]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: defer splice/tee file validity check until command issue
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 loff_t off_out;
627 loff_t off_in;
628 u64 len;
629 int splice_fd_in;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455 }
1456
1457 static void io_prep_async_link(struct io_kiocb *req)
1458 {
1459 struct io_kiocb *cur;
1460
1461 if (req->flags & REQ_F_LINK_TIMEOUT) {
1462 struct io_ring_ctx *ctx = req->ctx;
1463
1464 spin_lock_irq(&ctx->timeout_lock);
1465 io_for_each_link(cur, req)
1466 io_prep_async_work(cur);
1467 spin_unlock_irq(&ctx->timeout_lock);
1468 } else {
1469 io_for_each_link(cur, req)
1470 io_prep_async_work(cur);
1471 }
1472 }
1473
1474 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1475 {
1476 struct io_ring_ctx *ctx = req->ctx;
1477 struct io_kiocb *link = io_prep_linked_timeout(req);
1478 struct io_uring_task *tctx = req->task->io_uring;
1479
1480 /* must not take the lock, NULL it as a precaution */
1481 locked = NULL;
1482
1483 BUG_ON(!tctx);
1484 BUG_ON(!tctx->io_wq);
1485
1486 /* init ->work of the whole link before punting */
1487 io_prep_async_link(req);
1488
1489 /*
1490 * Not expected to happen, but if we do have a bug where this _can_
1491 * happen, catch it here and ensure the request is marked as
1492 * canceled. That will make io-wq go through the usual work cancel
1493 * procedure rather than attempt to run this request (or create a new
1494 * worker for it).
1495 */
1496 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1497 req->work.flags |= IO_WQ_WORK_CANCEL;
1498
1499 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1500 &req->work, req->flags);
1501 io_wq_enqueue(tctx->io_wq, &req->work);
1502 if (link)
1503 io_queue_linked_timeout(link);
1504 }
1505
1506 static void io_kill_timeout(struct io_kiocb *req, int status)
1507 __must_hold(&req->ctx->completion_lock)
1508 __must_hold(&req->ctx->timeout_lock)
1509 {
1510 struct io_timeout_data *io = req->async_data;
1511
1512 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1513 if (status)
1514 req_set_fail(req);
1515 atomic_set(&req->ctx->cq_timeouts,
1516 atomic_read(&req->ctx->cq_timeouts) + 1);
1517 list_del_init(&req->timeout.list);
1518 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1519 io_put_req_deferred(req);
1520 }
1521 }
1522
1523 static void io_queue_deferred(struct io_ring_ctx *ctx)
1524 {
1525 while (!list_empty(&ctx->defer_list)) {
1526 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1527 struct io_defer_entry, list);
1528
1529 if (req_need_defer(de->req, de->seq))
1530 break;
1531 list_del_init(&de->list);
1532 io_req_task_queue(de->req);
1533 kfree(de);
1534 }
1535 }
1536
1537 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1538 __must_hold(&ctx->completion_lock)
1539 {
1540 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1541
1542 spin_lock_irq(&ctx->timeout_lock);
1543 while (!list_empty(&ctx->timeout_list)) {
1544 u32 events_needed, events_got;
1545 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1546 struct io_kiocb, timeout.list);
1547
1548 if (io_is_timeout_noseq(req))
1549 break;
1550
1551 /*
1552 * Since seq can easily wrap around over time, subtract
1553 * the last seq at which timeouts were flushed before comparing.
1554 * Assuming not more than 2^31-1 events have happened since,
1555 * these subtractions won't have wrapped, so we can check if
1556 * target is in [last_seq, current_seq] by comparing the two.
1557 */
1558 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1559 events_got = seq - ctx->cq_last_tm_flush;
1560 if (events_got < events_needed)
1561 break;
1562
1563 list_del_init(&req->timeout.list);
1564 io_kill_timeout(req, 0);
1565 }
1566 ctx->cq_last_tm_flush = seq;
1567 spin_unlock_irq(&ctx->timeout_lock);
1568 }
1569
1570 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1571 {
1572 if (ctx->off_timeout_used)
1573 io_flush_timeouts(ctx);
1574 if (ctx->drain_active)
1575 io_queue_deferred(ctx);
1576 }
1577
1578 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1579 {
1580 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1581 __io_commit_cqring_flush(ctx);
1582 /* order cqe stores with ring update */
1583 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1584 }
1585
1586 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1587 {
1588 struct io_rings *r = ctx->rings;
1589
1590 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1591 }
1592
1593 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1594 {
1595 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1596 }
1597
1598 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1599 {
1600 struct io_rings *rings = ctx->rings;
1601 unsigned tail, mask = ctx->cq_entries - 1;
1602
1603 /*
1604 * writes to the cq entry need to come after reading head; the
1605 * control dependency is enough as we're using WRITE_ONCE to
1606 * fill the cq entry
1607 */
1608 if (__io_cqring_events(ctx) == ctx->cq_entries)
1609 return NULL;
1610
1611 tail = ctx->cached_cq_tail++;
1612 return &rings->cqes[tail & mask];
1613 }
1614
1615 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1616 {
1617 if (likely(!ctx->cq_ev_fd))
1618 return false;
1619 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1620 return false;
1621 return !ctx->eventfd_async || io_wq_current_is_worker();
1622 }
1623
1624 /*
1625 * This should only get called when at least one event has been posted.
1626 * Some applications rely on the eventfd notification count only changing
1627 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1628 * 1:1 relationship between how many times this function is called (and
1629 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1630 */
1631 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1632 {
1633 /*
1634 * wake_up_all() may seem excessive, but io_wake_function() and
1635 * io_should_wake() handle the termination of the loop and only
1636 * wake as many waiters as we need to.
1637 */
1638 if (wq_has_sleeper(&ctx->cq_wait))
1639 wake_up_all(&ctx->cq_wait);
1640 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1641 wake_up(&ctx->sq_data->wait);
1642 if (io_should_trigger_evfd(ctx))
1643 eventfd_signal(ctx->cq_ev_fd, 1);
1644 if (waitqueue_active(&ctx->poll_wait))
1645 wake_up_interruptible(&ctx->poll_wait);
1646 }
1647
1648 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1649 {
1650 /* see waitqueue_active() comment */
1651 smp_mb();
1652
1653 if (ctx->flags & IORING_SETUP_SQPOLL) {
1654 if (waitqueue_active(&ctx->cq_wait))
1655 wake_up_all(&ctx->cq_wait);
1656 }
1657 if (io_should_trigger_evfd(ctx))
1658 eventfd_signal(ctx->cq_ev_fd, 1);
1659 if (waitqueue_active(&ctx->poll_wait))
1660 wake_up_interruptible(&ctx->poll_wait);
1661 }
1662
1663 /* Returns true if there are no backlogged entries after the flush */
1664 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1665 {
1666 bool all_flushed, posted;
1667
1668 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1669 return false;
1670
1671 posted = false;
1672 spin_lock(&ctx->completion_lock);
1673 while (!list_empty(&ctx->cq_overflow_list)) {
1674 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1675 struct io_overflow_cqe *ocqe;
1676
1677 if (!cqe && !force)
1678 break;
1679 ocqe = list_first_entry(&ctx->cq_overflow_list,
1680 struct io_overflow_cqe, list);
1681 if (cqe)
1682 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1683 else
1684 io_account_cq_overflow(ctx);
1685
1686 posted = true;
1687 list_del(&ocqe->list);
1688 kfree(ocqe);
1689 }
1690
1691 all_flushed = list_empty(&ctx->cq_overflow_list);
1692 if (all_flushed) {
1693 clear_bit(0, &ctx->check_cq_overflow);
1694 WRITE_ONCE(ctx->rings->sq_flags,
1695 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1696 }
1697
1698 if (posted)
1699 io_commit_cqring(ctx);
1700 spin_unlock(&ctx->completion_lock);
1701 if (posted)
1702 io_cqring_ev_posted(ctx);
1703 return all_flushed;
1704 }
1705
1706 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1707 {
1708 bool ret = true;
1709
1710 if (test_bit(0, &ctx->check_cq_overflow)) {
1711 /* iopoll syncs against uring_lock, not completion_lock */
1712 if (ctx->flags & IORING_SETUP_IOPOLL)
1713 mutex_lock(&ctx->uring_lock);
1714 ret = __io_cqring_overflow_flush(ctx, false);
1715 if (ctx->flags & IORING_SETUP_IOPOLL)
1716 mutex_unlock(&ctx->uring_lock);
1717 }
1718
1719 return ret;
1720 }
1721
1722 /* must to be called somewhat shortly after putting a request */
1723 static inline void io_put_task(struct task_struct *task, int nr)
1724 {
1725 struct io_uring_task *tctx = task->io_uring;
1726
1727 if (likely(task == current)) {
1728 tctx->cached_refs += nr;
1729 } else {
1730 percpu_counter_sub(&tctx->inflight, nr);
1731 if (unlikely(atomic_read(&tctx->in_idle)))
1732 wake_up(&tctx->wait);
1733 put_task_struct_many(task, nr);
1734 }
1735 }
1736
1737 static void io_task_refs_refill(struct io_uring_task *tctx)
1738 {
1739 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1740
1741 percpu_counter_add(&tctx->inflight, refill);
1742 refcount_add(refill, &current->usage);
1743 tctx->cached_refs += refill;
1744 }
1745
1746 static inline void io_get_task_refs(int nr)
1747 {
1748 struct io_uring_task *tctx = current->io_uring;
1749
1750 tctx->cached_refs -= nr;
1751 if (unlikely(tctx->cached_refs < 0))
1752 io_task_refs_refill(tctx);
1753 }
1754
1755 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1756 {
1757 struct io_uring_task *tctx = task->io_uring;
1758 unsigned int refs = tctx->cached_refs;
1759
1760 if (refs) {
1761 tctx->cached_refs = 0;
1762 percpu_counter_sub(&tctx->inflight, refs);
1763 put_task_struct_many(task, refs);
1764 }
1765 }
1766
1767 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1768 long res, unsigned int cflags)
1769 {
1770 struct io_overflow_cqe *ocqe;
1771
1772 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1773 if (!ocqe) {
1774 /*
1775 * If we're in ring overflow flush mode, or in task cancel mode,
1776 * or cannot allocate an overflow entry, then we need to drop it
1777 * on the floor.
1778 */
1779 io_account_cq_overflow(ctx);
1780 return false;
1781 }
1782 if (list_empty(&ctx->cq_overflow_list)) {
1783 set_bit(0, &ctx->check_cq_overflow);
1784 WRITE_ONCE(ctx->rings->sq_flags,
1785 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1786
1787 }
1788 ocqe->cqe.user_data = user_data;
1789 ocqe->cqe.res = res;
1790 ocqe->cqe.flags = cflags;
1791 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1792 return true;
1793 }
1794
1795 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1796 long res, unsigned int cflags)
1797 {
1798 struct io_uring_cqe *cqe;
1799
1800 trace_io_uring_complete(ctx, user_data, res, cflags);
1801
1802 /*
1803 * If we can't get a cq entry, userspace overflowed the
1804 * submission (by quite a lot). Increment the overflow count in
1805 * the ring.
1806 */
1807 cqe = io_get_cqe(ctx);
1808 if (likely(cqe)) {
1809 WRITE_ONCE(cqe->user_data, user_data);
1810 WRITE_ONCE(cqe->res, res);
1811 WRITE_ONCE(cqe->flags, cflags);
1812 return true;
1813 }
1814 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1815 }
1816
1817 /* not as hot to bloat with inlining */
1818 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1819 long res, unsigned int cflags)
1820 {
1821 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1822 }
1823
1824 static void io_req_complete_post(struct io_kiocb *req, long res,
1825 unsigned int cflags)
1826 {
1827 struct io_ring_ctx *ctx = req->ctx;
1828
1829 spin_lock(&ctx->completion_lock);
1830 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1831 /*
1832 * If we're the last reference to this request, add to our locked
1833 * free_list cache.
1834 */
1835 if (req_ref_put_and_test(req)) {
1836 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1837 if (req->flags & IO_DISARM_MASK)
1838 io_disarm_next(req);
1839 if (req->link) {
1840 io_req_task_queue(req->link);
1841 req->link = NULL;
1842 }
1843 }
1844 io_dismantle_req(req);
1845 io_put_task(req->task, 1);
1846 list_add(&req->inflight_entry, &ctx->locked_free_list);
1847 ctx->locked_free_nr++;
1848 } else {
1849 if (!percpu_ref_tryget(&ctx->refs))
1850 req = NULL;
1851 }
1852 io_commit_cqring(ctx);
1853 spin_unlock(&ctx->completion_lock);
1854
1855 if (req) {
1856 io_cqring_ev_posted(ctx);
1857 percpu_ref_put(&ctx->refs);
1858 }
1859 }
1860
1861 static inline bool io_req_needs_clean(struct io_kiocb *req)
1862 {
1863 return req->flags & IO_REQ_CLEAN_FLAGS;
1864 }
1865
1866 static void io_req_complete_state(struct io_kiocb *req, long res,
1867 unsigned int cflags)
1868 {
1869 if (io_req_needs_clean(req))
1870 io_clean_op(req);
1871 req->result = res;
1872 req->compl.cflags = cflags;
1873 req->flags |= REQ_F_COMPLETE_INLINE;
1874 }
1875
1876 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1877 long res, unsigned cflags)
1878 {
1879 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1880 io_req_complete_state(req, res, cflags);
1881 else
1882 io_req_complete_post(req, res, cflags);
1883 }
1884
1885 static inline void io_req_complete(struct io_kiocb *req, long res)
1886 {
1887 __io_req_complete(req, 0, res, 0);
1888 }
1889
1890 static void io_req_complete_failed(struct io_kiocb *req, long res)
1891 {
1892 req_set_fail(req);
1893 io_req_complete_post(req, res, 0);
1894 }
1895
1896 static void io_req_complete_fail_submit(struct io_kiocb *req)
1897 {
1898 /*
1899 * We don't submit, fail them all, for that replace hardlinks with
1900 * normal links. Extra REQ_F_LINK is tolerated.
1901 */
1902 req->flags &= ~REQ_F_HARDLINK;
1903 req->flags |= REQ_F_LINK;
1904 io_req_complete_failed(req, req->result);
1905 }
1906
1907 /*
1908 * Don't initialise the fields below on every allocation, but do that in
1909 * advance and keep them valid across allocations.
1910 */
1911 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1912 {
1913 req->ctx = ctx;
1914 req->link = NULL;
1915 req->async_data = NULL;
1916 /* not necessary, but safer to zero */
1917 req->result = 0;
1918 }
1919
1920 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1921 struct io_submit_state *state)
1922 {
1923 spin_lock(&ctx->completion_lock);
1924 list_splice_init(&ctx->locked_free_list, &state->free_list);
1925 ctx->locked_free_nr = 0;
1926 spin_unlock(&ctx->completion_lock);
1927 }
1928
1929 /* Returns true IFF there are requests in the cache */
1930 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1931 {
1932 struct io_submit_state *state = &ctx->submit_state;
1933 int nr;
1934
1935 /*
1936 * If we have more than a batch's worth of requests in our IRQ side
1937 * locked cache, grab the lock and move them over to our submission
1938 * side cache.
1939 */
1940 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1941 io_flush_cached_locked_reqs(ctx, state);
1942
1943 nr = state->free_reqs;
1944 while (!list_empty(&state->free_list)) {
1945 struct io_kiocb *req = list_first_entry(&state->free_list,
1946 struct io_kiocb, inflight_entry);
1947
1948 list_del(&req->inflight_entry);
1949 state->reqs[nr++] = req;
1950 if (nr == ARRAY_SIZE(state->reqs))
1951 break;
1952 }
1953
1954 state->free_reqs = nr;
1955 return nr != 0;
1956 }
1957
1958 /*
1959 * A request might get retired back into the request caches even before opcode
1960 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1961 * Because of that, io_alloc_req() should be called only under ->uring_lock
1962 * and with extra caution to not get a request that is still worked on.
1963 */
1964 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1965 __must_hold(&ctx->uring_lock)
1966 {
1967 struct io_submit_state *state = &ctx->submit_state;
1968 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1969 int ret, i;
1970
1971 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1972
1973 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1974 goto got_req;
1975
1976 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1977 state->reqs);
1978
1979 /*
1980 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1981 * retry single alloc to be on the safe side.
1982 */
1983 if (unlikely(ret <= 0)) {
1984 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1985 if (!state->reqs[0])
1986 return NULL;
1987 ret = 1;
1988 }
1989
1990 for (i = 0; i < ret; i++)
1991 io_preinit_req(state->reqs[i], ctx);
1992 state->free_reqs = ret;
1993 got_req:
1994 state->free_reqs--;
1995 return state->reqs[state->free_reqs];
1996 }
1997
1998 static inline void io_put_file(struct file *file)
1999 {
2000 if (file)
2001 fput(file);
2002 }
2003
2004 static void io_dismantle_req(struct io_kiocb *req)
2005 {
2006 unsigned int flags = req->flags;
2007
2008 if (io_req_needs_clean(req))
2009 io_clean_op(req);
2010 if (!(flags & REQ_F_FIXED_FILE))
2011 io_put_file(req->file);
2012 if (req->fixed_rsrc_refs)
2013 percpu_ref_put(req->fixed_rsrc_refs);
2014 if (req->async_data) {
2015 kfree(req->async_data);
2016 req->async_data = NULL;
2017 }
2018 }
2019
2020 static void __io_free_req(struct io_kiocb *req)
2021 {
2022 struct io_ring_ctx *ctx = req->ctx;
2023
2024 io_dismantle_req(req);
2025 io_put_task(req->task, 1);
2026
2027 spin_lock(&ctx->completion_lock);
2028 list_add(&req->inflight_entry, &ctx->locked_free_list);
2029 ctx->locked_free_nr++;
2030 spin_unlock(&ctx->completion_lock);
2031
2032 percpu_ref_put(&ctx->refs);
2033 }
2034
2035 static inline void io_remove_next_linked(struct io_kiocb *req)
2036 {
2037 struct io_kiocb *nxt = req->link;
2038
2039 req->link = nxt->link;
2040 nxt->link = NULL;
2041 }
2042
2043 static bool io_kill_linked_timeout(struct io_kiocb *req)
2044 __must_hold(&req->ctx->completion_lock)
2045 __must_hold(&req->ctx->timeout_lock)
2046 {
2047 struct io_kiocb *link = req->link;
2048
2049 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2050 struct io_timeout_data *io = link->async_data;
2051
2052 io_remove_next_linked(req);
2053 link->timeout.head = NULL;
2054 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2055 list_del(&link->timeout.list);
2056 io_cqring_fill_event(link->ctx, link->user_data,
2057 -ECANCELED, 0);
2058 io_put_req_deferred(link);
2059 return true;
2060 }
2061 }
2062 return false;
2063 }
2064
2065 static void io_fail_links(struct io_kiocb *req)
2066 __must_hold(&req->ctx->completion_lock)
2067 {
2068 struct io_kiocb *nxt, *link = req->link;
2069
2070 req->link = NULL;
2071 while (link) {
2072 long res = -ECANCELED;
2073
2074 if (link->flags & REQ_F_FAIL)
2075 res = link->result;
2076
2077 nxt = link->link;
2078 link->link = NULL;
2079
2080 trace_io_uring_fail_link(req, link);
2081 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2082 io_put_req_deferred(link);
2083 link = nxt;
2084 }
2085 }
2086
2087 static bool io_disarm_next(struct io_kiocb *req)
2088 __must_hold(&req->ctx->completion_lock)
2089 {
2090 bool posted = false;
2091
2092 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2093 struct io_kiocb *link = req->link;
2094
2095 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2096 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2097 io_remove_next_linked(req);
2098 io_cqring_fill_event(link->ctx, link->user_data,
2099 -ECANCELED, 0);
2100 io_put_req_deferred(link);
2101 posted = true;
2102 }
2103 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2104 struct io_ring_ctx *ctx = req->ctx;
2105
2106 spin_lock_irq(&ctx->timeout_lock);
2107 posted = io_kill_linked_timeout(req);
2108 spin_unlock_irq(&ctx->timeout_lock);
2109 }
2110 if (unlikely((req->flags & REQ_F_FAIL) &&
2111 !(req->flags & REQ_F_HARDLINK))) {
2112 posted |= (req->link != NULL);
2113 io_fail_links(req);
2114 }
2115 return posted;
2116 }
2117
2118 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2119 {
2120 struct io_kiocb *nxt;
2121
2122 /*
2123 * If LINK is set, we have dependent requests in this chain. If we
2124 * didn't fail this request, queue the first one up, moving any other
2125 * dependencies to the next request. In case of failure, fail the rest
2126 * of the chain.
2127 */
2128 if (req->flags & IO_DISARM_MASK) {
2129 struct io_ring_ctx *ctx = req->ctx;
2130 bool posted;
2131
2132 spin_lock(&ctx->completion_lock);
2133 posted = io_disarm_next(req);
2134 if (posted)
2135 io_commit_cqring(req->ctx);
2136 spin_unlock(&ctx->completion_lock);
2137 if (posted)
2138 io_cqring_ev_posted(ctx);
2139 }
2140 nxt = req->link;
2141 req->link = NULL;
2142 return nxt;
2143 }
2144
2145 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2146 {
2147 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2148 return NULL;
2149 return __io_req_find_next(req);
2150 }
2151
2152 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2153 {
2154 if (!ctx)
2155 return;
2156 if (*locked) {
2157 if (ctx->submit_state.compl_nr)
2158 io_submit_flush_completions(ctx);
2159 mutex_unlock(&ctx->uring_lock);
2160 *locked = false;
2161 }
2162 percpu_ref_put(&ctx->refs);
2163 }
2164
2165 static void tctx_task_work(struct callback_head *cb)
2166 {
2167 bool locked = false;
2168 struct io_ring_ctx *ctx = NULL;
2169 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2170 task_work);
2171
2172 while (1) {
2173 struct io_wq_work_node *node;
2174
2175 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2176 io_submit_flush_completions(ctx);
2177
2178 spin_lock_irq(&tctx->task_lock);
2179 node = tctx->task_list.first;
2180 INIT_WQ_LIST(&tctx->task_list);
2181 if (!node)
2182 tctx->task_running = false;
2183 spin_unlock_irq(&tctx->task_lock);
2184 if (!node)
2185 break;
2186
2187 do {
2188 struct io_wq_work_node *next = node->next;
2189 struct io_kiocb *req = container_of(node, struct io_kiocb,
2190 io_task_work.node);
2191
2192 if (req->ctx != ctx) {
2193 ctx_flush_and_put(ctx, &locked);
2194 ctx = req->ctx;
2195 /* if not contended, grab and improve batching */
2196 locked = mutex_trylock(&ctx->uring_lock);
2197 percpu_ref_get(&ctx->refs);
2198 }
2199 req->io_task_work.func(req, &locked);
2200 node = next;
2201 } while (node);
2202
2203 cond_resched();
2204 }
2205
2206 ctx_flush_and_put(ctx, &locked);
2207
2208 /* relaxed read is enough as only the task itself sets ->in_idle */
2209 if (unlikely(atomic_read(&tctx->in_idle)))
2210 io_uring_drop_tctx_refs(current);
2211 }
2212
2213 static void io_req_task_work_add(struct io_kiocb *req)
2214 {
2215 struct task_struct *tsk = req->task;
2216 struct io_uring_task *tctx = tsk->io_uring;
2217 enum task_work_notify_mode notify;
2218 struct io_wq_work_node *node;
2219 unsigned long flags;
2220 bool running;
2221
2222 WARN_ON_ONCE(!tctx);
2223
2224 spin_lock_irqsave(&tctx->task_lock, flags);
2225 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2226 running = tctx->task_running;
2227 if (!running)
2228 tctx->task_running = true;
2229 spin_unlock_irqrestore(&tctx->task_lock, flags);
2230
2231 /* task_work already pending, we're done */
2232 if (running)
2233 return;
2234
2235 /*
2236 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2237 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2238 * processing task_work. There's no reliable way to tell if TWA_RESUME
2239 * will do the job.
2240 */
2241 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2242 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2243 wake_up_process(tsk);
2244 return;
2245 }
2246
2247 spin_lock_irqsave(&tctx->task_lock, flags);
2248 tctx->task_running = false;
2249 node = tctx->task_list.first;
2250 INIT_WQ_LIST(&tctx->task_list);
2251 spin_unlock_irqrestore(&tctx->task_lock, flags);
2252
2253 while (node) {
2254 req = container_of(node, struct io_kiocb, io_task_work.node);
2255 node = node->next;
2256 if (llist_add(&req->io_task_work.fallback_node,
2257 &req->ctx->fallback_llist))
2258 schedule_delayed_work(&req->ctx->fallback_work, 1);
2259 }
2260 }
2261
2262 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2263 {
2264 struct io_ring_ctx *ctx = req->ctx;
2265
2266 /* not needed for normal modes, but SQPOLL depends on it */
2267 io_tw_lock(ctx, locked);
2268 io_req_complete_failed(req, req->result);
2269 }
2270
2271 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2272 {
2273 struct io_ring_ctx *ctx = req->ctx;
2274
2275 io_tw_lock(ctx, locked);
2276 /* req->task == current here, checking PF_EXITING is safe */
2277 if (likely(!(req->task->flags & PF_EXITING)))
2278 __io_queue_sqe(req);
2279 else
2280 io_req_complete_failed(req, -EFAULT);
2281 }
2282
2283 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2284 {
2285 req->result = ret;
2286 req->io_task_work.func = io_req_task_cancel;
2287 io_req_task_work_add(req);
2288 }
2289
2290 static void io_req_task_queue(struct io_kiocb *req)
2291 {
2292 req->io_task_work.func = io_req_task_submit;
2293 io_req_task_work_add(req);
2294 }
2295
2296 static void io_req_task_queue_reissue(struct io_kiocb *req)
2297 {
2298 req->io_task_work.func = io_queue_async_work;
2299 io_req_task_work_add(req);
2300 }
2301
2302 static inline void io_queue_next(struct io_kiocb *req)
2303 {
2304 struct io_kiocb *nxt = io_req_find_next(req);
2305
2306 if (nxt)
2307 io_req_task_queue(nxt);
2308 }
2309
2310 static void io_free_req(struct io_kiocb *req)
2311 {
2312 io_queue_next(req);
2313 __io_free_req(req);
2314 }
2315
2316 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2317 {
2318 io_free_req(req);
2319 }
2320
2321 struct req_batch {
2322 struct task_struct *task;
2323 int task_refs;
2324 int ctx_refs;
2325 };
2326
2327 static inline void io_init_req_batch(struct req_batch *rb)
2328 {
2329 rb->task_refs = 0;
2330 rb->ctx_refs = 0;
2331 rb->task = NULL;
2332 }
2333
2334 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2335 struct req_batch *rb)
2336 {
2337 if (rb->ctx_refs)
2338 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2339 if (rb->task)
2340 io_put_task(rb->task, rb->task_refs);
2341 }
2342
2343 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2344 struct io_submit_state *state)
2345 {
2346 io_queue_next(req);
2347 io_dismantle_req(req);
2348
2349 if (req->task != rb->task) {
2350 if (rb->task)
2351 io_put_task(rb->task, rb->task_refs);
2352 rb->task = req->task;
2353 rb->task_refs = 0;
2354 }
2355 rb->task_refs++;
2356 rb->ctx_refs++;
2357
2358 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2359 state->reqs[state->free_reqs++] = req;
2360 else
2361 list_add(&req->inflight_entry, &state->free_list);
2362 }
2363
2364 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2365 __must_hold(&ctx->uring_lock)
2366 {
2367 struct io_submit_state *state = &ctx->submit_state;
2368 int i, nr = state->compl_nr;
2369 struct req_batch rb;
2370
2371 spin_lock(&ctx->completion_lock);
2372 for (i = 0; i < nr; i++) {
2373 struct io_kiocb *req = state->compl_reqs[i];
2374
2375 __io_cqring_fill_event(ctx, req->user_data, req->result,
2376 req->compl.cflags);
2377 }
2378 io_commit_cqring(ctx);
2379 spin_unlock(&ctx->completion_lock);
2380 io_cqring_ev_posted(ctx);
2381
2382 io_init_req_batch(&rb);
2383 for (i = 0; i < nr; i++) {
2384 struct io_kiocb *req = state->compl_reqs[i];
2385
2386 if (req_ref_put_and_test(req))
2387 io_req_free_batch(&rb, req, &ctx->submit_state);
2388 }
2389
2390 io_req_free_batch_finish(ctx, &rb);
2391 state->compl_nr = 0;
2392 }
2393
2394 /*
2395 * Drop reference to request, return next in chain (if there is one) if this
2396 * was the last reference to this request.
2397 */
2398 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2399 {
2400 struct io_kiocb *nxt = NULL;
2401
2402 if (req_ref_put_and_test(req)) {
2403 nxt = io_req_find_next(req);
2404 __io_free_req(req);
2405 }
2406 return nxt;
2407 }
2408
2409 static inline void io_put_req(struct io_kiocb *req)
2410 {
2411 if (req_ref_put_and_test(req))
2412 io_free_req(req);
2413 }
2414
2415 static inline void io_put_req_deferred(struct io_kiocb *req)
2416 {
2417 if (req_ref_put_and_test(req)) {
2418 req->io_task_work.func = io_free_req_work;
2419 io_req_task_work_add(req);
2420 }
2421 }
2422
2423 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2424 {
2425 /* See comment at the top of this file */
2426 smp_rmb();
2427 return __io_cqring_events(ctx);
2428 }
2429
2430 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2431 {
2432 struct io_rings *rings = ctx->rings;
2433
2434 /* make sure SQ entry isn't read before tail */
2435 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2436 }
2437
2438 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2439 {
2440 unsigned int cflags;
2441
2442 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2443 cflags |= IORING_CQE_F_BUFFER;
2444 req->flags &= ~REQ_F_BUFFER_SELECTED;
2445 kfree(kbuf);
2446 return cflags;
2447 }
2448
2449 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2450 {
2451 struct io_buffer *kbuf;
2452
2453 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2454 return 0;
2455 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2456 return io_put_kbuf(req, kbuf);
2457 }
2458
2459 static inline bool io_run_task_work(void)
2460 {
2461 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2462 __set_current_state(TASK_RUNNING);
2463 tracehook_notify_signal();
2464 return true;
2465 }
2466
2467 return false;
2468 }
2469
2470 /*
2471 * Find and free completed poll iocbs
2472 */
2473 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2474 struct list_head *done)
2475 {
2476 struct req_batch rb;
2477 struct io_kiocb *req;
2478
2479 /* order with ->result store in io_complete_rw_iopoll() */
2480 smp_rmb();
2481
2482 io_init_req_batch(&rb);
2483 while (!list_empty(done)) {
2484 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2485 list_del(&req->inflight_entry);
2486
2487 __io_cqring_fill_event(ctx, req->user_data, req->result,
2488 io_put_rw_kbuf(req));
2489 (*nr_events)++;
2490
2491 if (req_ref_put_and_test(req))
2492 io_req_free_batch(&rb, req, &ctx->submit_state);
2493 }
2494
2495 io_commit_cqring(ctx);
2496 io_cqring_ev_posted_iopoll(ctx);
2497 io_req_free_batch_finish(ctx, &rb);
2498 }
2499
2500 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2501 long min)
2502 {
2503 struct io_kiocb *req, *tmp;
2504 LIST_HEAD(done);
2505 bool spin;
2506
2507 /*
2508 * Only spin for completions if we don't have multiple devices hanging
2509 * off our complete list, and we're under the requested amount.
2510 */
2511 spin = !ctx->poll_multi_queue && *nr_events < min;
2512
2513 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2514 struct kiocb *kiocb = &req->rw.kiocb;
2515 int ret;
2516
2517 /*
2518 * Move completed and retryable entries to our local lists.
2519 * If we find a request that requires polling, break out
2520 * and complete those lists first, if we have entries there.
2521 */
2522 if (READ_ONCE(req->iopoll_completed)) {
2523 list_move_tail(&req->inflight_entry, &done);
2524 continue;
2525 }
2526 if (!list_empty(&done))
2527 break;
2528
2529 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2530 if (unlikely(ret < 0))
2531 return ret;
2532 else if (ret)
2533 spin = false;
2534
2535 /* iopoll may have completed current req */
2536 if (READ_ONCE(req->iopoll_completed))
2537 list_move_tail(&req->inflight_entry, &done);
2538 }
2539
2540 if (!list_empty(&done))
2541 io_iopoll_complete(ctx, nr_events, &done);
2542
2543 return 0;
2544 }
2545
2546 /*
2547 * We can't just wait for polled events to come to us, we have to actively
2548 * find and complete them.
2549 */
2550 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2551 {
2552 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2553 return;
2554
2555 mutex_lock(&ctx->uring_lock);
2556 while (!list_empty(&ctx->iopoll_list)) {
2557 unsigned int nr_events = 0;
2558
2559 io_do_iopoll(ctx, &nr_events, 0);
2560
2561 /* let it sleep and repeat later if can't complete a request */
2562 if (nr_events == 0)
2563 break;
2564 /*
2565 * Ensure we allow local-to-the-cpu processing to take place,
2566 * in this case we need to ensure that we reap all events.
2567 * Also let task_work, etc. to progress by releasing the mutex
2568 */
2569 if (need_resched()) {
2570 mutex_unlock(&ctx->uring_lock);
2571 cond_resched();
2572 mutex_lock(&ctx->uring_lock);
2573 }
2574 }
2575 mutex_unlock(&ctx->uring_lock);
2576 }
2577
2578 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2579 {
2580 unsigned int nr_events = 0;
2581 int ret = 0;
2582
2583 /*
2584 * We disallow the app entering submit/complete with polling, but we
2585 * still need to lock the ring to prevent racing with polled issue
2586 * that got punted to a workqueue.
2587 */
2588 mutex_lock(&ctx->uring_lock);
2589 /*
2590 * Don't enter poll loop if we already have events pending.
2591 * If we do, we can potentially be spinning for commands that
2592 * already triggered a CQE (eg in error).
2593 */
2594 if (test_bit(0, &ctx->check_cq_overflow))
2595 __io_cqring_overflow_flush(ctx, false);
2596 if (io_cqring_events(ctx))
2597 goto out;
2598 do {
2599 /*
2600 * If a submit got punted to a workqueue, we can have the
2601 * application entering polling for a command before it gets
2602 * issued. That app will hold the uring_lock for the duration
2603 * of the poll right here, so we need to take a breather every
2604 * now and then to ensure that the issue has a chance to add
2605 * the poll to the issued list. Otherwise we can spin here
2606 * forever, while the workqueue is stuck trying to acquire the
2607 * very same mutex.
2608 */
2609 if (list_empty(&ctx->iopoll_list)) {
2610 u32 tail = ctx->cached_cq_tail;
2611
2612 mutex_unlock(&ctx->uring_lock);
2613 io_run_task_work();
2614 mutex_lock(&ctx->uring_lock);
2615
2616 /* some requests don't go through iopoll_list */
2617 if (tail != ctx->cached_cq_tail ||
2618 list_empty(&ctx->iopoll_list))
2619 break;
2620 }
2621 ret = io_do_iopoll(ctx, &nr_events, min);
2622 } while (!ret && nr_events < min && !need_resched());
2623 out:
2624 mutex_unlock(&ctx->uring_lock);
2625 return ret;
2626 }
2627
2628 static void kiocb_end_write(struct io_kiocb *req)
2629 {
2630 /*
2631 * Tell lockdep we inherited freeze protection from submission
2632 * thread.
2633 */
2634 if (req->flags & REQ_F_ISREG) {
2635 struct super_block *sb = file_inode(req->file)->i_sb;
2636
2637 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2638 sb_end_write(sb);
2639 }
2640 }
2641
2642 #ifdef CONFIG_BLOCK
2643 static bool io_resubmit_prep(struct io_kiocb *req)
2644 {
2645 struct io_async_rw *rw = req->async_data;
2646
2647 if (!rw)
2648 return !io_req_prep_async(req);
2649 iov_iter_restore(&rw->iter, &rw->iter_state);
2650 return true;
2651 }
2652
2653 static bool io_rw_should_reissue(struct io_kiocb *req)
2654 {
2655 umode_t mode = file_inode(req->file)->i_mode;
2656 struct io_ring_ctx *ctx = req->ctx;
2657
2658 if (!S_ISBLK(mode) && !S_ISREG(mode))
2659 return false;
2660 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2661 !(ctx->flags & IORING_SETUP_IOPOLL)))
2662 return false;
2663 /*
2664 * If ref is dying, we might be running poll reap from the exit work.
2665 * Don't attempt to reissue from that path, just let it fail with
2666 * -EAGAIN.
2667 */
2668 if (percpu_ref_is_dying(&ctx->refs))
2669 return false;
2670 /*
2671 * Play it safe and assume not safe to re-import and reissue if we're
2672 * not in the original thread group (or in task context).
2673 */
2674 if (!same_thread_group(req->task, current) || !in_task())
2675 return false;
2676 return true;
2677 }
2678 #else
2679 static bool io_resubmit_prep(struct io_kiocb *req)
2680 {
2681 return false;
2682 }
2683 static bool io_rw_should_reissue(struct io_kiocb *req)
2684 {
2685 return false;
2686 }
2687 #endif
2688
2689 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2690 {
2691 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2692 kiocb_end_write(req);
2693 if (res != req->result) {
2694 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2695 io_rw_should_reissue(req)) {
2696 req->flags |= REQ_F_REISSUE;
2697 return true;
2698 }
2699 req_set_fail(req);
2700 req->result = res;
2701 }
2702 return false;
2703 }
2704
2705 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2706 {
2707 unsigned int cflags = io_put_rw_kbuf(req);
2708 long res = req->result;
2709
2710 if (*locked) {
2711 struct io_ring_ctx *ctx = req->ctx;
2712 struct io_submit_state *state = &ctx->submit_state;
2713
2714 io_req_complete_state(req, res, cflags);
2715 state->compl_reqs[state->compl_nr++] = req;
2716 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2717 io_submit_flush_completions(ctx);
2718 } else {
2719 io_req_complete_post(req, res, cflags);
2720 }
2721 }
2722
2723 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2724 unsigned int issue_flags)
2725 {
2726 if (__io_complete_rw_common(req, res))
2727 return;
2728 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2729 }
2730
2731 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2732 {
2733 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2734
2735 if (__io_complete_rw_common(req, res))
2736 return;
2737 req->result = res;
2738 req->io_task_work.func = io_req_task_complete;
2739 io_req_task_work_add(req);
2740 }
2741
2742 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2743 {
2744 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2745
2746 if (kiocb->ki_flags & IOCB_WRITE)
2747 kiocb_end_write(req);
2748 if (unlikely(res != req->result)) {
2749 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2750 req->flags |= REQ_F_REISSUE;
2751 return;
2752 }
2753 }
2754
2755 WRITE_ONCE(req->result, res);
2756 /* order with io_iopoll_complete() checking ->result */
2757 smp_wmb();
2758 WRITE_ONCE(req->iopoll_completed, 1);
2759 }
2760
2761 /*
2762 * After the iocb has been issued, it's safe to be found on the poll list.
2763 * Adding the kiocb to the list AFTER submission ensures that we don't
2764 * find it from a io_do_iopoll() thread before the issuer is done
2765 * accessing the kiocb cookie.
2766 */
2767 static void io_iopoll_req_issued(struct io_kiocb *req)
2768 {
2769 struct io_ring_ctx *ctx = req->ctx;
2770 const bool in_async = io_wq_current_is_worker();
2771
2772 /* workqueue context doesn't hold uring_lock, grab it now */
2773 if (unlikely(in_async))
2774 mutex_lock(&ctx->uring_lock);
2775
2776 /*
2777 * Track whether we have multiple files in our lists. This will impact
2778 * how we do polling eventually, not spinning if we're on potentially
2779 * different devices.
2780 */
2781 if (list_empty(&ctx->iopoll_list)) {
2782 ctx->poll_multi_queue = false;
2783 } else if (!ctx->poll_multi_queue) {
2784 struct io_kiocb *list_req;
2785 unsigned int queue_num0, queue_num1;
2786
2787 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2788 inflight_entry);
2789
2790 if (list_req->file != req->file) {
2791 ctx->poll_multi_queue = true;
2792 } else {
2793 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2794 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2795 if (queue_num0 != queue_num1)
2796 ctx->poll_multi_queue = true;
2797 }
2798 }
2799
2800 /*
2801 * For fast devices, IO may have already completed. If it has, add
2802 * it to the front so we find it first.
2803 */
2804 if (READ_ONCE(req->iopoll_completed))
2805 list_add(&req->inflight_entry, &ctx->iopoll_list);
2806 else
2807 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2808
2809 if (unlikely(in_async)) {
2810 /*
2811 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2812 * in sq thread task context or in io worker task context. If
2813 * current task context is sq thread, we don't need to check
2814 * whether should wake up sq thread.
2815 */
2816 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2817 wq_has_sleeper(&ctx->sq_data->wait))
2818 wake_up(&ctx->sq_data->wait);
2819
2820 mutex_unlock(&ctx->uring_lock);
2821 }
2822 }
2823
2824 static bool io_bdev_nowait(struct block_device *bdev)
2825 {
2826 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2827 }
2828
2829 /*
2830 * If we tracked the file through the SCM inflight mechanism, we could support
2831 * any file. For now, just ensure that anything potentially problematic is done
2832 * inline.
2833 */
2834 static bool __io_file_supports_nowait(struct file *file, int rw)
2835 {
2836 umode_t mode = file_inode(file)->i_mode;
2837
2838 if (S_ISBLK(mode)) {
2839 if (IS_ENABLED(CONFIG_BLOCK) &&
2840 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2841 return true;
2842 return false;
2843 }
2844 if (S_ISSOCK(mode))
2845 return true;
2846 if (S_ISREG(mode)) {
2847 if (IS_ENABLED(CONFIG_BLOCK) &&
2848 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2849 file->f_op != &io_uring_fops)
2850 return true;
2851 return false;
2852 }
2853
2854 /* any ->read/write should understand O_NONBLOCK */
2855 if (file->f_flags & O_NONBLOCK)
2856 return true;
2857
2858 if (!(file->f_mode & FMODE_NOWAIT))
2859 return false;
2860
2861 if (rw == READ)
2862 return file->f_op->read_iter != NULL;
2863
2864 return file->f_op->write_iter != NULL;
2865 }
2866
2867 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2868 {
2869 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2870 return true;
2871 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2872 return true;
2873
2874 return __io_file_supports_nowait(req->file, rw);
2875 }
2876
2877 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2878 int rw)
2879 {
2880 struct io_ring_ctx *ctx = req->ctx;
2881 struct kiocb *kiocb = &req->rw.kiocb;
2882 struct file *file = req->file;
2883 unsigned ioprio;
2884 int ret;
2885
2886 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2887 req->flags |= REQ_F_ISREG;
2888
2889 kiocb->ki_pos = READ_ONCE(sqe->off);
2890 if (kiocb->ki_pos == -1) {
2891 if (!(file->f_mode & FMODE_STREAM)) {
2892 req->flags |= REQ_F_CUR_POS;
2893 kiocb->ki_pos = file->f_pos;
2894 } else {
2895 kiocb->ki_pos = 0;
2896 }
2897 }
2898 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2899 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2900 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2901 if (unlikely(ret))
2902 return ret;
2903
2904 /*
2905 * If the file is marked O_NONBLOCK, still allow retry for it if it
2906 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2907 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2908 */
2909 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2910 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2911 req->flags |= REQ_F_NOWAIT;
2912
2913 ioprio = READ_ONCE(sqe->ioprio);
2914 if (ioprio) {
2915 ret = ioprio_check_cap(ioprio);
2916 if (ret)
2917 return ret;
2918
2919 kiocb->ki_ioprio = ioprio;
2920 } else
2921 kiocb->ki_ioprio = get_current_ioprio();
2922
2923 if (ctx->flags & IORING_SETUP_IOPOLL) {
2924 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2925 !kiocb->ki_filp->f_op->iopoll)
2926 return -EOPNOTSUPP;
2927
2928 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2929 kiocb->ki_complete = io_complete_rw_iopoll;
2930 req->iopoll_completed = 0;
2931 } else {
2932 if (kiocb->ki_flags & IOCB_HIPRI)
2933 return -EINVAL;
2934 kiocb->ki_complete = io_complete_rw;
2935 }
2936
2937 if (req->opcode == IORING_OP_READ_FIXED ||
2938 req->opcode == IORING_OP_WRITE_FIXED) {
2939 req->imu = NULL;
2940 io_req_set_rsrc_node(req);
2941 }
2942
2943 req->rw.addr = READ_ONCE(sqe->addr);
2944 req->rw.len = READ_ONCE(sqe->len);
2945 req->buf_index = READ_ONCE(sqe->buf_index);
2946 return 0;
2947 }
2948
2949 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2950 {
2951 switch (ret) {
2952 case -EIOCBQUEUED:
2953 break;
2954 case -ERESTARTSYS:
2955 case -ERESTARTNOINTR:
2956 case -ERESTARTNOHAND:
2957 case -ERESTART_RESTARTBLOCK:
2958 /*
2959 * We can't just restart the syscall, since previously
2960 * submitted sqes may already be in progress. Just fail this
2961 * IO with EINTR.
2962 */
2963 ret = -EINTR;
2964 fallthrough;
2965 default:
2966 kiocb->ki_complete(kiocb, ret, 0);
2967 }
2968 }
2969
2970 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2971 unsigned int issue_flags)
2972 {
2973 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2974 struct io_async_rw *io = req->async_data;
2975
2976 /* add previously done IO, if any */
2977 if (io && io->bytes_done > 0) {
2978 if (ret < 0)
2979 ret = io->bytes_done;
2980 else
2981 ret += io->bytes_done;
2982 }
2983
2984 if (req->flags & REQ_F_CUR_POS)
2985 req->file->f_pos = kiocb->ki_pos;
2986 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2987 __io_complete_rw(req, ret, 0, issue_flags);
2988 else
2989 io_rw_done(kiocb, ret);
2990
2991 if (req->flags & REQ_F_REISSUE) {
2992 req->flags &= ~REQ_F_REISSUE;
2993 if (io_resubmit_prep(req)) {
2994 io_req_task_queue_reissue(req);
2995 } else {
2996 unsigned int cflags = io_put_rw_kbuf(req);
2997 struct io_ring_ctx *ctx = req->ctx;
2998
2999 req_set_fail(req);
3000 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3001 mutex_lock(&ctx->uring_lock);
3002 __io_req_complete(req, issue_flags, ret, cflags);
3003 mutex_unlock(&ctx->uring_lock);
3004 } else {
3005 __io_req_complete(req, issue_flags, ret, cflags);
3006 }
3007 }
3008 }
3009 }
3010
3011 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3012 struct io_mapped_ubuf *imu)
3013 {
3014 size_t len = req->rw.len;
3015 u64 buf_end, buf_addr = req->rw.addr;
3016 size_t offset;
3017
3018 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3019 return -EFAULT;
3020 /* not inside the mapped region */
3021 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3022 return -EFAULT;
3023
3024 /*
3025 * May not be a start of buffer, set size appropriately
3026 * and advance us to the beginning.
3027 */
3028 offset = buf_addr - imu->ubuf;
3029 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3030
3031 if (offset) {
3032 /*
3033 * Don't use iov_iter_advance() here, as it's really slow for
3034 * using the latter parts of a big fixed buffer - it iterates
3035 * over each segment manually. We can cheat a bit here, because
3036 * we know that:
3037 *
3038 * 1) it's a BVEC iter, we set it up
3039 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3040 * first and last bvec
3041 *
3042 * So just find our index, and adjust the iterator afterwards.
3043 * If the offset is within the first bvec (or the whole first
3044 * bvec, just use iov_iter_advance(). This makes it easier
3045 * since we can just skip the first segment, which may not
3046 * be PAGE_SIZE aligned.
3047 */
3048 const struct bio_vec *bvec = imu->bvec;
3049
3050 if (offset <= bvec->bv_len) {
3051 iov_iter_advance(iter, offset);
3052 } else {
3053 unsigned long seg_skip;
3054
3055 /* skip first vec */
3056 offset -= bvec->bv_len;
3057 seg_skip = 1 + (offset >> PAGE_SHIFT);
3058
3059 iter->bvec = bvec + seg_skip;
3060 iter->nr_segs -= seg_skip;
3061 iter->count -= bvec->bv_len + offset;
3062 iter->iov_offset = offset & ~PAGE_MASK;
3063 }
3064 }
3065
3066 return 0;
3067 }
3068
3069 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3070 {
3071 struct io_ring_ctx *ctx = req->ctx;
3072 struct io_mapped_ubuf *imu = req->imu;
3073 u16 index, buf_index = req->buf_index;
3074
3075 if (likely(!imu)) {
3076 if (unlikely(buf_index >= ctx->nr_user_bufs))
3077 return -EFAULT;
3078 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3079 imu = READ_ONCE(ctx->user_bufs[index]);
3080 req->imu = imu;
3081 }
3082 return __io_import_fixed(req, rw, iter, imu);
3083 }
3084
3085 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3086 {
3087 if (needs_lock)
3088 mutex_unlock(&ctx->uring_lock);
3089 }
3090
3091 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3092 {
3093 /*
3094 * "Normal" inline submissions always hold the uring_lock, since we
3095 * grab it from the system call. Same is true for the SQPOLL offload.
3096 * The only exception is when we've detached the request and issue it
3097 * from an async worker thread, grab the lock for that case.
3098 */
3099 if (needs_lock)
3100 mutex_lock(&ctx->uring_lock);
3101 }
3102
3103 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3104 int bgid, struct io_buffer *kbuf,
3105 bool needs_lock)
3106 {
3107 struct io_buffer *head;
3108
3109 if (req->flags & REQ_F_BUFFER_SELECTED)
3110 return kbuf;
3111
3112 io_ring_submit_lock(req->ctx, needs_lock);
3113
3114 lockdep_assert_held(&req->ctx->uring_lock);
3115
3116 head = xa_load(&req->ctx->io_buffers, bgid);
3117 if (head) {
3118 if (!list_empty(&head->list)) {
3119 kbuf = list_last_entry(&head->list, struct io_buffer,
3120 list);
3121 list_del(&kbuf->list);
3122 } else {
3123 kbuf = head;
3124 xa_erase(&req->ctx->io_buffers, bgid);
3125 }
3126 if (*len > kbuf->len)
3127 *len = kbuf->len;
3128 } else {
3129 kbuf = ERR_PTR(-ENOBUFS);
3130 }
3131
3132 io_ring_submit_unlock(req->ctx, needs_lock);
3133
3134 return kbuf;
3135 }
3136
3137 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3138 bool needs_lock)
3139 {
3140 struct io_buffer *kbuf;
3141 u16 bgid;
3142
3143 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3144 bgid = req->buf_index;
3145 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3146 if (IS_ERR(kbuf))
3147 return kbuf;
3148 req->rw.addr = (u64) (unsigned long) kbuf;
3149 req->flags |= REQ_F_BUFFER_SELECTED;
3150 return u64_to_user_ptr(kbuf->addr);
3151 }
3152
3153 #ifdef CONFIG_COMPAT
3154 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3155 bool needs_lock)
3156 {
3157 struct compat_iovec __user *uiov;
3158 compat_ssize_t clen;
3159 void __user *buf;
3160 ssize_t len;
3161
3162 uiov = u64_to_user_ptr(req->rw.addr);
3163 if (!access_ok(uiov, sizeof(*uiov)))
3164 return -EFAULT;
3165 if (__get_user(clen, &uiov->iov_len))
3166 return -EFAULT;
3167 if (clen < 0)
3168 return -EINVAL;
3169
3170 len = clen;
3171 buf = io_rw_buffer_select(req, &len, needs_lock);
3172 if (IS_ERR(buf))
3173 return PTR_ERR(buf);
3174 iov[0].iov_base = buf;
3175 iov[0].iov_len = (compat_size_t) len;
3176 return 0;
3177 }
3178 #endif
3179
3180 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3181 bool needs_lock)
3182 {
3183 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3184 void __user *buf;
3185 ssize_t len;
3186
3187 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3188 return -EFAULT;
3189
3190 len = iov[0].iov_len;
3191 if (len < 0)
3192 return -EINVAL;
3193 buf = io_rw_buffer_select(req, &len, needs_lock);
3194 if (IS_ERR(buf))
3195 return PTR_ERR(buf);
3196 iov[0].iov_base = buf;
3197 iov[0].iov_len = len;
3198 return 0;
3199 }
3200
3201 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3202 bool needs_lock)
3203 {
3204 if (req->flags & REQ_F_BUFFER_SELECTED) {
3205 struct io_buffer *kbuf;
3206
3207 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3208 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3209 iov[0].iov_len = kbuf->len;
3210 return 0;
3211 }
3212 if (req->rw.len != 1)
3213 return -EINVAL;
3214
3215 #ifdef CONFIG_COMPAT
3216 if (req->ctx->compat)
3217 return io_compat_import(req, iov, needs_lock);
3218 #endif
3219
3220 return __io_iov_buffer_select(req, iov, needs_lock);
3221 }
3222
3223 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3224 struct iov_iter *iter, bool needs_lock)
3225 {
3226 void __user *buf = u64_to_user_ptr(req->rw.addr);
3227 size_t sqe_len = req->rw.len;
3228 u8 opcode = req->opcode;
3229 ssize_t ret;
3230
3231 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3232 *iovec = NULL;
3233 return io_import_fixed(req, rw, iter);
3234 }
3235
3236 /* buffer index only valid with fixed read/write, or buffer select */
3237 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3238 return -EINVAL;
3239
3240 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3241 if (req->flags & REQ_F_BUFFER_SELECT) {
3242 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3243 if (IS_ERR(buf))
3244 return PTR_ERR(buf);
3245 req->rw.len = sqe_len;
3246 }
3247
3248 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3249 *iovec = NULL;
3250 return ret;
3251 }
3252
3253 if (req->flags & REQ_F_BUFFER_SELECT) {
3254 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3255 if (!ret)
3256 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3257 *iovec = NULL;
3258 return ret;
3259 }
3260
3261 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3262 req->ctx->compat);
3263 }
3264
3265 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3266 {
3267 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3268 }
3269
3270 /*
3271 * For files that don't have ->read_iter() and ->write_iter(), handle them
3272 * by looping over ->read() or ->write() manually.
3273 */
3274 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3275 {
3276 struct kiocb *kiocb = &req->rw.kiocb;
3277 struct file *file = req->file;
3278 ssize_t ret = 0;
3279
3280 /*
3281 * Don't support polled IO through this interface, and we can't
3282 * support non-blocking either. For the latter, this just causes
3283 * the kiocb to be handled from an async context.
3284 */
3285 if (kiocb->ki_flags & IOCB_HIPRI)
3286 return -EOPNOTSUPP;
3287 if (kiocb->ki_flags & IOCB_NOWAIT)
3288 return -EAGAIN;
3289
3290 while (iov_iter_count(iter)) {
3291 struct iovec iovec;
3292 ssize_t nr;
3293
3294 if (!iov_iter_is_bvec(iter)) {
3295 iovec = iov_iter_iovec(iter);
3296 } else {
3297 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3298 iovec.iov_len = req->rw.len;
3299 }
3300
3301 if (rw == READ) {
3302 nr = file->f_op->read(file, iovec.iov_base,
3303 iovec.iov_len, io_kiocb_ppos(kiocb));
3304 } else {
3305 nr = file->f_op->write(file, iovec.iov_base,
3306 iovec.iov_len, io_kiocb_ppos(kiocb));
3307 }
3308
3309 if (nr < 0) {
3310 if (!ret)
3311 ret = nr;
3312 break;
3313 }
3314 ret += nr;
3315 if (!iov_iter_is_bvec(iter)) {
3316 iov_iter_advance(iter, nr);
3317 } else {
3318 req->rw.addr += nr;
3319 req->rw.len -= nr;
3320 if (!req->rw.len)
3321 break;
3322 }
3323 if (nr != iovec.iov_len)
3324 break;
3325 }
3326
3327 return ret;
3328 }
3329
3330 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3331 const struct iovec *fast_iov, struct iov_iter *iter)
3332 {
3333 struct io_async_rw *rw = req->async_data;
3334
3335 memcpy(&rw->iter, iter, sizeof(*iter));
3336 rw->free_iovec = iovec;
3337 rw->bytes_done = 0;
3338 /* can only be fixed buffers, no need to do anything */
3339 if (iov_iter_is_bvec(iter))
3340 return;
3341 if (!iovec) {
3342 unsigned iov_off = 0;
3343
3344 rw->iter.iov = rw->fast_iov;
3345 if (iter->iov != fast_iov) {
3346 iov_off = iter->iov - fast_iov;
3347 rw->iter.iov += iov_off;
3348 }
3349 if (rw->fast_iov != fast_iov)
3350 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3351 sizeof(struct iovec) * iter->nr_segs);
3352 } else {
3353 req->flags |= REQ_F_NEED_CLEANUP;
3354 }
3355 }
3356
3357 static inline int io_alloc_async_data(struct io_kiocb *req)
3358 {
3359 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3360 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3361 return req->async_data == NULL;
3362 }
3363
3364 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3365 const struct iovec *fast_iov,
3366 struct iov_iter *iter, bool force)
3367 {
3368 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3369 return 0;
3370 if (!req->async_data) {
3371 struct io_async_rw *iorw;
3372
3373 if (io_alloc_async_data(req)) {
3374 kfree(iovec);
3375 return -ENOMEM;
3376 }
3377
3378 io_req_map_rw(req, iovec, fast_iov, iter);
3379 iorw = req->async_data;
3380 /* we've copied and mapped the iter, ensure state is saved */
3381 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3382 }
3383 return 0;
3384 }
3385
3386 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3387 {
3388 struct io_async_rw *iorw = req->async_data;
3389 struct iovec *iov = iorw->fast_iov;
3390 int ret;
3391
3392 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3393 if (unlikely(ret < 0))
3394 return ret;
3395
3396 iorw->bytes_done = 0;
3397 iorw->free_iovec = iov;
3398 if (iov)
3399 req->flags |= REQ_F_NEED_CLEANUP;
3400 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3401 return 0;
3402 }
3403
3404 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3405 {
3406 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3407 return -EBADF;
3408 return io_prep_rw(req, sqe, READ);
3409 }
3410
3411 /*
3412 * This is our waitqueue callback handler, registered through lock_page_async()
3413 * when we initially tried to do the IO with the iocb armed our waitqueue.
3414 * This gets called when the page is unlocked, and we generally expect that to
3415 * happen when the page IO is completed and the page is now uptodate. This will
3416 * queue a task_work based retry of the operation, attempting to copy the data
3417 * again. If the latter fails because the page was NOT uptodate, then we will
3418 * do a thread based blocking retry of the operation. That's the unexpected
3419 * slow path.
3420 */
3421 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3422 int sync, void *arg)
3423 {
3424 struct wait_page_queue *wpq;
3425 struct io_kiocb *req = wait->private;
3426 struct wait_page_key *key = arg;
3427
3428 wpq = container_of(wait, struct wait_page_queue, wait);
3429
3430 if (!wake_page_match(wpq, key))
3431 return 0;
3432
3433 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3434 list_del_init(&wait->entry);
3435 io_req_task_queue(req);
3436 return 1;
3437 }
3438
3439 /*
3440 * This controls whether a given IO request should be armed for async page
3441 * based retry. If we return false here, the request is handed to the async
3442 * worker threads for retry. If we're doing buffered reads on a regular file,
3443 * we prepare a private wait_page_queue entry and retry the operation. This
3444 * will either succeed because the page is now uptodate and unlocked, or it
3445 * will register a callback when the page is unlocked at IO completion. Through
3446 * that callback, io_uring uses task_work to setup a retry of the operation.
3447 * That retry will attempt the buffered read again. The retry will generally
3448 * succeed, or in rare cases where it fails, we then fall back to using the
3449 * async worker threads for a blocking retry.
3450 */
3451 static bool io_rw_should_retry(struct io_kiocb *req)
3452 {
3453 struct io_async_rw *rw = req->async_data;
3454 struct wait_page_queue *wait = &rw->wpq;
3455 struct kiocb *kiocb = &req->rw.kiocb;
3456
3457 /* never retry for NOWAIT, we just complete with -EAGAIN */
3458 if (req->flags & REQ_F_NOWAIT)
3459 return false;
3460
3461 /* Only for buffered IO */
3462 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3463 return false;
3464
3465 /*
3466 * just use poll if we can, and don't attempt if the fs doesn't
3467 * support callback based unlocks
3468 */
3469 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3470 return false;
3471
3472 wait->wait.func = io_async_buf_func;
3473 wait->wait.private = req;
3474 wait->wait.flags = 0;
3475 INIT_LIST_HEAD(&wait->wait.entry);
3476 kiocb->ki_flags |= IOCB_WAITQ;
3477 kiocb->ki_flags &= ~IOCB_NOWAIT;
3478 kiocb->ki_waitq = wait;
3479 return true;
3480 }
3481
3482 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3483 {
3484 if (req->file->f_op->read_iter)
3485 return call_read_iter(req->file, &req->rw.kiocb, iter);
3486 else if (req->file->f_op->read)
3487 return loop_rw_iter(READ, req, iter);
3488 else
3489 return -EINVAL;
3490 }
3491
3492 static bool need_read_all(struct io_kiocb *req)
3493 {
3494 return req->flags & REQ_F_ISREG ||
3495 S_ISBLK(file_inode(req->file)->i_mode);
3496 }
3497
3498 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3499 {
3500 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3501 struct kiocb *kiocb = &req->rw.kiocb;
3502 struct iov_iter __iter, *iter = &__iter;
3503 struct io_async_rw *rw = req->async_data;
3504 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3505 struct iov_iter_state __state, *state;
3506 ssize_t ret, ret2;
3507
3508 if (rw) {
3509 iter = &rw->iter;
3510 state = &rw->iter_state;
3511 /*
3512 * We come here from an earlier attempt, restore our state to
3513 * match in case it doesn't. It's cheap enough that we don't
3514 * need to make this conditional.
3515 */
3516 iov_iter_restore(iter, state);
3517 iovec = NULL;
3518 } else {
3519 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3520 if (ret < 0)
3521 return ret;
3522 state = &__state;
3523 iov_iter_save_state(iter, state);
3524 }
3525 req->result = iov_iter_count(iter);
3526
3527 /* Ensure we clear previously set non-block flag */
3528 if (!force_nonblock)
3529 kiocb->ki_flags &= ~IOCB_NOWAIT;
3530 else
3531 kiocb->ki_flags |= IOCB_NOWAIT;
3532
3533 /* If the file doesn't support async, just async punt */
3534 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3535 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3536 return ret ?: -EAGAIN;
3537 }
3538
3539 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3540 if (unlikely(ret)) {
3541 kfree(iovec);
3542 return ret;
3543 }
3544
3545 ret = io_iter_do_read(req, iter);
3546
3547 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3548 req->flags &= ~REQ_F_REISSUE;
3549 /* IOPOLL retry should happen for io-wq threads */
3550 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3551 goto done;
3552 /* no retry on NONBLOCK nor RWF_NOWAIT */
3553 if (req->flags & REQ_F_NOWAIT)
3554 goto done;
3555 ret = 0;
3556 } else if (ret == -EIOCBQUEUED) {
3557 goto out_free;
3558 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3559 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3560 /* read all, failed, already did sync or don't want to retry */
3561 goto done;
3562 }
3563
3564 /*
3565 * Don't depend on the iter state matching what was consumed, or being
3566 * untouched in case of error. Restore it and we'll advance it
3567 * manually if we need to.
3568 */
3569 iov_iter_restore(iter, state);
3570
3571 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3572 if (ret2)
3573 return ret2;
3574
3575 iovec = NULL;
3576 rw = req->async_data;
3577 /*
3578 * Now use our persistent iterator and state, if we aren't already.
3579 * We've restored and mapped the iter to match.
3580 */
3581 if (iter != &rw->iter) {
3582 iter = &rw->iter;
3583 state = &rw->iter_state;
3584 }
3585
3586 do {
3587 /*
3588 * We end up here because of a partial read, either from
3589 * above or inside this loop. Advance the iter by the bytes
3590 * that were consumed.
3591 */
3592 iov_iter_advance(iter, ret);
3593 if (!iov_iter_count(iter))
3594 break;
3595 rw->bytes_done += ret;
3596 iov_iter_save_state(iter, state);
3597
3598 /* if we can retry, do so with the callbacks armed */
3599 if (!io_rw_should_retry(req)) {
3600 kiocb->ki_flags &= ~IOCB_WAITQ;
3601 return -EAGAIN;
3602 }
3603
3604 /*
3605 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3606 * we get -EIOCBQUEUED, then we'll get a notification when the
3607 * desired page gets unlocked. We can also get a partial read
3608 * here, and if we do, then just retry at the new offset.
3609 */
3610 ret = io_iter_do_read(req, iter);
3611 if (ret == -EIOCBQUEUED)
3612 return 0;
3613 /* we got some bytes, but not all. retry. */
3614 kiocb->ki_flags &= ~IOCB_WAITQ;
3615 iov_iter_restore(iter, state);
3616 } while (ret > 0);
3617 done:
3618 kiocb_done(kiocb, ret, issue_flags);
3619 out_free:
3620 /* it's faster to check here then delegate to kfree */
3621 if (iovec)
3622 kfree(iovec);
3623 return 0;
3624 }
3625
3626 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3627 {
3628 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3629 return -EBADF;
3630 return io_prep_rw(req, sqe, WRITE);
3631 }
3632
3633 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3634 {
3635 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3636 struct kiocb *kiocb = &req->rw.kiocb;
3637 struct iov_iter __iter, *iter = &__iter;
3638 struct io_async_rw *rw = req->async_data;
3639 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3640 struct iov_iter_state __state, *state;
3641 ssize_t ret, ret2;
3642
3643 if (rw) {
3644 iter = &rw->iter;
3645 state = &rw->iter_state;
3646 iov_iter_restore(iter, state);
3647 iovec = NULL;
3648 } else {
3649 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3650 if (ret < 0)
3651 return ret;
3652 state = &__state;
3653 iov_iter_save_state(iter, state);
3654 }
3655 req->result = iov_iter_count(iter);
3656
3657 /* Ensure we clear previously set non-block flag */
3658 if (!force_nonblock)
3659 kiocb->ki_flags &= ~IOCB_NOWAIT;
3660 else
3661 kiocb->ki_flags |= IOCB_NOWAIT;
3662
3663 /* If the file doesn't support async, just async punt */
3664 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3665 goto copy_iov;
3666
3667 /* file path doesn't support NOWAIT for non-direct_IO */
3668 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3669 (req->flags & REQ_F_ISREG))
3670 goto copy_iov;
3671
3672 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3673 if (unlikely(ret))
3674 goto out_free;
3675
3676 /*
3677 * Open-code file_start_write here to grab freeze protection,
3678 * which will be released by another thread in
3679 * io_complete_rw(). Fool lockdep by telling it the lock got
3680 * released so that it doesn't complain about the held lock when
3681 * we return to userspace.
3682 */
3683 if (req->flags & REQ_F_ISREG) {
3684 sb_start_write(file_inode(req->file)->i_sb);
3685 __sb_writers_release(file_inode(req->file)->i_sb,
3686 SB_FREEZE_WRITE);
3687 }
3688 kiocb->ki_flags |= IOCB_WRITE;
3689
3690 if (req->file->f_op->write_iter)
3691 ret2 = call_write_iter(req->file, kiocb, iter);
3692 else if (req->file->f_op->write)
3693 ret2 = loop_rw_iter(WRITE, req, iter);
3694 else
3695 ret2 = -EINVAL;
3696
3697 if (req->flags & REQ_F_REISSUE) {
3698 req->flags &= ~REQ_F_REISSUE;
3699 ret2 = -EAGAIN;
3700 }
3701
3702 /*
3703 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3704 * retry them without IOCB_NOWAIT.
3705 */
3706 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3707 ret2 = -EAGAIN;
3708 /* no retry on NONBLOCK nor RWF_NOWAIT */
3709 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3710 goto done;
3711 if (!force_nonblock || ret2 != -EAGAIN) {
3712 /* IOPOLL retry should happen for io-wq threads */
3713 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3714 goto copy_iov;
3715 done:
3716 kiocb_done(kiocb, ret2, issue_flags);
3717 } else {
3718 copy_iov:
3719 iov_iter_restore(iter, state);
3720 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3721 return ret ?: -EAGAIN;
3722 }
3723 out_free:
3724 /* it's reportedly faster than delegating the null check to kfree() */
3725 if (iovec)
3726 kfree(iovec);
3727 return ret;
3728 }
3729
3730 static int io_renameat_prep(struct io_kiocb *req,
3731 const struct io_uring_sqe *sqe)
3732 {
3733 struct io_rename *ren = &req->rename;
3734 const char __user *oldf, *newf;
3735
3736 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3737 return -EINVAL;
3738 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3739 return -EINVAL;
3740 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3741 return -EBADF;
3742
3743 ren->old_dfd = READ_ONCE(sqe->fd);
3744 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3745 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3746 ren->new_dfd = READ_ONCE(sqe->len);
3747 ren->flags = READ_ONCE(sqe->rename_flags);
3748
3749 ren->oldpath = getname(oldf);
3750 if (IS_ERR(ren->oldpath))
3751 return PTR_ERR(ren->oldpath);
3752
3753 ren->newpath = getname(newf);
3754 if (IS_ERR(ren->newpath)) {
3755 putname(ren->oldpath);
3756 return PTR_ERR(ren->newpath);
3757 }
3758
3759 req->flags |= REQ_F_NEED_CLEANUP;
3760 return 0;
3761 }
3762
3763 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3764 {
3765 struct io_rename *ren = &req->rename;
3766 int ret;
3767
3768 if (issue_flags & IO_URING_F_NONBLOCK)
3769 return -EAGAIN;
3770
3771 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3772 ren->newpath, ren->flags);
3773
3774 req->flags &= ~REQ_F_NEED_CLEANUP;
3775 if (ret < 0)
3776 req_set_fail(req);
3777 io_req_complete(req, ret);
3778 return 0;
3779 }
3780
3781 static int io_unlinkat_prep(struct io_kiocb *req,
3782 const struct io_uring_sqe *sqe)
3783 {
3784 struct io_unlink *un = &req->unlink;
3785 const char __user *fname;
3786
3787 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3788 return -EINVAL;
3789 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3790 sqe->splice_fd_in)
3791 return -EINVAL;
3792 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3793 return -EBADF;
3794
3795 un->dfd = READ_ONCE(sqe->fd);
3796
3797 un->flags = READ_ONCE(sqe->unlink_flags);
3798 if (un->flags & ~AT_REMOVEDIR)
3799 return -EINVAL;
3800
3801 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3802 un->filename = getname(fname);
3803 if (IS_ERR(un->filename))
3804 return PTR_ERR(un->filename);
3805
3806 req->flags |= REQ_F_NEED_CLEANUP;
3807 return 0;
3808 }
3809
3810 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3811 {
3812 struct io_unlink *un = &req->unlink;
3813 int ret;
3814
3815 if (issue_flags & IO_URING_F_NONBLOCK)
3816 return -EAGAIN;
3817
3818 if (un->flags & AT_REMOVEDIR)
3819 ret = do_rmdir(un->dfd, un->filename);
3820 else
3821 ret = do_unlinkat(un->dfd, un->filename);
3822
3823 req->flags &= ~REQ_F_NEED_CLEANUP;
3824 if (ret < 0)
3825 req_set_fail(req);
3826 io_req_complete(req, ret);
3827 return 0;
3828 }
3829
3830 static int io_mkdirat_prep(struct io_kiocb *req,
3831 const struct io_uring_sqe *sqe)
3832 {
3833 struct io_mkdir *mkd = &req->mkdir;
3834 const char __user *fname;
3835
3836 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3837 return -EINVAL;
3838 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3839 sqe->splice_fd_in)
3840 return -EINVAL;
3841 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3842 return -EBADF;
3843
3844 mkd->dfd = READ_ONCE(sqe->fd);
3845 mkd->mode = READ_ONCE(sqe->len);
3846
3847 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3848 mkd->filename = getname(fname);
3849 if (IS_ERR(mkd->filename))
3850 return PTR_ERR(mkd->filename);
3851
3852 req->flags |= REQ_F_NEED_CLEANUP;
3853 return 0;
3854 }
3855
3856 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3857 {
3858 struct io_mkdir *mkd = &req->mkdir;
3859 int ret;
3860
3861 if (issue_flags & IO_URING_F_NONBLOCK)
3862 return -EAGAIN;
3863
3864 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3865
3866 req->flags &= ~REQ_F_NEED_CLEANUP;
3867 if (ret < 0)
3868 req_set_fail(req);
3869 io_req_complete(req, ret);
3870 return 0;
3871 }
3872
3873 static int io_symlinkat_prep(struct io_kiocb *req,
3874 const struct io_uring_sqe *sqe)
3875 {
3876 struct io_symlink *sl = &req->symlink;
3877 const char __user *oldpath, *newpath;
3878
3879 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3880 return -EINVAL;
3881 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3882 sqe->splice_fd_in)
3883 return -EINVAL;
3884 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3885 return -EBADF;
3886
3887 sl->new_dfd = READ_ONCE(sqe->fd);
3888 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3889 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3890
3891 sl->oldpath = getname(oldpath);
3892 if (IS_ERR(sl->oldpath))
3893 return PTR_ERR(sl->oldpath);
3894
3895 sl->newpath = getname(newpath);
3896 if (IS_ERR(sl->newpath)) {
3897 putname(sl->oldpath);
3898 return PTR_ERR(sl->newpath);
3899 }
3900
3901 req->flags |= REQ_F_NEED_CLEANUP;
3902 return 0;
3903 }
3904
3905 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3906 {
3907 struct io_symlink *sl = &req->symlink;
3908 int ret;
3909
3910 if (issue_flags & IO_URING_F_NONBLOCK)
3911 return -EAGAIN;
3912
3913 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3914
3915 req->flags &= ~REQ_F_NEED_CLEANUP;
3916 if (ret < 0)
3917 req_set_fail(req);
3918 io_req_complete(req, ret);
3919 return 0;
3920 }
3921
3922 static int io_linkat_prep(struct io_kiocb *req,
3923 const struct io_uring_sqe *sqe)
3924 {
3925 struct io_hardlink *lnk = &req->hardlink;
3926 const char __user *oldf, *newf;
3927
3928 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3929 return -EINVAL;
3930 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3931 return -EINVAL;
3932 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3933 return -EBADF;
3934
3935 lnk->old_dfd = READ_ONCE(sqe->fd);
3936 lnk->new_dfd = READ_ONCE(sqe->len);
3937 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3938 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3939 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3940
3941 lnk->oldpath = getname(oldf);
3942 if (IS_ERR(lnk->oldpath))
3943 return PTR_ERR(lnk->oldpath);
3944
3945 lnk->newpath = getname(newf);
3946 if (IS_ERR(lnk->newpath)) {
3947 putname(lnk->oldpath);
3948 return PTR_ERR(lnk->newpath);
3949 }
3950
3951 req->flags |= REQ_F_NEED_CLEANUP;
3952 return 0;
3953 }
3954
3955 static int io_linkat(struct io_kiocb *req, int issue_flags)
3956 {
3957 struct io_hardlink *lnk = &req->hardlink;
3958 int ret;
3959
3960 if (issue_flags & IO_URING_F_NONBLOCK)
3961 return -EAGAIN;
3962
3963 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3964 lnk->newpath, lnk->flags);
3965
3966 req->flags &= ~REQ_F_NEED_CLEANUP;
3967 if (ret < 0)
3968 req_set_fail(req);
3969 io_req_complete(req, ret);
3970 return 0;
3971 }
3972
3973 static int io_shutdown_prep(struct io_kiocb *req,
3974 const struct io_uring_sqe *sqe)
3975 {
3976 #if defined(CONFIG_NET)
3977 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3978 return -EINVAL;
3979 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3980 sqe->buf_index || sqe->splice_fd_in))
3981 return -EINVAL;
3982
3983 req->shutdown.how = READ_ONCE(sqe->len);
3984 return 0;
3985 #else
3986 return -EOPNOTSUPP;
3987 #endif
3988 }
3989
3990 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3991 {
3992 #if defined(CONFIG_NET)
3993 struct socket *sock;
3994 int ret;
3995
3996 if (issue_flags & IO_URING_F_NONBLOCK)
3997 return -EAGAIN;
3998
3999 sock = sock_from_file(req->file);
4000 if (unlikely(!sock))
4001 return -ENOTSOCK;
4002
4003 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4004 if (ret < 0)
4005 req_set_fail(req);
4006 io_req_complete(req, ret);
4007 return 0;
4008 #else
4009 return -EOPNOTSUPP;
4010 #endif
4011 }
4012
4013 static int __io_splice_prep(struct io_kiocb *req,
4014 const struct io_uring_sqe *sqe)
4015 {
4016 struct io_splice *sp = &req->splice;
4017 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4018
4019 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4020 return -EINVAL;
4021
4022 sp->len = READ_ONCE(sqe->len);
4023 sp->flags = READ_ONCE(sqe->splice_flags);
4024 if (unlikely(sp->flags & ~valid_flags))
4025 return -EINVAL;
4026 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4027 return 0;
4028 }
4029
4030 static int io_tee_prep(struct io_kiocb *req,
4031 const struct io_uring_sqe *sqe)
4032 {
4033 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4034 return -EINVAL;
4035 return __io_splice_prep(req, sqe);
4036 }
4037
4038 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4039 {
4040 struct io_splice *sp = &req->splice;
4041 struct file *out = sp->file_out;
4042 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4043 struct file *in;
4044 long ret = 0;
4045
4046 if (issue_flags & IO_URING_F_NONBLOCK)
4047 return -EAGAIN;
4048
4049 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4050 (sp->flags & SPLICE_F_FD_IN_FIXED));
4051 if (!in) {
4052 ret = -EBADF;
4053 goto done;
4054 }
4055
4056 if (sp->len)
4057 ret = do_tee(in, out, sp->len, flags);
4058
4059 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4060 io_put_file(in);
4061 done:
4062 if (ret != sp->len)
4063 req_set_fail(req);
4064 io_req_complete(req, ret);
4065 return 0;
4066 }
4067
4068 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4069 {
4070 struct io_splice *sp = &req->splice;
4071
4072 sp->off_in = READ_ONCE(sqe->splice_off_in);
4073 sp->off_out = READ_ONCE(sqe->off);
4074 return __io_splice_prep(req, sqe);
4075 }
4076
4077 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4078 {
4079 struct io_splice *sp = &req->splice;
4080 struct file *out = sp->file_out;
4081 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4082 loff_t *poff_in, *poff_out;
4083 struct file *in;
4084 long ret = 0;
4085
4086 if (issue_flags & IO_URING_F_NONBLOCK)
4087 return -EAGAIN;
4088
4089 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4090 (sp->flags & SPLICE_F_FD_IN_FIXED));
4091 if (!in) {
4092 ret = -EBADF;
4093 goto done;
4094 }
4095
4096 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4097 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4098
4099 if (sp->len)
4100 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4101
4102 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4103 io_put_file(in);
4104 done:
4105 if (ret != sp->len)
4106 req_set_fail(req);
4107 io_req_complete(req, ret);
4108 return 0;
4109 }
4110
4111 /*
4112 * IORING_OP_NOP just posts a completion event, nothing else.
4113 */
4114 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4115 {
4116 struct io_ring_ctx *ctx = req->ctx;
4117
4118 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4119 return -EINVAL;
4120
4121 __io_req_complete(req, issue_flags, 0, 0);
4122 return 0;
4123 }
4124
4125 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4126 {
4127 struct io_ring_ctx *ctx = req->ctx;
4128
4129 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4130 return -EINVAL;
4131 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4132 sqe->splice_fd_in))
4133 return -EINVAL;
4134
4135 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4136 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4137 return -EINVAL;
4138
4139 req->sync.off = READ_ONCE(sqe->off);
4140 req->sync.len = READ_ONCE(sqe->len);
4141 return 0;
4142 }
4143
4144 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4145 {
4146 loff_t end = req->sync.off + req->sync.len;
4147 int ret;
4148
4149 /* fsync always requires a blocking context */
4150 if (issue_flags & IO_URING_F_NONBLOCK)
4151 return -EAGAIN;
4152
4153 ret = vfs_fsync_range(req->file, req->sync.off,
4154 end > 0 ? end : LLONG_MAX,
4155 req->sync.flags & IORING_FSYNC_DATASYNC);
4156 if (ret < 0)
4157 req_set_fail(req);
4158 io_req_complete(req, ret);
4159 return 0;
4160 }
4161
4162 static int io_fallocate_prep(struct io_kiocb *req,
4163 const struct io_uring_sqe *sqe)
4164 {
4165 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4166 sqe->splice_fd_in)
4167 return -EINVAL;
4168 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4169 return -EINVAL;
4170
4171 req->sync.off = READ_ONCE(sqe->off);
4172 req->sync.len = READ_ONCE(sqe->addr);
4173 req->sync.mode = READ_ONCE(sqe->len);
4174 return 0;
4175 }
4176
4177 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4178 {
4179 int ret;
4180
4181 /* fallocate always requiring blocking context */
4182 if (issue_flags & IO_URING_F_NONBLOCK)
4183 return -EAGAIN;
4184 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4185 req->sync.len);
4186 if (ret < 0)
4187 req_set_fail(req);
4188 io_req_complete(req, ret);
4189 return 0;
4190 }
4191
4192 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4193 {
4194 const char __user *fname;
4195 int ret;
4196
4197 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4198 return -EINVAL;
4199 if (unlikely(sqe->ioprio || sqe->buf_index))
4200 return -EINVAL;
4201 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4202 return -EBADF;
4203
4204 /* open.how should be already initialised */
4205 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4206 req->open.how.flags |= O_LARGEFILE;
4207
4208 req->open.dfd = READ_ONCE(sqe->fd);
4209 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4210 req->open.filename = getname(fname);
4211 if (IS_ERR(req->open.filename)) {
4212 ret = PTR_ERR(req->open.filename);
4213 req->open.filename = NULL;
4214 return ret;
4215 }
4216
4217 req->open.file_slot = READ_ONCE(sqe->file_index);
4218 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4219 return -EINVAL;
4220
4221 req->open.nofile = rlimit(RLIMIT_NOFILE);
4222 req->flags |= REQ_F_NEED_CLEANUP;
4223 return 0;
4224 }
4225
4226 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4227 {
4228 u64 mode = READ_ONCE(sqe->len);
4229 u64 flags = READ_ONCE(sqe->open_flags);
4230
4231 req->open.how = build_open_how(flags, mode);
4232 return __io_openat_prep(req, sqe);
4233 }
4234
4235 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4236 {
4237 struct open_how __user *how;
4238 size_t len;
4239 int ret;
4240
4241 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4242 len = READ_ONCE(sqe->len);
4243 if (len < OPEN_HOW_SIZE_VER0)
4244 return -EINVAL;
4245
4246 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4247 len);
4248 if (ret)
4249 return ret;
4250
4251 return __io_openat_prep(req, sqe);
4252 }
4253
4254 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4255 {
4256 struct open_flags op;
4257 struct file *file;
4258 bool resolve_nonblock, nonblock_set;
4259 bool fixed = !!req->open.file_slot;
4260 int ret;
4261
4262 ret = build_open_flags(&req->open.how, &op);
4263 if (ret)
4264 goto err;
4265 nonblock_set = op.open_flag & O_NONBLOCK;
4266 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4267 if (issue_flags & IO_URING_F_NONBLOCK) {
4268 /*
4269 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4270 * it'll always -EAGAIN
4271 */
4272 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4273 return -EAGAIN;
4274 op.lookup_flags |= LOOKUP_CACHED;
4275 op.open_flag |= O_NONBLOCK;
4276 }
4277
4278 if (!fixed) {
4279 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4280 if (ret < 0)
4281 goto err;
4282 }
4283
4284 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4285 if (IS_ERR(file)) {
4286 /*
4287 * We could hang on to this 'fd' on retrying, but seems like
4288 * marginal gain for something that is now known to be a slower
4289 * path. So just put it, and we'll get a new one when we retry.
4290 */
4291 if (!fixed)
4292 put_unused_fd(ret);
4293
4294 ret = PTR_ERR(file);
4295 /* only retry if RESOLVE_CACHED wasn't already set by application */
4296 if (ret == -EAGAIN &&
4297 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4298 return -EAGAIN;
4299 goto err;
4300 }
4301
4302 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4303 file->f_flags &= ~O_NONBLOCK;
4304 fsnotify_open(file);
4305
4306 if (!fixed)
4307 fd_install(ret, file);
4308 else
4309 ret = io_install_fixed_file(req, file, issue_flags,
4310 req->open.file_slot - 1);
4311 err:
4312 putname(req->open.filename);
4313 req->flags &= ~REQ_F_NEED_CLEANUP;
4314 if (ret < 0)
4315 req_set_fail(req);
4316 __io_req_complete(req, issue_flags, ret, 0);
4317 return 0;
4318 }
4319
4320 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4321 {
4322 return io_openat2(req, issue_flags);
4323 }
4324
4325 static int io_remove_buffers_prep(struct io_kiocb *req,
4326 const struct io_uring_sqe *sqe)
4327 {
4328 struct io_provide_buf *p = &req->pbuf;
4329 u64 tmp;
4330
4331 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4332 sqe->splice_fd_in)
4333 return -EINVAL;
4334
4335 tmp = READ_ONCE(sqe->fd);
4336 if (!tmp || tmp > USHRT_MAX)
4337 return -EINVAL;
4338
4339 memset(p, 0, sizeof(*p));
4340 p->nbufs = tmp;
4341 p->bgid = READ_ONCE(sqe->buf_group);
4342 return 0;
4343 }
4344
4345 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4346 int bgid, unsigned nbufs)
4347 {
4348 unsigned i = 0;
4349
4350 /* shouldn't happen */
4351 if (!nbufs)
4352 return 0;
4353
4354 /* the head kbuf is the list itself */
4355 while (!list_empty(&buf->list)) {
4356 struct io_buffer *nxt;
4357
4358 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4359 list_del(&nxt->list);
4360 kfree(nxt);
4361 if (++i == nbufs)
4362 return i;
4363 cond_resched();
4364 }
4365 i++;
4366 kfree(buf);
4367 xa_erase(&ctx->io_buffers, bgid);
4368
4369 return i;
4370 }
4371
4372 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4373 {
4374 struct io_provide_buf *p = &req->pbuf;
4375 struct io_ring_ctx *ctx = req->ctx;
4376 struct io_buffer *head;
4377 int ret = 0;
4378 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4379
4380 io_ring_submit_lock(ctx, !force_nonblock);
4381
4382 lockdep_assert_held(&ctx->uring_lock);
4383
4384 ret = -ENOENT;
4385 head = xa_load(&ctx->io_buffers, p->bgid);
4386 if (head)
4387 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4388 if (ret < 0)
4389 req_set_fail(req);
4390
4391 /* complete before unlock, IOPOLL may need the lock */
4392 __io_req_complete(req, issue_flags, ret, 0);
4393 io_ring_submit_unlock(ctx, !force_nonblock);
4394 return 0;
4395 }
4396
4397 static int io_provide_buffers_prep(struct io_kiocb *req,
4398 const struct io_uring_sqe *sqe)
4399 {
4400 unsigned long size, tmp_check;
4401 struct io_provide_buf *p = &req->pbuf;
4402 u64 tmp;
4403
4404 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4405 return -EINVAL;
4406
4407 tmp = READ_ONCE(sqe->fd);
4408 if (!tmp || tmp > USHRT_MAX)
4409 return -E2BIG;
4410 p->nbufs = tmp;
4411 p->addr = READ_ONCE(sqe->addr);
4412 p->len = READ_ONCE(sqe->len);
4413
4414 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4415 &size))
4416 return -EOVERFLOW;
4417 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4418 return -EOVERFLOW;
4419
4420 size = (unsigned long)p->len * p->nbufs;
4421 if (!access_ok(u64_to_user_ptr(p->addr), size))
4422 return -EFAULT;
4423
4424 p->bgid = READ_ONCE(sqe->buf_group);
4425 tmp = READ_ONCE(sqe->off);
4426 if (tmp > USHRT_MAX)
4427 return -E2BIG;
4428 p->bid = tmp;
4429 return 0;
4430 }
4431
4432 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4433 {
4434 struct io_buffer *buf;
4435 u64 addr = pbuf->addr;
4436 int i, bid = pbuf->bid;
4437
4438 for (i = 0; i < pbuf->nbufs; i++) {
4439 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4440 if (!buf)
4441 break;
4442
4443 buf->addr = addr;
4444 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4445 buf->bid = bid;
4446 addr += pbuf->len;
4447 bid++;
4448 if (!*head) {
4449 INIT_LIST_HEAD(&buf->list);
4450 *head = buf;
4451 } else {
4452 list_add_tail(&buf->list, &(*head)->list);
4453 }
4454 cond_resched();
4455 }
4456
4457 return i ? i : -ENOMEM;
4458 }
4459
4460 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4461 {
4462 struct io_provide_buf *p = &req->pbuf;
4463 struct io_ring_ctx *ctx = req->ctx;
4464 struct io_buffer *head, *list;
4465 int ret = 0;
4466 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4467
4468 io_ring_submit_lock(ctx, !force_nonblock);
4469
4470 lockdep_assert_held(&ctx->uring_lock);
4471
4472 list = head = xa_load(&ctx->io_buffers, p->bgid);
4473
4474 ret = io_add_buffers(p, &head);
4475 if (ret >= 0 && !list) {
4476 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4477 if (ret < 0)
4478 __io_remove_buffers(ctx, head, p->bgid, -1U);
4479 }
4480 if (ret < 0)
4481 req_set_fail(req);
4482 /* complete before unlock, IOPOLL may need the lock */
4483 __io_req_complete(req, issue_flags, ret, 0);
4484 io_ring_submit_unlock(ctx, !force_nonblock);
4485 return 0;
4486 }
4487
4488 static int io_epoll_ctl_prep(struct io_kiocb *req,
4489 const struct io_uring_sqe *sqe)
4490 {
4491 #if defined(CONFIG_EPOLL)
4492 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4493 return -EINVAL;
4494 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4495 return -EINVAL;
4496
4497 req->epoll.epfd = READ_ONCE(sqe->fd);
4498 req->epoll.op = READ_ONCE(sqe->len);
4499 req->epoll.fd = READ_ONCE(sqe->off);
4500
4501 if (ep_op_has_event(req->epoll.op)) {
4502 struct epoll_event __user *ev;
4503
4504 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4505 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4506 return -EFAULT;
4507 }
4508
4509 return 0;
4510 #else
4511 return -EOPNOTSUPP;
4512 #endif
4513 }
4514
4515 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4516 {
4517 #if defined(CONFIG_EPOLL)
4518 struct io_epoll *ie = &req->epoll;
4519 int ret;
4520 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4521
4522 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4523 if (force_nonblock && ret == -EAGAIN)
4524 return -EAGAIN;
4525
4526 if (ret < 0)
4527 req_set_fail(req);
4528 __io_req_complete(req, issue_flags, ret, 0);
4529 return 0;
4530 #else
4531 return -EOPNOTSUPP;
4532 #endif
4533 }
4534
4535 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4536 {
4537 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4538 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4539 return -EINVAL;
4540 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4541 return -EINVAL;
4542
4543 req->madvise.addr = READ_ONCE(sqe->addr);
4544 req->madvise.len = READ_ONCE(sqe->len);
4545 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4546 return 0;
4547 #else
4548 return -EOPNOTSUPP;
4549 #endif
4550 }
4551
4552 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4553 {
4554 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4555 struct io_madvise *ma = &req->madvise;
4556 int ret;
4557
4558 if (issue_flags & IO_URING_F_NONBLOCK)
4559 return -EAGAIN;
4560
4561 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4562 if (ret < 0)
4563 req_set_fail(req);
4564 io_req_complete(req, ret);
4565 return 0;
4566 #else
4567 return -EOPNOTSUPP;
4568 #endif
4569 }
4570
4571 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4572 {
4573 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4574 return -EINVAL;
4575 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4576 return -EINVAL;
4577
4578 req->fadvise.offset = READ_ONCE(sqe->off);
4579 req->fadvise.len = READ_ONCE(sqe->len);
4580 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4581 return 0;
4582 }
4583
4584 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4585 {
4586 struct io_fadvise *fa = &req->fadvise;
4587 int ret;
4588
4589 if (issue_flags & IO_URING_F_NONBLOCK) {
4590 switch (fa->advice) {
4591 case POSIX_FADV_NORMAL:
4592 case POSIX_FADV_RANDOM:
4593 case POSIX_FADV_SEQUENTIAL:
4594 break;
4595 default:
4596 return -EAGAIN;
4597 }
4598 }
4599
4600 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4601 if (ret < 0)
4602 req_set_fail(req);
4603 __io_req_complete(req, issue_flags, ret, 0);
4604 return 0;
4605 }
4606
4607 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4608 {
4609 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4610 return -EINVAL;
4611 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4612 return -EINVAL;
4613 if (req->flags & REQ_F_FIXED_FILE)
4614 return -EBADF;
4615
4616 req->statx.dfd = READ_ONCE(sqe->fd);
4617 req->statx.mask = READ_ONCE(sqe->len);
4618 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4619 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4620 req->statx.flags = READ_ONCE(sqe->statx_flags);
4621
4622 return 0;
4623 }
4624
4625 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4626 {
4627 struct io_statx *ctx = &req->statx;
4628 int ret;
4629
4630 if (issue_flags & IO_URING_F_NONBLOCK)
4631 return -EAGAIN;
4632
4633 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4634 ctx->buffer);
4635
4636 if (ret < 0)
4637 req_set_fail(req);
4638 io_req_complete(req, ret);
4639 return 0;
4640 }
4641
4642 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4643 {
4644 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4645 return -EINVAL;
4646 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4647 sqe->rw_flags || sqe->buf_index)
4648 return -EINVAL;
4649 if (req->flags & REQ_F_FIXED_FILE)
4650 return -EBADF;
4651
4652 req->close.fd = READ_ONCE(sqe->fd);
4653 req->close.file_slot = READ_ONCE(sqe->file_index);
4654 if (req->close.file_slot && req->close.fd)
4655 return -EINVAL;
4656
4657 return 0;
4658 }
4659
4660 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4661 {
4662 struct files_struct *files = current->files;
4663 struct io_close *close = &req->close;
4664 struct fdtable *fdt;
4665 struct file *file = NULL;
4666 int ret = -EBADF;
4667
4668 if (req->close.file_slot) {
4669 ret = io_close_fixed(req, issue_flags);
4670 goto err;
4671 }
4672
4673 spin_lock(&files->file_lock);
4674 fdt = files_fdtable(files);
4675 if (close->fd >= fdt->max_fds) {
4676 spin_unlock(&files->file_lock);
4677 goto err;
4678 }
4679 file = fdt->fd[close->fd];
4680 if (!file || file->f_op == &io_uring_fops) {
4681 spin_unlock(&files->file_lock);
4682 file = NULL;
4683 goto err;
4684 }
4685
4686 /* if the file has a flush method, be safe and punt to async */
4687 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4688 spin_unlock(&files->file_lock);
4689 return -EAGAIN;
4690 }
4691
4692 ret = __close_fd_get_file(close->fd, &file);
4693 spin_unlock(&files->file_lock);
4694 if (ret < 0) {
4695 if (ret == -ENOENT)
4696 ret = -EBADF;
4697 goto err;
4698 }
4699
4700 /* No ->flush() or already async, safely close from here */
4701 ret = filp_close(file, current->files);
4702 err:
4703 if (ret < 0)
4704 req_set_fail(req);
4705 if (file)
4706 fput(file);
4707 __io_req_complete(req, issue_flags, ret, 0);
4708 return 0;
4709 }
4710
4711 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4712 {
4713 struct io_ring_ctx *ctx = req->ctx;
4714
4715 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4716 return -EINVAL;
4717 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4718 sqe->splice_fd_in))
4719 return -EINVAL;
4720
4721 req->sync.off = READ_ONCE(sqe->off);
4722 req->sync.len = READ_ONCE(sqe->len);
4723 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4724 return 0;
4725 }
4726
4727 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4728 {
4729 int ret;
4730
4731 /* sync_file_range always requires a blocking context */
4732 if (issue_flags & IO_URING_F_NONBLOCK)
4733 return -EAGAIN;
4734
4735 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4736 req->sync.flags);
4737 if (ret < 0)
4738 req_set_fail(req);
4739 io_req_complete(req, ret);
4740 return 0;
4741 }
4742
4743 #if defined(CONFIG_NET)
4744 static int io_setup_async_msg(struct io_kiocb *req,
4745 struct io_async_msghdr *kmsg)
4746 {
4747 struct io_async_msghdr *async_msg = req->async_data;
4748
4749 if (async_msg)
4750 return -EAGAIN;
4751 if (io_alloc_async_data(req)) {
4752 kfree(kmsg->free_iov);
4753 return -ENOMEM;
4754 }
4755 async_msg = req->async_data;
4756 req->flags |= REQ_F_NEED_CLEANUP;
4757 memcpy(async_msg, kmsg, sizeof(*kmsg));
4758 async_msg->msg.msg_name = &async_msg->addr;
4759 /* if were using fast_iov, set it to the new one */
4760 if (!async_msg->free_iov)
4761 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4762
4763 return -EAGAIN;
4764 }
4765
4766 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4767 struct io_async_msghdr *iomsg)
4768 {
4769 iomsg->msg.msg_name = &iomsg->addr;
4770 iomsg->free_iov = iomsg->fast_iov;
4771 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4772 req->sr_msg.msg_flags, &iomsg->free_iov);
4773 }
4774
4775 static int io_sendmsg_prep_async(struct io_kiocb *req)
4776 {
4777 int ret;
4778
4779 ret = io_sendmsg_copy_hdr(req, req->async_data);
4780 if (!ret)
4781 req->flags |= REQ_F_NEED_CLEANUP;
4782 return ret;
4783 }
4784
4785 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4786 {
4787 struct io_sr_msg *sr = &req->sr_msg;
4788
4789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4790 return -EINVAL;
4791
4792 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4793 sr->len = READ_ONCE(sqe->len);
4794 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4795 if (sr->msg_flags & MSG_DONTWAIT)
4796 req->flags |= REQ_F_NOWAIT;
4797
4798 #ifdef CONFIG_COMPAT
4799 if (req->ctx->compat)
4800 sr->msg_flags |= MSG_CMSG_COMPAT;
4801 #endif
4802 return 0;
4803 }
4804
4805 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4806 {
4807 struct io_async_msghdr iomsg, *kmsg;
4808 struct socket *sock;
4809 unsigned flags;
4810 int min_ret = 0;
4811 int ret;
4812
4813 sock = sock_from_file(req->file);
4814 if (unlikely(!sock))
4815 return -ENOTSOCK;
4816
4817 kmsg = req->async_data;
4818 if (!kmsg) {
4819 ret = io_sendmsg_copy_hdr(req, &iomsg);
4820 if (ret)
4821 return ret;
4822 kmsg = &iomsg;
4823 }
4824
4825 flags = req->sr_msg.msg_flags;
4826 if (issue_flags & IO_URING_F_NONBLOCK)
4827 flags |= MSG_DONTWAIT;
4828 if (flags & MSG_WAITALL)
4829 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4830
4831 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4832 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4833 return io_setup_async_msg(req, kmsg);
4834 if (ret == -ERESTARTSYS)
4835 ret = -EINTR;
4836
4837 /* fast path, check for non-NULL to avoid function call */
4838 if (kmsg->free_iov)
4839 kfree(kmsg->free_iov);
4840 req->flags &= ~REQ_F_NEED_CLEANUP;
4841 if (ret < min_ret)
4842 req_set_fail(req);
4843 __io_req_complete(req, issue_flags, ret, 0);
4844 return 0;
4845 }
4846
4847 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4848 {
4849 struct io_sr_msg *sr = &req->sr_msg;
4850 struct msghdr msg;
4851 struct iovec iov;
4852 struct socket *sock;
4853 unsigned flags;
4854 int min_ret = 0;
4855 int ret;
4856
4857 sock = sock_from_file(req->file);
4858 if (unlikely(!sock))
4859 return -ENOTSOCK;
4860
4861 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4862 if (unlikely(ret))
4863 return ret;
4864
4865 msg.msg_name = NULL;
4866 msg.msg_control = NULL;
4867 msg.msg_controllen = 0;
4868 msg.msg_namelen = 0;
4869
4870 flags = req->sr_msg.msg_flags;
4871 if (issue_flags & IO_URING_F_NONBLOCK)
4872 flags |= MSG_DONTWAIT;
4873 if (flags & MSG_WAITALL)
4874 min_ret = iov_iter_count(&msg.msg_iter);
4875
4876 msg.msg_flags = flags;
4877 ret = sock_sendmsg(sock, &msg);
4878 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4879 return -EAGAIN;
4880 if (ret == -ERESTARTSYS)
4881 ret = -EINTR;
4882
4883 if (ret < min_ret)
4884 req_set_fail(req);
4885 __io_req_complete(req, issue_flags, ret, 0);
4886 return 0;
4887 }
4888
4889 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4890 struct io_async_msghdr *iomsg)
4891 {
4892 struct io_sr_msg *sr = &req->sr_msg;
4893 struct iovec __user *uiov;
4894 size_t iov_len;
4895 int ret;
4896
4897 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4898 &iomsg->uaddr, &uiov, &iov_len);
4899 if (ret)
4900 return ret;
4901
4902 if (req->flags & REQ_F_BUFFER_SELECT) {
4903 if (iov_len > 1)
4904 return -EINVAL;
4905 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4906 return -EFAULT;
4907 sr->len = iomsg->fast_iov[0].iov_len;
4908 iomsg->free_iov = NULL;
4909 } else {
4910 iomsg->free_iov = iomsg->fast_iov;
4911 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4912 &iomsg->free_iov, &iomsg->msg.msg_iter,
4913 false);
4914 if (ret > 0)
4915 ret = 0;
4916 }
4917
4918 return ret;
4919 }
4920
4921 #ifdef CONFIG_COMPAT
4922 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4923 struct io_async_msghdr *iomsg)
4924 {
4925 struct io_sr_msg *sr = &req->sr_msg;
4926 struct compat_iovec __user *uiov;
4927 compat_uptr_t ptr;
4928 compat_size_t len;
4929 int ret;
4930
4931 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4932 &ptr, &len);
4933 if (ret)
4934 return ret;
4935
4936 uiov = compat_ptr(ptr);
4937 if (req->flags & REQ_F_BUFFER_SELECT) {
4938 compat_ssize_t clen;
4939
4940 if (len > 1)
4941 return -EINVAL;
4942 if (!access_ok(uiov, sizeof(*uiov)))
4943 return -EFAULT;
4944 if (__get_user(clen, &uiov->iov_len))
4945 return -EFAULT;
4946 if (clen < 0)
4947 return -EINVAL;
4948 sr->len = clen;
4949 iomsg->free_iov = NULL;
4950 } else {
4951 iomsg->free_iov = iomsg->fast_iov;
4952 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4953 UIO_FASTIOV, &iomsg->free_iov,
4954 &iomsg->msg.msg_iter, true);
4955 if (ret < 0)
4956 return ret;
4957 }
4958
4959 return 0;
4960 }
4961 #endif
4962
4963 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4964 struct io_async_msghdr *iomsg)
4965 {
4966 iomsg->msg.msg_name = &iomsg->addr;
4967
4968 #ifdef CONFIG_COMPAT
4969 if (req->ctx->compat)
4970 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4971 #endif
4972
4973 return __io_recvmsg_copy_hdr(req, iomsg);
4974 }
4975
4976 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4977 bool needs_lock)
4978 {
4979 struct io_sr_msg *sr = &req->sr_msg;
4980 struct io_buffer *kbuf;
4981
4982 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4983 if (IS_ERR(kbuf))
4984 return kbuf;
4985
4986 sr->kbuf = kbuf;
4987 req->flags |= REQ_F_BUFFER_SELECTED;
4988 return kbuf;
4989 }
4990
4991 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4992 {
4993 return io_put_kbuf(req, req->sr_msg.kbuf);
4994 }
4995
4996 static int io_recvmsg_prep_async(struct io_kiocb *req)
4997 {
4998 int ret;
4999
5000 ret = io_recvmsg_copy_hdr(req, req->async_data);
5001 if (!ret)
5002 req->flags |= REQ_F_NEED_CLEANUP;
5003 return ret;
5004 }
5005
5006 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5007 {
5008 struct io_sr_msg *sr = &req->sr_msg;
5009
5010 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5011 return -EINVAL;
5012
5013 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5014 sr->len = READ_ONCE(sqe->len);
5015 sr->bgid = READ_ONCE(sqe->buf_group);
5016 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5017 if (sr->msg_flags & MSG_DONTWAIT)
5018 req->flags |= REQ_F_NOWAIT;
5019
5020 #ifdef CONFIG_COMPAT
5021 if (req->ctx->compat)
5022 sr->msg_flags |= MSG_CMSG_COMPAT;
5023 #endif
5024 return 0;
5025 }
5026
5027 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5028 {
5029 struct io_async_msghdr iomsg, *kmsg;
5030 struct socket *sock;
5031 struct io_buffer *kbuf;
5032 unsigned flags;
5033 int min_ret = 0;
5034 int ret, cflags = 0;
5035 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5036
5037 sock = sock_from_file(req->file);
5038 if (unlikely(!sock))
5039 return -ENOTSOCK;
5040
5041 kmsg = req->async_data;
5042 if (!kmsg) {
5043 ret = io_recvmsg_copy_hdr(req, &iomsg);
5044 if (ret)
5045 return ret;
5046 kmsg = &iomsg;
5047 }
5048
5049 if (req->flags & REQ_F_BUFFER_SELECT) {
5050 kbuf = io_recv_buffer_select(req, !force_nonblock);
5051 if (IS_ERR(kbuf))
5052 return PTR_ERR(kbuf);
5053 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5054 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5055 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5056 1, req->sr_msg.len);
5057 }
5058
5059 flags = req->sr_msg.msg_flags;
5060 if (force_nonblock)
5061 flags |= MSG_DONTWAIT;
5062 if (flags & MSG_WAITALL)
5063 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5064
5065 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5066 kmsg->uaddr, flags);
5067 if (force_nonblock && ret == -EAGAIN)
5068 return io_setup_async_msg(req, kmsg);
5069 if (ret == -ERESTARTSYS)
5070 ret = -EINTR;
5071
5072 if (req->flags & REQ_F_BUFFER_SELECTED)
5073 cflags = io_put_recv_kbuf(req);
5074 /* fast path, check for non-NULL to avoid function call */
5075 if (kmsg->free_iov)
5076 kfree(kmsg->free_iov);
5077 req->flags &= ~REQ_F_NEED_CLEANUP;
5078 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5079 req_set_fail(req);
5080 __io_req_complete(req, issue_flags, ret, cflags);
5081 return 0;
5082 }
5083
5084 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5085 {
5086 struct io_buffer *kbuf;
5087 struct io_sr_msg *sr = &req->sr_msg;
5088 struct msghdr msg;
5089 void __user *buf = sr->buf;
5090 struct socket *sock;
5091 struct iovec iov;
5092 unsigned flags;
5093 int min_ret = 0;
5094 int ret, cflags = 0;
5095 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5096
5097 sock = sock_from_file(req->file);
5098 if (unlikely(!sock))
5099 return -ENOTSOCK;
5100
5101 if (req->flags & REQ_F_BUFFER_SELECT) {
5102 kbuf = io_recv_buffer_select(req, !force_nonblock);
5103 if (IS_ERR(kbuf))
5104 return PTR_ERR(kbuf);
5105 buf = u64_to_user_ptr(kbuf->addr);
5106 }
5107
5108 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5109 if (unlikely(ret))
5110 goto out_free;
5111
5112 msg.msg_name = NULL;
5113 msg.msg_control = NULL;
5114 msg.msg_controllen = 0;
5115 msg.msg_namelen = 0;
5116 msg.msg_iocb = NULL;
5117 msg.msg_flags = 0;
5118
5119 flags = req->sr_msg.msg_flags;
5120 if (force_nonblock)
5121 flags |= MSG_DONTWAIT;
5122 if (flags & MSG_WAITALL)
5123 min_ret = iov_iter_count(&msg.msg_iter);
5124
5125 ret = sock_recvmsg(sock, &msg, flags);
5126 if (force_nonblock && ret == -EAGAIN)
5127 return -EAGAIN;
5128 if (ret == -ERESTARTSYS)
5129 ret = -EINTR;
5130 out_free:
5131 if (req->flags & REQ_F_BUFFER_SELECTED)
5132 cflags = io_put_recv_kbuf(req);
5133 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5134 req_set_fail(req);
5135 __io_req_complete(req, issue_flags, ret, cflags);
5136 return 0;
5137 }
5138
5139 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5140 {
5141 struct io_accept *accept = &req->accept;
5142
5143 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5144 return -EINVAL;
5145 if (sqe->ioprio || sqe->len || sqe->buf_index)
5146 return -EINVAL;
5147
5148 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5149 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5150 accept->flags = READ_ONCE(sqe->accept_flags);
5151 accept->nofile = rlimit(RLIMIT_NOFILE);
5152
5153 accept->file_slot = READ_ONCE(sqe->file_index);
5154 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5155 return -EINVAL;
5156 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5157 return -EINVAL;
5158 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5159 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5160 return 0;
5161 }
5162
5163 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5164 {
5165 struct io_accept *accept = &req->accept;
5166 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5167 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5168 bool fixed = !!accept->file_slot;
5169 struct file *file;
5170 int ret, fd;
5171
5172 if (req->file->f_flags & O_NONBLOCK)
5173 req->flags |= REQ_F_NOWAIT;
5174
5175 if (!fixed) {
5176 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5177 if (unlikely(fd < 0))
5178 return fd;
5179 }
5180 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5181 accept->flags);
5182 if (IS_ERR(file)) {
5183 if (!fixed)
5184 put_unused_fd(fd);
5185 ret = PTR_ERR(file);
5186 if (ret == -EAGAIN && force_nonblock)
5187 return -EAGAIN;
5188 if (ret == -ERESTARTSYS)
5189 ret = -EINTR;
5190 req_set_fail(req);
5191 } else if (!fixed) {
5192 fd_install(fd, file);
5193 ret = fd;
5194 } else {
5195 ret = io_install_fixed_file(req, file, issue_flags,
5196 accept->file_slot - 1);
5197 }
5198 __io_req_complete(req, issue_flags, ret, 0);
5199 return 0;
5200 }
5201
5202 static int io_connect_prep_async(struct io_kiocb *req)
5203 {
5204 struct io_async_connect *io = req->async_data;
5205 struct io_connect *conn = &req->connect;
5206
5207 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5208 }
5209
5210 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5211 {
5212 struct io_connect *conn = &req->connect;
5213
5214 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5215 return -EINVAL;
5216 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5217 sqe->splice_fd_in)
5218 return -EINVAL;
5219
5220 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5221 conn->addr_len = READ_ONCE(sqe->addr2);
5222 return 0;
5223 }
5224
5225 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5226 {
5227 struct io_async_connect __io, *io;
5228 unsigned file_flags;
5229 int ret;
5230 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5231
5232 if (req->async_data) {
5233 io = req->async_data;
5234 } else {
5235 ret = move_addr_to_kernel(req->connect.addr,
5236 req->connect.addr_len,
5237 &__io.address);
5238 if (ret)
5239 goto out;
5240 io = &__io;
5241 }
5242
5243 file_flags = force_nonblock ? O_NONBLOCK : 0;
5244
5245 ret = __sys_connect_file(req->file, &io->address,
5246 req->connect.addr_len, file_flags);
5247 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5248 if (req->async_data)
5249 return -EAGAIN;
5250 if (io_alloc_async_data(req)) {
5251 ret = -ENOMEM;
5252 goto out;
5253 }
5254 memcpy(req->async_data, &__io, sizeof(__io));
5255 return -EAGAIN;
5256 }
5257 if (ret == -ERESTARTSYS)
5258 ret = -EINTR;
5259 out:
5260 if (ret < 0)
5261 req_set_fail(req);
5262 __io_req_complete(req, issue_flags, ret, 0);
5263 return 0;
5264 }
5265 #else /* !CONFIG_NET */
5266 #define IO_NETOP_FN(op) \
5267 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5268 { \
5269 return -EOPNOTSUPP; \
5270 }
5271
5272 #define IO_NETOP_PREP(op) \
5273 IO_NETOP_FN(op) \
5274 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5275 { \
5276 return -EOPNOTSUPP; \
5277 } \
5278
5279 #define IO_NETOP_PREP_ASYNC(op) \
5280 IO_NETOP_PREP(op) \
5281 static int io_##op##_prep_async(struct io_kiocb *req) \
5282 { \
5283 return -EOPNOTSUPP; \
5284 }
5285
5286 IO_NETOP_PREP_ASYNC(sendmsg);
5287 IO_NETOP_PREP_ASYNC(recvmsg);
5288 IO_NETOP_PREP_ASYNC(connect);
5289 IO_NETOP_PREP(accept);
5290 IO_NETOP_FN(send);
5291 IO_NETOP_FN(recv);
5292 #endif /* CONFIG_NET */
5293
5294 struct io_poll_table {
5295 struct poll_table_struct pt;
5296 struct io_kiocb *req;
5297 int nr_entries;
5298 int error;
5299 };
5300
5301 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5302 __poll_t mask, io_req_tw_func_t func)
5303 {
5304 /* for instances that support it check for an event match first: */
5305 if (mask && !(mask & poll->events))
5306 return 0;
5307
5308 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5309
5310 list_del_init(&poll->wait.entry);
5311
5312 req->result = mask;
5313 req->io_task_work.func = func;
5314
5315 /*
5316 * If this fails, then the task is exiting. When a task exits, the
5317 * work gets canceled, so just cancel this request as well instead
5318 * of executing it. We can't safely execute it anyway, as we may not
5319 * have the needed state needed for it anyway.
5320 */
5321 io_req_task_work_add(req);
5322 return 1;
5323 }
5324
5325 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5326 __acquires(&req->ctx->completion_lock)
5327 {
5328 struct io_ring_ctx *ctx = req->ctx;
5329
5330 /* req->task == current here, checking PF_EXITING is safe */
5331 if (unlikely(req->task->flags & PF_EXITING))
5332 WRITE_ONCE(poll->canceled, true);
5333
5334 if (!req->result && !READ_ONCE(poll->canceled)) {
5335 struct poll_table_struct pt = { ._key = poll->events };
5336
5337 req->result = vfs_poll(req->file, &pt) & poll->events;
5338 }
5339
5340 spin_lock(&ctx->completion_lock);
5341 if (!req->result && !READ_ONCE(poll->canceled)) {
5342 add_wait_queue(poll->head, &poll->wait);
5343 return true;
5344 }
5345
5346 return false;
5347 }
5348
5349 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5350 {
5351 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5352 if (req->opcode == IORING_OP_POLL_ADD)
5353 return req->async_data;
5354 return req->apoll->double_poll;
5355 }
5356
5357 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5358 {
5359 if (req->opcode == IORING_OP_POLL_ADD)
5360 return &req->poll;
5361 return &req->apoll->poll;
5362 }
5363
5364 static void io_poll_remove_double(struct io_kiocb *req)
5365 __must_hold(&req->ctx->completion_lock)
5366 {
5367 struct io_poll_iocb *poll = io_poll_get_double(req);
5368
5369 lockdep_assert_held(&req->ctx->completion_lock);
5370
5371 if (poll && poll->head) {
5372 struct wait_queue_head *head = poll->head;
5373
5374 spin_lock_irq(&head->lock);
5375 list_del_init(&poll->wait.entry);
5376 if (poll->wait.private)
5377 req_ref_put(req);
5378 poll->head = NULL;
5379 spin_unlock_irq(&head->lock);
5380 }
5381 }
5382
5383 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5384 __must_hold(&req->ctx->completion_lock)
5385 {
5386 struct io_ring_ctx *ctx = req->ctx;
5387 unsigned flags = IORING_CQE_F_MORE;
5388 int error;
5389
5390 if (READ_ONCE(req->poll.canceled)) {
5391 error = -ECANCELED;
5392 req->poll.events |= EPOLLONESHOT;
5393 } else {
5394 error = mangle_poll(mask);
5395 }
5396 if (req->poll.events & EPOLLONESHOT)
5397 flags = 0;
5398 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5399 req->poll.events |= EPOLLONESHOT;
5400 flags = 0;
5401 }
5402 if (flags & IORING_CQE_F_MORE)
5403 ctx->cq_extra++;
5404
5405 return !(flags & IORING_CQE_F_MORE);
5406 }
5407
5408 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5409 __must_hold(&req->ctx->completion_lock)
5410 {
5411 bool done;
5412
5413 done = __io_poll_complete(req, mask);
5414 io_commit_cqring(req->ctx);
5415 return done;
5416 }
5417
5418 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5419 {
5420 struct io_ring_ctx *ctx = req->ctx;
5421 struct io_kiocb *nxt;
5422
5423 if (io_poll_rewait(req, &req->poll)) {
5424 spin_unlock(&ctx->completion_lock);
5425 } else {
5426 bool done;
5427
5428 if (req->poll.done) {
5429 spin_unlock(&ctx->completion_lock);
5430 return;
5431 }
5432 done = __io_poll_complete(req, req->result);
5433 if (done) {
5434 io_poll_remove_double(req);
5435 hash_del(&req->hash_node);
5436 req->poll.done = true;
5437 } else {
5438 req->result = 0;
5439 add_wait_queue(req->poll.head, &req->poll.wait);
5440 }
5441 io_commit_cqring(ctx);
5442 spin_unlock(&ctx->completion_lock);
5443 io_cqring_ev_posted(ctx);
5444
5445 if (done) {
5446 nxt = io_put_req_find_next(req);
5447 if (nxt)
5448 io_req_task_submit(nxt, locked);
5449 }
5450 }
5451 }
5452
5453 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5454 int sync, void *key)
5455 {
5456 struct io_kiocb *req = wait->private;
5457 struct io_poll_iocb *poll = io_poll_get_single(req);
5458 __poll_t mask = key_to_poll(key);
5459 unsigned long flags;
5460
5461 /* for instances that support it check for an event match first: */
5462 if (mask && !(mask & poll->events))
5463 return 0;
5464 if (!(poll->events & EPOLLONESHOT))
5465 return poll->wait.func(&poll->wait, mode, sync, key);
5466
5467 list_del_init(&wait->entry);
5468
5469 if (poll->head) {
5470 bool done;
5471
5472 spin_lock_irqsave(&poll->head->lock, flags);
5473 done = list_empty(&poll->wait.entry);
5474 if (!done)
5475 list_del_init(&poll->wait.entry);
5476 /* make sure double remove sees this as being gone */
5477 wait->private = NULL;
5478 spin_unlock_irqrestore(&poll->head->lock, flags);
5479 if (!done) {
5480 /* use wait func handler, so it matches the rq type */
5481 poll->wait.func(&poll->wait, mode, sync, key);
5482 }
5483 }
5484 req_ref_put(req);
5485 return 1;
5486 }
5487
5488 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5489 wait_queue_func_t wake_func)
5490 {
5491 poll->head = NULL;
5492 poll->done = false;
5493 poll->canceled = false;
5494 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5495 /* mask in events that we always want/need */
5496 poll->events = events | IO_POLL_UNMASK;
5497 INIT_LIST_HEAD(&poll->wait.entry);
5498 init_waitqueue_func_entry(&poll->wait, wake_func);
5499 }
5500
5501 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5502 struct wait_queue_head *head,
5503 struct io_poll_iocb **poll_ptr)
5504 {
5505 struct io_kiocb *req = pt->req;
5506
5507 /*
5508 * The file being polled uses multiple waitqueues for poll handling
5509 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5510 * if this happens.
5511 */
5512 if (unlikely(pt->nr_entries)) {
5513 struct io_poll_iocb *poll_one = poll;
5514
5515 /* double add on the same waitqueue head, ignore */
5516 if (poll_one->head == head)
5517 return;
5518 /* already have a 2nd entry, fail a third attempt */
5519 if (*poll_ptr) {
5520 if ((*poll_ptr)->head == head)
5521 return;
5522 pt->error = -EINVAL;
5523 return;
5524 }
5525 /*
5526 * Can't handle multishot for double wait for now, turn it
5527 * into one-shot mode.
5528 */
5529 if (!(poll_one->events & EPOLLONESHOT))
5530 poll_one->events |= EPOLLONESHOT;
5531 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5532 if (!poll) {
5533 pt->error = -ENOMEM;
5534 return;
5535 }
5536 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5537 req_ref_get(req);
5538 poll->wait.private = req;
5539 *poll_ptr = poll;
5540 }
5541
5542 pt->nr_entries++;
5543 poll->head = head;
5544
5545 if (poll->events & EPOLLEXCLUSIVE)
5546 add_wait_queue_exclusive(head, &poll->wait);
5547 else
5548 add_wait_queue(head, &poll->wait);
5549 }
5550
5551 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5552 struct poll_table_struct *p)
5553 {
5554 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5555 struct async_poll *apoll = pt->req->apoll;
5556
5557 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5558 }
5559
5560 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5561 {
5562 struct async_poll *apoll = req->apoll;
5563 struct io_ring_ctx *ctx = req->ctx;
5564
5565 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5566
5567 if (io_poll_rewait(req, &apoll->poll)) {
5568 spin_unlock(&ctx->completion_lock);
5569 return;
5570 }
5571
5572 hash_del(&req->hash_node);
5573 io_poll_remove_double(req);
5574 apoll->poll.done = true;
5575 spin_unlock(&ctx->completion_lock);
5576
5577 if (!READ_ONCE(apoll->poll.canceled))
5578 io_req_task_submit(req, locked);
5579 else
5580 io_req_complete_failed(req, -ECANCELED);
5581 }
5582
5583 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5584 void *key)
5585 {
5586 struct io_kiocb *req = wait->private;
5587 struct io_poll_iocb *poll = &req->apoll->poll;
5588
5589 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5590 key_to_poll(key));
5591
5592 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5593 }
5594
5595 static void io_poll_req_insert(struct io_kiocb *req)
5596 {
5597 struct io_ring_ctx *ctx = req->ctx;
5598 struct hlist_head *list;
5599
5600 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5601 hlist_add_head(&req->hash_node, list);
5602 }
5603
5604 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5605 struct io_poll_iocb *poll,
5606 struct io_poll_table *ipt, __poll_t mask,
5607 wait_queue_func_t wake_func)
5608 __acquires(&ctx->completion_lock)
5609 {
5610 struct io_ring_ctx *ctx = req->ctx;
5611 bool cancel = false;
5612
5613 INIT_HLIST_NODE(&req->hash_node);
5614 io_init_poll_iocb(poll, mask, wake_func);
5615 poll->file = req->file;
5616 poll->wait.private = req;
5617
5618 ipt->pt._key = mask;
5619 ipt->req = req;
5620 ipt->error = 0;
5621 ipt->nr_entries = 0;
5622
5623 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5624 if (unlikely(!ipt->nr_entries) && !ipt->error)
5625 ipt->error = -EINVAL;
5626
5627 spin_lock(&ctx->completion_lock);
5628 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5629 io_poll_remove_double(req);
5630 if (likely(poll->head)) {
5631 spin_lock_irq(&poll->head->lock);
5632 if (unlikely(list_empty(&poll->wait.entry))) {
5633 if (ipt->error)
5634 cancel = true;
5635 ipt->error = 0;
5636 mask = 0;
5637 }
5638 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5639 list_del_init(&poll->wait.entry);
5640 else if (cancel)
5641 WRITE_ONCE(poll->canceled, true);
5642 else if (!poll->done) /* actually waiting for an event */
5643 io_poll_req_insert(req);
5644 spin_unlock_irq(&poll->head->lock);
5645 }
5646
5647 return mask;
5648 }
5649
5650 enum {
5651 IO_APOLL_OK,
5652 IO_APOLL_ABORTED,
5653 IO_APOLL_READY
5654 };
5655
5656 static int io_arm_poll_handler(struct io_kiocb *req)
5657 {
5658 const struct io_op_def *def = &io_op_defs[req->opcode];
5659 struct io_ring_ctx *ctx = req->ctx;
5660 struct async_poll *apoll;
5661 struct io_poll_table ipt;
5662 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5663 int rw;
5664
5665 if (!req->file || !file_can_poll(req->file))
5666 return IO_APOLL_ABORTED;
5667 if (req->flags & REQ_F_POLLED)
5668 return IO_APOLL_ABORTED;
5669 if (!def->pollin && !def->pollout)
5670 return IO_APOLL_ABORTED;
5671
5672 if (def->pollin) {
5673 rw = READ;
5674 mask |= POLLIN | POLLRDNORM;
5675
5676 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5677 if ((req->opcode == IORING_OP_RECVMSG) &&
5678 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5679 mask &= ~POLLIN;
5680 } else {
5681 rw = WRITE;
5682 mask |= POLLOUT | POLLWRNORM;
5683 }
5684
5685 /* if we can't nonblock try, then no point in arming a poll handler */
5686 if (!io_file_supports_nowait(req, rw))
5687 return IO_APOLL_ABORTED;
5688
5689 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5690 if (unlikely(!apoll))
5691 return IO_APOLL_ABORTED;
5692 apoll->double_poll = NULL;
5693 req->apoll = apoll;
5694 req->flags |= REQ_F_POLLED;
5695 ipt.pt._qproc = io_async_queue_proc;
5696 io_req_set_refcount(req);
5697
5698 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5699 io_async_wake);
5700 spin_unlock(&ctx->completion_lock);
5701 if (ret || ipt.error)
5702 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5703
5704 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5705 mask, apoll->poll.events);
5706 return IO_APOLL_OK;
5707 }
5708
5709 static bool __io_poll_remove_one(struct io_kiocb *req,
5710 struct io_poll_iocb *poll, bool do_cancel)
5711 __must_hold(&req->ctx->completion_lock)
5712 {
5713 bool do_complete = false;
5714
5715 if (!poll->head)
5716 return false;
5717 spin_lock_irq(&poll->head->lock);
5718 if (do_cancel)
5719 WRITE_ONCE(poll->canceled, true);
5720 if (!list_empty(&poll->wait.entry)) {
5721 list_del_init(&poll->wait.entry);
5722 do_complete = true;
5723 }
5724 spin_unlock_irq(&poll->head->lock);
5725 hash_del(&req->hash_node);
5726 return do_complete;
5727 }
5728
5729 static bool io_poll_remove_one(struct io_kiocb *req)
5730 __must_hold(&req->ctx->completion_lock)
5731 {
5732 bool do_complete;
5733
5734 io_poll_remove_double(req);
5735 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5736
5737 if (do_complete) {
5738 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5739 io_commit_cqring(req->ctx);
5740 req_set_fail(req);
5741 io_put_req_deferred(req);
5742 }
5743 return do_complete;
5744 }
5745
5746 /*
5747 * Returns true if we found and killed one or more poll requests
5748 */
5749 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5750 bool cancel_all)
5751 {
5752 struct hlist_node *tmp;
5753 struct io_kiocb *req;
5754 int posted = 0, i;
5755
5756 spin_lock(&ctx->completion_lock);
5757 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5758 struct hlist_head *list;
5759
5760 list = &ctx->cancel_hash[i];
5761 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5762 if (io_match_task_safe(req, tsk, cancel_all))
5763 posted += io_poll_remove_one(req);
5764 }
5765 }
5766 spin_unlock(&ctx->completion_lock);
5767
5768 if (posted)
5769 io_cqring_ev_posted(ctx);
5770
5771 return posted != 0;
5772 }
5773
5774 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5775 bool poll_only)
5776 __must_hold(&ctx->completion_lock)
5777 {
5778 struct hlist_head *list;
5779 struct io_kiocb *req;
5780
5781 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5782 hlist_for_each_entry(req, list, hash_node) {
5783 if (sqe_addr != req->user_data)
5784 continue;
5785 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5786 continue;
5787 return req;
5788 }
5789 return NULL;
5790 }
5791
5792 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5793 bool poll_only)
5794 __must_hold(&ctx->completion_lock)
5795 {
5796 struct io_kiocb *req;
5797
5798 req = io_poll_find(ctx, sqe_addr, poll_only);
5799 if (!req)
5800 return -ENOENT;
5801 if (io_poll_remove_one(req))
5802 return 0;
5803
5804 return -EALREADY;
5805 }
5806
5807 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5808 unsigned int flags)
5809 {
5810 u32 events;
5811
5812 events = READ_ONCE(sqe->poll32_events);
5813 #ifdef __BIG_ENDIAN
5814 events = swahw32(events);
5815 #endif
5816 if (!(flags & IORING_POLL_ADD_MULTI))
5817 events |= EPOLLONESHOT;
5818 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5819 }
5820
5821 static int io_poll_update_prep(struct io_kiocb *req,
5822 const struct io_uring_sqe *sqe)
5823 {
5824 struct io_poll_update *upd = &req->poll_update;
5825 u32 flags;
5826
5827 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5828 return -EINVAL;
5829 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5830 return -EINVAL;
5831 flags = READ_ONCE(sqe->len);
5832 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5833 IORING_POLL_ADD_MULTI))
5834 return -EINVAL;
5835 /* meaningless without update */
5836 if (flags == IORING_POLL_ADD_MULTI)
5837 return -EINVAL;
5838
5839 upd->old_user_data = READ_ONCE(sqe->addr);
5840 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5841 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5842
5843 upd->new_user_data = READ_ONCE(sqe->off);
5844 if (!upd->update_user_data && upd->new_user_data)
5845 return -EINVAL;
5846 if (upd->update_events)
5847 upd->events = io_poll_parse_events(sqe, flags);
5848 else if (sqe->poll32_events)
5849 return -EINVAL;
5850
5851 return 0;
5852 }
5853
5854 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5855 void *key)
5856 {
5857 struct io_kiocb *req = wait->private;
5858 struct io_poll_iocb *poll = &req->poll;
5859
5860 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5861 }
5862
5863 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5864 struct poll_table_struct *p)
5865 {
5866 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5867
5868 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5869 }
5870
5871 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5872 {
5873 struct io_poll_iocb *poll = &req->poll;
5874 u32 flags;
5875
5876 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5877 return -EINVAL;
5878 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5879 return -EINVAL;
5880 flags = READ_ONCE(sqe->len);
5881 if (flags & ~IORING_POLL_ADD_MULTI)
5882 return -EINVAL;
5883
5884 io_req_set_refcount(req);
5885 poll->events = io_poll_parse_events(sqe, flags);
5886 return 0;
5887 }
5888
5889 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5890 {
5891 struct io_poll_iocb *poll = &req->poll;
5892 struct io_ring_ctx *ctx = req->ctx;
5893 struct io_poll_table ipt;
5894 __poll_t mask;
5895 bool done;
5896
5897 ipt.pt._qproc = io_poll_queue_proc;
5898
5899 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5900 io_poll_wake);
5901
5902 if (mask) { /* no async, we'd stolen it */
5903 ipt.error = 0;
5904 done = io_poll_complete(req, mask);
5905 }
5906 spin_unlock(&ctx->completion_lock);
5907
5908 if (mask) {
5909 io_cqring_ev_posted(ctx);
5910 if (done)
5911 io_put_req(req);
5912 }
5913 return ipt.error;
5914 }
5915
5916 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5917 {
5918 struct io_ring_ctx *ctx = req->ctx;
5919 struct io_kiocb *preq;
5920 bool completing;
5921 int ret;
5922
5923 spin_lock(&ctx->completion_lock);
5924 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5925 if (!preq) {
5926 ret = -ENOENT;
5927 goto err;
5928 }
5929
5930 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5931 completing = true;
5932 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5933 goto err;
5934 }
5935
5936 /*
5937 * Don't allow racy completion with singleshot, as we cannot safely
5938 * update those. For multishot, if we're racing with completion, just
5939 * let completion re-add it.
5940 */
5941 io_poll_remove_double(preq);
5942 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5943 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5944 ret = -EALREADY;
5945 goto err;
5946 }
5947 /* we now have a detached poll request. reissue. */
5948 ret = 0;
5949 err:
5950 if (ret < 0) {
5951 spin_unlock(&ctx->completion_lock);
5952 req_set_fail(req);
5953 io_req_complete(req, ret);
5954 return 0;
5955 }
5956 /* only mask one event flags, keep behavior flags */
5957 if (req->poll_update.update_events) {
5958 preq->poll.events &= ~0xffff;
5959 preq->poll.events |= req->poll_update.events & 0xffff;
5960 preq->poll.events |= IO_POLL_UNMASK;
5961 }
5962 if (req->poll_update.update_user_data)
5963 preq->user_data = req->poll_update.new_user_data;
5964 spin_unlock(&ctx->completion_lock);
5965
5966 /* complete update request, we're done with it */
5967 io_req_complete(req, ret);
5968
5969 if (!completing) {
5970 ret = io_poll_add(preq, issue_flags);
5971 if (ret < 0) {
5972 req_set_fail(preq);
5973 io_req_complete(preq, ret);
5974 }
5975 }
5976 return 0;
5977 }
5978
5979 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5980 {
5981 req_set_fail(req);
5982 io_req_complete_post(req, -ETIME, 0);
5983 }
5984
5985 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5986 {
5987 struct io_timeout_data *data = container_of(timer,
5988 struct io_timeout_data, timer);
5989 struct io_kiocb *req = data->req;
5990 struct io_ring_ctx *ctx = req->ctx;
5991 unsigned long flags;
5992
5993 spin_lock_irqsave(&ctx->timeout_lock, flags);
5994 list_del_init(&req->timeout.list);
5995 atomic_set(&req->ctx->cq_timeouts,
5996 atomic_read(&req->ctx->cq_timeouts) + 1);
5997 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5998
5999 req->io_task_work.func = io_req_task_timeout;
6000 io_req_task_work_add(req);
6001 return HRTIMER_NORESTART;
6002 }
6003
6004 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6005 __u64 user_data)
6006 __must_hold(&ctx->timeout_lock)
6007 {
6008 struct io_timeout_data *io;
6009 struct io_kiocb *req;
6010 bool found = false;
6011
6012 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6013 found = user_data == req->user_data;
6014 if (found)
6015 break;
6016 }
6017 if (!found)
6018 return ERR_PTR(-ENOENT);
6019
6020 io = req->async_data;
6021 if (hrtimer_try_to_cancel(&io->timer) == -1)
6022 return ERR_PTR(-EALREADY);
6023 list_del_init(&req->timeout.list);
6024 return req;
6025 }
6026
6027 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6028 __must_hold(&ctx->completion_lock)
6029 __must_hold(&ctx->timeout_lock)
6030 {
6031 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6032
6033 if (IS_ERR(req))
6034 return PTR_ERR(req);
6035
6036 req_set_fail(req);
6037 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6038 io_put_req_deferred(req);
6039 return 0;
6040 }
6041
6042 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6043 {
6044 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6045 case IORING_TIMEOUT_BOOTTIME:
6046 return CLOCK_BOOTTIME;
6047 case IORING_TIMEOUT_REALTIME:
6048 return CLOCK_REALTIME;
6049 default:
6050 /* can't happen, vetted at prep time */
6051 WARN_ON_ONCE(1);
6052 fallthrough;
6053 case 0:
6054 return CLOCK_MONOTONIC;
6055 }
6056 }
6057
6058 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6059 struct timespec64 *ts, enum hrtimer_mode mode)
6060 __must_hold(&ctx->timeout_lock)
6061 {
6062 struct io_timeout_data *io;
6063 struct io_kiocb *req;
6064 bool found = false;
6065
6066 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6067 found = user_data == req->user_data;
6068 if (found)
6069 break;
6070 }
6071 if (!found)
6072 return -ENOENT;
6073
6074 io = req->async_data;
6075 if (hrtimer_try_to_cancel(&io->timer) == -1)
6076 return -EALREADY;
6077 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6078 io->timer.function = io_link_timeout_fn;
6079 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6080 return 0;
6081 }
6082
6083 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6084 struct timespec64 *ts, enum hrtimer_mode mode)
6085 __must_hold(&ctx->timeout_lock)
6086 {
6087 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6088 struct io_timeout_data *data;
6089
6090 if (IS_ERR(req))
6091 return PTR_ERR(req);
6092
6093 req->timeout.off = 0; /* noseq */
6094 data = req->async_data;
6095 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6096 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6097 data->timer.function = io_timeout_fn;
6098 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6099 return 0;
6100 }
6101
6102 static int io_timeout_remove_prep(struct io_kiocb *req,
6103 const struct io_uring_sqe *sqe)
6104 {
6105 struct io_timeout_rem *tr = &req->timeout_rem;
6106
6107 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6108 return -EINVAL;
6109 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6110 return -EINVAL;
6111 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6112 return -EINVAL;
6113
6114 tr->ltimeout = false;
6115 tr->addr = READ_ONCE(sqe->addr);
6116 tr->flags = READ_ONCE(sqe->timeout_flags);
6117 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6118 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6119 return -EINVAL;
6120 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6121 tr->ltimeout = true;
6122 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6123 return -EINVAL;
6124 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6125 return -EFAULT;
6126 } else if (tr->flags) {
6127 /* timeout removal doesn't support flags */
6128 return -EINVAL;
6129 }
6130
6131 return 0;
6132 }
6133
6134 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6135 {
6136 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6137 : HRTIMER_MODE_REL;
6138 }
6139
6140 /*
6141 * Remove or update an existing timeout command
6142 */
6143 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6144 {
6145 struct io_timeout_rem *tr = &req->timeout_rem;
6146 struct io_ring_ctx *ctx = req->ctx;
6147 int ret;
6148
6149 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6150 spin_lock(&ctx->completion_lock);
6151 spin_lock_irq(&ctx->timeout_lock);
6152 ret = io_timeout_cancel(ctx, tr->addr);
6153 spin_unlock_irq(&ctx->timeout_lock);
6154 spin_unlock(&ctx->completion_lock);
6155 } else {
6156 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6157
6158 spin_lock_irq(&ctx->timeout_lock);
6159 if (tr->ltimeout)
6160 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6161 else
6162 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6163 spin_unlock_irq(&ctx->timeout_lock);
6164 }
6165
6166 if (ret < 0)
6167 req_set_fail(req);
6168 io_req_complete_post(req, ret, 0);
6169 return 0;
6170 }
6171
6172 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6173 bool is_timeout_link)
6174 {
6175 struct io_timeout_data *data;
6176 unsigned flags;
6177 u32 off = READ_ONCE(sqe->off);
6178
6179 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6180 return -EINVAL;
6181 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6182 sqe->splice_fd_in)
6183 return -EINVAL;
6184 if (off && is_timeout_link)
6185 return -EINVAL;
6186 flags = READ_ONCE(sqe->timeout_flags);
6187 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6188 return -EINVAL;
6189 /* more than one clock specified is invalid, obviously */
6190 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6191 return -EINVAL;
6192
6193 INIT_LIST_HEAD(&req->timeout.list);
6194 req->timeout.off = off;
6195 if (unlikely(off && !req->ctx->off_timeout_used))
6196 req->ctx->off_timeout_used = true;
6197
6198 if (!req->async_data && io_alloc_async_data(req))
6199 return -ENOMEM;
6200
6201 data = req->async_data;
6202 data->req = req;
6203 data->flags = flags;
6204
6205 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6206 return -EFAULT;
6207
6208 data->mode = io_translate_timeout_mode(flags);
6209 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6210
6211 if (is_timeout_link) {
6212 struct io_submit_link *link = &req->ctx->submit_state.link;
6213
6214 if (!link->head)
6215 return -EINVAL;
6216 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6217 return -EINVAL;
6218 req->timeout.head = link->last;
6219 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6220 }
6221 return 0;
6222 }
6223
6224 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6225 {
6226 struct io_ring_ctx *ctx = req->ctx;
6227 struct io_timeout_data *data = req->async_data;
6228 struct list_head *entry;
6229 u32 tail, off = req->timeout.off;
6230
6231 spin_lock_irq(&ctx->timeout_lock);
6232
6233 /*
6234 * sqe->off holds how many events that need to occur for this
6235 * timeout event to be satisfied. If it isn't set, then this is
6236 * a pure timeout request, sequence isn't used.
6237 */
6238 if (io_is_timeout_noseq(req)) {
6239 entry = ctx->timeout_list.prev;
6240 goto add;
6241 }
6242
6243 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6244 req->timeout.target_seq = tail + off;
6245
6246 /* Update the last seq here in case io_flush_timeouts() hasn't.
6247 * This is safe because ->completion_lock is held, and submissions
6248 * and completions are never mixed in the same ->completion_lock section.
6249 */
6250 ctx->cq_last_tm_flush = tail;
6251
6252 /*
6253 * Insertion sort, ensuring the first entry in the list is always
6254 * the one we need first.
6255 */
6256 list_for_each_prev(entry, &ctx->timeout_list) {
6257 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6258 timeout.list);
6259
6260 if (io_is_timeout_noseq(nxt))
6261 continue;
6262 /* nxt.seq is behind @tail, otherwise would've been completed */
6263 if (off >= nxt->timeout.target_seq - tail)
6264 break;
6265 }
6266 add:
6267 list_add(&req->timeout.list, entry);
6268 data->timer.function = io_timeout_fn;
6269 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6270 spin_unlock_irq(&ctx->timeout_lock);
6271 return 0;
6272 }
6273
6274 struct io_cancel_data {
6275 struct io_ring_ctx *ctx;
6276 u64 user_data;
6277 };
6278
6279 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6280 {
6281 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6282 struct io_cancel_data *cd = data;
6283
6284 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6285 }
6286
6287 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6288 struct io_ring_ctx *ctx)
6289 {
6290 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6291 enum io_wq_cancel cancel_ret;
6292 int ret = 0;
6293
6294 if (!tctx || !tctx->io_wq)
6295 return -ENOENT;
6296
6297 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6298 switch (cancel_ret) {
6299 case IO_WQ_CANCEL_OK:
6300 ret = 0;
6301 break;
6302 case IO_WQ_CANCEL_RUNNING:
6303 ret = -EALREADY;
6304 break;
6305 case IO_WQ_CANCEL_NOTFOUND:
6306 ret = -ENOENT;
6307 break;
6308 }
6309
6310 return ret;
6311 }
6312
6313 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6314 {
6315 struct io_ring_ctx *ctx = req->ctx;
6316 int ret;
6317
6318 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6319
6320 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6321 if (ret != -ENOENT)
6322 return ret;
6323
6324 spin_lock(&ctx->completion_lock);
6325 spin_lock_irq(&ctx->timeout_lock);
6326 ret = io_timeout_cancel(ctx, sqe_addr);
6327 spin_unlock_irq(&ctx->timeout_lock);
6328 if (ret != -ENOENT)
6329 goto out;
6330 ret = io_poll_cancel(ctx, sqe_addr, false);
6331 out:
6332 spin_unlock(&ctx->completion_lock);
6333 return ret;
6334 }
6335
6336 static int io_async_cancel_prep(struct io_kiocb *req,
6337 const struct io_uring_sqe *sqe)
6338 {
6339 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6340 return -EINVAL;
6341 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6342 return -EINVAL;
6343 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6344 sqe->splice_fd_in)
6345 return -EINVAL;
6346
6347 req->cancel.addr = READ_ONCE(sqe->addr);
6348 return 0;
6349 }
6350
6351 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6352 {
6353 struct io_ring_ctx *ctx = req->ctx;
6354 u64 sqe_addr = req->cancel.addr;
6355 struct io_tctx_node *node;
6356 int ret;
6357
6358 ret = io_try_cancel_userdata(req, sqe_addr);
6359 if (ret != -ENOENT)
6360 goto done;
6361
6362 /* slow path, try all io-wq's */
6363 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6364 ret = -ENOENT;
6365 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6366 struct io_uring_task *tctx = node->task->io_uring;
6367
6368 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6369 if (ret != -ENOENT)
6370 break;
6371 }
6372 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6373 done:
6374 if (ret < 0)
6375 req_set_fail(req);
6376 io_req_complete_post(req, ret, 0);
6377 return 0;
6378 }
6379
6380 static int io_rsrc_update_prep(struct io_kiocb *req,
6381 const struct io_uring_sqe *sqe)
6382 {
6383 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6384 return -EINVAL;
6385 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6386 return -EINVAL;
6387
6388 req->rsrc_update.offset = READ_ONCE(sqe->off);
6389 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6390 if (!req->rsrc_update.nr_args)
6391 return -EINVAL;
6392 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6393 return 0;
6394 }
6395
6396 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6397 {
6398 struct io_ring_ctx *ctx = req->ctx;
6399 struct io_uring_rsrc_update2 up;
6400 int ret;
6401
6402 up.offset = req->rsrc_update.offset;
6403 up.data = req->rsrc_update.arg;
6404 up.nr = 0;
6405 up.tags = 0;
6406 up.resv = 0;
6407
6408 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6409 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6410 &up, req->rsrc_update.nr_args);
6411 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6412
6413 if (ret < 0)
6414 req_set_fail(req);
6415 __io_req_complete(req, issue_flags, ret, 0);
6416 return 0;
6417 }
6418
6419 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6420 {
6421 switch (req->opcode) {
6422 case IORING_OP_NOP:
6423 return 0;
6424 case IORING_OP_READV:
6425 case IORING_OP_READ_FIXED:
6426 case IORING_OP_READ:
6427 return io_read_prep(req, sqe);
6428 case IORING_OP_WRITEV:
6429 case IORING_OP_WRITE_FIXED:
6430 case IORING_OP_WRITE:
6431 return io_write_prep(req, sqe);
6432 case IORING_OP_POLL_ADD:
6433 return io_poll_add_prep(req, sqe);
6434 case IORING_OP_POLL_REMOVE:
6435 return io_poll_update_prep(req, sqe);
6436 case IORING_OP_FSYNC:
6437 return io_fsync_prep(req, sqe);
6438 case IORING_OP_SYNC_FILE_RANGE:
6439 return io_sfr_prep(req, sqe);
6440 case IORING_OP_SENDMSG:
6441 case IORING_OP_SEND:
6442 return io_sendmsg_prep(req, sqe);
6443 case IORING_OP_RECVMSG:
6444 case IORING_OP_RECV:
6445 return io_recvmsg_prep(req, sqe);
6446 case IORING_OP_CONNECT:
6447 return io_connect_prep(req, sqe);
6448 case IORING_OP_TIMEOUT:
6449 return io_timeout_prep(req, sqe, false);
6450 case IORING_OP_TIMEOUT_REMOVE:
6451 return io_timeout_remove_prep(req, sqe);
6452 case IORING_OP_ASYNC_CANCEL:
6453 return io_async_cancel_prep(req, sqe);
6454 case IORING_OP_LINK_TIMEOUT:
6455 return io_timeout_prep(req, sqe, true);
6456 case IORING_OP_ACCEPT:
6457 return io_accept_prep(req, sqe);
6458 case IORING_OP_FALLOCATE:
6459 return io_fallocate_prep(req, sqe);
6460 case IORING_OP_OPENAT:
6461 return io_openat_prep(req, sqe);
6462 case IORING_OP_CLOSE:
6463 return io_close_prep(req, sqe);
6464 case IORING_OP_FILES_UPDATE:
6465 return io_rsrc_update_prep(req, sqe);
6466 case IORING_OP_STATX:
6467 return io_statx_prep(req, sqe);
6468 case IORING_OP_FADVISE:
6469 return io_fadvise_prep(req, sqe);
6470 case IORING_OP_MADVISE:
6471 return io_madvise_prep(req, sqe);
6472 case IORING_OP_OPENAT2:
6473 return io_openat2_prep(req, sqe);
6474 case IORING_OP_EPOLL_CTL:
6475 return io_epoll_ctl_prep(req, sqe);
6476 case IORING_OP_SPLICE:
6477 return io_splice_prep(req, sqe);
6478 case IORING_OP_PROVIDE_BUFFERS:
6479 return io_provide_buffers_prep(req, sqe);
6480 case IORING_OP_REMOVE_BUFFERS:
6481 return io_remove_buffers_prep(req, sqe);
6482 case IORING_OP_TEE:
6483 return io_tee_prep(req, sqe);
6484 case IORING_OP_SHUTDOWN:
6485 return io_shutdown_prep(req, sqe);
6486 case IORING_OP_RENAMEAT:
6487 return io_renameat_prep(req, sqe);
6488 case IORING_OP_UNLINKAT:
6489 return io_unlinkat_prep(req, sqe);
6490 case IORING_OP_MKDIRAT:
6491 return io_mkdirat_prep(req, sqe);
6492 case IORING_OP_SYMLINKAT:
6493 return io_symlinkat_prep(req, sqe);
6494 case IORING_OP_LINKAT:
6495 return io_linkat_prep(req, sqe);
6496 }
6497
6498 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6499 req->opcode);
6500 return -EINVAL;
6501 }
6502
6503 static int io_req_prep_async(struct io_kiocb *req)
6504 {
6505 if (!io_op_defs[req->opcode].needs_async_setup)
6506 return 0;
6507 if (WARN_ON_ONCE(req->async_data))
6508 return -EFAULT;
6509 if (io_alloc_async_data(req))
6510 return -EAGAIN;
6511
6512 switch (req->opcode) {
6513 case IORING_OP_READV:
6514 return io_rw_prep_async(req, READ);
6515 case IORING_OP_WRITEV:
6516 return io_rw_prep_async(req, WRITE);
6517 case IORING_OP_SENDMSG:
6518 return io_sendmsg_prep_async(req);
6519 case IORING_OP_RECVMSG:
6520 return io_recvmsg_prep_async(req);
6521 case IORING_OP_CONNECT:
6522 return io_connect_prep_async(req);
6523 }
6524 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6525 req->opcode);
6526 return -EFAULT;
6527 }
6528
6529 static u32 io_get_sequence(struct io_kiocb *req)
6530 {
6531 u32 seq = req->ctx->cached_sq_head;
6532
6533 /* need original cached_sq_head, but it was increased for each req */
6534 io_for_each_link(req, req)
6535 seq--;
6536 return seq;
6537 }
6538
6539 static bool io_drain_req(struct io_kiocb *req)
6540 {
6541 struct io_kiocb *pos;
6542 struct io_ring_ctx *ctx = req->ctx;
6543 struct io_defer_entry *de;
6544 int ret;
6545 u32 seq;
6546
6547 if (req->flags & REQ_F_FAIL) {
6548 io_req_complete_fail_submit(req);
6549 return true;
6550 }
6551
6552 /*
6553 * If we need to drain a request in the middle of a link, drain the
6554 * head request and the next request/link after the current link.
6555 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6556 * maintained for every request of our link.
6557 */
6558 if (ctx->drain_next) {
6559 req->flags |= REQ_F_IO_DRAIN;
6560 ctx->drain_next = false;
6561 }
6562 /* not interested in head, start from the first linked */
6563 io_for_each_link(pos, req->link) {
6564 if (pos->flags & REQ_F_IO_DRAIN) {
6565 ctx->drain_next = true;
6566 req->flags |= REQ_F_IO_DRAIN;
6567 break;
6568 }
6569 }
6570
6571 /* Still need defer if there is pending req in defer list. */
6572 spin_lock(&ctx->completion_lock);
6573 if (likely(list_empty_careful(&ctx->defer_list) &&
6574 !(req->flags & REQ_F_IO_DRAIN))) {
6575 spin_unlock(&ctx->completion_lock);
6576 ctx->drain_active = false;
6577 return false;
6578 }
6579 spin_unlock(&ctx->completion_lock);
6580
6581 seq = io_get_sequence(req);
6582 /* Still a chance to pass the sequence check */
6583 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6584 return false;
6585
6586 ret = io_req_prep_async(req);
6587 if (ret)
6588 goto fail;
6589 io_prep_async_link(req);
6590 de = kmalloc(sizeof(*de), GFP_KERNEL);
6591 if (!de) {
6592 ret = -ENOMEM;
6593 fail:
6594 io_req_complete_failed(req, ret);
6595 return true;
6596 }
6597
6598 spin_lock(&ctx->completion_lock);
6599 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6600 spin_unlock(&ctx->completion_lock);
6601 kfree(de);
6602 io_queue_async_work(req, NULL);
6603 return true;
6604 }
6605
6606 trace_io_uring_defer(ctx, req, req->user_data);
6607 de->req = req;
6608 de->seq = seq;
6609 list_add_tail(&de->list, &ctx->defer_list);
6610 spin_unlock(&ctx->completion_lock);
6611 return true;
6612 }
6613
6614 static void io_clean_op(struct io_kiocb *req)
6615 {
6616 if (req->flags & REQ_F_BUFFER_SELECTED) {
6617 switch (req->opcode) {
6618 case IORING_OP_READV:
6619 case IORING_OP_READ_FIXED:
6620 case IORING_OP_READ:
6621 kfree((void *)(unsigned long)req->rw.addr);
6622 break;
6623 case IORING_OP_RECVMSG:
6624 case IORING_OP_RECV:
6625 kfree(req->sr_msg.kbuf);
6626 break;
6627 }
6628 }
6629
6630 if (req->flags & REQ_F_NEED_CLEANUP) {
6631 switch (req->opcode) {
6632 case IORING_OP_READV:
6633 case IORING_OP_READ_FIXED:
6634 case IORING_OP_READ:
6635 case IORING_OP_WRITEV:
6636 case IORING_OP_WRITE_FIXED:
6637 case IORING_OP_WRITE: {
6638 struct io_async_rw *io = req->async_data;
6639
6640 kfree(io->free_iovec);
6641 break;
6642 }
6643 case IORING_OP_RECVMSG:
6644 case IORING_OP_SENDMSG: {
6645 struct io_async_msghdr *io = req->async_data;
6646
6647 kfree(io->free_iov);
6648 break;
6649 }
6650 case IORING_OP_OPENAT:
6651 case IORING_OP_OPENAT2:
6652 if (req->open.filename)
6653 putname(req->open.filename);
6654 break;
6655 case IORING_OP_RENAMEAT:
6656 putname(req->rename.oldpath);
6657 putname(req->rename.newpath);
6658 break;
6659 case IORING_OP_UNLINKAT:
6660 putname(req->unlink.filename);
6661 break;
6662 case IORING_OP_MKDIRAT:
6663 putname(req->mkdir.filename);
6664 break;
6665 case IORING_OP_SYMLINKAT:
6666 putname(req->symlink.oldpath);
6667 putname(req->symlink.newpath);
6668 break;
6669 case IORING_OP_LINKAT:
6670 putname(req->hardlink.oldpath);
6671 putname(req->hardlink.newpath);
6672 break;
6673 }
6674 }
6675 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6676 kfree(req->apoll->double_poll);
6677 kfree(req->apoll);
6678 req->apoll = NULL;
6679 }
6680 if (req->flags & REQ_F_INFLIGHT) {
6681 struct io_uring_task *tctx = req->task->io_uring;
6682
6683 atomic_dec(&tctx->inflight_tracked);
6684 }
6685 if (req->flags & REQ_F_CREDS)
6686 put_cred(req->creds);
6687
6688 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6689 }
6690
6691 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6692 {
6693 struct io_ring_ctx *ctx = req->ctx;
6694 const struct cred *creds = NULL;
6695 int ret;
6696
6697 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6698 creds = override_creds(req->creds);
6699
6700 switch (req->opcode) {
6701 case IORING_OP_NOP:
6702 ret = io_nop(req, issue_flags);
6703 break;
6704 case IORING_OP_READV:
6705 case IORING_OP_READ_FIXED:
6706 case IORING_OP_READ:
6707 ret = io_read(req, issue_flags);
6708 break;
6709 case IORING_OP_WRITEV:
6710 case IORING_OP_WRITE_FIXED:
6711 case IORING_OP_WRITE:
6712 ret = io_write(req, issue_flags);
6713 break;
6714 case IORING_OP_FSYNC:
6715 ret = io_fsync(req, issue_flags);
6716 break;
6717 case IORING_OP_POLL_ADD:
6718 ret = io_poll_add(req, issue_flags);
6719 break;
6720 case IORING_OP_POLL_REMOVE:
6721 ret = io_poll_update(req, issue_flags);
6722 break;
6723 case IORING_OP_SYNC_FILE_RANGE:
6724 ret = io_sync_file_range(req, issue_flags);
6725 break;
6726 case IORING_OP_SENDMSG:
6727 ret = io_sendmsg(req, issue_flags);
6728 break;
6729 case IORING_OP_SEND:
6730 ret = io_send(req, issue_flags);
6731 break;
6732 case IORING_OP_RECVMSG:
6733 ret = io_recvmsg(req, issue_flags);
6734 break;
6735 case IORING_OP_RECV:
6736 ret = io_recv(req, issue_flags);
6737 break;
6738 case IORING_OP_TIMEOUT:
6739 ret = io_timeout(req, issue_flags);
6740 break;
6741 case IORING_OP_TIMEOUT_REMOVE:
6742 ret = io_timeout_remove(req, issue_flags);
6743 break;
6744 case IORING_OP_ACCEPT:
6745 ret = io_accept(req, issue_flags);
6746 break;
6747 case IORING_OP_CONNECT:
6748 ret = io_connect(req, issue_flags);
6749 break;
6750 case IORING_OP_ASYNC_CANCEL:
6751 ret = io_async_cancel(req, issue_flags);
6752 break;
6753 case IORING_OP_FALLOCATE:
6754 ret = io_fallocate(req, issue_flags);
6755 break;
6756 case IORING_OP_OPENAT:
6757 ret = io_openat(req, issue_flags);
6758 break;
6759 case IORING_OP_CLOSE:
6760 ret = io_close(req, issue_flags);
6761 break;
6762 case IORING_OP_FILES_UPDATE:
6763 ret = io_files_update(req, issue_flags);
6764 break;
6765 case IORING_OP_STATX:
6766 ret = io_statx(req, issue_flags);
6767 break;
6768 case IORING_OP_FADVISE:
6769 ret = io_fadvise(req, issue_flags);
6770 break;
6771 case IORING_OP_MADVISE:
6772 ret = io_madvise(req, issue_flags);
6773 break;
6774 case IORING_OP_OPENAT2:
6775 ret = io_openat2(req, issue_flags);
6776 break;
6777 case IORING_OP_EPOLL_CTL:
6778 ret = io_epoll_ctl(req, issue_flags);
6779 break;
6780 case IORING_OP_SPLICE:
6781 ret = io_splice(req, issue_flags);
6782 break;
6783 case IORING_OP_PROVIDE_BUFFERS:
6784 ret = io_provide_buffers(req, issue_flags);
6785 break;
6786 case IORING_OP_REMOVE_BUFFERS:
6787 ret = io_remove_buffers(req, issue_flags);
6788 break;
6789 case IORING_OP_TEE:
6790 ret = io_tee(req, issue_flags);
6791 break;
6792 case IORING_OP_SHUTDOWN:
6793 ret = io_shutdown(req, issue_flags);
6794 break;
6795 case IORING_OP_RENAMEAT:
6796 ret = io_renameat(req, issue_flags);
6797 break;
6798 case IORING_OP_UNLINKAT:
6799 ret = io_unlinkat(req, issue_flags);
6800 break;
6801 case IORING_OP_MKDIRAT:
6802 ret = io_mkdirat(req, issue_flags);
6803 break;
6804 case IORING_OP_SYMLINKAT:
6805 ret = io_symlinkat(req, issue_flags);
6806 break;
6807 case IORING_OP_LINKAT:
6808 ret = io_linkat(req, issue_flags);
6809 break;
6810 default:
6811 ret = -EINVAL;
6812 break;
6813 }
6814
6815 if (creds)
6816 revert_creds(creds);
6817 if (ret)
6818 return ret;
6819 /* If the op doesn't have a file, we're not polling for it */
6820 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6821 io_iopoll_req_issued(req);
6822
6823 return 0;
6824 }
6825
6826 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6827 {
6828 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6829
6830 req = io_put_req_find_next(req);
6831 return req ? &req->work : NULL;
6832 }
6833
6834 static void io_wq_submit_work(struct io_wq_work *work)
6835 {
6836 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6837 struct io_kiocb *timeout;
6838 int ret = 0;
6839
6840 /* one will be dropped by ->io_free_work() after returning to io-wq */
6841 if (!(req->flags & REQ_F_REFCOUNT))
6842 __io_req_set_refcount(req, 2);
6843 else
6844 req_ref_get(req);
6845
6846 timeout = io_prep_linked_timeout(req);
6847 if (timeout)
6848 io_queue_linked_timeout(timeout);
6849
6850 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6851 if (work->flags & IO_WQ_WORK_CANCEL)
6852 ret = -ECANCELED;
6853
6854 if (!ret) {
6855 do {
6856 ret = io_issue_sqe(req, 0);
6857 /*
6858 * We can get EAGAIN for polled IO even though we're
6859 * forcing a sync submission from here, since we can't
6860 * wait for request slots on the block side.
6861 */
6862 if (ret != -EAGAIN)
6863 break;
6864 cond_resched();
6865 } while (1);
6866 }
6867
6868 /* avoid locking problems by failing it from a clean context */
6869 if (ret)
6870 io_req_task_queue_fail(req, ret);
6871 }
6872
6873 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6874 unsigned i)
6875 {
6876 return &table->files[i];
6877 }
6878
6879 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6880 int index)
6881 {
6882 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6883
6884 return (struct file *) (slot->file_ptr & FFS_MASK);
6885 }
6886
6887 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6888 {
6889 unsigned long file_ptr = (unsigned long) file;
6890
6891 if (__io_file_supports_nowait(file, READ))
6892 file_ptr |= FFS_ASYNC_READ;
6893 if (__io_file_supports_nowait(file, WRITE))
6894 file_ptr |= FFS_ASYNC_WRITE;
6895 if (S_ISREG(file_inode(file)->i_mode))
6896 file_ptr |= FFS_ISREG;
6897 file_slot->file_ptr = file_ptr;
6898 }
6899
6900 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6901 struct io_kiocb *req, int fd)
6902 {
6903 struct file *file;
6904 unsigned long file_ptr;
6905
6906 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6907 return NULL;
6908 fd = array_index_nospec(fd, ctx->nr_user_files);
6909 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6910 file = (struct file *) (file_ptr & FFS_MASK);
6911 file_ptr &= ~FFS_MASK;
6912 /* mask in overlapping REQ_F and FFS bits */
6913 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6914 io_req_set_rsrc_node(req);
6915 return file;
6916 }
6917
6918 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6919 struct io_kiocb *req, int fd)
6920 {
6921 struct file *file = fget(fd);
6922
6923 trace_io_uring_file_get(ctx, fd);
6924
6925 /* we don't allow fixed io_uring files */
6926 if (file && unlikely(file->f_op == &io_uring_fops))
6927 io_req_track_inflight(req);
6928 return file;
6929 }
6930
6931 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6932 struct io_kiocb *req, int fd, bool fixed)
6933 {
6934 if (fixed)
6935 return io_file_get_fixed(ctx, req, fd);
6936 else
6937 return io_file_get_normal(ctx, req, fd);
6938 }
6939
6940 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6941 {
6942 struct io_kiocb *prev = req->timeout.prev;
6943 int ret = -ENOENT;
6944
6945 if (prev) {
6946 if (!(req->task->flags & PF_EXITING))
6947 ret = io_try_cancel_userdata(req, prev->user_data);
6948 io_req_complete_post(req, ret ?: -ETIME, 0);
6949 io_put_req(prev);
6950 } else {
6951 io_req_complete_post(req, -ETIME, 0);
6952 }
6953 }
6954
6955 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6956 {
6957 struct io_timeout_data *data = container_of(timer,
6958 struct io_timeout_data, timer);
6959 struct io_kiocb *prev, *req = data->req;
6960 struct io_ring_ctx *ctx = req->ctx;
6961 unsigned long flags;
6962
6963 spin_lock_irqsave(&ctx->timeout_lock, flags);
6964 prev = req->timeout.head;
6965 req->timeout.head = NULL;
6966
6967 /*
6968 * We don't expect the list to be empty, that will only happen if we
6969 * race with the completion of the linked work.
6970 */
6971 if (prev) {
6972 io_remove_next_linked(prev);
6973 if (!req_ref_inc_not_zero(prev))
6974 prev = NULL;
6975 }
6976 list_del(&req->timeout.list);
6977 req->timeout.prev = prev;
6978 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6979
6980 req->io_task_work.func = io_req_task_link_timeout;
6981 io_req_task_work_add(req);
6982 return HRTIMER_NORESTART;
6983 }
6984
6985 static void io_queue_linked_timeout(struct io_kiocb *req)
6986 {
6987 struct io_ring_ctx *ctx = req->ctx;
6988
6989 spin_lock_irq(&ctx->timeout_lock);
6990 /*
6991 * If the back reference is NULL, then our linked request finished
6992 * before we got a chance to setup the timer
6993 */
6994 if (req->timeout.head) {
6995 struct io_timeout_data *data = req->async_data;
6996
6997 data->timer.function = io_link_timeout_fn;
6998 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6999 data->mode);
7000 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7001 }
7002 spin_unlock_irq(&ctx->timeout_lock);
7003 /* drop submission reference */
7004 io_put_req(req);
7005 }
7006
7007 static void __io_queue_sqe(struct io_kiocb *req)
7008 __must_hold(&req->ctx->uring_lock)
7009 {
7010 struct io_kiocb *linked_timeout;
7011 int ret;
7012
7013 issue_sqe:
7014 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7015
7016 /*
7017 * We async punt it if the file wasn't marked NOWAIT, or if the file
7018 * doesn't support non-blocking read/write attempts
7019 */
7020 if (likely(!ret)) {
7021 if (req->flags & REQ_F_COMPLETE_INLINE) {
7022 struct io_ring_ctx *ctx = req->ctx;
7023 struct io_submit_state *state = &ctx->submit_state;
7024
7025 state->compl_reqs[state->compl_nr++] = req;
7026 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7027 io_submit_flush_completions(ctx);
7028 return;
7029 }
7030
7031 linked_timeout = io_prep_linked_timeout(req);
7032 if (linked_timeout)
7033 io_queue_linked_timeout(linked_timeout);
7034 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7035 linked_timeout = io_prep_linked_timeout(req);
7036
7037 switch (io_arm_poll_handler(req)) {
7038 case IO_APOLL_READY:
7039 if (linked_timeout)
7040 io_queue_linked_timeout(linked_timeout);
7041 goto issue_sqe;
7042 case IO_APOLL_ABORTED:
7043 /*
7044 * Queued up for async execution, worker will release
7045 * submit reference when the iocb is actually submitted.
7046 */
7047 io_queue_async_work(req, NULL);
7048 break;
7049 }
7050
7051 if (linked_timeout)
7052 io_queue_linked_timeout(linked_timeout);
7053 } else {
7054 io_req_complete_failed(req, ret);
7055 }
7056 }
7057
7058 static inline void io_queue_sqe(struct io_kiocb *req)
7059 __must_hold(&req->ctx->uring_lock)
7060 {
7061 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7062 return;
7063
7064 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7065 __io_queue_sqe(req);
7066 } else if (req->flags & REQ_F_FAIL) {
7067 io_req_complete_fail_submit(req);
7068 } else {
7069 int ret = io_req_prep_async(req);
7070
7071 if (unlikely(ret))
7072 io_req_complete_failed(req, ret);
7073 else
7074 io_queue_async_work(req, NULL);
7075 }
7076 }
7077
7078 /*
7079 * Check SQE restrictions (opcode and flags).
7080 *
7081 * Returns 'true' if SQE is allowed, 'false' otherwise.
7082 */
7083 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7084 struct io_kiocb *req,
7085 unsigned int sqe_flags)
7086 {
7087 if (likely(!ctx->restricted))
7088 return true;
7089
7090 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7091 return false;
7092
7093 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7094 ctx->restrictions.sqe_flags_required)
7095 return false;
7096
7097 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7098 ctx->restrictions.sqe_flags_required))
7099 return false;
7100
7101 return true;
7102 }
7103
7104 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7105 const struct io_uring_sqe *sqe)
7106 __must_hold(&ctx->uring_lock)
7107 {
7108 struct io_submit_state *state;
7109 unsigned int sqe_flags;
7110 int personality, ret = 0;
7111
7112 /* req is partially pre-initialised, see io_preinit_req() */
7113 req->opcode = READ_ONCE(sqe->opcode);
7114 /* same numerical values with corresponding REQ_F_*, safe to copy */
7115 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7116 req->user_data = READ_ONCE(sqe->user_data);
7117 req->file = NULL;
7118 req->fixed_rsrc_refs = NULL;
7119 req->task = current;
7120
7121 /* enforce forwards compatibility on users */
7122 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7123 return -EINVAL;
7124 if (unlikely(req->opcode >= IORING_OP_LAST))
7125 return -EINVAL;
7126 if (!io_check_restriction(ctx, req, sqe_flags))
7127 return -EACCES;
7128
7129 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7130 !io_op_defs[req->opcode].buffer_select)
7131 return -EOPNOTSUPP;
7132 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7133 ctx->drain_active = true;
7134
7135 personality = READ_ONCE(sqe->personality);
7136 if (personality) {
7137 req->creds = xa_load(&ctx->personalities, personality);
7138 if (!req->creds)
7139 return -EINVAL;
7140 get_cred(req->creds);
7141 req->flags |= REQ_F_CREDS;
7142 }
7143 state = &ctx->submit_state;
7144
7145 /*
7146 * Plug now if we have more than 1 IO left after this, and the target
7147 * is potentially a read/write to block based storage.
7148 */
7149 if (!state->plug_started && state->ios_left > 1 &&
7150 io_op_defs[req->opcode].plug) {
7151 blk_start_plug(&state->plug);
7152 state->plug_started = true;
7153 }
7154
7155 if (io_op_defs[req->opcode].needs_file) {
7156 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7157 (sqe_flags & IOSQE_FIXED_FILE));
7158 if (unlikely(!req->file))
7159 ret = -EBADF;
7160 }
7161
7162 state->ios_left--;
7163 return ret;
7164 }
7165
7166 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7167 const struct io_uring_sqe *sqe)
7168 __must_hold(&ctx->uring_lock)
7169 {
7170 struct io_submit_link *link = &ctx->submit_state.link;
7171 int ret;
7172
7173 ret = io_init_req(ctx, req, sqe);
7174 if (unlikely(ret)) {
7175 fail_req:
7176 /* fail even hard links since we don't submit */
7177 if (link->head) {
7178 /*
7179 * we can judge a link req is failed or cancelled by if
7180 * REQ_F_FAIL is set, but the head is an exception since
7181 * it may be set REQ_F_FAIL because of other req's failure
7182 * so let's leverage req->result to distinguish if a head
7183 * is set REQ_F_FAIL because of its failure or other req's
7184 * failure so that we can set the correct ret code for it.
7185 * init result here to avoid affecting the normal path.
7186 */
7187 if (!(link->head->flags & REQ_F_FAIL))
7188 req_fail_link_node(link->head, -ECANCELED);
7189 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7190 /*
7191 * the current req is a normal req, we should return
7192 * error and thus break the submittion loop.
7193 */
7194 io_req_complete_failed(req, ret);
7195 return ret;
7196 }
7197 req_fail_link_node(req, ret);
7198 } else {
7199 ret = io_req_prep(req, sqe);
7200 if (unlikely(ret))
7201 goto fail_req;
7202 }
7203
7204 /* don't need @sqe from now on */
7205 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7206 req->flags, true,
7207 ctx->flags & IORING_SETUP_SQPOLL);
7208
7209 /*
7210 * If we already have a head request, queue this one for async
7211 * submittal once the head completes. If we don't have a head but
7212 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7213 * submitted sync once the chain is complete. If none of those
7214 * conditions are true (normal request), then just queue it.
7215 */
7216 if (link->head) {
7217 struct io_kiocb *head = link->head;
7218
7219 if (!(req->flags & REQ_F_FAIL)) {
7220 ret = io_req_prep_async(req);
7221 if (unlikely(ret)) {
7222 req_fail_link_node(req, ret);
7223 if (!(head->flags & REQ_F_FAIL))
7224 req_fail_link_node(head, -ECANCELED);
7225 }
7226 }
7227 trace_io_uring_link(ctx, req, head);
7228 link->last->link = req;
7229 link->last = req;
7230
7231 /* last request of a link, enqueue the link */
7232 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7233 link->head = NULL;
7234 io_queue_sqe(head);
7235 }
7236 } else {
7237 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7238 link->head = req;
7239 link->last = req;
7240 } else {
7241 io_queue_sqe(req);
7242 }
7243 }
7244
7245 return 0;
7246 }
7247
7248 /*
7249 * Batched submission is done, ensure local IO is flushed out.
7250 */
7251 static void io_submit_state_end(struct io_submit_state *state,
7252 struct io_ring_ctx *ctx)
7253 {
7254 if (state->link.head)
7255 io_queue_sqe(state->link.head);
7256 if (state->compl_nr)
7257 io_submit_flush_completions(ctx);
7258 if (state->plug_started)
7259 blk_finish_plug(&state->plug);
7260 }
7261
7262 /*
7263 * Start submission side cache.
7264 */
7265 static void io_submit_state_start(struct io_submit_state *state,
7266 unsigned int max_ios)
7267 {
7268 state->plug_started = false;
7269 state->ios_left = max_ios;
7270 /* set only head, no need to init link_last in advance */
7271 state->link.head = NULL;
7272 }
7273
7274 static void io_commit_sqring(struct io_ring_ctx *ctx)
7275 {
7276 struct io_rings *rings = ctx->rings;
7277
7278 /*
7279 * Ensure any loads from the SQEs are done at this point,
7280 * since once we write the new head, the application could
7281 * write new data to them.
7282 */
7283 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7284 }
7285
7286 /*
7287 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7288 * that is mapped by userspace. This means that care needs to be taken to
7289 * ensure that reads are stable, as we cannot rely on userspace always
7290 * being a good citizen. If members of the sqe are validated and then later
7291 * used, it's important that those reads are done through READ_ONCE() to
7292 * prevent a re-load down the line.
7293 */
7294 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7295 {
7296 unsigned head, mask = ctx->sq_entries - 1;
7297 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7298
7299 /*
7300 * The cached sq head (or cq tail) serves two purposes:
7301 *
7302 * 1) allows us to batch the cost of updating the user visible
7303 * head updates.
7304 * 2) allows the kernel side to track the head on its own, even
7305 * though the application is the one updating it.
7306 */
7307 head = READ_ONCE(ctx->sq_array[sq_idx]);
7308 if (likely(head < ctx->sq_entries))
7309 return &ctx->sq_sqes[head];
7310
7311 /* drop invalid entries */
7312 ctx->cq_extra--;
7313 WRITE_ONCE(ctx->rings->sq_dropped,
7314 READ_ONCE(ctx->rings->sq_dropped) + 1);
7315 return NULL;
7316 }
7317
7318 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7319 __must_hold(&ctx->uring_lock)
7320 {
7321 int submitted = 0;
7322
7323 /* make sure SQ entry isn't read before tail */
7324 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7325 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7326 return -EAGAIN;
7327 io_get_task_refs(nr);
7328
7329 io_submit_state_start(&ctx->submit_state, nr);
7330 while (submitted < nr) {
7331 const struct io_uring_sqe *sqe;
7332 struct io_kiocb *req;
7333
7334 req = io_alloc_req(ctx);
7335 if (unlikely(!req)) {
7336 if (!submitted)
7337 submitted = -EAGAIN;
7338 break;
7339 }
7340 sqe = io_get_sqe(ctx);
7341 if (unlikely(!sqe)) {
7342 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7343 break;
7344 }
7345 /* will complete beyond this point, count as submitted */
7346 submitted++;
7347 if (io_submit_sqe(ctx, req, sqe))
7348 break;
7349 }
7350
7351 if (unlikely(submitted != nr)) {
7352 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7353 int unused = nr - ref_used;
7354
7355 current->io_uring->cached_refs += unused;
7356 percpu_ref_put_many(&ctx->refs, unused);
7357 }
7358
7359 io_submit_state_end(&ctx->submit_state, ctx);
7360 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7361 io_commit_sqring(ctx);
7362
7363 return submitted;
7364 }
7365
7366 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7367 {
7368 return READ_ONCE(sqd->state);
7369 }
7370
7371 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7372 {
7373 /* Tell userspace we may need a wakeup call */
7374 spin_lock(&ctx->completion_lock);
7375 WRITE_ONCE(ctx->rings->sq_flags,
7376 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7377 spin_unlock(&ctx->completion_lock);
7378 }
7379
7380 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7381 {
7382 spin_lock(&ctx->completion_lock);
7383 WRITE_ONCE(ctx->rings->sq_flags,
7384 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7385 spin_unlock(&ctx->completion_lock);
7386 }
7387
7388 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7389 {
7390 unsigned int to_submit;
7391 int ret = 0;
7392
7393 to_submit = io_sqring_entries(ctx);
7394 /* if we're handling multiple rings, cap submit size for fairness */
7395 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7396 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7397
7398 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7399 unsigned nr_events = 0;
7400 const struct cred *creds = NULL;
7401
7402 if (ctx->sq_creds != current_cred())
7403 creds = override_creds(ctx->sq_creds);
7404
7405 mutex_lock(&ctx->uring_lock);
7406 if (!list_empty(&ctx->iopoll_list))
7407 io_do_iopoll(ctx, &nr_events, 0);
7408
7409 /*
7410 * Don't submit if refs are dying, good for io_uring_register(),
7411 * but also it is relied upon by io_ring_exit_work()
7412 */
7413 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7414 !(ctx->flags & IORING_SETUP_R_DISABLED))
7415 ret = io_submit_sqes(ctx, to_submit);
7416 mutex_unlock(&ctx->uring_lock);
7417
7418 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7419 wake_up(&ctx->sqo_sq_wait);
7420 if (creds)
7421 revert_creds(creds);
7422 }
7423
7424 return ret;
7425 }
7426
7427 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7428 {
7429 struct io_ring_ctx *ctx;
7430 unsigned sq_thread_idle = 0;
7431
7432 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7433 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7434 sqd->sq_thread_idle = sq_thread_idle;
7435 }
7436
7437 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7438 {
7439 bool did_sig = false;
7440 struct ksignal ksig;
7441
7442 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7443 signal_pending(current)) {
7444 mutex_unlock(&sqd->lock);
7445 if (signal_pending(current))
7446 did_sig = get_signal(&ksig);
7447 cond_resched();
7448 mutex_lock(&sqd->lock);
7449 }
7450 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7451 }
7452
7453 static int io_sq_thread(void *data)
7454 {
7455 struct io_sq_data *sqd = data;
7456 struct io_ring_ctx *ctx;
7457 unsigned long timeout = 0;
7458 char buf[TASK_COMM_LEN];
7459 DEFINE_WAIT(wait);
7460
7461 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7462 set_task_comm(current, buf);
7463
7464 if (sqd->sq_cpu != -1)
7465 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7466 else
7467 set_cpus_allowed_ptr(current, cpu_online_mask);
7468 current->flags |= PF_NO_SETAFFINITY;
7469
7470 mutex_lock(&sqd->lock);
7471 while (1) {
7472 bool cap_entries, sqt_spin = false;
7473
7474 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7475 if (io_sqd_handle_event(sqd))
7476 break;
7477 timeout = jiffies + sqd->sq_thread_idle;
7478 }
7479
7480 cap_entries = !list_is_singular(&sqd->ctx_list);
7481 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7482 int ret = __io_sq_thread(ctx, cap_entries);
7483
7484 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7485 sqt_spin = true;
7486 }
7487 if (io_run_task_work())
7488 sqt_spin = true;
7489
7490 if (sqt_spin || !time_after(jiffies, timeout)) {
7491 cond_resched();
7492 if (sqt_spin)
7493 timeout = jiffies + sqd->sq_thread_idle;
7494 continue;
7495 }
7496
7497 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7498 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7499 bool needs_sched = true;
7500
7501 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7502 io_ring_set_wakeup_flag(ctx);
7503
7504 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7505 !list_empty_careful(&ctx->iopoll_list)) {
7506 needs_sched = false;
7507 break;
7508 }
7509 if (io_sqring_entries(ctx)) {
7510 needs_sched = false;
7511 break;
7512 }
7513 }
7514
7515 if (needs_sched) {
7516 mutex_unlock(&sqd->lock);
7517 schedule();
7518 mutex_lock(&sqd->lock);
7519 }
7520 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7521 io_ring_clear_wakeup_flag(ctx);
7522 }
7523
7524 finish_wait(&sqd->wait, &wait);
7525 timeout = jiffies + sqd->sq_thread_idle;
7526 }
7527
7528 io_uring_cancel_generic(true, sqd);
7529 sqd->thread = NULL;
7530 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7531 io_ring_set_wakeup_flag(ctx);
7532 io_run_task_work();
7533 mutex_unlock(&sqd->lock);
7534
7535 complete(&sqd->exited);
7536 do_exit(0);
7537 }
7538
7539 struct io_wait_queue {
7540 struct wait_queue_entry wq;
7541 struct io_ring_ctx *ctx;
7542 unsigned cq_tail;
7543 unsigned nr_timeouts;
7544 };
7545
7546 static inline bool io_should_wake(struct io_wait_queue *iowq)
7547 {
7548 struct io_ring_ctx *ctx = iowq->ctx;
7549 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7550
7551 /*
7552 * Wake up if we have enough events, or if a timeout occurred since we
7553 * started waiting. For timeouts, we always want to return to userspace,
7554 * regardless of event count.
7555 */
7556 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7557 }
7558
7559 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7560 int wake_flags, void *key)
7561 {
7562 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7563 wq);
7564
7565 /*
7566 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7567 * the task, and the next invocation will do it.
7568 */
7569 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7570 return autoremove_wake_function(curr, mode, wake_flags, key);
7571 return -1;
7572 }
7573
7574 static int io_run_task_work_sig(void)
7575 {
7576 if (io_run_task_work())
7577 return 1;
7578 if (!signal_pending(current))
7579 return 0;
7580 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7581 return -ERESTARTSYS;
7582 return -EINTR;
7583 }
7584
7585 /* when returns >0, the caller should retry */
7586 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7587 struct io_wait_queue *iowq,
7588 ktime_t timeout)
7589 {
7590 int ret;
7591
7592 /* make sure we run task_work before checking for signals */
7593 ret = io_run_task_work_sig();
7594 if (ret || io_should_wake(iowq))
7595 return ret;
7596 /* let the caller flush overflows, retry */
7597 if (test_bit(0, &ctx->check_cq_overflow))
7598 return 1;
7599
7600 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7601 return -ETIME;
7602 return 1;
7603 }
7604
7605 /*
7606 * Wait until events become available, if we don't already have some. The
7607 * application must reap them itself, as they reside on the shared cq ring.
7608 */
7609 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7610 const sigset_t __user *sig, size_t sigsz,
7611 struct __kernel_timespec __user *uts)
7612 {
7613 struct io_wait_queue iowq;
7614 struct io_rings *rings = ctx->rings;
7615 ktime_t timeout = KTIME_MAX;
7616 int ret;
7617
7618 do {
7619 io_cqring_overflow_flush(ctx);
7620 if (io_cqring_events(ctx) >= min_events)
7621 return 0;
7622 if (!io_run_task_work())
7623 break;
7624 } while (1);
7625
7626 if (uts) {
7627 struct timespec64 ts;
7628
7629 if (get_timespec64(&ts, uts))
7630 return -EFAULT;
7631 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7632 }
7633
7634 if (sig) {
7635 #ifdef CONFIG_COMPAT
7636 if (in_compat_syscall())
7637 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7638 sigsz);
7639 else
7640 #endif
7641 ret = set_user_sigmask(sig, sigsz);
7642
7643 if (ret)
7644 return ret;
7645 }
7646
7647 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7648 iowq.wq.private = current;
7649 INIT_LIST_HEAD(&iowq.wq.entry);
7650 iowq.ctx = ctx;
7651 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7652 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7653
7654 trace_io_uring_cqring_wait(ctx, min_events);
7655 do {
7656 /* if we can't even flush overflow, don't wait for more */
7657 if (!io_cqring_overflow_flush(ctx)) {
7658 ret = -EBUSY;
7659 break;
7660 }
7661 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7662 TASK_INTERRUPTIBLE);
7663 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7664 finish_wait(&ctx->cq_wait, &iowq.wq);
7665 cond_resched();
7666 } while (ret > 0);
7667
7668 restore_saved_sigmask_unless(ret == -EINTR);
7669
7670 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7671 }
7672
7673 static void io_free_page_table(void **table, size_t size)
7674 {
7675 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7676
7677 for (i = 0; i < nr_tables; i++)
7678 kfree(table[i]);
7679 kfree(table);
7680 }
7681
7682 static void **io_alloc_page_table(size_t size)
7683 {
7684 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7685 size_t init_size = size;
7686 void **table;
7687
7688 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7689 if (!table)
7690 return NULL;
7691
7692 for (i = 0; i < nr_tables; i++) {
7693 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7694
7695 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7696 if (!table[i]) {
7697 io_free_page_table(table, init_size);
7698 return NULL;
7699 }
7700 size -= this_size;
7701 }
7702 return table;
7703 }
7704
7705 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7706 {
7707 percpu_ref_exit(&ref_node->refs);
7708 kfree(ref_node);
7709 }
7710
7711 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7712 {
7713 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7714 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7715 unsigned long flags;
7716 bool first_add = false;
7717 unsigned long delay = HZ;
7718
7719 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7720 node->done = true;
7721
7722 /* if we are mid-quiesce then do not delay */
7723 if (node->rsrc_data->quiesce)
7724 delay = 0;
7725
7726 while (!list_empty(&ctx->rsrc_ref_list)) {
7727 node = list_first_entry(&ctx->rsrc_ref_list,
7728 struct io_rsrc_node, node);
7729 /* recycle ref nodes in order */
7730 if (!node->done)
7731 break;
7732 list_del(&node->node);
7733 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7734 }
7735 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7736
7737 if (first_add)
7738 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7739 }
7740
7741 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7742 {
7743 struct io_rsrc_node *ref_node;
7744
7745 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7746 if (!ref_node)
7747 return NULL;
7748
7749 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7750 0, GFP_KERNEL)) {
7751 kfree(ref_node);
7752 return NULL;
7753 }
7754 INIT_LIST_HEAD(&ref_node->node);
7755 INIT_LIST_HEAD(&ref_node->rsrc_list);
7756 ref_node->done = false;
7757 return ref_node;
7758 }
7759
7760 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7761 struct io_rsrc_data *data_to_kill)
7762 {
7763 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7764 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7765
7766 if (data_to_kill) {
7767 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7768
7769 rsrc_node->rsrc_data = data_to_kill;
7770 spin_lock_irq(&ctx->rsrc_ref_lock);
7771 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7772 spin_unlock_irq(&ctx->rsrc_ref_lock);
7773
7774 atomic_inc(&data_to_kill->refs);
7775 percpu_ref_kill(&rsrc_node->refs);
7776 ctx->rsrc_node = NULL;
7777 }
7778
7779 if (!ctx->rsrc_node) {
7780 ctx->rsrc_node = ctx->rsrc_backup_node;
7781 ctx->rsrc_backup_node = NULL;
7782 }
7783 }
7784
7785 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7786 {
7787 if (ctx->rsrc_backup_node)
7788 return 0;
7789 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7790 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7791 }
7792
7793 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7794 {
7795 int ret;
7796
7797 /* As we may drop ->uring_lock, other task may have started quiesce */
7798 if (data->quiesce)
7799 return -ENXIO;
7800
7801 data->quiesce = true;
7802 do {
7803 ret = io_rsrc_node_switch_start(ctx);
7804 if (ret)
7805 break;
7806 io_rsrc_node_switch(ctx, data);
7807
7808 /* kill initial ref, already quiesced if zero */
7809 if (atomic_dec_and_test(&data->refs))
7810 break;
7811 mutex_unlock(&ctx->uring_lock);
7812 flush_delayed_work(&ctx->rsrc_put_work);
7813 ret = wait_for_completion_interruptible(&data->done);
7814 if (!ret) {
7815 mutex_lock(&ctx->uring_lock);
7816 if (atomic_read(&data->refs) > 0) {
7817 /*
7818 * it has been revived by another thread while
7819 * we were unlocked
7820 */
7821 mutex_unlock(&ctx->uring_lock);
7822 } else {
7823 break;
7824 }
7825 }
7826
7827 atomic_inc(&data->refs);
7828 /* wait for all works potentially completing data->done */
7829 flush_delayed_work(&ctx->rsrc_put_work);
7830 reinit_completion(&data->done);
7831
7832 ret = io_run_task_work_sig();
7833 mutex_lock(&ctx->uring_lock);
7834 } while (ret >= 0);
7835 data->quiesce = false;
7836
7837 return ret;
7838 }
7839
7840 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7841 {
7842 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7843 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7844
7845 return &data->tags[table_idx][off];
7846 }
7847
7848 static void io_rsrc_data_free(struct io_rsrc_data *data)
7849 {
7850 size_t size = data->nr * sizeof(data->tags[0][0]);
7851
7852 if (data->tags)
7853 io_free_page_table((void **)data->tags, size);
7854 kfree(data);
7855 }
7856
7857 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7858 u64 __user *utags, unsigned nr,
7859 struct io_rsrc_data **pdata)
7860 {
7861 struct io_rsrc_data *data;
7862 int ret = -ENOMEM;
7863 unsigned i;
7864
7865 data = kzalloc(sizeof(*data), GFP_KERNEL);
7866 if (!data)
7867 return -ENOMEM;
7868 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7869 if (!data->tags) {
7870 kfree(data);
7871 return -ENOMEM;
7872 }
7873
7874 data->nr = nr;
7875 data->ctx = ctx;
7876 data->do_put = do_put;
7877 if (utags) {
7878 ret = -EFAULT;
7879 for (i = 0; i < nr; i++) {
7880 u64 *tag_slot = io_get_tag_slot(data, i);
7881
7882 if (copy_from_user(tag_slot, &utags[i],
7883 sizeof(*tag_slot)))
7884 goto fail;
7885 }
7886 }
7887
7888 atomic_set(&data->refs, 1);
7889 init_completion(&data->done);
7890 *pdata = data;
7891 return 0;
7892 fail:
7893 io_rsrc_data_free(data);
7894 return ret;
7895 }
7896
7897 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7898 {
7899 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7900 GFP_KERNEL_ACCOUNT);
7901 return !!table->files;
7902 }
7903
7904 static void io_free_file_tables(struct io_file_table *table)
7905 {
7906 kvfree(table->files);
7907 table->files = NULL;
7908 }
7909
7910 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7911 {
7912 #if defined(CONFIG_UNIX)
7913 if (ctx->ring_sock) {
7914 struct sock *sock = ctx->ring_sock->sk;
7915 struct sk_buff *skb;
7916
7917 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7918 kfree_skb(skb);
7919 }
7920 #else
7921 int i;
7922
7923 for (i = 0; i < ctx->nr_user_files; i++) {
7924 struct file *file;
7925
7926 file = io_file_from_index(ctx, i);
7927 if (file)
7928 fput(file);
7929 }
7930 #endif
7931 io_free_file_tables(&ctx->file_table);
7932 io_rsrc_data_free(ctx->file_data);
7933 ctx->file_data = NULL;
7934 ctx->nr_user_files = 0;
7935 }
7936
7937 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7938 {
7939 int ret;
7940
7941 if (!ctx->file_data)
7942 return -ENXIO;
7943 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7944 if (!ret)
7945 __io_sqe_files_unregister(ctx);
7946 return ret;
7947 }
7948
7949 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7950 __releases(&sqd->lock)
7951 {
7952 WARN_ON_ONCE(sqd->thread == current);
7953
7954 /*
7955 * Do the dance but not conditional clear_bit() because it'd race with
7956 * other threads incrementing park_pending and setting the bit.
7957 */
7958 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7959 if (atomic_dec_return(&sqd->park_pending))
7960 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7961 mutex_unlock(&sqd->lock);
7962 }
7963
7964 static void io_sq_thread_park(struct io_sq_data *sqd)
7965 __acquires(&sqd->lock)
7966 {
7967 WARN_ON_ONCE(sqd->thread == current);
7968
7969 atomic_inc(&sqd->park_pending);
7970 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7971 mutex_lock(&sqd->lock);
7972 if (sqd->thread)
7973 wake_up_process(sqd->thread);
7974 }
7975
7976 static void io_sq_thread_stop(struct io_sq_data *sqd)
7977 {
7978 WARN_ON_ONCE(sqd->thread == current);
7979 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7980
7981 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7982 mutex_lock(&sqd->lock);
7983 if (sqd->thread)
7984 wake_up_process(sqd->thread);
7985 mutex_unlock(&sqd->lock);
7986 wait_for_completion(&sqd->exited);
7987 }
7988
7989 static void io_put_sq_data(struct io_sq_data *sqd)
7990 {
7991 if (refcount_dec_and_test(&sqd->refs)) {
7992 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7993
7994 io_sq_thread_stop(sqd);
7995 kfree(sqd);
7996 }
7997 }
7998
7999 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8000 {
8001 struct io_sq_data *sqd = ctx->sq_data;
8002
8003 if (sqd) {
8004 io_sq_thread_park(sqd);
8005 list_del_init(&ctx->sqd_list);
8006 io_sqd_update_thread_idle(sqd);
8007 io_sq_thread_unpark(sqd);
8008
8009 io_put_sq_data(sqd);
8010 ctx->sq_data = NULL;
8011 }
8012 }
8013
8014 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8015 {
8016 struct io_ring_ctx *ctx_attach;
8017 struct io_sq_data *sqd;
8018 struct fd f;
8019
8020 f = fdget(p->wq_fd);
8021 if (!f.file)
8022 return ERR_PTR(-ENXIO);
8023 if (f.file->f_op != &io_uring_fops) {
8024 fdput(f);
8025 return ERR_PTR(-EINVAL);
8026 }
8027
8028 ctx_attach = f.file->private_data;
8029 sqd = ctx_attach->sq_data;
8030 if (!sqd) {
8031 fdput(f);
8032 return ERR_PTR(-EINVAL);
8033 }
8034 if (sqd->task_tgid != current->tgid) {
8035 fdput(f);
8036 return ERR_PTR(-EPERM);
8037 }
8038
8039 refcount_inc(&sqd->refs);
8040 fdput(f);
8041 return sqd;
8042 }
8043
8044 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8045 bool *attached)
8046 {
8047 struct io_sq_data *sqd;
8048
8049 *attached = false;
8050 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8051 sqd = io_attach_sq_data(p);
8052 if (!IS_ERR(sqd)) {
8053 *attached = true;
8054 return sqd;
8055 }
8056 /* fall through for EPERM case, setup new sqd/task */
8057 if (PTR_ERR(sqd) != -EPERM)
8058 return sqd;
8059 }
8060
8061 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8062 if (!sqd)
8063 return ERR_PTR(-ENOMEM);
8064
8065 atomic_set(&sqd->park_pending, 0);
8066 refcount_set(&sqd->refs, 1);
8067 INIT_LIST_HEAD(&sqd->ctx_list);
8068 mutex_init(&sqd->lock);
8069 init_waitqueue_head(&sqd->wait);
8070 init_completion(&sqd->exited);
8071 return sqd;
8072 }
8073
8074 #if defined(CONFIG_UNIX)
8075 /*
8076 * Ensure the UNIX gc is aware of our file set, so we are certain that
8077 * the io_uring can be safely unregistered on process exit, even if we have
8078 * loops in the file referencing.
8079 */
8080 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8081 {
8082 struct sock *sk = ctx->ring_sock->sk;
8083 struct scm_fp_list *fpl;
8084 struct sk_buff *skb;
8085 int i, nr_files;
8086
8087 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8088 if (!fpl)
8089 return -ENOMEM;
8090
8091 skb = alloc_skb(0, GFP_KERNEL);
8092 if (!skb) {
8093 kfree(fpl);
8094 return -ENOMEM;
8095 }
8096
8097 skb->sk = sk;
8098
8099 nr_files = 0;
8100 fpl->user = get_uid(current_user());
8101 for (i = 0; i < nr; i++) {
8102 struct file *file = io_file_from_index(ctx, i + offset);
8103
8104 if (!file)
8105 continue;
8106 fpl->fp[nr_files] = get_file(file);
8107 unix_inflight(fpl->user, fpl->fp[nr_files]);
8108 nr_files++;
8109 }
8110
8111 if (nr_files) {
8112 fpl->max = SCM_MAX_FD;
8113 fpl->count = nr_files;
8114 UNIXCB(skb).fp = fpl;
8115 skb->destructor = unix_destruct_scm;
8116 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8117 skb_queue_head(&sk->sk_receive_queue, skb);
8118
8119 for (i = 0; i < nr; i++) {
8120 struct file *file = io_file_from_index(ctx, i + offset);
8121
8122 if (file)
8123 fput(file);
8124 }
8125 } else {
8126 kfree_skb(skb);
8127 free_uid(fpl->user);
8128 kfree(fpl);
8129 }
8130
8131 return 0;
8132 }
8133
8134 /*
8135 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8136 * causes regular reference counting to break down. We rely on the UNIX
8137 * garbage collection to take care of this problem for us.
8138 */
8139 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8140 {
8141 unsigned left, total;
8142 int ret = 0;
8143
8144 total = 0;
8145 left = ctx->nr_user_files;
8146 while (left) {
8147 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8148
8149 ret = __io_sqe_files_scm(ctx, this_files, total);
8150 if (ret)
8151 break;
8152 left -= this_files;
8153 total += this_files;
8154 }
8155
8156 if (!ret)
8157 return 0;
8158
8159 while (total < ctx->nr_user_files) {
8160 struct file *file = io_file_from_index(ctx, total);
8161
8162 if (file)
8163 fput(file);
8164 total++;
8165 }
8166
8167 return ret;
8168 }
8169 #else
8170 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8171 {
8172 return 0;
8173 }
8174 #endif
8175
8176 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8177 {
8178 struct file *file = prsrc->file;
8179 #if defined(CONFIG_UNIX)
8180 struct sock *sock = ctx->ring_sock->sk;
8181 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8182 struct sk_buff *skb;
8183 int i;
8184
8185 __skb_queue_head_init(&list);
8186
8187 /*
8188 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8189 * remove this entry and rearrange the file array.
8190 */
8191 skb = skb_dequeue(head);
8192 while (skb) {
8193 struct scm_fp_list *fp;
8194
8195 fp = UNIXCB(skb).fp;
8196 for (i = 0; i < fp->count; i++) {
8197 int left;
8198
8199 if (fp->fp[i] != file)
8200 continue;
8201
8202 unix_notinflight(fp->user, fp->fp[i]);
8203 left = fp->count - 1 - i;
8204 if (left) {
8205 memmove(&fp->fp[i], &fp->fp[i + 1],
8206 left * sizeof(struct file *));
8207 }
8208 fp->count--;
8209 if (!fp->count) {
8210 kfree_skb(skb);
8211 skb = NULL;
8212 } else {
8213 __skb_queue_tail(&list, skb);
8214 }
8215 fput(file);
8216 file = NULL;
8217 break;
8218 }
8219
8220 if (!file)
8221 break;
8222
8223 __skb_queue_tail(&list, skb);
8224
8225 skb = skb_dequeue(head);
8226 }
8227
8228 if (skb_peek(&list)) {
8229 spin_lock_irq(&head->lock);
8230 while ((skb = __skb_dequeue(&list)) != NULL)
8231 __skb_queue_tail(head, skb);
8232 spin_unlock_irq(&head->lock);
8233 }
8234 #else
8235 fput(file);
8236 #endif
8237 }
8238
8239 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8240 {
8241 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8242 struct io_ring_ctx *ctx = rsrc_data->ctx;
8243 struct io_rsrc_put *prsrc, *tmp;
8244
8245 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8246 list_del(&prsrc->list);
8247
8248 if (prsrc->tag) {
8249 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8250
8251 io_ring_submit_lock(ctx, lock_ring);
8252 spin_lock(&ctx->completion_lock);
8253 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8254 ctx->cq_extra++;
8255 io_commit_cqring(ctx);
8256 spin_unlock(&ctx->completion_lock);
8257 io_cqring_ev_posted(ctx);
8258 io_ring_submit_unlock(ctx, lock_ring);
8259 }
8260
8261 rsrc_data->do_put(ctx, prsrc);
8262 kfree(prsrc);
8263 }
8264
8265 io_rsrc_node_destroy(ref_node);
8266 if (atomic_dec_and_test(&rsrc_data->refs))
8267 complete(&rsrc_data->done);
8268 }
8269
8270 static void io_rsrc_put_work(struct work_struct *work)
8271 {
8272 struct io_ring_ctx *ctx;
8273 struct llist_node *node;
8274
8275 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8276 node = llist_del_all(&ctx->rsrc_put_llist);
8277
8278 while (node) {
8279 struct io_rsrc_node *ref_node;
8280 struct llist_node *next = node->next;
8281
8282 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8283 __io_rsrc_put_work(ref_node);
8284 node = next;
8285 }
8286 }
8287
8288 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8289 unsigned nr_args, u64 __user *tags)
8290 {
8291 __s32 __user *fds = (__s32 __user *) arg;
8292 struct file *file;
8293 int fd, ret;
8294 unsigned i;
8295
8296 if (ctx->file_data)
8297 return -EBUSY;
8298 if (!nr_args)
8299 return -EINVAL;
8300 if (nr_args > IORING_MAX_FIXED_FILES)
8301 return -EMFILE;
8302 if (nr_args > rlimit(RLIMIT_NOFILE))
8303 return -EMFILE;
8304 ret = io_rsrc_node_switch_start(ctx);
8305 if (ret)
8306 return ret;
8307 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8308 &ctx->file_data);
8309 if (ret)
8310 return ret;
8311
8312 ret = -ENOMEM;
8313 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8314 goto out_free;
8315
8316 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8317 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8318 ret = -EFAULT;
8319 goto out_fput;
8320 }
8321 /* allow sparse sets */
8322 if (fd == -1) {
8323 ret = -EINVAL;
8324 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8325 goto out_fput;
8326 continue;
8327 }
8328
8329 file = fget(fd);
8330 ret = -EBADF;
8331 if (unlikely(!file))
8332 goto out_fput;
8333
8334 /*
8335 * Don't allow io_uring instances to be registered. If UNIX
8336 * isn't enabled, then this causes a reference cycle and this
8337 * instance can never get freed. If UNIX is enabled we'll
8338 * handle it just fine, but there's still no point in allowing
8339 * a ring fd as it doesn't support regular read/write anyway.
8340 */
8341 if (file->f_op == &io_uring_fops) {
8342 fput(file);
8343 goto out_fput;
8344 }
8345 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8346 }
8347
8348 ret = io_sqe_files_scm(ctx);
8349 if (ret) {
8350 __io_sqe_files_unregister(ctx);
8351 return ret;
8352 }
8353
8354 io_rsrc_node_switch(ctx, NULL);
8355 return ret;
8356 out_fput:
8357 for (i = 0; i < ctx->nr_user_files; i++) {
8358 file = io_file_from_index(ctx, i);
8359 if (file)
8360 fput(file);
8361 }
8362 io_free_file_tables(&ctx->file_table);
8363 ctx->nr_user_files = 0;
8364 out_free:
8365 io_rsrc_data_free(ctx->file_data);
8366 ctx->file_data = NULL;
8367 return ret;
8368 }
8369
8370 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8371 int index)
8372 {
8373 #if defined(CONFIG_UNIX)
8374 struct sock *sock = ctx->ring_sock->sk;
8375 struct sk_buff_head *head = &sock->sk_receive_queue;
8376 struct sk_buff *skb;
8377
8378 /*
8379 * See if we can merge this file into an existing skb SCM_RIGHTS
8380 * file set. If there's no room, fall back to allocating a new skb
8381 * and filling it in.
8382 */
8383 spin_lock_irq(&head->lock);
8384 skb = skb_peek(head);
8385 if (skb) {
8386 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8387
8388 if (fpl->count < SCM_MAX_FD) {
8389 __skb_unlink(skb, head);
8390 spin_unlock_irq(&head->lock);
8391 fpl->fp[fpl->count] = get_file(file);
8392 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8393 fpl->count++;
8394 spin_lock_irq(&head->lock);
8395 __skb_queue_head(head, skb);
8396 } else {
8397 skb = NULL;
8398 }
8399 }
8400 spin_unlock_irq(&head->lock);
8401
8402 if (skb) {
8403 fput(file);
8404 return 0;
8405 }
8406
8407 return __io_sqe_files_scm(ctx, 1, index);
8408 #else
8409 return 0;
8410 #endif
8411 }
8412
8413 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8414 struct io_rsrc_node *node, void *rsrc)
8415 {
8416 struct io_rsrc_put *prsrc;
8417
8418 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8419 if (!prsrc)
8420 return -ENOMEM;
8421
8422 prsrc->tag = *io_get_tag_slot(data, idx);
8423 prsrc->rsrc = rsrc;
8424 list_add(&prsrc->list, &node->rsrc_list);
8425 return 0;
8426 }
8427
8428 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8429 unsigned int issue_flags, u32 slot_index)
8430 {
8431 struct io_ring_ctx *ctx = req->ctx;
8432 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8433 bool needs_switch = false;
8434 struct io_fixed_file *file_slot;
8435 int ret = -EBADF;
8436
8437 io_ring_submit_lock(ctx, !force_nonblock);
8438 if (file->f_op == &io_uring_fops)
8439 goto err;
8440 ret = -ENXIO;
8441 if (!ctx->file_data)
8442 goto err;
8443 ret = -EINVAL;
8444 if (slot_index >= ctx->nr_user_files)
8445 goto err;
8446
8447 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8448 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8449
8450 if (file_slot->file_ptr) {
8451 struct file *old_file;
8452
8453 ret = io_rsrc_node_switch_start(ctx);
8454 if (ret)
8455 goto err;
8456
8457 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8458 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8459 ctx->rsrc_node, old_file);
8460 if (ret)
8461 goto err;
8462 file_slot->file_ptr = 0;
8463 needs_switch = true;
8464 }
8465
8466 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8467 io_fixed_file_set(file_slot, file);
8468 ret = io_sqe_file_register(ctx, file, slot_index);
8469 if (ret) {
8470 file_slot->file_ptr = 0;
8471 goto err;
8472 }
8473
8474 ret = 0;
8475 err:
8476 if (needs_switch)
8477 io_rsrc_node_switch(ctx, ctx->file_data);
8478 io_ring_submit_unlock(ctx, !force_nonblock);
8479 if (ret)
8480 fput(file);
8481 return ret;
8482 }
8483
8484 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8485 {
8486 unsigned int offset = req->close.file_slot - 1;
8487 struct io_ring_ctx *ctx = req->ctx;
8488 struct io_fixed_file *file_slot;
8489 struct file *file;
8490 int ret, i;
8491
8492 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8493 ret = -ENXIO;
8494 if (unlikely(!ctx->file_data))
8495 goto out;
8496 ret = -EINVAL;
8497 if (offset >= ctx->nr_user_files)
8498 goto out;
8499 ret = io_rsrc_node_switch_start(ctx);
8500 if (ret)
8501 goto out;
8502
8503 i = array_index_nospec(offset, ctx->nr_user_files);
8504 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8505 ret = -EBADF;
8506 if (!file_slot->file_ptr)
8507 goto out;
8508
8509 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8510 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8511 if (ret)
8512 goto out;
8513
8514 file_slot->file_ptr = 0;
8515 io_rsrc_node_switch(ctx, ctx->file_data);
8516 ret = 0;
8517 out:
8518 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8519 return ret;
8520 }
8521
8522 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8523 struct io_uring_rsrc_update2 *up,
8524 unsigned nr_args)
8525 {
8526 u64 __user *tags = u64_to_user_ptr(up->tags);
8527 __s32 __user *fds = u64_to_user_ptr(up->data);
8528 struct io_rsrc_data *data = ctx->file_data;
8529 struct io_fixed_file *file_slot;
8530 struct file *file;
8531 int fd, i, err = 0;
8532 unsigned int done;
8533 bool needs_switch = false;
8534
8535 if (!ctx->file_data)
8536 return -ENXIO;
8537 if (up->offset + nr_args > ctx->nr_user_files)
8538 return -EINVAL;
8539
8540 for (done = 0; done < nr_args; done++) {
8541 u64 tag = 0;
8542
8543 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8544 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8545 err = -EFAULT;
8546 break;
8547 }
8548 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8549 err = -EINVAL;
8550 break;
8551 }
8552 if (fd == IORING_REGISTER_FILES_SKIP)
8553 continue;
8554
8555 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8556 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8557
8558 if (file_slot->file_ptr) {
8559 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8560 err = io_queue_rsrc_removal(data, up->offset + done,
8561 ctx->rsrc_node, file);
8562 if (err)
8563 break;
8564 file_slot->file_ptr = 0;
8565 needs_switch = true;
8566 }
8567 if (fd != -1) {
8568 file = fget(fd);
8569 if (!file) {
8570 err = -EBADF;
8571 break;
8572 }
8573 /*
8574 * Don't allow io_uring instances to be registered. If
8575 * UNIX isn't enabled, then this causes a reference
8576 * cycle and this instance can never get freed. If UNIX
8577 * is enabled we'll handle it just fine, but there's
8578 * still no point in allowing a ring fd as it doesn't
8579 * support regular read/write anyway.
8580 */
8581 if (file->f_op == &io_uring_fops) {
8582 fput(file);
8583 err = -EBADF;
8584 break;
8585 }
8586 *io_get_tag_slot(data, i) = tag;
8587 io_fixed_file_set(file_slot, file);
8588 err = io_sqe_file_register(ctx, file, i);
8589 if (err) {
8590 file_slot->file_ptr = 0;
8591 fput(file);
8592 break;
8593 }
8594 }
8595 }
8596
8597 if (needs_switch)
8598 io_rsrc_node_switch(ctx, data);
8599 return done ? done : err;
8600 }
8601
8602 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8603 struct task_struct *task)
8604 {
8605 struct io_wq_hash *hash;
8606 struct io_wq_data data;
8607 unsigned int concurrency;
8608
8609 mutex_lock(&ctx->uring_lock);
8610 hash = ctx->hash_map;
8611 if (!hash) {
8612 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8613 if (!hash) {
8614 mutex_unlock(&ctx->uring_lock);
8615 return ERR_PTR(-ENOMEM);
8616 }
8617 refcount_set(&hash->refs, 1);
8618 init_waitqueue_head(&hash->wait);
8619 ctx->hash_map = hash;
8620 }
8621 mutex_unlock(&ctx->uring_lock);
8622
8623 data.hash = hash;
8624 data.task = task;
8625 data.free_work = io_wq_free_work;
8626 data.do_work = io_wq_submit_work;
8627
8628 /* Do QD, or 4 * CPUS, whatever is smallest */
8629 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8630
8631 return io_wq_create(concurrency, &data);
8632 }
8633
8634 static int io_uring_alloc_task_context(struct task_struct *task,
8635 struct io_ring_ctx *ctx)
8636 {
8637 struct io_uring_task *tctx;
8638 int ret;
8639
8640 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8641 if (unlikely(!tctx))
8642 return -ENOMEM;
8643
8644 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8645 if (unlikely(ret)) {
8646 kfree(tctx);
8647 return ret;
8648 }
8649
8650 tctx->io_wq = io_init_wq_offload(ctx, task);
8651 if (IS_ERR(tctx->io_wq)) {
8652 ret = PTR_ERR(tctx->io_wq);
8653 percpu_counter_destroy(&tctx->inflight);
8654 kfree(tctx);
8655 return ret;
8656 }
8657
8658 xa_init(&tctx->xa);
8659 init_waitqueue_head(&tctx->wait);
8660 atomic_set(&tctx->in_idle, 0);
8661 atomic_set(&tctx->inflight_tracked, 0);
8662 task->io_uring = tctx;
8663 spin_lock_init(&tctx->task_lock);
8664 INIT_WQ_LIST(&tctx->task_list);
8665 init_task_work(&tctx->task_work, tctx_task_work);
8666 return 0;
8667 }
8668
8669 void __io_uring_free(struct task_struct *tsk)
8670 {
8671 struct io_uring_task *tctx = tsk->io_uring;
8672
8673 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8674 WARN_ON_ONCE(tctx->io_wq);
8675 WARN_ON_ONCE(tctx->cached_refs);
8676
8677 percpu_counter_destroy(&tctx->inflight);
8678 kfree(tctx);
8679 tsk->io_uring = NULL;
8680 }
8681
8682 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8683 struct io_uring_params *p)
8684 {
8685 int ret;
8686
8687 /* Retain compatibility with failing for an invalid attach attempt */
8688 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8689 IORING_SETUP_ATTACH_WQ) {
8690 struct fd f;
8691
8692 f = fdget(p->wq_fd);
8693 if (!f.file)
8694 return -ENXIO;
8695 if (f.file->f_op != &io_uring_fops) {
8696 fdput(f);
8697 return -EINVAL;
8698 }
8699 fdput(f);
8700 }
8701 if (ctx->flags & IORING_SETUP_SQPOLL) {
8702 struct task_struct *tsk;
8703 struct io_sq_data *sqd;
8704 bool attached;
8705
8706 sqd = io_get_sq_data(p, &attached);
8707 if (IS_ERR(sqd)) {
8708 ret = PTR_ERR(sqd);
8709 goto err;
8710 }
8711
8712 ctx->sq_creds = get_current_cred();
8713 ctx->sq_data = sqd;
8714 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8715 if (!ctx->sq_thread_idle)
8716 ctx->sq_thread_idle = HZ;
8717
8718 io_sq_thread_park(sqd);
8719 list_add(&ctx->sqd_list, &sqd->ctx_list);
8720 io_sqd_update_thread_idle(sqd);
8721 /* don't attach to a dying SQPOLL thread, would be racy */
8722 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8723 io_sq_thread_unpark(sqd);
8724
8725 if (ret < 0)
8726 goto err;
8727 if (attached)
8728 return 0;
8729
8730 if (p->flags & IORING_SETUP_SQ_AFF) {
8731 int cpu = p->sq_thread_cpu;
8732
8733 ret = -EINVAL;
8734 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8735 goto err_sqpoll;
8736 sqd->sq_cpu = cpu;
8737 } else {
8738 sqd->sq_cpu = -1;
8739 }
8740
8741 sqd->task_pid = current->pid;
8742 sqd->task_tgid = current->tgid;
8743 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8744 if (IS_ERR(tsk)) {
8745 ret = PTR_ERR(tsk);
8746 goto err_sqpoll;
8747 }
8748
8749 sqd->thread = tsk;
8750 ret = io_uring_alloc_task_context(tsk, ctx);
8751 wake_up_new_task(tsk);
8752 if (ret)
8753 goto err;
8754 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8755 /* Can't have SQ_AFF without SQPOLL */
8756 ret = -EINVAL;
8757 goto err;
8758 }
8759
8760 return 0;
8761 err_sqpoll:
8762 complete(&ctx->sq_data->exited);
8763 err:
8764 io_sq_thread_finish(ctx);
8765 return ret;
8766 }
8767
8768 static inline void __io_unaccount_mem(struct user_struct *user,
8769 unsigned long nr_pages)
8770 {
8771 atomic_long_sub(nr_pages, &user->locked_vm);
8772 }
8773
8774 static inline int __io_account_mem(struct user_struct *user,
8775 unsigned long nr_pages)
8776 {
8777 unsigned long page_limit, cur_pages, new_pages;
8778
8779 /* Don't allow more pages than we can safely lock */
8780 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8781
8782 do {
8783 cur_pages = atomic_long_read(&user->locked_vm);
8784 new_pages = cur_pages + nr_pages;
8785 if (new_pages > page_limit)
8786 return -ENOMEM;
8787 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8788 new_pages) != cur_pages);
8789
8790 return 0;
8791 }
8792
8793 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8794 {
8795 if (ctx->user)
8796 __io_unaccount_mem(ctx->user, nr_pages);
8797
8798 if (ctx->mm_account)
8799 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8800 }
8801
8802 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8803 {
8804 int ret;
8805
8806 if (ctx->user) {
8807 ret = __io_account_mem(ctx->user, nr_pages);
8808 if (ret)
8809 return ret;
8810 }
8811
8812 if (ctx->mm_account)
8813 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8814
8815 return 0;
8816 }
8817
8818 static void io_mem_free(void *ptr)
8819 {
8820 struct page *page;
8821
8822 if (!ptr)
8823 return;
8824
8825 page = virt_to_head_page(ptr);
8826 if (put_page_testzero(page))
8827 free_compound_page(page);
8828 }
8829
8830 static void *io_mem_alloc(size_t size)
8831 {
8832 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8833
8834 return (void *) __get_free_pages(gfp, get_order(size));
8835 }
8836
8837 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8838 size_t *sq_offset)
8839 {
8840 struct io_rings *rings;
8841 size_t off, sq_array_size;
8842
8843 off = struct_size(rings, cqes, cq_entries);
8844 if (off == SIZE_MAX)
8845 return SIZE_MAX;
8846
8847 #ifdef CONFIG_SMP
8848 off = ALIGN(off, SMP_CACHE_BYTES);
8849 if (off == 0)
8850 return SIZE_MAX;
8851 #endif
8852
8853 if (sq_offset)
8854 *sq_offset = off;
8855
8856 sq_array_size = array_size(sizeof(u32), sq_entries);
8857 if (sq_array_size == SIZE_MAX)
8858 return SIZE_MAX;
8859
8860 if (check_add_overflow(off, sq_array_size, &off))
8861 return SIZE_MAX;
8862
8863 return off;
8864 }
8865
8866 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8867 {
8868 struct io_mapped_ubuf *imu = *slot;
8869 unsigned int i;
8870
8871 if (imu != ctx->dummy_ubuf) {
8872 for (i = 0; i < imu->nr_bvecs; i++)
8873 unpin_user_page(imu->bvec[i].bv_page);
8874 if (imu->acct_pages)
8875 io_unaccount_mem(ctx, imu->acct_pages);
8876 kvfree(imu);
8877 }
8878 *slot = NULL;
8879 }
8880
8881 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8882 {
8883 io_buffer_unmap(ctx, &prsrc->buf);
8884 prsrc->buf = NULL;
8885 }
8886
8887 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8888 {
8889 unsigned int i;
8890
8891 for (i = 0; i < ctx->nr_user_bufs; i++)
8892 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8893 kfree(ctx->user_bufs);
8894 io_rsrc_data_free(ctx->buf_data);
8895 ctx->user_bufs = NULL;
8896 ctx->buf_data = NULL;
8897 ctx->nr_user_bufs = 0;
8898 }
8899
8900 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8901 {
8902 int ret;
8903
8904 if (!ctx->buf_data)
8905 return -ENXIO;
8906
8907 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8908 if (!ret)
8909 __io_sqe_buffers_unregister(ctx);
8910 return ret;
8911 }
8912
8913 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8914 void __user *arg, unsigned index)
8915 {
8916 struct iovec __user *src;
8917
8918 #ifdef CONFIG_COMPAT
8919 if (ctx->compat) {
8920 struct compat_iovec __user *ciovs;
8921 struct compat_iovec ciov;
8922
8923 ciovs = (struct compat_iovec __user *) arg;
8924 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8925 return -EFAULT;
8926
8927 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8928 dst->iov_len = ciov.iov_len;
8929 return 0;
8930 }
8931 #endif
8932 src = (struct iovec __user *) arg;
8933 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8934 return -EFAULT;
8935 return 0;
8936 }
8937
8938 /*
8939 * Not super efficient, but this is just a registration time. And we do cache
8940 * the last compound head, so generally we'll only do a full search if we don't
8941 * match that one.
8942 *
8943 * We check if the given compound head page has already been accounted, to
8944 * avoid double accounting it. This allows us to account the full size of the
8945 * page, not just the constituent pages of a huge page.
8946 */
8947 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8948 int nr_pages, struct page *hpage)
8949 {
8950 int i, j;
8951
8952 /* check current page array */
8953 for (i = 0; i < nr_pages; i++) {
8954 if (!PageCompound(pages[i]))
8955 continue;
8956 if (compound_head(pages[i]) == hpage)
8957 return true;
8958 }
8959
8960 /* check previously registered pages */
8961 for (i = 0; i < ctx->nr_user_bufs; i++) {
8962 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8963
8964 for (j = 0; j < imu->nr_bvecs; j++) {
8965 if (!PageCompound(imu->bvec[j].bv_page))
8966 continue;
8967 if (compound_head(imu->bvec[j].bv_page) == hpage)
8968 return true;
8969 }
8970 }
8971
8972 return false;
8973 }
8974
8975 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8976 int nr_pages, struct io_mapped_ubuf *imu,
8977 struct page **last_hpage)
8978 {
8979 int i, ret;
8980
8981 imu->acct_pages = 0;
8982 for (i = 0; i < nr_pages; i++) {
8983 if (!PageCompound(pages[i])) {
8984 imu->acct_pages++;
8985 } else {
8986 struct page *hpage;
8987
8988 hpage = compound_head(pages[i]);
8989 if (hpage == *last_hpage)
8990 continue;
8991 *last_hpage = hpage;
8992 if (headpage_already_acct(ctx, pages, i, hpage))
8993 continue;
8994 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8995 }
8996 }
8997
8998 if (!imu->acct_pages)
8999 return 0;
9000
9001 ret = io_account_mem(ctx, imu->acct_pages);
9002 if (ret)
9003 imu->acct_pages = 0;
9004 return ret;
9005 }
9006
9007 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9008 struct io_mapped_ubuf **pimu,
9009 struct page **last_hpage)
9010 {
9011 struct io_mapped_ubuf *imu = NULL;
9012 struct vm_area_struct **vmas = NULL;
9013 struct page **pages = NULL;
9014 unsigned long off, start, end, ubuf;
9015 size_t size;
9016 int ret, pret, nr_pages, i;
9017
9018 if (!iov->iov_base) {
9019 *pimu = ctx->dummy_ubuf;
9020 return 0;
9021 }
9022
9023 ubuf = (unsigned long) iov->iov_base;
9024 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9025 start = ubuf >> PAGE_SHIFT;
9026 nr_pages = end - start;
9027
9028 *pimu = NULL;
9029 ret = -ENOMEM;
9030
9031 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9032 if (!pages)
9033 goto done;
9034
9035 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9036 GFP_KERNEL);
9037 if (!vmas)
9038 goto done;
9039
9040 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9041 if (!imu)
9042 goto done;
9043
9044 ret = 0;
9045 mmap_read_lock(current->mm);
9046 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9047 pages, vmas);
9048 if (pret == nr_pages) {
9049 /* don't support file backed memory */
9050 for (i = 0; i < nr_pages; i++) {
9051 struct vm_area_struct *vma = vmas[i];
9052
9053 if (vma_is_shmem(vma))
9054 continue;
9055 if (vma->vm_file &&
9056 !is_file_hugepages(vma->vm_file)) {
9057 ret = -EOPNOTSUPP;
9058 break;
9059 }
9060 }
9061 } else {
9062 ret = pret < 0 ? pret : -EFAULT;
9063 }
9064 mmap_read_unlock(current->mm);
9065 if (ret) {
9066 /*
9067 * if we did partial map, or found file backed vmas,
9068 * release any pages we did get
9069 */
9070 if (pret > 0)
9071 unpin_user_pages(pages, pret);
9072 goto done;
9073 }
9074
9075 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9076 if (ret) {
9077 unpin_user_pages(pages, pret);
9078 goto done;
9079 }
9080
9081 off = ubuf & ~PAGE_MASK;
9082 size = iov->iov_len;
9083 for (i = 0; i < nr_pages; i++) {
9084 size_t vec_len;
9085
9086 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9087 imu->bvec[i].bv_page = pages[i];
9088 imu->bvec[i].bv_len = vec_len;
9089 imu->bvec[i].bv_offset = off;
9090 off = 0;
9091 size -= vec_len;
9092 }
9093 /* store original address for later verification */
9094 imu->ubuf = ubuf;
9095 imu->ubuf_end = ubuf + iov->iov_len;
9096 imu->nr_bvecs = nr_pages;
9097 *pimu = imu;
9098 ret = 0;
9099 done:
9100 if (ret)
9101 kvfree(imu);
9102 kvfree(pages);
9103 kvfree(vmas);
9104 return ret;
9105 }
9106
9107 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9108 {
9109 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9110 return ctx->user_bufs ? 0 : -ENOMEM;
9111 }
9112
9113 static int io_buffer_validate(struct iovec *iov)
9114 {
9115 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9116
9117 /*
9118 * Don't impose further limits on the size and buffer
9119 * constraints here, we'll -EINVAL later when IO is
9120 * submitted if they are wrong.
9121 */
9122 if (!iov->iov_base)
9123 return iov->iov_len ? -EFAULT : 0;
9124 if (!iov->iov_len)
9125 return -EFAULT;
9126
9127 /* arbitrary limit, but we need something */
9128 if (iov->iov_len > SZ_1G)
9129 return -EFAULT;
9130
9131 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9132 return -EOVERFLOW;
9133
9134 return 0;
9135 }
9136
9137 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9138 unsigned int nr_args, u64 __user *tags)
9139 {
9140 struct page *last_hpage = NULL;
9141 struct io_rsrc_data *data;
9142 int i, ret;
9143 struct iovec iov;
9144
9145 if (ctx->user_bufs)
9146 return -EBUSY;
9147 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9148 return -EINVAL;
9149 ret = io_rsrc_node_switch_start(ctx);
9150 if (ret)
9151 return ret;
9152 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9153 if (ret)
9154 return ret;
9155 ret = io_buffers_map_alloc(ctx, nr_args);
9156 if (ret) {
9157 io_rsrc_data_free(data);
9158 return ret;
9159 }
9160
9161 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9162 ret = io_copy_iov(ctx, &iov, arg, i);
9163 if (ret)
9164 break;
9165 ret = io_buffer_validate(&iov);
9166 if (ret)
9167 break;
9168 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9169 ret = -EINVAL;
9170 break;
9171 }
9172
9173 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9174 &last_hpage);
9175 if (ret)
9176 break;
9177 }
9178
9179 WARN_ON_ONCE(ctx->buf_data);
9180
9181 ctx->buf_data = data;
9182 if (ret)
9183 __io_sqe_buffers_unregister(ctx);
9184 else
9185 io_rsrc_node_switch(ctx, NULL);
9186 return ret;
9187 }
9188
9189 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9190 struct io_uring_rsrc_update2 *up,
9191 unsigned int nr_args)
9192 {
9193 u64 __user *tags = u64_to_user_ptr(up->tags);
9194 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9195 struct page *last_hpage = NULL;
9196 bool needs_switch = false;
9197 __u32 done;
9198 int i, err;
9199
9200 if (!ctx->buf_data)
9201 return -ENXIO;
9202 if (up->offset + nr_args > ctx->nr_user_bufs)
9203 return -EINVAL;
9204
9205 for (done = 0; done < nr_args; done++) {
9206 struct io_mapped_ubuf *imu;
9207 int offset = up->offset + done;
9208 u64 tag = 0;
9209
9210 err = io_copy_iov(ctx, &iov, iovs, done);
9211 if (err)
9212 break;
9213 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9214 err = -EFAULT;
9215 break;
9216 }
9217 err = io_buffer_validate(&iov);
9218 if (err)
9219 break;
9220 if (!iov.iov_base && tag) {
9221 err = -EINVAL;
9222 break;
9223 }
9224 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9225 if (err)
9226 break;
9227
9228 i = array_index_nospec(offset, ctx->nr_user_bufs);
9229 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9230 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9231 ctx->rsrc_node, ctx->user_bufs[i]);
9232 if (unlikely(err)) {
9233 io_buffer_unmap(ctx, &imu);
9234 break;
9235 }
9236 ctx->user_bufs[i] = NULL;
9237 needs_switch = true;
9238 }
9239
9240 ctx->user_bufs[i] = imu;
9241 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9242 }
9243
9244 if (needs_switch)
9245 io_rsrc_node_switch(ctx, ctx->buf_data);
9246 return done ? done : err;
9247 }
9248
9249 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9250 {
9251 __s32 __user *fds = arg;
9252 int fd;
9253
9254 if (ctx->cq_ev_fd)
9255 return -EBUSY;
9256
9257 if (copy_from_user(&fd, fds, sizeof(*fds)))
9258 return -EFAULT;
9259
9260 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9261 if (IS_ERR(ctx->cq_ev_fd)) {
9262 int ret = PTR_ERR(ctx->cq_ev_fd);
9263
9264 ctx->cq_ev_fd = NULL;
9265 return ret;
9266 }
9267
9268 return 0;
9269 }
9270
9271 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9272 {
9273 if (ctx->cq_ev_fd) {
9274 eventfd_ctx_put(ctx->cq_ev_fd);
9275 ctx->cq_ev_fd = NULL;
9276 return 0;
9277 }
9278
9279 return -ENXIO;
9280 }
9281
9282 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9283 {
9284 struct io_buffer *buf;
9285 unsigned long index;
9286
9287 xa_for_each(&ctx->io_buffers, index, buf)
9288 __io_remove_buffers(ctx, buf, index, -1U);
9289 }
9290
9291 static void io_req_cache_free(struct list_head *list)
9292 {
9293 struct io_kiocb *req, *nxt;
9294
9295 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9296 list_del(&req->inflight_entry);
9297 kmem_cache_free(req_cachep, req);
9298 }
9299 }
9300
9301 static void io_req_caches_free(struct io_ring_ctx *ctx)
9302 {
9303 struct io_submit_state *state = &ctx->submit_state;
9304
9305 mutex_lock(&ctx->uring_lock);
9306
9307 if (state->free_reqs) {
9308 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9309 state->free_reqs = 0;
9310 }
9311
9312 io_flush_cached_locked_reqs(ctx, state);
9313 io_req_cache_free(&state->free_list);
9314 mutex_unlock(&ctx->uring_lock);
9315 }
9316
9317 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9318 {
9319 if (data && !atomic_dec_and_test(&data->refs))
9320 wait_for_completion(&data->done);
9321 }
9322
9323 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9324 {
9325 io_sq_thread_finish(ctx);
9326
9327 if (ctx->mm_account) {
9328 mmdrop(ctx->mm_account);
9329 ctx->mm_account = NULL;
9330 }
9331
9332 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9333 io_wait_rsrc_data(ctx->buf_data);
9334 io_wait_rsrc_data(ctx->file_data);
9335
9336 mutex_lock(&ctx->uring_lock);
9337 if (ctx->buf_data)
9338 __io_sqe_buffers_unregister(ctx);
9339 if (ctx->file_data)
9340 __io_sqe_files_unregister(ctx);
9341 if (ctx->rings)
9342 __io_cqring_overflow_flush(ctx, true);
9343 mutex_unlock(&ctx->uring_lock);
9344 io_eventfd_unregister(ctx);
9345 io_destroy_buffers(ctx);
9346 if (ctx->sq_creds)
9347 put_cred(ctx->sq_creds);
9348
9349 /* there are no registered resources left, nobody uses it */
9350 if (ctx->rsrc_node)
9351 io_rsrc_node_destroy(ctx->rsrc_node);
9352 if (ctx->rsrc_backup_node)
9353 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9354 flush_delayed_work(&ctx->rsrc_put_work);
9355
9356 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9357 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9358
9359 #if defined(CONFIG_UNIX)
9360 if (ctx->ring_sock) {
9361 ctx->ring_sock->file = NULL; /* so that iput() is called */
9362 sock_release(ctx->ring_sock);
9363 }
9364 #endif
9365 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9366
9367 io_mem_free(ctx->rings);
9368 io_mem_free(ctx->sq_sqes);
9369
9370 percpu_ref_exit(&ctx->refs);
9371 free_uid(ctx->user);
9372 io_req_caches_free(ctx);
9373 if (ctx->hash_map)
9374 io_wq_put_hash(ctx->hash_map);
9375 kfree(ctx->cancel_hash);
9376 kfree(ctx->dummy_ubuf);
9377 kfree(ctx);
9378 }
9379
9380 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9381 {
9382 struct io_ring_ctx *ctx = file->private_data;
9383 __poll_t mask = 0;
9384
9385 poll_wait(file, &ctx->poll_wait, wait);
9386 /*
9387 * synchronizes with barrier from wq_has_sleeper call in
9388 * io_commit_cqring
9389 */
9390 smp_rmb();
9391 if (!io_sqring_full(ctx))
9392 mask |= EPOLLOUT | EPOLLWRNORM;
9393
9394 /*
9395 * Don't flush cqring overflow list here, just do a simple check.
9396 * Otherwise there could possible be ABBA deadlock:
9397 * CPU0 CPU1
9398 * ---- ----
9399 * lock(&ctx->uring_lock);
9400 * lock(&ep->mtx);
9401 * lock(&ctx->uring_lock);
9402 * lock(&ep->mtx);
9403 *
9404 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9405 * pushs them to do the flush.
9406 */
9407 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9408 mask |= EPOLLIN | EPOLLRDNORM;
9409
9410 return mask;
9411 }
9412
9413 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9414 {
9415 const struct cred *creds;
9416
9417 creds = xa_erase(&ctx->personalities, id);
9418 if (creds) {
9419 put_cred(creds);
9420 return 0;
9421 }
9422
9423 return -EINVAL;
9424 }
9425
9426 struct io_tctx_exit {
9427 struct callback_head task_work;
9428 struct completion completion;
9429 struct io_ring_ctx *ctx;
9430 };
9431
9432 static void io_tctx_exit_cb(struct callback_head *cb)
9433 {
9434 struct io_uring_task *tctx = current->io_uring;
9435 struct io_tctx_exit *work;
9436
9437 work = container_of(cb, struct io_tctx_exit, task_work);
9438 /*
9439 * When @in_idle, we're in cancellation and it's racy to remove the
9440 * node. It'll be removed by the end of cancellation, just ignore it.
9441 */
9442 if (!atomic_read(&tctx->in_idle))
9443 io_uring_del_tctx_node((unsigned long)work->ctx);
9444 complete(&work->completion);
9445 }
9446
9447 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9448 {
9449 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9450
9451 return req->ctx == data;
9452 }
9453
9454 static void io_ring_exit_work(struct work_struct *work)
9455 {
9456 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9457 unsigned long timeout = jiffies + HZ * 60 * 5;
9458 unsigned long interval = HZ / 20;
9459 struct io_tctx_exit exit;
9460 struct io_tctx_node *node;
9461 int ret;
9462
9463 /*
9464 * If we're doing polled IO and end up having requests being
9465 * submitted async (out-of-line), then completions can come in while
9466 * we're waiting for refs to drop. We need to reap these manually,
9467 * as nobody else will be looking for them.
9468 */
9469 do {
9470 io_uring_try_cancel_requests(ctx, NULL, true);
9471 if (ctx->sq_data) {
9472 struct io_sq_data *sqd = ctx->sq_data;
9473 struct task_struct *tsk;
9474
9475 io_sq_thread_park(sqd);
9476 tsk = sqd->thread;
9477 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9478 io_wq_cancel_cb(tsk->io_uring->io_wq,
9479 io_cancel_ctx_cb, ctx, true);
9480 io_sq_thread_unpark(sqd);
9481 }
9482
9483 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9484 /* there is little hope left, don't run it too often */
9485 interval = HZ * 60;
9486 }
9487 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9488
9489 init_completion(&exit.completion);
9490 init_task_work(&exit.task_work, io_tctx_exit_cb);
9491 exit.ctx = ctx;
9492 /*
9493 * Some may use context even when all refs and requests have been put,
9494 * and they are free to do so while still holding uring_lock or
9495 * completion_lock, see io_req_task_submit(). Apart from other work,
9496 * this lock/unlock section also waits them to finish.
9497 */
9498 mutex_lock(&ctx->uring_lock);
9499 while (!list_empty(&ctx->tctx_list)) {
9500 WARN_ON_ONCE(time_after(jiffies, timeout));
9501
9502 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9503 ctx_node);
9504 /* don't spin on a single task if cancellation failed */
9505 list_rotate_left(&ctx->tctx_list);
9506 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9507 if (WARN_ON_ONCE(ret))
9508 continue;
9509 wake_up_process(node->task);
9510
9511 mutex_unlock(&ctx->uring_lock);
9512 wait_for_completion(&exit.completion);
9513 mutex_lock(&ctx->uring_lock);
9514 }
9515 mutex_unlock(&ctx->uring_lock);
9516 spin_lock(&ctx->completion_lock);
9517 spin_unlock(&ctx->completion_lock);
9518
9519 io_ring_ctx_free(ctx);
9520 }
9521
9522 /* Returns true if we found and killed one or more timeouts */
9523 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9524 bool cancel_all)
9525 {
9526 struct io_kiocb *req, *tmp;
9527 int canceled = 0;
9528
9529 spin_lock(&ctx->completion_lock);
9530 spin_lock_irq(&ctx->timeout_lock);
9531 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9532 if (io_match_task(req, tsk, cancel_all)) {
9533 io_kill_timeout(req, -ECANCELED);
9534 canceled++;
9535 }
9536 }
9537 spin_unlock_irq(&ctx->timeout_lock);
9538 if (canceled != 0)
9539 io_commit_cqring(ctx);
9540 spin_unlock(&ctx->completion_lock);
9541 if (canceled != 0)
9542 io_cqring_ev_posted(ctx);
9543 return canceled != 0;
9544 }
9545
9546 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9547 {
9548 unsigned long index;
9549 struct creds *creds;
9550
9551 mutex_lock(&ctx->uring_lock);
9552 percpu_ref_kill(&ctx->refs);
9553 if (ctx->rings)
9554 __io_cqring_overflow_flush(ctx, true);
9555 xa_for_each(&ctx->personalities, index, creds)
9556 io_unregister_personality(ctx, index);
9557 mutex_unlock(&ctx->uring_lock);
9558
9559 io_kill_timeouts(ctx, NULL, true);
9560 io_poll_remove_all(ctx, NULL, true);
9561
9562 /* if we failed setting up the ctx, we might not have any rings */
9563 io_iopoll_try_reap_events(ctx);
9564
9565 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9566 /*
9567 * Use system_unbound_wq to avoid spawning tons of event kworkers
9568 * if we're exiting a ton of rings at the same time. It just adds
9569 * noise and overhead, there's no discernable change in runtime
9570 * over using system_wq.
9571 */
9572 queue_work(system_unbound_wq, &ctx->exit_work);
9573 }
9574
9575 static int io_uring_release(struct inode *inode, struct file *file)
9576 {
9577 struct io_ring_ctx *ctx = file->private_data;
9578
9579 file->private_data = NULL;
9580 io_ring_ctx_wait_and_kill(ctx);
9581 return 0;
9582 }
9583
9584 struct io_task_cancel {
9585 struct task_struct *task;
9586 bool all;
9587 };
9588
9589 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9590 {
9591 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9592 struct io_task_cancel *cancel = data;
9593
9594 return io_match_task_safe(req, cancel->task, cancel->all);
9595 }
9596
9597 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9598 struct task_struct *task, bool cancel_all)
9599 {
9600 struct io_defer_entry *de;
9601 LIST_HEAD(list);
9602
9603 spin_lock(&ctx->completion_lock);
9604 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9605 if (io_match_task_safe(de->req, task, cancel_all)) {
9606 list_cut_position(&list, &ctx->defer_list, &de->list);
9607 break;
9608 }
9609 }
9610 spin_unlock(&ctx->completion_lock);
9611 if (list_empty(&list))
9612 return false;
9613
9614 while (!list_empty(&list)) {
9615 de = list_first_entry(&list, struct io_defer_entry, list);
9616 list_del_init(&de->list);
9617 io_req_complete_failed(de->req, -ECANCELED);
9618 kfree(de);
9619 }
9620 return true;
9621 }
9622
9623 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9624 {
9625 struct io_tctx_node *node;
9626 enum io_wq_cancel cret;
9627 bool ret = false;
9628
9629 mutex_lock(&ctx->uring_lock);
9630 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9631 struct io_uring_task *tctx = node->task->io_uring;
9632
9633 /*
9634 * io_wq will stay alive while we hold uring_lock, because it's
9635 * killed after ctx nodes, which requires to take the lock.
9636 */
9637 if (!tctx || !tctx->io_wq)
9638 continue;
9639 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9640 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9641 }
9642 mutex_unlock(&ctx->uring_lock);
9643
9644 return ret;
9645 }
9646
9647 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9648 struct task_struct *task,
9649 bool cancel_all)
9650 {
9651 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9652 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9653
9654 while (1) {
9655 enum io_wq_cancel cret;
9656 bool ret = false;
9657
9658 if (!task) {
9659 ret |= io_uring_try_cancel_iowq(ctx);
9660 } else if (tctx && tctx->io_wq) {
9661 /*
9662 * Cancels requests of all rings, not only @ctx, but
9663 * it's fine as the task is in exit/exec.
9664 */
9665 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9666 &cancel, true);
9667 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9668 }
9669
9670 /* SQPOLL thread does its own polling */
9671 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9672 (ctx->sq_data && ctx->sq_data->thread == current)) {
9673 while (!list_empty_careful(&ctx->iopoll_list)) {
9674 io_iopoll_try_reap_events(ctx);
9675 ret = true;
9676 }
9677 }
9678
9679 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9680 ret |= io_poll_remove_all(ctx, task, cancel_all);
9681 ret |= io_kill_timeouts(ctx, task, cancel_all);
9682 if (task)
9683 ret |= io_run_task_work();
9684 if (!ret)
9685 break;
9686 cond_resched();
9687 }
9688 }
9689
9690 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9691 {
9692 struct io_uring_task *tctx = current->io_uring;
9693 struct io_tctx_node *node;
9694 int ret;
9695
9696 if (unlikely(!tctx)) {
9697 ret = io_uring_alloc_task_context(current, ctx);
9698 if (unlikely(ret))
9699 return ret;
9700
9701 tctx = current->io_uring;
9702 if (ctx->iowq_limits_set) {
9703 unsigned int limits[2] = { ctx->iowq_limits[0],
9704 ctx->iowq_limits[1], };
9705
9706 ret = io_wq_max_workers(tctx->io_wq, limits);
9707 if (ret)
9708 return ret;
9709 }
9710 }
9711 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9712 node = kmalloc(sizeof(*node), GFP_KERNEL);
9713 if (!node)
9714 return -ENOMEM;
9715 node->ctx = ctx;
9716 node->task = current;
9717
9718 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9719 node, GFP_KERNEL));
9720 if (ret) {
9721 kfree(node);
9722 return ret;
9723 }
9724
9725 mutex_lock(&ctx->uring_lock);
9726 list_add(&node->ctx_node, &ctx->tctx_list);
9727 mutex_unlock(&ctx->uring_lock);
9728 }
9729 tctx->last = ctx;
9730 return 0;
9731 }
9732
9733 /*
9734 * Note that this task has used io_uring. We use it for cancelation purposes.
9735 */
9736 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9737 {
9738 struct io_uring_task *tctx = current->io_uring;
9739
9740 if (likely(tctx && tctx->last == ctx))
9741 return 0;
9742 return __io_uring_add_tctx_node(ctx);
9743 }
9744
9745 /*
9746 * Remove this io_uring_file -> task mapping.
9747 */
9748 static void io_uring_del_tctx_node(unsigned long index)
9749 {
9750 struct io_uring_task *tctx = current->io_uring;
9751 struct io_tctx_node *node;
9752
9753 if (!tctx)
9754 return;
9755 node = xa_erase(&tctx->xa, index);
9756 if (!node)
9757 return;
9758
9759 WARN_ON_ONCE(current != node->task);
9760 WARN_ON_ONCE(list_empty(&node->ctx_node));
9761
9762 mutex_lock(&node->ctx->uring_lock);
9763 list_del(&node->ctx_node);
9764 mutex_unlock(&node->ctx->uring_lock);
9765
9766 if (tctx->last == node->ctx)
9767 tctx->last = NULL;
9768 kfree(node);
9769 }
9770
9771 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9772 {
9773 struct io_wq *wq = tctx->io_wq;
9774 struct io_tctx_node *node;
9775 unsigned long index;
9776
9777 xa_for_each(&tctx->xa, index, node) {
9778 io_uring_del_tctx_node(index);
9779 cond_resched();
9780 }
9781 if (wq) {
9782 /*
9783 * Must be after io_uring_del_task_file() (removes nodes under
9784 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9785 */
9786 io_wq_put_and_exit(wq);
9787 tctx->io_wq = NULL;
9788 }
9789 }
9790
9791 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9792 {
9793 if (tracked)
9794 return atomic_read(&tctx->inflight_tracked);
9795 return percpu_counter_sum(&tctx->inflight);
9796 }
9797
9798 /*
9799 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9800 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9801 */
9802 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9803 {
9804 struct io_uring_task *tctx = current->io_uring;
9805 struct io_ring_ctx *ctx;
9806 s64 inflight;
9807 DEFINE_WAIT(wait);
9808
9809 WARN_ON_ONCE(sqd && sqd->thread != current);
9810
9811 if (!current->io_uring)
9812 return;
9813 if (tctx->io_wq)
9814 io_wq_exit_start(tctx->io_wq);
9815
9816 atomic_inc(&tctx->in_idle);
9817 do {
9818 io_uring_drop_tctx_refs(current);
9819 /* read completions before cancelations */
9820 inflight = tctx_inflight(tctx, !cancel_all);
9821 if (!inflight)
9822 break;
9823
9824 if (!sqd) {
9825 struct io_tctx_node *node;
9826 unsigned long index;
9827
9828 xa_for_each(&tctx->xa, index, node) {
9829 /* sqpoll task will cancel all its requests */
9830 if (node->ctx->sq_data)
9831 continue;
9832 io_uring_try_cancel_requests(node->ctx, current,
9833 cancel_all);
9834 }
9835 } else {
9836 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9837 io_uring_try_cancel_requests(ctx, current,
9838 cancel_all);
9839 }
9840
9841 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9842 io_run_task_work();
9843 io_uring_drop_tctx_refs(current);
9844
9845 /*
9846 * If we've seen completions, retry without waiting. This
9847 * avoids a race where a completion comes in before we did
9848 * prepare_to_wait().
9849 */
9850 if (inflight == tctx_inflight(tctx, !cancel_all))
9851 schedule();
9852 finish_wait(&tctx->wait, &wait);
9853 } while (1);
9854
9855 io_uring_clean_tctx(tctx);
9856 if (cancel_all) {
9857 /*
9858 * We shouldn't run task_works after cancel, so just leave
9859 * ->in_idle set for normal exit.
9860 */
9861 atomic_dec(&tctx->in_idle);
9862 /* for exec all current's requests should be gone, kill tctx */
9863 __io_uring_free(current);
9864 }
9865 }
9866
9867 void __io_uring_cancel(bool cancel_all)
9868 {
9869 io_uring_cancel_generic(cancel_all, NULL);
9870 }
9871
9872 static void *io_uring_validate_mmap_request(struct file *file,
9873 loff_t pgoff, size_t sz)
9874 {
9875 struct io_ring_ctx *ctx = file->private_data;
9876 loff_t offset = pgoff << PAGE_SHIFT;
9877 struct page *page;
9878 void *ptr;
9879
9880 switch (offset) {
9881 case IORING_OFF_SQ_RING:
9882 case IORING_OFF_CQ_RING:
9883 ptr = ctx->rings;
9884 break;
9885 case IORING_OFF_SQES:
9886 ptr = ctx->sq_sqes;
9887 break;
9888 default:
9889 return ERR_PTR(-EINVAL);
9890 }
9891
9892 page = virt_to_head_page(ptr);
9893 if (sz > page_size(page))
9894 return ERR_PTR(-EINVAL);
9895
9896 return ptr;
9897 }
9898
9899 #ifdef CONFIG_MMU
9900
9901 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9902 {
9903 size_t sz = vma->vm_end - vma->vm_start;
9904 unsigned long pfn;
9905 void *ptr;
9906
9907 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9908 if (IS_ERR(ptr))
9909 return PTR_ERR(ptr);
9910
9911 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9912 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9913 }
9914
9915 #else /* !CONFIG_MMU */
9916
9917 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9918 {
9919 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9920 }
9921
9922 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9923 {
9924 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9925 }
9926
9927 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9928 unsigned long addr, unsigned long len,
9929 unsigned long pgoff, unsigned long flags)
9930 {
9931 void *ptr;
9932
9933 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9934 if (IS_ERR(ptr))
9935 return PTR_ERR(ptr);
9936
9937 return (unsigned long) ptr;
9938 }
9939
9940 #endif /* !CONFIG_MMU */
9941
9942 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9943 {
9944 DEFINE_WAIT(wait);
9945
9946 do {
9947 if (!io_sqring_full(ctx))
9948 break;
9949 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9950
9951 if (!io_sqring_full(ctx))
9952 break;
9953 schedule();
9954 } while (!signal_pending(current));
9955
9956 finish_wait(&ctx->sqo_sq_wait, &wait);
9957 return 0;
9958 }
9959
9960 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9961 struct __kernel_timespec __user **ts,
9962 const sigset_t __user **sig)
9963 {
9964 struct io_uring_getevents_arg arg;
9965
9966 /*
9967 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9968 * is just a pointer to the sigset_t.
9969 */
9970 if (!(flags & IORING_ENTER_EXT_ARG)) {
9971 *sig = (const sigset_t __user *) argp;
9972 *ts = NULL;
9973 return 0;
9974 }
9975
9976 /*
9977 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9978 * timespec and sigset_t pointers if good.
9979 */
9980 if (*argsz != sizeof(arg))
9981 return -EINVAL;
9982 if (copy_from_user(&arg, argp, sizeof(arg)))
9983 return -EFAULT;
9984 *sig = u64_to_user_ptr(arg.sigmask);
9985 *argsz = arg.sigmask_sz;
9986 *ts = u64_to_user_ptr(arg.ts);
9987 return 0;
9988 }
9989
9990 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9991 u32, min_complete, u32, flags, const void __user *, argp,
9992 size_t, argsz)
9993 {
9994 struct io_ring_ctx *ctx;
9995 int submitted = 0;
9996 struct fd f;
9997 long ret;
9998
9999 io_run_task_work();
10000
10001 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10002 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10003 return -EINVAL;
10004
10005 f = fdget(fd);
10006 if (unlikely(!f.file))
10007 return -EBADF;
10008
10009 ret = -EOPNOTSUPP;
10010 if (unlikely(f.file->f_op != &io_uring_fops))
10011 goto out_fput;
10012
10013 ret = -ENXIO;
10014 ctx = f.file->private_data;
10015 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10016 goto out_fput;
10017
10018 ret = -EBADFD;
10019 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10020 goto out;
10021
10022 /*
10023 * For SQ polling, the thread will do all submissions and completions.
10024 * Just return the requested submit count, and wake the thread if
10025 * we were asked to.
10026 */
10027 ret = 0;
10028 if (ctx->flags & IORING_SETUP_SQPOLL) {
10029 io_cqring_overflow_flush(ctx);
10030
10031 if (unlikely(ctx->sq_data->thread == NULL)) {
10032 ret = -EOWNERDEAD;
10033 goto out;
10034 }
10035 if (flags & IORING_ENTER_SQ_WAKEUP)
10036 wake_up(&ctx->sq_data->wait);
10037 if (flags & IORING_ENTER_SQ_WAIT) {
10038 ret = io_sqpoll_wait_sq(ctx);
10039 if (ret)
10040 goto out;
10041 }
10042 submitted = to_submit;
10043 } else if (to_submit) {
10044 ret = io_uring_add_tctx_node(ctx);
10045 if (unlikely(ret))
10046 goto out;
10047 mutex_lock(&ctx->uring_lock);
10048 submitted = io_submit_sqes(ctx, to_submit);
10049 mutex_unlock(&ctx->uring_lock);
10050
10051 if (submitted != to_submit)
10052 goto out;
10053 }
10054 if (flags & IORING_ENTER_GETEVENTS) {
10055 const sigset_t __user *sig;
10056 struct __kernel_timespec __user *ts;
10057
10058 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10059 if (unlikely(ret))
10060 goto out;
10061
10062 min_complete = min(min_complete, ctx->cq_entries);
10063
10064 /*
10065 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10066 * space applications don't need to do io completion events
10067 * polling again, they can rely on io_sq_thread to do polling
10068 * work, which can reduce cpu usage and uring_lock contention.
10069 */
10070 if (ctx->flags & IORING_SETUP_IOPOLL &&
10071 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10072 ret = io_iopoll_check(ctx, min_complete);
10073 } else {
10074 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10075 }
10076 }
10077
10078 out:
10079 percpu_ref_put(&ctx->refs);
10080 out_fput:
10081 fdput(f);
10082 return submitted ? submitted : ret;
10083 }
10084
10085 #ifdef CONFIG_PROC_FS
10086 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10087 const struct cred *cred)
10088 {
10089 struct user_namespace *uns = seq_user_ns(m);
10090 struct group_info *gi;
10091 kernel_cap_t cap;
10092 unsigned __capi;
10093 int g;
10094
10095 seq_printf(m, "%5d\n", id);
10096 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10097 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10098 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10099 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10100 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10101 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10102 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10103 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10104 seq_puts(m, "\n\tGroups:\t");
10105 gi = cred->group_info;
10106 for (g = 0; g < gi->ngroups; g++) {
10107 seq_put_decimal_ull(m, g ? " " : "",
10108 from_kgid_munged(uns, gi->gid[g]));
10109 }
10110 seq_puts(m, "\n\tCapEff:\t");
10111 cap = cred->cap_effective;
10112 CAP_FOR_EACH_U32(__capi)
10113 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10114 seq_putc(m, '\n');
10115 return 0;
10116 }
10117
10118 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10119 {
10120 struct io_sq_data *sq = NULL;
10121 bool has_lock;
10122 int i;
10123
10124 /*
10125 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10126 * since fdinfo case grabs it in the opposite direction of normal use
10127 * cases. If we fail to get the lock, we just don't iterate any
10128 * structures that could be going away outside the io_uring mutex.
10129 */
10130 has_lock = mutex_trylock(&ctx->uring_lock);
10131
10132 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10133 sq = ctx->sq_data;
10134 if (!sq->thread)
10135 sq = NULL;
10136 }
10137
10138 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10139 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10140 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10141 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10142 struct file *f = io_file_from_index(ctx, i);
10143
10144 if (f)
10145 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10146 else
10147 seq_printf(m, "%5u: <none>\n", i);
10148 }
10149 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10150 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10151 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10152 unsigned int len = buf->ubuf_end - buf->ubuf;
10153
10154 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10155 }
10156 if (has_lock && !xa_empty(&ctx->personalities)) {
10157 unsigned long index;
10158 const struct cred *cred;
10159
10160 seq_printf(m, "Personalities:\n");
10161 xa_for_each(&ctx->personalities, index, cred)
10162 io_uring_show_cred(m, index, cred);
10163 }
10164 seq_printf(m, "PollList:\n");
10165 spin_lock(&ctx->completion_lock);
10166 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10167 struct hlist_head *list = &ctx->cancel_hash[i];
10168 struct io_kiocb *req;
10169
10170 hlist_for_each_entry(req, list, hash_node)
10171 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10172 req->task->task_works != NULL);
10173 }
10174 spin_unlock(&ctx->completion_lock);
10175 if (has_lock)
10176 mutex_unlock(&ctx->uring_lock);
10177 }
10178
10179 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10180 {
10181 struct io_ring_ctx *ctx = f->private_data;
10182
10183 if (percpu_ref_tryget(&ctx->refs)) {
10184 __io_uring_show_fdinfo(ctx, m);
10185 percpu_ref_put(&ctx->refs);
10186 }
10187 }
10188 #endif
10189
10190 static const struct file_operations io_uring_fops = {
10191 .release = io_uring_release,
10192 .mmap = io_uring_mmap,
10193 #ifndef CONFIG_MMU
10194 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10195 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10196 #endif
10197 .poll = io_uring_poll,
10198 #ifdef CONFIG_PROC_FS
10199 .show_fdinfo = io_uring_show_fdinfo,
10200 #endif
10201 };
10202
10203 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10204 struct io_uring_params *p)
10205 {
10206 struct io_rings *rings;
10207 size_t size, sq_array_offset;
10208
10209 /* make sure these are sane, as we already accounted them */
10210 ctx->sq_entries = p->sq_entries;
10211 ctx->cq_entries = p->cq_entries;
10212
10213 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10214 if (size == SIZE_MAX)
10215 return -EOVERFLOW;
10216
10217 rings = io_mem_alloc(size);
10218 if (!rings)
10219 return -ENOMEM;
10220
10221 ctx->rings = rings;
10222 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10223 rings->sq_ring_mask = p->sq_entries - 1;
10224 rings->cq_ring_mask = p->cq_entries - 1;
10225 rings->sq_ring_entries = p->sq_entries;
10226 rings->cq_ring_entries = p->cq_entries;
10227
10228 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10229 if (size == SIZE_MAX) {
10230 io_mem_free(ctx->rings);
10231 ctx->rings = NULL;
10232 return -EOVERFLOW;
10233 }
10234
10235 ctx->sq_sqes = io_mem_alloc(size);
10236 if (!ctx->sq_sqes) {
10237 io_mem_free(ctx->rings);
10238 ctx->rings = NULL;
10239 return -ENOMEM;
10240 }
10241
10242 return 0;
10243 }
10244
10245 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10246 {
10247 int ret, fd;
10248
10249 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10250 if (fd < 0)
10251 return fd;
10252
10253 ret = io_uring_add_tctx_node(ctx);
10254 if (ret) {
10255 put_unused_fd(fd);
10256 return ret;
10257 }
10258 fd_install(fd, file);
10259 return fd;
10260 }
10261
10262 /*
10263 * Allocate an anonymous fd, this is what constitutes the application
10264 * visible backing of an io_uring instance. The application mmaps this
10265 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10266 * we have to tie this fd to a socket for file garbage collection purposes.
10267 */
10268 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10269 {
10270 struct file *file;
10271 #if defined(CONFIG_UNIX)
10272 int ret;
10273
10274 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10275 &ctx->ring_sock);
10276 if (ret)
10277 return ERR_PTR(ret);
10278 #endif
10279
10280 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10281 O_RDWR | O_CLOEXEC);
10282 #if defined(CONFIG_UNIX)
10283 if (IS_ERR(file)) {
10284 sock_release(ctx->ring_sock);
10285 ctx->ring_sock = NULL;
10286 } else {
10287 ctx->ring_sock->file = file;
10288 }
10289 #endif
10290 return file;
10291 }
10292
10293 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10294 struct io_uring_params __user *params)
10295 {
10296 struct io_ring_ctx *ctx;
10297 struct file *file;
10298 int ret;
10299
10300 if (!entries)
10301 return -EINVAL;
10302 if (entries > IORING_MAX_ENTRIES) {
10303 if (!(p->flags & IORING_SETUP_CLAMP))
10304 return -EINVAL;
10305 entries = IORING_MAX_ENTRIES;
10306 }
10307
10308 /*
10309 * Use twice as many entries for the CQ ring. It's possible for the
10310 * application to drive a higher depth than the size of the SQ ring,
10311 * since the sqes are only used at submission time. This allows for
10312 * some flexibility in overcommitting a bit. If the application has
10313 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10314 * of CQ ring entries manually.
10315 */
10316 p->sq_entries = roundup_pow_of_two(entries);
10317 if (p->flags & IORING_SETUP_CQSIZE) {
10318 /*
10319 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10320 * to a power-of-two, if it isn't already. We do NOT impose
10321 * any cq vs sq ring sizing.
10322 */
10323 if (!p->cq_entries)
10324 return -EINVAL;
10325 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10326 if (!(p->flags & IORING_SETUP_CLAMP))
10327 return -EINVAL;
10328 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10329 }
10330 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10331 if (p->cq_entries < p->sq_entries)
10332 return -EINVAL;
10333 } else {
10334 p->cq_entries = 2 * p->sq_entries;
10335 }
10336
10337 ctx = io_ring_ctx_alloc(p);
10338 if (!ctx)
10339 return -ENOMEM;
10340 ctx->compat = in_compat_syscall();
10341 if (!capable(CAP_IPC_LOCK))
10342 ctx->user = get_uid(current_user());
10343
10344 /*
10345 * This is just grabbed for accounting purposes. When a process exits,
10346 * the mm is exited and dropped before the files, hence we need to hang
10347 * on to this mm purely for the purposes of being able to unaccount
10348 * memory (locked/pinned vm). It's not used for anything else.
10349 */
10350 mmgrab(current->mm);
10351 ctx->mm_account = current->mm;
10352
10353 ret = io_allocate_scq_urings(ctx, p);
10354 if (ret)
10355 goto err;
10356
10357 ret = io_sq_offload_create(ctx, p);
10358 if (ret)
10359 goto err;
10360 /* always set a rsrc node */
10361 ret = io_rsrc_node_switch_start(ctx);
10362 if (ret)
10363 goto err;
10364 io_rsrc_node_switch(ctx, NULL);
10365
10366 memset(&p->sq_off, 0, sizeof(p->sq_off));
10367 p->sq_off.head = offsetof(struct io_rings, sq.head);
10368 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10369 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10370 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10371 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10372 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10373 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10374
10375 memset(&p->cq_off, 0, sizeof(p->cq_off));
10376 p->cq_off.head = offsetof(struct io_rings, cq.head);
10377 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10378 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10379 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10380 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10381 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10382 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10383
10384 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10385 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10386 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10387 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10388 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10389 IORING_FEAT_RSRC_TAGS;
10390
10391 if (copy_to_user(params, p, sizeof(*p))) {
10392 ret = -EFAULT;
10393 goto err;
10394 }
10395
10396 file = io_uring_get_file(ctx);
10397 if (IS_ERR(file)) {
10398 ret = PTR_ERR(file);
10399 goto err;
10400 }
10401
10402 /*
10403 * Install ring fd as the very last thing, so we don't risk someone
10404 * having closed it before we finish setup
10405 */
10406 ret = io_uring_install_fd(ctx, file);
10407 if (ret < 0) {
10408 /* fput will clean it up */
10409 fput(file);
10410 return ret;
10411 }
10412
10413 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10414 return ret;
10415 err:
10416 io_ring_ctx_wait_and_kill(ctx);
10417 return ret;
10418 }
10419
10420 /*
10421 * Sets up an aio uring context, and returns the fd. Applications asks for a
10422 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10423 * params structure passed in.
10424 */
10425 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10426 {
10427 struct io_uring_params p;
10428 int i;
10429
10430 if (copy_from_user(&p, params, sizeof(p)))
10431 return -EFAULT;
10432 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10433 if (p.resv[i])
10434 return -EINVAL;
10435 }
10436
10437 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10438 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10439 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10440 IORING_SETUP_R_DISABLED))
10441 return -EINVAL;
10442
10443 return io_uring_create(entries, &p, params);
10444 }
10445
10446 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10447 struct io_uring_params __user *, params)
10448 {
10449 return io_uring_setup(entries, params);
10450 }
10451
10452 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10453 {
10454 struct io_uring_probe *p;
10455 size_t size;
10456 int i, ret;
10457
10458 size = struct_size(p, ops, nr_args);
10459 if (size == SIZE_MAX)
10460 return -EOVERFLOW;
10461 p = kzalloc(size, GFP_KERNEL);
10462 if (!p)
10463 return -ENOMEM;
10464
10465 ret = -EFAULT;
10466 if (copy_from_user(p, arg, size))
10467 goto out;
10468 ret = -EINVAL;
10469 if (memchr_inv(p, 0, size))
10470 goto out;
10471
10472 p->last_op = IORING_OP_LAST - 1;
10473 if (nr_args > IORING_OP_LAST)
10474 nr_args = IORING_OP_LAST;
10475
10476 for (i = 0; i < nr_args; i++) {
10477 p->ops[i].op = i;
10478 if (!io_op_defs[i].not_supported)
10479 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10480 }
10481 p->ops_len = i;
10482
10483 ret = 0;
10484 if (copy_to_user(arg, p, size))
10485 ret = -EFAULT;
10486 out:
10487 kfree(p);
10488 return ret;
10489 }
10490
10491 static int io_register_personality(struct io_ring_ctx *ctx)
10492 {
10493 const struct cred *creds;
10494 u32 id;
10495 int ret;
10496
10497 creds = get_current_cred();
10498
10499 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10500 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10501 if (ret < 0) {
10502 put_cred(creds);
10503 return ret;
10504 }
10505 return id;
10506 }
10507
10508 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10509 unsigned int nr_args)
10510 {
10511 struct io_uring_restriction *res;
10512 size_t size;
10513 int i, ret;
10514
10515 /* Restrictions allowed only if rings started disabled */
10516 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10517 return -EBADFD;
10518
10519 /* We allow only a single restrictions registration */
10520 if (ctx->restrictions.registered)
10521 return -EBUSY;
10522
10523 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10524 return -EINVAL;
10525
10526 size = array_size(nr_args, sizeof(*res));
10527 if (size == SIZE_MAX)
10528 return -EOVERFLOW;
10529
10530 res = memdup_user(arg, size);
10531 if (IS_ERR(res))
10532 return PTR_ERR(res);
10533
10534 ret = 0;
10535
10536 for (i = 0; i < nr_args; i++) {
10537 switch (res[i].opcode) {
10538 case IORING_RESTRICTION_REGISTER_OP:
10539 if (res[i].register_op >= IORING_REGISTER_LAST) {
10540 ret = -EINVAL;
10541 goto out;
10542 }
10543
10544 __set_bit(res[i].register_op,
10545 ctx->restrictions.register_op);
10546 break;
10547 case IORING_RESTRICTION_SQE_OP:
10548 if (res[i].sqe_op >= IORING_OP_LAST) {
10549 ret = -EINVAL;
10550 goto out;
10551 }
10552
10553 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10554 break;
10555 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10556 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10557 break;
10558 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10559 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10560 break;
10561 default:
10562 ret = -EINVAL;
10563 goto out;
10564 }
10565 }
10566
10567 out:
10568 /* Reset all restrictions if an error happened */
10569 if (ret != 0)
10570 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10571 else
10572 ctx->restrictions.registered = true;
10573
10574 kfree(res);
10575 return ret;
10576 }
10577
10578 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10579 {
10580 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10581 return -EBADFD;
10582
10583 if (ctx->restrictions.registered)
10584 ctx->restricted = 1;
10585
10586 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10587 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10588 wake_up(&ctx->sq_data->wait);
10589 return 0;
10590 }
10591
10592 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10593 struct io_uring_rsrc_update2 *up,
10594 unsigned nr_args)
10595 {
10596 __u32 tmp;
10597 int err;
10598
10599 if (up->resv)
10600 return -EINVAL;
10601 if (check_add_overflow(up->offset, nr_args, &tmp))
10602 return -EOVERFLOW;
10603 err = io_rsrc_node_switch_start(ctx);
10604 if (err)
10605 return err;
10606
10607 switch (type) {
10608 case IORING_RSRC_FILE:
10609 return __io_sqe_files_update(ctx, up, nr_args);
10610 case IORING_RSRC_BUFFER:
10611 return __io_sqe_buffers_update(ctx, up, nr_args);
10612 }
10613 return -EINVAL;
10614 }
10615
10616 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10617 unsigned nr_args)
10618 {
10619 struct io_uring_rsrc_update2 up;
10620
10621 if (!nr_args)
10622 return -EINVAL;
10623 memset(&up, 0, sizeof(up));
10624 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10625 return -EFAULT;
10626 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10627 }
10628
10629 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10630 unsigned size, unsigned type)
10631 {
10632 struct io_uring_rsrc_update2 up;
10633
10634 if (size != sizeof(up))
10635 return -EINVAL;
10636 if (copy_from_user(&up, arg, sizeof(up)))
10637 return -EFAULT;
10638 if (!up.nr || up.resv)
10639 return -EINVAL;
10640 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10641 }
10642
10643 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10644 unsigned int size, unsigned int type)
10645 {
10646 struct io_uring_rsrc_register rr;
10647
10648 /* keep it extendible */
10649 if (size != sizeof(rr))
10650 return -EINVAL;
10651
10652 memset(&rr, 0, sizeof(rr));
10653 if (copy_from_user(&rr, arg, size))
10654 return -EFAULT;
10655 if (!rr.nr || rr.resv || rr.resv2)
10656 return -EINVAL;
10657
10658 switch (type) {
10659 case IORING_RSRC_FILE:
10660 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10661 rr.nr, u64_to_user_ptr(rr.tags));
10662 case IORING_RSRC_BUFFER:
10663 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10664 rr.nr, u64_to_user_ptr(rr.tags));
10665 }
10666 return -EINVAL;
10667 }
10668
10669 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10670 unsigned len)
10671 {
10672 struct io_uring_task *tctx = current->io_uring;
10673 cpumask_var_t new_mask;
10674 int ret;
10675
10676 if (!tctx || !tctx->io_wq)
10677 return -EINVAL;
10678
10679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10680 return -ENOMEM;
10681
10682 cpumask_clear(new_mask);
10683 if (len > cpumask_size())
10684 len = cpumask_size();
10685
10686 if (copy_from_user(new_mask, arg, len)) {
10687 free_cpumask_var(new_mask);
10688 return -EFAULT;
10689 }
10690
10691 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10692 free_cpumask_var(new_mask);
10693 return ret;
10694 }
10695
10696 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10697 {
10698 struct io_uring_task *tctx = current->io_uring;
10699
10700 if (!tctx || !tctx->io_wq)
10701 return -EINVAL;
10702
10703 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10704 }
10705
10706 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10707 void __user *arg)
10708 __must_hold(&ctx->uring_lock)
10709 {
10710 struct io_tctx_node *node;
10711 struct io_uring_task *tctx = NULL;
10712 struct io_sq_data *sqd = NULL;
10713 __u32 new_count[2];
10714 int i, ret;
10715
10716 if (copy_from_user(new_count, arg, sizeof(new_count)))
10717 return -EFAULT;
10718 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10719 if (new_count[i] > INT_MAX)
10720 return -EINVAL;
10721
10722 if (ctx->flags & IORING_SETUP_SQPOLL) {
10723 sqd = ctx->sq_data;
10724 if (sqd) {
10725 /*
10726 * Observe the correct sqd->lock -> ctx->uring_lock
10727 * ordering. Fine to drop uring_lock here, we hold
10728 * a ref to the ctx.
10729 */
10730 refcount_inc(&sqd->refs);
10731 mutex_unlock(&ctx->uring_lock);
10732 mutex_lock(&sqd->lock);
10733 mutex_lock(&ctx->uring_lock);
10734 if (sqd->thread)
10735 tctx = sqd->thread->io_uring;
10736 }
10737 } else {
10738 tctx = current->io_uring;
10739 }
10740
10741 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10742
10743 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10744 if (new_count[i])
10745 ctx->iowq_limits[i] = new_count[i];
10746 ctx->iowq_limits_set = true;
10747
10748 ret = -EINVAL;
10749 if (tctx && tctx->io_wq) {
10750 ret = io_wq_max_workers(tctx->io_wq, new_count);
10751 if (ret)
10752 goto err;
10753 } else {
10754 memset(new_count, 0, sizeof(new_count));
10755 }
10756
10757 if (sqd) {
10758 mutex_unlock(&sqd->lock);
10759 io_put_sq_data(sqd);
10760 }
10761
10762 if (copy_to_user(arg, new_count, sizeof(new_count)))
10763 return -EFAULT;
10764
10765 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10766 if (sqd)
10767 return 0;
10768
10769 /* now propagate the restriction to all registered users */
10770 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10771 struct io_uring_task *tctx = node->task->io_uring;
10772
10773 if (WARN_ON_ONCE(!tctx->io_wq))
10774 continue;
10775
10776 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10777 new_count[i] = ctx->iowq_limits[i];
10778 /* ignore errors, it always returns zero anyway */
10779 (void)io_wq_max_workers(tctx->io_wq, new_count);
10780 }
10781 return 0;
10782 err:
10783 if (sqd) {
10784 mutex_unlock(&sqd->lock);
10785 io_put_sq_data(sqd);
10786 }
10787 return ret;
10788 }
10789
10790 static bool io_register_op_must_quiesce(int op)
10791 {
10792 switch (op) {
10793 case IORING_REGISTER_BUFFERS:
10794 case IORING_UNREGISTER_BUFFERS:
10795 case IORING_REGISTER_FILES:
10796 case IORING_UNREGISTER_FILES:
10797 case IORING_REGISTER_FILES_UPDATE:
10798 case IORING_REGISTER_PROBE:
10799 case IORING_REGISTER_PERSONALITY:
10800 case IORING_UNREGISTER_PERSONALITY:
10801 case IORING_REGISTER_FILES2:
10802 case IORING_REGISTER_FILES_UPDATE2:
10803 case IORING_REGISTER_BUFFERS2:
10804 case IORING_REGISTER_BUFFERS_UPDATE:
10805 case IORING_REGISTER_IOWQ_AFF:
10806 case IORING_UNREGISTER_IOWQ_AFF:
10807 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10808 return false;
10809 default:
10810 return true;
10811 }
10812 }
10813
10814 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10815 {
10816 long ret;
10817
10818 percpu_ref_kill(&ctx->refs);
10819
10820 /*
10821 * Drop uring mutex before waiting for references to exit. If another
10822 * thread is currently inside io_uring_enter() it might need to grab the
10823 * uring_lock to make progress. If we hold it here across the drain
10824 * wait, then we can deadlock. It's safe to drop the mutex here, since
10825 * no new references will come in after we've killed the percpu ref.
10826 */
10827 mutex_unlock(&ctx->uring_lock);
10828 do {
10829 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10830 if (!ret)
10831 break;
10832 ret = io_run_task_work_sig();
10833 } while (ret >= 0);
10834 mutex_lock(&ctx->uring_lock);
10835
10836 if (ret)
10837 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10838 return ret;
10839 }
10840
10841 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10842 void __user *arg, unsigned nr_args)
10843 __releases(ctx->uring_lock)
10844 __acquires(ctx->uring_lock)
10845 {
10846 int ret;
10847
10848 /*
10849 * We're inside the ring mutex, if the ref is already dying, then
10850 * someone else killed the ctx or is already going through
10851 * io_uring_register().
10852 */
10853 if (percpu_ref_is_dying(&ctx->refs))
10854 return -ENXIO;
10855
10856 if (ctx->restricted) {
10857 if (opcode >= IORING_REGISTER_LAST)
10858 return -EINVAL;
10859 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10860 if (!test_bit(opcode, ctx->restrictions.register_op))
10861 return -EACCES;
10862 }
10863
10864 if (io_register_op_must_quiesce(opcode)) {
10865 ret = io_ctx_quiesce(ctx);
10866 if (ret)
10867 return ret;
10868 }
10869
10870 switch (opcode) {
10871 case IORING_REGISTER_BUFFERS:
10872 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10873 break;
10874 case IORING_UNREGISTER_BUFFERS:
10875 ret = -EINVAL;
10876 if (arg || nr_args)
10877 break;
10878 ret = io_sqe_buffers_unregister(ctx);
10879 break;
10880 case IORING_REGISTER_FILES:
10881 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10882 break;
10883 case IORING_UNREGISTER_FILES:
10884 ret = -EINVAL;
10885 if (arg || nr_args)
10886 break;
10887 ret = io_sqe_files_unregister(ctx);
10888 break;
10889 case IORING_REGISTER_FILES_UPDATE:
10890 ret = io_register_files_update(ctx, arg, nr_args);
10891 break;
10892 case IORING_REGISTER_EVENTFD:
10893 case IORING_REGISTER_EVENTFD_ASYNC:
10894 ret = -EINVAL;
10895 if (nr_args != 1)
10896 break;
10897 ret = io_eventfd_register(ctx, arg);
10898 if (ret)
10899 break;
10900 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10901 ctx->eventfd_async = 1;
10902 else
10903 ctx->eventfd_async = 0;
10904 break;
10905 case IORING_UNREGISTER_EVENTFD:
10906 ret = -EINVAL;
10907 if (arg || nr_args)
10908 break;
10909 ret = io_eventfd_unregister(ctx);
10910 break;
10911 case IORING_REGISTER_PROBE:
10912 ret = -EINVAL;
10913 if (!arg || nr_args > 256)
10914 break;
10915 ret = io_probe(ctx, arg, nr_args);
10916 break;
10917 case IORING_REGISTER_PERSONALITY:
10918 ret = -EINVAL;
10919 if (arg || nr_args)
10920 break;
10921 ret = io_register_personality(ctx);
10922 break;
10923 case IORING_UNREGISTER_PERSONALITY:
10924 ret = -EINVAL;
10925 if (arg)
10926 break;
10927 ret = io_unregister_personality(ctx, nr_args);
10928 break;
10929 case IORING_REGISTER_ENABLE_RINGS:
10930 ret = -EINVAL;
10931 if (arg || nr_args)
10932 break;
10933 ret = io_register_enable_rings(ctx);
10934 break;
10935 case IORING_REGISTER_RESTRICTIONS:
10936 ret = io_register_restrictions(ctx, arg, nr_args);
10937 break;
10938 case IORING_REGISTER_FILES2:
10939 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10940 break;
10941 case IORING_REGISTER_FILES_UPDATE2:
10942 ret = io_register_rsrc_update(ctx, arg, nr_args,
10943 IORING_RSRC_FILE);
10944 break;
10945 case IORING_REGISTER_BUFFERS2:
10946 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10947 break;
10948 case IORING_REGISTER_BUFFERS_UPDATE:
10949 ret = io_register_rsrc_update(ctx, arg, nr_args,
10950 IORING_RSRC_BUFFER);
10951 break;
10952 case IORING_REGISTER_IOWQ_AFF:
10953 ret = -EINVAL;
10954 if (!arg || !nr_args)
10955 break;
10956 ret = io_register_iowq_aff(ctx, arg, nr_args);
10957 break;
10958 case IORING_UNREGISTER_IOWQ_AFF:
10959 ret = -EINVAL;
10960 if (arg || nr_args)
10961 break;
10962 ret = io_unregister_iowq_aff(ctx);
10963 break;
10964 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10965 ret = -EINVAL;
10966 if (!arg || nr_args != 2)
10967 break;
10968 ret = io_register_iowq_max_workers(ctx, arg);
10969 break;
10970 default:
10971 ret = -EINVAL;
10972 break;
10973 }
10974
10975 if (io_register_op_must_quiesce(opcode)) {
10976 /* bring the ctx back to life */
10977 percpu_ref_reinit(&ctx->refs);
10978 reinit_completion(&ctx->ref_comp);
10979 }
10980 return ret;
10981 }
10982
10983 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10984 void __user *, arg, unsigned int, nr_args)
10985 {
10986 struct io_ring_ctx *ctx;
10987 long ret = -EBADF;
10988 struct fd f;
10989
10990 f = fdget(fd);
10991 if (!f.file)
10992 return -EBADF;
10993
10994 ret = -EOPNOTSUPP;
10995 if (f.file->f_op != &io_uring_fops)
10996 goto out_fput;
10997
10998 ctx = f.file->private_data;
10999
11000 io_run_task_work();
11001
11002 mutex_lock(&ctx->uring_lock);
11003 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11004 mutex_unlock(&ctx->uring_lock);
11005 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11006 ctx->cq_ev_fd != NULL, ret);
11007 out_fput:
11008 fdput(f);
11009 return ret;
11010 }
11011
11012 static int __init io_uring_init(void)
11013 {
11014 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11015 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11016 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11017 } while (0)
11018
11019 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11020 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11021 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11022 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11023 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11024 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11025 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11026 BUILD_BUG_SQE_ELEM(8, __u64, off);
11027 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11028 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11029 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11030 BUILD_BUG_SQE_ELEM(24, __u32, len);
11031 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11032 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11033 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11034 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11035 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11036 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11037 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11038 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11039 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11040 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11041 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11042 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11043 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11044 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11045 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11046 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11047 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11048 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11049 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11050 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11051 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11052
11053 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11054 sizeof(struct io_uring_rsrc_update));
11055 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11056 sizeof(struct io_uring_rsrc_update2));
11057
11058 /* ->buf_index is u16 */
11059 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11060
11061 /* should fit into one byte */
11062 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11063
11064 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11065 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11066
11067 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11068 SLAB_ACCOUNT);
11069 return 0;
11070 };
11071 __initcall(io_uring_init);