]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: fix link traversal locking
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 struct file *file_in;
627 loff_t off_out;
628 loff_t off_in;
629 u64 len;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455
1456 switch (req->opcode) {
1457 case IORING_OP_SPLICE:
1458 case IORING_OP_TEE:
1459 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1460 req->work.flags |= IO_WQ_WORK_UNBOUND;
1461 break;
1462 }
1463 }
1464
1465 static void io_prep_async_link(struct io_kiocb *req)
1466 {
1467 struct io_kiocb *cur;
1468
1469 if (req->flags & REQ_F_LINK_TIMEOUT) {
1470 struct io_ring_ctx *ctx = req->ctx;
1471
1472 spin_lock_irq(&ctx->timeout_lock);
1473 io_for_each_link(cur, req)
1474 io_prep_async_work(cur);
1475 spin_unlock_irq(&ctx->timeout_lock);
1476 } else {
1477 io_for_each_link(cur, req)
1478 io_prep_async_work(cur);
1479 }
1480 }
1481
1482 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1483 {
1484 struct io_ring_ctx *ctx = req->ctx;
1485 struct io_kiocb *link = io_prep_linked_timeout(req);
1486 struct io_uring_task *tctx = req->task->io_uring;
1487
1488 /* must not take the lock, NULL it as a precaution */
1489 locked = NULL;
1490
1491 BUG_ON(!tctx);
1492 BUG_ON(!tctx->io_wq);
1493
1494 /* init ->work of the whole link before punting */
1495 io_prep_async_link(req);
1496
1497 /*
1498 * Not expected to happen, but if we do have a bug where this _can_
1499 * happen, catch it here and ensure the request is marked as
1500 * canceled. That will make io-wq go through the usual work cancel
1501 * procedure rather than attempt to run this request (or create a new
1502 * worker for it).
1503 */
1504 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1505 req->work.flags |= IO_WQ_WORK_CANCEL;
1506
1507 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1508 &req->work, req->flags);
1509 io_wq_enqueue(tctx->io_wq, &req->work);
1510 if (link)
1511 io_queue_linked_timeout(link);
1512 }
1513
1514 static void io_kill_timeout(struct io_kiocb *req, int status)
1515 __must_hold(&req->ctx->completion_lock)
1516 __must_hold(&req->ctx->timeout_lock)
1517 {
1518 struct io_timeout_data *io = req->async_data;
1519
1520 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1521 if (status)
1522 req_set_fail(req);
1523 atomic_set(&req->ctx->cq_timeouts,
1524 atomic_read(&req->ctx->cq_timeouts) + 1);
1525 list_del_init(&req->timeout.list);
1526 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1527 io_put_req_deferred(req);
1528 }
1529 }
1530
1531 static void io_queue_deferred(struct io_ring_ctx *ctx)
1532 {
1533 while (!list_empty(&ctx->defer_list)) {
1534 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1535 struct io_defer_entry, list);
1536
1537 if (req_need_defer(de->req, de->seq))
1538 break;
1539 list_del_init(&de->list);
1540 io_req_task_queue(de->req);
1541 kfree(de);
1542 }
1543 }
1544
1545 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1546 __must_hold(&ctx->completion_lock)
1547 {
1548 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1549
1550 spin_lock_irq(&ctx->timeout_lock);
1551 while (!list_empty(&ctx->timeout_list)) {
1552 u32 events_needed, events_got;
1553 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1554 struct io_kiocb, timeout.list);
1555
1556 if (io_is_timeout_noseq(req))
1557 break;
1558
1559 /*
1560 * Since seq can easily wrap around over time, subtract
1561 * the last seq at which timeouts were flushed before comparing.
1562 * Assuming not more than 2^31-1 events have happened since,
1563 * these subtractions won't have wrapped, so we can check if
1564 * target is in [last_seq, current_seq] by comparing the two.
1565 */
1566 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1567 events_got = seq - ctx->cq_last_tm_flush;
1568 if (events_got < events_needed)
1569 break;
1570
1571 list_del_init(&req->timeout.list);
1572 io_kill_timeout(req, 0);
1573 }
1574 ctx->cq_last_tm_flush = seq;
1575 spin_unlock_irq(&ctx->timeout_lock);
1576 }
1577
1578 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1579 {
1580 if (ctx->off_timeout_used)
1581 io_flush_timeouts(ctx);
1582 if (ctx->drain_active)
1583 io_queue_deferred(ctx);
1584 }
1585
1586 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1587 {
1588 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1589 __io_commit_cqring_flush(ctx);
1590 /* order cqe stores with ring update */
1591 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1592 }
1593
1594 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1595 {
1596 struct io_rings *r = ctx->rings;
1597
1598 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1599 }
1600
1601 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1602 {
1603 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1604 }
1605
1606 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1607 {
1608 struct io_rings *rings = ctx->rings;
1609 unsigned tail, mask = ctx->cq_entries - 1;
1610
1611 /*
1612 * writes to the cq entry need to come after reading head; the
1613 * control dependency is enough as we're using WRITE_ONCE to
1614 * fill the cq entry
1615 */
1616 if (__io_cqring_events(ctx) == ctx->cq_entries)
1617 return NULL;
1618
1619 tail = ctx->cached_cq_tail++;
1620 return &rings->cqes[tail & mask];
1621 }
1622
1623 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1624 {
1625 if (likely(!ctx->cq_ev_fd))
1626 return false;
1627 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1628 return false;
1629 return !ctx->eventfd_async || io_wq_current_is_worker();
1630 }
1631
1632 /*
1633 * This should only get called when at least one event has been posted.
1634 * Some applications rely on the eventfd notification count only changing
1635 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1636 * 1:1 relationship between how many times this function is called (and
1637 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1638 */
1639 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1640 {
1641 /*
1642 * wake_up_all() may seem excessive, but io_wake_function() and
1643 * io_should_wake() handle the termination of the loop and only
1644 * wake as many waiters as we need to.
1645 */
1646 if (wq_has_sleeper(&ctx->cq_wait))
1647 wake_up_all(&ctx->cq_wait);
1648 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1649 wake_up(&ctx->sq_data->wait);
1650 if (io_should_trigger_evfd(ctx))
1651 eventfd_signal(ctx->cq_ev_fd, 1);
1652 if (waitqueue_active(&ctx->poll_wait))
1653 wake_up_interruptible(&ctx->poll_wait);
1654 }
1655
1656 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1657 {
1658 /* see waitqueue_active() comment */
1659 smp_mb();
1660
1661 if (ctx->flags & IORING_SETUP_SQPOLL) {
1662 if (waitqueue_active(&ctx->cq_wait))
1663 wake_up_all(&ctx->cq_wait);
1664 }
1665 if (io_should_trigger_evfd(ctx))
1666 eventfd_signal(ctx->cq_ev_fd, 1);
1667 if (waitqueue_active(&ctx->poll_wait))
1668 wake_up_interruptible(&ctx->poll_wait);
1669 }
1670
1671 /* Returns true if there are no backlogged entries after the flush */
1672 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1673 {
1674 bool all_flushed, posted;
1675
1676 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1677 return false;
1678
1679 posted = false;
1680 spin_lock(&ctx->completion_lock);
1681 while (!list_empty(&ctx->cq_overflow_list)) {
1682 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1683 struct io_overflow_cqe *ocqe;
1684
1685 if (!cqe && !force)
1686 break;
1687 ocqe = list_first_entry(&ctx->cq_overflow_list,
1688 struct io_overflow_cqe, list);
1689 if (cqe)
1690 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1691 else
1692 io_account_cq_overflow(ctx);
1693
1694 posted = true;
1695 list_del(&ocqe->list);
1696 kfree(ocqe);
1697 }
1698
1699 all_flushed = list_empty(&ctx->cq_overflow_list);
1700 if (all_flushed) {
1701 clear_bit(0, &ctx->check_cq_overflow);
1702 WRITE_ONCE(ctx->rings->sq_flags,
1703 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1704 }
1705
1706 if (posted)
1707 io_commit_cqring(ctx);
1708 spin_unlock(&ctx->completion_lock);
1709 if (posted)
1710 io_cqring_ev_posted(ctx);
1711 return all_flushed;
1712 }
1713
1714 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1715 {
1716 bool ret = true;
1717
1718 if (test_bit(0, &ctx->check_cq_overflow)) {
1719 /* iopoll syncs against uring_lock, not completion_lock */
1720 if (ctx->flags & IORING_SETUP_IOPOLL)
1721 mutex_lock(&ctx->uring_lock);
1722 ret = __io_cqring_overflow_flush(ctx, false);
1723 if (ctx->flags & IORING_SETUP_IOPOLL)
1724 mutex_unlock(&ctx->uring_lock);
1725 }
1726
1727 return ret;
1728 }
1729
1730 /* must to be called somewhat shortly after putting a request */
1731 static inline void io_put_task(struct task_struct *task, int nr)
1732 {
1733 struct io_uring_task *tctx = task->io_uring;
1734
1735 if (likely(task == current)) {
1736 tctx->cached_refs += nr;
1737 } else {
1738 percpu_counter_sub(&tctx->inflight, nr);
1739 if (unlikely(atomic_read(&tctx->in_idle)))
1740 wake_up(&tctx->wait);
1741 put_task_struct_many(task, nr);
1742 }
1743 }
1744
1745 static void io_task_refs_refill(struct io_uring_task *tctx)
1746 {
1747 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1748
1749 percpu_counter_add(&tctx->inflight, refill);
1750 refcount_add(refill, &current->usage);
1751 tctx->cached_refs += refill;
1752 }
1753
1754 static inline void io_get_task_refs(int nr)
1755 {
1756 struct io_uring_task *tctx = current->io_uring;
1757
1758 tctx->cached_refs -= nr;
1759 if (unlikely(tctx->cached_refs < 0))
1760 io_task_refs_refill(tctx);
1761 }
1762
1763 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1764 long res, unsigned int cflags)
1765 {
1766 struct io_overflow_cqe *ocqe;
1767
1768 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1769 if (!ocqe) {
1770 /*
1771 * If we're in ring overflow flush mode, or in task cancel mode,
1772 * or cannot allocate an overflow entry, then we need to drop it
1773 * on the floor.
1774 */
1775 io_account_cq_overflow(ctx);
1776 return false;
1777 }
1778 if (list_empty(&ctx->cq_overflow_list)) {
1779 set_bit(0, &ctx->check_cq_overflow);
1780 WRITE_ONCE(ctx->rings->sq_flags,
1781 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1782
1783 }
1784 ocqe->cqe.user_data = user_data;
1785 ocqe->cqe.res = res;
1786 ocqe->cqe.flags = cflags;
1787 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1788 return true;
1789 }
1790
1791 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1792 long res, unsigned int cflags)
1793 {
1794 struct io_uring_cqe *cqe;
1795
1796 trace_io_uring_complete(ctx, user_data, res, cflags);
1797
1798 /*
1799 * If we can't get a cq entry, userspace overflowed the
1800 * submission (by quite a lot). Increment the overflow count in
1801 * the ring.
1802 */
1803 cqe = io_get_cqe(ctx);
1804 if (likely(cqe)) {
1805 WRITE_ONCE(cqe->user_data, user_data);
1806 WRITE_ONCE(cqe->res, res);
1807 WRITE_ONCE(cqe->flags, cflags);
1808 return true;
1809 }
1810 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1811 }
1812
1813 /* not as hot to bloat with inlining */
1814 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1815 long res, unsigned int cflags)
1816 {
1817 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1818 }
1819
1820 static void io_req_complete_post(struct io_kiocb *req, long res,
1821 unsigned int cflags)
1822 {
1823 struct io_ring_ctx *ctx = req->ctx;
1824
1825 spin_lock(&ctx->completion_lock);
1826 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1827 /*
1828 * If we're the last reference to this request, add to our locked
1829 * free_list cache.
1830 */
1831 if (req_ref_put_and_test(req)) {
1832 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1833 if (req->flags & IO_DISARM_MASK)
1834 io_disarm_next(req);
1835 if (req->link) {
1836 io_req_task_queue(req->link);
1837 req->link = NULL;
1838 }
1839 }
1840 io_dismantle_req(req);
1841 io_put_task(req->task, 1);
1842 list_add(&req->inflight_entry, &ctx->locked_free_list);
1843 ctx->locked_free_nr++;
1844 } else {
1845 if (!percpu_ref_tryget(&ctx->refs))
1846 req = NULL;
1847 }
1848 io_commit_cqring(ctx);
1849 spin_unlock(&ctx->completion_lock);
1850
1851 if (req) {
1852 io_cqring_ev_posted(ctx);
1853 percpu_ref_put(&ctx->refs);
1854 }
1855 }
1856
1857 static inline bool io_req_needs_clean(struct io_kiocb *req)
1858 {
1859 return req->flags & IO_REQ_CLEAN_FLAGS;
1860 }
1861
1862 static void io_req_complete_state(struct io_kiocb *req, long res,
1863 unsigned int cflags)
1864 {
1865 if (io_req_needs_clean(req))
1866 io_clean_op(req);
1867 req->result = res;
1868 req->compl.cflags = cflags;
1869 req->flags |= REQ_F_COMPLETE_INLINE;
1870 }
1871
1872 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1873 long res, unsigned cflags)
1874 {
1875 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1876 io_req_complete_state(req, res, cflags);
1877 else
1878 io_req_complete_post(req, res, cflags);
1879 }
1880
1881 static inline void io_req_complete(struct io_kiocb *req, long res)
1882 {
1883 __io_req_complete(req, 0, res, 0);
1884 }
1885
1886 static void io_req_complete_failed(struct io_kiocb *req, long res)
1887 {
1888 req_set_fail(req);
1889 io_req_complete_post(req, res, 0);
1890 }
1891
1892 static void io_req_complete_fail_submit(struct io_kiocb *req)
1893 {
1894 /*
1895 * We don't submit, fail them all, for that replace hardlinks with
1896 * normal links. Extra REQ_F_LINK is tolerated.
1897 */
1898 req->flags &= ~REQ_F_HARDLINK;
1899 req->flags |= REQ_F_LINK;
1900 io_req_complete_failed(req, req->result);
1901 }
1902
1903 /*
1904 * Don't initialise the fields below on every allocation, but do that in
1905 * advance and keep them valid across allocations.
1906 */
1907 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1908 {
1909 req->ctx = ctx;
1910 req->link = NULL;
1911 req->async_data = NULL;
1912 /* not necessary, but safer to zero */
1913 req->result = 0;
1914 }
1915
1916 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1917 struct io_submit_state *state)
1918 {
1919 spin_lock(&ctx->completion_lock);
1920 list_splice_init(&ctx->locked_free_list, &state->free_list);
1921 ctx->locked_free_nr = 0;
1922 spin_unlock(&ctx->completion_lock);
1923 }
1924
1925 /* Returns true IFF there are requests in the cache */
1926 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1927 {
1928 struct io_submit_state *state = &ctx->submit_state;
1929 int nr;
1930
1931 /*
1932 * If we have more than a batch's worth of requests in our IRQ side
1933 * locked cache, grab the lock and move them over to our submission
1934 * side cache.
1935 */
1936 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1937 io_flush_cached_locked_reqs(ctx, state);
1938
1939 nr = state->free_reqs;
1940 while (!list_empty(&state->free_list)) {
1941 struct io_kiocb *req = list_first_entry(&state->free_list,
1942 struct io_kiocb, inflight_entry);
1943
1944 list_del(&req->inflight_entry);
1945 state->reqs[nr++] = req;
1946 if (nr == ARRAY_SIZE(state->reqs))
1947 break;
1948 }
1949
1950 state->free_reqs = nr;
1951 return nr != 0;
1952 }
1953
1954 /*
1955 * A request might get retired back into the request caches even before opcode
1956 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1957 * Because of that, io_alloc_req() should be called only under ->uring_lock
1958 * and with extra caution to not get a request that is still worked on.
1959 */
1960 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1961 __must_hold(&ctx->uring_lock)
1962 {
1963 struct io_submit_state *state = &ctx->submit_state;
1964 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1965 int ret, i;
1966
1967 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1968
1969 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1970 goto got_req;
1971
1972 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1973 state->reqs);
1974
1975 /*
1976 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1977 * retry single alloc to be on the safe side.
1978 */
1979 if (unlikely(ret <= 0)) {
1980 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1981 if (!state->reqs[0])
1982 return NULL;
1983 ret = 1;
1984 }
1985
1986 for (i = 0; i < ret; i++)
1987 io_preinit_req(state->reqs[i], ctx);
1988 state->free_reqs = ret;
1989 got_req:
1990 state->free_reqs--;
1991 return state->reqs[state->free_reqs];
1992 }
1993
1994 static inline void io_put_file(struct file *file)
1995 {
1996 if (file)
1997 fput(file);
1998 }
1999
2000 static void io_dismantle_req(struct io_kiocb *req)
2001 {
2002 unsigned int flags = req->flags;
2003
2004 if (io_req_needs_clean(req))
2005 io_clean_op(req);
2006 if (!(flags & REQ_F_FIXED_FILE))
2007 io_put_file(req->file);
2008 if (req->fixed_rsrc_refs)
2009 percpu_ref_put(req->fixed_rsrc_refs);
2010 if (req->async_data) {
2011 kfree(req->async_data);
2012 req->async_data = NULL;
2013 }
2014 }
2015
2016 static void __io_free_req(struct io_kiocb *req)
2017 {
2018 struct io_ring_ctx *ctx = req->ctx;
2019
2020 io_dismantle_req(req);
2021 io_put_task(req->task, 1);
2022
2023 spin_lock(&ctx->completion_lock);
2024 list_add(&req->inflight_entry, &ctx->locked_free_list);
2025 ctx->locked_free_nr++;
2026 spin_unlock(&ctx->completion_lock);
2027
2028 percpu_ref_put(&ctx->refs);
2029 }
2030
2031 static inline void io_remove_next_linked(struct io_kiocb *req)
2032 {
2033 struct io_kiocb *nxt = req->link;
2034
2035 req->link = nxt->link;
2036 nxt->link = NULL;
2037 }
2038
2039 static bool io_kill_linked_timeout(struct io_kiocb *req)
2040 __must_hold(&req->ctx->completion_lock)
2041 __must_hold(&req->ctx->timeout_lock)
2042 {
2043 struct io_kiocb *link = req->link;
2044
2045 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2046 struct io_timeout_data *io = link->async_data;
2047
2048 io_remove_next_linked(req);
2049 link->timeout.head = NULL;
2050 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2051 list_del(&link->timeout.list);
2052 io_cqring_fill_event(link->ctx, link->user_data,
2053 -ECANCELED, 0);
2054 io_put_req_deferred(link);
2055 return true;
2056 }
2057 }
2058 return false;
2059 }
2060
2061 static void io_fail_links(struct io_kiocb *req)
2062 __must_hold(&req->ctx->completion_lock)
2063 {
2064 struct io_kiocb *nxt, *link = req->link;
2065
2066 req->link = NULL;
2067 while (link) {
2068 long res = -ECANCELED;
2069
2070 if (link->flags & REQ_F_FAIL)
2071 res = link->result;
2072
2073 nxt = link->link;
2074 link->link = NULL;
2075
2076 trace_io_uring_fail_link(req, link);
2077 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2078 io_put_req_deferred(link);
2079 link = nxt;
2080 }
2081 }
2082
2083 static bool io_disarm_next(struct io_kiocb *req)
2084 __must_hold(&req->ctx->completion_lock)
2085 {
2086 bool posted = false;
2087
2088 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2089 struct io_kiocb *link = req->link;
2090
2091 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2092 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2093 io_remove_next_linked(req);
2094 io_cqring_fill_event(link->ctx, link->user_data,
2095 -ECANCELED, 0);
2096 io_put_req_deferred(link);
2097 posted = true;
2098 }
2099 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2100 struct io_ring_ctx *ctx = req->ctx;
2101
2102 spin_lock_irq(&ctx->timeout_lock);
2103 posted = io_kill_linked_timeout(req);
2104 spin_unlock_irq(&ctx->timeout_lock);
2105 }
2106 if (unlikely((req->flags & REQ_F_FAIL) &&
2107 !(req->flags & REQ_F_HARDLINK))) {
2108 posted |= (req->link != NULL);
2109 io_fail_links(req);
2110 }
2111 return posted;
2112 }
2113
2114 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2115 {
2116 struct io_kiocb *nxt;
2117
2118 /*
2119 * If LINK is set, we have dependent requests in this chain. If we
2120 * didn't fail this request, queue the first one up, moving any other
2121 * dependencies to the next request. In case of failure, fail the rest
2122 * of the chain.
2123 */
2124 if (req->flags & IO_DISARM_MASK) {
2125 struct io_ring_ctx *ctx = req->ctx;
2126 bool posted;
2127
2128 spin_lock(&ctx->completion_lock);
2129 posted = io_disarm_next(req);
2130 if (posted)
2131 io_commit_cqring(req->ctx);
2132 spin_unlock(&ctx->completion_lock);
2133 if (posted)
2134 io_cqring_ev_posted(ctx);
2135 }
2136 nxt = req->link;
2137 req->link = NULL;
2138 return nxt;
2139 }
2140
2141 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2142 {
2143 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2144 return NULL;
2145 return __io_req_find_next(req);
2146 }
2147
2148 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2149 {
2150 if (!ctx)
2151 return;
2152 if (*locked) {
2153 if (ctx->submit_state.compl_nr)
2154 io_submit_flush_completions(ctx);
2155 mutex_unlock(&ctx->uring_lock);
2156 *locked = false;
2157 }
2158 percpu_ref_put(&ctx->refs);
2159 }
2160
2161 static void tctx_task_work(struct callback_head *cb)
2162 {
2163 bool locked = false;
2164 struct io_ring_ctx *ctx = NULL;
2165 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2166 task_work);
2167
2168 while (1) {
2169 struct io_wq_work_node *node;
2170
2171 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2172 io_submit_flush_completions(ctx);
2173
2174 spin_lock_irq(&tctx->task_lock);
2175 node = tctx->task_list.first;
2176 INIT_WQ_LIST(&tctx->task_list);
2177 if (!node)
2178 tctx->task_running = false;
2179 spin_unlock_irq(&tctx->task_lock);
2180 if (!node)
2181 break;
2182
2183 do {
2184 struct io_wq_work_node *next = node->next;
2185 struct io_kiocb *req = container_of(node, struct io_kiocb,
2186 io_task_work.node);
2187
2188 if (req->ctx != ctx) {
2189 ctx_flush_and_put(ctx, &locked);
2190 ctx = req->ctx;
2191 /* if not contended, grab and improve batching */
2192 locked = mutex_trylock(&ctx->uring_lock);
2193 percpu_ref_get(&ctx->refs);
2194 }
2195 req->io_task_work.func(req, &locked);
2196 node = next;
2197 } while (node);
2198
2199 cond_resched();
2200 }
2201
2202 ctx_flush_and_put(ctx, &locked);
2203 }
2204
2205 static void io_req_task_work_add(struct io_kiocb *req)
2206 {
2207 struct task_struct *tsk = req->task;
2208 struct io_uring_task *tctx = tsk->io_uring;
2209 enum task_work_notify_mode notify;
2210 struct io_wq_work_node *node;
2211 unsigned long flags;
2212 bool running;
2213
2214 WARN_ON_ONCE(!tctx);
2215
2216 spin_lock_irqsave(&tctx->task_lock, flags);
2217 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2218 running = tctx->task_running;
2219 if (!running)
2220 tctx->task_running = true;
2221 spin_unlock_irqrestore(&tctx->task_lock, flags);
2222
2223 /* task_work already pending, we're done */
2224 if (running)
2225 return;
2226
2227 /*
2228 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2229 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2230 * processing task_work. There's no reliable way to tell if TWA_RESUME
2231 * will do the job.
2232 */
2233 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2234 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2235 wake_up_process(tsk);
2236 return;
2237 }
2238
2239 spin_lock_irqsave(&tctx->task_lock, flags);
2240 tctx->task_running = false;
2241 node = tctx->task_list.first;
2242 INIT_WQ_LIST(&tctx->task_list);
2243 spin_unlock_irqrestore(&tctx->task_lock, flags);
2244
2245 while (node) {
2246 req = container_of(node, struct io_kiocb, io_task_work.node);
2247 node = node->next;
2248 if (llist_add(&req->io_task_work.fallback_node,
2249 &req->ctx->fallback_llist))
2250 schedule_delayed_work(&req->ctx->fallback_work, 1);
2251 }
2252 }
2253
2254 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2255 {
2256 struct io_ring_ctx *ctx = req->ctx;
2257
2258 /* not needed for normal modes, but SQPOLL depends on it */
2259 io_tw_lock(ctx, locked);
2260 io_req_complete_failed(req, req->result);
2261 }
2262
2263 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2264 {
2265 struct io_ring_ctx *ctx = req->ctx;
2266
2267 io_tw_lock(ctx, locked);
2268 /* req->task == current here, checking PF_EXITING is safe */
2269 if (likely(!(req->task->flags & PF_EXITING)))
2270 __io_queue_sqe(req);
2271 else
2272 io_req_complete_failed(req, -EFAULT);
2273 }
2274
2275 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2276 {
2277 req->result = ret;
2278 req->io_task_work.func = io_req_task_cancel;
2279 io_req_task_work_add(req);
2280 }
2281
2282 static void io_req_task_queue(struct io_kiocb *req)
2283 {
2284 req->io_task_work.func = io_req_task_submit;
2285 io_req_task_work_add(req);
2286 }
2287
2288 static void io_req_task_queue_reissue(struct io_kiocb *req)
2289 {
2290 req->io_task_work.func = io_queue_async_work;
2291 io_req_task_work_add(req);
2292 }
2293
2294 static inline void io_queue_next(struct io_kiocb *req)
2295 {
2296 struct io_kiocb *nxt = io_req_find_next(req);
2297
2298 if (nxt)
2299 io_req_task_queue(nxt);
2300 }
2301
2302 static void io_free_req(struct io_kiocb *req)
2303 {
2304 io_queue_next(req);
2305 __io_free_req(req);
2306 }
2307
2308 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2309 {
2310 io_free_req(req);
2311 }
2312
2313 struct req_batch {
2314 struct task_struct *task;
2315 int task_refs;
2316 int ctx_refs;
2317 };
2318
2319 static inline void io_init_req_batch(struct req_batch *rb)
2320 {
2321 rb->task_refs = 0;
2322 rb->ctx_refs = 0;
2323 rb->task = NULL;
2324 }
2325
2326 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2327 struct req_batch *rb)
2328 {
2329 if (rb->ctx_refs)
2330 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2331 if (rb->task)
2332 io_put_task(rb->task, rb->task_refs);
2333 }
2334
2335 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2336 struct io_submit_state *state)
2337 {
2338 io_queue_next(req);
2339 io_dismantle_req(req);
2340
2341 if (req->task != rb->task) {
2342 if (rb->task)
2343 io_put_task(rb->task, rb->task_refs);
2344 rb->task = req->task;
2345 rb->task_refs = 0;
2346 }
2347 rb->task_refs++;
2348 rb->ctx_refs++;
2349
2350 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2351 state->reqs[state->free_reqs++] = req;
2352 else
2353 list_add(&req->inflight_entry, &state->free_list);
2354 }
2355
2356 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2357 __must_hold(&ctx->uring_lock)
2358 {
2359 struct io_submit_state *state = &ctx->submit_state;
2360 int i, nr = state->compl_nr;
2361 struct req_batch rb;
2362
2363 spin_lock(&ctx->completion_lock);
2364 for (i = 0; i < nr; i++) {
2365 struct io_kiocb *req = state->compl_reqs[i];
2366
2367 __io_cqring_fill_event(ctx, req->user_data, req->result,
2368 req->compl.cflags);
2369 }
2370 io_commit_cqring(ctx);
2371 spin_unlock(&ctx->completion_lock);
2372 io_cqring_ev_posted(ctx);
2373
2374 io_init_req_batch(&rb);
2375 for (i = 0; i < nr; i++) {
2376 struct io_kiocb *req = state->compl_reqs[i];
2377
2378 if (req_ref_put_and_test(req))
2379 io_req_free_batch(&rb, req, &ctx->submit_state);
2380 }
2381
2382 io_req_free_batch_finish(ctx, &rb);
2383 state->compl_nr = 0;
2384 }
2385
2386 /*
2387 * Drop reference to request, return next in chain (if there is one) if this
2388 * was the last reference to this request.
2389 */
2390 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2391 {
2392 struct io_kiocb *nxt = NULL;
2393
2394 if (req_ref_put_and_test(req)) {
2395 nxt = io_req_find_next(req);
2396 __io_free_req(req);
2397 }
2398 return nxt;
2399 }
2400
2401 static inline void io_put_req(struct io_kiocb *req)
2402 {
2403 if (req_ref_put_and_test(req))
2404 io_free_req(req);
2405 }
2406
2407 static inline void io_put_req_deferred(struct io_kiocb *req)
2408 {
2409 if (req_ref_put_and_test(req)) {
2410 req->io_task_work.func = io_free_req_work;
2411 io_req_task_work_add(req);
2412 }
2413 }
2414
2415 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2416 {
2417 /* See comment at the top of this file */
2418 smp_rmb();
2419 return __io_cqring_events(ctx);
2420 }
2421
2422 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2423 {
2424 struct io_rings *rings = ctx->rings;
2425
2426 /* make sure SQ entry isn't read before tail */
2427 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2428 }
2429
2430 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2431 {
2432 unsigned int cflags;
2433
2434 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2435 cflags |= IORING_CQE_F_BUFFER;
2436 req->flags &= ~REQ_F_BUFFER_SELECTED;
2437 kfree(kbuf);
2438 return cflags;
2439 }
2440
2441 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2442 {
2443 struct io_buffer *kbuf;
2444
2445 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2446 return 0;
2447 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2448 return io_put_kbuf(req, kbuf);
2449 }
2450
2451 static inline bool io_run_task_work(void)
2452 {
2453 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2454 __set_current_state(TASK_RUNNING);
2455 tracehook_notify_signal();
2456 return true;
2457 }
2458
2459 return false;
2460 }
2461
2462 /*
2463 * Find and free completed poll iocbs
2464 */
2465 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2466 struct list_head *done)
2467 {
2468 struct req_batch rb;
2469 struct io_kiocb *req;
2470
2471 /* order with ->result store in io_complete_rw_iopoll() */
2472 smp_rmb();
2473
2474 io_init_req_batch(&rb);
2475 while (!list_empty(done)) {
2476 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2477 list_del(&req->inflight_entry);
2478
2479 __io_cqring_fill_event(ctx, req->user_data, req->result,
2480 io_put_rw_kbuf(req));
2481 (*nr_events)++;
2482
2483 if (req_ref_put_and_test(req))
2484 io_req_free_batch(&rb, req, &ctx->submit_state);
2485 }
2486
2487 io_commit_cqring(ctx);
2488 io_cqring_ev_posted_iopoll(ctx);
2489 io_req_free_batch_finish(ctx, &rb);
2490 }
2491
2492 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2493 long min)
2494 {
2495 struct io_kiocb *req, *tmp;
2496 LIST_HEAD(done);
2497 bool spin;
2498
2499 /*
2500 * Only spin for completions if we don't have multiple devices hanging
2501 * off our complete list, and we're under the requested amount.
2502 */
2503 spin = !ctx->poll_multi_queue && *nr_events < min;
2504
2505 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2506 struct kiocb *kiocb = &req->rw.kiocb;
2507 int ret;
2508
2509 /*
2510 * Move completed and retryable entries to our local lists.
2511 * If we find a request that requires polling, break out
2512 * and complete those lists first, if we have entries there.
2513 */
2514 if (READ_ONCE(req->iopoll_completed)) {
2515 list_move_tail(&req->inflight_entry, &done);
2516 continue;
2517 }
2518 if (!list_empty(&done))
2519 break;
2520
2521 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2522 if (unlikely(ret < 0))
2523 return ret;
2524 else if (ret)
2525 spin = false;
2526
2527 /* iopoll may have completed current req */
2528 if (READ_ONCE(req->iopoll_completed))
2529 list_move_tail(&req->inflight_entry, &done);
2530 }
2531
2532 if (!list_empty(&done))
2533 io_iopoll_complete(ctx, nr_events, &done);
2534
2535 return 0;
2536 }
2537
2538 /*
2539 * We can't just wait for polled events to come to us, we have to actively
2540 * find and complete them.
2541 */
2542 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2543 {
2544 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2545 return;
2546
2547 mutex_lock(&ctx->uring_lock);
2548 while (!list_empty(&ctx->iopoll_list)) {
2549 unsigned int nr_events = 0;
2550
2551 io_do_iopoll(ctx, &nr_events, 0);
2552
2553 /* let it sleep and repeat later if can't complete a request */
2554 if (nr_events == 0)
2555 break;
2556 /*
2557 * Ensure we allow local-to-the-cpu processing to take place,
2558 * in this case we need to ensure that we reap all events.
2559 * Also let task_work, etc. to progress by releasing the mutex
2560 */
2561 if (need_resched()) {
2562 mutex_unlock(&ctx->uring_lock);
2563 cond_resched();
2564 mutex_lock(&ctx->uring_lock);
2565 }
2566 }
2567 mutex_unlock(&ctx->uring_lock);
2568 }
2569
2570 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2571 {
2572 unsigned int nr_events = 0;
2573 int ret = 0;
2574
2575 /*
2576 * We disallow the app entering submit/complete with polling, but we
2577 * still need to lock the ring to prevent racing with polled issue
2578 * that got punted to a workqueue.
2579 */
2580 mutex_lock(&ctx->uring_lock);
2581 /*
2582 * Don't enter poll loop if we already have events pending.
2583 * If we do, we can potentially be spinning for commands that
2584 * already triggered a CQE (eg in error).
2585 */
2586 if (test_bit(0, &ctx->check_cq_overflow))
2587 __io_cqring_overflow_flush(ctx, false);
2588 if (io_cqring_events(ctx))
2589 goto out;
2590 do {
2591 /*
2592 * If a submit got punted to a workqueue, we can have the
2593 * application entering polling for a command before it gets
2594 * issued. That app will hold the uring_lock for the duration
2595 * of the poll right here, so we need to take a breather every
2596 * now and then to ensure that the issue has a chance to add
2597 * the poll to the issued list. Otherwise we can spin here
2598 * forever, while the workqueue is stuck trying to acquire the
2599 * very same mutex.
2600 */
2601 if (list_empty(&ctx->iopoll_list)) {
2602 u32 tail = ctx->cached_cq_tail;
2603
2604 mutex_unlock(&ctx->uring_lock);
2605 io_run_task_work();
2606 mutex_lock(&ctx->uring_lock);
2607
2608 /* some requests don't go through iopoll_list */
2609 if (tail != ctx->cached_cq_tail ||
2610 list_empty(&ctx->iopoll_list))
2611 break;
2612 }
2613 ret = io_do_iopoll(ctx, &nr_events, min);
2614 } while (!ret && nr_events < min && !need_resched());
2615 out:
2616 mutex_unlock(&ctx->uring_lock);
2617 return ret;
2618 }
2619
2620 static void kiocb_end_write(struct io_kiocb *req)
2621 {
2622 /*
2623 * Tell lockdep we inherited freeze protection from submission
2624 * thread.
2625 */
2626 if (req->flags & REQ_F_ISREG) {
2627 struct super_block *sb = file_inode(req->file)->i_sb;
2628
2629 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2630 sb_end_write(sb);
2631 }
2632 }
2633
2634 #ifdef CONFIG_BLOCK
2635 static bool io_resubmit_prep(struct io_kiocb *req)
2636 {
2637 struct io_async_rw *rw = req->async_data;
2638
2639 if (!rw)
2640 return !io_req_prep_async(req);
2641 iov_iter_restore(&rw->iter, &rw->iter_state);
2642 return true;
2643 }
2644
2645 static bool io_rw_should_reissue(struct io_kiocb *req)
2646 {
2647 umode_t mode = file_inode(req->file)->i_mode;
2648 struct io_ring_ctx *ctx = req->ctx;
2649
2650 if (!S_ISBLK(mode) && !S_ISREG(mode))
2651 return false;
2652 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2653 !(ctx->flags & IORING_SETUP_IOPOLL)))
2654 return false;
2655 /*
2656 * If ref is dying, we might be running poll reap from the exit work.
2657 * Don't attempt to reissue from that path, just let it fail with
2658 * -EAGAIN.
2659 */
2660 if (percpu_ref_is_dying(&ctx->refs))
2661 return false;
2662 /*
2663 * Play it safe and assume not safe to re-import and reissue if we're
2664 * not in the original thread group (or in task context).
2665 */
2666 if (!same_thread_group(req->task, current) || !in_task())
2667 return false;
2668 return true;
2669 }
2670 #else
2671 static bool io_resubmit_prep(struct io_kiocb *req)
2672 {
2673 return false;
2674 }
2675 static bool io_rw_should_reissue(struct io_kiocb *req)
2676 {
2677 return false;
2678 }
2679 #endif
2680
2681 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2682 {
2683 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2684 kiocb_end_write(req);
2685 if (res != req->result) {
2686 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2687 io_rw_should_reissue(req)) {
2688 req->flags |= REQ_F_REISSUE;
2689 return true;
2690 }
2691 req_set_fail(req);
2692 req->result = res;
2693 }
2694 return false;
2695 }
2696
2697 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2698 {
2699 unsigned int cflags = io_put_rw_kbuf(req);
2700 long res = req->result;
2701
2702 if (*locked) {
2703 struct io_ring_ctx *ctx = req->ctx;
2704 struct io_submit_state *state = &ctx->submit_state;
2705
2706 io_req_complete_state(req, res, cflags);
2707 state->compl_reqs[state->compl_nr++] = req;
2708 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2709 io_submit_flush_completions(ctx);
2710 } else {
2711 io_req_complete_post(req, res, cflags);
2712 }
2713 }
2714
2715 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2716 unsigned int issue_flags)
2717 {
2718 if (__io_complete_rw_common(req, res))
2719 return;
2720 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2721 }
2722
2723 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2724 {
2725 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2726
2727 if (__io_complete_rw_common(req, res))
2728 return;
2729 req->result = res;
2730 req->io_task_work.func = io_req_task_complete;
2731 io_req_task_work_add(req);
2732 }
2733
2734 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2735 {
2736 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2737
2738 if (kiocb->ki_flags & IOCB_WRITE)
2739 kiocb_end_write(req);
2740 if (unlikely(res != req->result)) {
2741 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2742 req->flags |= REQ_F_REISSUE;
2743 return;
2744 }
2745 }
2746
2747 WRITE_ONCE(req->result, res);
2748 /* order with io_iopoll_complete() checking ->result */
2749 smp_wmb();
2750 WRITE_ONCE(req->iopoll_completed, 1);
2751 }
2752
2753 /*
2754 * After the iocb has been issued, it's safe to be found on the poll list.
2755 * Adding the kiocb to the list AFTER submission ensures that we don't
2756 * find it from a io_do_iopoll() thread before the issuer is done
2757 * accessing the kiocb cookie.
2758 */
2759 static void io_iopoll_req_issued(struct io_kiocb *req)
2760 {
2761 struct io_ring_ctx *ctx = req->ctx;
2762 const bool in_async = io_wq_current_is_worker();
2763
2764 /* workqueue context doesn't hold uring_lock, grab it now */
2765 if (unlikely(in_async))
2766 mutex_lock(&ctx->uring_lock);
2767
2768 /*
2769 * Track whether we have multiple files in our lists. This will impact
2770 * how we do polling eventually, not spinning if we're on potentially
2771 * different devices.
2772 */
2773 if (list_empty(&ctx->iopoll_list)) {
2774 ctx->poll_multi_queue = false;
2775 } else if (!ctx->poll_multi_queue) {
2776 struct io_kiocb *list_req;
2777 unsigned int queue_num0, queue_num1;
2778
2779 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2780 inflight_entry);
2781
2782 if (list_req->file != req->file) {
2783 ctx->poll_multi_queue = true;
2784 } else {
2785 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2786 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2787 if (queue_num0 != queue_num1)
2788 ctx->poll_multi_queue = true;
2789 }
2790 }
2791
2792 /*
2793 * For fast devices, IO may have already completed. If it has, add
2794 * it to the front so we find it first.
2795 */
2796 if (READ_ONCE(req->iopoll_completed))
2797 list_add(&req->inflight_entry, &ctx->iopoll_list);
2798 else
2799 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2800
2801 if (unlikely(in_async)) {
2802 /*
2803 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2804 * in sq thread task context or in io worker task context. If
2805 * current task context is sq thread, we don't need to check
2806 * whether should wake up sq thread.
2807 */
2808 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2809 wq_has_sleeper(&ctx->sq_data->wait))
2810 wake_up(&ctx->sq_data->wait);
2811
2812 mutex_unlock(&ctx->uring_lock);
2813 }
2814 }
2815
2816 static bool io_bdev_nowait(struct block_device *bdev)
2817 {
2818 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2819 }
2820
2821 /*
2822 * If we tracked the file through the SCM inflight mechanism, we could support
2823 * any file. For now, just ensure that anything potentially problematic is done
2824 * inline.
2825 */
2826 static bool __io_file_supports_nowait(struct file *file, int rw)
2827 {
2828 umode_t mode = file_inode(file)->i_mode;
2829
2830 if (S_ISBLK(mode)) {
2831 if (IS_ENABLED(CONFIG_BLOCK) &&
2832 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2833 return true;
2834 return false;
2835 }
2836 if (S_ISSOCK(mode))
2837 return true;
2838 if (S_ISREG(mode)) {
2839 if (IS_ENABLED(CONFIG_BLOCK) &&
2840 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2841 file->f_op != &io_uring_fops)
2842 return true;
2843 return false;
2844 }
2845
2846 /* any ->read/write should understand O_NONBLOCK */
2847 if (file->f_flags & O_NONBLOCK)
2848 return true;
2849
2850 if (!(file->f_mode & FMODE_NOWAIT))
2851 return false;
2852
2853 if (rw == READ)
2854 return file->f_op->read_iter != NULL;
2855
2856 return file->f_op->write_iter != NULL;
2857 }
2858
2859 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2860 {
2861 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2862 return true;
2863 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2864 return true;
2865
2866 return __io_file_supports_nowait(req->file, rw);
2867 }
2868
2869 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2870 int rw)
2871 {
2872 struct io_ring_ctx *ctx = req->ctx;
2873 struct kiocb *kiocb = &req->rw.kiocb;
2874 struct file *file = req->file;
2875 unsigned ioprio;
2876 int ret;
2877
2878 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2879 req->flags |= REQ_F_ISREG;
2880
2881 kiocb->ki_pos = READ_ONCE(sqe->off);
2882 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2883 req->flags |= REQ_F_CUR_POS;
2884 kiocb->ki_pos = file->f_pos;
2885 }
2886 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2887 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2888 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2889 if (unlikely(ret))
2890 return ret;
2891
2892 /*
2893 * If the file is marked O_NONBLOCK, still allow retry for it if it
2894 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2895 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2896 */
2897 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2898 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2899 req->flags |= REQ_F_NOWAIT;
2900
2901 ioprio = READ_ONCE(sqe->ioprio);
2902 if (ioprio) {
2903 ret = ioprio_check_cap(ioprio);
2904 if (ret)
2905 return ret;
2906
2907 kiocb->ki_ioprio = ioprio;
2908 } else
2909 kiocb->ki_ioprio = get_current_ioprio();
2910
2911 if (ctx->flags & IORING_SETUP_IOPOLL) {
2912 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2913 !kiocb->ki_filp->f_op->iopoll)
2914 return -EOPNOTSUPP;
2915
2916 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2917 kiocb->ki_complete = io_complete_rw_iopoll;
2918 req->iopoll_completed = 0;
2919 } else {
2920 if (kiocb->ki_flags & IOCB_HIPRI)
2921 return -EINVAL;
2922 kiocb->ki_complete = io_complete_rw;
2923 }
2924
2925 if (req->opcode == IORING_OP_READ_FIXED ||
2926 req->opcode == IORING_OP_WRITE_FIXED) {
2927 req->imu = NULL;
2928 io_req_set_rsrc_node(req);
2929 }
2930
2931 req->rw.addr = READ_ONCE(sqe->addr);
2932 req->rw.len = READ_ONCE(sqe->len);
2933 req->buf_index = READ_ONCE(sqe->buf_index);
2934 return 0;
2935 }
2936
2937 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2938 {
2939 switch (ret) {
2940 case -EIOCBQUEUED:
2941 break;
2942 case -ERESTARTSYS:
2943 case -ERESTARTNOINTR:
2944 case -ERESTARTNOHAND:
2945 case -ERESTART_RESTARTBLOCK:
2946 /*
2947 * We can't just restart the syscall, since previously
2948 * submitted sqes may already be in progress. Just fail this
2949 * IO with EINTR.
2950 */
2951 ret = -EINTR;
2952 fallthrough;
2953 default:
2954 kiocb->ki_complete(kiocb, ret, 0);
2955 }
2956 }
2957
2958 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2959 unsigned int issue_flags)
2960 {
2961 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2962 struct io_async_rw *io = req->async_data;
2963
2964 /* add previously done IO, if any */
2965 if (io && io->bytes_done > 0) {
2966 if (ret < 0)
2967 ret = io->bytes_done;
2968 else
2969 ret += io->bytes_done;
2970 }
2971
2972 if (req->flags & REQ_F_CUR_POS)
2973 req->file->f_pos = kiocb->ki_pos;
2974 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2975 __io_complete_rw(req, ret, 0, issue_flags);
2976 else
2977 io_rw_done(kiocb, ret);
2978
2979 if (req->flags & REQ_F_REISSUE) {
2980 req->flags &= ~REQ_F_REISSUE;
2981 if (io_resubmit_prep(req)) {
2982 io_req_task_queue_reissue(req);
2983 } else {
2984 unsigned int cflags = io_put_rw_kbuf(req);
2985 struct io_ring_ctx *ctx = req->ctx;
2986
2987 req_set_fail(req);
2988 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
2989 mutex_lock(&ctx->uring_lock);
2990 __io_req_complete(req, issue_flags, ret, cflags);
2991 mutex_unlock(&ctx->uring_lock);
2992 } else {
2993 __io_req_complete(req, issue_flags, ret, cflags);
2994 }
2995 }
2996 }
2997 }
2998
2999 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3000 struct io_mapped_ubuf *imu)
3001 {
3002 size_t len = req->rw.len;
3003 u64 buf_end, buf_addr = req->rw.addr;
3004 size_t offset;
3005
3006 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3007 return -EFAULT;
3008 /* not inside the mapped region */
3009 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3010 return -EFAULT;
3011
3012 /*
3013 * May not be a start of buffer, set size appropriately
3014 * and advance us to the beginning.
3015 */
3016 offset = buf_addr - imu->ubuf;
3017 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3018
3019 if (offset) {
3020 /*
3021 * Don't use iov_iter_advance() here, as it's really slow for
3022 * using the latter parts of a big fixed buffer - it iterates
3023 * over each segment manually. We can cheat a bit here, because
3024 * we know that:
3025 *
3026 * 1) it's a BVEC iter, we set it up
3027 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3028 * first and last bvec
3029 *
3030 * So just find our index, and adjust the iterator afterwards.
3031 * If the offset is within the first bvec (or the whole first
3032 * bvec, just use iov_iter_advance(). This makes it easier
3033 * since we can just skip the first segment, which may not
3034 * be PAGE_SIZE aligned.
3035 */
3036 const struct bio_vec *bvec = imu->bvec;
3037
3038 if (offset <= bvec->bv_len) {
3039 iov_iter_advance(iter, offset);
3040 } else {
3041 unsigned long seg_skip;
3042
3043 /* skip first vec */
3044 offset -= bvec->bv_len;
3045 seg_skip = 1 + (offset >> PAGE_SHIFT);
3046
3047 iter->bvec = bvec + seg_skip;
3048 iter->nr_segs -= seg_skip;
3049 iter->count -= bvec->bv_len + offset;
3050 iter->iov_offset = offset & ~PAGE_MASK;
3051 }
3052 }
3053
3054 return 0;
3055 }
3056
3057 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3058 {
3059 struct io_ring_ctx *ctx = req->ctx;
3060 struct io_mapped_ubuf *imu = req->imu;
3061 u16 index, buf_index = req->buf_index;
3062
3063 if (likely(!imu)) {
3064 if (unlikely(buf_index >= ctx->nr_user_bufs))
3065 return -EFAULT;
3066 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3067 imu = READ_ONCE(ctx->user_bufs[index]);
3068 req->imu = imu;
3069 }
3070 return __io_import_fixed(req, rw, iter, imu);
3071 }
3072
3073 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3074 {
3075 if (needs_lock)
3076 mutex_unlock(&ctx->uring_lock);
3077 }
3078
3079 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3080 {
3081 /*
3082 * "Normal" inline submissions always hold the uring_lock, since we
3083 * grab it from the system call. Same is true for the SQPOLL offload.
3084 * The only exception is when we've detached the request and issue it
3085 * from an async worker thread, grab the lock for that case.
3086 */
3087 if (needs_lock)
3088 mutex_lock(&ctx->uring_lock);
3089 }
3090
3091 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3092 int bgid, struct io_buffer *kbuf,
3093 bool needs_lock)
3094 {
3095 struct io_buffer *head;
3096
3097 if (req->flags & REQ_F_BUFFER_SELECTED)
3098 return kbuf;
3099
3100 io_ring_submit_lock(req->ctx, needs_lock);
3101
3102 lockdep_assert_held(&req->ctx->uring_lock);
3103
3104 head = xa_load(&req->ctx->io_buffers, bgid);
3105 if (head) {
3106 if (!list_empty(&head->list)) {
3107 kbuf = list_last_entry(&head->list, struct io_buffer,
3108 list);
3109 list_del(&kbuf->list);
3110 } else {
3111 kbuf = head;
3112 xa_erase(&req->ctx->io_buffers, bgid);
3113 }
3114 if (*len > kbuf->len)
3115 *len = kbuf->len;
3116 } else {
3117 kbuf = ERR_PTR(-ENOBUFS);
3118 }
3119
3120 io_ring_submit_unlock(req->ctx, needs_lock);
3121
3122 return kbuf;
3123 }
3124
3125 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3126 bool needs_lock)
3127 {
3128 struct io_buffer *kbuf;
3129 u16 bgid;
3130
3131 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3132 bgid = req->buf_index;
3133 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3134 if (IS_ERR(kbuf))
3135 return kbuf;
3136 req->rw.addr = (u64) (unsigned long) kbuf;
3137 req->flags |= REQ_F_BUFFER_SELECTED;
3138 return u64_to_user_ptr(kbuf->addr);
3139 }
3140
3141 #ifdef CONFIG_COMPAT
3142 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3143 bool needs_lock)
3144 {
3145 struct compat_iovec __user *uiov;
3146 compat_ssize_t clen;
3147 void __user *buf;
3148 ssize_t len;
3149
3150 uiov = u64_to_user_ptr(req->rw.addr);
3151 if (!access_ok(uiov, sizeof(*uiov)))
3152 return -EFAULT;
3153 if (__get_user(clen, &uiov->iov_len))
3154 return -EFAULT;
3155 if (clen < 0)
3156 return -EINVAL;
3157
3158 len = clen;
3159 buf = io_rw_buffer_select(req, &len, needs_lock);
3160 if (IS_ERR(buf))
3161 return PTR_ERR(buf);
3162 iov[0].iov_base = buf;
3163 iov[0].iov_len = (compat_size_t) len;
3164 return 0;
3165 }
3166 #endif
3167
3168 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3169 bool needs_lock)
3170 {
3171 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3172 void __user *buf;
3173 ssize_t len;
3174
3175 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3176 return -EFAULT;
3177
3178 len = iov[0].iov_len;
3179 if (len < 0)
3180 return -EINVAL;
3181 buf = io_rw_buffer_select(req, &len, needs_lock);
3182 if (IS_ERR(buf))
3183 return PTR_ERR(buf);
3184 iov[0].iov_base = buf;
3185 iov[0].iov_len = len;
3186 return 0;
3187 }
3188
3189 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3190 bool needs_lock)
3191 {
3192 if (req->flags & REQ_F_BUFFER_SELECTED) {
3193 struct io_buffer *kbuf;
3194
3195 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3196 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3197 iov[0].iov_len = kbuf->len;
3198 return 0;
3199 }
3200 if (req->rw.len != 1)
3201 return -EINVAL;
3202
3203 #ifdef CONFIG_COMPAT
3204 if (req->ctx->compat)
3205 return io_compat_import(req, iov, needs_lock);
3206 #endif
3207
3208 return __io_iov_buffer_select(req, iov, needs_lock);
3209 }
3210
3211 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3212 struct iov_iter *iter, bool needs_lock)
3213 {
3214 void __user *buf = u64_to_user_ptr(req->rw.addr);
3215 size_t sqe_len = req->rw.len;
3216 u8 opcode = req->opcode;
3217 ssize_t ret;
3218
3219 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3220 *iovec = NULL;
3221 return io_import_fixed(req, rw, iter);
3222 }
3223
3224 /* buffer index only valid with fixed read/write, or buffer select */
3225 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3226 return -EINVAL;
3227
3228 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3229 if (req->flags & REQ_F_BUFFER_SELECT) {
3230 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3231 if (IS_ERR(buf))
3232 return PTR_ERR(buf);
3233 req->rw.len = sqe_len;
3234 }
3235
3236 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3237 *iovec = NULL;
3238 return ret;
3239 }
3240
3241 if (req->flags & REQ_F_BUFFER_SELECT) {
3242 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3243 if (!ret)
3244 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3245 *iovec = NULL;
3246 return ret;
3247 }
3248
3249 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3250 req->ctx->compat);
3251 }
3252
3253 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3254 {
3255 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3256 }
3257
3258 /*
3259 * For files that don't have ->read_iter() and ->write_iter(), handle them
3260 * by looping over ->read() or ->write() manually.
3261 */
3262 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3263 {
3264 struct kiocb *kiocb = &req->rw.kiocb;
3265 struct file *file = req->file;
3266 ssize_t ret = 0;
3267
3268 /*
3269 * Don't support polled IO through this interface, and we can't
3270 * support non-blocking either. For the latter, this just causes
3271 * the kiocb to be handled from an async context.
3272 */
3273 if (kiocb->ki_flags & IOCB_HIPRI)
3274 return -EOPNOTSUPP;
3275 if (kiocb->ki_flags & IOCB_NOWAIT)
3276 return -EAGAIN;
3277
3278 while (iov_iter_count(iter)) {
3279 struct iovec iovec;
3280 ssize_t nr;
3281
3282 if (!iov_iter_is_bvec(iter)) {
3283 iovec = iov_iter_iovec(iter);
3284 } else {
3285 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3286 iovec.iov_len = req->rw.len;
3287 }
3288
3289 if (rw == READ) {
3290 nr = file->f_op->read(file, iovec.iov_base,
3291 iovec.iov_len, io_kiocb_ppos(kiocb));
3292 } else {
3293 nr = file->f_op->write(file, iovec.iov_base,
3294 iovec.iov_len, io_kiocb_ppos(kiocb));
3295 }
3296
3297 if (nr < 0) {
3298 if (!ret)
3299 ret = nr;
3300 break;
3301 }
3302 if (!iov_iter_is_bvec(iter)) {
3303 iov_iter_advance(iter, nr);
3304 } else {
3305 req->rw.len -= nr;
3306 req->rw.addr += nr;
3307 }
3308 ret += nr;
3309 if (nr != iovec.iov_len)
3310 break;
3311 }
3312
3313 return ret;
3314 }
3315
3316 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3317 const struct iovec *fast_iov, struct iov_iter *iter)
3318 {
3319 struct io_async_rw *rw = req->async_data;
3320
3321 memcpy(&rw->iter, iter, sizeof(*iter));
3322 rw->free_iovec = iovec;
3323 rw->bytes_done = 0;
3324 /* can only be fixed buffers, no need to do anything */
3325 if (iov_iter_is_bvec(iter))
3326 return;
3327 if (!iovec) {
3328 unsigned iov_off = 0;
3329
3330 rw->iter.iov = rw->fast_iov;
3331 if (iter->iov != fast_iov) {
3332 iov_off = iter->iov - fast_iov;
3333 rw->iter.iov += iov_off;
3334 }
3335 if (rw->fast_iov != fast_iov)
3336 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3337 sizeof(struct iovec) * iter->nr_segs);
3338 } else {
3339 req->flags |= REQ_F_NEED_CLEANUP;
3340 }
3341 }
3342
3343 static inline int io_alloc_async_data(struct io_kiocb *req)
3344 {
3345 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3346 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3347 return req->async_data == NULL;
3348 }
3349
3350 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3351 const struct iovec *fast_iov,
3352 struct iov_iter *iter, bool force)
3353 {
3354 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3355 return 0;
3356 if (!req->async_data) {
3357 struct io_async_rw *iorw;
3358
3359 if (io_alloc_async_data(req)) {
3360 kfree(iovec);
3361 return -ENOMEM;
3362 }
3363
3364 io_req_map_rw(req, iovec, fast_iov, iter);
3365 iorw = req->async_data;
3366 /* we've copied and mapped the iter, ensure state is saved */
3367 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3368 }
3369 return 0;
3370 }
3371
3372 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3373 {
3374 struct io_async_rw *iorw = req->async_data;
3375 struct iovec *iov = iorw->fast_iov;
3376 int ret;
3377
3378 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3379 if (unlikely(ret < 0))
3380 return ret;
3381
3382 iorw->bytes_done = 0;
3383 iorw->free_iovec = iov;
3384 if (iov)
3385 req->flags |= REQ_F_NEED_CLEANUP;
3386 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3387 return 0;
3388 }
3389
3390 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3391 {
3392 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3393 return -EBADF;
3394 return io_prep_rw(req, sqe, READ);
3395 }
3396
3397 /*
3398 * This is our waitqueue callback handler, registered through lock_page_async()
3399 * when we initially tried to do the IO with the iocb armed our waitqueue.
3400 * This gets called when the page is unlocked, and we generally expect that to
3401 * happen when the page IO is completed and the page is now uptodate. This will
3402 * queue a task_work based retry of the operation, attempting to copy the data
3403 * again. If the latter fails because the page was NOT uptodate, then we will
3404 * do a thread based blocking retry of the operation. That's the unexpected
3405 * slow path.
3406 */
3407 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3408 int sync, void *arg)
3409 {
3410 struct wait_page_queue *wpq;
3411 struct io_kiocb *req = wait->private;
3412 struct wait_page_key *key = arg;
3413
3414 wpq = container_of(wait, struct wait_page_queue, wait);
3415
3416 if (!wake_page_match(wpq, key))
3417 return 0;
3418
3419 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3420 list_del_init(&wait->entry);
3421 io_req_task_queue(req);
3422 return 1;
3423 }
3424
3425 /*
3426 * This controls whether a given IO request should be armed for async page
3427 * based retry. If we return false here, the request is handed to the async
3428 * worker threads for retry. If we're doing buffered reads on a regular file,
3429 * we prepare a private wait_page_queue entry and retry the operation. This
3430 * will either succeed because the page is now uptodate and unlocked, or it
3431 * will register a callback when the page is unlocked at IO completion. Through
3432 * that callback, io_uring uses task_work to setup a retry of the operation.
3433 * That retry will attempt the buffered read again. The retry will generally
3434 * succeed, or in rare cases where it fails, we then fall back to using the
3435 * async worker threads for a blocking retry.
3436 */
3437 static bool io_rw_should_retry(struct io_kiocb *req)
3438 {
3439 struct io_async_rw *rw = req->async_data;
3440 struct wait_page_queue *wait = &rw->wpq;
3441 struct kiocb *kiocb = &req->rw.kiocb;
3442
3443 /* never retry for NOWAIT, we just complete with -EAGAIN */
3444 if (req->flags & REQ_F_NOWAIT)
3445 return false;
3446
3447 /* Only for buffered IO */
3448 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3449 return false;
3450
3451 /*
3452 * just use poll if we can, and don't attempt if the fs doesn't
3453 * support callback based unlocks
3454 */
3455 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3456 return false;
3457
3458 wait->wait.func = io_async_buf_func;
3459 wait->wait.private = req;
3460 wait->wait.flags = 0;
3461 INIT_LIST_HEAD(&wait->wait.entry);
3462 kiocb->ki_flags |= IOCB_WAITQ;
3463 kiocb->ki_flags &= ~IOCB_NOWAIT;
3464 kiocb->ki_waitq = wait;
3465 return true;
3466 }
3467
3468 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3469 {
3470 if (req->file->f_op->read_iter)
3471 return call_read_iter(req->file, &req->rw.kiocb, iter);
3472 else if (req->file->f_op->read)
3473 return loop_rw_iter(READ, req, iter);
3474 else
3475 return -EINVAL;
3476 }
3477
3478 static bool need_read_all(struct io_kiocb *req)
3479 {
3480 return req->flags & REQ_F_ISREG ||
3481 S_ISBLK(file_inode(req->file)->i_mode);
3482 }
3483
3484 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3485 {
3486 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3487 struct kiocb *kiocb = &req->rw.kiocb;
3488 struct iov_iter __iter, *iter = &__iter;
3489 struct io_async_rw *rw = req->async_data;
3490 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3491 struct iov_iter_state __state, *state;
3492 ssize_t ret, ret2;
3493
3494 if (rw) {
3495 iter = &rw->iter;
3496 state = &rw->iter_state;
3497 /*
3498 * We come here from an earlier attempt, restore our state to
3499 * match in case it doesn't. It's cheap enough that we don't
3500 * need to make this conditional.
3501 */
3502 iov_iter_restore(iter, state);
3503 iovec = NULL;
3504 } else {
3505 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3506 if (ret < 0)
3507 return ret;
3508 state = &__state;
3509 iov_iter_save_state(iter, state);
3510 }
3511 req->result = iov_iter_count(iter);
3512
3513 /* Ensure we clear previously set non-block flag */
3514 if (!force_nonblock)
3515 kiocb->ki_flags &= ~IOCB_NOWAIT;
3516 else
3517 kiocb->ki_flags |= IOCB_NOWAIT;
3518
3519 /* If the file doesn't support async, just async punt */
3520 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3521 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3522 return ret ?: -EAGAIN;
3523 }
3524
3525 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3526 if (unlikely(ret)) {
3527 kfree(iovec);
3528 return ret;
3529 }
3530
3531 ret = io_iter_do_read(req, iter);
3532
3533 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3534 req->flags &= ~REQ_F_REISSUE;
3535 /* IOPOLL retry should happen for io-wq threads */
3536 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3537 goto done;
3538 /* no retry on NONBLOCK nor RWF_NOWAIT */
3539 if (req->flags & REQ_F_NOWAIT)
3540 goto done;
3541 ret = 0;
3542 } else if (ret == -EIOCBQUEUED) {
3543 goto out_free;
3544 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3545 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3546 /* read all, failed, already did sync or don't want to retry */
3547 goto done;
3548 }
3549
3550 /*
3551 * Don't depend on the iter state matching what was consumed, or being
3552 * untouched in case of error. Restore it and we'll advance it
3553 * manually if we need to.
3554 */
3555 iov_iter_restore(iter, state);
3556
3557 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3558 if (ret2)
3559 return ret2;
3560
3561 iovec = NULL;
3562 rw = req->async_data;
3563 /*
3564 * Now use our persistent iterator and state, if we aren't already.
3565 * We've restored and mapped the iter to match.
3566 */
3567 if (iter != &rw->iter) {
3568 iter = &rw->iter;
3569 state = &rw->iter_state;
3570 }
3571
3572 do {
3573 /*
3574 * We end up here because of a partial read, either from
3575 * above or inside this loop. Advance the iter by the bytes
3576 * that were consumed.
3577 */
3578 iov_iter_advance(iter, ret);
3579 if (!iov_iter_count(iter))
3580 break;
3581 rw->bytes_done += ret;
3582 iov_iter_save_state(iter, state);
3583
3584 /* if we can retry, do so with the callbacks armed */
3585 if (!io_rw_should_retry(req)) {
3586 kiocb->ki_flags &= ~IOCB_WAITQ;
3587 return -EAGAIN;
3588 }
3589
3590 /*
3591 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3592 * we get -EIOCBQUEUED, then we'll get a notification when the
3593 * desired page gets unlocked. We can also get a partial read
3594 * here, and if we do, then just retry at the new offset.
3595 */
3596 ret = io_iter_do_read(req, iter);
3597 if (ret == -EIOCBQUEUED)
3598 return 0;
3599 /* we got some bytes, but not all. retry. */
3600 kiocb->ki_flags &= ~IOCB_WAITQ;
3601 iov_iter_restore(iter, state);
3602 } while (ret > 0);
3603 done:
3604 kiocb_done(kiocb, ret, issue_flags);
3605 out_free:
3606 /* it's faster to check here then delegate to kfree */
3607 if (iovec)
3608 kfree(iovec);
3609 return 0;
3610 }
3611
3612 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3613 {
3614 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3615 return -EBADF;
3616 return io_prep_rw(req, sqe, WRITE);
3617 }
3618
3619 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3620 {
3621 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3622 struct kiocb *kiocb = &req->rw.kiocb;
3623 struct iov_iter __iter, *iter = &__iter;
3624 struct io_async_rw *rw = req->async_data;
3625 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3626 struct iov_iter_state __state, *state;
3627 ssize_t ret, ret2;
3628
3629 if (rw) {
3630 iter = &rw->iter;
3631 state = &rw->iter_state;
3632 iov_iter_restore(iter, state);
3633 iovec = NULL;
3634 } else {
3635 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3636 if (ret < 0)
3637 return ret;
3638 state = &__state;
3639 iov_iter_save_state(iter, state);
3640 }
3641 req->result = iov_iter_count(iter);
3642
3643 /* Ensure we clear previously set non-block flag */
3644 if (!force_nonblock)
3645 kiocb->ki_flags &= ~IOCB_NOWAIT;
3646 else
3647 kiocb->ki_flags |= IOCB_NOWAIT;
3648
3649 /* If the file doesn't support async, just async punt */
3650 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3651 goto copy_iov;
3652
3653 /* file path doesn't support NOWAIT for non-direct_IO */
3654 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3655 (req->flags & REQ_F_ISREG))
3656 goto copy_iov;
3657
3658 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3659 if (unlikely(ret))
3660 goto out_free;
3661
3662 /*
3663 * Open-code file_start_write here to grab freeze protection,
3664 * which will be released by another thread in
3665 * io_complete_rw(). Fool lockdep by telling it the lock got
3666 * released so that it doesn't complain about the held lock when
3667 * we return to userspace.
3668 */
3669 if (req->flags & REQ_F_ISREG) {
3670 sb_start_write(file_inode(req->file)->i_sb);
3671 __sb_writers_release(file_inode(req->file)->i_sb,
3672 SB_FREEZE_WRITE);
3673 }
3674 kiocb->ki_flags |= IOCB_WRITE;
3675
3676 if (req->file->f_op->write_iter)
3677 ret2 = call_write_iter(req->file, kiocb, iter);
3678 else if (req->file->f_op->write)
3679 ret2 = loop_rw_iter(WRITE, req, iter);
3680 else
3681 ret2 = -EINVAL;
3682
3683 if (req->flags & REQ_F_REISSUE) {
3684 req->flags &= ~REQ_F_REISSUE;
3685 ret2 = -EAGAIN;
3686 }
3687
3688 /*
3689 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3690 * retry them without IOCB_NOWAIT.
3691 */
3692 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3693 ret2 = -EAGAIN;
3694 /* no retry on NONBLOCK nor RWF_NOWAIT */
3695 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3696 goto done;
3697 if (!force_nonblock || ret2 != -EAGAIN) {
3698 /* IOPOLL retry should happen for io-wq threads */
3699 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3700 goto copy_iov;
3701 done:
3702 kiocb_done(kiocb, ret2, issue_flags);
3703 } else {
3704 copy_iov:
3705 iov_iter_restore(iter, state);
3706 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3707 return ret ?: -EAGAIN;
3708 }
3709 out_free:
3710 /* it's reportedly faster than delegating the null check to kfree() */
3711 if (iovec)
3712 kfree(iovec);
3713 return ret;
3714 }
3715
3716 static int io_renameat_prep(struct io_kiocb *req,
3717 const struct io_uring_sqe *sqe)
3718 {
3719 struct io_rename *ren = &req->rename;
3720 const char __user *oldf, *newf;
3721
3722 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3723 return -EINVAL;
3724 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3725 return -EINVAL;
3726 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3727 return -EBADF;
3728
3729 ren->old_dfd = READ_ONCE(sqe->fd);
3730 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3731 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3732 ren->new_dfd = READ_ONCE(sqe->len);
3733 ren->flags = READ_ONCE(sqe->rename_flags);
3734
3735 ren->oldpath = getname(oldf);
3736 if (IS_ERR(ren->oldpath))
3737 return PTR_ERR(ren->oldpath);
3738
3739 ren->newpath = getname(newf);
3740 if (IS_ERR(ren->newpath)) {
3741 putname(ren->oldpath);
3742 return PTR_ERR(ren->newpath);
3743 }
3744
3745 req->flags |= REQ_F_NEED_CLEANUP;
3746 return 0;
3747 }
3748
3749 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3750 {
3751 struct io_rename *ren = &req->rename;
3752 int ret;
3753
3754 if (issue_flags & IO_URING_F_NONBLOCK)
3755 return -EAGAIN;
3756
3757 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3758 ren->newpath, ren->flags);
3759
3760 req->flags &= ~REQ_F_NEED_CLEANUP;
3761 if (ret < 0)
3762 req_set_fail(req);
3763 io_req_complete(req, ret);
3764 return 0;
3765 }
3766
3767 static int io_unlinkat_prep(struct io_kiocb *req,
3768 const struct io_uring_sqe *sqe)
3769 {
3770 struct io_unlink *un = &req->unlink;
3771 const char __user *fname;
3772
3773 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3774 return -EINVAL;
3775 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3776 sqe->splice_fd_in)
3777 return -EINVAL;
3778 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3779 return -EBADF;
3780
3781 un->dfd = READ_ONCE(sqe->fd);
3782
3783 un->flags = READ_ONCE(sqe->unlink_flags);
3784 if (un->flags & ~AT_REMOVEDIR)
3785 return -EINVAL;
3786
3787 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3788 un->filename = getname(fname);
3789 if (IS_ERR(un->filename))
3790 return PTR_ERR(un->filename);
3791
3792 req->flags |= REQ_F_NEED_CLEANUP;
3793 return 0;
3794 }
3795
3796 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3797 {
3798 struct io_unlink *un = &req->unlink;
3799 int ret;
3800
3801 if (issue_flags & IO_URING_F_NONBLOCK)
3802 return -EAGAIN;
3803
3804 if (un->flags & AT_REMOVEDIR)
3805 ret = do_rmdir(un->dfd, un->filename);
3806 else
3807 ret = do_unlinkat(un->dfd, un->filename);
3808
3809 req->flags &= ~REQ_F_NEED_CLEANUP;
3810 if (ret < 0)
3811 req_set_fail(req);
3812 io_req_complete(req, ret);
3813 return 0;
3814 }
3815
3816 static int io_mkdirat_prep(struct io_kiocb *req,
3817 const struct io_uring_sqe *sqe)
3818 {
3819 struct io_mkdir *mkd = &req->mkdir;
3820 const char __user *fname;
3821
3822 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3823 return -EINVAL;
3824 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3825 sqe->splice_fd_in)
3826 return -EINVAL;
3827 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3828 return -EBADF;
3829
3830 mkd->dfd = READ_ONCE(sqe->fd);
3831 mkd->mode = READ_ONCE(sqe->len);
3832
3833 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3834 mkd->filename = getname(fname);
3835 if (IS_ERR(mkd->filename))
3836 return PTR_ERR(mkd->filename);
3837
3838 req->flags |= REQ_F_NEED_CLEANUP;
3839 return 0;
3840 }
3841
3842 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3843 {
3844 struct io_mkdir *mkd = &req->mkdir;
3845 int ret;
3846
3847 if (issue_flags & IO_URING_F_NONBLOCK)
3848 return -EAGAIN;
3849
3850 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3851
3852 req->flags &= ~REQ_F_NEED_CLEANUP;
3853 if (ret < 0)
3854 req_set_fail(req);
3855 io_req_complete(req, ret);
3856 return 0;
3857 }
3858
3859 static int io_symlinkat_prep(struct io_kiocb *req,
3860 const struct io_uring_sqe *sqe)
3861 {
3862 struct io_symlink *sl = &req->symlink;
3863 const char __user *oldpath, *newpath;
3864
3865 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3866 return -EINVAL;
3867 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3868 sqe->splice_fd_in)
3869 return -EINVAL;
3870 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3871 return -EBADF;
3872
3873 sl->new_dfd = READ_ONCE(sqe->fd);
3874 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3875 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3876
3877 sl->oldpath = getname(oldpath);
3878 if (IS_ERR(sl->oldpath))
3879 return PTR_ERR(sl->oldpath);
3880
3881 sl->newpath = getname(newpath);
3882 if (IS_ERR(sl->newpath)) {
3883 putname(sl->oldpath);
3884 return PTR_ERR(sl->newpath);
3885 }
3886
3887 req->flags |= REQ_F_NEED_CLEANUP;
3888 return 0;
3889 }
3890
3891 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3892 {
3893 struct io_symlink *sl = &req->symlink;
3894 int ret;
3895
3896 if (issue_flags & IO_URING_F_NONBLOCK)
3897 return -EAGAIN;
3898
3899 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3900
3901 req->flags &= ~REQ_F_NEED_CLEANUP;
3902 if (ret < 0)
3903 req_set_fail(req);
3904 io_req_complete(req, ret);
3905 return 0;
3906 }
3907
3908 static int io_linkat_prep(struct io_kiocb *req,
3909 const struct io_uring_sqe *sqe)
3910 {
3911 struct io_hardlink *lnk = &req->hardlink;
3912 const char __user *oldf, *newf;
3913
3914 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3915 return -EINVAL;
3916 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3917 return -EINVAL;
3918 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3919 return -EBADF;
3920
3921 lnk->old_dfd = READ_ONCE(sqe->fd);
3922 lnk->new_dfd = READ_ONCE(sqe->len);
3923 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3924 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3925 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3926
3927 lnk->oldpath = getname(oldf);
3928 if (IS_ERR(lnk->oldpath))
3929 return PTR_ERR(lnk->oldpath);
3930
3931 lnk->newpath = getname(newf);
3932 if (IS_ERR(lnk->newpath)) {
3933 putname(lnk->oldpath);
3934 return PTR_ERR(lnk->newpath);
3935 }
3936
3937 req->flags |= REQ_F_NEED_CLEANUP;
3938 return 0;
3939 }
3940
3941 static int io_linkat(struct io_kiocb *req, int issue_flags)
3942 {
3943 struct io_hardlink *lnk = &req->hardlink;
3944 int ret;
3945
3946 if (issue_flags & IO_URING_F_NONBLOCK)
3947 return -EAGAIN;
3948
3949 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3950 lnk->newpath, lnk->flags);
3951
3952 req->flags &= ~REQ_F_NEED_CLEANUP;
3953 if (ret < 0)
3954 req_set_fail(req);
3955 io_req_complete(req, ret);
3956 return 0;
3957 }
3958
3959 static int io_shutdown_prep(struct io_kiocb *req,
3960 const struct io_uring_sqe *sqe)
3961 {
3962 #if defined(CONFIG_NET)
3963 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3964 return -EINVAL;
3965 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3966 sqe->buf_index || sqe->splice_fd_in))
3967 return -EINVAL;
3968
3969 req->shutdown.how = READ_ONCE(sqe->len);
3970 return 0;
3971 #else
3972 return -EOPNOTSUPP;
3973 #endif
3974 }
3975
3976 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3977 {
3978 #if defined(CONFIG_NET)
3979 struct socket *sock;
3980 int ret;
3981
3982 if (issue_flags & IO_URING_F_NONBLOCK)
3983 return -EAGAIN;
3984
3985 sock = sock_from_file(req->file);
3986 if (unlikely(!sock))
3987 return -ENOTSOCK;
3988
3989 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3990 if (ret < 0)
3991 req_set_fail(req);
3992 io_req_complete(req, ret);
3993 return 0;
3994 #else
3995 return -EOPNOTSUPP;
3996 #endif
3997 }
3998
3999 static int __io_splice_prep(struct io_kiocb *req,
4000 const struct io_uring_sqe *sqe)
4001 {
4002 struct io_splice *sp = &req->splice;
4003 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4004
4005 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4006 return -EINVAL;
4007
4008 sp->file_in = NULL;
4009 sp->len = READ_ONCE(sqe->len);
4010 sp->flags = READ_ONCE(sqe->splice_flags);
4011
4012 if (unlikely(sp->flags & ~valid_flags))
4013 return -EINVAL;
4014
4015 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
4016 (sp->flags & SPLICE_F_FD_IN_FIXED));
4017 if (!sp->file_in)
4018 return -EBADF;
4019 req->flags |= REQ_F_NEED_CLEANUP;
4020 return 0;
4021 }
4022
4023 static int io_tee_prep(struct io_kiocb *req,
4024 const struct io_uring_sqe *sqe)
4025 {
4026 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4027 return -EINVAL;
4028 return __io_splice_prep(req, sqe);
4029 }
4030
4031 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4032 {
4033 struct io_splice *sp = &req->splice;
4034 struct file *in = sp->file_in;
4035 struct file *out = sp->file_out;
4036 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4037 long ret = 0;
4038
4039 if (issue_flags & IO_URING_F_NONBLOCK)
4040 return -EAGAIN;
4041 if (sp->len)
4042 ret = do_tee(in, out, sp->len, flags);
4043
4044 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4045 io_put_file(in);
4046 req->flags &= ~REQ_F_NEED_CLEANUP;
4047
4048 if (ret != sp->len)
4049 req_set_fail(req);
4050 io_req_complete(req, ret);
4051 return 0;
4052 }
4053
4054 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4055 {
4056 struct io_splice *sp = &req->splice;
4057
4058 sp->off_in = READ_ONCE(sqe->splice_off_in);
4059 sp->off_out = READ_ONCE(sqe->off);
4060 return __io_splice_prep(req, sqe);
4061 }
4062
4063 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4064 {
4065 struct io_splice *sp = &req->splice;
4066 struct file *in = sp->file_in;
4067 struct file *out = sp->file_out;
4068 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4069 loff_t *poff_in, *poff_out;
4070 long ret = 0;
4071
4072 if (issue_flags & IO_URING_F_NONBLOCK)
4073 return -EAGAIN;
4074
4075 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4076 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4077
4078 if (sp->len)
4079 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4080
4081 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4082 io_put_file(in);
4083 req->flags &= ~REQ_F_NEED_CLEANUP;
4084
4085 if (ret != sp->len)
4086 req_set_fail(req);
4087 io_req_complete(req, ret);
4088 return 0;
4089 }
4090
4091 /*
4092 * IORING_OP_NOP just posts a completion event, nothing else.
4093 */
4094 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4095 {
4096 struct io_ring_ctx *ctx = req->ctx;
4097
4098 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4099 return -EINVAL;
4100
4101 __io_req_complete(req, issue_flags, 0, 0);
4102 return 0;
4103 }
4104
4105 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4106 {
4107 struct io_ring_ctx *ctx = req->ctx;
4108
4109 if (!req->file)
4110 return -EBADF;
4111
4112 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4113 return -EINVAL;
4114 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4115 sqe->splice_fd_in))
4116 return -EINVAL;
4117
4118 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4119 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4120 return -EINVAL;
4121
4122 req->sync.off = READ_ONCE(sqe->off);
4123 req->sync.len = READ_ONCE(sqe->len);
4124 return 0;
4125 }
4126
4127 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4128 {
4129 loff_t end = req->sync.off + req->sync.len;
4130 int ret;
4131
4132 /* fsync always requires a blocking context */
4133 if (issue_flags & IO_URING_F_NONBLOCK)
4134 return -EAGAIN;
4135
4136 ret = vfs_fsync_range(req->file, req->sync.off,
4137 end > 0 ? end : LLONG_MAX,
4138 req->sync.flags & IORING_FSYNC_DATASYNC);
4139 if (ret < 0)
4140 req_set_fail(req);
4141 io_req_complete(req, ret);
4142 return 0;
4143 }
4144
4145 static int io_fallocate_prep(struct io_kiocb *req,
4146 const struct io_uring_sqe *sqe)
4147 {
4148 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4149 sqe->splice_fd_in)
4150 return -EINVAL;
4151 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4152 return -EINVAL;
4153
4154 req->sync.off = READ_ONCE(sqe->off);
4155 req->sync.len = READ_ONCE(sqe->addr);
4156 req->sync.mode = READ_ONCE(sqe->len);
4157 return 0;
4158 }
4159
4160 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4161 {
4162 int ret;
4163
4164 /* fallocate always requiring blocking context */
4165 if (issue_flags & IO_URING_F_NONBLOCK)
4166 return -EAGAIN;
4167 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4168 req->sync.len);
4169 if (ret < 0)
4170 req_set_fail(req);
4171 io_req_complete(req, ret);
4172 return 0;
4173 }
4174
4175 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4176 {
4177 const char __user *fname;
4178 int ret;
4179
4180 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4181 return -EINVAL;
4182 if (unlikely(sqe->ioprio || sqe->buf_index))
4183 return -EINVAL;
4184 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4185 return -EBADF;
4186
4187 /* open.how should be already initialised */
4188 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4189 req->open.how.flags |= O_LARGEFILE;
4190
4191 req->open.dfd = READ_ONCE(sqe->fd);
4192 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4193 req->open.filename = getname(fname);
4194 if (IS_ERR(req->open.filename)) {
4195 ret = PTR_ERR(req->open.filename);
4196 req->open.filename = NULL;
4197 return ret;
4198 }
4199
4200 req->open.file_slot = READ_ONCE(sqe->file_index);
4201 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4202 return -EINVAL;
4203
4204 req->open.nofile = rlimit(RLIMIT_NOFILE);
4205 req->flags |= REQ_F_NEED_CLEANUP;
4206 return 0;
4207 }
4208
4209 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4210 {
4211 u64 mode = READ_ONCE(sqe->len);
4212 u64 flags = READ_ONCE(sqe->open_flags);
4213
4214 req->open.how = build_open_how(flags, mode);
4215 return __io_openat_prep(req, sqe);
4216 }
4217
4218 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4219 {
4220 struct open_how __user *how;
4221 size_t len;
4222 int ret;
4223
4224 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4225 len = READ_ONCE(sqe->len);
4226 if (len < OPEN_HOW_SIZE_VER0)
4227 return -EINVAL;
4228
4229 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4230 len);
4231 if (ret)
4232 return ret;
4233
4234 return __io_openat_prep(req, sqe);
4235 }
4236
4237 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4238 {
4239 struct open_flags op;
4240 struct file *file;
4241 bool resolve_nonblock, nonblock_set;
4242 bool fixed = !!req->open.file_slot;
4243 int ret;
4244
4245 ret = build_open_flags(&req->open.how, &op);
4246 if (ret)
4247 goto err;
4248 nonblock_set = op.open_flag & O_NONBLOCK;
4249 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4250 if (issue_flags & IO_URING_F_NONBLOCK) {
4251 /*
4252 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4253 * it'll always -EAGAIN
4254 */
4255 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4256 return -EAGAIN;
4257 op.lookup_flags |= LOOKUP_CACHED;
4258 op.open_flag |= O_NONBLOCK;
4259 }
4260
4261 if (!fixed) {
4262 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4263 if (ret < 0)
4264 goto err;
4265 }
4266
4267 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4268 if (IS_ERR(file)) {
4269 /*
4270 * We could hang on to this 'fd' on retrying, but seems like
4271 * marginal gain for something that is now known to be a slower
4272 * path. So just put it, and we'll get a new one when we retry.
4273 */
4274 if (!fixed)
4275 put_unused_fd(ret);
4276
4277 ret = PTR_ERR(file);
4278 /* only retry if RESOLVE_CACHED wasn't already set by application */
4279 if (ret == -EAGAIN &&
4280 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4281 return -EAGAIN;
4282 goto err;
4283 }
4284
4285 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4286 file->f_flags &= ~O_NONBLOCK;
4287 fsnotify_open(file);
4288
4289 if (!fixed)
4290 fd_install(ret, file);
4291 else
4292 ret = io_install_fixed_file(req, file, issue_flags,
4293 req->open.file_slot - 1);
4294 err:
4295 putname(req->open.filename);
4296 req->flags &= ~REQ_F_NEED_CLEANUP;
4297 if (ret < 0)
4298 req_set_fail(req);
4299 __io_req_complete(req, issue_flags, ret, 0);
4300 return 0;
4301 }
4302
4303 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4304 {
4305 return io_openat2(req, issue_flags);
4306 }
4307
4308 static int io_remove_buffers_prep(struct io_kiocb *req,
4309 const struct io_uring_sqe *sqe)
4310 {
4311 struct io_provide_buf *p = &req->pbuf;
4312 u64 tmp;
4313
4314 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4315 sqe->splice_fd_in)
4316 return -EINVAL;
4317
4318 tmp = READ_ONCE(sqe->fd);
4319 if (!tmp || tmp > USHRT_MAX)
4320 return -EINVAL;
4321
4322 memset(p, 0, sizeof(*p));
4323 p->nbufs = tmp;
4324 p->bgid = READ_ONCE(sqe->buf_group);
4325 return 0;
4326 }
4327
4328 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4329 int bgid, unsigned nbufs)
4330 {
4331 unsigned i = 0;
4332
4333 /* shouldn't happen */
4334 if (!nbufs)
4335 return 0;
4336
4337 /* the head kbuf is the list itself */
4338 while (!list_empty(&buf->list)) {
4339 struct io_buffer *nxt;
4340
4341 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4342 list_del(&nxt->list);
4343 kfree(nxt);
4344 if (++i == nbufs)
4345 return i;
4346 }
4347 i++;
4348 kfree(buf);
4349 xa_erase(&ctx->io_buffers, bgid);
4350
4351 return i;
4352 }
4353
4354 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4355 {
4356 struct io_provide_buf *p = &req->pbuf;
4357 struct io_ring_ctx *ctx = req->ctx;
4358 struct io_buffer *head;
4359 int ret = 0;
4360 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4361
4362 io_ring_submit_lock(ctx, !force_nonblock);
4363
4364 lockdep_assert_held(&ctx->uring_lock);
4365
4366 ret = -ENOENT;
4367 head = xa_load(&ctx->io_buffers, p->bgid);
4368 if (head)
4369 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4370 if (ret < 0)
4371 req_set_fail(req);
4372
4373 /* complete before unlock, IOPOLL may need the lock */
4374 __io_req_complete(req, issue_flags, ret, 0);
4375 io_ring_submit_unlock(ctx, !force_nonblock);
4376 return 0;
4377 }
4378
4379 static int io_provide_buffers_prep(struct io_kiocb *req,
4380 const struct io_uring_sqe *sqe)
4381 {
4382 unsigned long size, tmp_check;
4383 struct io_provide_buf *p = &req->pbuf;
4384 u64 tmp;
4385
4386 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4387 return -EINVAL;
4388
4389 tmp = READ_ONCE(sqe->fd);
4390 if (!tmp || tmp > USHRT_MAX)
4391 return -E2BIG;
4392 p->nbufs = tmp;
4393 p->addr = READ_ONCE(sqe->addr);
4394 p->len = READ_ONCE(sqe->len);
4395
4396 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4397 &size))
4398 return -EOVERFLOW;
4399 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4400 return -EOVERFLOW;
4401
4402 size = (unsigned long)p->len * p->nbufs;
4403 if (!access_ok(u64_to_user_ptr(p->addr), size))
4404 return -EFAULT;
4405
4406 p->bgid = READ_ONCE(sqe->buf_group);
4407 tmp = READ_ONCE(sqe->off);
4408 if (tmp > USHRT_MAX)
4409 return -E2BIG;
4410 p->bid = tmp;
4411 return 0;
4412 }
4413
4414 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4415 {
4416 struct io_buffer *buf;
4417 u64 addr = pbuf->addr;
4418 int i, bid = pbuf->bid;
4419
4420 for (i = 0; i < pbuf->nbufs; i++) {
4421 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4422 if (!buf)
4423 break;
4424
4425 buf->addr = addr;
4426 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4427 buf->bid = bid;
4428 addr += pbuf->len;
4429 bid++;
4430 if (!*head) {
4431 INIT_LIST_HEAD(&buf->list);
4432 *head = buf;
4433 } else {
4434 list_add_tail(&buf->list, &(*head)->list);
4435 }
4436 }
4437
4438 return i ? i : -ENOMEM;
4439 }
4440
4441 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4442 {
4443 struct io_provide_buf *p = &req->pbuf;
4444 struct io_ring_ctx *ctx = req->ctx;
4445 struct io_buffer *head, *list;
4446 int ret = 0;
4447 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4448
4449 io_ring_submit_lock(ctx, !force_nonblock);
4450
4451 lockdep_assert_held(&ctx->uring_lock);
4452
4453 list = head = xa_load(&ctx->io_buffers, p->bgid);
4454
4455 ret = io_add_buffers(p, &head);
4456 if (ret >= 0 && !list) {
4457 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4458 if (ret < 0)
4459 __io_remove_buffers(ctx, head, p->bgid, -1U);
4460 }
4461 if (ret < 0)
4462 req_set_fail(req);
4463 /* complete before unlock, IOPOLL may need the lock */
4464 __io_req_complete(req, issue_flags, ret, 0);
4465 io_ring_submit_unlock(ctx, !force_nonblock);
4466 return 0;
4467 }
4468
4469 static int io_epoll_ctl_prep(struct io_kiocb *req,
4470 const struct io_uring_sqe *sqe)
4471 {
4472 #if defined(CONFIG_EPOLL)
4473 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4474 return -EINVAL;
4475 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4476 return -EINVAL;
4477
4478 req->epoll.epfd = READ_ONCE(sqe->fd);
4479 req->epoll.op = READ_ONCE(sqe->len);
4480 req->epoll.fd = READ_ONCE(sqe->off);
4481
4482 if (ep_op_has_event(req->epoll.op)) {
4483 struct epoll_event __user *ev;
4484
4485 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4486 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4487 return -EFAULT;
4488 }
4489
4490 return 0;
4491 #else
4492 return -EOPNOTSUPP;
4493 #endif
4494 }
4495
4496 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4497 {
4498 #if defined(CONFIG_EPOLL)
4499 struct io_epoll *ie = &req->epoll;
4500 int ret;
4501 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4502
4503 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4504 if (force_nonblock && ret == -EAGAIN)
4505 return -EAGAIN;
4506
4507 if (ret < 0)
4508 req_set_fail(req);
4509 __io_req_complete(req, issue_flags, ret, 0);
4510 return 0;
4511 #else
4512 return -EOPNOTSUPP;
4513 #endif
4514 }
4515
4516 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4517 {
4518 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4519 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4520 return -EINVAL;
4521 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4522 return -EINVAL;
4523
4524 req->madvise.addr = READ_ONCE(sqe->addr);
4525 req->madvise.len = READ_ONCE(sqe->len);
4526 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4527 return 0;
4528 #else
4529 return -EOPNOTSUPP;
4530 #endif
4531 }
4532
4533 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4534 {
4535 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4536 struct io_madvise *ma = &req->madvise;
4537 int ret;
4538
4539 if (issue_flags & IO_URING_F_NONBLOCK)
4540 return -EAGAIN;
4541
4542 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4543 if (ret < 0)
4544 req_set_fail(req);
4545 io_req_complete(req, ret);
4546 return 0;
4547 #else
4548 return -EOPNOTSUPP;
4549 #endif
4550 }
4551
4552 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4553 {
4554 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4555 return -EINVAL;
4556 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4557 return -EINVAL;
4558
4559 req->fadvise.offset = READ_ONCE(sqe->off);
4560 req->fadvise.len = READ_ONCE(sqe->len);
4561 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4562 return 0;
4563 }
4564
4565 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4566 {
4567 struct io_fadvise *fa = &req->fadvise;
4568 int ret;
4569
4570 if (issue_flags & IO_URING_F_NONBLOCK) {
4571 switch (fa->advice) {
4572 case POSIX_FADV_NORMAL:
4573 case POSIX_FADV_RANDOM:
4574 case POSIX_FADV_SEQUENTIAL:
4575 break;
4576 default:
4577 return -EAGAIN;
4578 }
4579 }
4580
4581 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4582 if (ret < 0)
4583 req_set_fail(req);
4584 __io_req_complete(req, issue_flags, ret, 0);
4585 return 0;
4586 }
4587
4588 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4589 {
4590 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4591 return -EINVAL;
4592 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4593 return -EINVAL;
4594 if (req->flags & REQ_F_FIXED_FILE)
4595 return -EBADF;
4596
4597 req->statx.dfd = READ_ONCE(sqe->fd);
4598 req->statx.mask = READ_ONCE(sqe->len);
4599 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4600 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4601 req->statx.flags = READ_ONCE(sqe->statx_flags);
4602
4603 return 0;
4604 }
4605
4606 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4607 {
4608 struct io_statx *ctx = &req->statx;
4609 int ret;
4610
4611 if (issue_flags & IO_URING_F_NONBLOCK)
4612 return -EAGAIN;
4613
4614 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4615 ctx->buffer);
4616
4617 if (ret < 0)
4618 req_set_fail(req);
4619 io_req_complete(req, ret);
4620 return 0;
4621 }
4622
4623 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4624 {
4625 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4626 return -EINVAL;
4627 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4628 sqe->rw_flags || sqe->buf_index)
4629 return -EINVAL;
4630 if (req->flags & REQ_F_FIXED_FILE)
4631 return -EBADF;
4632
4633 req->close.fd = READ_ONCE(sqe->fd);
4634 req->close.file_slot = READ_ONCE(sqe->file_index);
4635 if (req->close.file_slot && req->close.fd)
4636 return -EINVAL;
4637
4638 return 0;
4639 }
4640
4641 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4642 {
4643 struct files_struct *files = current->files;
4644 struct io_close *close = &req->close;
4645 struct fdtable *fdt;
4646 struct file *file = NULL;
4647 int ret = -EBADF;
4648
4649 if (req->close.file_slot) {
4650 ret = io_close_fixed(req, issue_flags);
4651 goto err;
4652 }
4653
4654 spin_lock(&files->file_lock);
4655 fdt = files_fdtable(files);
4656 if (close->fd >= fdt->max_fds) {
4657 spin_unlock(&files->file_lock);
4658 goto err;
4659 }
4660 file = fdt->fd[close->fd];
4661 if (!file || file->f_op == &io_uring_fops) {
4662 spin_unlock(&files->file_lock);
4663 file = NULL;
4664 goto err;
4665 }
4666
4667 /* if the file has a flush method, be safe and punt to async */
4668 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4669 spin_unlock(&files->file_lock);
4670 return -EAGAIN;
4671 }
4672
4673 ret = __close_fd_get_file(close->fd, &file);
4674 spin_unlock(&files->file_lock);
4675 if (ret < 0) {
4676 if (ret == -ENOENT)
4677 ret = -EBADF;
4678 goto err;
4679 }
4680
4681 /* No ->flush() or already async, safely close from here */
4682 ret = filp_close(file, current->files);
4683 err:
4684 if (ret < 0)
4685 req_set_fail(req);
4686 if (file)
4687 fput(file);
4688 __io_req_complete(req, issue_flags, ret, 0);
4689 return 0;
4690 }
4691
4692 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4693 {
4694 struct io_ring_ctx *ctx = req->ctx;
4695
4696 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4697 return -EINVAL;
4698 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4699 sqe->splice_fd_in))
4700 return -EINVAL;
4701
4702 req->sync.off = READ_ONCE(sqe->off);
4703 req->sync.len = READ_ONCE(sqe->len);
4704 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4705 return 0;
4706 }
4707
4708 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4709 {
4710 int ret;
4711
4712 /* sync_file_range always requires a blocking context */
4713 if (issue_flags & IO_URING_F_NONBLOCK)
4714 return -EAGAIN;
4715
4716 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4717 req->sync.flags);
4718 if (ret < 0)
4719 req_set_fail(req);
4720 io_req_complete(req, ret);
4721 return 0;
4722 }
4723
4724 #if defined(CONFIG_NET)
4725 static int io_setup_async_msg(struct io_kiocb *req,
4726 struct io_async_msghdr *kmsg)
4727 {
4728 struct io_async_msghdr *async_msg = req->async_data;
4729
4730 if (async_msg)
4731 return -EAGAIN;
4732 if (io_alloc_async_data(req)) {
4733 kfree(kmsg->free_iov);
4734 return -ENOMEM;
4735 }
4736 async_msg = req->async_data;
4737 req->flags |= REQ_F_NEED_CLEANUP;
4738 memcpy(async_msg, kmsg, sizeof(*kmsg));
4739 async_msg->msg.msg_name = &async_msg->addr;
4740 /* if were using fast_iov, set it to the new one */
4741 if (!async_msg->free_iov)
4742 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4743
4744 return -EAGAIN;
4745 }
4746
4747 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4748 struct io_async_msghdr *iomsg)
4749 {
4750 iomsg->msg.msg_name = &iomsg->addr;
4751 iomsg->free_iov = iomsg->fast_iov;
4752 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4753 req->sr_msg.msg_flags, &iomsg->free_iov);
4754 }
4755
4756 static int io_sendmsg_prep_async(struct io_kiocb *req)
4757 {
4758 int ret;
4759
4760 ret = io_sendmsg_copy_hdr(req, req->async_data);
4761 if (!ret)
4762 req->flags |= REQ_F_NEED_CLEANUP;
4763 return ret;
4764 }
4765
4766 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4767 {
4768 struct io_sr_msg *sr = &req->sr_msg;
4769
4770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4771 return -EINVAL;
4772
4773 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4774 sr->len = READ_ONCE(sqe->len);
4775 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4776 if (sr->msg_flags & MSG_DONTWAIT)
4777 req->flags |= REQ_F_NOWAIT;
4778
4779 #ifdef CONFIG_COMPAT
4780 if (req->ctx->compat)
4781 sr->msg_flags |= MSG_CMSG_COMPAT;
4782 #endif
4783 return 0;
4784 }
4785
4786 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4787 {
4788 struct io_async_msghdr iomsg, *kmsg;
4789 struct socket *sock;
4790 unsigned flags;
4791 int min_ret = 0;
4792 int ret;
4793
4794 sock = sock_from_file(req->file);
4795 if (unlikely(!sock))
4796 return -ENOTSOCK;
4797
4798 kmsg = req->async_data;
4799 if (!kmsg) {
4800 ret = io_sendmsg_copy_hdr(req, &iomsg);
4801 if (ret)
4802 return ret;
4803 kmsg = &iomsg;
4804 }
4805
4806 flags = req->sr_msg.msg_flags;
4807 if (issue_flags & IO_URING_F_NONBLOCK)
4808 flags |= MSG_DONTWAIT;
4809 if (flags & MSG_WAITALL)
4810 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4811
4812 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4813 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4814 return io_setup_async_msg(req, kmsg);
4815 if (ret == -ERESTARTSYS)
4816 ret = -EINTR;
4817
4818 /* fast path, check for non-NULL to avoid function call */
4819 if (kmsg->free_iov)
4820 kfree(kmsg->free_iov);
4821 req->flags &= ~REQ_F_NEED_CLEANUP;
4822 if (ret < min_ret)
4823 req_set_fail(req);
4824 __io_req_complete(req, issue_flags, ret, 0);
4825 return 0;
4826 }
4827
4828 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4829 {
4830 struct io_sr_msg *sr = &req->sr_msg;
4831 struct msghdr msg;
4832 struct iovec iov;
4833 struct socket *sock;
4834 unsigned flags;
4835 int min_ret = 0;
4836 int ret;
4837
4838 sock = sock_from_file(req->file);
4839 if (unlikely(!sock))
4840 return -ENOTSOCK;
4841
4842 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4843 if (unlikely(ret))
4844 return ret;
4845
4846 msg.msg_name = NULL;
4847 msg.msg_control = NULL;
4848 msg.msg_controllen = 0;
4849 msg.msg_namelen = 0;
4850
4851 flags = req->sr_msg.msg_flags;
4852 if (issue_flags & IO_URING_F_NONBLOCK)
4853 flags |= MSG_DONTWAIT;
4854 if (flags & MSG_WAITALL)
4855 min_ret = iov_iter_count(&msg.msg_iter);
4856
4857 msg.msg_flags = flags;
4858 ret = sock_sendmsg(sock, &msg);
4859 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4860 return -EAGAIN;
4861 if (ret == -ERESTARTSYS)
4862 ret = -EINTR;
4863
4864 if (ret < min_ret)
4865 req_set_fail(req);
4866 __io_req_complete(req, issue_flags, ret, 0);
4867 return 0;
4868 }
4869
4870 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4871 struct io_async_msghdr *iomsg)
4872 {
4873 struct io_sr_msg *sr = &req->sr_msg;
4874 struct iovec __user *uiov;
4875 size_t iov_len;
4876 int ret;
4877
4878 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4879 &iomsg->uaddr, &uiov, &iov_len);
4880 if (ret)
4881 return ret;
4882
4883 if (req->flags & REQ_F_BUFFER_SELECT) {
4884 if (iov_len > 1)
4885 return -EINVAL;
4886 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4887 return -EFAULT;
4888 sr->len = iomsg->fast_iov[0].iov_len;
4889 iomsg->free_iov = NULL;
4890 } else {
4891 iomsg->free_iov = iomsg->fast_iov;
4892 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4893 &iomsg->free_iov, &iomsg->msg.msg_iter,
4894 false);
4895 if (ret > 0)
4896 ret = 0;
4897 }
4898
4899 return ret;
4900 }
4901
4902 #ifdef CONFIG_COMPAT
4903 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4904 struct io_async_msghdr *iomsg)
4905 {
4906 struct io_sr_msg *sr = &req->sr_msg;
4907 struct compat_iovec __user *uiov;
4908 compat_uptr_t ptr;
4909 compat_size_t len;
4910 int ret;
4911
4912 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4913 &ptr, &len);
4914 if (ret)
4915 return ret;
4916
4917 uiov = compat_ptr(ptr);
4918 if (req->flags & REQ_F_BUFFER_SELECT) {
4919 compat_ssize_t clen;
4920
4921 if (len > 1)
4922 return -EINVAL;
4923 if (!access_ok(uiov, sizeof(*uiov)))
4924 return -EFAULT;
4925 if (__get_user(clen, &uiov->iov_len))
4926 return -EFAULT;
4927 if (clen < 0)
4928 return -EINVAL;
4929 sr->len = clen;
4930 iomsg->free_iov = NULL;
4931 } else {
4932 iomsg->free_iov = iomsg->fast_iov;
4933 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4934 UIO_FASTIOV, &iomsg->free_iov,
4935 &iomsg->msg.msg_iter, true);
4936 if (ret < 0)
4937 return ret;
4938 }
4939
4940 return 0;
4941 }
4942 #endif
4943
4944 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4945 struct io_async_msghdr *iomsg)
4946 {
4947 iomsg->msg.msg_name = &iomsg->addr;
4948
4949 #ifdef CONFIG_COMPAT
4950 if (req->ctx->compat)
4951 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4952 #endif
4953
4954 return __io_recvmsg_copy_hdr(req, iomsg);
4955 }
4956
4957 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4958 bool needs_lock)
4959 {
4960 struct io_sr_msg *sr = &req->sr_msg;
4961 struct io_buffer *kbuf;
4962
4963 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4964 if (IS_ERR(kbuf))
4965 return kbuf;
4966
4967 sr->kbuf = kbuf;
4968 req->flags |= REQ_F_BUFFER_SELECTED;
4969 return kbuf;
4970 }
4971
4972 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4973 {
4974 return io_put_kbuf(req, req->sr_msg.kbuf);
4975 }
4976
4977 static int io_recvmsg_prep_async(struct io_kiocb *req)
4978 {
4979 int ret;
4980
4981 ret = io_recvmsg_copy_hdr(req, req->async_data);
4982 if (!ret)
4983 req->flags |= REQ_F_NEED_CLEANUP;
4984 return ret;
4985 }
4986
4987 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4988 {
4989 struct io_sr_msg *sr = &req->sr_msg;
4990
4991 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4992 return -EINVAL;
4993
4994 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4995 sr->len = READ_ONCE(sqe->len);
4996 sr->bgid = READ_ONCE(sqe->buf_group);
4997 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4998 if (sr->msg_flags & MSG_DONTWAIT)
4999 req->flags |= REQ_F_NOWAIT;
5000
5001 #ifdef CONFIG_COMPAT
5002 if (req->ctx->compat)
5003 sr->msg_flags |= MSG_CMSG_COMPAT;
5004 #endif
5005 return 0;
5006 }
5007
5008 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5009 {
5010 struct io_async_msghdr iomsg, *kmsg;
5011 struct socket *sock;
5012 struct io_buffer *kbuf;
5013 unsigned flags;
5014 int min_ret = 0;
5015 int ret, cflags = 0;
5016 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5017
5018 sock = sock_from_file(req->file);
5019 if (unlikely(!sock))
5020 return -ENOTSOCK;
5021
5022 kmsg = req->async_data;
5023 if (!kmsg) {
5024 ret = io_recvmsg_copy_hdr(req, &iomsg);
5025 if (ret)
5026 return ret;
5027 kmsg = &iomsg;
5028 }
5029
5030 if (req->flags & REQ_F_BUFFER_SELECT) {
5031 kbuf = io_recv_buffer_select(req, !force_nonblock);
5032 if (IS_ERR(kbuf))
5033 return PTR_ERR(kbuf);
5034 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5035 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5036 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5037 1, req->sr_msg.len);
5038 }
5039
5040 flags = req->sr_msg.msg_flags;
5041 if (force_nonblock)
5042 flags |= MSG_DONTWAIT;
5043 if (flags & MSG_WAITALL)
5044 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5045
5046 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5047 kmsg->uaddr, flags);
5048 if (force_nonblock && ret == -EAGAIN)
5049 return io_setup_async_msg(req, kmsg);
5050 if (ret == -ERESTARTSYS)
5051 ret = -EINTR;
5052
5053 if (req->flags & REQ_F_BUFFER_SELECTED)
5054 cflags = io_put_recv_kbuf(req);
5055 /* fast path, check for non-NULL to avoid function call */
5056 if (kmsg->free_iov)
5057 kfree(kmsg->free_iov);
5058 req->flags &= ~REQ_F_NEED_CLEANUP;
5059 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5060 req_set_fail(req);
5061 __io_req_complete(req, issue_flags, ret, cflags);
5062 return 0;
5063 }
5064
5065 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5066 {
5067 struct io_buffer *kbuf;
5068 struct io_sr_msg *sr = &req->sr_msg;
5069 struct msghdr msg;
5070 void __user *buf = sr->buf;
5071 struct socket *sock;
5072 struct iovec iov;
5073 unsigned flags;
5074 int min_ret = 0;
5075 int ret, cflags = 0;
5076 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5077
5078 sock = sock_from_file(req->file);
5079 if (unlikely(!sock))
5080 return -ENOTSOCK;
5081
5082 if (req->flags & REQ_F_BUFFER_SELECT) {
5083 kbuf = io_recv_buffer_select(req, !force_nonblock);
5084 if (IS_ERR(kbuf))
5085 return PTR_ERR(kbuf);
5086 buf = u64_to_user_ptr(kbuf->addr);
5087 }
5088
5089 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5090 if (unlikely(ret))
5091 goto out_free;
5092
5093 msg.msg_name = NULL;
5094 msg.msg_control = NULL;
5095 msg.msg_controllen = 0;
5096 msg.msg_namelen = 0;
5097 msg.msg_iocb = NULL;
5098 msg.msg_flags = 0;
5099
5100 flags = req->sr_msg.msg_flags;
5101 if (force_nonblock)
5102 flags |= MSG_DONTWAIT;
5103 if (flags & MSG_WAITALL)
5104 min_ret = iov_iter_count(&msg.msg_iter);
5105
5106 ret = sock_recvmsg(sock, &msg, flags);
5107 if (force_nonblock && ret == -EAGAIN)
5108 return -EAGAIN;
5109 if (ret == -ERESTARTSYS)
5110 ret = -EINTR;
5111 out_free:
5112 if (req->flags & REQ_F_BUFFER_SELECTED)
5113 cflags = io_put_recv_kbuf(req);
5114 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5115 req_set_fail(req);
5116 __io_req_complete(req, issue_flags, ret, cflags);
5117 return 0;
5118 }
5119
5120 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5121 {
5122 struct io_accept *accept = &req->accept;
5123
5124 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5125 return -EINVAL;
5126 if (sqe->ioprio || sqe->len || sqe->buf_index)
5127 return -EINVAL;
5128
5129 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5130 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5131 accept->flags = READ_ONCE(sqe->accept_flags);
5132 accept->nofile = rlimit(RLIMIT_NOFILE);
5133
5134 accept->file_slot = READ_ONCE(sqe->file_index);
5135 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5136 (accept->flags & SOCK_CLOEXEC)))
5137 return -EINVAL;
5138 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5139 return -EINVAL;
5140 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5141 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5142 return 0;
5143 }
5144
5145 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5146 {
5147 struct io_accept *accept = &req->accept;
5148 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5149 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5150 bool fixed = !!accept->file_slot;
5151 struct file *file;
5152 int ret, fd;
5153
5154 if (req->file->f_flags & O_NONBLOCK)
5155 req->flags |= REQ_F_NOWAIT;
5156
5157 if (!fixed) {
5158 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5159 if (unlikely(fd < 0))
5160 return fd;
5161 }
5162 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5163 accept->flags);
5164 if (IS_ERR(file)) {
5165 if (!fixed)
5166 put_unused_fd(fd);
5167 ret = PTR_ERR(file);
5168 if (ret == -EAGAIN && force_nonblock)
5169 return -EAGAIN;
5170 if (ret == -ERESTARTSYS)
5171 ret = -EINTR;
5172 req_set_fail(req);
5173 } else if (!fixed) {
5174 fd_install(fd, file);
5175 ret = fd;
5176 } else {
5177 ret = io_install_fixed_file(req, file, issue_flags,
5178 accept->file_slot - 1);
5179 }
5180 __io_req_complete(req, issue_flags, ret, 0);
5181 return 0;
5182 }
5183
5184 static int io_connect_prep_async(struct io_kiocb *req)
5185 {
5186 struct io_async_connect *io = req->async_data;
5187 struct io_connect *conn = &req->connect;
5188
5189 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5190 }
5191
5192 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5193 {
5194 struct io_connect *conn = &req->connect;
5195
5196 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5197 return -EINVAL;
5198 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5199 sqe->splice_fd_in)
5200 return -EINVAL;
5201
5202 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5203 conn->addr_len = READ_ONCE(sqe->addr2);
5204 return 0;
5205 }
5206
5207 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5208 {
5209 struct io_async_connect __io, *io;
5210 unsigned file_flags;
5211 int ret;
5212 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5213
5214 if (req->async_data) {
5215 io = req->async_data;
5216 } else {
5217 ret = move_addr_to_kernel(req->connect.addr,
5218 req->connect.addr_len,
5219 &__io.address);
5220 if (ret)
5221 goto out;
5222 io = &__io;
5223 }
5224
5225 file_flags = force_nonblock ? O_NONBLOCK : 0;
5226
5227 ret = __sys_connect_file(req->file, &io->address,
5228 req->connect.addr_len, file_flags);
5229 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5230 if (req->async_data)
5231 return -EAGAIN;
5232 if (io_alloc_async_data(req)) {
5233 ret = -ENOMEM;
5234 goto out;
5235 }
5236 memcpy(req->async_data, &__io, sizeof(__io));
5237 return -EAGAIN;
5238 }
5239 if (ret == -ERESTARTSYS)
5240 ret = -EINTR;
5241 out:
5242 if (ret < 0)
5243 req_set_fail(req);
5244 __io_req_complete(req, issue_flags, ret, 0);
5245 return 0;
5246 }
5247 #else /* !CONFIG_NET */
5248 #define IO_NETOP_FN(op) \
5249 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5250 { \
5251 return -EOPNOTSUPP; \
5252 }
5253
5254 #define IO_NETOP_PREP(op) \
5255 IO_NETOP_FN(op) \
5256 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5257 { \
5258 return -EOPNOTSUPP; \
5259 } \
5260
5261 #define IO_NETOP_PREP_ASYNC(op) \
5262 IO_NETOP_PREP(op) \
5263 static int io_##op##_prep_async(struct io_kiocb *req) \
5264 { \
5265 return -EOPNOTSUPP; \
5266 }
5267
5268 IO_NETOP_PREP_ASYNC(sendmsg);
5269 IO_NETOP_PREP_ASYNC(recvmsg);
5270 IO_NETOP_PREP_ASYNC(connect);
5271 IO_NETOP_PREP(accept);
5272 IO_NETOP_FN(send);
5273 IO_NETOP_FN(recv);
5274 #endif /* CONFIG_NET */
5275
5276 struct io_poll_table {
5277 struct poll_table_struct pt;
5278 struct io_kiocb *req;
5279 int nr_entries;
5280 int error;
5281 };
5282
5283 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5284 __poll_t mask, io_req_tw_func_t func)
5285 {
5286 /* for instances that support it check for an event match first: */
5287 if (mask && !(mask & poll->events))
5288 return 0;
5289
5290 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5291
5292 list_del_init(&poll->wait.entry);
5293
5294 req->result = mask;
5295 req->io_task_work.func = func;
5296
5297 /*
5298 * If this fails, then the task is exiting. When a task exits, the
5299 * work gets canceled, so just cancel this request as well instead
5300 * of executing it. We can't safely execute it anyway, as we may not
5301 * have the needed state needed for it anyway.
5302 */
5303 io_req_task_work_add(req);
5304 return 1;
5305 }
5306
5307 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5308 __acquires(&req->ctx->completion_lock)
5309 {
5310 struct io_ring_ctx *ctx = req->ctx;
5311
5312 /* req->task == current here, checking PF_EXITING is safe */
5313 if (unlikely(req->task->flags & PF_EXITING))
5314 WRITE_ONCE(poll->canceled, true);
5315
5316 if (!req->result && !READ_ONCE(poll->canceled)) {
5317 struct poll_table_struct pt = { ._key = poll->events };
5318
5319 req->result = vfs_poll(req->file, &pt) & poll->events;
5320 }
5321
5322 spin_lock(&ctx->completion_lock);
5323 if (!req->result && !READ_ONCE(poll->canceled)) {
5324 add_wait_queue(poll->head, &poll->wait);
5325 return true;
5326 }
5327
5328 return false;
5329 }
5330
5331 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5332 {
5333 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5334 if (req->opcode == IORING_OP_POLL_ADD)
5335 return req->async_data;
5336 return req->apoll->double_poll;
5337 }
5338
5339 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5340 {
5341 if (req->opcode == IORING_OP_POLL_ADD)
5342 return &req->poll;
5343 return &req->apoll->poll;
5344 }
5345
5346 static void io_poll_remove_double(struct io_kiocb *req)
5347 __must_hold(&req->ctx->completion_lock)
5348 {
5349 struct io_poll_iocb *poll = io_poll_get_double(req);
5350
5351 lockdep_assert_held(&req->ctx->completion_lock);
5352
5353 if (poll && poll->head) {
5354 struct wait_queue_head *head = poll->head;
5355
5356 spin_lock_irq(&head->lock);
5357 list_del_init(&poll->wait.entry);
5358 if (poll->wait.private)
5359 req_ref_put(req);
5360 poll->head = NULL;
5361 spin_unlock_irq(&head->lock);
5362 }
5363 }
5364
5365 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5366 __must_hold(&req->ctx->completion_lock)
5367 {
5368 struct io_ring_ctx *ctx = req->ctx;
5369 unsigned flags = IORING_CQE_F_MORE;
5370 int error;
5371
5372 if (READ_ONCE(req->poll.canceled)) {
5373 error = -ECANCELED;
5374 req->poll.events |= EPOLLONESHOT;
5375 } else {
5376 error = mangle_poll(mask);
5377 }
5378 if (req->poll.events & EPOLLONESHOT)
5379 flags = 0;
5380 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5381 req->poll.events |= EPOLLONESHOT;
5382 flags = 0;
5383 }
5384 if (flags & IORING_CQE_F_MORE)
5385 ctx->cq_extra++;
5386
5387 return !(flags & IORING_CQE_F_MORE);
5388 }
5389
5390 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5391 __must_hold(&req->ctx->completion_lock)
5392 {
5393 bool done;
5394
5395 done = __io_poll_complete(req, mask);
5396 io_commit_cqring(req->ctx);
5397 return done;
5398 }
5399
5400 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5401 {
5402 struct io_ring_ctx *ctx = req->ctx;
5403 struct io_kiocb *nxt;
5404
5405 if (io_poll_rewait(req, &req->poll)) {
5406 spin_unlock(&ctx->completion_lock);
5407 } else {
5408 bool done;
5409
5410 if (req->poll.done) {
5411 spin_unlock(&ctx->completion_lock);
5412 return;
5413 }
5414 done = __io_poll_complete(req, req->result);
5415 if (done) {
5416 io_poll_remove_double(req);
5417 hash_del(&req->hash_node);
5418 req->poll.done = true;
5419 } else {
5420 req->result = 0;
5421 add_wait_queue(req->poll.head, &req->poll.wait);
5422 }
5423 io_commit_cqring(ctx);
5424 spin_unlock(&ctx->completion_lock);
5425 io_cqring_ev_posted(ctx);
5426
5427 if (done) {
5428 nxt = io_put_req_find_next(req);
5429 if (nxt)
5430 io_req_task_submit(nxt, locked);
5431 }
5432 }
5433 }
5434
5435 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5436 int sync, void *key)
5437 {
5438 struct io_kiocb *req = wait->private;
5439 struct io_poll_iocb *poll = io_poll_get_single(req);
5440 __poll_t mask = key_to_poll(key);
5441 unsigned long flags;
5442
5443 /* for instances that support it check for an event match first: */
5444 if (mask && !(mask & poll->events))
5445 return 0;
5446 if (!(poll->events & EPOLLONESHOT))
5447 return poll->wait.func(&poll->wait, mode, sync, key);
5448
5449 list_del_init(&wait->entry);
5450
5451 if (poll->head) {
5452 bool done;
5453
5454 spin_lock_irqsave(&poll->head->lock, flags);
5455 done = list_empty(&poll->wait.entry);
5456 if (!done)
5457 list_del_init(&poll->wait.entry);
5458 /* make sure double remove sees this as being gone */
5459 wait->private = NULL;
5460 spin_unlock_irqrestore(&poll->head->lock, flags);
5461 if (!done) {
5462 /* use wait func handler, so it matches the rq type */
5463 poll->wait.func(&poll->wait, mode, sync, key);
5464 }
5465 }
5466 req_ref_put(req);
5467 return 1;
5468 }
5469
5470 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5471 wait_queue_func_t wake_func)
5472 {
5473 poll->head = NULL;
5474 poll->done = false;
5475 poll->canceled = false;
5476 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5477 /* mask in events that we always want/need */
5478 poll->events = events | IO_POLL_UNMASK;
5479 INIT_LIST_HEAD(&poll->wait.entry);
5480 init_waitqueue_func_entry(&poll->wait, wake_func);
5481 }
5482
5483 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5484 struct wait_queue_head *head,
5485 struct io_poll_iocb **poll_ptr)
5486 {
5487 struct io_kiocb *req = pt->req;
5488
5489 /*
5490 * The file being polled uses multiple waitqueues for poll handling
5491 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5492 * if this happens.
5493 */
5494 if (unlikely(pt->nr_entries)) {
5495 struct io_poll_iocb *poll_one = poll;
5496
5497 /* double add on the same waitqueue head, ignore */
5498 if (poll_one->head == head)
5499 return;
5500 /* already have a 2nd entry, fail a third attempt */
5501 if (*poll_ptr) {
5502 if ((*poll_ptr)->head == head)
5503 return;
5504 pt->error = -EINVAL;
5505 return;
5506 }
5507 /*
5508 * Can't handle multishot for double wait for now, turn it
5509 * into one-shot mode.
5510 */
5511 if (!(poll_one->events & EPOLLONESHOT))
5512 poll_one->events |= EPOLLONESHOT;
5513 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5514 if (!poll) {
5515 pt->error = -ENOMEM;
5516 return;
5517 }
5518 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5519 req_ref_get(req);
5520 poll->wait.private = req;
5521 *poll_ptr = poll;
5522 }
5523
5524 pt->nr_entries++;
5525 poll->head = head;
5526
5527 if (poll->events & EPOLLEXCLUSIVE)
5528 add_wait_queue_exclusive(head, &poll->wait);
5529 else
5530 add_wait_queue(head, &poll->wait);
5531 }
5532
5533 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5534 struct poll_table_struct *p)
5535 {
5536 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5537 struct async_poll *apoll = pt->req->apoll;
5538
5539 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5540 }
5541
5542 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5543 {
5544 struct async_poll *apoll = req->apoll;
5545 struct io_ring_ctx *ctx = req->ctx;
5546
5547 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5548
5549 if (io_poll_rewait(req, &apoll->poll)) {
5550 spin_unlock(&ctx->completion_lock);
5551 return;
5552 }
5553
5554 hash_del(&req->hash_node);
5555 io_poll_remove_double(req);
5556 apoll->poll.done = true;
5557 spin_unlock(&ctx->completion_lock);
5558
5559 if (!READ_ONCE(apoll->poll.canceled))
5560 io_req_task_submit(req, locked);
5561 else
5562 io_req_complete_failed(req, -ECANCELED);
5563 }
5564
5565 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5566 void *key)
5567 {
5568 struct io_kiocb *req = wait->private;
5569 struct io_poll_iocb *poll = &req->apoll->poll;
5570
5571 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5572 key_to_poll(key));
5573
5574 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5575 }
5576
5577 static void io_poll_req_insert(struct io_kiocb *req)
5578 {
5579 struct io_ring_ctx *ctx = req->ctx;
5580 struct hlist_head *list;
5581
5582 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5583 hlist_add_head(&req->hash_node, list);
5584 }
5585
5586 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5587 struct io_poll_iocb *poll,
5588 struct io_poll_table *ipt, __poll_t mask,
5589 wait_queue_func_t wake_func)
5590 __acquires(&ctx->completion_lock)
5591 {
5592 struct io_ring_ctx *ctx = req->ctx;
5593 bool cancel = false;
5594
5595 INIT_HLIST_NODE(&req->hash_node);
5596 io_init_poll_iocb(poll, mask, wake_func);
5597 poll->file = req->file;
5598 poll->wait.private = req;
5599
5600 ipt->pt._key = mask;
5601 ipt->req = req;
5602 ipt->error = 0;
5603 ipt->nr_entries = 0;
5604
5605 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5606 if (unlikely(!ipt->nr_entries) && !ipt->error)
5607 ipt->error = -EINVAL;
5608
5609 spin_lock(&ctx->completion_lock);
5610 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5611 io_poll_remove_double(req);
5612 if (likely(poll->head)) {
5613 spin_lock_irq(&poll->head->lock);
5614 if (unlikely(list_empty(&poll->wait.entry))) {
5615 if (ipt->error)
5616 cancel = true;
5617 ipt->error = 0;
5618 mask = 0;
5619 }
5620 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5621 list_del_init(&poll->wait.entry);
5622 else if (cancel)
5623 WRITE_ONCE(poll->canceled, true);
5624 else if (!poll->done) /* actually waiting for an event */
5625 io_poll_req_insert(req);
5626 spin_unlock_irq(&poll->head->lock);
5627 }
5628
5629 return mask;
5630 }
5631
5632 enum {
5633 IO_APOLL_OK,
5634 IO_APOLL_ABORTED,
5635 IO_APOLL_READY
5636 };
5637
5638 static int io_arm_poll_handler(struct io_kiocb *req)
5639 {
5640 const struct io_op_def *def = &io_op_defs[req->opcode];
5641 struct io_ring_ctx *ctx = req->ctx;
5642 struct async_poll *apoll;
5643 struct io_poll_table ipt;
5644 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5645 int rw;
5646
5647 if (!req->file || !file_can_poll(req->file))
5648 return IO_APOLL_ABORTED;
5649 if (req->flags & REQ_F_POLLED)
5650 return IO_APOLL_ABORTED;
5651 if (!def->pollin && !def->pollout)
5652 return IO_APOLL_ABORTED;
5653
5654 if (def->pollin) {
5655 rw = READ;
5656 mask |= POLLIN | POLLRDNORM;
5657
5658 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5659 if ((req->opcode == IORING_OP_RECVMSG) &&
5660 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5661 mask &= ~POLLIN;
5662 } else {
5663 rw = WRITE;
5664 mask |= POLLOUT | POLLWRNORM;
5665 }
5666
5667 /* if we can't nonblock try, then no point in arming a poll handler */
5668 if (!io_file_supports_nowait(req, rw))
5669 return IO_APOLL_ABORTED;
5670
5671 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5672 if (unlikely(!apoll))
5673 return IO_APOLL_ABORTED;
5674 apoll->double_poll = NULL;
5675 req->apoll = apoll;
5676 req->flags |= REQ_F_POLLED;
5677 ipt.pt._qproc = io_async_queue_proc;
5678 io_req_set_refcount(req);
5679
5680 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5681 io_async_wake);
5682 spin_unlock(&ctx->completion_lock);
5683 if (ret || ipt.error)
5684 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5685
5686 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5687 mask, apoll->poll.events);
5688 return IO_APOLL_OK;
5689 }
5690
5691 static bool __io_poll_remove_one(struct io_kiocb *req,
5692 struct io_poll_iocb *poll, bool do_cancel)
5693 __must_hold(&req->ctx->completion_lock)
5694 {
5695 bool do_complete = false;
5696
5697 if (!poll->head)
5698 return false;
5699 spin_lock_irq(&poll->head->lock);
5700 if (do_cancel)
5701 WRITE_ONCE(poll->canceled, true);
5702 if (!list_empty(&poll->wait.entry)) {
5703 list_del_init(&poll->wait.entry);
5704 do_complete = true;
5705 }
5706 spin_unlock_irq(&poll->head->lock);
5707 hash_del(&req->hash_node);
5708 return do_complete;
5709 }
5710
5711 static bool io_poll_remove_one(struct io_kiocb *req)
5712 __must_hold(&req->ctx->completion_lock)
5713 {
5714 bool do_complete;
5715
5716 io_poll_remove_double(req);
5717 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5718
5719 if (do_complete) {
5720 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5721 io_commit_cqring(req->ctx);
5722 req_set_fail(req);
5723 io_put_req_deferred(req);
5724 }
5725 return do_complete;
5726 }
5727
5728 /*
5729 * Returns true if we found and killed one or more poll requests
5730 */
5731 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5732 bool cancel_all)
5733 {
5734 struct hlist_node *tmp;
5735 struct io_kiocb *req;
5736 int posted = 0, i;
5737
5738 spin_lock(&ctx->completion_lock);
5739 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5740 struct hlist_head *list;
5741
5742 list = &ctx->cancel_hash[i];
5743 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5744 if (io_match_task_safe(req, tsk, cancel_all))
5745 posted += io_poll_remove_one(req);
5746 }
5747 }
5748 spin_unlock(&ctx->completion_lock);
5749
5750 if (posted)
5751 io_cqring_ev_posted(ctx);
5752
5753 return posted != 0;
5754 }
5755
5756 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5757 bool poll_only)
5758 __must_hold(&ctx->completion_lock)
5759 {
5760 struct hlist_head *list;
5761 struct io_kiocb *req;
5762
5763 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5764 hlist_for_each_entry(req, list, hash_node) {
5765 if (sqe_addr != req->user_data)
5766 continue;
5767 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5768 continue;
5769 return req;
5770 }
5771 return NULL;
5772 }
5773
5774 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5775 bool poll_only)
5776 __must_hold(&ctx->completion_lock)
5777 {
5778 struct io_kiocb *req;
5779
5780 req = io_poll_find(ctx, sqe_addr, poll_only);
5781 if (!req)
5782 return -ENOENT;
5783 if (io_poll_remove_one(req))
5784 return 0;
5785
5786 return -EALREADY;
5787 }
5788
5789 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5790 unsigned int flags)
5791 {
5792 u32 events;
5793
5794 events = READ_ONCE(sqe->poll32_events);
5795 #ifdef __BIG_ENDIAN
5796 events = swahw32(events);
5797 #endif
5798 if (!(flags & IORING_POLL_ADD_MULTI))
5799 events |= EPOLLONESHOT;
5800 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5801 }
5802
5803 static int io_poll_update_prep(struct io_kiocb *req,
5804 const struct io_uring_sqe *sqe)
5805 {
5806 struct io_poll_update *upd = &req->poll_update;
5807 u32 flags;
5808
5809 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5810 return -EINVAL;
5811 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5812 return -EINVAL;
5813 flags = READ_ONCE(sqe->len);
5814 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5815 IORING_POLL_ADD_MULTI))
5816 return -EINVAL;
5817 /* meaningless without update */
5818 if (flags == IORING_POLL_ADD_MULTI)
5819 return -EINVAL;
5820
5821 upd->old_user_data = READ_ONCE(sqe->addr);
5822 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5823 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5824
5825 upd->new_user_data = READ_ONCE(sqe->off);
5826 if (!upd->update_user_data && upd->new_user_data)
5827 return -EINVAL;
5828 if (upd->update_events)
5829 upd->events = io_poll_parse_events(sqe, flags);
5830 else if (sqe->poll32_events)
5831 return -EINVAL;
5832
5833 return 0;
5834 }
5835
5836 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5837 void *key)
5838 {
5839 struct io_kiocb *req = wait->private;
5840 struct io_poll_iocb *poll = &req->poll;
5841
5842 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5843 }
5844
5845 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5846 struct poll_table_struct *p)
5847 {
5848 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5849
5850 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5851 }
5852
5853 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5854 {
5855 struct io_poll_iocb *poll = &req->poll;
5856 u32 flags;
5857
5858 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5859 return -EINVAL;
5860 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5861 return -EINVAL;
5862 flags = READ_ONCE(sqe->len);
5863 if (flags & ~IORING_POLL_ADD_MULTI)
5864 return -EINVAL;
5865
5866 io_req_set_refcount(req);
5867 poll->events = io_poll_parse_events(sqe, flags);
5868 return 0;
5869 }
5870
5871 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5872 {
5873 struct io_poll_iocb *poll = &req->poll;
5874 struct io_ring_ctx *ctx = req->ctx;
5875 struct io_poll_table ipt;
5876 __poll_t mask;
5877 bool done;
5878
5879 ipt.pt._qproc = io_poll_queue_proc;
5880
5881 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5882 io_poll_wake);
5883
5884 if (mask) { /* no async, we'd stolen it */
5885 ipt.error = 0;
5886 done = io_poll_complete(req, mask);
5887 }
5888 spin_unlock(&ctx->completion_lock);
5889
5890 if (mask) {
5891 io_cqring_ev_posted(ctx);
5892 if (done)
5893 io_put_req(req);
5894 }
5895 return ipt.error;
5896 }
5897
5898 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5899 {
5900 struct io_ring_ctx *ctx = req->ctx;
5901 struct io_kiocb *preq;
5902 bool completing;
5903 int ret;
5904
5905 spin_lock(&ctx->completion_lock);
5906 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5907 if (!preq) {
5908 ret = -ENOENT;
5909 goto err;
5910 }
5911
5912 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5913 completing = true;
5914 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5915 goto err;
5916 }
5917
5918 /*
5919 * Don't allow racy completion with singleshot, as we cannot safely
5920 * update those. For multishot, if we're racing with completion, just
5921 * let completion re-add it.
5922 */
5923 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5924 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5925 ret = -EALREADY;
5926 goto err;
5927 }
5928 /* we now have a detached poll request. reissue. */
5929 ret = 0;
5930 err:
5931 if (ret < 0) {
5932 spin_unlock(&ctx->completion_lock);
5933 req_set_fail(req);
5934 io_req_complete(req, ret);
5935 return 0;
5936 }
5937 /* only mask one event flags, keep behavior flags */
5938 if (req->poll_update.update_events) {
5939 preq->poll.events &= ~0xffff;
5940 preq->poll.events |= req->poll_update.events & 0xffff;
5941 preq->poll.events |= IO_POLL_UNMASK;
5942 }
5943 if (req->poll_update.update_user_data)
5944 preq->user_data = req->poll_update.new_user_data;
5945 spin_unlock(&ctx->completion_lock);
5946
5947 /* complete update request, we're done with it */
5948 io_req_complete(req, ret);
5949
5950 if (!completing) {
5951 ret = io_poll_add(preq, issue_flags);
5952 if (ret < 0) {
5953 req_set_fail(preq);
5954 io_req_complete(preq, ret);
5955 }
5956 }
5957 return 0;
5958 }
5959
5960 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5961 {
5962 req_set_fail(req);
5963 io_req_complete_post(req, -ETIME, 0);
5964 }
5965
5966 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5967 {
5968 struct io_timeout_data *data = container_of(timer,
5969 struct io_timeout_data, timer);
5970 struct io_kiocb *req = data->req;
5971 struct io_ring_ctx *ctx = req->ctx;
5972 unsigned long flags;
5973
5974 spin_lock_irqsave(&ctx->timeout_lock, flags);
5975 list_del_init(&req->timeout.list);
5976 atomic_set(&req->ctx->cq_timeouts,
5977 atomic_read(&req->ctx->cq_timeouts) + 1);
5978 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5979
5980 req->io_task_work.func = io_req_task_timeout;
5981 io_req_task_work_add(req);
5982 return HRTIMER_NORESTART;
5983 }
5984
5985 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5986 __u64 user_data)
5987 __must_hold(&ctx->timeout_lock)
5988 {
5989 struct io_timeout_data *io;
5990 struct io_kiocb *req;
5991 bool found = false;
5992
5993 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5994 found = user_data == req->user_data;
5995 if (found)
5996 break;
5997 }
5998 if (!found)
5999 return ERR_PTR(-ENOENT);
6000
6001 io = req->async_data;
6002 if (hrtimer_try_to_cancel(&io->timer) == -1)
6003 return ERR_PTR(-EALREADY);
6004 list_del_init(&req->timeout.list);
6005 return req;
6006 }
6007
6008 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6009 __must_hold(&ctx->completion_lock)
6010 __must_hold(&ctx->timeout_lock)
6011 {
6012 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6013
6014 if (IS_ERR(req))
6015 return PTR_ERR(req);
6016
6017 req_set_fail(req);
6018 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6019 io_put_req_deferred(req);
6020 return 0;
6021 }
6022
6023 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6024 {
6025 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6026 case IORING_TIMEOUT_BOOTTIME:
6027 return CLOCK_BOOTTIME;
6028 case IORING_TIMEOUT_REALTIME:
6029 return CLOCK_REALTIME;
6030 default:
6031 /* can't happen, vetted at prep time */
6032 WARN_ON_ONCE(1);
6033 fallthrough;
6034 case 0:
6035 return CLOCK_MONOTONIC;
6036 }
6037 }
6038
6039 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6040 struct timespec64 *ts, enum hrtimer_mode mode)
6041 __must_hold(&ctx->timeout_lock)
6042 {
6043 struct io_timeout_data *io;
6044 struct io_kiocb *req;
6045 bool found = false;
6046
6047 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6048 found = user_data == req->user_data;
6049 if (found)
6050 break;
6051 }
6052 if (!found)
6053 return -ENOENT;
6054
6055 io = req->async_data;
6056 if (hrtimer_try_to_cancel(&io->timer) == -1)
6057 return -EALREADY;
6058 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6059 io->timer.function = io_link_timeout_fn;
6060 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6061 return 0;
6062 }
6063
6064 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6065 struct timespec64 *ts, enum hrtimer_mode mode)
6066 __must_hold(&ctx->timeout_lock)
6067 {
6068 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6069 struct io_timeout_data *data;
6070
6071 if (IS_ERR(req))
6072 return PTR_ERR(req);
6073
6074 req->timeout.off = 0; /* noseq */
6075 data = req->async_data;
6076 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6077 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6078 data->timer.function = io_timeout_fn;
6079 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6080 return 0;
6081 }
6082
6083 static int io_timeout_remove_prep(struct io_kiocb *req,
6084 const struct io_uring_sqe *sqe)
6085 {
6086 struct io_timeout_rem *tr = &req->timeout_rem;
6087
6088 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6089 return -EINVAL;
6090 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6091 return -EINVAL;
6092 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6093 return -EINVAL;
6094
6095 tr->ltimeout = false;
6096 tr->addr = READ_ONCE(sqe->addr);
6097 tr->flags = READ_ONCE(sqe->timeout_flags);
6098 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6099 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6100 return -EINVAL;
6101 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6102 tr->ltimeout = true;
6103 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6104 return -EINVAL;
6105 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6106 return -EFAULT;
6107 } else if (tr->flags) {
6108 /* timeout removal doesn't support flags */
6109 return -EINVAL;
6110 }
6111
6112 return 0;
6113 }
6114
6115 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6116 {
6117 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6118 : HRTIMER_MODE_REL;
6119 }
6120
6121 /*
6122 * Remove or update an existing timeout command
6123 */
6124 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6125 {
6126 struct io_timeout_rem *tr = &req->timeout_rem;
6127 struct io_ring_ctx *ctx = req->ctx;
6128 int ret;
6129
6130 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6131 spin_lock(&ctx->completion_lock);
6132 spin_lock_irq(&ctx->timeout_lock);
6133 ret = io_timeout_cancel(ctx, tr->addr);
6134 spin_unlock_irq(&ctx->timeout_lock);
6135 spin_unlock(&ctx->completion_lock);
6136 } else {
6137 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6138
6139 spin_lock_irq(&ctx->timeout_lock);
6140 if (tr->ltimeout)
6141 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6142 else
6143 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6144 spin_unlock_irq(&ctx->timeout_lock);
6145 }
6146
6147 if (ret < 0)
6148 req_set_fail(req);
6149 io_req_complete_post(req, ret, 0);
6150 return 0;
6151 }
6152
6153 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6154 bool is_timeout_link)
6155 {
6156 struct io_timeout_data *data;
6157 unsigned flags;
6158 u32 off = READ_ONCE(sqe->off);
6159
6160 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6161 return -EINVAL;
6162 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6163 sqe->splice_fd_in)
6164 return -EINVAL;
6165 if (off && is_timeout_link)
6166 return -EINVAL;
6167 flags = READ_ONCE(sqe->timeout_flags);
6168 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6169 return -EINVAL;
6170 /* more than one clock specified is invalid, obviously */
6171 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6172 return -EINVAL;
6173
6174 INIT_LIST_HEAD(&req->timeout.list);
6175 req->timeout.off = off;
6176 if (unlikely(off && !req->ctx->off_timeout_used))
6177 req->ctx->off_timeout_used = true;
6178
6179 if (!req->async_data && io_alloc_async_data(req))
6180 return -ENOMEM;
6181
6182 data = req->async_data;
6183 data->req = req;
6184 data->flags = flags;
6185
6186 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6187 return -EFAULT;
6188
6189 data->mode = io_translate_timeout_mode(flags);
6190 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6191
6192 if (is_timeout_link) {
6193 struct io_submit_link *link = &req->ctx->submit_state.link;
6194
6195 if (!link->head)
6196 return -EINVAL;
6197 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6198 return -EINVAL;
6199 req->timeout.head = link->last;
6200 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6201 }
6202 return 0;
6203 }
6204
6205 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6206 {
6207 struct io_ring_ctx *ctx = req->ctx;
6208 struct io_timeout_data *data = req->async_data;
6209 struct list_head *entry;
6210 u32 tail, off = req->timeout.off;
6211
6212 spin_lock_irq(&ctx->timeout_lock);
6213
6214 /*
6215 * sqe->off holds how many events that need to occur for this
6216 * timeout event to be satisfied. If it isn't set, then this is
6217 * a pure timeout request, sequence isn't used.
6218 */
6219 if (io_is_timeout_noseq(req)) {
6220 entry = ctx->timeout_list.prev;
6221 goto add;
6222 }
6223
6224 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6225 req->timeout.target_seq = tail + off;
6226
6227 /* Update the last seq here in case io_flush_timeouts() hasn't.
6228 * This is safe because ->completion_lock is held, and submissions
6229 * and completions are never mixed in the same ->completion_lock section.
6230 */
6231 ctx->cq_last_tm_flush = tail;
6232
6233 /*
6234 * Insertion sort, ensuring the first entry in the list is always
6235 * the one we need first.
6236 */
6237 list_for_each_prev(entry, &ctx->timeout_list) {
6238 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6239 timeout.list);
6240
6241 if (io_is_timeout_noseq(nxt))
6242 continue;
6243 /* nxt.seq is behind @tail, otherwise would've been completed */
6244 if (off >= nxt->timeout.target_seq - tail)
6245 break;
6246 }
6247 add:
6248 list_add(&req->timeout.list, entry);
6249 data->timer.function = io_timeout_fn;
6250 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6251 spin_unlock_irq(&ctx->timeout_lock);
6252 return 0;
6253 }
6254
6255 struct io_cancel_data {
6256 struct io_ring_ctx *ctx;
6257 u64 user_data;
6258 };
6259
6260 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6261 {
6262 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6263 struct io_cancel_data *cd = data;
6264
6265 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6266 }
6267
6268 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6269 struct io_ring_ctx *ctx)
6270 {
6271 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6272 enum io_wq_cancel cancel_ret;
6273 int ret = 0;
6274
6275 if (!tctx || !tctx->io_wq)
6276 return -ENOENT;
6277
6278 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6279 switch (cancel_ret) {
6280 case IO_WQ_CANCEL_OK:
6281 ret = 0;
6282 break;
6283 case IO_WQ_CANCEL_RUNNING:
6284 ret = -EALREADY;
6285 break;
6286 case IO_WQ_CANCEL_NOTFOUND:
6287 ret = -ENOENT;
6288 break;
6289 }
6290
6291 return ret;
6292 }
6293
6294 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6295 {
6296 struct io_ring_ctx *ctx = req->ctx;
6297 int ret;
6298
6299 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6300
6301 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6302 if (ret != -ENOENT)
6303 return ret;
6304
6305 spin_lock(&ctx->completion_lock);
6306 spin_lock_irq(&ctx->timeout_lock);
6307 ret = io_timeout_cancel(ctx, sqe_addr);
6308 spin_unlock_irq(&ctx->timeout_lock);
6309 if (ret != -ENOENT)
6310 goto out;
6311 ret = io_poll_cancel(ctx, sqe_addr, false);
6312 out:
6313 spin_unlock(&ctx->completion_lock);
6314 return ret;
6315 }
6316
6317 static int io_async_cancel_prep(struct io_kiocb *req,
6318 const struct io_uring_sqe *sqe)
6319 {
6320 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6321 return -EINVAL;
6322 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6323 return -EINVAL;
6324 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6325 sqe->splice_fd_in)
6326 return -EINVAL;
6327
6328 req->cancel.addr = READ_ONCE(sqe->addr);
6329 return 0;
6330 }
6331
6332 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6333 {
6334 struct io_ring_ctx *ctx = req->ctx;
6335 u64 sqe_addr = req->cancel.addr;
6336 struct io_tctx_node *node;
6337 int ret;
6338
6339 ret = io_try_cancel_userdata(req, sqe_addr);
6340 if (ret != -ENOENT)
6341 goto done;
6342
6343 /* slow path, try all io-wq's */
6344 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6345 ret = -ENOENT;
6346 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6347 struct io_uring_task *tctx = node->task->io_uring;
6348
6349 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6350 if (ret != -ENOENT)
6351 break;
6352 }
6353 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6354 done:
6355 if (ret < 0)
6356 req_set_fail(req);
6357 io_req_complete_post(req, ret, 0);
6358 return 0;
6359 }
6360
6361 static int io_rsrc_update_prep(struct io_kiocb *req,
6362 const struct io_uring_sqe *sqe)
6363 {
6364 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6365 return -EINVAL;
6366 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6367 return -EINVAL;
6368
6369 req->rsrc_update.offset = READ_ONCE(sqe->off);
6370 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6371 if (!req->rsrc_update.nr_args)
6372 return -EINVAL;
6373 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6374 return 0;
6375 }
6376
6377 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6378 {
6379 struct io_ring_ctx *ctx = req->ctx;
6380 struct io_uring_rsrc_update2 up;
6381 int ret;
6382
6383 up.offset = req->rsrc_update.offset;
6384 up.data = req->rsrc_update.arg;
6385 up.nr = 0;
6386 up.tags = 0;
6387 up.resv = 0;
6388
6389 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6390 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6391 &up, req->rsrc_update.nr_args);
6392 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6393
6394 if (ret < 0)
6395 req_set_fail(req);
6396 __io_req_complete(req, issue_flags, ret, 0);
6397 return 0;
6398 }
6399
6400 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6401 {
6402 switch (req->opcode) {
6403 case IORING_OP_NOP:
6404 return 0;
6405 case IORING_OP_READV:
6406 case IORING_OP_READ_FIXED:
6407 case IORING_OP_READ:
6408 return io_read_prep(req, sqe);
6409 case IORING_OP_WRITEV:
6410 case IORING_OP_WRITE_FIXED:
6411 case IORING_OP_WRITE:
6412 return io_write_prep(req, sqe);
6413 case IORING_OP_POLL_ADD:
6414 return io_poll_add_prep(req, sqe);
6415 case IORING_OP_POLL_REMOVE:
6416 return io_poll_update_prep(req, sqe);
6417 case IORING_OP_FSYNC:
6418 return io_fsync_prep(req, sqe);
6419 case IORING_OP_SYNC_FILE_RANGE:
6420 return io_sfr_prep(req, sqe);
6421 case IORING_OP_SENDMSG:
6422 case IORING_OP_SEND:
6423 return io_sendmsg_prep(req, sqe);
6424 case IORING_OP_RECVMSG:
6425 case IORING_OP_RECV:
6426 return io_recvmsg_prep(req, sqe);
6427 case IORING_OP_CONNECT:
6428 return io_connect_prep(req, sqe);
6429 case IORING_OP_TIMEOUT:
6430 return io_timeout_prep(req, sqe, false);
6431 case IORING_OP_TIMEOUT_REMOVE:
6432 return io_timeout_remove_prep(req, sqe);
6433 case IORING_OP_ASYNC_CANCEL:
6434 return io_async_cancel_prep(req, sqe);
6435 case IORING_OP_LINK_TIMEOUT:
6436 return io_timeout_prep(req, sqe, true);
6437 case IORING_OP_ACCEPT:
6438 return io_accept_prep(req, sqe);
6439 case IORING_OP_FALLOCATE:
6440 return io_fallocate_prep(req, sqe);
6441 case IORING_OP_OPENAT:
6442 return io_openat_prep(req, sqe);
6443 case IORING_OP_CLOSE:
6444 return io_close_prep(req, sqe);
6445 case IORING_OP_FILES_UPDATE:
6446 return io_rsrc_update_prep(req, sqe);
6447 case IORING_OP_STATX:
6448 return io_statx_prep(req, sqe);
6449 case IORING_OP_FADVISE:
6450 return io_fadvise_prep(req, sqe);
6451 case IORING_OP_MADVISE:
6452 return io_madvise_prep(req, sqe);
6453 case IORING_OP_OPENAT2:
6454 return io_openat2_prep(req, sqe);
6455 case IORING_OP_EPOLL_CTL:
6456 return io_epoll_ctl_prep(req, sqe);
6457 case IORING_OP_SPLICE:
6458 return io_splice_prep(req, sqe);
6459 case IORING_OP_PROVIDE_BUFFERS:
6460 return io_provide_buffers_prep(req, sqe);
6461 case IORING_OP_REMOVE_BUFFERS:
6462 return io_remove_buffers_prep(req, sqe);
6463 case IORING_OP_TEE:
6464 return io_tee_prep(req, sqe);
6465 case IORING_OP_SHUTDOWN:
6466 return io_shutdown_prep(req, sqe);
6467 case IORING_OP_RENAMEAT:
6468 return io_renameat_prep(req, sqe);
6469 case IORING_OP_UNLINKAT:
6470 return io_unlinkat_prep(req, sqe);
6471 case IORING_OP_MKDIRAT:
6472 return io_mkdirat_prep(req, sqe);
6473 case IORING_OP_SYMLINKAT:
6474 return io_symlinkat_prep(req, sqe);
6475 case IORING_OP_LINKAT:
6476 return io_linkat_prep(req, sqe);
6477 }
6478
6479 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6480 req->opcode);
6481 return -EINVAL;
6482 }
6483
6484 static int io_req_prep_async(struct io_kiocb *req)
6485 {
6486 if (!io_op_defs[req->opcode].needs_async_setup)
6487 return 0;
6488 if (WARN_ON_ONCE(req->async_data))
6489 return -EFAULT;
6490 if (io_alloc_async_data(req))
6491 return -EAGAIN;
6492
6493 switch (req->opcode) {
6494 case IORING_OP_READV:
6495 return io_rw_prep_async(req, READ);
6496 case IORING_OP_WRITEV:
6497 return io_rw_prep_async(req, WRITE);
6498 case IORING_OP_SENDMSG:
6499 return io_sendmsg_prep_async(req);
6500 case IORING_OP_RECVMSG:
6501 return io_recvmsg_prep_async(req);
6502 case IORING_OP_CONNECT:
6503 return io_connect_prep_async(req);
6504 }
6505 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6506 req->opcode);
6507 return -EFAULT;
6508 }
6509
6510 static u32 io_get_sequence(struct io_kiocb *req)
6511 {
6512 u32 seq = req->ctx->cached_sq_head;
6513
6514 /* need original cached_sq_head, but it was increased for each req */
6515 io_for_each_link(req, req)
6516 seq--;
6517 return seq;
6518 }
6519
6520 static bool io_drain_req(struct io_kiocb *req)
6521 {
6522 struct io_kiocb *pos;
6523 struct io_ring_ctx *ctx = req->ctx;
6524 struct io_defer_entry *de;
6525 int ret;
6526 u32 seq;
6527
6528 if (req->flags & REQ_F_FAIL) {
6529 io_req_complete_fail_submit(req);
6530 return true;
6531 }
6532
6533 /*
6534 * If we need to drain a request in the middle of a link, drain the
6535 * head request and the next request/link after the current link.
6536 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6537 * maintained for every request of our link.
6538 */
6539 if (ctx->drain_next) {
6540 req->flags |= REQ_F_IO_DRAIN;
6541 ctx->drain_next = false;
6542 }
6543 /* not interested in head, start from the first linked */
6544 io_for_each_link(pos, req->link) {
6545 if (pos->flags & REQ_F_IO_DRAIN) {
6546 ctx->drain_next = true;
6547 req->flags |= REQ_F_IO_DRAIN;
6548 break;
6549 }
6550 }
6551
6552 /* Still need defer if there is pending req in defer list. */
6553 if (likely(list_empty_careful(&ctx->defer_list) &&
6554 !(req->flags & REQ_F_IO_DRAIN))) {
6555 ctx->drain_active = false;
6556 return false;
6557 }
6558
6559 seq = io_get_sequence(req);
6560 /* Still a chance to pass the sequence check */
6561 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6562 return false;
6563
6564 ret = io_req_prep_async(req);
6565 if (ret)
6566 goto fail;
6567 io_prep_async_link(req);
6568 de = kmalloc(sizeof(*de), GFP_KERNEL);
6569 if (!de) {
6570 ret = -ENOMEM;
6571 fail:
6572 io_req_complete_failed(req, ret);
6573 return true;
6574 }
6575
6576 spin_lock(&ctx->completion_lock);
6577 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6578 spin_unlock(&ctx->completion_lock);
6579 kfree(de);
6580 io_queue_async_work(req, NULL);
6581 return true;
6582 }
6583
6584 trace_io_uring_defer(ctx, req, req->user_data);
6585 de->req = req;
6586 de->seq = seq;
6587 list_add_tail(&de->list, &ctx->defer_list);
6588 spin_unlock(&ctx->completion_lock);
6589 return true;
6590 }
6591
6592 static void io_clean_op(struct io_kiocb *req)
6593 {
6594 if (req->flags & REQ_F_BUFFER_SELECTED) {
6595 switch (req->opcode) {
6596 case IORING_OP_READV:
6597 case IORING_OP_READ_FIXED:
6598 case IORING_OP_READ:
6599 kfree((void *)(unsigned long)req->rw.addr);
6600 break;
6601 case IORING_OP_RECVMSG:
6602 case IORING_OP_RECV:
6603 kfree(req->sr_msg.kbuf);
6604 break;
6605 }
6606 }
6607
6608 if (req->flags & REQ_F_NEED_CLEANUP) {
6609 switch (req->opcode) {
6610 case IORING_OP_READV:
6611 case IORING_OP_READ_FIXED:
6612 case IORING_OP_READ:
6613 case IORING_OP_WRITEV:
6614 case IORING_OP_WRITE_FIXED:
6615 case IORING_OP_WRITE: {
6616 struct io_async_rw *io = req->async_data;
6617
6618 kfree(io->free_iovec);
6619 break;
6620 }
6621 case IORING_OP_RECVMSG:
6622 case IORING_OP_SENDMSG: {
6623 struct io_async_msghdr *io = req->async_data;
6624
6625 kfree(io->free_iov);
6626 break;
6627 }
6628 case IORING_OP_SPLICE:
6629 case IORING_OP_TEE:
6630 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6631 io_put_file(req->splice.file_in);
6632 break;
6633 case IORING_OP_OPENAT:
6634 case IORING_OP_OPENAT2:
6635 if (req->open.filename)
6636 putname(req->open.filename);
6637 break;
6638 case IORING_OP_RENAMEAT:
6639 putname(req->rename.oldpath);
6640 putname(req->rename.newpath);
6641 break;
6642 case IORING_OP_UNLINKAT:
6643 putname(req->unlink.filename);
6644 break;
6645 case IORING_OP_MKDIRAT:
6646 putname(req->mkdir.filename);
6647 break;
6648 case IORING_OP_SYMLINKAT:
6649 putname(req->symlink.oldpath);
6650 putname(req->symlink.newpath);
6651 break;
6652 case IORING_OP_LINKAT:
6653 putname(req->hardlink.oldpath);
6654 putname(req->hardlink.newpath);
6655 break;
6656 }
6657 }
6658 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6659 kfree(req->apoll->double_poll);
6660 kfree(req->apoll);
6661 req->apoll = NULL;
6662 }
6663 if (req->flags & REQ_F_INFLIGHT) {
6664 struct io_uring_task *tctx = req->task->io_uring;
6665
6666 atomic_dec(&tctx->inflight_tracked);
6667 }
6668 if (req->flags & REQ_F_CREDS)
6669 put_cred(req->creds);
6670
6671 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6672 }
6673
6674 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6675 {
6676 struct io_ring_ctx *ctx = req->ctx;
6677 const struct cred *creds = NULL;
6678 int ret;
6679
6680 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6681 creds = override_creds(req->creds);
6682
6683 switch (req->opcode) {
6684 case IORING_OP_NOP:
6685 ret = io_nop(req, issue_flags);
6686 break;
6687 case IORING_OP_READV:
6688 case IORING_OP_READ_FIXED:
6689 case IORING_OP_READ:
6690 ret = io_read(req, issue_flags);
6691 break;
6692 case IORING_OP_WRITEV:
6693 case IORING_OP_WRITE_FIXED:
6694 case IORING_OP_WRITE:
6695 ret = io_write(req, issue_flags);
6696 break;
6697 case IORING_OP_FSYNC:
6698 ret = io_fsync(req, issue_flags);
6699 break;
6700 case IORING_OP_POLL_ADD:
6701 ret = io_poll_add(req, issue_flags);
6702 break;
6703 case IORING_OP_POLL_REMOVE:
6704 ret = io_poll_update(req, issue_flags);
6705 break;
6706 case IORING_OP_SYNC_FILE_RANGE:
6707 ret = io_sync_file_range(req, issue_flags);
6708 break;
6709 case IORING_OP_SENDMSG:
6710 ret = io_sendmsg(req, issue_flags);
6711 break;
6712 case IORING_OP_SEND:
6713 ret = io_send(req, issue_flags);
6714 break;
6715 case IORING_OP_RECVMSG:
6716 ret = io_recvmsg(req, issue_flags);
6717 break;
6718 case IORING_OP_RECV:
6719 ret = io_recv(req, issue_flags);
6720 break;
6721 case IORING_OP_TIMEOUT:
6722 ret = io_timeout(req, issue_flags);
6723 break;
6724 case IORING_OP_TIMEOUT_REMOVE:
6725 ret = io_timeout_remove(req, issue_flags);
6726 break;
6727 case IORING_OP_ACCEPT:
6728 ret = io_accept(req, issue_flags);
6729 break;
6730 case IORING_OP_CONNECT:
6731 ret = io_connect(req, issue_flags);
6732 break;
6733 case IORING_OP_ASYNC_CANCEL:
6734 ret = io_async_cancel(req, issue_flags);
6735 break;
6736 case IORING_OP_FALLOCATE:
6737 ret = io_fallocate(req, issue_flags);
6738 break;
6739 case IORING_OP_OPENAT:
6740 ret = io_openat(req, issue_flags);
6741 break;
6742 case IORING_OP_CLOSE:
6743 ret = io_close(req, issue_flags);
6744 break;
6745 case IORING_OP_FILES_UPDATE:
6746 ret = io_files_update(req, issue_flags);
6747 break;
6748 case IORING_OP_STATX:
6749 ret = io_statx(req, issue_flags);
6750 break;
6751 case IORING_OP_FADVISE:
6752 ret = io_fadvise(req, issue_flags);
6753 break;
6754 case IORING_OP_MADVISE:
6755 ret = io_madvise(req, issue_flags);
6756 break;
6757 case IORING_OP_OPENAT2:
6758 ret = io_openat2(req, issue_flags);
6759 break;
6760 case IORING_OP_EPOLL_CTL:
6761 ret = io_epoll_ctl(req, issue_flags);
6762 break;
6763 case IORING_OP_SPLICE:
6764 ret = io_splice(req, issue_flags);
6765 break;
6766 case IORING_OP_PROVIDE_BUFFERS:
6767 ret = io_provide_buffers(req, issue_flags);
6768 break;
6769 case IORING_OP_REMOVE_BUFFERS:
6770 ret = io_remove_buffers(req, issue_flags);
6771 break;
6772 case IORING_OP_TEE:
6773 ret = io_tee(req, issue_flags);
6774 break;
6775 case IORING_OP_SHUTDOWN:
6776 ret = io_shutdown(req, issue_flags);
6777 break;
6778 case IORING_OP_RENAMEAT:
6779 ret = io_renameat(req, issue_flags);
6780 break;
6781 case IORING_OP_UNLINKAT:
6782 ret = io_unlinkat(req, issue_flags);
6783 break;
6784 case IORING_OP_MKDIRAT:
6785 ret = io_mkdirat(req, issue_flags);
6786 break;
6787 case IORING_OP_SYMLINKAT:
6788 ret = io_symlinkat(req, issue_flags);
6789 break;
6790 case IORING_OP_LINKAT:
6791 ret = io_linkat(req, issue_flags);
6792 break;
6793 default:
6794 ret = -EINVAL;
6795 break;
6796 }
6797
6798 if (creds)
6799 revert_creds(creds);
6800 if (ret)
6801 return ret;
6802 /* If the op doesn't have a file, we're not polling for it */
6803 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6804 io_iopoll_req_issued(req);
6805
6806 return 0;
6807 }
6808
6809 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6810 {
6811 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6812
6813 req = io_put_req_find_next(req);
6814 return req ? &req->work : NULL;
6815 }
6816
6817 static void io_wq_submit_work(struct io_wq_work *work)
6818 {
6819 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6820 struct io_kiocb *timeout;
6821 int ret = 0;
6822
6823 /* one will be dropped by ->io_free_work() after returning to io-wq */
6824 if (!(req->flags & REQ_F_REFCOUNT))
6825 __io_req_set_refcount(req, 2);
6826 else
6827 req_ref_get(req);
6828
6829 timeout = io_prep_linked_timeout(req);
6830 if (timeout)
6831 io_queue_linked_timeout(timeout);
6832
6833 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6834 if (work->flags & IO_WQ_WORK_CANCEL)
6835 ret = -ECANCELED;
6836
6837 if (!ret) {
6838 do {
6839 ret = io_issue_sqe(req, 0);
6840 /*
6841 * We can get EAGAIN for polled IO even though we're
6842 * forcing a sync submission from here, since we can't
6843 * wait for request slots on the block side.
6844 */
6845 if (ret != -EAGAIN)
6846 break;
6847 cond_resched();
6848 } while (1);
6849 }
6850
6851 /* avoid locking problems by failing it from a clean context */
6852 if (ret)
6853 io_req_task_queue_fail(req, ret);
6854 }
6855
6856 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6857 unsigned i)
6858 {
6859 return &table->files[i];
6860 }
6861
6862 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6863 int index)
6864 {
6865 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6866
6867 return (struct file *) (slot->file_ptr & FFS_MASK);
6868 }
6869
6870 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6871 {
6872 unsigned long file_ptr = (unsigned long) file;
6873
6874 if (__io_file_supports_nowait(file, READ))
6875 file_ptr |= FFS_ASYNC_READ;
6876 if (__io_file_supports_nowait(file, WRITE))
6877 file_ptr |= FFS_ASYNC_WRITE;
6878 if (S_ISREG(file_inode(file)->i_mode))
6879 file_ptr |= FFS_ISREG;
6880 file_slot->file_ptr = file_ptr;
6881 }
6882
6883 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6884 struct io_kiocb *req, int fd)
6885 {
6886 struct file *file;
6887 unsigned long file_ptr;
6888
6889 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6890 return NULL;
6891 fd = array_index_nospec(fd, ctx->nr_user_files);
6892 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6893 file = (struct file *) (file_ptr & FFS_MASK);
6894 file_ptr &= ~FFS_MASK;
6895 /* mask in overlapping REQ_F and FFS bits */
6896 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6897 io_req_set_rsrc_node(req);
6898 return file;
6899 }
6900
6901 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6902 struct io_kiocb *req, int fd)
6903 {
6904 struct file *file = fget(fd);
6905
6906 trace_io_uring_file_get(ctx, fd);
6907
6908 /* we don't allow fixed io_uring files */
6909 if (file && unlikely(file->f_op == &io_uring_fops))
6910 io_req_track_inflight(req);
6911 return file;
6912 }
6913
6914 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6915 struct io_kiocb *req, int fd, bool fixed)
6916 {
6917 if (fixed)
6918 return io_file_get_fixed(ctx, req, fd);
6919 else
6920 return io_file_get_normal(ctx, req, fd);
6921 }
6922
6923 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6924 {
6925 struct io_kiocb *prev = req->timeout.prev;
6926 int ret = -ENOENT;
6927
6928 if (prev) {
6929 if (!(req->task->flags & PF_EXITING))
6930 ret = io_try_cancel_userdata(req, prev->user_data);
6931 io_req_complete_post(req, ret ?: -ETIME, 0);
6932 io_put_req(prev);
6933 } else {
6934 io_req_complete_post(req, -ETIME, 0);
6935 }
6936 }
6937
6938 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6939 {
6940 struct io_timeout_data *data = container_of(timer,
6941 struct io_timeout_data, timer);
6942 struct io_kiocb *prev, *req = data->req;
6943 struct io_ring_ctx *ctx = req->ctx;
6944 unsigned long flags;
6945
6946 spin_lock_irqsave(&ctx->timeout_lock, flags);
6947 prev = req->timeout.head;
6948 req->timeout.head = NULL;
6949
6950 /*
6951 * We don't expect the list to be empty, that will only happen if we
6952 * race with the completion of the linked work.
6953 */
6954 if (prev) {
6955 io_remove_next_linked(prev);
6956 if (!req_ref_inc_not_zero(prev))
6957 prev = NULL;
6958 }
6959 list_del(&req->timeout.list);
6960 req->timeout.prev = prev;
6961 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6962
6963 req->io_task_work.func = io_req_task_link_timeout;
6964 io_req_task_work_add(req);
6965 return HRTIMER_NORESTART;
6966 }
6967
6968 static void io_queue_linked_timeout(struct io_kiocb *req)
6969 {
6970 struct io_ring_ctx *ctx = req->ctx;
6971
6972 spin_lock_irq(&ctx->timeout_lock);
6973 /*
6974 * If the back reference is NULL, then our linked request finished
6975 * before we got a chance to setup the timer
6976 */
6977 if (req->timeout.head) {
6978 struct io_timeout_data *data = req->async_data;
6979
6980 data->timer.function = io_link_timeout_fn;
6981 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6982 data->mode);
6983 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6984 }
6985 spin_unlock_irq(&ctx->timeout_lock);
6986 /* drop submission reference */
6987 io_put_req(req);
6988 }
6989
6990 static void __io_queue_sqe(struct io_kiocb *req)
6991 __must_hold(&req->ctx->uring_lock)
6992 {
6993 struct io_kiocb *linked_timeout;
6994 int ret;
6995
6996 issue_sqe:
6997 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6998
6999 /*
7000 * We async punt it if the file wasn't marked NOWAIT, or if the file
7001 * doesn't support non-blocking read/write attempts
7002 */
7003 if (likely(!ret)) {
7004 if (req->flags & REQ_F_COMPLETE_INLINE) {
7005 struct io_ring_ctx *ctx = req->ctx;
7006 struct io_submit_state *state = &ctx->submit_state;
7007
7008 state->compl_reqs[state->compl_nr++] = req;
7009 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7010 io_submit_flush_completions(ctx);
7011 return;
7012 }
7013
7014 linked_timeout = io_prep_linked_timeout(req);
7015 if (linked_timeout)
7016 io_queue_linked_timeout(linked_timeout);
7017 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7018 linked_timeout = io_prep_linked_timeout(req);
7019
7020 switch (io_arm_poll_handler(req)) {
7021 case IO_APOLL_READY:
7022 if (linked_timeout)
7023 io_queue_linked_timeout(linked_timeout);
7024 goto issue_sqe;
7025 case IO_APOLL_ABORTED:
7026 /*
7027 * Queued up for async execution, worker will release
7028 * submit reference when the iocb is actually submitted.
7029 */
7030 io_queue_async_work(req, NULL);
7031 break;
7032 }
7033
7034 if (linked_timeout)
7035 io_queue_linked_timeout(linked_timeout);
7036 } else {
7037 io_req_complete_failed(req, ret);
7038 }
7039 }
7040
7041 static inline void io_queue_sqe(struct io_kiocb *req)
7042 __must_hold(&req->ctx->uring_lock)
7043 {
7044 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7045 return;
7046
7047 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7048 __io_queue_sqe(req);
7049 } else if (req->flags & REQ_F_FAIL) {
7050 io_req_complete_fail_submit(req);
7051 } else {
7052 int ret = io_req_prep_async(req);
7053
7054 if (unlikely(ret))
7055 io_req_complete_failed(req, ret);
7056 else
7057 io_queue_async_work(req, NULL);
7058 }
7059 }
7060
7061 /*
7062 * Check SQE restrictions (opcode and flags).
7063 *
7064 * Returns 'true' if SQE is allowed, 'false' otherwise.
7065 */
7066 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7067 struct io_kiocb *req,
7068 unsigned int sqe_flags)
7069 {
7070 if (likely(!ctx->restricted))
7071 return true;
7072
7073 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7074 return false;
7075
7076 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7077 ctx->restrictions.sqe_flags_required)
7078 return false;
7079
7080 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7081 ctx->restrictions.sqe_flags_required))
7082 return false;
7083
7084 return true;
7085 }
7086
7087 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7088 const struct io_uring_sqe *sqe)
7089 __must_hold(&ctx->uring_lock)
7090 {
7091 struct io_submit_state *state;
7092 unsigned int sqe_flags;
7093 int personality, ret = 0;
7094
7095 /* req is partially pre-initialised, see io_preinit_req() */
7096 req->opcode = READ_ONCE(sqe->opcode);
7097 /* same numerical values with corresponding REQ_F_*, safe to copy */
7098 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7099 req->user_data = READ_ONCE(sqe->user_data);
7100 req->file = NULL;
7101 req->fixed_rsrc_refs = NULL;
7102 req->task = current;
7103
7104 /* enforce forwards compatibility on users */
7105 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7106 return -EINVAL;
7107 if (unlikely(req->opcode >= IORING_OP_LAST))
7108 return -EINVAL;
7109 if (!io_check_restriction(ctx, req, sqe_flags))
7110 return -EACCES;
7111
7112 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7113 !io_op_defs[req->opcode].buffer_select)
7114 return -EOPNOTSUPP;
7115 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7116 ctx->drain_active = true;
7117
7118 personality = READ_ONCE(sqe->personality);
7119 if (personality) {
7120 req->creds = xa_load(&ctx->personalities, personality);
7121 if (!req->creds)
7122 return -EINVAL;
7123 get_cred(req->creds);
7124 req->flags |= REQ_F_CREDS;
7125 }
7126 state = &ctx->submit_state;
7127
7128 /*
7129 * Plug now if we have more than 1 IO left after this, and the target
7130 * is potentially a read/write to block based storage.
7131 */
7132 if (!state->plug_started && state->ios_left > 1 &&
7133 io_op_defs[req->opcode].plug) {
7134 blk_start_plug(&state->plug);
7135 state->plug_started = true;
7136 }
7137
7138 if (io_op_defs[req->opcode].needs_file) {
7139 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7140 (sqe_flags & IOSQE_FIXED_FILE));
7141 if (unlikely(!req->file))
7142 ret = -EBADF;
7143 }
7144
7145 state->ios_left--;
7146 return ret;
7147 }
7148
7149 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7150 const struct io_uring_sqe *sqe)
7151 __must_hold(&ctx->uring_lock)
7152 {
7153 struct io_submit_link *link = &ctx->submit_state.link;
7154 int ret;
7155
7156 ret = io_init_req(ctx, req, sqe);
7157 if (unlikely(ret)) {
7158 fail_req:
7159 /* fail even hard links since we don't submit */
7160 if (link->head) {
7161 /*
7162 * we can judge a link req is failed or cancelled by if
7163 * REQ_F_FAIL is set, but the head is an exception since
7164 * it may be set REQ_F_FAIL because of other req's failure
7165 * so let's leverage req->result to distinguish if a head
7166 * is set REQ_F_FAIL because of its failure or other req's
7167 * failure so that we can set the correct ret code for it.
7168 * init result here to avoid affecting the normal path.
7169 */
7170 if (!(link->head->flags & REQ_F_FAIL))
7171 req_fail_link_node(link->head, -ECANCELED);
7172 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7173 /*
7174 * the current req is a normal req, we should return
7175 * error and thus break the submittion loop.
7176 */
7177 io_req_complete_failed(req, ret);
7178 return ret;
7179 }
7180 req_fail_link_node(req, ret);
7181 } else {
7182 ret = io_req_prep(req, sqe);
7183 if (unlikely(ret))
7184 goto fail_req;
7185 }
7186
7187 /* don't need @sqe from now on */
7188 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7189 req->flags, true,
7190 ctx->flags & IORING_SETUP_SQPOLL);
7191
7192 /*
7193 * If we already have a head request, queue this one for async
7194 * submittal once the head completes. If we don't have a head but
7195 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7196 * submitted sync once the chain is complete. If none of those
7197 * conditions are true (normal request), then just queue it.
7198 */
7199 if (link->head) {
7200 struct io_kiocb *head = link->head;
7201
7202 if (!(req->flags & REQ_F_FAIL)) {
7203 ret = io_req_prep_async(req);
7204 if (unlikely(ret)) {
7205 req_fail_link_node(req, ret);
7206 if (!(head->flags & REQ_F_FAIL))
7207 req_fail_link_node(head, -ECANCELED);
7208 }
7209 }
7210 trace_io_uring_link(ctx, req, head);
7211 link->last->link = req;
7212 link->last = req;
7213
7214 /* last request of a link, enqueue the link */
7215 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7216 link->head = NULL;
7217 io_queue_sqe(head);
7218 }
7219 } else {
7220 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7221 link->head = req;
7222 link->last = req;
7223 } else {
7224 io_queue_sqe(req);
7225 }
7226 }
7227
7228 return 0;
7229 }
7230
7231 /*
7232 * Batched submission is done, ensure local IO is flushed out.
7233 */
7234 static void io_submit_state_end(struct io_submit_state *state,
7235 struct io_ring_ctx *ctx)
7236 {
7237 if (state->link.head)
7238 io_queue_sqe(state->link.head);
7239 if (state->compl_nr)
7240 io_submit_flush_completions(ctx);
7241 if (state->plug_started)
7242 blk_finish_plug(&state->plug);
7243 }
7244
7245 /*
7246 * Start submission side cache.
7247 */
7248 static void io_submit_state_start(struct io_submit_state *state,
7249 unsigned int max_ios)
7250 {
7251 state->plug_started = false;
7252 state->ios_left = max_ios;
7253 /* set only head, no need to init link_last in advance */
7254 state->link.head = NULL;
7255 }
7256
7257 static void io_commit_sqring(struct io_ring_ctx *ctx)
7258 {
7259 struct io_rings *rings = ctx->rings;
7260
7261 /*
7262 * Ensure any loads from the SQEs are done at this point,
7263 * since once we write the new head, the application could
7264 * write new data to them.
7265 */
7266 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7267 }
7268
7269 /*
7270 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7271 * that is mapped by userspace. This means that care needs to be taken to
7272 * ensure that reads are stable, as we cannot rely on userspace always
7273 * being a good citizen. If members of the sqe are validated and then later
7274 * used, it's important that those reads are done through READ_ONCE() to
7275 * prevent a re-load down the line.
7276 */
7277 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7278 {
7279 unsigned head, mask = ctx->sq_entries - 1;
7280 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7281
7282 /*
7283 * The cached sq head (or cq tail) serves two purposes:
7284 *
7285 * 1) allows us to batch the cost of updating the user visible
7286 * head updates.
7287 * 2) allows the kernel side to track the head on its own, even
7288 * though the application is the one updating it.
7289 */
7290 head = READ_ONCE(ctx->sq_array[sq_idx]);
7291 if (likely(head < ctx->sq_entries))
7292 return &ctx->sq_sqes[head];
7293
7294 /* drop invalid entries */
7295 ctx->cq_extra--;
7296 WRITE_ONCE(ctx->rings->sq_dropped,
7297 READ_ONCE(ctx->rings->sq_dropped) + 1);
7298 return NULL;
7299 }
7300
7301 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7302 __must_hold(&ctx->uring_lock)
7303 {
7304 int submitted = 0;
7305
7306 /* make sure SQ entry isn't read before tail */
7307 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7308 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7309 return -EAGAIN;
7310 io_get_task_refs(nr);
7311
7312 io_submit_state_start(&ctx->submit_state, nr);
7313 while (submitted < nr) {
7314 const struct io_uring_sqe *sqe;
7315 struct io_kiocb *req;
7316
7317 req = io_alloc_req(ctx);
7318 if (unlikely(!req)) {
7319 if (!submitted)
7320 submitted = -EAGAIN;
7321 break;
7322 }
7323 sqe = io_get_sqe(ctx);
7324 if (unlikely(!sqe)) {
7325 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7326 break;
7327 }
7328 /* will complete beyond this point, count as submitted */
7329 submitted++;
7330 if (io_submit_sqe(ctx, req, sqe))
7331 break;
7332 }
7333
7334 if (unlikely(submitted != nr)) {
7335 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7336 int unused = nr - ref_used;
7337
7338 current->io_uring->cached_refs += unused;
7339 percpu_ref_put_many(&ctx->refs, unused);
7340 }
7341
7342 io_submit_state_end(&ctx->submit_state, ctx);
7343 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7344 io_commit_sqring(ctx);
7345
7346 return submitted;
7347 }
7348
7349 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7350 {
7351 return READ_ONCE(sqd->state);
7352 }
7353
7354 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7355 {
7356 /* Tell userspace we may need a wakeup call */
7357 spin_lock(&ctx->completion_lock);
7358 WRITE_ONCE(ctx->rings->sq_flags,
7359 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7360 spin_unlock(&ctx->completion_lock);
7361 }
7362
7363 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7364 {
7365 spin_lock(&ctx->completion_lock);
7366 WRITE_ONCE(ctx->rings->sq_flags,
7367 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7368 spin_unlock(&ctx->completion_lock);
7369 }
7370
7371 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7372 {
7373 unsigned int to_submit;
7374 int ret = 0;
7375
7376 to_submit = io_sqring_entries(ctx);
7377 /* if we're handling multiple rings, cap submit size for fairness */
7378 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7379 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7380
7381 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7382 unsigned nr_events = 0;
7383 const struct cred *creds = NULL;
7384
7385 if (ctx->sq_creds != current_cred())
7386 creds = override_creds(ctx->sq_creds);
7387
7388 mutex_lock(&ctx->uring_lock);
7389 if (!list_empty(&ctx->iopoll_list))
7390 io_do_iopoll(ctx, &nr_events, 0);
7391
7392 /*
7393 * Don't submit if refs are dying, good for io_uring_register(),
7394 * but also it is relied upon by io_ring_exit_work()
7395 */
7396 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7397 !(ctx->flags & IORING_SETUP_R_DISABLED))
7398 ret = io_submit_sqes(ctx, to_submit);
7399 mutex_unlock(&ctx->uring_lock);
7400
7401 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7402 wake_up(&ctx->sqo_sq_wait);
7403 if (creds)
7404 revert_creds(creds);
7405 }
7406
7407 return ret;
7408 }
7409
7410 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7411 {
7412 struct io_ring_ctx *ctx;
7413 unsigned sq_thread_idle = 0;
7414
7415 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7416 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7417 sqd->sq_thread_idle = sq_thread_idle;
7418 }
7419
7420 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7421 {
7422 bool did_sig = false;
7423 struct ksignal ksig;
7424
7425 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7426 signal_pending(current)) {
7427 mutex_unlock(&sqd->lock);
7428 if (signal_pending(current))
7429 did_sig = get_signal(&ksig);
7430 cond_resched();
7431 mutex_lock(&sqd->lock);
7432 }
7433 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7434 }
7435
7436 static int io_sq_thread(void *data)
7437 {
7438 struct io_sq_data *sqd = data;
7439 struct io_ring_ctx *ctx;
7440 unsigned long timeout = 0;
7441 char buf[TASK_COMM_LEN];
7442 DEFINE_WAIT(wait);
7443
7444 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7445 set_task_comm(current, buf);
7446
7447 if (sqd->sq_cpu != -1)
7448 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7449 else
7450 set_cpus_allowed_ptr(current, cpu_online_mask);
7451 current->flags |= PF_NO_SETAFFINITY;
7452
7453 mutex_lock(&sqd->lock);
7454 while (1) {
7455 bool cap_entries, sqt_spin = false;
7456
7457 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7458 if (io_sqd_handle_event(sqd))
7459 break;
7460 timeout = jiffies + sqd->sq_thread_idle;
7461 }
7462
7463 cap_entries = !list_is_singular(&sqd->ctx_list);
7464 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7465 int ret = __io_sq_thread(ctx, cap_entries);
7466
7467 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7468 sqt_spin = true;
7469 }
7470 if (io_run_task_work())
7471 sqt_spin = true;
7472
7473 if (sqt_spin || !time_after(jiffies, timeout)) {
7474 cond_resched();
7475 if (sqt_spin)
7476 timeout = jiffies + sqd->sq_thread_idle;
7477 continue;
7478 }
7479
7480 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7481 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7482 bool needs_sched = true;
7483
7484 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7485 io_ring_set_wakeup_flag(ctx);
7486
7487 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7488 !list_empty_careful(&ctx->iopoll_list)) {
7489 needs_sched = false;
7490 break;
7491 }
7492 if (io_sqring_entries(ctx)) {
7493 needs_sched = false;
7494 break;
7495 }
7496 }
7497
7498 if (needs_sched) {
7499 mutex_unlock(&sqd->lock);
7500 schedule();
7501 mutex_lock(&sqd->lock);
7502 }
7503 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7504 io_ring_clear_wakeup_flag(ctx);
7505 }
7506
7507 finish_wait(&sqd->wait, &wait);
7508 timeout = jiffies + sqd->sq_thread_idle;
7509 }
7510
7511 io_uring_cancel_generic(true, sqd);
7512 sqd->thread = NULL;
7513 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7514 io_ring_set_wakeup_flag(ctx);
7515 io_run_task_work();
7516 mutex_unlock(&sqd->lock);
7517
7518 complete(&sqd->exited);
7519 do_exit(0);
7520 }
7521
7522 struct io_wait_queue {
7523 struct wait_queue_entry wq;
7524 struct io_ring_ctx *ctx;
7525 unsigned cq_tail;
7526 unsigned nr_timeouts;
7527 };
7528
7529 static inline bool io_should_wake(struct io_wait_queue *iowq)
7530 {
7531 struct io_ring_ctx *ctx = iowq->ctx;
7532 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7533
7534 /*
7535 * Wake up if we have enough events, or if a timeout occurred since we
7536 * started waiting. For timeouts, we always want to return to userspace,
7537 * regardless of event count.
7538 */
7539 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7540 }
7541
7542 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7543 int wake_flags, void *key)
7544 {
7545 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7546 wq);
7547
7548 /*
7549 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7550 * the task, and the next invocation will do it.
7551 */
7552 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7553 return autoremove_wake_function(curr, mode, wake_flags, key);
7554 return -1;
7555 }
7556
7557 static int io_run_task_work_sig(void)
7558 {
7559 if (io_run_task_work())
7560 return 1;
7561 if (!signal_pending(current))
7562 return 0;
7563 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7564 return -ERESTARTSYS;
7565 return -EINTR;
7566 }
7567
7568 /* when returns >0, the caller should retry */
7569 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7570 struct io_wait_queue *iowq,
7571 signed long *timeout)
7572 {
7573 int ret;
7574
7575 /* make sure we run task_work before checking for signals */
7576 ret = io_run_task_work_sig();
7577 if (ret || io_should_wake(iowq))
7578 return ret;
7579 /* let the caller flush overflows, retry */
7580 if (test_bit(0, &ctx->check_cq_overflow))
7581 return 1;
7582
7583 *timeout = schedule_timeout(*timeout);
7584 return !*timeout ? -ETIME : 1;
7585 }
7586
7587 /*
7588 * Wait until events become available, if we don't already have some. The
7589 * application must reap them itself, as they reside on the shared cq ring.
7590 */
7591 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7592 const sigset_t __user *sig, size_t sigsz,
7593 struct __kernel_timespec __user *uts)
7594 {
7595 struct io_wait_queue iowq;
7596 struct io_rings *rings = ctx->rings;
7597 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7598 int ret;
7599
7600 do {
7601 io_cqring_overflow_flush(ctx);
7602 if (io_cqring_events(ctx) >= min_events)
7603 return 0;
7604 if (!io_run_task_work())
7605 break;
7606 } while (1);
7607
7608 if (uts) {
7609 struct timespec64 ts;
7610
7611 if (get_timespec64(&ts, uts))
7612 return -EFAULT;
7613 timeout = timespec64_to_jiffies(&ts);
7614 }
7615
7616 if (sig) {
7617 #ifdef CONFIG_COMPAT
7618 if (in_compat_syscall())
7619 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7620 sigsz);
7621 else
7622 #endif
7623 ret = set_user_sigmask(sig, sigsz);
7624
7625 if (ret)
7626 return ret;
7627 }
7628
7629 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7630 iowq.wq.private = current;
7631 INIT_LIST_HEAD(&iowq.wq.entry);
7632 iowq.ctx = ctx;
7633 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7634 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7635
7636 trace_io_uring_cqring_wait(ctx, min_events);
7637 do {
7638 /* if we can't even flush overflow, don't wait for more */
7639 if (!io_cqring_overflow_flush(ctx)) {
7640 ret = -EBUSY;
7641 break;
7642 }
7643 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7644 TASK_INTERRUPTIBLE);
7645 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7646 finish_wait(&ctx->cq_wait, &iowq.wq);
7647 cond_resched();
7648 } while (ret > 0);
7649
7650 restore_saved_sigmask_unless(ret == -EINTR);
7651
7652 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7653 }
7654
7655 static void io_free_page_table(void **table, size_t size)
7656 {
7657 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7658
7659 for (i = 0; i < nr_tables; i++)
7660 kfree(table[i]);
7661 kfree(table);
7662 }
7663
7664 static void **io_alloc_page_table(size_t size)
7665 {
7666 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7667 size_t init_size = size;
7668 void **table;
7669
7670 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7671 if (!table)
7672 return NULL;
7673
7674 for (i = 0; i < nr_tables; i++) {
7675 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7676
7677 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7678 if (!table[i]) {
7679 io_free_page_table(table, init_size);
7680 return NULL;
7681 }
7682 size -= this_size;
7683 }
7684 return table;
7685 }
7686
7687 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7688 {
7689 percpu_ref_exit(&ref_node->refs);
7690 kfree(ref_node);
7691 }
7692
7693 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7694 {
7695 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7696 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7697 unsigned long flags;
7698 bool first_add = false;
7699
7700 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7701 node->done = true;
7702
7703 while (!list_empty(&ctx->rsrc_ref_list)) {
7704 node = list_first_entry(&ctx->rsrc_ref_list,
7705 struct io_rsrc_node, node);
7706 /* recycle ref nodes in order */
7707 if (!node->done)
7708 break;
7709 list_del(&node->node);
7710 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7711 }
7712 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7713
7714 if (first_add)
7715 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7716 }
7717
7718 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7719 {
7720 struct io_rsrc_node *ref_node;
7721
7722 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7723 if (!ref_node)
7724 return NULL;
7725
7726 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7727 0, GFP_KERNEL)) {
7728 kfree(ref_node);
7729 return NULL;
7730 }
7731 INIT_LIST_HEAD(&ref_node->node);
7732 INIT_LIST_HEAD(&ref_node->rsrc_list);
7733 ref_node->done = false;
7734 return ref_node;
7735 }
7736
7737 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7738 struct io_rsrc_data *data_to_kill)
7739 {
7740 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7741 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7742
7743 if (data_to_kill) {
7744 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7745
7746 rsrc_node->rsrc_data = data_to_kill;
7747 spin_lock_irq(&ctx->rsrc_ref_lock);
7748 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7749 spin_unlock_irq(&ctx->rsrc_ref_lock);
7750
7751 atomic_inc(&data_to_kill->refs);
7752 percpu_ref_kill(&rsrc_node->refs);
7753 ctx->rsrc_node = NULL;
7754 }
7755
7756 if (!ctx->rsrc_node) {
7757 ctx->rsrc_node = ctx->rsrc_backup_node;
7758 ctx->rsrc_backup_node = NULL;
7759 }
7760 }
7761
7762 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7763 {
7764 if (ctx->rsrc_backup_node)
7765 return 0;
7766 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7767 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7768 }
7769
7770 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7771 {
7772 int ret;
7773
7774 /* As we may drop ->uring_lock, other task may have started quiesce */
7775 if (data->quiesce)
7776 return -ENXIO;
7777
7778 data->quiesce = true;
7779 do {
7780 ret = io_rsrc_node_switch_start(ctx);
7781 if (ret)
7782 break;
7783 io_rsrc_node_switch(ctx, data);
7784
7785 /* kill initial ref, already quiesced if zero */
7786 if (atomic_dec_and_test(&data->refs))
7787 break;
7788 mutex_unlock(&ctx->uring_lock);
7789 flush_delayed_work(&ctx->rsrc_put_work);
7790 ret = wait_for_completion_interruptible(&data->done);
7791 if (!ret) {
7792 mutex_lock(&ctx->uring_lock);
7793 break;
7794 }
7795
7796 atomic_inc(&data->refs);
7797 /* wait for all works potentially completing data->done */
7798 flush_delayed_work(&ctx->rsrc_put_work);
7799 reinit_completion(&data->done);
7800
7801 ret = io_run_task_work_sig();
7802 mutex_lock(&ctx->uring_lock);
7803 } while (ret >= 0);
7804 data->quiesce = false;
7805
7806 return ret;
7807 }
7808
7809 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7810 {
7811 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7812 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7813
7814 return &data->tags[table_idx][off];
7815 }
7816
7817 static void io_rsrc_data_free(struct io_rsrc_data *data)
7818 {
7819 size_t size = data->nr * sizeof(data->tags[0][0]);
7820
7821 if (data->tags)
7822 io_free_page_table((void **)data->tags, size);
7823 kfree(data);
7824 }
7825
7826 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7827 u64 __user *utags, unsigned nr,
7828 struct io_rsrc_data **pdata)
7829 {
7830 struct io_rsrc_data *data;
7831 int ret = -ENOMEM;
7832 unsigned i;
7833
7834 data = kzalloc(sizeof(*data), GFP_KERNEL);
7835 if (!data)
7836 return -ENOMEM;
7837 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7838 if (!data->tags) {
7839 kfree(data);
7840 return -ENOMEM;
7841 }
7842
7843 data->nr = nr;
7844 data->ctx = ctx;
7845 data->do_put = do_put;
7846 if (utags) {
7847 ret = -EFAULT;
7848 for (i = 0; i < nr; i++) {
7849 u64 *tag_slot = io_get_tag_slot(data, i);
7850
7851 if (copy_from_user(tag_slot, &utags[i],
7852 sizeof(*tag_slot)))
7853 goto fail;
7854 }
7855 }
7856
7857 atomic_set(&data->refs, 1);
7858 init_completion(&data->done);
7859 *pdata = data;
7860 return 0;
7861 fail:
7862 io_rsrc_data_free(data);
7863 return ret;
7864 }
7865
7866 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7867 {
7868 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7869 GFP_KERNEL_ACCOUNT);
7870 return !!table->files;
7871 }
7872
7873 static void io_free_file_tables(struct io_file_table *table)
7874 {
7875 kvfree(table->files);
7876 table->files = NULL;
7877 }
7878
7879 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7880 {
7881 #if defined(CONFIG_UNIX)
7882 if (ctx->ring_sock) {
7883 struct sock *sock = ctx->ring_sock->sk;
7884 struct sk_buff *skb;
7885
7886 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7887 kfree_skb(skb);
7888 }
7889 #else
7890 int i;
7891
7892 for (i = 0; i < ctx->nr_user_files; i++) {
7893 struct file *file;
7894
7895 file = io_file_from_index(ctx, i);
7896 if (file)
7897 fput(file);
7898 }
7899 #endif
7900 io_free_file_tables(&ctx->file_table);
7901 io_rsrc_data_free(ctx->file_data);
7902 ctx->file_data = NULL;
7903 ctx->nr_user_files = 0;
7904 }
7905
7906 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7907 {
7908 int ret;
7909
7910 if (!ctx->file_data)
7911 return -ENXIO;
7912 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7913 if (!ret)
7914 __io_sqe_files_unregister(ctx);
7915 return ret;
7916 }
7917
7918 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7919 __releases(&sqd->lock)
7920 {
7921 WARN_ON_ONCE(sqd->thread == current);
7922
7923 /*
7924 * Do the dance but not conditional clear_bit() because it'd race with
7925 * other threads incrementing park_pending and setting the bit.
7926 */
7927 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7928 if (atomic_dec_return(&sqd->park_pending))
7929 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7930 mutex_unlock(&sqd->lock);
7931 }
7932
7933 static void io_sq_thread_park(struct io_sq_data *sqd)
7934 __acquires(&sqd->lock)
7935 {
7936 WARN_ON_ONCE(sqd->thread == current);
7937
7938 atomic_inc(&sqd->park_pending);
7939 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7940 mutex_lock(&sqd->lock);
7941 if (sqd->thread)
7942 wake_up_process(sqd->thread);
7943 }
7944
7945 static void io_sq_thread_stop(struct io_sq_data *sqd)
7946 {
7947 WARN_ON_ONCE(sqd->thread == current);
7948 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7949
7950 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7951 mutex_lock(&sqd->lock);
7952 if (sqd->thread)
7953 wake_up_process(sqd->thread);
7954 mutex_unlock(&sqd->lock);
7955 wait_for_completion(&sqd->exited);
7956 }
7957
7958 static void io_put_sq_data(struct io_sq_data *sqd)
7959 {
7960 if (refcount_dec_and_test(&sqd->refs)) {
7961 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7962
7963 io_sq_thread_stop(sqd);
7964 kfree(sqd);
7965 }
7966 }
7967
7968 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7969 {
7970 struct io_sq_data *sqd = ctx->sq_data;
7971
7972 if (sqd) {
7973 io_sq_thread_park(sqd);
7974 list_del_init(&ctx->sqd_list);
7975 io_sqd_update_thread_idle(sqd);
7976 io_sq_thread_unpark(sqd);
7977
7978 io_put_sq_data(sqd);
7979 ctx->sq_data = NULL;
7980 }
7981 }
7982
7983 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7984 {
7985 struct io_ring_ctx *ctx_attach;
7986 struct io_sq_data *sqd;
7987 struct fd f;
7988
7989 f = fdget(p->wq_fd);
7990 if (!f.file)
7991 return ERR_PTR(-ENXIO);
7992 if (f.file->f_op != &io_uring_fops) {
7993 fdput(f);
7994 return ERR_PTR(-EINVAL);
7995 }
7996
7997 ctx_attach = f.file->private_data;
7998 sqd = ctx_attach->sq_data;
7999 if (!sqd) {
8000 fdput(f);
8001 return ERR_PTR(-EINVAL);
8002 }
8003 if (sqd->task_tgid != current->tgid) {
8004 fdput(f);
8005 return ERR_PTR(-EPERM);
8006 }
8007
8008 refcount_inc(&sqd->refs);
8009 fdput(f);
8010 return sqd;
8011 }
8012
8013 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8014 bool *attached)
8015 {
8016 struct io_sq_data *sqd;
8017
8018 *attached = false;
8019 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8020 sqd = io_attach_sq_data(p);
8021 if (!IS_ERR(sqd)) {
8022 *attached = true;
8023 return sqd;
8024 }
8025 /* fall through for EPERM case, setup new sqd/task */
8026 if (PTR_ERR(sqd) != -EPERM)
8027 return sqd;
8028 }
8029
8030 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8031 if (!sqd)
8032 return ERR_PTR(-ENOMEM);
8033
8034 atomic_set(&sqd->park_pending, 0);
8035 refcount_set(&sqd->refs, 1);
8036 INIT_LIST_HEAD(&sqd->ctx_list);
8037 mutex_init(&sqd->lock);
8038 init_waitqueue_head(&sqd->wait);
8039 init_completion(&sqd->exited);
8040 return sqd;
8041 }
8042
8043 #if defined(CONFIG_UNIX)
8044 /*
8045 * Ensure the UNIX gc is aware of our file set, so we are certain that
8046 * the io_uring can be safely unregistered on process exit, even if we have
8047 * loops in the file referencing.
8048 */
8049 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8050 {
8051 struct sock *sk = ctx->ring_sock->sk;
8052 struct scm_fp_list *fpl;
8053 struct sk_buff *skb;
8054 int i, nr_files;
8055
8056 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8057 if (!fpl)
8058 return -ENOMEM;
8059
8060 skb = alloc_skb(0, GFP_KERNEL);
8061 if (!skb) {
8062 kfree(fpl);
8063 return -ENOMEM;
8064 }
8065
8066 skb->sk = sk;
8067
8068 nr_files = 0;
8069 fpl->user = get_uid(current_user());
8070 for (i = 0; i < nr; i++) {
8071 struct file *file = io_file_from_index(ctx, i + offset);
8072
8073 if (!file)
8074 continue;
8075 fpl->fp[nr_files] = get_file(file);
8076 unix_inflight(fpl->user, fpl->fp[nr_files]);
8077 nr_files++;
8078 }
8079
8080 if (nr_files) {
8081 fpl->max = SCM_MAX_FD;
8082 fpl->count = nr_files;
8083 UNIXCB(skb).fp = fpl;
8084 skb->destructor = unix_destruct_scm;
8085 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8086 skb_queue_head(&sk->sk_receive_queue, skb);
8087
8088 for (i = 0; i < nr_files; i++)
8089 fput(fpl->fp[i]);
8090 } else {
8091 kfree_skb(skb);
8092 kfree(fpl);
8093 }
8094
8095 return 0;
8096 }
8097
8098 /*
8099 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8100 * causes regular reference counting to break down. We rely on the UNIX
8101 * garbage collection to take care of this problem for us.
8102 */
8103 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8104 {
8105 unsigned left, total;
8106 int ret = 0;
8107
8108 total = 0;
8109 left = ctx->nr_user_files;
8110 while (left) {
8111 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8112
8113 ret = __io_sqe_files_scm(ctx, this_files, total);
8114 if (ret)
8115 break;
8116 left -= this_files;
8117 total += this_files;
8118 }
8119
8120 if (!ret)
8121 return 0;
8122
8123 while (total < ctx->nr_user_files) {
8124 struct file *file = io_file_from_index(ctx, total);
8125
8126 if (file)
8127 fput(file);
8128 total++;
8129 }
8130
8131 return ret;
8132 }
8133 #else
8134 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8135 {
8136 return 0;
8137 }
8138 #endif
8139
8140 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8141 {
8142 struct file *file = prsrc->file;
8143 #if defined(CONFIG_UNIX)
8144 struct sock *sock = ctx->ring_sock->sk;
8145 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8146 struct sk_buff *skb;
8147 int i;
8148
8149 __skb_queue_head_init(&list);
8150
8151 /*
8152 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8153 * remove this entry and rearrange the file array.
8154 */
8155 skb = skb_dequeue(head);
8156 while (skb) {
8157 struct scm_fp_list *fp;
8158
8159 fp = UNIXCB(skb).fp;
8160 for (i = 0; i < fp->count; i++) {
8161 int left;
8162
8163 if (fp->fp[i] != file)
8164 continue;
8165
8166 unix_notinflight(fp->user, fp->fp[i]);
8167 left = fp->count - 1 - i;
8168 if (left) {
8169 memmove(&fp->fp[i], &fp->fp[i + 1],
8170 left * sizeof(struct file *));
8171 }
8172 fp->count--;
8173 if (!fp->count) {
8174 kfree_skb(skb);
8175 skb = NULL;
8176 } else {
8177 __skb_queue_tail(&list, skb);
8178 }
8179 fput(file);
8180 file = NULL;
8181 break;
8182 }
8183
8184 if (!file)
8185 break;
8186
8187 __skb_queue_tail(&list, skb);
8188
8189 skb = skb_dequeue(head);
8190 }
8191
8192 if (skb_peek(&list)) {
8193 spin_lock_irq(&head->lock);
8194 while ((skb = __skb_dequeue(&list)) != NULL)
8195 __skb_queue_tail(head, skb);
8196 spin_unlock_irq(&head->lock);
8197 }
8198 #else
8199 fput(file);
8200 #endif
8201 }
8202
8203 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8204 {
8205 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8206 struct io_ring_ctx *ctx = rsrc_data->ctx;
8207 struct io_rsrc_put *prsrc, *tmp;
8208
8209 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8210 list_del(&prsrc->list);
8211
8212 if (prsrc->tag) {
8213 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8214
8215 io_ring_submit_lock(ctx, lock_ring);
8216 spin_lock(&ctx->completion_lock);
8217 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8218 ctx->cq_extra++;
8219 io_commit_cqring(ctx);
8220 spin_unlock(&ctx->completion_lock);
8221 io_cqring_ev_posted(ctx);
8222 io_ring_submit_unlock(ctx, lock_ring);
8223 }
8224
8225 rsrc_data->do_put(ctx, prsrc);
8226 kfree(prsrc);
8227 }
8228
8229 io_rsrc_node_destroy(ref_node);
8230 if (atomic_dec_and_test(&rsrc_data->refs))
8231 complete(&rsrc_data->done);
8232 }
8233
8234 static void io_rsrc_put_work(struct work_struct *work)
8235 {
8236 struct io_ring_ctx *ctx;
8237 struct llist_node *node;
8238
8239 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8240 node = llist_del_all(&ctx->rsrc_put_llist);
8241
8242 while (node) {
8243 struct io_rsrc_node *ref_node;
8244 struct llist_node *next = node->next;
8245
8246 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8247 __io_rsrc_put_work(ref_node);
8248 node = next;
8249 }
8250 }
8251
8252 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8253 unsigned nr_args, u64 __user *tags)
8254 {
8255 __s32 __user *fds = (__s32 __user *) arg;
8256 struct file *file;
8257 int fd, ret;
8258 unsigned i;
8259
8260 if (ctx->file_data)
8261 return -EBUSY;
8262 if (!nr_args)
8263 return -EINVAL;
8264 if (nr_args > IORING_MAX_FIXED_FILES)
8265 return -EMFILE;
8266 if (nr_args > rlimit(RLIMIT_NOFILE))
8267 return -EMFILE;
8268 ret = io_rsrc_node_switch_start(ctx);
8269 if (ret)
8270 return ret;
8271 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8272 &ctx->file_data);
8273 if (ret)
8274 return ret;
8275
8276 ret = -ENOMEM;
8277 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8278 goto out_free;
8279
8280 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8281 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8282 ret = -EFAULT;
8283 goto out_fput;
8284 }
8285 /* allow sparse sets */
8286 if (fd == -1) {
8287 ret = -EINVAL;
8288 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8289 goto out_fput;
8290 continue;
8291 }
8292
8293 file = fget(fd);
8294 ret = -EBADF;
8295 if (unlikely(!file))
8296 goto out_fput;
8297
8298 /*
8299 * Don't allow io_uring instances to be registered. If UNIX
8300 * isn't enabled, then this causes a reference cycle and this
8301 * instance can never get freed. If UNIX is enabled we'll
8302 * handle it just fine, but there's still no point in allowing
8303 * a ring fd as it doesn't support regular read/write anyway.
8304 */
8305 if (file->f_op == &io_uring_fops) {
8306 fput(file);
8307 goto out_fput;
8308 }
8309 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8310 }
8311
8312 ret = io_sqe_files_scm(ctx);
8313 if (ret) {
8314 __io_sqe_files_unregister(ctx);
8315 return ret;
8316 }
8317
8318 io_rsrc_node_switch(ctx, NULL);
8319 return ret;
8320 out_fput:
8321 for (i = 0; i < ctx->nr_user_files; i++) {
8322 file = io_file_from_index(ctx, i);
8323 if (file)
8324 fput(file);
8325 }
8326 io_free_file_tables(&ctx->file_table);
8327 ctx->nr_user_files = 0;
8328 out_free:
8329 io_rsrc_data_free(ctx->file_data);
8330 ctx->file_data = NULL;
8331 return ret;
8332 }
8333
8334 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8335 int index)
8336 {
8337 #if defined(CONFIG_UNIX)
8338 struct sock *sock = ctx->ring_sock->sk;
8339 struct sk_buff_head *head = &sock->sk_receive_queue;
8340 struct sk_buff *skb;
8341
8342 /*
8343 * See if we can merge this file into an existing skb SCM_RIGHTS
8344 * file set. If there's no room, fall back to allocating a new skb
8345 * and filling it in.
8346 */
8347 spin_lock_irq(&head->lock);
8348 skb = skb_peek(head);
8349 if (skb) {
8350 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8351
8352 if (fpl->count < SCM_MAX_FD) {
8353 __skb_unlink(skb, head);
8354 spin_unlock_irq(&head->lock);
8355 fpl->fp[fpl->count] = get_file(file);
8356 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8357 fpl->count++;
8358 spin_lock_irq(&head->lock);
8359 __skb_queue_head(head, skb);
8360 } else {
8361 skb = NULL;
8362 }
8363 }
8364 spin_unlock_irq(&head->lock);
8365
8366 if (skb) {
8367 fput(file);
8368 return 0;
8369 }
8370
8371 return __io_sqe_files_scm(ctx, 1, index);
8372 #else
8373 return 0;
8374 #endif
8375 }
8376
8377 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8378 struct io_rsrc_node *node, void *rsrc)
8379 {
8380 struct io_rsrc_put *prsrc;
8381
8382 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8383 if (!prsrc)
8384 return -ENOMEM;
8385
8386 prsrc->tag = *io_get_tag_slot(data, idx);
8387 prsrc->rsrc = rsrc;
8388 list_add(&prsrc->list, &node->rsrc_list);
8389 return 0;
8390 }
8391
8392 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8393 unsigned int issue_flags, u32 slot_index)
8394 {
8395 struct io_ring_ctx *ctx = req->ctx;
8396 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8397 bool needs_switch = false;
8398 struct io_fixed_file *file_slot;
8399 int ret = -EBADF;
8400
8401 io_ring_submit_lock(ctx, !force_nonblock);
8402 if (file->f_op == &io_uring_fops)
8403 goto err;
8404 ret = -ENXIO;
8405 if (!ctx->file_data)
8406 goto err;
8407 ret = -EINVAL;
8408 if (slot_index >= ctx->nr_user_files)
8409 goto err;
8410
8411 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8412 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8413
8414 if (file_slot->file_ptr) {
8415 struct file *old_file;
8416
8417 ret = io_rsrc_node_switch_start(ctx);
8418 if (ret)
8419 goto err;
8420
8421 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8422 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8423 ctx->rsrc_node, old_file);
8424 if (ret)
8425 goto err;
8426 file_slot->file_ptr = 0;
8427 needs_switch = true;
8428 }
8429
8430 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8431 io_fixed_file_set(file_slot, file);
8432 ret = io_sqe_file_register(ctx, file, slot_index);
8433 if (ret) {
8434 file_slot->file_ptr = 0;
8435 goto err;
8436 }
8437
8438 ret = 0;
8439 err:
8440 if (needs_switch)
8441 io_rsrc_node_switch(ctx, ctx->file_data);
8442 io_ring_submit_unlock(ctx, !force_nonblock);
8443 if (ret)
8444 fput(file);
8445 return ret;
8446 }
8447
8448 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8449 {
8450 unsigned int offset = req->close.file_slot - 1;
8451 struct io_ring_ctx *ctx = req->ctx;
8452 struct io_fixed_file *file_slot;
8453 struct file *file;
8454 int ret, i;
8455
8456 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8457 ret = -ENXIO;
8458 if (unlikely(!ctx->file_data))
8459 goto out;
8460 ret = -EINVAL;
8461 if (offset >= ctx->nr_user_files)
8462 goto out;
8463 ret = io_rsrc_node_switch_start(ctx);
8464 if (ret)
8465 goto out;
8466
8467 i = array_index_nospec(offset, ctx->nr_user_files);
8468 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8469 ret = -EBADF;
8470 if (!file_slot->file_ptr)
8471 goto out;
8472
8473 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8474 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8475 if (ret)
8476 goto out;
8477
8478 file_slot->file_ptr = 0;
8479 io_rsrc_node_switch(ctx, ctx->file_data);
8480 ret = 0;
8481 out:
8482 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8483 return ret;
8484 }
8485
8486 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8487 struct io_uring_rsrc_update2 *up,
8488 unsigned nr_args)
8489 {
8490 u64 __user *tags = u64_to_user_ptr(up->tags);
8491 __s32 __user *fds = u64_to_user_ptr(up->data);
8492 struct io_rsrc_data *data = ctx->file_data;
8493 struct io_fixed_file *file_slot;
8494 struct file *file;
8495 int fd, i, err = 0;
8496 unsigned int done;
8497 bool needs_switch = false;
8498
8499 if (!ctx->file_data)
8500 return -ENXIO;
8501 if (up->offset + nr_args > ctx->nr_user_files)
8502 return -EINVAL;
8503
8504 for (done = 0; done < nr_args; done++) {
8505 u64 tag = 0;
8506
8507 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8508 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8509 err = -EFAULT;
8510 break;
8511 }
8512 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8513 err = -EINVAL;
8514 break;
8515 }
8516 if (fd == IORING_REGISTER_FILES_SKIP)
8517 continue;
8518
8519 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8520 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8521
8522 if (file_slot->file_ptr) {
8523 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8524 err = io_queue_rsrc_removal(data, up->offset + done,
8525 ctx->rsrc_node, file);
8526 if (err)
8527 break;
8528 file_slot->file_ptr = 0;
8529 needs_switch = true;
8530 }
8531 if (fd != -1) {
8532 file = fget(fd);
8533 if (!file) {
8534 err = -EBADF;
8535 break;
8536 }
8537 /*
8538 * Don't allow io_uring instances to be registered. If
8539 * UNIX isn't enabled, then this causes a reference
8540 * cycle and this instance can never get freed. If UNIX
8541 * is enabled we'll handle it just fine, but there's
8542 * still no point in allowing a ring fd as it doesn't
8543 * support regular read/write anyway.
8544 */
8545 if (file->f_op == &io_uring_fops) {
8546 fput(file);
8547 err = -EBADF;
8548 break;
8549 }
8550 *io_get_tag_slot(data, up->offset + done) = tag;
8551 io_fixed_file_set(file_slot, file);
8552 err = io_sqe_file_register(ctx, file, i);
8553 if (err) {
8554 file_slot->file_ptr = 0;
8555 fput(file);
8556 break;
8557 }
8558 }
8559 }
8560
8561 if (needs_switch)
8562 io_rsrc_node_switch(ctx, data);
8563 return done ? done : err;
8564 }
8565
8566 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8567 struct task_struct *task)
8568 {
8569 struct io_wq_hash *hash;
8570 struct io_wq_data data;
8571 unsigned int concurrency;
8572
8573 mutex_lock(&ctx->uring_lock);
8574 hash = ctx->hash_map;
8575 if (!hash) {
8576 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8577 if (!hash) {
8578 mutex_unlock(&ctx->uring_lock);
8579 return ERR_PTR(-ENOMEM);
8580 }
8581 refcount_set(&hash->refs, 1);
8582 init_waitqueue_head(&hash->wait);
8583 ctx->hash_map = hash;
8584 }
8585 mutex_unlock(&ctx->uring_lock);
8586
8587 data.hash = hash;
8588 data.task = task;
8589 data.free_work = io_wq_free_work;
8590 data.do_work = io_wq_submit_work;
8591
8592 /* Do QD, or 4 * CPUS, whatever is smallest */
8593 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8594
8595 return io_wq_create(concurrency, &data);
8596 }
8597
8598 static int io_uring_alloc_task_context(struct task_struct *task,
8599 struct io_ring_ctx *ctx)
8600 {
8601 struct io_uring_task *tctx;
8602 int ret;
8603
8604 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8605 if (unlikely(!tctx))
8606 return -ENOMEM;
8607
8608 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8609 if (unlikely(ret)) {
8610 kfree(tctx);
8611 return ret;
8612 }
8613
8614 tctx->io_wq = io_init_wq_offload(ctx, task);
8615 if (IS_ERR(tctx->io_wq)) {
8616 ret = PTR_ERR(tctx->io_wq);
8617 percpu_counter_destroy(&tctx->inflight);
8618 kfree(tctx);
8619 return ret;
8620 }
8621
8622 xa_init(&tctx->xa);
8623 init_waitqueue_head(&tctx->wait);
8624 atomic_set(&tctx->in_idle, 0);
8625 atomic_set(&tctx->inflight_tracked, 0);
8626 task->io_uring = tctx;
8627 spin_lock_init(&tctx->task_lock);
8628 INIT_WQ_LIST(&tctx->task_list);
8629 init_task_work(&tctx->task_work, tctx_task_work);
8630 return 0;
8631 }
8632
8633 void __io_uring_free(struct task_struct *tsk)
8634 {
8635 struct io_uring_task *tctx = tsk->io_uring;
8636
8637 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8638 WARN_ON_ONCE(tctx->io_wq);
8639 WARN_ON_ONCE(tctx->cached_refs);
8640
8641 percpu_counter_destroy(&tctx->inflight);
8642 kfree(tctx);
8643 tsk->io_uring = NULL;
8644 }
8645
8646 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8647 struct io_uring_params *p)
8648 {
8649 int ret;
8650
8651 /* Retain compatibility with failing for an invalid attach attempt */
8652 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8653 IORING_SETUP_ATTACH_WQ) {
8654 struct fd f;
8655
8656 f = fdget(p->wq_fd);
8657 if (!f.file)
8658 return -ENXIO;
8659 if (f.file->f_op != &io_uring_fops) {
8660 fdput(f);
8661 return -EINVAL;
8662 }
8663 fdput(f);
8664 }
8665 if (ctx->flags & IORING_SETUP_SQPOLL) {
8666 struct task_struct *tsk;
8667 struct io_sq_data *sqd;
8668 bool attached;
8669
8670 sqd = io_get_sq_data(p, &attached);
8671 if (IS_ERR(sqd)) {
8672 ret = PTR_ERR(sqd);
8673 goto err;
8674 }
8675
8676 ctx->sq_creds = get_current_cred();
8677 ctx->sq_data = sqd;
8678 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8679 if (!ctx->sq_thread_idle)
8680 ctx->sq_thread_idle = HZ;
8681
8682 io_sq_thread_park(sqd);
8683 list_add(&ctx->sqd_list, &sqd->ctx_list);
8684 io_sqd_update_thread_idle(sqd);
8685 /* don't attach to a dying SQPOLL thread, would be racy */
8686 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8687 io_sq_thread_unpark(sqd);
8688
8689 if (ret < 0)
8690 goto err;
8691 if (attached)
8692 return 0;
8693
8694 if (p->flags & IORING_SETUP_SQ_AFF) {
8695 int cpu = p->sq_thread_cpu;
8696
8697 ret = -EINVAL;
8698 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8699 goto err_sqpoll;
8700 sqd->sq_cpu = cpu;
8701 } else {
8702 sqd->sq_cpu = -1;
8703 }
8704
8705 sqd->task_pid = current->pid;
8706 sqd->task_tgid = current->tgid;
8707 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8708 if (IS_ERR(tsk)) {
8709 ret = PTR_ERR(tsk);
8710 goto err_sqpoll;
8711 }
8712
8713 sqd->thread = tsk;
8714 ret = io_uring_alloc_task_context(tsk, ctx);
8715 wake_up_new_task(tsk);
8716 if (ret)
8717 goto err;
8718 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8719 /* Can't have SQ_AFF without SQPOLL */
8720 ret = -EINVAL;
8721 goto err;
8722 }
8723
8724 return 0;
8725 err_sqpoll:
8726 complete(&ctx->sq_data->exited);
8727 err:
8728 io_sq_thread_finish(ctx);
8729 return ret;
8730 }
8731
8732 static inline void __io_unaccount_mem(struct user_struct *user,
8733 unsigned long nr_pages)
8734 {
8735 atomic_long_sub(nr_pages, &user->locked_vm);
8736 }
8737
8738 static inline int __io_account_mem(struct user_struct *user,
8739 unsigned long nr_pages)
8740 {
8741 unsigned long page_limit, cur_pages, new_pages;
8742
8743 /* Don't allow more pages than we can safely lock */
8744 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8745
8746 do {
8747 cur_pages = atomic_long_read(&user->locked_vm);
8748 new_pages = cur_pages + nr_pages;
8749 if (new_pages > page_limit)
8750 return -ENOMEM;
8751 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8752 new_pages) != cur_pages);
8753
8754 return 0;
8755 }
8756
8757 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8758 {
8759 if (ctx->user)
8760 __io_unaccount_mem(ctx->user, nr_pages);
8761
8762 if (ctx->mm_account)
8763 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8764 }
8765
8766 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8767 {
8768 int ret;
8769
8770 if (ctx->user) {
8771 ret = __io_account_mem(ctx->user, nr_pages);
8772 if (ret)
8773 return ret;
8774 }
8775
8776 if (ctx->mm_account)
8777 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8778
8779 return 0;
8780 }
8781
8782 static void io_mem_free(void *ptr)
8783 {
8784 struct page *page;
8785
8786 if (!ptr)
8787 return;
8788
8789 page = virt_to_head_page(ptr);
8790 if (put_page_testzero(page))
8791 free_compound_page(page);
8792 }
8793
8794 static void *io_mem_alloc(size_t size)
8795 {
8796 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8797 __GFP_NORETRY | __GFP_ACCOUNT;
8798
8799 return (void *) __get_free_pages(gfp_flags, get_order(size));
8800 }
8801
8802 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8803 size_t *sq_offset)
8804 {
8805 struct io_rings *rings;
8806 size_t off, sq_array_size;
8807
8808 off = struct_size(rings, cqes, cq_entries);
8809 if (off == SIZE_MAX)
8810 return SIZE_MAX;
8811
8812 #ifdef CONFIG_SMP
8813 off = ALIGN(off, SMP_CACHE_BYTES);
8814 if (off == 0)
8815 return SIZE_MAX;
8816 #endif
8817
8818 if (sq_offset)
8819 *sq_offset = off;
8820
8821 sq_array_size = array_size(sizeof(u32), sq_entries);
8822 if (sq_array_size == SIZE_MAX)
8823 return SIZE_MAX;
8824
8825 if (check_add_overflow(off, sq_array_size, &off))
8826 return SIZE_MAX;
8827
8828 return off;
8829 }
8830
8831 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8832 {
8833 struct io_mapped_ubuf *imu = *slot;
8834 unsigned int i;
8835
8836 if (imu != ctx->dummy_ubuf) {
8837 for (i = 0; i < imu->nr_bvecs; i++)
8838 unpin_user_page(imu->bvec[i].bv_page);
8839 if (imu->acct_pages)
8840 io_unaccount_mem(ctx, imu->acct_pages);
8841 kvfree(imu);
8842 }
8843 *slot = NULL;
8844 }
8845
8846 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8847 {
8848 io_buffer_unmap(ctx, &prsrc->buf);
8849 prsrc->buf = NULL;
8850 }
8851
8852 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8853 {
8854 unsigned int i;
8855
8856 for (i = 0; i < ctx->nr_user_bufs; i++)
8857 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8858 kfree(ctx->user_bufs);
8859 io_rsrc_data_free(ctx->buf_data);
8860 ctx->user_bufs = NULL;
8861 ctx->buf_data = NULL;
8862 ctx->nr_user_bufs = 0;
8863 }
8864
8865 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8866 {
8867 int ret;
8868
8869 if (!ctx->buf_data)
8870 return -ENXIO;
8871
8872 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8873 if (!ret)
8874 __io_sqe_buffers_unregister(ctx);
8875 return ret;
8876 }
8877
8878 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8879 void __user *arg, unsigned index)
8880 {
8881 struct iovec __user *src;
8882
8883 #ifdef CONFIG_COMPAT
8884 if (ctx->compat) {
8885 struct compat_iovec __user *ciovs;
8886 struct compat_iovec ciov;
8887
8888 ciovs = (struct compat_iovec __user *) arg;
8889 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8890 return -EFAULT;
8891
8892 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8893 dst->iov_len = ciov.iov_len;
8894 return 0;
8895 }
8896 #endif
8897 src = (struct iovec __user *) arg;
8898 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8899 return -EFAULT;
8900 return 0;
8901 }
8902
8903 /*
8904 * Not super efficient, but this is just a registration time. And we do cache
8905 * the last compound head, so generally we'll only do a full search if we don't
8906 * match that one.
8907 *
8908 * We check if the given compound head page has already been accounted, to
8909 * avoid double accounting it. This allows us to account the full size of the
8910 * page, not just the constituent pages of a huge page.
8911 */
8912 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8913 int nr_pages, struct page *hpage)
8914 {
8915 int i, j;
8916
8917 /* check current page array */
8918 for (i = 0; i < nr_pages; i++) {
8919 if (!PageCompound(pages[i]))
8920 continue;
8921 if (compound_head(pages[i]) == hpage)
8922 return true;
8923 }
8924
8925 /* check previously registered pages */
8926 for (i = 0; i < ctx->nr_user_bufs; i++) {
8927 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8928
8929 for (j = 0; j < imu->nr_bvecs; j++) {
8930 if (!PageCompound(imu->bvec[j].bv_page))
8931 continue;
8932 if (compound_head(imu->bvec[j].bv_page) == hpage)
8933 return true;
8934 }
8935 }
8936
8937 return false;
8938 }
8939
8940 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8941 int nr_pages, struct io_mapped_ubuf *imu,
8942 struct page **last_hpage)
8943 {
8944 int i, ret;
8945
8946 imu->acct_pages = 0;
8947 for (i = 0; i < nr_pages; i++) {
8948 if (!PageCompound(pages[i])) {
8949 imu->acct_pages++;
8950 } else {
8951 struct page *hpage;
8952
8953 hpage = compound_head(pages[i]);
8954 if (hpage == *last_hpage)
8955 continue;
8956 *last_hpage = hpage;
8957 if (headpage_already_acct(ctx, pages, i, hpage))
8958 continue;
8959 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8960 }
8961 }
8962
8963 if (!imu->acct_pages)
8964 return 0;
8965
8966 ret = io_account_mem(ctx, imu->acct_pages);
8967 if (ret)
8968 imu->acct_pages = 0;
8969 return ret;
8970 }
8971
8972 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8973 struct io_mapped_ubuf **pimu,
8974 struct page **last_hpage)
8975 {
8976 struct io_mapped_ubuf *imu = NULL;
8977 struct vm_area_struct **vmas = NULL;
8978 struct page **pages = NULL;
8979 unsigned long off, start, end, ubuf;
8980 size_t size;
8981 int ret, pret, nr_pages, i;
8982
8983 if (!iov->iov_base) {
8984 *pimu = ctx->dummy_ubuf;
8985 return 0;
8986 }
8987
8988 ubuf = (unsigned long) iov->iov_base;
8989 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8990 start = ubuf >> PAGE_SHIFT;
8991 nr_pages = end - start;
8992
8993 *pimu = NULL;
8994 ret = -ENOMEM;
8995
8996 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8997 if (!pages)
8998 goto done;
8999
9000 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9001 GFP_KERNEL);
9002 if (!vmas)
9003 goto done;
9004
9005 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9006 if (!imu)
9007 goto done;
9008
9009 ret = 0;
9010 mmap_read_lock(current->mm);
9011 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9012 pages, vmas);
9013 if (pret == nr_pages) {
9014 /* don't support file backed memory */
9015 for (i = 0; i < nr_pages; i++) {
9016 struct vm_area_struct *vma = vmas[i];
9017
9018 if (vma_is_shmem(vma))
9019 continue;
9020 if (vma->vm_file &&
9021 !is_file_hugepages(vma->vm_file)) {
9022 ret = -EOPNOTSUPP;
9023 break;
9024 }
9025 }
9026 } else {
9027 ret = pret < 0 ? pret : -EFAULT;
9028 }
9029 mmap_read_unlock(current->mm);
9030 if (ret) {
9031 /*
9032 * if we did partial map, or found file backed vmas,
9033 * release any pages we did get
9034 */
9035 if (pret > 0)
9036 unpin_user_pages(pages, pret);
9037 goto done;
9038 }
9039
9040 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9041 if (ret) {
9042 unpin_user_pages(pages, pret);
9043 goto done;
9044 }
9045
9046 off = ubuf & ~PAGE_MASK;
9047 size = iov->iov_len;
9048 for (i = 0; i < nr_pages; i++) {
9049 size_t vec_len;
9050
9051 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9052 imu->bvec[i].bv_page = pages[i];
9053 imu->bvec[i].bv_len = vec_len;
9054 imu->bvec[i].bv_offset = off;
9055 off = 0;
9056 size -= vec_len;
9057 }
9058 /* store original address for later verification */
9059 imu->ubuf = ubuf;
9060 imu->ubuf_end = ubuf + iov->iov_len;
9061 imu->nr_bvecs = nr_pages;
9062 *pimu = imu;
9063 ret = 0;
9064 done:
9065 if (ret)
9066 kvfree(imu);
9067 kvfree(pages);
9068 kvfree(vmas);
9069 return ret;
9070 }
9071
9072 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9073 {
9074 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9075 return ctx->user_bufs ? 0 : -ENOMEM;
9076 }
9077
9078 static int io_buffer_validate(struct iovec *iov)
9079 {
9080 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9081
9082 /*
9083 * Don't impose further limits on the size and buffer
9084 * constraints here, we'll -EINVAL later when IO is
9085 * submitted if they are wrong.
9086 */
9087 if (!iov->iov_base)
9088 return iov->iov_len ? -EFAULT : 0;
9089 if (!iov->iov_len)
9090 return -EFAULT;
9091
9092 /* arbitrary limit, but we need something */
9093 if (iov->iov_len > SZ_1G)
9094 return -EFAULT;
9095
9096 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9097 return -EOVERFLOW;
9098
9099 return 0;
9100 }
9101
9102 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9103 unsigned int nr_args, u64 __user *tags)
9104 {
9105 struct page *last_hpage = NULL;
9106 struct io_rsrc_data *data;
9107 int i, ret;
9108 struct iovec iov;
9109
9110 if (ctx->user_bufs)
9111 return -EBUSY;
9112 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9113 return -EINVAL;
9114 ret = io_rsrc_node_switch_start(ctx);
9115 if (ret)
9116 return ret;
9117 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9118 if (ret)
9119 return ret;
9120 ret = io_buffers_map_alloc(ctx, nr_args);
9121 if (ret) {
9122 io_rsrc_data_free(data);
9123 return ret;
9124 }
9125
9126 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9127 ret = io_copy_iov(ctx, &iov, arg, i);
9128 if (ret)
9129 break;
9130 ret = io_buffer_validate(&iov);
9131 if (ret)
9132 break;
9133 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9134 ret = -EINVAL;
9135 break;
9136 }
9137
9138 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9139 &last_hpage);
9140 if (ret)
9141 break;
9142 }
9143
9144 WARN_ON_ONCE(ctx->buf_data);
9145
9146 ctx->buf_data = data;
9147 if (ret)
9148 __io_sqe_buffers_unregister(ctx);
9149 else
9150 io_rsrc_node_switch(ctx, NULL);
9151 return ret;
9152 }
9153
9154 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9155 struct io_uring_rsrc_update2 *up,
9156 unsigned int nr_args)
9157 {
9158 u64 __user *tags = u64_to_user_ptr(up->tags);
9159 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9160 struct page *last_hpage = NULL;
9161 bool needs_switch = false;
9162 __u32 done;
9163 int i, err;
9164
9165 if (!ctx->buf_data)
9166 return -ENXIO;
9167 if (up->offset + nr_args > ctx->nr_user_bufs)
9168 return -EINVAL;
9169
9170 for (done = 0; done < nr_args; done++) {
9171 struct io_mapped_ubuf *imu;
9172 int offset = up->offset + done;
9173 u64 tag = 0;
9174
9175 err = io_copy_iov(ctx, &iov, iovs, done);
9176 if (err)
9177 break;
9178 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9179 err = -EFAULT;
9180 break;
9181 }
9182 err = io_buffer_validate(&iov);
9183 if (err)
9184 break;
9185 if (!iov.iov_base && tag) {
9186 err = -EINVAL;
9187 break;
9188 }
9189 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9190 if (err)
9191 break;
9192
9193 i = array_index_nospec(offset, ctx->nr_user_bufs);
9194 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9195 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9196 ctx->rsrc_node, ctx->user_bufs[i]);
9197 if (unlikely(err)) {
9198 io_buffer_unmap(ctx, &imu);
9199 break;
9200 }
9201 ctx->user_bufs[i] = NULL;
9202 needs_switch = true;
9203 }
9204
9205 ctx->user_bufs[i] = imu;
9206 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9207 }
9208
9209 if (needs_switch)
9210 io_rsrc_node_switch(ctx, ctx->buf_data);
9211 return done ? done : err;
9212 }
9213
9214 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9215 {
9216 __s32 __user *fds = arg;
9217 int fd;
9218
9219 if (ctx->cq_ev_fd)
9220 return -EBUSY;
9221
9222 if (copy_from_user(&fd, fds, sizeof(*fds)))
9223 return -EFAULT;
9224
9225 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9226 if (IS_ERR(ctx->cq_ev_fd)) {
9227 int ret = PTR_ERR(ctx->cq_ev_fd);
9228
9229 ctx->cq_ev_fd = NULL;
9230 return ret;
9231 }
9232
9233 return 0;
9234 }
9235
9236 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9237 {
9238 if (ctx->cq_ev_fd) {
9239 eventfd_ctx_put(ctx->cq_ev_fd);
9240 ctx->cq_ev_fd = NULL;
9241 return 0;
9242 }
9243
9244 return -ENXIO;
9245 }
9246
9247 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9248 {
9249 struct io_buffer *buf;
9250 unsigned long index;
9251
9252 xa_for_each(&ctx->io_buffers, index, buf) {
9253 __io_remove_buffers(ctx, buf, index, -1U);
9254 cond_resched();
9255 }
9256 }
9257
9258 static void io_req_cache_free(struct list_head *list)
9259 {
9260 struct io_kiocb *req, *nxt;
9261
9262 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9263 list_del(&req->inflight_entry);
9264 kmem_cache_free(req_cachep, req);
9265 }
9266 }
9267
9268 static void io_req_caches_free(struct io_ring_ctx *ctx)
9269 {
9270 struct io_submit_state *state = &ctx->submit_state;
9271
9272 mutex_lock(&ctx->uring_lock);
9273
9274 if (state->free_reqs) {
9275 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9276 state->free_reqs = 0;
9277 }
9278
9279 io_flush_cached_locked_reqs(ctx, state);
9280 io_req_cache_free(&state->free_list);
9281 mutex_unlock(&ctx->uring_lock);
9282 }
9283
9284 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9285 {
9286 if (data && !atomic_dec_and_test(&data->refs))
9287 wait_for_completion(&data->done);
9288 }
9289
9290 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9291 {
9292 io_sq_thread_finish(ctx);
9293
9294 if (ctx->mm_account) {
9295 mmdrop(ctx->mm_account);
9296 ctx->mm_account = NULL;
9297 }
9298
9299 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9300 io_wait_rsrc_data(ctx->buf_data);
9301 io_wait_rsrc_data(ctx->file_data);
9302
9303 mutex_lock(&ctx->uring_lock);
9304 if (ctx->buf_data)
9305 __io_sqe_buffers_unregister(ctx);
9306 if (ctx->file_data)
9307 __io_sqe_files_unregister(ctx);
9308 if (ctx->rings)
9309 __io_cqring_overflow_flush(ctx, true);
9310 mutex_unlock(&ctx->uring_lock);
9311 io_eventfd_unregister(ctx);
9312 io_destroy_buffers(ctx);
9313 if (ctx->sq_creds)
9314 put_cred(ctx->sq_creds);
9315
9316 /* there are no registered resources left, nobody uses it */
9317 if (ctx->rsrc_node)
9318 io_rsrc_node_destroy(ctx->rsrc_node);
9319 if (ctx->rsrc_backup_node)
9320 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9321 flush_delayed_work(&ctx->rsrc_put_work);
9322
9323 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9324 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9325
9326 #if defined(CONFIG_UNIX)
9327 if (ctx->ring_sock) {
9328 ctx->ring_sock->file = NULL; /* so that iput() is called */
9329 sock_release(ctx->ring_sock);
9330 }
9331 #endif
9332 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9333
9334 io_mem_free(ctx->rings);
9335 io_mem_free(ctx->sq_sqes);
9336
9337 percpu_ref_exit(&ctx->refs);
9338 free_uid(ctx->user);
9339 io_req_caches_free(ctx);
9340 if (ctx->hash_map)
9341 io_wq_put_hash(ctx->hash_map);
9342 kfree(ctx->cancel_hash);
9343 kfree(ctx->dummy_ubuf);
9344 kfree(ctx);
9345 }
9346
9347 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9348 {
9349 struct io_ring_ctx *ctx = file->private_data;
9350 __poll_t mask = 0;
9351
9352 poll_wait(file, &ctx->poll_wait, wait);
9353 /*
9354 * synchronizes with barrier from wq_has_sleeper call in
9355 * io_commit_cqring
9356 */
9357 smp_rmb();
9358 if (!io_sqring_full(ctx))
9359 mask |= EPOLLOUT | EPOLLWRNORM;
9360
9361 /*
9362 * Don't flush cqring overflow list here, just do a simple check.
9363 * Otherwise there could possible be ABBA deadlock:
9364 * CPU0 CPU1
9365 * ---- ----
9366 * lock(&ctx->uring_lock);
9367 * lock(&ep->mtx);
9368 * lock(&ctx->uring_lock);
9369 * lock(&ep->mtx);
9370 *
9371 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9372 * pushs them to do the flush.
9373 */
9374 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9375 mask |= EPOLLIN | EPOLLRDNORM;
9376
9377 return mask;
9378 }
9379
9380 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9381 {
9382 const struct cred *creds;
9383
9384 creds = xa_erase(&ctx->personalities, id);
9385 if (creds) {
9386 put_cred(creds);
9387 return 0;
9388 }
9389
9390 return -EINVAL;
9391 }
9392
9393 struct io_tctx_exit {
9394 struct callback_head task_work;
9395 struct completion completion;
9396 struct io_ring_ctx *ctx;
9397 };
9398
9399 static void io_tctx_exit_cb(struct callback_head *cb)
9400 {
9401 struct io_uring_task *tctx = current->io_uring;
9402 struct io_tctx_exit *work;
9403
9404 work = container_of(cb, struct io_tctx_exit, task_work);
9405 /*
9406 * When @in_idle, we're in cancellation and it's racy to remove the
9407 * node. It'll be removed by the end of cancellation, just ignore it.
9408 */
9409 if (!atomic_read(&tctx->in_idle))
9410 io_uring_del_tctx_node((unsigned long)work->ctx);
9411 complete(&work->completion);
9412 }
9413
9414 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9415 {
9416 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9417
9418 return req->ctx == data;
9419 }
9420
9421 static void io_ring_exit_work(struct work_struct *work)
9422 {
9423 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9424 unsigned long timeout = jiffies + HZ * 60 * 5;
9425 unsigned long interval = HZ / 20;
9426 struct io_tctx_exit exit;
9427 struct io_tctx_node *node;
9428 int ret;
9429
9430 /*
9431 * If we're doing polled IO and end up having requests being
9432 * submitted async (out-of-line), then completions can come in while
9433 * we're waiting for refs to drop. We need to reap these manually,
9434 * as nobody else will be looking for them.
9435 */
9436 do {
9437 io_uring_try_cancel_requests(ctx, NULL, true);
9438 if (ctx->sq_data) {
9439 struct io_sq_data *sqd = ctx->sq_data;
9440 struct task_struct *tsk;
9441
9442 io_sq_thread_park(sqd);
9443 tsk = sqd->thread;
9444 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9445 io_wq_cancel_cb(tsk->io_uring->io_wq,
9446 io_cancel_ctx_cb, ctx, true);
9447 io_sq_thread_unpark(sqd);
9448 }
9449
9450 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9451 /* there is little hope left, don't run it too often */
9452 interval = HZ * 60;
9453 }
9454 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9455
9456 init_completion(&exit.completion);
9457 init_task_work(&exit.task_work, io_tctx_exit_cb);
9458 exit.ctx = ctx;
9459 /*
9460 * Some may use context even when all refs and requests have been put,
9461 * and they are free to do so while still holding uring_lock or
9462 * completion_lock, see io_req_task_submit(). Apart from other work,
9463 * this lock/unlock section also waits them to finish.
9464 */
9465 mutex_lock(&ctx->uring_lock);
9466 while (!list_empty(&ctx->tctx_list)) {
9467 WARN_ON_ONCE(time_after(jiffies, timeout));
9468
9469 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9470 ctx_node);
9471 /* don't spin on a single task if cancellation failed */
9472 list_rotate_left(&ctx->tctx_list);
9473 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9474 if (WARN_ON_ONCE(ret))
9475 continue;
9476 wake_up_process(node->task);
9477
9478 mutex_unlock(&ctx->uring_lock);
9479 wait_for_completion(&exit.completion);
9480 mutex_lock(&ctx->uring_lock);
9481 }
9482 mutex_unlock(&ctx->uring_lock);
9483 spin_lock(&ctx->completion_lock);
9484 spin_unlock(&ctx->completion_lock);
9485
9486 io_ring_ctx_free(ctx);
9487 }
9488
9489 /* Returns true if we found and killed one or more timeouts */
9490 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9491 bool cancel_all)
9492 {
9493 struct io_kiocb *req, *tmp;
9494 int canceled = 0;
9495
9496 spin_lock(&ctx->completion_lock);
9497 spin_lock_irq(&ctx->timeout_lock);
9498 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9499 if (io_match_task(req, tsk, cancel_all)) {
9500 io_kill_timeout(req, -ECANCELED);
9501 canceled++;
9502 }
9503 }
9504 spin_unlock_irq(&ctx->timeout_lock);
9505 if (canceled != 0)
9506 io_commit_cqring(ctx);
9507 spin_unlock(&ctx->completion_lock);
9508 if (canceled != 0)
9509 io_cqring_ev_posted(ctx);
9510 return canceled != 0;
9511 }
9512
9513 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9514 {
9515 unsigned long index;
9516 struct creds *creds;
9517
9518 mutex_lock(&ctx->uring_lock);
9519 percpu_ref_kill(&ctx->refs);
9520 if (ctx->rings)
9521 __io_cqring_overflow_flush(ctx, true);
9522 xa_for_each(&ctx->personalities, index, creds)
9523 io_unregister_personality(ctx, index);
9524 mutex_unlock(&ctx->uring_lock);
9525
9526 io_kill_timeouts(ctx, NULL, true);
9527 io_poll_remove_all(ctx, NULL, true);
9528
9529 /* if we failed setting up the ctx, we might not have any rings */
9530 io_iopoll_try_reap_events(ctx);
9531
9532 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9533 /*
9534 * Use system_unbound_wq to avoid spawning tons of event kworkers
9535 * if we're exiting a ton of rings at the same time. It just adds
9536 * noise and overhead, there's no discernable change in runtime
9537 * over using system_wq.
9538 */
9539 queue_work(system_unbound_wq, &ctx->exit_work);
9540 }
9541
9542 static int io_uring_release(struct inode *inode, struct file *file)
9543 {
9544 struct io_ring_ctx *ctx = file->private_data;
9545
9546 file->private_data = NULL;
9547 io_ring_ctx_wait_and_kill(ctx);
9548 return 0;
9549 }
9550
9551 struct io_task_cancel {
9552 struct task_struct *task;
9553 bool all;
9554 };
9555
9556 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9557 {
9558 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9559 struct io_task_cancel *cancel = data;
9560
9561 return io_match_task_safe(req, cancel->task, cancel->all);
9562 }
9563
9564 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9565 struct task_struct *task, bool cancel_all)
9566 {
9567 struct io_defer_entry *de;
9568 LIST_HEAD(list);
9569
9570 spin_lock(&ctx->completion_lock);
9571 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9572 if (io_match_task_safe(de->req, task, cancel_all)) {
9573 list_cut_position(&list, &ctx->defer_list, &de->list);
9574 break;
9575 }
9576 }
9577 spin_unlock(&ctx->completion_lock);
9578 if (list_empty(&list))
9579 return false;
9580
9581 while (!list_empty(&list)) {
9582 de = list_first_entry(&list, struct io_defer_entry, list);
9583 list_del_init(&de->list);
9584 io_req_complete_failed(de->req, -ECANCELED);
9585 kfree(de);
9586 }
9587 return true;
9588 }
9589
9590 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9591 {
9592 struct io_tctx_node *node;
9593 enum io_wq_cancel cret;
9594 bool ret = false;
9595
9596 mutex_lock(&ctx->uring_lock);
9597 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9598 struct io_uring_task *tctx = node->task->io_uring;
9599
9600 /*
9601 * io_wq will stay alive while we hold uring_lock, because it's
9602 * killed after ctx nodes, which requires to take the lock.
9603 */
9604 if (!tctx || !tctx->io_wq)
9605 continue;
9606 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9607 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9608 }
9609 mutex_unlock(&ctx->uring_lock);
9610
9611 return ret;
9612 }
9613
9614 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9615 struct task_struct *task,
9616 bool cancel_all)
9617 {
9618 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9619 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9620
9621 while (1) {
9622 enum io_wq_cancel cret;
9623 bool ret = false;
9624
9625 if (!task) {
9626 ret |= io_uring_try_cancel_iowq(ctx);
9627 } else if (tctx && tctx->io_wq) {
9628 /*
9629 * Cancels requests of all rings, not only @ctx, but
9630 * it's fine as the task is in exit/exec.
9631 */
9632 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9633 &cancel, true);
9634 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9635 }
9636
9637 /* SQPOLL thread does its own polling */
9638 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9639 (ctx->sq_data && ctx->sq_data->thread == current)) {
9640 while (!list_empty_careful(&ctx->iopoll_list)) {
9641 io_iopoll_try_reap_events(ctx);
9642 ret = true;
9643 }
9644 }
9645
9646 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9647 ret |= io_poll_remove_all(ctx, task, cancel_all);
9648 ret |= io_kill_timeouts(ctx, task, cancel_all);
9649 if (task)
9650 ret |= io_run_task_work();
9651 if (!ret)
9652 break;
9653 cond_resched();
9654 }
9655 }
9656
9657 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9658 {
9659 struct io_uring_task *tctx = current->io_uring;
9660 struct io_tctx_node *node;
9661 int ret;
9662
9663 if (unlikely(!tctx)) {
9664 ret = io_uring_alloc_task_context(current, ctx);
9665 if (unlikely(ret))
9666 return ret;
9667
9668 tctx = current->io_uring;
9669 if (ctx->iowq_limits_set) {
9670 unsigned int limits[2] = { ctx->iowq_limits[0],
9671 ctx->iowq_limits[1], };
9672
9673 ret = io_wq_max_workers(tctx->io_wq, limits);
9674 if (ret)
9675 return ret;
9676 }
9677 }
9678 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9679 node = kmalloc(sizeof(*node), GFP_KERNEL);
9680 if (!node)
9681 return -ENOMEM;
9682 node->ctx = ctx;
9683 node->task = current;
9684
9685 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9686 node, GFP_KERNEL));
9687 if (ret) {
9688 kfree(node);
9689 return ret;
9690 }
9691
9692 mutex_lock(&ctx->uring_lock);
9693 list_add(&node->ctx_node, &ctx->tctx_list);
9694 mutex_unlock(&ctx->uring_lock);
9695 }
9696 tctx->last = ctx;
9697 return 0;
9698 }
9699
9700 /*
9701 * Note that this task has used io_uring. We use it for cancelation purposes.
9702 */
9703 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9704 {
9705 struct io_uring_task *tctx = current->io_uring;
9706
9707 if (likely(tctx && tctx->last == ctx))
9708 return 0;
9709 return __io_uring_add_tctx_node(ctx);
9710 }
9711
9712 /*
9713 * Remove this io_uring_file -> task mapping.
9714 */
9715 static void io_uring_del_tctx_node(unsigned long index)
9716 {
9717 struct io_uring_task *tctx = current->io_uring;
9718 struct io_tctx_node *node;
9719
9720 if (!tctx)
9721 return;
9722 node = xa_erase(&tctx->xa, index);
9723 if (!node)
9724 return;
9725
9726 WARN_ON_ONCE(current != node->task);
9727 WARN_ON_ONCE(list_empty(&node->ctx_node));
9728
9729 mutex_lock(&node->ctx->uring_lock);
9730 list_del(&node->ctx_node);
9731 mutex_unlock(&node->ctx->uring_lock);
9732
9733 if (tctx->last == node->ctx)
9734 tctx->last = NULL;
9735 kfree(node);
9736 }
9737
9738 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9739 {
9740 struct io_wq *wq = tctx->io_wq;
9741 struct io_tctx_node *node;
9742 unsigned long index;
9743
9744 xa_for_each(&tctx->xa, index, node) {
9745 io_uring_del_tctx_node(index);
9746 cond_resched();
9747 }
9748 if (wq) {
9749 /*
9750 * Must be after io_uring_del_task_file() (removes nodes under
9751 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9752 */
9753 io_wq_put_and_exit(wq);
9754 tctx->io_wq = NULL;
9755 }
9756 }
9757
9758 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9759 {
9760 if (tracked)
9761 return atomic_read(&tctx->inflight_tracked);
9762 return percpu_counter_sum(&tctx->inflight);
9763 }
9764
9765 static void io_uring_drop_tctx_refs(struct task_struct *task)
9766 {
9767 struct io_uring_task *tctx = task->io_uring;
9768 unsigned int refs = tctx->cached_refs;
9769
9770 if (refs) {
9771 tctx->cached_refs = 0;
9772 percpu_counter_sub(&tctx->inflight, refs);
9773 put_task_struct_many(task, refs);
9774 }
9775 }
9776
9777 /*
9778 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9779 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9780 */
9781 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9782 {
9783 struct io_uring_task *tctx = current->io_uring;
9784 struct io_ring_ctx *ctx;
9785 s64 inflight;
9786 DEFINE_WAIT(wait);
9787
9788 WARN_ON_ONCE(sqd && sqd->thread != current);
9789
9790 if (!current->io_uring)
9791 return;
9792 if (tctx->io_wq)
9793 io_wq_exit_start(tctx->io_wq);
9794
9795 atomic_inc(&tctx->in_idle);
9796 do {
9797 io_uring_drop_tctx_refs(current);
9798 /* read completions before cancelations */
9799 inflight = tctx_inflight(tctx, !cancel_all);
9800 if (!inflight)
9801 break;
9802
9803 if (!sqd) {
9804 struct io_tctx_node *node;
9805 unsigned long index;
9806
9807 xa_for_each(&tctx->xa, index, node) {
9808 /* sqpoll task will cancel all its requests */
9809 if (node->ctx->sq_data)
9810 continue;
9811 io_uring_try_cancel_requests(node->ctx, current,
9812 cancel_all);
9813 }
9814 } else {
9815 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9816 io_uring_try_cancel_requests(ctx, current,
9817 cancel_all);
9818 }
9819
9820 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9821 io_uring_drop_tctx_refs(current);
9822 /*
9823 * If we've seen completions, retry without waiting. This
9824 * avoids a race where a completion comes in before we did
9825 * prepare_to_wait().
9826 */
9827 if (inflight == tctx_inflight(tctx, !cancel_all))
9828 schedule();
9829 finish_wait(&tctx->wait, &wait);
9830 } while (1);
9831 atomic_dec(&tctx->in_idle);
9832
9833 io_uring_clean_tctx(tctx);
9834 if (cancel_all) {
9835 /* for exec all current's requests should be gone, kill tctx */
9836 __io_uring_free(current);
9837 }
9838 }
9839
9840 void __io_uring_cancel(bool cancel_all)
9841 {
9842 io_uring_cancel_generic(cancel_all, NULL);
9843 }
9844
9845 static void *io_uring_validate_mmap_request(struct file *file,
9846 loff_t pgoff, size_t sz)
9847 {
9848 struct io_ring_ctx *ctx = file->private_data;
9849 loff_t offset = pgoff << PAGE_SHIFT;
9850 struct page *page;
9851 void *ptr;
9852
9853 switch (offset) {
9854 case IORING_OFF_SQ_RING:
9855 case IORING_OFF_CQ_RING:
9856 ptr = ctx->rings;
9857 break;
9858 case IORING_OFF_SQES:
9859 ptr = ctx->sq_sqes;
9860 break;
9861 default:
9862 return ERR_PTR(-EINVAL);
9863 }
9864
9865 page = virt_to_head_page(ptr);
9866 if (sz > page_size(page))
9867 return ERR_PTR(-EINVAL);
9868
9869 return ptr;
9870 }
9871
9872 #ifdef CONFIG_MMU
9873
9874 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9875 {
9876 size_t sz = vma->vm_end - vma->vm_start;
9877 unsigned long pfn;
9878 void *ptr;
9879
9880 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9881 if (IS_ERR(ptr))
9882 return PTR_ERR(ptr);
9883
9884 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9885 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9886 }
9887
9888 #else /* !CONFIG_MMU */
9889
9890 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9891 {
9892 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9893 }
9894
9895 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9896 {
9897 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9898 }
9899
9900 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9901 unsigned long addr, unsigned long len,
9902 unsigned long pgoff, unsigned long flags)
9903 {
9904 void *ptr;
9905
9906 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9907 if (IS_ERR(ptr))
9908 return PTR_ERR(ptr);
9909
9910 return (unsigned long) ptr;
9911 }
9912
9913 #endif /* !CONFIG_MMU */
9914
9915 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9916 {
9917 DEFINE_WAIT(wait);
9918
9919 do {
9920 if (!io_sqring_full(ctx))
9921 break;
9922 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9923
9924 if (!io_sqring_full(ctx))
9925 break;
9926 schedule();
9927 } while (!signal_pending(current));
9928
9929 finish_wait(&ctx->sqo_sq_wait, &wait);
9930 return 0;
9931 }
9932
9933 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9934 struct __kernel_timespec __user **ts,
9935 const sigset_t __user **sig)
9936 {
9937 struct io_uring_getevents_arg arg;
9938
9939 /*
9940 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9941 * is just a pointer to the sigset_t.
9942 */
9943 if (!(flags & IORING_ENTER_EXT_ARG)) {
9944 *sig = (const sigset_t __user *) argp;
9945 *ts = NULL;
9946 return 0;
9947 }
9948
9949 /*
9950 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9951 * timespec and sigset_t pointers if good.
9952 */
9953 if (*argsz != sizeof(arg))
9954 return -EINVAL;
9955 if (copy_from_user(&arg, argp, sizeof(arg)))
9956 return -EFAULT;
9957 *sig = u64_to_user_ptr(arg.sigmask);
9958 *argsz = arg.sigmask_sz;
9959 *ts = u64_to_user_ptr(arg.ts);
9960 return 0;
9961 }
9962
9963 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9964 u32, min_complete, u32, flags, const void __user *, argp,
9965 size_t, argsz)
9966 {
9967 struct io_ring_ctx *ctx;
9968 int submitted = 0;
9969 struct fd f;
9970 long ret;
9971
9972 io_run_task_work();
9973
9974 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9975 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9976 return -EINVAL;
9977
9978 f = fdget(fd);
9979 if (unlikely(!f.file))
9980 return -EBADF;
9981
9982 ret = -EOPNOTSUPP;
9983 if (unlikely(f.file->f_op != &io_uring_fops))
9984 goto out_fput;
9985
9986 ret = -ENXIO;
9987 ctx = f.file->private_data;
9988 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9989 goto out_fput;
9990
9991 ret = -EBADFD;
9992 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9993 goto out;
9994
9995 /*
9996 * For SQ polling, the thread will do all submissions and completions.
9997 * Just return the requested submit count, and wake the thread if
9998 * we were asked to.
9999 */
10000 ret = 0;
10001 if (ctx->flags & IORING_SETUP_SQPOLL) {
10002 io_cqring_overflow_flush(ctx);
10003
10004 if (unlikely(ctx->sq_data->thread == NULL)) {
10005 ret = -EOWNERDEAD;
10006 goto out;
10007 }
10008 if (flags & IORING_ENTER_SQ_WAKEUP)
10009 wake_up(&ctx->sq_data->wait);
10010 if (flags & IORING_ENTER_SQ_WAIT) {
10011 ret = io_sqpoll_wait_sq(ctx);
10012 if (ret)
10013 goto out;
10014 }
10015 submitted = to_submit;
10016 } else if (to_submit) {
10017 ret = io_uring_add_tctx_node(ctx);
10018 if (unlikely(ret))
10019 goto out;
10020 mutex_lock(&ctx->uring_lock);
10021 submitted = io_submit_sqes(ctx, to_submit);
10022 mutex_unlock(&ctx->uring_lock);
10023
10024 if (submitted != to_submit)
10025 goto out;
10026 }
10027 if (flags & IORING_ENTER_GETEVENTS) {
10028 const sigset_t __user *sig;
10029 struct __kernel_timespec __user *ts;
10030
10031 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10032 if (unlikely(ret))
10033 goto out;
10034
10035 min_complete = min(min_complete, ctx->cq_entries);
10036
10037 /*
10038 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10039 * space applications don't need to do io completion events
10040 * polling again, they can rely on io_sq_thread to do polling
10041 * work, which can reduce cpu usage and uring_lock contention.
10042 */
10043 if (ctx->flags & IORING_SETUP_IOPOLL &&
10044 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10045 ret = io_iopoll_check(ctx, min_complete);
10046 } else {
10047 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10048 }
10049 }
10050
10051 out:
10052 percpu_ref_put(&ctx->refs);
10053 out_fput:
10054 fdput(f);
10055 return submitted ? submitted : ret;
10056 }
10057
10058 #ifdef CONFIG_PROC_FS
10059 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10060 const struct cred *cred)
10061 {
10062 struct user_namespace *uns = seq_user_ns(m);
10063 struct group_info *gi;
10064 kernel_cap_t cap;
10065 unsigned __capi;
10066 int g;
10067
10068 seq_printf(m, "%5d\n", id);
10069 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10070 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10071 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10072 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10073 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10074 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10075 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10076 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10077 seq_puts(m, "\n\tGroups:\t");
10078 gi = cred->group_info;
10079 for (g = 0; g < gi->ngroups; g++) {
10080 seq_put_decimal_ull(m, g ? " " : "",
10081 from_kgid_munged(uns, gi->gid[g]));
10082 }
10083 seq_puts(m, "\n\tCapEff:\t");
10084 cap = cred->cap_effective;
10085 CAP_FOR_EACH_U32(__capi)
10086 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10087 seq_putc(m, '\n');
10088 return 0;
10089 }
10090
10091 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10092 {
10093 struct io_sq_data *sq = NULL;
10094 bool has_lock;
10095 int i;
10096
10097 /*
10098 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10099 * since fdinfo case grabs it in the opposite direction of normal use
10100 * cases. If we fail to get the lock, we just don't iterate any
10101 * structures that could be going away outside the io_uring mutex.
10102 */
10103 has_lock = mutex_trylock(&ctx->uring_lock);
10104
10105 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10106 sq = ctx->sq_data;
10107 if (!sq->thread)
10108 sq = NULL;
10109 }
10110
10111 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10112 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10113 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10114 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10115 struct file *f = io_file_from_index(ctx, i);
10116
10117 if (f)
10118 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10119 else
10120 seq_printf(m, "%5u: <none>\n", i);
10121 }
10122 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10123 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10124 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10125 unsigned int len = buf->ubuf_end - buf->ubuf;
10126
10127 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10128 }
10129 if (has_lock && !xa_empty(&ctx->personalities)) {
10130 unsigned long index;
10131 const struct cred *cred;
10132
10133 seq_printf(m, "Personalities:\n");
10134 xa_for_each(&ctx->personalities, index, cred)
10135 io_uring_show_cred(m, index, cred);
10136 }
10137 seq_printf(m, "PollList:\n");
10138 spin_lock(&ctx->completion_lock);
10139 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10140 struct hlist_head *list = &ctx->cancel_hash[i];
10141 struct io_kiocb *req;
10142
10143 hlist_for_each_entry(req, list, hash_node)
10144 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10145 req->task->task_works != NULL);
10146 }
10147 spin_unlock(&ctx->completion_lock);
10148 if (has_lock)
10149 mutex_unlock(&ctx->uring_lock);
10150 }
10151
10152 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10153 {
10154 struct io_ring_ctx *ctx = f->private_data;
10155
10156 if (percpu_ref_tryget(&ctx->refs)) {
10157 __io_uring_show_fdinfo(ctx, m);
10158 percpu_ref_put(&ctx->refs);
10159 }
10160 }
10161 #endif
10162
10163 static const struct file_operations io_uring_fops = {
10164 .release = io_uring_release,
10165 .mmap = io_uring_mmap,
10166 #ifndef CONFIG_MMU
10167 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10168 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10169 #endif
10170 .poll = io_uring_poll,
10171 #ifdef CONFIG_PROC_FS
10172 .show_fdinfo = io_uring_show_fdinfo,
10173 #endif
10174 };
10175
10176 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10177 struct io_uring_params *p)
10178 {
10179 struct io_rings *rings;
10180 size_t size, sq_array_offset;
10181
10182 /* make sure these are sane, as we already accounted them */
10183 ctx->sq_entries = p->sq_entries;
10184 ctx->cq_entries = p->cq_entries;
10185
10186 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10187 if (size == SIZE_MAX)
10188 return -EOVERFLOW;
10189
10190 rings = io_mem_alloc(size);
10191 if (!rings)
10192 return -ENOMEM;
10193
10194 ctx->rings = rings;
10195 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10196 rings->sq_ring_mask = p->sq_entries - 1;
10197 rings->cq_ring_mask = p->cq_entries - 1;
10198 rings->sq_ring_entries = p->sq_entries;
10199 rings->cq_ring_entries = p->cq_entries;
10200
10201 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10202 if (size == SIZE_MAX) {
10203 io_mem_free(ctx->rings);
10204 ctx->rings = NULL;
10205 return -EOVERFLOW;
10206 }
10207
10208 ctx->sq_sqes = io_mem_alloc(size);
10209 if (!ctx->sq_sqes) {
10210 io_mem_free(ctx->rings);
10211 ctx->rings = NULL;
10212 return -ENOMEM;
10213 }
10214
10215 return 0;
10216 }
10217
10218 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10219 {
10220 int ret, fd;
10221
10222 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10223 if (fd < 0)
10224 return fd;
10225
10226 ret = io_uring_add_tctx_node(ctx);
10227 if (ret) {
10228 put_unused_fd(fd);
10229 return ret;
10230 }
10231 fd_install(fd, file);
10232 return fd;
10233 }
10234
10235 /*
10236 * Allocate an anonymous fd, this is what constitutes the application
10237 * visible backing of an io_uring instance. The application mmaps this
10238 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10239 * we have to tie this fd to a socket for file garbage collection purposes.
10240 */
10241 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10242 {
10243 struct file *file;
10244 #if defined(CONFIG_UNIX)
10245 int ret;
10246
10247 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10248 &ctx->ring_sock);
10249 if (ret)
10250 return ERR_PTR(ret);
10251 #endif
10252
10253 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10254 O_RDWR | O_CLOEXEC);
10255 #if defined(CONFIG_UNIX)
10256 if (IS_ERR(file)) {
10257 sock_release(ctx->ring_sock);
10258 ctx->ring_sock = NULL;
10259 } else {
10260 ctx->ring_sock->file = file;
10261 }
10262 #endif
10263 return file;
10264 }
10265
10266 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10267 struct io_uring_params __user *params)
10268 {
10269 struct io_ring_ctx *ctx;
10270 struct file *file;
10271 int ret;
10272
10273 if (!entries)
10274 return -EINVAL;
10275 if (entries > IORING_MAX_ENTRIES) {
10276 if (!(p->flags & IORING_SETUP_CLAMP))
10277 return -EINVAL;
10278 entries = IORING_MAX_ENTRIES;
10279 }
10280
10281 /*
10282 * Use twice as many entries for the CQ ring. It's possible for the
10283 * application to drive a higher depth than the size of the SQ ring,
10284 * since the sqes are only used at submission time. This allows for
10285 * some flexibility in overcommitting a bit. If the application has
10286 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10287 * of CQ ring entries manually.
10288 */
10289 p->sq_entries = roundup_pow_of_two(entries);
10290 if (p->flags & IORING_SETUP_CQSIZE) {
10291 /*
10292 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10293 * to a power-of-two, if it isn't already. We do NOT impose
10294 * any cq vs sq ring sizing.
10295 */
10296 if (!p->cq_entries)
10297 return -EINVAL;
10298 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10299 if (!(p->flags & IORING_SETUP_CLAMP))
10300 return -EINVAL;
10301 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10302 }
10303 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10304 if (p->cq_entries < p->sq_entries)
10305 return -EINVAL;
10306 } else {
10307 p->cq_entries = 2 * p->sq_entries;
10308 }
10309
10310 ctx = io_ring_ctx_alloc(p);
10311 if (!ctx)
10312 return -ENOMEM;
10313 ctx->compat = in_compat_syscall();
10314 if (!capable(CAP_IPC_LOCK))
10315 ctx->user = get_uid(current_user());
10316
10317 /*
10318 * This is just grabbed for accounting purposes. When a process exits,
10319 * the mm is exited and dropped before the files, hence we need to hang
10320 * on to this mm purely for the purposes of being able to unaccount
10321 * memory (locked/pinned vm). It's not used for anything else.
10322 */
10323 mmgrab(current->mm);
10324 ctx->mm_account = current->mm;
10325
10326 ret = io_allocate_scq_urings(ctx, p);
10327 if (ret)
10328 goto err;
10329
10330 ret = io_sq_offload_create(ctx, p);
10331 if (ret)
10332 goto err;
10333 /* always set a rsrc node */
10334 ret = io_rsrc_node_switch_start(ctx);
10335 if (ret)
10336 goto err;
10337 io_rsrc_node_switch(ctx, NULL);
10338
10339 memset(&p->sq_off, 0, sizeof(p->sq_off));
10340 p->sq_off.head = offsetof(struct io_rings, sq.head);
10341 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10342 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10343 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10344 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10345 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10346 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10347
10348 memset(&p->cq_off, 0, sizeof(p->cq_off));
10349 p->cq_off.head = offsetof(struct io_rings, cq.head);
10350 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10351 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10352 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10353 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10354 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10355 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10356
10357 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10358 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10359 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10360 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10361 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10362 IORING_FEAT_RSRC_TAGS;
10363
10364 if (copy_to_user(params, p, sizeof(*p))) {
10365 ret = -EFAULT;
10366 goto err;
10367 }
10368
10369 file = io_uring_get_file(ctx);
10370 if (IS_ERR(file)) {
10371 ret = PTR_ERR(file);
10372 goto err;
10373 }
10374
10375 /*
10376 * Install ring fd as the very last thing, so we don't risk someone
10377 * having closed it before we finish setup
10378 */
10379 ret = io_uring_install_fd(ctx, file);
10380 if (ret < 0) {
10381 /* fput will clean it up */
10382 fput(file);
10383 return ret;
10384 }
10385
10386 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10387 return ret;
10388 err:
10389 io_ring_ctx_wait_and_kill(ctx);
10390 return ret;
10391 }
10392
10393 /*
10394 * Sets up an aio uring context, and returns the fd. Applications asks for a
10395 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10396 * params structure passed in.
10397 */
10398 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10399 {
10400 struct io_uring_params p;
10401 int i;
10402
10403 if (copy_from_user(&p, params, sizeof(p)))
10404 return -EFAULT;
10405 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10406 if (p.resv[i])
10407 return -EINVAL;
10408 }
10409
10410 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10411 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10412 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10413 IORING_SETUP_R_DISABLED))
10414 return -EINVAL;
10415
10416 return io_uring_create(entries, &p, params);
10417 }
10418
10419 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10420 struct io_uring_params __user *, params)
10421 {
10422 return io_uring_setup(entries, params);
10423 }
10424
10425 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10426 {
10427 struct io_uring_probe *p;
10428 size_t size;
10429 int i, ret;
10430
10431 size = struct_size(p, ops, nr_args);
10432 if (size == SIZE_MAX)
10433 return -EOVERFLOW;
10434 p = kzalloc(size, GFP_KERNEL);
10435 if (!p)
10436 return -ENOMEM;
10437
10438 ret = -EFAULT;
10439 if (copy_from_user(p, arg, size))
10440 goto out;
10441 ret = -EINVAL;
10442 if (memchr_inv(p, 0, size))
10443 goto out;
10444
10445 p->last_op = IORING_OP_LAST - 1;
10446 if (nr_args > IORING_OP_LAST)
10447 nr_args = IORING_OP_LAST;
10448
10449 for (i = 0; i < nr_args; i++) {
10450 p->ops[i].op = i;
10451 if (!io_op_defs[i].not_supported)
10452 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10453 }
10454 p->ops_len = i;
10455
10456 ret = 0;
10457 if (copy_to_user(arg, p, size))
10458 ret = -EFAULT;
10459 out:
10460 kfree(p);
10461 return ret;
10462 }
10463
10464 static int io_register_personality(struct io_ring_ctx *ctx)
10465 {
10466 const struct cred *creds;
10467 u32 id;
10468 int ret;
10469
10470 creds = get_current_cred();
10471
10472 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10473 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10474 if (ret < 0) {
10475 put_cred(creds);
10476 return ret;
10477 }
10478 return id;
10479 }
10480
10481 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10482 unsigned int nr_args)
10483 {
10484 struct io_uring_restriction *res;
10485 size_t size;
10486 int i, ret;
10487
10488 /* Restrictions allowed only if rings started disabled */
10489 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10490 return -EBADFD;
10491
10492 /* We allow only a single restrictions registration */
10493 if (ctx->restrictions.registered)
10494 return -EBUSY;
10495
10496 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10497 return -EINVAL;
10498
10499 size = array_size(nr_args, sizeof(*res));
10500 if (size == SIZE_MAX)
10501 return -EOVERFLOW;
10502
10503 res = memdup_user(arg, size);
10504 if (IS_ERR(res))
10505 return PTR_ERR(res);
10506
10507 ret = 0;
10508
10509 for (i = 0; i < nr_args; i++) {
10510 switch (res[i].opcode) {
10511 case IORING_RESTRICTION_REGISTER_OP:
10512 if (res[i].register_op >= IORING_REGISTER_LAST) {
10513 ret = -EINVAL;
10514 goto out;
10515 }
10516
10517 __set_bit(res[i].register_op,
10518 ctx->restrictions.register_op);
10519 break;
10520 case IORING_RESTRICTION_SQE_OP:
10521 if (res[i].sqe_op >= IORING_OP_LAST) {
10522 ret = -EINVAL;
10523 goto out;
10524 }
10525
10526 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10527 break;
10528 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10529 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10530 break;
10531 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10532 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10533 break;
10534 default:
10535 ret = -EINVAL;
10536 goto out;
10537 }
10538 }
10539
10540 out:
10541 /* Reset all restrictions if an error happened */
10542 if (ret != 0)
10543 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10544 else
10545 ctx->restrictions.registered = true;
10546
10547 kfree(res);
10548 return ret;
10549 }
10550
10551 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10552 {
10553 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10554 return -EBADFD;
10555
10556 if (ctx->restrictions.registered)
10557 ctx->restricted = 1;
10558
10559 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10560 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10561 wake_up(&ctx->sq_data->wait);
10562 return 0;
10563 }
10564
10565 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10566 struct io_uring_rsrc_update2 *up,
10567 unsigned nr_args)
10568 {
10569 __u32 tmp;
10570 int err;
10571
10572 if (up->resv)
10573 return -EINVAL;
10574 if (check_add_overflow(up->offset, nr_args, &tmp))
10575 return -EOVERFLOW;
10576 err = io_rsrc_node_switch_start(ctx);
10577 if (err)
10578 return err;
10579
10580 switch (type) {
10581 case IORING_RSRC_FILE:
10582 return __io_sqe_files_update(ctx, up, nr_args);
10583 case IORING_RSRC_BUFFER:
10584 return __io_sqe_buffers_update(ctx, up, nr_args);
10585 }
10586 return -EINVAL;
10587 }
10588
10589 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10590 unsigned nr_args)
10591 {
10592 struct io_uring_rsrc_update2 up;
10593
10594 if (!nr_args)
10595 return -EINVAL;
10596 memset(&up, 0, sizeof(up));
10597 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10598 return -EFAULT;
10599 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10600 }
10601
10602 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10603 unsigned size, unsigned type)
10604 {
10605 struct io_uring_rsrc_update2 up;
10606
10607 if (size != sizeof(up))
10608 return -EINVAL;
10609 if (copy_from_user(&up, arg, sizeof(up)))
10610 return -EFAULT;
10611 if (!up.nr || up.resv)
10612 return -EINVAL;
10613 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10614 }
10615
10616 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10617 unsigned int size, unsigned int type)
10618 {
10619 struct io_uring_rsrc_register rr;
10620
10621 /* keep it extendible */
10622 if (size != sizeof(rr))
10623 return -EINVAL;
10624
10625 memset(&rr, 0, sizeof(rr));
10626 if (copy_from_user(&rr, arg, size))
10627 return -EFAULT;
10628 if (!rr.nr || rr.resv || rr.resv2)
10629 return -EINVAL;
10630
10631 switch (type) {
10632 case IORING_RSRC_FILE:
10633 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10634 rr.nr, u64_to_user_ptr(rr.tags));
10635 case IORING_RSRC_BUFFER:
10636 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10637 rr.nr, u64_to_user_ptr(rr.tags));
10638 }
10639 return -EINVAL;
10640 }
10641
10642 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10643 unsigned len)
10644 {
10645 struct io_uring_task *tctx = current->io_uring;
10646 cpumask_var_t new_mask;
10647 int ret;
10648
10649 if (!tctx || !tctx->io_wq)
10650 return -EINVAL;
10651
10652 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10653 return -ENOMEM;
10654
10655 cpumask_clear(new_mask);
10656 if (len > cpumask_size())
10657 len = cpumask_size();
10658
10659 if (copy_from_user(new_mask, arg, len)) {
10660 free_cpumask_var(new_mask);
10661 return -EFAULT;
10662 }
10663
10664 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10665 free_cpumask_var(new_mask);
10666 return ret;
10667 }
10668
10669 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10670 {
10671 struct io_uring_task *tctx = current->io_uring;
10672
10673 if (!tctx || !tctx->io_wq)
10674 return -EINVAL;
10675
10676 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10677 }
10678
10679 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10680 void __user *arg)
10681 __must_hold(&ctx->uring_lock)
10682 {
10683 struct io_tctx_node *node;
10684 struct io_uring_task *tctx = NULL;
10685 struct io_sq_data *sqd = NULL;
10686 __u32 new_count[2];
10687 int i, ret;
10688
10689 if (copy_from_user(new_count, arg, sizeof(new_count)))
10690 return -EFAULT;
10691 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10692 if (new_count[i] > INT_MAX)
10693 return -EINVAL;
10694
10695 if (ctx->flags & IORING_SETUP_SQPOLL) {
10696 sqd = ctx->sq_data;
10697 if (sqd) {
10698 /*
10699 * Observe the correct sqd->lock -> ctx->uring_lock
10700 * ordering. Fine to drop uring_lock here, we hold
10701 * a ref to the ctx.
10702 */
10703 refcount_inc(&sqd->refs);
10704 mutex_unlock(&ctx->uring_lock);
10705 mutex_lock(&sqd->lock);
10706 mutex_lock(&ctx->uring_lock);
10707 if (sqd->thread)
10708 tctx = sqd->thread->io_uring;
10709 }
10710 } else {
10711 tctx = current->io_uring;
10712 }
10713
10714 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10715
10716 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10717 if (new_count[i])
10718 ctx->iowq_limits[i] = new_count[i];
10719 ctx->iowq_limits_set = true;
10720
10721 ret = -EINVAL;
10722 if (tctx && tctx->io_wq) {
10723 ret = io_wq_max_workers(tctx->io_wq, new_count);
10724 if (ret)
10725 goto err;
10726 } else {
10727 memset(new_count, 0, sizeof(new_count));
10728 }
10729
10730 if (sqd) {
10731 mutex_unlock(&sqd->lock);
10732 io_put_sq_data(sqd);
10733 }
10734
10735 if (copy_to_user(arg, new_count, sizeof(new_count)))
10736 return -EFAULT;
10737
10738 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10739 if (sqd)
10740 return 0;
10741
10742 /* now propagate the restriction to all registered users */
10743 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10744 struct io_uring_task *tctx = node->task->io_uring;
10745
10746 if (WARN_ON_ONCE(!tctx->io_wq))
10747 continue;
10748
10749 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10750 new_count[i] = ctx->iowq_limits[i];
10751 /* ignore errors, it always returns zero anyway */
10752 (void)io_wq_max_workers(tctx->io_wq, new_count);
10753 }
10754 return 0;
10755 err:
10756 if (sqd) {
10757 mutex_unlock(&sqd->lock);
10758 io_put_sq_data(sqd);
10759 }
10760 return ret;
10761 }
10762
10763 static bool io_register_op_must_quiesce(int op)
10764 {
10765 switch (op) {
10766 case IORING_REGISTER_BUFFERS:
10767 case IORING_UNREGISTER_BUFFERS:
10768 case IORING_REGISTER_FILES:
10769 case IORING_UNREGISTER_FILES:
10770 case IORING_REGISTER_FILES_UPDATE:
10771 case IORING_REGISTER_PROBE:
10772 case IORING_REGISTER_PERSONALITY:
10773 case IORING_UNREGISTER_PERSONALITY:
10774 case IORING_REGISTER_FILES2:
10775 case IORING_REGISTER_FILES_UPDATE2:
10776 case IORING_REGISTER_BUFFERS2:
10777 case IORING_REGISTER_BUFFERS_UPDATE:
10778 case IORING_REGISTER_IOWQ_AFF:
10779 case IORING_UNREGISTER_IOWQ_AFF:
10780 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10781 return false;
10782 default:
10783 return true;
10784 }
10785 }
10786
10787 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10788 {
10789 long ret;
10790
10791 percpu_ref_kill(&ctx->refs);
10792
10793 /*
10794 * Drop uring mutex before waiting for references to exit. If another
10795 * thread is currently inside io_uring_enter() it might need to grab the
10796 * uring_lock to make progress. If we hold it here across the drain
10797 * wait, then we can deadlock. It's safe to drop the mutex here, since
10798 * no new references will come in after we've killed the percpu ref.
10799 */
10800 mutex_unlock(&ctx->uring_lock);
10801 do {
10802 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10803 if (!ret)
10804 break;
10805 ret = io_run_task_work_sig();
10806 } while (ret >= 0);
10807 mutex_lock(&ctx->uring_lock);
10808
10809 if (ret)
10810 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10811 return ret;
10812 }
10813
10814 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10815 void __user *arg, unsigned nr_args)
10816 __releases(ctx->uring_lock)
10817 __acquires(ctx->uring_lock)
10818 {
10819 int ret;
10820
10821 /*
10822 * We're inside the ring mutex, if the ref is already dying, then
10823 * someone else killed the ctx or is already going through
10824 * io_uring_register().
10825 */
10826 if (percpu_ref_is_dying(&ctx->refs))
10827 return -ENXIO;
10828
10829 if (ctx->restricted) {
10830 if (opcode >= IORING_REGISTER_LAST)
10831 return -EINVAL;
10832 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10833 if (!test_bit(opcode, ctx->restrictions.register_op))
10834 return -EACCES;
10835 }
10836
10837 if (io_register_op_must_quiesce(opcode)) {
10838 ret = io_ctx_quiesce(ctx);
10839 if (ret)
10840 return ret;
10841 }
10842
10843 switch (opcode) {
10844 case IORING_REGISTER_BUFFERS:
10845 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10846 break;
10847 case IORING_UNREGISTER_BUFFERS:
10848 ret = -EINVAL;
10849 if (arg || nr_args)
10850 break;
10851 ret = io_sqe_buffers_unregister(ctx);
10852 break;
10853 case IORING_REGISTER_FILES:
10854 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10855 break;
10856 case IORING_UNREGISTER_FILES:
10857 ret = -EINVAL;
10858 if (arg || nr_args)
10859 break;
10860 ret = io_sqe_files_unregister(ctx);
10861 break;
10862 case IORING_REGISTER_FILES_UPDATE:
10863 ret = io_register_files_update(ctx, arg, nr_args);
10864 break;
10865 case IORING_REGISTER_EVENTFD:
10866 case IORING_REGISTER_EVENTFD_ASYNC:
10867 ret = -EINVAL;
10868 if (nr_args != 1)
10869 break;
10870 ret = io_eventfd_register(ctx, arg);
10871 if (ret)
10872 break;
10873 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10874 ctx->eventfd_async = 1;
10875 else
10876 ctx->eventfd_async = 0;
10877 break;
10878 case IORING_UNREGISTER_EVENTFD:
10879 ret = -EINVAL;
10880 if (arg || nr_args)
10881 break;
10882 ret = io_eventfd_unregister(ctx);
10883 break;
10884 case IORING_REGISTER_PROBE:
10885 ret = -EINVAL;
10886 if (!arg || nr_args > 256)
10887 break;
10888 ret = io_probe(ctx, arg, nr_args);
10889 break;
10890 case IORING_REGISTER_PERSONALITY:
10891 ret = -EINVAL;
10892 if (arg || nr_args)
10893 break;
10894 ret = io_register_personality(ctx);
10895 break;
10896 case IORING_UNREGISTER_PERSONALITY:
10897 ret = -EINVAL;
10898 if (arg)
10899 break;
10900 ret = io_unregister_personality(ctx, nr_args);
10901 break;
10902 case IORING_REGISTER_ENABLE_RINGS:
10903 ret = -EINVAL;
10904 if (arg || nr_args)
10905 break;
10906 ret = io_register_enable_rings(ctx);
10907 break;
10908 case IORING_REGISTER_RESTRICTIONS:
10909 ret = io_register_restrictions(ctx, arg, nr_args);
10910 break;
10911 case IORING_REGISTER_FILES2:
10912 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10913 break;
10914 case IORING_REGISTER_FILES_UPDATE2:
10915 ret = io_register_rsrc_update(ctx, arg, nr_args,
10916 IORING_RSRC_FILE);
10917 break;
10918 case IORING_REGISTER_BUFFERS2:
10919 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10920 break;
10921 case IORING_REGISTER_BUFFERS_UPDATE:
10922 ret = io_register_rsrc_update(ctx, arg, nr_args,
10923 IORING_RSRC_BUFFER);
10924 break;
10925 case IORING_REGISTER_IOWQ_AFF:
10926 ret = -EINVAL;
10927 if (!arg || !nr_args)
10928 break;
10929 ret = io_register_iowq_aff(ctx, arg, nr_args);
10930 break;
10931 case IORING_UNREGISTER_IOWQ_AFF:
10932 ret = -EINVAL;
10933 if (arg || nr_args)
10934 break;
10935 ret = io_unregister_iowq_aff(ctx);
10936 break;
10937 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10938 ret = -EINVAL;
10939 if (!arg || nr_args != 2)
10940 break;
10941 ret = io_register_iowq_max_workers(ctx, arg);
10942 break;
10943 default:
10944 ret = -EINVAL;
10945 break;
10946 }
10947
10948 if (io_register_op_must_quiesce(opcode)) {
10949 /* bring the ctx back to life */
10950 percpu_ref_reinit(&ctx->refs);
10951 reinit_completion(&ctx->ref_comp);
10952 }
10953 return ret;
10954 }
10955
10956 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10957 void __user *, arg, unsigned int, nr_args)
10958 {
10959 struct io_ring_ctx *ctx;
10960 long ret = -EBADF;
10961 struct fd f;
10962
10963 f = fdget(fd);
10964 if (!f.file)
10965 return -EBADF;
10966
10967 ret = -EOPNOTSUPP;
10968 if (f.file->f_op != &io_uring_fops)
10969 goto out_fput;
10970
10971 ctx = f.file->private_data;
10972
10973 io_run_task_work();
10974
10975 mutex_lock(&ctx->uring_lock);
10976 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10977 mutex_unlock(&ctx->uring_lock);
10978 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10979 ctx->cq_ev_fd != NULL, ret);
10980 out_fput:
10981 fdput(f);
10982 return ret;
10983 }
10984
10985 static int __init io_uring_init(void)
10986 {
10987 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10988 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10989 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10990 } while (0)
10991
10992 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10993 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10994 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10995 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10996 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10997 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10998 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10999 BUILD_BUG_SQE_ELEM(8, __u64, off);
11000 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11001 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11002 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11003 BUILD_BUG_SQE_ELEM(24, __u32, len);
11004 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11005 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11006 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11007 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11008 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11009 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11010 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11011 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11012 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11013 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11014 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11015 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11016 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11017 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11018 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11019 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11020 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11021 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11022 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11023 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11024 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11025
11026 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11027 sizeof(struct io_uring_rsrc_update));
11028 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11029 sizeof(struct io_uring_rsrc_update2));
11030
11031 /* ->buf_index is u16 */
11032 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11033
11034 /* should fit into one byte */
11035 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11036
11037 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11038 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11039
11040 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11041 SLAB_ACCOUNT);
11042 return 0;
11043 };
11044 __initcall(io_uring_init);