
8033
8034 if (p->flags & IORING_SETUP_SQ_AFF) {
8035 int cpu = p->sq_thread_cpu;
8036
8037 ret = -EINVAL;
8038 if (cpu >= nr_cpu_ids)
8039 goto err_sqpoll;
8040 if (!cpu_online(cpu))
8041 goto err_sqpoll;
8042
8043 sqd->sq_cpu = cpu;
8044 } else {
8045 sqd->sq_cpu = -1;
8046 }
8047
8048 sqd->task_pid = current->pid;
8049 sqd->task_tgid = current->tgid;
8050 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8051 if (IS_ERR(tsk)) {
8052 ret = PTR_ERR(tsk);
8053 goto err_sqpoll;
8054 }
8055
8056 sqd->thread = tsk;
8057 ret = io_uring_alloc_task_context(tsk, ctx);
8058 wake_up_new_task(tsk);
8059 if (ret)
8060 goto err;
8061 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8062 /* Can't have SQ_AFF without SQPOLL */
8063 ret = -EINVAL;
8064 goto err;
8065 }
8066
8067 return 0;
8068 err:
8069 io_sq_thread_finish(ctx);
8070 return ret;
8071 err_sqpoll:
8072 complete(&ctx->sq_data->exited);
8073 goto err;
8074 }
8075
8076 static inline void __io_unaccount_mem(struct user_struct *user,
8077 unsigned long nr_pages)
8078 {
8079 atomic_long_sub(nr_pages, &user->locked_vm);
8080 }
8081
8082 static inline int __io_account_mem(struct user_struct *user,
8083 unsigned long nr_pages)
8084 {
8085 unsigned long page_limit, cur_pages, new_pages;
8086
8087 /* Don't allow more pages than we can safely lock */
8088 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8089
8090 do {
8091 cur_pages = atomic_long_read(&user->locked_vm);
8092 new_pages = cur_pages + nr_pages;
8093 if (new_pages > page_limit)
8094 return -ENOMEM;
8095 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8096 new_pages) != cur_pages);
8097
8098 return 0;
8099 }
8100
8101 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8102 {
8103 if (ctx->user)
8104 __io_unaccount_mem(ctx->user, nr_pages);
8105
8106 if (ctx->mm_account)
8107 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8108 }
8109
8110 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8111 {
8112 int ret;
8113
8114 if (ctx->user) {
8115 ret = __io_account_mem(ctx->user, nr_pages);
8116 if (ret)
8117 return ret;
8118 }
8119
8120 if (ctx->mm_account)
8121 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8122
8123 return 0;
8124 }
8125
8126 static void io_mem_free(void *ptr)
8127 {
8128 struct page *page;
8129
8130 if (!ptr)
8131 return;
8132
8133 page = virt_to_head_page(ptr);
8134 if (put_page_testzero(page))
8135 free_compound_page(page);
8136 }
8137
8138 static void *io_mem_alloc(size_t size)
8139 {
8140 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8141 __GFP_NORETRY | __GFP_ACCOUNT;
8142
8143 return (void *) __get_free_pages(gfp_flags, get_order(size));
8144 }
8145
8146 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8147 size_t *sq_offset)
8148 {
8149 struct io_rings *rings;
8150 size_t off, sq_array_size;
8151
8152 off = struct_size(rings, cqes, cq_entries);
8153 if (off == SIZE_MAX)
8154 return SIZE_MAX;
8155
8156 #ifdef CONFIG_SMP
8157 off = ALIGN(off, SMP_CACHE_BYTES);
8158 if (off == 0)
8159 return SIZE_MAX;
8160 #endif
8161
8162 if (sq_offset)
8163 *sq_offset = off;
8164
8165 sq_array_size = array_size(sizeof(u32), sq_entries);
8166 if (sq_array_size == SIZE_MAX)
8167 return SIZE_MAX;
8168
8169 if (check_add_overflow(off, sq_array_size, &off))
8170 return SIZE_MAX;
8171
8172 return off;
8173 }
8174
8175 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8176 {
8177 int i, j;
8178
8179 if (!ctx->user_bufs)
8180 return -ENXIO;
8181
8182 for (i = 0; i < ctx->nr_user_bufs; i++) {
8183 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8184
8185 for (j = 0; j < imu->nr_bvecs; j++)
8186 unpin_user_page(imu->bvec[j].bv_page);
8187
8188 if (imu->acct_pages)
8189 io_unaccount_mem(ctx, imu->acct_pages);
8190 kvfree(imu->bvec);
8191 imu->nr_bvecs = 0;
8192 }
8193
8194 kfree(ctx->user_bufs);
8195 ctx->user_bufs = NULL;
8196 ctx->nr_user_bufs = 0;
8197 return 0;
8198 }
8199
8200 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8201 void __user *arg, unsigned index)
8202 {
8203 struct iovec __user *src;
8204
8205 #ifdef CONFIG_COMPAT
8206 if (ctx->compat) {
8207 struct compat_iovec __user *ciovs;
8208 struct compat_iovec ciov;
8209
8210 ciovs = (struct compat_iovec __user *) arg;
8211 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8212 return -EFAULT;
8213
8214 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8215 dst->iov_len = ciov.iov_len;
8216 return 0;
8217 }
8218 #endif
8219 src = (struct iovec __user *) arg;
8220 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8221 return -EFAULT;
8222 return 0;
8223 }
8224
8225 /*
8226 * Not super efficient, but this is just a registration time. And we do cache
8227 * the last compound head, so generally we'll only do a full search if we don't
8228 * match that one.
8229 *
8230 * We check if the given compound head page has already been accounted, to
8231 * avoid double accounting it. This allows us to account the full size of the
8232 * page, not just the constituent pages of a huge page.
8233 */
8234 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8235 int nr_pages, struct page *hpage)
8236 {
8237 int i, j;
8238
8239 /* check current page array */
8240 for (i = 0; i < nr_pages; i++) {
8241 if (!PageCompound(pages[i]))
8242 continue;
8243 if (compound_head(pages[i]) == hpage)
8244 return true;
8245 }
8246
8247 /* check previously registered pages */
8248 for (i = 0; i < ctx->nr_user_bufs; i++) {
8249 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8250
8251 for (j = 0; j < imu->nr_bvecs; j++) {
8252 if (!PageCompound(imu->bvec[j].bv_page))
8253 continue;
8254 if (compound_head(imu->bvec[j].bv_page) == hpage)
8255 return true;
8256 }
8257 }
8258
8259 return false;
8260 }
8261
8262 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8263 int nr_pages, struct io_mapped_ubuf *imu,
8264 struct page **last_hpage)
8265 {
8266 int i, ret;
8267
8268 for (i = 0; i < nr_pages; i++) {
8269 if (!PageCompound(pages[i])) {
8270 imu->acct_pages++;
8271 } else {
8272 struct page *hpage;
8273
8274 hpage = compound_head(pages[i]);
8275 if (hpage == *last_hpage)
8276 continue;
8277 *last_hpage = hpage;
8278 if (headpage_already_acct(ctx, pages, i, hpage))
8279 continue;
8280 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8281 }
8282 }
8283
8284 if (!imu->acct_pages)
8285 return 0;
8286
8287 ret = io_account_mem(ctx, imu->acct_pages);
8288 if (ret)
8289 imu->acct_pages = 0;
8290 return ret;
8291 }
8292
8293 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8294 struct io_mapped_ubuf *imu,
8295 struct page **last_hpage)
8296 {
8297 struct vm_area_struct **vmas = NULL;
8298 struct page **pages = NULL;
8299 unsigned long off, start, end, ubuf;
8300 size_t size;
8301 int ret, pret, nr_pages, i;
8302
8303 ubuf = (unsigned long) iov->iov_base;
8304 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8305 start = ubuf >> PAGE_SHIFT;
8306 nr_pages = end - start;
8307
8308 ret = -ENOMEM;
8309
8310 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8311 if (!pages)
8312 goto done;
8313
8314 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8315 GFP_KERNEL);
8316 if (!vmas)
8317 goto done;
8318
8319 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8320 GFP_KERNEL);
8321 if (!imu->bvec)
8322 goto done;
8323
8324 ret = 0;
8325 mmap_read_lock(current->mm);
8326 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8327 pages, vmas);
8328 if (pret == nr_pages) {
8329 /* don't support file backed memory */
8330 for (i = 0; i < nr_pages; i++) {
8331 struct vm_area_struct *vma = vmas[i];
8332
8333 if (vma->vm_file &&
8334 !is_file_hugepages(vma->vm_file)) {
8335 ret = -EOPNOTSUPP;
8336 break;
8337 }
8338 }
8339 } else {
8340 ret = pret < 0 ? pret : -EFAULT;
8341 }
8342 mmap_read_unlock(current->mm);
8343 if (ret) {
8344 /*
8345 * if we did partial map, or found file backed vmas,
8346 * release any pages we did get
8347 */
8348 if (pret > 0)
8349 unpin_user_pages(pages, pret);
8350 kvfree(imu->bvec);
8351 goto done;
8352 }
8353
8354 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8355 if (ret) {
8356 unpin_user_pages(pages, pret);
8357 kvfree(imu->bvec);
8358 goto done;
8359 }
8360
8361 off = ubuf & ~PAGE_MASK;
8362 size = iov->iov_len;
8363 for (i = 0; i < nr_pages; i++) {
8364 size_t vec_len;
8365
8366 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8367 imu->bvec[i].bv_page = pages[i];
8368 imu->bvec[i].bv_len = vec_len;
8369 imu->bvec[i].bv_offset = off;
8370 off = 0;
8371 size -= vec_len;
8372 }
8373 /* store original address for later verification */
8374 imu->ubuf = ubuf;
8375 imu->len = iov->iov_len;
8376 imu->nr_bvecs = nr_pages;
8377 ret = 0;
8378 done:
8379 kvfree(pages);
8380 kvfree(vmas);
8381 return ret;
8382 }
8383
8384 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8385 {
8386 if (ctx->user_bufs)
8387 return -EBUSY;
8388 if (!nr_args || nr_args > UIO_MAXIOV)
8389 return -EINVAL;
8390
8391 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8392 GFP_KERNEL);
8393 if (!ctx->user_bufs)
8394 return -ENOMEM;
8395
8396 return 0;
8397 }
8398
8399 static int io_buffer_validate(struct iovec *iov)
8400 {
8401 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8402
8403 /*
8404 * Don't impose further limits on the size and buffer
8405 * constraints here, we'll -EINVAL later when IO is
8406 * submitted if they are wrong.
8407 */
8408 if (!iov->iov_base || !iov->iov_len)
8409 return -EFAULT;
8410
8411 /* arbitrary limit, but we need something */
8412 if (iov->iov_len > SZ_1G)
8413 return -EFAULT;
8414
8415 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8416 return -EOVERFLOW;
8417
8418 return 0;
8419 }
8420
8421 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8422 unsigned int nr_args)
8423 {
8424 int i, ret;
8425 struct iovec iov;
8426 struct page *last_hpage = NULL;
8427
8428 ret = io_buffers_map_alloc(ctx, nr_args);
8429 if (ret)
8430 return ret;
8431
8432 for (i = 0; i < nr_args; i++) {
8433 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8434
8435 ret = io_copy_iov(ctx, &iov, arg, i);
8436 if (ret)
8437 break;
8438
8439 ret = io_buffer_validate(&iov);
8440 if (ret)
8441 break;
8442
8443 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8444 if (ret)
8445 break;
8446
8447 ctx->nr_user_bufs++;
8448 }
8449
8450 if (ret)
8451 io_sqe_buffers_unregister(ctx);
8452
8453 return ret;
8454 }
8455
8456 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8457 {
8458 __s32 __user *fds = arg;
8459 int fd;
8460
8461 if (ctx->cq_ev_fd)
8462 return -EBUSY;
8463
8464 if (copy_from_user(&fd, fds, sizeof(*fds)))
8465 return -EFAULT;
8466
8467 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8468 if (IS_ERR(ctx->cq_ev_fd)) {
8469 int ret = PTR_ERR(ctx->cq_ev_fd);
8470 ctx->cq_ev_fd = NULL;
8471 return ret;
8472 }
8473
8474 return 0;
8475 }
8476
8477 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8478 {
8479 if (ctx->cq_ev_fd) {
8480 eventfd_ctx_put(ctx->cq_ev_fd);
8481 ctx->cq_ev_fd = NULL;
8482 return 0;
8483 }
8484
8485 return -ENXIO;
8486 }
8487
8488 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8489 {
8490 struct io_buffer *buf;
8491 unsigned long index;
8492
8493 xa_for_each(&ctx->io_buffers, index, buf)
8494 __io_remove_buffers(ctx, buf, index, -1U);
8495 }
8496
8497 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8498 {
8499 struct io_kiocb *req, *nxt;
8500
8501 list_for_each_entry_safe(req, nxt, list, compl.list) {
8502 if (tsk && req->task != tsk)
8503 continue;
8504 list_del(&req->compl.list);
8505 kmem_cache_free(req_cachep, req);
8506 }
8507 }
8508
8509 static void io_req_caches_free(struct io_ring_ctx *ctx)
8510 {
8511 struct io_submit_state *submit_state = &ctx->submit_state;
8512 struct io_comp_state *cs = &ctx->submit_state.comp;
8513
8514 mutex_lock(&ctx->uring_lock);
8515
8516 if (submit_state->free_reqs) {
8517 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8518 submit_state->reqs);
8519 submit_state->free_reqs = 0;
8520 }
8521
8522 io_flush_cached_locked_reqs(ctx, cs);
8523 io_req_cache_free(&cs->free_list, NULL);
8524 mutex_unlock(&ctx->uring_lock);
8525 }
8526
8527 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8528 {
8529 /*
8530 * Some may use context even when all refs and requests have been put,
8531 * and they are free to do so while still holding uring_lock or
8532 * completion_lock, see __io_req_task_submit(). Wait for them to finish.
8533 */
8534 mutex_lock(&ctx->uring_lock);
8535 mutex_unlock(&ctx->uring_lock);
8536 spin_lock_irq(&ctx->completion_lock);
8537 spin_unlock_irq(&ctx->completion_lock);
8538
8539 io_sq_thread_finish(ctx);
8540 io_sqe_buffers_unregister(ctx);
8541
8542 if (ctx->mm_account) {
8543 mmdrop(ctx->mm_account);
8544 ctx->mm_account = NULL;
8545 }
8546
8547 mutex_lock(&ctx->uring_lock);
8548 io_sqe_files_unregister(ctx);
8549 mutex_unlock(&ctx->uring_lock);
8550 io_eventfd_unregister(ctx);
8551 io_destroy_buffers(ctx);
8552
8553 if (ctx->rsrc_backup_node)
8554 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8555
8556 #if defined(CONFIG_UNIX)
8557 if (ctx->ring_sock) {
8558 ctx->ring_sock->file = NULL; /* so that iput() is called */
8559 sock_release(ctx->ring_sock);
8560 }
8561 #endif
8562
8563 io_mem_free(ctx->rings);
8564 io_mem_free(ctx->sq_sqes);
8565
8566 percpu_ref_exit(&ctx->refs);
8567 free_uid(ctx->user);
8568 io_req_caches_free(ctx);
8569 if (ctx->hash_map)
8570 io_wq_put_hash(ctx->hash_map);
8571 kfree(ctx->cancel_hash);
8572 kfree(ctx);
8573 }
8574
8575 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8576 {
8577 struct io_ring_ctx *ctx = file->private_data;
8578 __poll_t mask = 0;
8579
8580 poll_wait(file, &ctx->cq_wait, wait);
8581 /*
8582 * synchronizes with barrier from wq_has_sleeper call in
8583 * io_commit_cqring
8584 */
8585 smp_rmb();
8586 if (!io_sqring_full(ctx))
8587 mask |= EPOLLOUT | EPOLLWRNORM;
8588
8589 /*
8590 * Don't flush cqring overflow list here, just do a simple check.
8591 * Otherwise there could possible be ABBA deadlock:
8592 * CPU0 CPU1
8593 * ---- ----
8594 * lock(&ctx->uring_lock);
8595 * lock(&ep->mtx);
8596 * lock(&ctx->uring_lock);
8597 * lock(&ep->mtx);
8598 *
8599 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8600 * pushs them to do the flush.
8601 */
8602 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8603 mask |= EPOLLIN | EPOLLRDNORM;
8604
8605 return mask;
8606 }
8607
8608 static int io_uring_fasync(int fd, struct file *file, int on)
8609 {
8610 struct io_ring_ctx *ctx = file->private_data;
8611
8612 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8613 }
8614
8615 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8616 {
8617 const struct cred *creds;
8618
8619 creds = xa_erase(&ctx->personalities, id);
8620 if (creds) {
8621 put_cred(creds);
8622 return 0;
8623 }
8624
8625 return -EINVAL;
8626 }
8627
8628 static inline bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
8629 {
8630 return io_run_task_work_head(&ctx->exit_task_work);
8631 }
8632
8633 struct io_tctx_exit {
8634 struct callback_head task_work;
8635 struct completion completion;
8636 struct io_ring_ctx *ctx;
8637 };
8638
8639 static void io_tctx_exit_cb(struct callback_head *cb)
8640 {
8641 struct io_uring_task *tctx = current->io_uring;
8642 struct io_tctx_exit *work;
8643
8644 work = container_of(cb, struct io_tctx_exit, task_work);
8645 /*
8646 * When @in_idle, we're in cancellation and it's racy to remove the
8647 * node. It'll be removed by the end of cancellation, just ignore it.
8648 */
8649 if (!atomic_read(&tctx->in_idle))
8650 io_uring_del_task_file((unsigned long)work->ctx);
8651 complete(&work->completion);
8652 }
8653
8654 static void io_ring_exit_work(struct work_struct *work)
8655 {
8656 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8657 unsigned long timeout = jiffies + HZ * 60 * 5;
8658 struct io_tctx_exit exit;
8659 struct io_tctx_node *node;
8660 int ret;
8661
8662 /* prevent SQPOLL from submitting new requests */
8663 if (ctx->sq_data) {
8664 io_sq_thread_park(ctx->sq_data);
8665 list_del_init(&ctx->sqd_list);
8666 io_sqd_update_thread_idle(ctx->sq_data);
8667 io_sq_thread_unpark(ctx->sq_data);
8668 }
8669
8670 /*
8671 * If we're doing polled IO and end up having requests being
8672 * submitted async (out-of-line), then completions can come in while
8673 * we're waiting for refs to drop. We need to reap these manually,
8674 * as nobody else will be looking for them.
8675 */
8676 do {
8677 io_uring_try_cancel_requests(ctx, NULL, NULL);
8678
8679 WARN_ON_ONCE(time_after(jiffies, timeout));
8680 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8681
8682 mutex_lock(&ctx->uring_lock);
8683 while (!list_empty(&ctx->tctx_list)) {
8684 WARN_ON_ONCE(time_after(jiffies, timeout));
8685
8686 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8687 ctx_node);
8688 exit.ctx = ctx;
8689 init_completion(&exit.completion);
8690 init_task_work(&exit.task_work, io_tctx_exit_cb);
8691 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8692 if (WARN_ON_ONCE(ret))
8693 continue;
8694 wake_up_process(node->task);
8695
8696 mutex_unlock(&ctx->uring_lock);
8697 wait_for_completion(&exit.completion);
8698 cond_resched();
8699 mutex_lock(&ctx->uring_lock);
8700 }
8701 mutex_unlock(&ctx->uring_lock);
8702
8703 io_ring_ctx_free(ctx);
8704 }
8705
8706 /* Returns true if we found and killed one or more timeouts */
8707 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8708 struct files_struct *files)
8709 {
8710 struct io_kiocb *req, *tmp;
8711 int canceled = 0;
8712
8713 spin_lock_irq(&ctx->completion_lock);
8714 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8715 if (io_match_task(req, tsk, files)) {
8716 io_kill_timeout(req, -ECANCELED);
8717 canceled++;
8718 }
8719 }
8720 if (canceled != 0)
8721 io_commit_cqring(ctx);
8722 spin_unlock_irq(&ctx->completion_lock);
8723 if (canceled != 0)
8724 io_cqring_ev_posted(ctx);
8725 return canceled != 0;
8726 }
8727
8728 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8729 {
8730 unsigned long index;
8731 struct creds *creds;
8732
8733 mutex_lock(&ctx->uring_lock);
8734 percpu_ref_kill(&ctx->refs);
8735 /* if force is set, the ring is going away. always drop after that */
8736 ctx->cq_overflow_flushed = 1;
8737 if (ctx->rings)
8738 __io_cqring_overflow_flush(ctx, true);
8739 xa_for_each(&ctx->personalities, index, creds)
8740 io_unregister_personality(ctx, index);
8741 mutex_unlock(&ctx->uring_lock);
8742
8743 io_kill_timeouts(ctx, NULL, NULL);
8744 io_poll_remove_all(ctx, NULL, NULL);
8745
8746 /* if we failed setting up the ctx, we might not have any rings */
8747 io_iopoll_try_reap_events(ctx);
8748
8749 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8750 /*
8751 * Use system_unbound_wq to avoid spawning tons of event kworkers
8752 * if we're exiting a ton of rings at the same time. It just adds
8753 * noise and overhead, there's no discernable change in runtime
8754 * over using system_wq.
8755 */
8756 queue_work(system_unbound_wq, &ctx->exit_work);
8757 }
8758
8759 static int io_uring_release(struct inode *inode, struct file *file)
8760 {
8761 struct io_ring_ctx *ctx = file->private_data;
8762
8763 file->private_data = NULL;
8764 io_ring_ctx_wait_and_kill(ctx);
8765 return 0;
8766 }
8767
8768 struct io_task_cancel {
8769 struct task_struct *task;
8770 struct files_struct *files;
8771 };
8772
8773 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8774 {
8775 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8776 struct io_task_cancel *cancel = data;
8777 bool ret;
8778
8779 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8780 unsigned long flags;
8781 struct io_ring_ctx *ctx = req->ctx;
8782
8783 /* protect against races with linked timeouts */
8784 spin_lock_irqsave(&ctx->completion_lock, flags);
8785 ret = io_match_task(req, cancel->task, cancel->files);
8786 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8787 } else {
8788 ret = io_match_task(req, cancel->task, cancel->files);
8789 }
8790 return ret;
8791 }
8792
8793 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8794 struct task_struct *task,
8795 struct files_struct *files)
8796 {
8797 struct io_defer_entry *de;
8798 LIST_HEAD(list);
8799
8800 spin_lock_irq(&ctx->completion_lock);
8801 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8802 if (io_match_task(de->req, task, files)) {
8803 list_cut_position(&list, &ctx->defer_list, &de->list);
8804 break;
8805 }
8806 }
8807 spin_unlock_irq(&ctx->completion_lock);
8808 if (list_empty(&list))
8809 return false;
8810
8811 while (!list_empty(&list)) {
8812 de = list_first_entry(&list, struct io_defer_entry, list);
8813 list_del_init(&de->list);
8814 io_req_complete_failed(de->req, -ECANCELED);
8815 kfree(de);
8816 }
8817 return true;
8818 }
8819
8820 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8821 {
8822 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8823
8824 return req->ctx == data;
8825 }
8826
8827 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8828 {
8829 struct io_tctx_node *node;
8830 enum io_wq_cancel cret;
8831 bool ret = false;
8832
8833 mutex_lock(&ctx->uring_lock);
8834 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8835 struct io_uring_task *tctx = node->task->io_uring;
8836
8837 /*
8838 * io_wq will stay alive while we hold uring_lock, because it's
8839 * killed after ctx nodes, which requires to take the lock.
8840 */
8841 if (!tctx || !tctx->io_wq)
8842 continue;
8843 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8844 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8845 }
8846 mutex_unlock(&ctx->uring_lock);
8847
8848 return ret;
8849 }
8850
8851 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8852 struct task_struct *task,
8853 struct files_struct *files)
8854 {
8855 struct io_task_cancel cancel = { .task = task, .files = files, };
8856 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8857
8858 while (1) {
8859 enum io_wq_cancel cret;
8860 bool ret = false;
8861
8862 if (!task) {
8863 ret |= io_uring_try_cancel_iowq(ctx);
8864 } else if (tctx && tctx->io_wq) {
8865 /*
8866 * Cancels requests of all rings, not only @ctx, but
8867 * it's fine as the task is in exit/exec.
8868 */
8869 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8870 &cancel, true);
8871 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8872 }
8873
8874 /* SQPOLL thread does its own polling */
8875 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8876 (ctx->sq_data && ctx->sq_data->thread == current)) {
8877 while (!list_empty_careful(&ctx->iopoll_list)) {
8878 io_iopoll_try_reap_events(ctx);
8879 ret = true;
8880 }
8881 }
8882
8883 ret |= io_cancel_defer_files(ctx, task, files);
8884 ret |= io_poll_remove_all(ctx, task, files);
8885 ret |= io_kill_timeouts(ctx, task, files);
8886 ret |= io_run_task_work();
8887 ret |= io_run_ctx_fallback(ctx);
8888 if (!ret)
8889 break;
8890 cond_resched();
8891 }
8892 }
8893
8894 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8895 struct task_struct *task,
8896 struct files_struct *files)
8897 {
8898 struct io_kiocb *req;
8899 int cnt = 0;
8900
8901 spin_lock_irq(&ctx->inflight_lock);
8902 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8903 cnt += io_match_task(req, task, files);
8904 spin_unlock_irq(&ctx->inflight_lock);
8905 return cnt;
8906 }
8907
8908 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8909 struct task_struct *task,
8910 struct files_struct *files)
8911 {
8912 while (!list_empty_careful(&ctx->inflight_list)) {
8913 DEFINE_WAIT(wait);
8914 int inflight;
8915
8916 inflight = io_uring_count_inflight(ctx, task, files);
8917 if (!inflight)
8918 break;
8919
8920 io_uring_try_cancel_requests(ctx, task, files);
8921
8922 prepare_to_wait(&task->io_uring->wait, &wait,
8923 TASK_UNINTERRUPTIBLE);
8924 if (inflight == io_uring_count_inflight(ctx, task, files))
8925 schedule();
8926 finish_wait(&task->io_uring->wait, &wait);
8927 }
8928 }
8929
8930 static int __io_uring_add_task_file(struct io_ring_ctx *ctx)
8931 {
8932 struct io_uring_task *tctx = current->io_uring;
8933 struct io_tctx_node *node;
8934 int ret;
8935
8936 if (unlikely(!tctx)) {
8937 ret = io_uring_alloc_task_context(current, ctx);
8938 if (unlikely(ret))
8939 return ret;
8940 tctx = current->io_uring;
8941 }
8942 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
8943 node = kmalloc(sizeof(*node), GFP_KERNEL);
8944 if (!node)
8945 return -ENOMEM;
8946 node->ctx = ctx;
8947 node->task = current;
8948
8949 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
8950 node, GFP_KERNEL));
8951 if (ret) {
8952 kfree(node);
8953 return ret;
8954 }
8955
8956 mutex_lock(&ctx->uring_lock);
8957 list_add(&node->ctx_node, &ctx->tctx_list);
8958 mutex_unlock(&ctx->uring_lock);
8959 }
8960 tctx->last = ctx;
8961 return 0;
8962 }
8963
8964 /*
8965 * Note that this task has used io_uring. We use it for cancelation purposes.
8966 */
8967 static inline int io_uring_add_task_file(struct io_ring_ctx *ctx)
8968 {
8969 struct io_uring_task *tctx = current->io_uring;
8970
8971 if (likely(tctx && tctx->last == ctx))
8972 return 0;
8973 return __io_uring_add_task_file(ctx);
8974 }
8975
8976 /*
8977 * Remove this io_uring_file -> task mapping.
8978 */
8979 static void io_uring_del_task_file(unsigned long index)
8980 {
8981 struct io_uring_task *tctx = current->io_uring;
8982 struct io_tctx_node *node;
8983
8984 if (!tctx)
8985 return;
8986 node = xa_erase(&tctx->xa, index);
8987 if (!node)
8988 return;
8989
8990 WARN_ON_ONCE(current != node->task);
8991 WARN_ON_ONCE(list_empty(&node->ctx_node));
8992
8993 mutex_lock(&node->ctx->uring_lock);
8994 list_del(&node->ctx_node);
8995 mutex_unlock(&node->ctx->uring_lock);
8996
8997 if (tctx->last == node->ctx)
8998 tctx->last = NULL;
8999 kfree(node);
9000 }
9001
9002 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9003 {
9004 struct io_tctx_node *node;
9005 unsigned long index;
9006
9007 xa_for_each(&tctx->xa, index, node)
9008 io_uring_del_task_file(index);
9009 if (tctx->io_wq) {
9010 io_wq_put_and_exit(tctx->io_wq);
9011 tctx->io_wq = NULL;
9012 }
9013 }
9014
9015 static s64 tctx_inflight(struct io_uring_task *tctx)
9016 {
9017 return percpu_counter_sum(&tctx->inflight);
9018 }
9019
9020 static void io_sqpoll_cancel_cb(struct callback_head *cb)
9021 {
9022 struct io_tctx_exit *work = container_of(cb, struct io_tctx_exit, task_work);
9023 struct io_ring_ctx *ctx = work->ctx;
9024 struct io_sq_data *sqd = ctx->sq_data;
9025
9026 if (sqd->thread)
9027 io_uring_cancel_sqpoll(ctx);
9028 complete(&work->completion);
9029 }
9030
9031 static void io_sqpoll_cancel_sync(struct io_ring_ctx *ctx)
9032 {
9033 struct io_sq_data *sqd = ctx->sq_data;
9034 struct io_tctx_exit work = { .ctx = ctx, };
9035 struct task_struct *task;
9036
9037 io_sq_thread_park(sqd);
9038 list_del_init(&ctx->sqd_list);
9039 io_sqd_update_thread_idle(sqd);
9040 task = sqd->thread;
9041 if (task) {
9042 init_completion(&work.completion);
9043 init_task_work(&work.task_work, io_sqpoll_cancel_cb);
9044 io_task_work_add_head(&sqd->park_task_work, &work.task_work);
9045 wake_up_process(task);
9046 }
9047 io_sq_thread_unpark(sqd);
9048
9049 if (task)
9050 wait_for_completion(&work.completion);
9051 }
9052
9053 void __io_uring_files_cancel(struct files_struct *files)
9054 {
9055 struct io_uring_task *tctx = current->io_uring;
9056 struct io_tctx_node *node;
9057 unsigned long index;
9058
9059 /* make sure overflow events are dropped */
9060 atomic_inc(&tctx->in_idle);
9061 xa_for_each(&tctx->xa, index, node) {
9062 struct io_ring_ctx *ctx = node->ctx;
9063
9064 if (ctx->sq_data) {
9065 io_sqpoll_cancel_sync(ctx);
9066 continue;
9067 }
9068 io_uring_cancel_files(ctx, current, files);
9069 if (!files)
9070 io_uring_try_cancel_requests(ctx, current, NULL);
9071 }
9072 atomic_dec(&tctx->in_idle);
9073
9074 if (files)
9075 io_uring_clean_tctx(tctx);
9076 }
9077
9078 /* should only be called by SQPOLL task */
9079 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
9080 {
9081 struct io_sq_data *sqd = ctx->sq_data;
9082 struct io_uring_task *tctx = current->io_uring;
9083 s64 inflight;
9084 DEFINE_WAIT(wait);
9085
9086 WARN_ON_ONCE(!sqd || ctx->sq_data->thread != current);
9087
9088 atomic_inc(&tctx->in_idle);
9089 do {
9090 /* read completions before cancelations */
9091 inflight = tctx_inflight(tctx);
9092 if (!inflight)
9093 break;
9094 io_uring_try_cancel_requests(ctx, current, NULL);
9095
9096 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9097 /*
9098 * If we've seen completions, retry without waiting. This
9099 * avoids a race where a completion comes in before we did
9100 * prepare_to_wait().
9101 */
9102 if (inflight == tctx_inflight(tctx))
9103 schedule();
9104 finish_wait(&tctx->wait, &wait);
9105 } while (1);
9106 atomic_dec(&tctx->in_idle);
9107 }
9108
9109 /*
9110 * Find any io_uring fd that this task has registered or done IO on, and cancel
9111 * requests.
9112 */
9113 void __io_uring_task_cancel(void)
9114 {
9115 struct io_uring_task *tctx = current->io_uring;
9116 DEFINE_WAIT(wait);
9117 s64 inflight;
9118
9119 /* make sure overflow events are dropped */
9120 atomic_inc(&tctx->in_idle);
9121 __io_uring_files_cancel(NULL);
9122
9123 do {
9124 /* read completions before cancelations */
9125 inflight = tctx_inflight(tctx);
9126 if (!inflight)
9127 break;
9128 __io_uring_files_cancel(NULL);
9129
9130 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9131
9132 /*
9133 * If we've seen completions, retry without waiting. This
9134 * avoids a race where a completion comes in before we did
9135 * prepare_to_wait().
9136 */
9137 if (inflight == tctx_inflight(tctx))
9138 schedule();
9139 finish_wait(&tctx->wait, &wait);
9140 } while (1);
9141
9142 atomic_dec(&tctx->in_idle);
9143
9144 io_uring_clean_tctx(tctx);
9145 /* all current's requests should be gone, we can kill tctx */
9146 __io_uring_free(current);
9147 }
9148
9149 static void *io_uring_validate_mmap_request(struct file *file,
9150 loff_t pgoff, size_t sz)
9151 {
9152 struct io_ring_ctx *ctx = file->private_data;
9153 loff_t offset = pgoff << PAGE_SHIFT;
9154 struct page *page;
9155 void *ptr;
9156
9157 switch (offset) {
9158 case IORING_OFF_SQ_RING:
9159 case IORING_OFF_CQ_RING:
9160 ptr = ctx->rings;
9161 break;
9162 case IORING_OFF_SQES:
9163 ptr = ctx->sq_sqes;
9164 break;
9165 default:
9166 return ERR_PTR(-EINVAL);
9167 }
9168
9169 page = virt_to_head_page(ptr);
9170 if (sz > page_size(page))
9171 return ERR_PTR(-EINVAL);
9172
9173 return ptr;
9174 }
9175
9176 #ifdef CONFIG_MMU
9177
9178 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9179 {
9180 size_t sz = vma->vm_end - vma->vm_start;
9181 unsigned long pfn;
9182 void *ptr;
9183
9184 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9185 if (IS_ERR(ptr))
9186 return PTR_ERR(ptr);
9187
9188 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9189 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9190 }
9191
9192 #else /* !CONFIG_MMU */
9193
9194 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9195 {
9196 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9197 }
9198
9199 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9200 {
9201 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9202 }
9203
9204 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9205 unsigned long addr, unsigned long len,
9206 unsigned long pgoff, unsigned long flags)
9207 {
9208 void *ptr;
9209
9210 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9211 if (IS_ERR(ptr))
9212 return PTR_ERR(ptr);
9213
9214 return (unsigned long) ptr;
9215 }
9216
9217 #endif /* !CONFIG_MMU */
9218
9219 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9220 {
9221 DEFINE_WAIT(wait);
9222
9223 do {
9224 if (!io_sqring_full(ctx))
9225 break;
9226 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9227
9228 if (!io_sqring_full(ctx))
9229 break;
9230 schedule();
9231 } while (!signal_pending(current));
9232
9233 finish_wait(&ctx->sqo_sq_wait, &wait);
9234 return 0;
9235 }
9236
9237 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9238 struct __kernel_timespec __user **ts,
9239 const sigset_t __user **sig)
9240 {
9241 struct io_uring_getevents_arg arg;
9242
9243 /*
9244 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9245 * is just a pointer to the sigset_t.
9246 */
9247 if (!(flags & IORING_ENTER_EXT_ARG)) {
9248 *sig = (const sigset_t __user *) argp;
9249 *ts = NULL;
9250 return 0;
9251 }
9252
9253 /*
9254 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9255 * timespec and sigset_t pointers if good.
9256 */
9257 if (*argsz != sizeof(arg))
9258 return -EINVAL;
9259 if (copy_from_user(&arg, argp, sizeof(arg)))
9260 return -EFAULT;
9261 *sig = u64_to_user_ptr(arg.sigmask);
9262 *argsz = arg.sigmask_sz;
9263 *ts = u64_to_user_ptr(arg.ts);
9264 return 0;
9265 }
9266
9267 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9268 u32, min_complete, u32, flags, const void __user *, argp,
9269 size_t, argsz)
9270 {
9271 struct io_ring_ctx *ctx;
9272 int submitted = 0;
9273 struct fd f;
9274 long ret;
9275
9276 io_run_task_work();
9277
9278 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9279 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9280 return -EINVAL;
9281
9282 f = fdget(fd);
9283 if (unlikely(!f.file))
9284 return -EBADF;
9285
9286 ret = -EOPNOTSUPP;
9287 if (unlikely(f.file->f_op != &io_uring_fops))
9288 goto out_fput;
9289
9290 ret = -ENXIO;
9291 ctx = f.file->private_data;
9292 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9293 goto out_fput;
9294
9295 ret = -EBADFD;
9296 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9297 goto out;
9298
9299 /*
9300 * For SQ polling, the thread will do all submissions and completions.
9301 * Just return the requested submit count, and wake the thread if
9302 * we were asked to.
9303 */
9304 ret = 0;
9305 if (ctx->flags & IORING_SETUP_SQPOLL) {
9306 io_cqring_overflow_flush(ctx, false);
9307
9308 ret = -EOWNERDEAD;
9309 if (unlikely(ctx->sq_data->thread == NULL)) {
9310 goto out;
9311 }
9312 if (flags & IORING_ENTER_SQ_WAKEUP)
9313 wake_up(&ctx->sq_data->wait);
9314 if (flags & IORING_ENTER_SQ_WAIT) {
9315 ret = io_sqpoll_wait_sq(ctx);
9316 if (ret)
9317 goto out;
9318 }
9319 submitted = to_submit;
9320 } else if (to_submit) {
9321 ret = io_uring_add_task_file(ctx);
9322 if (unlikely(ret))
9323 goto out;
9324 mutex_lock(&ctx->uring_lock);
9325 submitted = io_submit_sqes(ctx, to_submit);
9326 mutex_unlock(&ctx->uring_lock);
9327
9328 if (submitted != to_submit)
9329 goto out;
9330 }
9331 if (flags & IORING_ENTER_GETEVENTS) {
9332 const sigset_t __user *sig;
9333 struct __kernel_timespec __user *ts;
9334
9335 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9336 if (unlikely(ret))
9337 goto out;
9338
9339 min_complete = min(min_complete, ctx->cq_entries);
9340
9341 /*
9342 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9343 * space applications don't need to do io completion events
9344 * polling again, they can rely on io_sq_thread to do polling
9345 * work, which can reduce cpu usage and uring_lock contention.
9346 */
9347 if (ctx->flags & IORING_SETUP_IOPOLL &&
9348 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9349 ret = io_iopoll_check(ctx, min_complete);
9350 } else {
9351 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9352 }
9353 }
9354
9355 out:
9356 percpu_ref_put(&ctx->refs);
9357 out_fput:
9358 fdput(f);
9359 return submitted ? submitted : ret;
9360 }
9361
9362 #ifdef CONFIG_PROC_FS
9363 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9364 const struct cred *cred)
9365 {
9366 struct user_namespace *uns = seq_user_ns(m);
9367 struct group_info *gi;
9368 kernel_cap_t cap;
9369 unsigned __capi;
9370 int g;
9371
9372 seq_printf(m, "%5d\n", id);
9373 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9374 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9375 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9376 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9377 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9378 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9379 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9380 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9381 seq_puts(m, "\n\tGroups:\t");
9382 gi = cred->group_info;
9383 for (g = 0; g < gi->ngroups; g++) {
9384 seq_put_decimal_ull(m, g ? " " : "",
9385 from_kgid_munged(uns, gi->gid[g]));
9386 }
9387 seq_puts(m, "\n\tCapEff:\t");
9388 cap = cred->cap_effective;
9389 CAP_FOR_EACH_U32(__capi)
9390 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9391 seq_putc(m, '\n');
9392 return 0;
9393 }
9394
9395 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9396 {
9397 struct io_sq_data *sq = NULL;
9398 bool has_lock;
9399 int i;
9400
9401 /*
9402 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9403 * since fdinfo case grabs it in the opposite direction of normal use
9404 * cases. If we fail to get the lock, we just don't iterate any
9405 * structures that could be going away outside the io_uring mutex.
9406 */
9407 has_lock = mutex_trylock(&ctx->uring_lock);
9408
9409 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9410 sq = ctx->sq_data;
9411 if (!sq->thread)
9412 sq = NULL;
9413 }
9414
9415 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9416 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9417 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9418 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9419 struct file *f = io_file_from_index(ctx, i);
9420
9421 if (f)
9422 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9423 else
9424 seq_printf(m, "%5u: <none>\n", i);
9425 }
9426 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9427 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9428 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9429
9430 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9431 (unsigned int) buf->len);
9432 }
9433 if (has_lock && !xa_empty(&ctx->personalities)) {
9434 unsigned long index;
9435 const struct cred *cred;
9436
9437 seq_printf(m, "Personalities:\n");
9438 xa_for_each(&ctx->personalities, index, cred)
9439 io_uring_show_cred(m, index, cred);
9440 }
9441 seq_printf(m, "PollList:\n");
9442 spin_lock_irq(&ctx->completion_lock);
9443 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9444 struct hlist_head *list = &ctx->cancel_hash[i];
9445 struct io_kiocb *req;
9446
9447 hlist_for_each_entry(req, list, hash_node)
9448 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9449 req->task->task_works != NULL);
9450 }
9451 spin_unlock_irq(&ctx->completion_lock);
9452 if (has_lock)
9453 mutex_unlock(&ctx->uring_lock);
9454 }
9455
9456 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9457 {
9458 struct io_ring_ctx *ctx = f->private_data;
9459
9460 if (percpu_ref_tryget(&ctx->refs)) {
9461 __io_uring_show_fdinfo(ctx, m);
9462 percpu_ref_put(&ctx->refs);
9463 }
9464 }
9465 #endif
9466
9467 static const struct file_operations io_uring_fops = {
9468 .release = io_uring_release,
9469 .mmap = io_uring_mmap,
9470 #ifndef CONFIG_MMU
9471 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9472 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9473 #endif
9474 .poll = io_uring_poll,
9475 .fasync = io_uring_fasync,
9476 #ifdef CONFIG_PROC_FS
9477 .show_fdinfo = io_uring_show_fdinfo,
9478 #endif
9479 };
9480
9481 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9482 struct io_uring_params *p)
9483 {
9484 struct io_rings *rings;
9485 size_t size, sq_array_offset;
9486
9487 /* make sure these are sane, as we already accounted them */
9488 ctx->sq_entries = p->sq_entries;
9489 ctx->cq_entries = p->cq_entries;
9490
9491 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9492 if (size == SIZE_MAX)
9493 return -EOVERFLOW;
9494
9495 rings = io_mem_alloc(size);
9496 if (!rings)
9497 return -ENOMEM;
9498
9499 ctx->rings = rings;
9500 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9501 rings->sq_ring_mask = p->sq_entries - 1;
9502 rings->cq_ring_mask = p->cq_entries - 1;
9503 rings->sq_ring_entries = p->sq_entries;
9504 rings->cq_ring_entries = p->cq_entries;
9505 ctx->sq_mask = rings->sq_ring_mask;
9506 ctx->cq_mask = rings->cq_ring_mask;
9507
9508 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9509 if (size == SIZE_MAX) {
9510 io_mem_free(ctx->rings);
9511 ctx->rings = NULL;
9512 return -EOVERFLOW;
9513 }
9514
9515 ctx->sq_sqes = io_mem_alloc(size);
9516 if (!ctx->sq_sqes) {
9517 io_mem_free(ctx->rings);
9518 ctx->rings = NULL;
9519 return -ENOMEM;
9520 }
9521
9522 return 0;
9523 }
9524
9525 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9526 {
9527 int ret, fd;
9528
9529 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9530 if (fd < 0)
9531 return fd;
9532
9533 ret = io_uring_add_task_file(ctx);
9534 if (ret) {
9535 put_unused_fd(fd);
9536 return ret;
9537 }
9538 fd_install(fd, file);
9539 return fd;
9540 }
9541
9542 /*
9543 * Allocate an anonymous fd, this is what constitutes the application
9544 * visible backing of an io_uring instance. The application mmaps this
9545 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9546 * we have to tie this fd to a socket for file garbage collection purposes.
9547 */
9548 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9549 {
9550 struct file *file;
9551 #if defined(CONFIG_UNIX)
9552 int ret;
9553
9554 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9555 &ctx->ring_sock);
9556 if (ret)
9557 return ERR_PTR(ret);
9558 #endif
9559
9560 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9561 O_RDWR | O_CLOEXEC);
9562 #if defined(CONFIG_UNIX)
9563 if (IS_ERR(file)) {
9564 sock_release(ctx->ring_sock);
9565 ctx->ring_sock = NULL;
9566 } else {
9567 ctx->ring_sock->file = file;
9568 }
9569 #endif
9570 return file;
9571 }
9572
9573 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9574 struct io_uring_params __user *params)
9575 {
9576 struct io_ring_ctx *ctx;
9577 struct file *file;
9578 int ret;
9579
9580 if (!entries)
9581 return -EINVAL;
9582 if (entries > IORING_MAX_ENTRIES) {
9583 if (!(p->flags & IORING_SETUP_CLAMP))
9584 return -EINVAL;
9585 entries = IORING_MAX_ENTRIES;
9586 }
9587
9588 /*
9589 * Use twice as many entries for the CQ ring. It's possible for the
9590 * application to drive a higher depth than the size of the SQ ring,
9591 * since the sqes are only used at submission time. This allows for
9592 * some flexibility in overcommitting a bit. If the application has
9593 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9594 * of CQ ring entries manually.
9595 */
9596 p->sq_entries = roundup_pow_of_two(entries);
9597 if (p->flags & IORING_SETUP_CQSIZE) {
9598 /*
9599 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9600 * to a power-of-two, if it isn't already. We do NOT impose
9601 * any cq vs sq ring sizing.
9602 */
9603 if (!p->cq_entries)
9604 return -EINVAL;
9605 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9606 if (!(p->flags & IORING_SETUP_CLAMP))
9607 return -EINVAL;
9608 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9609 }
9610 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9611 if (p->cq_entries < p->sq_entries)
9612 return -EINVAL;
9613 } else {
9614 p->cq_entries = 2 * p->sq_entries;
9615 }
9616
9617 ctx = io_ring_ctx_alloc(p);
9618 if (!ctx)
9619 return -ENOMEM;
9620 ctx->compat = in_compat_syscall();
9621 if (!capable(CAP_IPC_LOCK))
9622 ctx->user = get_uid(current_user());
9623
9624 /*
9625 * This is just grabbed for accounting purposes. When a process exits,
9626 * the mm is exited and dropped before the files, hence we need to hang
9627 * on to this mm purely for the purposes of being able to unaccount
9628 * memory (locked/pinned vm). It's not used for anything else.
9629 */
9630 mmgrab(current->mm);
9631 ctx->mm_account = current->mm;
9632
9633 ret = io_allocate_scq_urings(ctx, p);
9634 if (ret)
9635 goto err;
9636
9637 ret = io_sq_offload_create(ctx, p);
9638 if (ret)
9639 goto err;
9640
9641 memset(&p->sq_off, 0, sizeof(p->sq_off));
9642 p->sq_off.head = offsetof(struct io_rings, sq.head);
9643 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9644 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9645 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9646 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9647 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9648 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9649
9650 memset(&p->cq_off, 0, sizeof(p->cq_off));
9651 p->cq_off.head = offsetof(struct io_rings, cq.head);
9652 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9653 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9654 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9655 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9656 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9657 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9658
9659 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9660 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9661 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9662 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9663 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
9664
9665 if (copy_to_user(params, p, sizeof(*p))) {
9666 ret = -EFAULT;
9667 goto err;
9668 }
9669
9670 file = io_uring_get_file(ctx);
9671 if (IS_ERR(file)) {
9672 ret = PTR_ERR(file);
9673 goto err;
9674 }
9675
9676 /*
9677 * Install ring fd as the very last thing, so we don't risk someone
9678 * having closed it before we finish setup
9679 */
9680 ret = io_uring_install_fd(ctx, file);
9681 if (ret < 0) {
9682 /* fput will clean it up */
9683 fput(file);
9684 return ret;
9685 }
9686
9687 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9688 return ret;
9689 err:
9690 io_ring_ctx_wait_and_kill(ctx);
9691 return ret;
9692 }
9693
9694 /*
9695 * Sets up an aio uring context, and returns the fd. Applications asks for a
9696 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9697 * params structure passed in.
9698 */
9699 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9700 {
9701 struct io_uring_params p;
9702 int i;
9703
9704 if (copy_from_user(&p, params, sizeof(p)))
9705 return -EFAULT;
9706 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9707 if (p.resv[i])
9708 return -EINVAL;
9709 }
9710
9711 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9712 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9713 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9714 IORING_SETUP_R_DISABLED))
9715 return -EINVAL;
9716
9717 return io_uring_create(entries, &p, params);
9718 }
9719
9720 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9721 struct io_uring_params __user *, params)
9722 {
9723 return io_uring_setup(entries, params);
9724 }
9725
9726 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9727 {
9728 struct io_uring_probe *p;
9729 size_t size;
9730 int i, ret;
9731
9732 size = struct_size(p, ops, nr_args);
9733 if (size == SIZE_MAX)
9734 return -EOVERFLOW;
9735 p = kzalloc(size, GFP_KERNEL);
9736 if (!p)
9737 return -ENOMEM;
9738
9739 ret = -EFAULT;
9740 if (copy_from_user(p, arg, size))
9741 goto out;
9742 ret = -EINVAL;
9743 if (memchr_inv(p, 0, size))
9744 goto out;
9745
9746 p->last_op = IORING_OP_LAST - 1;
9747 if (nr_args > IORING_OP_LAST)
9748 nr_args = IORING_OP_LAST;
9749
9750 for (i = 0; i < nr_args; i++) {
9751 p->ops[i].op = i;
9752 if (!io_op_defs[i].not_supported)
9753 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9754 }
9755 p->ops_len = i;
9756
9757 ret = 0;
9758 if (copy_to_user(arg, p, size))
9759 ret = -EFAULT;
9760 out:
9761 kfree(p);
9762 return ret;
9763 }
9764
9765 static int io_register_personality(struct io_ring_ctx *ctx)
9766 {
9767 const struct cred *creds;
9768 u32 id;
9769 int ret;
9770
9771 creds = get_current_cred();
9772
9773 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9774 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9775 if (!ret)
9776 return id;
9777 put_cred(creds);
9778 return ret;
9779 }
9780
9781 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9782 unsigned int nr_args)
9783 {
9784 struct io_uring_restriction *res;
9785 size_t size;
9786 int i, ret;
9787
9788 /* Restrictions allowed only if rings started disabled */
9789 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9790 return -EBADFD;
9791
9792 /* We allow only a single restrictions registration */
9793 if (ctx->restrictions.registered)
9794 return -EBUSY;
9795
9796 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9797 return -EINVAL;
9798
9799 size = array_size(nr_args, sizeof(*res));
9800 if (size == SIZE_MAX)
9801 return -EOVERFLOW;
9802
9803 res = memdup_user(arg, size);
9804 if (IS_ERR(res))
9805 return PTR_ERR(res);
9806
9807 ret = 0;
9808
9809 for (i = 0; i < nr_args; i++) {
9810 switch (res[i].opcode) {
9811 case IORING_RESTRICTION_REGISTER_OP:
9812 if (res[i].register_op >= IORING_REGISTER_LAST) {
9813 ret = -EINVAL;
9814 goto out;
9815 }
9816
9817 __set_bit(res[i].register_op,
9818 ctx->restrictions.register_op);
9819 break;
9820 case IORING_RESTRICTION_SQE_OP:
9821 if (res[i].sqe_op >= IORING_OP_LAST) {
9822 ret = -EINVAL;
9823 goto out;
9824 }
9825
9826 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9827 break;
9828 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9829 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9830 break;
9831 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9832 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9833 break;
9834 default:
9835 ret = -EINVAL;
9836 goto out;
9837 }
9838 }
9839
9840 out:
9841 /* Reset all restrictions if an error happened */
9842 if (ret != 0)
9843 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9844 else
9845 ctx->restrictions.registered = true;
9846
9847 kfree(res);
9848 return ret;
9849 }
9850
9851 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9852 {
9853 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9854 return -EBADFD;
9855
9856 if (ctx->restrictions.registered)
9857 ctx->restricted = 1;
9858
9859 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9860 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9861 wake_up(&ctx->sq_data->wait);
9862 return 0;
9863 }
9864
9865 static bool io_register_op_must_quiesce(int op)
9866 {
9867 switch (op) {
9868 case IORING_UNREGISTER_FILES:
9869 case IORING_REGISTER_FILES_UPDATE:
9870 case IORING_REGISTER_PROBE:
9871 case IORING_REGISTER_PERSONALITY:
9872 case IORING_UNREGISTER_PERSONALITY:
9873 return false;
9874 default:
9875 return true;
9876 }
9877 }
9878
9879 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9880 void __user *arg, unsigned nr_args)
9881 __releases(ctx->uring_lock)
9882 __acquires(ctx->uring_lock)
9883 {
9884 int ret;
9885
9886 /*
9887 * We're inside the ring mutex, if the ref is already dying, then
9888 * someone else killed the ctx or is already going through
9889 * io_uring_register().
9890 */
9891 if (percpu_ref_is_dying(&ctx->refs))
9892 return -ENXIO;
9893
9894 if (io_register_op_must_quiesce(opcode)) {
9895 percpu_ref_kill(&ctx->refs);
9896
9897 /*
9898 * Drop uring mutex before waiting for references to exit. If
9899 * another thread is currently inside io_uring_enter() it might
9900 * need to grab the uring_lock to make progress. If we hold it
9901 * here across the drain wait, then we can deadlock. It's safe
9902 * to drop the mutex here, since no new references will come in
9903 * after we've killed the percpu ref.
9904 */
9905 mutex_unlock(&ctx->uring_lock);
9906 do {
9907 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9908 if (!ret)
9909 break;
9910 ret = io_run_task_work_sig();
9911 if (ret < 0)
9912 break;
9913 } while (1);
9914
9915 mutex_lock(&ctx->uring_lock);
9916
9917 if (ret) {
9918 percpu_ref_resurrect(&ctx->refs);
9919 goto out_quiesce;
9920 }
9921 }
9922
9923 if (ctx->restricted) {
9924 if (opcode >= IORING_REGISTER_LAST) {
9925 ret = -EINVAL;
9926 goto out;
9927 }
9928
9929 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9930 ret = -EACCES;
9931 goto out;
9932 }
9933 }
9934
9935 switch (opcode) {
9936 case IORING_REGISTER_BUFFERS:
9937 ret = io_sqe_buffers_register(ctx, arg, nr_args);
9938 break;
9939 case IORING_UNREGISTER_BUFFERS:
9940 ret = -EINVAL;
9941 if (arg || nr_args)
9942 break;
9943 ret = io_sqe_buffers_unregister(ctx);
9944 break;
9945 case IORING_REGISTER_FILES:
9946 ret = io_sqe_files_register(ctx, arg, nr_args);
9947 break;
9948 case IORING_UNREGISTER_FILES:
9949 ret = -EINVAL;
9950 if (arg || nr_args)
9951 break;
9952 ret = io_sqe_files_unregister(ctx);
9953 break;
9954 case IORING_REGISTER_FILES_UPDATE:
9955 ret = io_sqe_files_update(ctx, arg, nr_args);
9956 break;
9957 case IORING_REGISTER_EVENTFD:
9958 case IORING_REGISTER_EVENTFD_ASYNC:
9959 ret = -EINVAL;
9960 if (nr_args != 1)
9961 break;
9962 ret = io_eventfd_register(ctx, arg);
9963 if (ret)
9964 break;
9965 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9966 ctx->eventfd_async = 1;
9967 else
9968 ctx->eventfd_async = 0;
9969 break;
9970 case IORING_UNREGISTER_EVENTFD:
9971 ret = -EINVAL;
9972 if (arg || nr_args)
9973 break;
9974 ret = io_eventfd_unregister(ctx);
9975 break;
9976 case IORING_REGISTER_PROBE:
9977 ret = -EINVAL;
9978 if (!arg || nr_args > 256)
9979 break;
9980 ret = io_probe(ctx, arg, nr_args);
9981 break;
9982 case IORING_REGISTER_PERSONALITY:
9983 ret = -EINVAL;
9984 if (arg || nr_args)
9985 break;
9986 ret = io_register_personality(ctx);
9987 break;
9988 case IORING_UNREGISTER_PERSONALITY:
9989 ret = -EINVAL;
9990 if (arg)
9991 break;
9992 ret = io_unregister_personality(ctx, nr_args);
9993 break;
9994 case IORING_REGISTER_ENABLE_RINGS:
9995 ret = -EINVAL;
9996 if (arg || nr_args)
9997 break;
9998 ret = io_register_enable_rings(ctx);
9999 break;
10000 case IORING_REGISTER_RESTRICTIONS:
10001 ret = io_register_restrictions(ctx, arg, nr_args);
10002 break;
10003 default:
10004 ret = -EINVAL;
10005 break;
10006 }
10007
10008 out:
10009 if (io_register_op_must_quiesce(opcode)) {
10010 /* bring the ctx back to life */
10011 percpu_ref_reinit(&ctx->refs);
10012 out_quiesce:
10013 reinit_completion(&ctx->ref_comp);
10014 }
10015 return ret;
10016 }
10017
10018 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10019 void __user *, arg, unsigned int, nr_args)
10020 {
10021 struct io_ring_ctx *ctx;
10022 long ret = -EBADF;
10023 struct fd f;
10024
10025 f = fdget(fd);
10026 if (!f.file)
10027 return -EBADF;
10028
10029 ret = -EOPNOTSUPP;
10030 if (f.file->f_op != &io_uring_fops)
10031 goto out_fput;
10032
10033 ctx = f.file->private_data;
10034
10035 io_run_task_work();
10036
10037 mutex_lock(&ctx->uring_lock);
10038 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10039 mutex_unlock(&ctx->uring_lock);
10040 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10041 ctx->cq_ev_fd != NULL, ret);
10042 out_fput:
10043 fdput(f);
10044 return ret;
10045 }
10046
10047 static int __init io_uring_init(void)
10048 {
10049 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10050 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10051 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10052 } while (0)
10053
10054 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10055 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10056 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10057 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10058 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10059 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10060 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10061 BUILD_BUG_SQE_ELEM(8, __u64, off);
10062 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10063 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10064 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10065 BUILD_BUG_SQE_ELEM(24, __u32, len);
10066 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10067 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10068 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10069 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10070 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10071 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10072 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10073 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10074 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10075 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10076 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10077 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10078 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10079 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10080 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10081 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10082 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10083 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10084 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10085
10086 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10087 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10088 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10089 SLAB_ACCOUNT);
10090 return 0;
10091 };
10092 __initcall(io_uring_init);