]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/jbd2/journal.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 unsigned int line, const char *fmt, ...)
111 {
112 struct va_format vaf;
113 va_list args;
114
115 if (level > jbd2_journal_enable_debug)
116 return;
117 va_start(args, fmt);
118 vaf.fmt = fmt;
119 vaf.va = &args;
120 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121 va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129 if (!jbd2_journal_has_csum_v2or3_feature(j))
130 return 1;
131
132 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137 __u32 csum;
138 __be32 old_csum;
139
140 old_csum = sb->s_checksum;
141 sb->s_checksum = 0;
142 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 sb->s_checksum = old_csum;
144
145 return cpu_to_be32(csum);
146 }
147
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150 if (!jbd2_journal_has_csum_v2or3(j))
151 return 1;
152
153 return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158 if (!jbd2_journal_has_csum_v2or3(j))
159 return;
160
161 sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163
164 /*
165 * Helper function used to manage commit timeouts
166 */
167
168 static void commit_timeout(unsigned long __data)
169 {
170 struct task_struct * p = (struct task_struct *) __data;
171
172 wake_up_process(p);
173 }
174
175 /*
176 * kjournald2: The main thread function used to manage a logging device
177 * journal.
178 *
179 * This kernel thread is responsible for two things:
180 *
181 * 1) COMMIT: Every so often we need to commit the current state of the
182 * filesystem to disk. The journal thread is responsible for writing
183 * all of the metadata buffers to disk.
184 *
185 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186 * of the data in that part of the log has been rewritten elsewhere on
187 * the disk. Flushing these old buffers to reclaim space in the log is
188 * known as checkpointing, and this thread is responsible for that job.
189 */
190
191 static int kjournald2(void *arg)
192 {
193 journal_t *journal = arg;
194 transaction_t *transaction;
195
196 /*
197 * Set up an interval timer which can be used to trigger a commit wakeup
198 * after the commit interval expires
199 */
200 setup_timer(&journal->j_commit_timer, commit_timeout,
201 (unsigned long)current);
202
203 set_freezable();
204
205 /* Record that the journal thread is running */
206 journal->j_task = current;
207 wake_up(&journal->j_wait_done_commit);
208
209 /*
210 * Make sure that no allocations from this kernel thread will ever
211 * recurse to the fs layer because we are responsible for the
212 * transaction commit and any fs involvement might get stuck waiting for
213 * the trasn. commit.
214 */
215 memalloc_nofs_save();
216
217 /*
218 * And now, wait forever for commit wakeup events.
219 */
220 write_lock(&journal->j_state_lock);
221
222 loop:
223 if (journal->j_flags & JBD2_UNMOUNT)
224 goto end_loop;
225
226 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
227 journal->j_commit_sequence, journal->j_commit_request);
228
229 if (journal->j_commit_sequence != journal->j_commit_request) {
230 jbd_debug(1, "OK, requests differ\n");
231 write_unlock(&journal->j_state_lock);
232 del_timer_sync(&journal->j_commit_timer);
233 jbd2_journal_commit_transaction(journal);
234 write_lock(&journal->j_state_lock);
235 goto loop;
236 }
237
238 wake_up(&journal->j_wait_done_commit);
239 if (freezing(current)) {
240 /*
241 * The simpler the better. Flushing journal isn't a
242 * good idea, because that depends on threads that may
243 * be already stopped.
244 */
245 jbd_debug(1, "Now suspending kjournald2\n");
246 write_unlock(&journal->j_state_lock);
247 try_to_freeze();
248 write_lock(&journal->j_state_lock);
249 } else {
250 /*
251 * We assume on resume that commits are already there,
252 * so we don't sleep
253 */
254 DEFINE_WAIT(wait);
255 int should_sleep = 1;
256
257 prepare_to_wait(&journal->j_wait_commit, &wait,
258 TASK_INTERRUPTIBLE);
259 if (journal->j_commit_sequence != journal->j_commit_request)
260 should_sleep = 0;
261 transaction = journal->j_running_transaction;
262 if (transaction && time_after_eq(jiffies,
263 transaction->t_expires))
264 should_sleep = 0;
265 if (journal->j_flags & JBD2_UNMOUNT)
266 should_sleep = 0;
267 if (should_sleep) {
268 write_unlock(&journal->j_state_lock);
269 schedule();
270 write_lock(&journal->j_state_lock);
271 }
272 finish_wait(&journal->j_wait_commit, &wait);
273 }
274
275 jbd_debug(1, "kjournald2 wakes\n");
276
277 /*
278 * Were we woken up by a commit wakeup event?
279 */
280 transaction = journal->j_running_transaction;
281 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
282 journal->j_commit_request = transaction->t_tid;
283 jbd_debug(1, "woke because of timeout\n");
284 }
285 goto loop;
286
287 end_loop:
288 del_timer_sync(&journal->j_commit_timer);
289 journal->j_task = NULL;
290 wake_up(&journal->j_wait_done_commit);
291 jbd_debug(1, "Journal thread exiting.\n");
292 write_unlock(&journal->j_state_lock);
293 return 0;
294 }
295
296 static int jbd2_journal_start_thread(journal_t *journal)
297 {
298 struct task_struct *t;
299
300 t = kthread_run(kjournald2, journal, "jbd2/%s",
301 journal->j_devname);
302 if (IS_ERR(t))
303 return PTR_ERR(t);
304
305 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
306 return 0;
307 }
308
309 static void journal_kill_thread(journal_t *journal)
310 {
311 write_lock(&journal->j_state_lock);
312 journal->j_flags |= JBD2_UNMOUNT;
313
314 while (journal->j_task) {
315 write_unlock(&journal->j_state_lock);
316 wake_up(&journal->j_wait_commit);
317 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
318 write_lock(&journal->j_state_lock);
319 }
320 write_unlock(&journal->j_state_lock);
321 }
322
323 /*
324 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
325 *
326 * Writes a metadata buffer to a given disk block. The actual IO is not
327 * performed but a new buffer_head is constructed which labels the data
328 * to be written with the correct destination disk block.
329 *
330 * Any magic-number escaping which needs to be done will cause a
331 * copy-out here. If the buffer happens to start with the
332 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
333 * magic number is only written to the log for descripter blocks. In
334 * this case, we copy the data and replace the first word with 0, and we
335 * return a result code which indicates that this buffer needs to be
336 * marked as an escaped buffer in the corresponding log descriptor
337 * block. The missing word can then be restored when the block is read
338 * during recovery.
339 *
340 * If the source buffer has already been modified by a new transaction
341 * since we took the last commit snapshot, we use the frozen copy of
342 * that data for IO. If we end up using the existing buffer_head's data
343 * for the write, then we have to make sure nobody modifies it while the
344 * IO is in progress. do_get_write_access() handles this.
345 *
346 * The function returns a pointer to the buffer_head to be used for IO.
347 *
348 *
349 * Return value:
350 * <0: Error
351 * >=0: Finished OK
352 *
353 * On success:
354 * Bit 0 set == escape performed on the data
355 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
356 */
357
358 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
359 struct journal_head *jh_in,
360 struct buffer_head **bh_out,
361 sector_t blocknr)
362 {
363 int need_copy_out = 0;
364 int done_copy_out = 0;
365 int do_escape = 0;
366 char *mapped_data;
367 struct buffer_head *new_bh;
368 struct page *new_page;
369 unsigned int new_offset;
370 struct buffer_head *bh_in = jh2bh(jh_in);
371 journal_t *journal = transaction->t_journal;
372
373 /*
374 * The buffer really shouldn't be locked: only the current committing
375 * transaction is allowed to write it, so nobody else is allowed
376 * to do any IO.
377 *
378 * akpm: except if we're journalling data, and write() output is
379 * also part of a shared mapping, and another thread has
380 * decided to launch a writepage() against this buffer.
381 */
382 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
383
384 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
385
386 /* keep subsequent assertions sane */
387 atomic_set(&new_bh->b_count, 1);
388
389 jbd_lock_bh_state(bh_in);
390 repeat:
391 /*
392 * If a new transaction has already done a buffer copy-out, then
393 * we use that version of the data for the commit.
394 */
395 if (jh_in->b_frozen_data) {
396 done_copy_out = 1;
397 new_page = virt_to_page(jh_in->b_frozen_data);
398 new_offset = offset_in_page(jh_in->b_frozen_data);
399 } else {
400 new_page = jh2bh(jh_in)->b_page;
401 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
402 }
403
404 mapped_data = kmap_atomic(new_page);
405 /*
406 * Fire data frozen trigger if data already wasn't frozen. Do this
407 * before checking for escaping, as the trigger may modify the magic
408 * offset. If a copy-out happens afterwards, it will have the correct
409 * data in the buffer.
410 */
411 if (!done_copy_out)
412 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
413 jh_in->b_triggers);
414
415 /*
416 * Check for escaping
417 */
418 if (*((__be32 *)(mapped_data + new_offset)) ==
419 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
420 need_copy_out = 1;
421 do_escape = 1;
422 }
423 kunmap_atomic(mapped_data);
424
425 /*
426 * Do we need to do a data copy?
427 */
428 if (need_copy_out && !done_copy_out) {
429 char *tmp;
430
431 jbd_unlock_bh_state(bh_in);
432 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
433 if (!tmp) {
434 brelse(new_bh);
435 return -ENOMEM;
436 }
437 jbd_lock_bh_state(bh_in);
438 if (jh_in->b_frozen_data) {
439 jbd2_free(tmp, bh_in->b_size);
440 goto repeat;
441 }
442
443 jh_in->b_frozen_data = tmp;
444 mapped_data = kmap_atomic(new_page);
445 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
446 kunmap_atomic(mapped_data);
447
448 new_page = virt_to_page(tmp);
449 new_offset = offset_in_page(tmp);
450 done_copy_out = 1;
451
452 /*
453 * This isn't strictly necessary, as we're using frozen
454 * data for the escaping, but it keeps consistency with
455 * b_frozen_data usage.
456 */
457 jh_in->b_frozen_triggers = jh_in->b_triggers;
458 }
459
460 /*
461 * Did we need to do an escaping? Now we've done all the
462 * copying, we can finally do so.
463 */
464 if (do_escape) {
465 mapped_data = kmap_atomic(new_page);
466 *((unsigned int *)(mapped_data + new_offset)) = 0;
467 kunmap_atomic(mapped_data);
468 }
469
470 set_bh_page(new_bh, new_page, new_offset);
471 new_bh->b_size = bh_in->b_size;
472 new_bh->b_bdev = journal->j_dev;
473 new_bh->b_blocknr = blocknr;
474 new_bh->b_private = bh_in;
475 set_buffer_mapped(new_bh);
476 set_buffer_dirty(new_bh);
477
478 *bh_out = new_bh;
479
480 /*
481 * The to-be-written buffer needs to get moved to the io queue,
482 * and the original buffer whose contents we are shadowing or
483 * copying is moved to the transaction's shadow queue.
484 */
485 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
486 spin_lock(&journal->j_list_lock);
487 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
488 spin_unlock(&journal->j_list_lock);
489 set_buffer_shadow(bh_in);
490 jbd_unlock_bh_state(bh_in);
491
492 return do_escape | (done_copy_out << 1);
493 }
494
495 /*
496 * Allocation code for the journal file. Manage the space left in the
497 * journal, so that we can begin checkpointing when appropriate.
498 */
499
500 /*
501 * Called with j_state_lock locked for writing.
502 * Returns true if a transaction commit was started.
503 */
504 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 {
506 /* Return if the txn has already requested to be committed */
507 if (journal->j_commit_request == target)
508 return 0;
509
510 /*
511 * The only transaction we can possibly wait upon is the
512 * currently running transaction (if it exists). Otherwise,
513 * the target tid must be an old one.
514 */
515 if (journal->j_running_transaction &&
516 journal->j_running_transaction->t_tid == target) {
517 /*
518 * We want a new commit: OK, mark the request and wakeup the
519 * commit thread. We do _not_ do the commit ourselves.
520 */
521
522 journal->j_commit_request = target;
523 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
524 journal->j_commit_request,
525 journal->j_commit_sequence);
526 journal->j_running_transaction->t_requested = jiffies;
527 wake_up(&journal->j_wait_commit);
528 return 1;
529 } else if (!tid_geq(journal->j_commit_request, target))
530 /* This should never happen, but if it does, preserve
531 the evidence before kjournald goes into a loop and
532 increments j_commit_sequence beyond all recognition. */
533 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
534 journal->j_commit_request,
535 journal->j_commit_sequence,
536 target, journal->j_running_transaction ?
537 journal->j_running_transaction->t_tid : 0);
538 return 0;
539 }
540
541 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
542 {
543 int ret;
544
545 write_lock(&journal->j_state_lock);
546 ret = __jbd2_log_start_commit(journal, tid);
547 write_unlock(&journal->j_state_lock);
548 return ret;
549 }
550
551 /*
552 * Force and wait any uncommitted transactions. We can only force the running
553 * transaction if we don't have an active handle, otherwise, we will deadlock.
554 * Returns: <0 in case of error,
555 * 0 if nothing to commit,
556 * 1 if transaction was successfully committed.
557 */
558 static int __jbd2_journal_force_commit(journal_t *journal)
559 {
560 transaction_t *transaction = NULL;
561 tid_t tid;
562 int need_to_start = 0, ret = 0;
563
564 read_lock(&journal->j_state_lock);
565 if (journal->j_running_transaction && !current->journal_info) {
566 transaction = journal->j_running_transaction;
567 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
568 need_to_start = 1;
569 } else if (journal->j_committing_transaction)
570 transaction = journal->j_committing_transaction;
571
572 if (!transaction) {
573 /* Nothing to commit */
574 read_unlock(&journal->j_state_lock);
575 return 0;
576 }
577 tid = transaction->t_tid;
578 read_unlock(&journal->j_state_lock);
579 if (need_to_start)
580 jbd2_log_start_commit(journal, tid);
581 ret = jbd2_log_wait_commit(journal, tid);
582 if (!ret)
583 ret = 1;
584
585 return ret;
586 }
587
588 /**
589 * Force and wait upon a commit if the calling process is not within
590 * transaction. This is used for forcing out undo-protected data which contains
591 * bitmaps, when the fs is running out of space.
592 *
593 * @journal: journal to force
594 * Returns true if progress was made.
595 */
596 int jbd2_journal_force_commit_nested(journal_t *journal)
597 {
598 int ret;
599
600 ret = __jbd2_journal_force_commit(journal);
601 return ret > 0;
602 }
603
604 /**
605 * int journal_force_commit() - force any uncommitted transactions
606 * @journal: journal to force
607 *
608 * Caller want unconditional commit. We can only force the running transaction
609 * if we don't have an active handle, otherwise, we will deadlock.
610 */
611 int jbd2_journal_force_commit(journal_t *journal)
612 {
613 int ret;
614
615 J_ASSERT(!current->journal_info);
616 ret = __jbd2_journal_force_commit(journal);
617 if (ret > 0)
618 ret = 0;
619 return ret;
620 }
621
622 /*
623 * Start a commit of the current running transaction (if any). Returns true
624 * if a transaction is going to be committed (or is currently already
625 * committing), and fills its tid in at *ptid
626 */
627 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
628 {
629 int ret = 0;
630
631 write_lock(&journal->j_state_lock);
632 if (journal->j_running_transaction) {
633 tid_t tid = journal->j_running_transaction->t_tid;
634
635 __jbd2_log_start_commit(journal, tid);
636 /* There's a running transaction and we've just made sure
637 * it's commit has been scheduled. */
638 if (ptid)
639 *ptid = tid;
640 ret = 1;
641 } else if (journal->j_committing_transaction) {
642 /*
643 * If commit has been started, then we have to wait for
644 * completion of that transaction.
645 */
646 if (ptid)
647 *ptid = journal->j_committing_transaction->t_tid;
648 ret = 1;
649 }
650 write_unlock(&journal->j_state_lock);
651 return ret;
652 }
653
654 /*
655 * Return 1 if a given transaction has not yet sent barrier request
656 * connected with a transaction commit. If 0 is returned, transaction
657 * may or may not have sent the barrier. Used to avoid sending barrier
658 * twice in common cases.
659 */
660 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
661 {
662 int ret = 0;
663 transaction_t *commit_trans;
664
665 if (!(journal->j_flags & JBD2_BARRIER))
666 return 0;
667 read_lock(&journal->j_state_lock);
668 /* Transaction already committed? */
669 if (tid_geq(journal->j_commit_sequence, tid))
670 goto out;
671 commit_trans = journal->j_committing_transaction;
672 if (!commit_trans || commit_trans->t_tid != tid) {
673 ret = 1;
674 goto out;
675 }
676 /*
677 * Transaction is being committed and we already proceeded to
678 * submitting a flush to fs partition?
679 */
680 if (journal->j_fs_dev != journal->j_dev) {
681 if (!commit_trans->t_need_data_flush ||
682 commit_trans->t_state >= T_COMMIT_DFLUSH)
683 goto out;
684 } else {
685 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
686 goto out;
687 }
688 ret = 1;
689 out:
690 read_unlock(&journal->j_state_lock);
691 return ret;
692 }
693 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
694
695 /*
696 * Wait for a specified commit to complete.
697 * The caller may not hold the journal lock.
698 */
699 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
700 {
701 int err = 0;
702
703 read_lock(&journal->j_state_lock);
704 #ifdef CONFIG_PROVE_LOCKING
705 /*
706 * Some callers make sure transaction is already committing and in that
707 * case we cannot block on open handles anymore. So don't warn in that
708 * case.
709 */
710 if (tid_gt(tid, journal->j_commit_sequence) &&
711 (!journal->j_committing_transaction ||
712 journal->j_committing_transaction->t_tid != tid)) {
713 read_unlock(&journal->j_state_lock);
714 jbd2_might_wait_for_commit(journal);
715 read_lock(&journal->j_state_lock);
716 }
717 #endif
718 #ifdef CONFIG_JBD2_DEBUG
719 if (!tid_geq(journal->j_commit_request, tid)) {
720 printk(KERN_ERR
721 "%s: error: j_commit_request=%d, tid=%d\n",
722 __func__, journal->j_commit_request, tid);
723 }
724 #endif
725 while (tid_gt(tid, journal->j_commit_sequence)) {
726 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
727 tid, journal->j_commit_sequence);
728 read_unlock(&journal->j_state_lock);
729 wake_up(&journal->j_wait_commit);
730 wait_event(journal->j_wait_done_commit,
731 !tid_gt(tid, journal->j_commit_sequence));
732 read_lock(&journal->j_state_lock);
733 }
734 read_unlock(&journal->j_state_lock);
735
736 if (unlikely(is_journal_aborted(journal)))
737 err = -EIO;
738 return err;
739 }
740
741 /*
742 * When this function returns the transaction corresponding to tid
743 * will be completed. If the transaction has currently running, start
744 * committing that transaction before waiting for it to complete. If
745 * the transaction id is stale, it is by definition already completed,
746 * so just return SUCCESS.
747 */
748 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
749 {
750 int need_to_wait = 1;
751
752 read_lock(&journal->j_state_lock);
753 if (journal->j_running_transaction &&
754 journal->j_running_transaction->t_tid == tid) {
755 if (journal->j_commit_request != tid) {
756 /* transaction not yet started, so request it */
757 read_unlock(&journal->j_state_lock);
758 jbd2_log_start_commit(journal, tid);
759 goto wait_commit;
760 }
761 } else if (!(journal->j_committing_transaction &&
762 journal->j_committing_transaction->t_tid == tid))
763 need_to_wait = 0;
764 read_unlock(&journal->j_state_lock);
765 if (!need_to_wait)
766 return 0;
767 wait_commit:
768 return jbd2_log_wait_commit(journal, tid);
769 }
770 EXPORT_SYMBOL(jbd2_complete_transaction);
771
772 /*
773 * Log buffer allocation routines:
774 */
775
776 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
777 {
778 unsigned long blocknr;
779
780 write_lock(&journal->j_state_lock);
781 J_ASSERT(journal->j_free > 1);
782
783 blocknr = journal->j_head;
784 journal->j_head++;
785 journal->j_free--;
786 if (journal->j_head == journal->j_last)
787 journal->j_head = journal->j_first;
788 write_unlock(&journal->j_state_lock);
789 return jbd2_journal_bmap(journal, blocknr, retp);
790 }
791
792 /*
793 * Conversion of logical to physical block numbers for the journal
794 *
795 * On external journals the journal blocks are identity-mapped, so
796 * this is a no-op. If needed, we can use j_blk_offset - everything is
797 * ready.
798 */
799 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
800 unsigned long long *retp)
801 {
802 int err = 0;
803 unsigned long long ret;
804
805 if (journal->j_inode) {
806 ret = bmap(journal->j_inode, blocknr);
807 if (ret)
808 *retp = ret;
809 else {
810 printk(KERN_ALERT "%s: journal block not found "
811 "at offset %lu on %s\n",
812 __func__, blocknr, journal->j_devname);
813 err = -EIO;
814 __journal_abort_soft(journal, err);
815 }
816 } else {
817 *retp = blocknr; /* +journal->j_blk_offset */
818 }
819 return err;
820 }
821
822 /*
823 * We play buffer_head aliasing tricks to write data/metadata blocks to
824 * the journal without copying their contents, but for journal
825 * descriptor blocks we do need to generate bona fide buffers.
826 *
827 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
828 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
829 * But we don't bother doing that, so there will be coherency problems with
830 * mmaps of blockdevs which hold live JBD-controlled filesystems.
831 */
832 struct buffer_head *
833 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
834 {
835 journal_t *journal = transaction->t_journal;
836 struct buffer_head *bh;
837 unsigned long long blocknr;
838 journal_header_t *header;
839 int err;
840
841 err = jbd2_journal_next_log_block(journal, &blocknr);
842
843 if (err)
844 return NULL;
845
846 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
847 if (!bh)
848 return NULL;
849 lock_buffer(bh);
850 memset(bh->b_data, 0, journal->j_blocksize);
851 header = (journal_header_t *)bh->b_data;
852 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
853 header->h_blocktype = cpu_to_be32(type);
854 header->h_sequence = cpu_to_be32(transaction->t_tid);
855 set_buffer_uptodate(bh);
856 unlock_buffer(bh);
857 BUFFER_TRACE(bh, "return this buffer");
858 return bh;
859 }
860
861 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
862 {
863 struct jbd2_journal_block_tail *tail;
864 __u32 csum;
865
866 if (!jbd2_journal_has_csum_v2or3(j))
867 return;
868
869 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
870 sizeof(struct jbd2_journal_block_tail));
871 tail->t_checksum = 0;
872 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
873 tail->t_checksum = cpu_to_be32(csum);
874 }
875
876 /*
877 * Return tid of the oldest transaction in the journal and block in the journal
878 * where the transaction starts.
879 *
880 * If the journal is now empty, return which will be the next transaction ID
881 * we will write and where will that transaction start.
882 *
883 * The return value is 0 if journal tail cannot be pushed any further, 1 if
884 * it can.
885 */
886 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
887 unsigned long *block)
888 {
889 transaction_t *transaction;
890 int ret;
891
892 read_lock(&journal->j_state_lock);
893 spin_lock(&journal->j_list_lock);
894 transaction = journal->j_checkpoint_transactions;
895 if (transaction) {
896 *tid = transaction->t_tid;
897 *block = transaction->t_log_start;
898 } else if ((transaction = journal->j_committing_transaction) != NULL) {
899 *tid = transaction->t_tid;
900 *block = transaction->t_log_start;
901 } else if ((transaction = journal->j_running_transaction) != NULL) {
902 *tid = transaction->t_tid;
903 *block = journal->j_head;
904 } else {
905 *tid = journal->j_transaction_sequence;
906 *block = journal->j_head;
907 }
908 ret = tid_gt(*tid, journal->j_tail_sequence);
909 spin_unlock(&journal->j_list_lock);
910 read_unlock(&journal->j_state_lock);
911
912 return ret;
913 }
914
915 /*
916 * Update information in journal structure and in on disk journal superblock
917 * about log tail. This function does not check whether information passed in
918 * really pushes log tail further. It's responsibility of the caller to make
919 * sure provided log tail information is valid (e.g. by holding
920 * j_checkpoint_mutex all the time between computing log tail and calling this
921 * function as is the case with jbd2_cleanup_journal_tail()).
922 *
923 * Requires j_checkpoint_mutex
924 */
925 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
926 {
927 unsigned long freed;
928 int ret;
929
930 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
931
932 /*
933 * We cannot afford for write to remain in drive's caches since as
934 * soon as we update j_tail, next transaction can start reusing journal
935 * space and if we lose sb update during power failure we'd replay
936 * old transaction with possibly newly overwritten data.
937 */
938 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
939 REQ_SYNC | REQ_FUA);
940 if (ret)
941 goto out;
942
943 write_lock(&journal->j_state_lock);
944 freed = block - journal->j_tail;
945 if (block < journal->j_tail)
946 freed += journal->j_last - journal->j_first;
947
948 trace_jbd2_update_log_tail(journal, tid, block, freed);
949 jbd_debug(1,
950 "Cleaning journal tail from %d to %d (offset %lu), "
951 "freeing %lu\n",
952 journal->j_tail_sequence, tid, block, freed);
953
954 journal->j_free += freed;
955 journal->j_tail_sequence = tid;
956 journal->j_tail = block;
957 write_unlock(&journal->j_state_lock);
958
959 out:
960 return ret;
961 }
962
963 /*
964 * This is a variaon of __jbd2_update_log_tail which checks for validity of
965 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
966 * with other threads updating log tail.
967 */
968 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
969 {
970 mutex_lock_io(&journal->j_checkpoint_mutex);
971 if (tid_gt(tid, journal->j_tail_sequence))
972 __jbd2_update_log_tail(journal, tid, block);
973 mutex_unlock(&journal->j_checkpoint_mutex);
974 }
975
976 struct jbd2_stats_proc_session {
977 journal_t *journal;
978 struct transaction_stats_s *stats;
979 int start;
980 int max;
981 };
982
983 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
984 {
985 return *pos ? NULL : SEQ_START_TOKEN;
986 }
987
988 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
989 {
990 return NULL;
991 }
992
993 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
994 {
995 struct jbd2_stats_proc_session *s = seq->private;
996
997 if (v != SEQ_START_TOKEN)
998 return 0;
999 seq_printf(seq, "%lu transactions (%lu requested), "
1000 "each up to %u blocks\n",
1001 s->stats->ts_tid, s->stats->ts_requested,
1002 s->journal->j_max_transaction_buffers);
1003 if (s->stats->ts_tid == 0)
1004 return 0;
1005 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1006 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1007 seq_printf(seq, " %ums request delay\n",
1008 (s->stats->ts_requested == 0) ? 0 :
1009 jiffies_to_msecs(s->stats->run.rs_request_delay /
1010 s->stats->ts_requested));
1011 seq_printf(seq, " %ums running transaction\n",
1012 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1013 seq_printf(seq, " %ums transaction was being locked\n",
1014 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1015 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1016 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1017 seq_printf(seq, " %ums logging transaction\n",
1018 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1019 seq_printf(seq, " %lluus average transaction commit time\n",
1020 div_u64(s->journal->j_average_commit_time, 1000));
1021 seq_printf(seq, " %lu handles per transaction\n",
1022 s->stats->run.rs_handle_count / s->stats->ts_tid);
1023 seq_printf(seq, " %lu blocks per transaction\n",
1024 s->stats->run.rs_blocks / s->stats->ts_tid);
1025 seq_printf(seq, " %lu logged blocks per transaction\n",
1026 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1027 return 0;
1028 }
1029
1030 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1031 {
1032 }
1033
1034 static const struct seq_operations jbd2_seq_info_ops = {
1035 .start = jbd2_seq_info_start,
1036 .next = jbd2_seq_info_next,
1037 .stop = jbd2_seq_info_stop,
1038 .show = jbd2_seq_info_show,
1039 };
1040
1041 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042 {
1043 journal_t *journal = PDE_DATA(inode);
1044 struct jbd2_stats_proc_session *s;
1045 int rc, size;
1046
1047 s = kmalloc(sizeof(*s), GFP_KERNEL);
1048 if (s == NULL)
1049 return -ENOMEM;
1050 size = sizeof(struct transaction_stats_s);
1051 s->stats = kmalloc(size, GFP_KERNEL);
1052 if (s->stats == NULL) {
1053 kfree(s);
1054 return -ENOMEM;
1055 }
1056 spin_lock(&journal->j_history_lock);
1057 memcpy(s->stats, &journal->j_stats, size);
1058 s->journal = journal;
1059 spin_unlock(&journal->j_history_lock);
1060
1061 rc = seq_open(file, &jbd2_seq_info_ops);
1062 if (rc == 0) {
1063 struct seq_file *m = file->private_data;
1064 m->private = s;
1065 } else {
1066 kfree(s->stats);
1067 kfree(s);
1068 }
1069 return rc;
1070
1071 }
1072
1073 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074 {
1075 struct seq_file *seq = file->private_data;
1076 struct jbd2_stats_proc_session *s = seq->private;
1077 kfree(s->stats);
1078 kfree(s);
1079 return seq_release(inode, file);
1080 }
1081
1082 static const struct file_operations jbd2_seq_info_fops = {
1083 .owner = THIS_MODULE,
1084 .open = jbd2_seq_info_open,
1085 .read = seq_read,
1086 .llseek = seq_lseek,
1087 .release = jbd2_seq_info_release,
1088 };
1089
1090 static struct proc_dir_entry *proc_jbd2_stats;
1091
1092 static void jbd2_stats_proc_init(journal_t *journal)
1093 {
1094 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1095 if (journal->j_proc_entry) {
1096 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1097 &jbd2_seq_info_fops, journal);
1098 }
1099 }
1100
1101 static void jbd2_stats_proc_exit(journal_t *journal)
1102 {
1103 remove_proc_entry("info", journal->j_proc_entry);
1104 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1105 }
1106
1107 /*
1108 * Management for journal control blocks: functions to create and
1109 * destroy journal_t structures, and to initialise and read existing
1110 * journal blocks from disk. */
1111
1112 /* First: create and setup a journal_t object in memory. We initialise
1113 * very few fields yet: that has to wait until we have created the
1114 * journal structures from from scratch, or loaded them from disk. */
1115
1116 static journal_t *journal_init_common(struct block_device *bdev,
1117 struct block_device *fs_dev,
1118 unsigned long long start, int len, int blocksize)
1119 {
1120 static struct lock_class_key jbd2_trans_commit_key;
1121 journal_t *journal;
1122 int err;
1123 struct buffer_head *bh;
1124 int n;
1125
1126 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1127 if (!journal)
1128 return NULL;
1129
1130 init_waitqueue_head(&journal->j_wait_transaction_locked);
1131 init_waitqueue_head(&journal->j_wait_done_commit);
1132 init_waitqueue_head(&journal->j_wait_commit);
1133 init_waitqueue_head(&journal->j_wait_updates);
1134 init_waitqueue_head(&journal->j_wait_reserved);
1135 mutex_init(&journal->j_barrier);
1136 mutex_init(&journal->j_checkpoint_mutex);
1137 spin_lock_init(&journal->j_revoke_lock);
1138 spin_lock_init(&journal->j_list_lock);
1139 rwlock_init(&journal->j_state_lock);
1140
1141 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1142 journal->j_min_batch_time = 0;
1143 journal->j_max_batch_time = 15000; /* 15ms */
1144 atomic_set(&journal->j_reserved_credits, 0);
1145
1146 /* The journal is marked for error until we succeed with recovery! */
1147 journal->j_flags = JBD2_ABORT;
1148
1149 /* Set up a default-sized revoke table for the new mount. */
1150 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1151 if (err)
1152 goto err_cleanup;
1153
1154 spin_lock_init(&journal->j_history_lock);
1155
1156 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1157 &jbd2_trans_commit_key, 0);
1158
1159 /* journal descriptor can store up to n blocks -bzzz */
1160 journal->j_blocksize = blocksize;
1161 journal->j_dev = bdev;
1162 journal->j_fs_dev = fs_dev;
1163 journal->j_blk_offset = start;
1164 journal->j_maxlen = len;
1165 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1166 journal->j_wbufsize = n;
1167 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1168 GFP_KERNEL);
1169 if (!journal->j_wbuf)
1170 goto err_cleanup;
1171
1172 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1173 if (!bh) {
1174 pr_err("%s: Cannot get buffer for journal superblock\n",
1175 __func__);
1176 goto err_cleanup;
1177 }
1178 journal->j_sb_buffer = bh;
1179 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1180
1181 return journal;
1182
1183 err_cleanup:
1184 kfree(journal->j_wbuf);
1185 jbd2_journal_destroy_revoke(journal);
1186 kfree(journal);
1187 return NULL;
1188 }
1189
1190 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1191 *
1192 * Create a journal structure assigned some fixed set of disk blocks to
1193 * the journal. We don't actually touch those disk blocks yet, but we
1194 * need to set up all of the mapping information to tell the journaling
1195 * system where the journal blocks are.
1196 *
1197 */
1198
1199 /**
1200 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1201 * @bdev: Block device on which to create the journal
1202 * @fs_dev: Device which hold journalled filesystem for this journal.
1203 * @start: Block nr Start of journal.
1204 * @len: Length of the journal in blocks.
1205 * @blocksize: blocksize of journalling device
1206 *
1207 * Returns: a newly created journal_t *
1208 *
1209 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1210 * range of blocks on an arbitrary block device.
1211 *
1212 */
1213 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1214 struct block_device *fs_dev,
1215 unsigned long long start, int len, int blocksize)
1216 {
1217 journal_t *journal;
1218
1219 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1220 if (!journal)
1221 return NULL;
1222
1223 bdevname(journal->j_dev, journal->j_devname);
1224 strreplace(journal->j_devname, '/', '!');
1225 jbd2_stats_proc_init(journal);
1226
1227 return journal;
1228 }
1229
1230 /**
1231 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1232 * @inode: An inode to create the journal in
1233 *
1234 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1235 * the journal. The inode must exist already, must support bmap() and
1236 * must have all data blocks preallocated.
1237 */
1238 journal_t *jbd2_journal_init_inode(struct inode *inode)
1239 {
1240 journal_t *journal;
1241 char *p;
1242 unsigned long long blocknr;
1243
1244 blocknr = bmap(inode, 0);
1245 if (!blocknr) {
1246 pr_err("%s: Cannot locate journal superblock\n",
1247 __func__);
1248 return NULL;
1249 }
1250
1251 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1252 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1253 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1254
1255 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1256 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1257 inode->i_sb->s_blocksize);
1258 if (!journal)
1259 return NULL;
1260
1261 journal->j_inode = inode;
1262 bdevname(journal->j_dev, journal->j_devname);
1263 p = strreplace(journal->j_devname, '/', '!');
1264 sprintf(p, "-%lu", journal->j_inode->i_ino);
1265 jbd2_stats_proc_init(journal);
1266
1267 return journal;
1268 }
1269
1270 /*
1271 * If the journal init or create aborts, we need to mark the journal
1272 * superblock as being NULL to prevent the journal destroy from writing
1273 * back a bogus superblock.
1274 */
1275 static void journal_fail_superblock (journal_t *journal)
1276 {
1277 struct buffer_head *bh = journal->j_sb_buffer;
1278 brelse(bh);
1279 journal->j_sb_buffer = NULL;
1280 }
1281
1282 /*
1283 * Given a journal_t structure, initialise the various fields for
1284 * startup of a new journaling session. We use this both when creating
1285 * a journal, and after recovering an old journal to reset it for
1286 * subsequent use.
1287 */
1288
1289 static int journal_reset(journal_t *journal)
1290 {
1291 journal_superblock_t *sb = journal->j_superblock;
1292 unsigned long long first, last;
1293
1294 first = be32_to_cpu(sb->s_first);
1295 last = be32_to_cpu(sb->s_maxlen);
1296 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1297 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1298 first, last);
1299 journal_fail_superblock(journal);
1300 return -EINVAL;
1301 }
1302
1303 journal->j_first = first;
1304 journal->j_last = last;
1305
1306 journal->j_head = first;
1307 journal->j_tail = first;
1308 journal->j_free = last - first;
1309
1310 journal->j_tail_sequence = journal->j_transaction_sequence;
1311 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1312 journal->j_commit_request = journal->j_commit_sequence;
1313
1314 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1315
1316 /*
1317 * As a special case, if the on-disk copy is already marked as needing
1318 * no recovery (s_start == 0), then we can safely defer the superblock
1319 * update until the next commit by setting JBD2_FLUSHED. This avoids
1320 * attempting a write to a potential-readonly device.
1321 */
1322 if (sb->s_start == 0) {
1323 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1324 "(start %ld, seq %d, errno %d)\n",
1325 journal->j_tail, journal->j_tail_sequence,
1326 journal->j_errno);
1327 journal->j_flags |= JBD2_FLUSHED;
1328 } else {
1329 /* Lock here to make assertions happy... */
1330 mutex_lock_io(&journal->j_checkpoint_mutex);
1331 /*
1332 * Update log tail information. We use REQ_FUA since new
1333 * transaction will start reusing journal space and so we
1334 * must make sure information about current log tail is on
1335 * disk before that.
1336 */
1337 jbd2_journal_update_sb_log_tail(journal,
1338 journal->j_tail_sequence,
1339 journal->j_tail,
1340 REQ_SYNC | REQ_FUA);
1341 mutex_unlock(&journal->j_checkpoint_mutex);
1342 }
1343 return jbd2_journal_start_thread(journal);
1344 }
1345
1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348 struct buffer_head *bh = journal->j_sb_buffer;
1349 journal_superblock_t *sb = journal->j_superblock;
1350 int ret;
1351
1352 trace_jbd2_write_superblock(journal, write_flags);
1353 if (!(journal->j_flags & JBD2_BARRIER))
1354 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1355 lock_buffer(bh);
1356 if (buffer_write_io_error(bh)) {
1357 /*
1358 * Oh, dear. A previous attempt to write the journal
1359 * superblock failed. This could happen because the
1360 * USB device was yanked out. Or it could happen to
1361 * be a transient write error and maybe the block will
1362 * be remapped. Nothing we can do but to retry the
1363 * write and hope for the best.
1364 */
1365 printk(KERN_ERR "JBD2: previous I/O error detected "
1366 "for journal superblock update for %s.\n",
1367 journal->j_devname);
1368 clear_buffer_write_io_error(bh);
1369 set_buffer_uptodate(bh);
1370 }
1371 jbd2_superblock_csum_set(journal, sb);
1372 get_bh(bh);
1373 bh->b_end_io = end_buffer_write_sync;
1374 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1375 wait_on_buffer(bh);
1376 if (buffer_write_io_error(bh)) {
1377 clear_buffer_write_io_error(bh);
1378 set_buffer_uptodate(bh);
1379 ret = -EIO;
1380 }
1381 if (ret) {
1382 printk(KERN_ERR "JBD2: Error %d detected when updating "
1383 "journal superblock for %s.\n", ret,
1384 journal->j_devname);
1385 jbd2_journal_abort(journal, ret);
1386 }
1387
1388 return ret;
1389 }
1390
1391 /**
1392 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1393 * @journal: The journal to update.
1394 * @tail_tid: TID of the new transaction at the tail of the log
1395 * @tail_block: The first block of the transaction at the tail of the log
1396 * @write_op: With which operation should we write the journal sb
1397 *
1398 * Update a journal's superblock information about log tail and write it to
1399 * disk, waiting for the IO to complete.
1400 */
1401 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1402 unsigned long tail_block, int write_op)
1403 {
1404 journal_superblock_t *sb = journal->j_superblock;
1405 int ret;
1406
1407 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1408 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1409 tail_block, tail_tid);
1410
1411 sb->s_sequence = cpu_to_be32(tail_tid);
1412 sb->s_start = cpu_to_be32(tail_block);
1413
1414 ret = jbd2_write_superblock(journal, write_op);
1415 if (ret)
1416 goto out;
1417
1418 /* Log is no longer empty */
1419 write_lock(&journal->j_state_lock);
1420 WARN_ON(!sb->s_sequence);
1421 journal->j_flags &= ~JBD2_FLUSHED;
1422 write_unlock(&journal->j_state_lock);
1423
1424 out:
1425 return ret;
1426 }
1427
1428 /**
1429 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1430 * @journal: The journal to update.
1431 * @write_op: With which operation should we write the journal sb
1432 *
1433 * Update a journal's dynamic superblock fields to show that journal is empty.
1434 * Write updated superblock to disk waiting for IO to complete.
1435 */
1436 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1437 {
1438 journal_superblock_t *sb = journal->j_superblock;
1439
1440 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1441 read_lock(&journal->j_state_lock);
1442 /* Is it already empty? */
1443 if (sb->s_start == 0) {
1444 read_unlock(&journal->j_state_lock);
1445 return;
1446 }
1447 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1448 journal->j_tail_sequence);
1449
1450 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1451 sb->s_start = cpu_to_be32(0);
1452 read_unlock(&journal->j_state_lock);
1453
1454 jbd2_write_superblock(journal, write_op);
1455
1456 /* Log is no longer empty */
1457 write_lock(&journal->j_state_lock);
1458 journal->j_flags |= JBD2_FLUSHED;
1459 write_unlock(&journal->j_state_lock);
1460 }
1461
1462
1463 /**
1464 * jbd2_journal_update_sb_errno() - Update error in the journal.
1465 * @journal: The journal to update.
1466 *
1467 * Update a journal's errno. Write updated superblock to disk waiting for IO
1468 * to complete.
1469 */
1470 void jbd2_journal_update_sb_errno(journal_t *journal)
1471 {
1472 journal_superblock_t *sb = journal->j_superblock;
1473
1474 read_lock(&journal->j_state_lock);
1475 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1476 journal->j_errno);
1477 sb->s_errno = cpu_to_be32(journal->j_errno);
1478 read_unlock(&journal->j_state_lock);
1479
1480 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1481 }
1482 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1483
1484 /*
1485 * Read the superblock for a given journal, performing initial
1486 * validation of the format.
1487 */
1488 static int journal_get_superblock(journal_t *journal)
1489 {
1490 struct buffer_head *bh;
1491 journal_superblock_t *sb;
1492 int err = -EIO;
1493
1494 bh = journal->j_sb_buffer;
1495
1496 J_ASSERT(bh != NULL);
1497 if (!buffer_uptodate(bh)) {
1498 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1499 wait_on_buffer(bh);
1500 if (!buffer_uptodate(bh)) {
1501 printk(KERN_ERR
1502 "JBD2: IO error reading journal superblock\n");
1503 goto out;
1504 }
1505 }
1506
1507 if (buffer_verified(bh))
1508 return 0;
1509
1510 sb = journal->j_superblock;
1511
1512 err = -EINVAL;
1513
1514 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1515 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1516 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1517 goto out;
1518 }
1519
1520 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1521 case JBD2_SUPERBLOCK_V1:
1522 journal->j_format_version = 1;
1523 break;
1524 case JBD2_SUPERBLOCK_V2:
1525 journal->j_format_version = 2;
1526 break;
1527 default:
1528 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1529 goto out;
1530 }
1531
1532 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1533 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1534 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1535 printk(KERN_WARNING "JBD2: journal file too short\n");
1536 goto out;
1537 }
1538
1539 if (be32_to_cpu(sb->s_first) == 0 ||
1540 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1541 printk(KERN_WARNING
1542 "JBD2: Invalid start block of journal: %u\n",
1543 be32_to_cpu(sb->s_first));
1544 goto out;
1545 }
1546
1547 if (jbd2_has_feature_csum2(journal) &&
1548 jbd2_has_feature_csum3(journal)) {
1549 /* Can't have checksum v2 and v3 at the same time! */
1550 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1551 "at the same time!\n");
1552 goto out;
1553 }
1554
1555 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1556 jbd2_has_feature_checksum(journal)) {
1557 /* Can't have checksum v1 and v2 on at the same time! */
1558 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1559 "at the same time!\n");
1560 goto out;
1561 }
1562
1563 if (!jbd2_verify_csum_type(journal, sb)) {
1564 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1565 goto out;
1566 }
1567
1568 /* Load the checksum driver */
1569 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1570 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1571 if (IS_ERR(journal->j_chksum_driver)) {
1572 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1573 err = PTR_ERR(journal->j_chksum_driver);
1574 journal->j_chksum_driver = NULL;
1575 goto out;
1576 }
1577 }
1578
1579 /* Check superblock checksum */
1580 if (!jbd2_superblock_csum_verify(journal, sb)) {
1581 printk(KERN_ERR "JBD2: journal checksum error\n");
1582 err = -EFSBADCRC;
1583 goto out;
1584 }
1585
1586 /* Precompute checksum seed for all metadata */
1587 if (jbd2_journal_has_csum_v2or3(journal))
1588 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1589 sizeof(sb->s_uuid));
1590
1591 set_buffer_verified(bh);
1592
1593 return 0;
1594
1595 out:
1596 journal_fail_superblock(journal);
1597 return err;
1598 }
1599
1600 /*
1601 * Load the on-disk journal superblock and read the key fields into the
1602 * journal_t.
1603 */
1604
1605 static int load_superblock(journal_t *journal)
1606 {
1607 int err;
1608 journal_superblock_t *sb;
1609
1610 err = journal_get_superblock(journal);
1611 if (err)
1612 return err;
1613
1614 sb = journal->j_superblock;
1615
1616 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1617 journal->j_tail = be32_to_cpu(sb->s_start);
1618 journal->j_first = be32_to_cpu(sb->s_first);
1619 journal->j_last = be32_to_cpu(sb->s_maxlen);
1620 journal->j_errno = be32_to_cpu(sb->s_errno);
1621
1622 return 0;
1623 }
1624
1625
1626 /**
1627 * int jbd2_journal_load() - Read journal from disk.
1628 * @journal: Journal to act on.
1629 *
1630 * Given a journal_t structure which tells us which disk blocks contain
1631 * a journal, read the journal from disk to initialise the in-memory
1632 * structures.
1633 */
1634 int jbd2_journal_load(journal_t *journal)
1635 {
1636 int err;
1637 journal_superblock_t *sb;
1638
1639 err = load_superblock(journal);
1640 if (err)
1641 return err;
1642
1643 sb = journal->j_superblock;
1644 /* If this is a V2 superblock, then we have to check the
1645 * features flags on it. */
1646
1647 if (journal->j_format_version >= 2) {
1648 if ((sb->s_feature_ro_compat &
1649 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1650 (sb->s_feature_incompat &
1651 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1652 printk(KERN_WARNING
1653 "JBD2: Unrecognised features on journal\n");
1654 return -EINVAL;
1655 }
1656 }
1657
1658 /*
1659 * Create a slab for this blocksize
1660 */
1661 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1662 if (err)
1663 return err;
1664
1665 /* Let the recovery code check whether it needs to recover any
1666 * data from the journal. */
1667 if (jbd2_journal_recover(journal))
1668 goto recovery_error;
1669
1670 if (journal->j_failed_commit) {
1671 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1672 "is corrupt.\n", journal->j_failed_commit,
1673 journal->j_devname);
1674 return -EFSCORRUPTED;
1675 }
1676
1677 /* OK, we've finished with the dynamic journal bits:
1678 * reinitialise the dynamic contents of the superblock in memory
1679 * and reset them on disk. */
1680 if (journal_reset(journal))
1681 goto recovery_error;
1682
1683 journal->j_flags &= ~JBD2_ABORT;
1684 journal->j_flags |= JBD2_LOADED;
1685 return 0;
1686
1687 recovery_error:
1688 printk(KERN_WARNING "JBD2: recovery failed\n");
1689 return -EIO;
1690 }
1691
1692 /**
1693 * void jbd2_journal_destroy() - Release a journal_t structure.
1694 * @journal: Journal to act on.
1695 *
1696 * Release a journal_t structure once it is no longer in use by the
1697 * journaled object.
1698 * Return <0 if we couldn't clean up the journal.
1699 */
1700 int jbd2_journal_destroy(journal_t *journal)
1701 {
1702 int err = 0;
1703
1704 /* Wait for the commit thread to wake up and die. */
1705 journal_kill_thread(journal);
1706
1707 /* Force a final log commit */
1708 if (journal->j_running_transaction)
1709 jbd2_journal_commit_transaction(journal);
1710
1711 /* Force any old transactions to disk */
1712
1713 /* Totally anal locking here... */
1714 spin_lock(&journal->j_list_lock);
1715 while (journal->j_checkpoint_transactions != NULL) {
1716 spin_unlock(&journal->j_list_lock);
1717 mutex_lock_io(&journal->j_checkpoint_mutex);
1718 err = jbd2_log_do_checkpoint(journal);
1719 mutex_unlock(&journal->j_checkpoint_mutex);
1720 /*
1721 * If checkpointing failed, just free the buffers to avoid
1722 * looping forever
1723 */
1724 if (err) {
1725 jbd2_journal_destroy_checkpoint(journal);
1726 spin_lock(&journal->j_list_lock);
1727 break;
1728 }
1729 spin_lock(&journal->j_list_lock);
1730 }
1731
1732 J_ASSERT(journal->j_running_transaction == NULL);
1733 J_ASSERT(journal->j_committing_transaction == NULL);
1734 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1735 spin_unlock(&journal->j_list_lock);
1736
1737 if (journal->j_sb_buffer) {
1738 if (!is_journal_aborted(journal)) {
1739 mutex_lock_io(&journal->j_checkpoint_mutex);
1740
1741 write_lock(&journal->j_state_lock);
1742 journal->j_tail_sequence =
1743 ++journal->j_transaction_sequence;
1744 write_unlock(&journal->j_state_lock);
1745
1746 jbd2_mark_journal_empty(journal,
1747 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1748 mutex_unlock(&journal->j_checkpoint_mutex);
1749 } else
1750 err = -EIO;
1751 brelse(journal->j_sb_buffer);
1752 }
1753
1754 if (journal->j_proc_entry)
1755 jbd2_stats_proc_exit(journal);
1756 iput(journal->j_inode);
1757 if (journal->j_revoke)
1758 jbd2_journal_destroy_revoke(journal);
1759 if (journal->j_chksum_driver)
1760 crypto_free_shash(journal->j_chksum_driver);
1761 kfree(journal->j_wbuf);
1762 kfree(journal);
1763
1764 return err;
1765 }
1766
1767
1768 /**
1769 *int jbd2_journal_check_used_features () - Check if features specified are used.
1770 * @journal: Journal to check.
1771 * @compat: bitmask of compatible features
1772 * @ro: bitmask of features that force read-only mount
1773 * @incompat: bitmask of incompatible features
1774 *
1775 * Check whether the journal uses all of a given set of
1776 * features. Return true (non-zero) if it does.
1777 **/
1778
1779 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1780 unsigned long ro, unsigned long incompat)
1781 {
1782 journal_superblock_t *sb;
1783
1784 if (!compat && !ro && !incompat)
1785 return 1;
1786 /* Load journal superblock if it is not loaded yet. */
1787 if (journal->j_format_version == 0 &&
1788 journal_get_superblock(journal) != 0)
1789 return 0;
1790 if (journal->j_format_version == 1)
1791 return 0;
1792
1793 sb = journal->j_superblock;
1794
1795 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1796 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1797 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1798 return 1;
1799
1800 return 0;
1801 }
1802
1803 /**
1804 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1805 * @journal: Journal to check.
1806 * @compat: bitmask of compatible features
1807 * @ro: bitmask of features that force read-only mount
1808 * @incompat: bitmask of incompatible features
1809 *
1810 * Check whether the journaling code supports the use of
1811 * all of a given set of features on this journal. Return true
1812 * (non-zero) if it can. */
1813
1814 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1815 unsigned long ro, unsigned long incompat)
1816 {
1817 if (!compat && !ro && !incompat)
1818 return 1;
1819
1820 /* We can support any known requested features iff the
1821 * superblock is in version 2. Otherwise we fail to support any
1822 * extended sb features. */
1823
1824 if (journal->j_format_version != 2)
1825 return 0;
1826
1827 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1828 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1829 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1830 return 1;
1831
1832 return 0;
1833 }
1834
1835 /**
1836 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1837 * @journal: Journal to act on.
1838 * @compat: bitmask of compatible features
1839 * @ro: bitmask of features that force read-only mount
1840 * @incompat: bitmask of incompatible features
1841 *
1842 * Mark a given journal feature as present on the
1843 * superblock. Returns true if the requested features could be set.
1844 *
1845 */
1846
1847 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1848 unsigned long ro, unsigned long incompat)
1849 {
1850 #define INCOMPAT_FEATURE_ON(f) \
1851 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1852 #define COMPAT_FEATURE_ON(f) \
1853 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1854 journal_superblock_t *sb;
1855
1856 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1857 return 1;
1858
1859 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1860 return 0;
1861
1862 /* If enabling v2 checksums, turn on v3 instead */
1863 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1864 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1865 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1866 }
1867
1868 /* Asking for checksumming v3 and v1? Only give them v3. */
1869 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1870 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1871 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1872
1873 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1874 compat, ro, incompat);
1875
1876 sb = journal->j_superblock;
1877
1878 /* If enabling v3 checksums, update superblock */
1879 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1880 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1881 sb->s_feature_compat &=
1882 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1883
1884 /* Load the checksum driver */
1885 if (journal->j_chksum_driver == NULL) {
1886 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1887 0, 0);
1888 if (IS_ERR(journal->j_chksum_driver)) {
1889 printk(KERN_ERR "JBD2: Cannot load crc32c "
1890 "driver.\n");
1891 journal->j_chksum_driver = NULL;
1892 return 0;
1893 }
1894
1895 /* Precompute checksum seed for all metadata */
1896 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1897 sb->s_uuid,
1898 sizeof(sb->s_uuid));
1899 }
1900 }
1901
1902 /* If enabling v1 checksums, downgrade superblock */
1903 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1904 sb->s_feature_incompat &=
1905 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1906 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1907
1908 sb->s_feature_compat |= cpu_to_be32(compat);
1909 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1910 sb->s_feature_incompat |= cpu_to_be32(incompat);
1911
1912 return 1;
1913 #undef COMPAT_FEATURE_ON
1914 #undef INCOMPAT_FEATURE_ON
1915 }
1916
1917 /*
1918 * jbd2_journal_clear_features () - Clear a given journal feature in the
1919 * superblock
1920 * @journal: Journal to act on.
1921 * @compat: bitmask of compatible features
1922 * @ro: bitmask of features that force read-only mount
1923 * @incompat: bitmask of incompatible features
1924 *
1925 * Clear a given journal feature as present on the
1926 * superblock.
1927 */
1928 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1929 unsigned long ro, unsigned long incompat)
1930 {
1931 journal_superblock_t *sb;
1932
1933 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1934 compat, ro, incompat);
1935
1936 sb = journal->j_superblock;
1937
1938 sb->s_feature_compat &= ~cpu_to_be32(compat);
1939 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1940 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1941 }
1942 EXPORT_SYMBOL(jbd2_journal_clear_features);
1943
1944 /**
1945 * int jbd2_journal_flush () - Flush journal
1946 * @journal: Journal to act on.
1947 *
1948 * Flush all data for a given journal to disk and empty the journal.
1949 * Filesystems can use this when remounting readonly to ensure that
1950 * recovery does not need to happen on remount.
1951 */
1952
1953 int jbd2_journal_flush(journal_t *journal)
1954 {
1955 int err = 0;
1956 transaction_t *transaction = NULL;
1957
1958 write_lock(&journal->j_state_lock);
1959
1960 /* Force everything buffered to the log... */
1961 if (journal->j_running_transaction) {
1962 transaction = journal->j_running_transaction;
1963 __jbd2_log_start_commit(journal, transaction->t_tid);
1964 } else if (journal->j_committing_transaction)
1965 transaction = journal->j_committing_transaction;
1966
1967 /* Wait for the log commit to complete... */
1968 if (transaction) {
1969 tid_t tid = transaction->t_tid;
1970
1971 write_unlock(&journal->j_state_lock);
1972 jbd2_log_wait_commit(journal, tid);
1973 } else {
1974 write_unlock(&journal->j_state_lock);
1975 }
1976
1977 /* ...and flush everything in the log out to disk. */
1978 spin_lock(&journal->j_list_lock);
1979 while (!err && journal->j_checkpoint_transactions != NULL) {
1980 spin_unlock(&journal->j_list_lock);
1981 mutex_lock_io(&journal->j_checkpoint_mutex);
1982 err = jbd2_log_do_checkpoint(journal);
1983 mutex_unlock(&journal->j_checkpoint_mutex);
1984 spin_lock(&journal->j_list_lock);
1985 }
1986 spin_unlock(&journal->j_list_lock);
1987
1988 if (is_journal_aborted(journal))
1989 return -EIO;
1990
1991 mutex_lock_io(&journal->j_checkpoint_mutex);
1992 if (!err) {
1993 err = jbd2_cleanup_journal_tail(journal);
1994 if (err < 0) {
1995 mutex_unlock(&journal->j_checkpoint_mutex);
1996 goto out;
1997 }
1998 err = 0;
1999 }
2000
2001 /* Finally, mark the journal as really needing no recovery.
2002 * This sets s_start==0 in the underlying superblock, which is
2003 * the magic code for a fully-recovered superblock. Any future
2004 * commits of data to the journal will restore the current
2005 * s_start value. */
2006 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2007 mutex_unlock(&journal->j_checkpoint_mutex);
2008 write_lock(&journal->j_state_lock);
2009 J_ASSERT(!journal->j_running_transaction);
2010 J_ASSERT(!journal->j_committing_transaction);
2011 J_ASSERT(!journal->j_checkpoint_transactions);
2012 J_ASSERT(journal->j_head == journal->j_tail);
2013 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2014 write_unlock(&journal->j_state_lock);
2015 out:
2016 return err;
2017 }
2018
2019 /**
2020 * int jbd2_journal_wipe() - Wipe journal contents
2021 * @journal: Journal to act on.
2022 * @write: flag (see below)
2023 *
2024 * Wipe out all of the contents of a journal, safely. This will produce
2025 * a warning if the journal contains any valid recovery information.
2026 * Must be called between journal_init_*() and jbd2_journal_load().
2027 *
2028 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2029 * we merely suppress recovery.
2030 */
2031
2032 int jbd2_journal_wipe(journal_t *journal, int write)
2033 {
2034 int err = 0;
2035
2036 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2037
2038 err = load_superblock(journal);
2039 if (err)
2040 return err;
2041
2042 if (!journal->j_tail)
2043 goto no_recovery;
2044
2045 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2046 write ? "Clearing" : "Ignoring");
2047
2048 err = jbd2_journal_skip_recovery(journal);
2049 if (write) {
2050 /* Lock to make assertions happy... */
2051 mutex_lock(&journal->j_checkpoint_mutex);
2052 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2053 mutex_unlock(&journal->j_checkpoint_mutex);
2054 }
2055
2056 no_recovery:
2057 return err;
2058 }
2059
2060 /*
2061 * Journal abort has very specific semantics, which we describe
2062 * for journal abort.
2063 *
2064 * Two internal functions, which provide abort to the jbd layer
2065 * itself are here.
2066 */
2067
2068 /*
2069 * Quick version for internal journal use (doesn't lock the journal).
2070 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2071 * and don't attempt to make any other journal updates.
2072 */
2073 void __jbd2_journal_abort_hard(journal_t *journal)
2074 {
2075 transaction_t *transaction;
2076
2077 if (journal->j_flags & JBD2_ABORT)
2078 return;
2079
2080 printk(KERN_ERR "Aborting journal on device %s.\n",
2081 journal->j_devname);
2082
2083 write_lock(&journal->j_state_lock);
2084 journal->j_flags |= JBD2_ABORT;
2085 transaction = journal->j_running_transaction;
2086 if (transaction)
2087 __jbd2_log_start_commit(journal, transaction->t_tid);
2088 write_unlock(&journal->j_state_lock);
2089 }
2090
2091 /* Soft abort: record the abort error status in the journal superblock,
2092 * but don't do any other IO. */
2093 static void __journal_abort_soft (journal_t *journal, int errno)
2094 {
2095 if (journal->j_flags & JBD2_ABORT)
2096 return;
2097
2098 if (!journal->j_errno)
2099 journal->j_errno = errno;
2100
2101 __jbd2_journal_abort_hard(journal);
2102
2103 if (errno) {
2104 jbd2_journal_update_sb_errno(journal);
2105 write_lock(&journal->j_state_lock);
2106 journal->j_flags |= JBD2_REC_ERR;
2107 write_unlock(&journal->j_state_lock);
2108 }
2109 }
2110
2111 /**
2112 * void jbd2_journal_abort () - Shutdown the journal immediately.
2113 * @journal: the journal to shutdown.
2114 * @errno: an error number to record in the journal indicating
2115 * the reason for the shutdown.
2116 *
2117 * Perform a complete, immediate shutdown of the ENTIRE
2118 * journal (not of a single transaction). This operation cannot be
2119 * undone without closing and reopening the journal.
2120 *
2121 * The jbd2_journal_abort function is intended to support higher level error
2122 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2123 * mode.
2124 *
2125 * Journal abort has very specific semantics. Any existing dirty,
2126 * unjournaled buffers in the main filesystem will still be written to
2127 * disk by bdflush, but the journaling mechanism will be suspended
2128 * immediately and no further transaction commits will be honoured.
2129 *
2130 * Any dirty, journaled buffers will be written back to disk without
2131 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2132 * filesystem, but we _do_ attempt to leave as much data as possible
2133 * behind for fsck to use for cleanup.
2134 *
2135 * Any attempt to get a new transaction handle on a journal which is in
2136 * ABORT state will just result in an -EROFS error return. A
2137 * jbd2_journal_stop on an existing handle will return -EIO if we have
2138 * entered abort state during the update.
2139 *
2140 * Recursive transactions are not disturbed by journal abort until the
2141 * final jbd2_journal_stop, which will receive the -EIO error.
2142 *
2143 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2144 * which will be recorded (if possible) in the journal superblock. This
2145 * allows a client to record failure conditions in the middle of a
2146 * transaction without having to complete the transaction to record the
2147 * failure to disk. ext3_error, for example, now uses this
2148 * functionality.
2149 *
2150 * Errors which originate from within the journaling layer will NOT
2151 * supply an errno; a null errno implies that absolutely no further
2152 * writes are done to the journal (unless there are any already in
2153 * progress).
2154 *
2155 */
2156
2157 void jbd2_journal_abort(journal_t *journal, int errno)
2158 {
2159 __journal_abort_soft(journal, errno);
2160 }
2161
2162 /**
2163 * int jbd2_journal_errno () - returns the journal's error state.
2164 * @journal: journal to examine.
2165 *
2166 * This is the errno number set with jbd2_journal_abort(), the last
2167 * time the journal was mounted - if the journal was stopped
2168 * without calling abort this will be 0.
2169 *
2170 * If the journal has been aborted on this mount time -EROFS will
2171 * be returned.
2172 */
2173 int jbd2_journal_errno(journal_t *journal)
2174 {
2175 int err;
2176
2177 read_lock(&journal->j_state_lock);
2178 if (journal->j_flags & JBD2_ABORT)
2179 err = -EROFS;
2180 else
2181 err = journal->j_errno;
2182 read_unlock(&journal->j_state_lock);
2183 return err;
2184 }
2185
2186 /**
2187 * int jbd2_journal_clear_err () - clears the journal's error state
2188 * @journal: journal to act on.
2189 *
2190 * An error must be cleared or acked to take a FS out of readonly
2191 * mode.
2192 */
2193 int jbd2_journal_clear_err(journal_t *journal)
2194 {
2195 int err = 0;
2196
2197 write_lock(&journal->j_state_lock);
2198 if (journal->j_flags & JBD2_ABORT)
2199 err = -EROFS;
2200 else
2201 journal->j_errno = 0;
2202 write_unlock(&journal->j_state_lock);
2203 return err;
2204 }
2205
2206 /**
2207 * void jbd2_journal_ack_err() - Ack journal err.
2208 * @journal: journal to act on.
2209 *
2210 * An error must be cleared or acked to take a FS out of readonly
2211 * mode.
2212 */
2213 void jbd2_journal_ack_err(journal_t *journal)
2214 {
2215 write_lock(&journal->j_state_lock);
2216 if (journal->j_errno)
2217 journal->j_flags |= JBD2_ACK_ERR;
2218 write_unlock(&journal->j_state_lock);
2219 }
2220
2221 int jbd2_journal_blocks_per_page(struct inode *inode)
2222 {
2223 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2224 }
2225
2226 /*
2227 * helper functions to deal with 32 or 64bit block numbers.
2228 */
2229 size_t journal_tag_bytes(journal_t *journal)
2230 {
2231 size_t sz;
2232
2233 if (jbd2_has_feature_csum3(journal))
2234 return sizeof(journal_block_tag3_t);
2235
2236 sz = sizeof(journal_block_tag_t);
2237
2238 if (jbd2_has_feature_csum2(journal))
2239 sz += sizeof(__u16);
2240
2241 if (jbd2_has_feature_64bit(journal))
2242 return sz;
2243 else
2244 return sz - sizeof(__u32);
2245 }
2246
2247 /*
2248 * JBD memory management
2249 *
2250 * These functions are used to allocate block-sized chunks of memory
2251 * used for making copies of buffer_head data. Very often it will be
2252 * page-sized chunks of data, but sometimes it will be in
2253 * sub-page-size chunks. (For example, 16k pages on Power systems
2254 * with a 4k block file system.) For blocks smaller than a page, we
2255 * use a SLAB allocator. There are slab caches for each block size,
2256 * which are allocated at mount time, if necessary, and we only free
2257 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2258 * this reason we don't need to a mutex to protect access to
2259 * jbd2_slab[] allocating or releasing memory; only in
2260 * jbd2_journal_create_slab().
2261 */
2262 #define JBD2_MAX_SLABS 8
2263 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2264
2265 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2266 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2267 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2268 };
2269
2270
2271 static void jbd2_journal_destroy_slabs(void)
2272 {
2273 int i;
2274
2275 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2276 if (jbd2_slab[i])
2277 kmem_cache_destroy(jbd2_slab[i]);
2278 jbd2_slab[i] = NULL;
2279 }
2280 }
2281
2282 static int jbd2_journal_create_slab(size_t size)
2283 {
2284 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2285 int i = order_base_2(size) - 10;
2286 size_t slab_size;
2287
2288 if (size == PAGE_SIZE)
2289 return 0;
2290
2291 if (i >= JBD2_MAX_SLABS)
2292 return -EINVAL;
2293
2294 if (unlikely(i < 0))
2295 i = 0;
2296 mutex_lock(&jbd2_slab_create_mutex);
2297 if (jbd2_slab[i]) {
2298 mutex_unlock(&jbd2_slab_create_mutex);
2299 return 0; /* Already created */
2300 }
2301
2302 slab_size = 1 << (i+10);
2303 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2304 slab_size, 0, NULL);
2305 mutex_unlock(&jbd2_slab_create_mutex);
2306 if (!jbd2_slab[i]) {
2307 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2308 return -ENOMEM;
2309 }
2310 return 0;
2311 }
2312
2313 static struct kmem_cache *get_slab(size_t size)
2314 {
2315 int i = order_base_2(size) - 10;
2316
2317 BUG_ON(i >= JBD2_MAX_SLABS);
2318 if (unlikely(i < 0))
2319 i = 0;
2320 BUG_ON(jbd2_slab[i] == NULL);
2321 return jbd2_slab[i];
2322 }
2323
2324 void *jbd2_alloc(size_t size, gfp_t flags)
2325 {
2326 void *ptr;
2327
2328 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2329
2330 if (size < PAGE_SIZE)
2331 ptr = kmem_cache_alloc(get_slab(size), flags);
2332 else
2333 ptr = (void *)__get_free_pages(flags, get_order(size));
2334
2335 /* Check alignment; SLUB has gotten this wrong in the past,
2336 * and this can lead to user data corruption! */
2337 BUG_ON(((unsigned long) ptr) & (size-1));
2338
2339 return ptr;
2340 }
2341
2342 void jbd2_free(void *ptr, size_t size)
2343 {
2344 if (size < PAGE_SIZE)
2345 kmem_cache_free(get_slab(size), ptr);
2346 else
2347 free_pages((unsigned long)ptr, get_order(size));
2348 };
2349
2350 /*
2351 * Journal_head storage management
2352 */
2353 static struct kmem_cache *jbd2_journal_head_cache;
2354 #ifdef CONFIG_JBD2_DEBUG
2355 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2356 #endif
2357
2358 static int jbd2_journal_init_journal_head_cache(void)
2359 {
2360 int retval;
2361
2362 J_ASSERT(jbd2_journal_head_cache == NULL);
2363 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2364 sizeof(struct journal_head),
2365 0, /* offset */
2366 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2367 NULL); /* ctor */
2368 retval = 0;
2369 if (!jbd2_journal_head_cache) {
2370 retval = -ENOMEM;
2371 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2372 }
2373 return retval;
2374 }
2375
2376 static void jbd2_journal_destroy_journal_head_cache(void)
2377 {
2378 if (jbd2_journal_head_cache) {
2379 kmem_cache_destroy(jbd2_journal_head_cache);
2380 jbd2_journal_head_cache = NULL;
2381 }
2382 }
2383
2384 /*
2385 * journal_head splicing and dicing
2386 */
2387 static struct journal_head *journal_alloc_journal_head(void)
2388 {
2389 struct journal_head *ret;
2390
2391 #ifdef CONFIG_JBD2_DEBUG
2392 atomic_inc(&nr_journal_heads);
2393 #endif
2394 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2395 if (!ret) {
2396 jbd_debug(1, "out of memory for journal_head\n");
2397 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2398 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2399 GFP_NOFS | __GFP_NOFAIL);
2400 }
2401 return ret;
2402 }
2403
2404 static void journal_free_journal_head(struct journal_head *jh)
2405 {
2406 #ifdef CONFIG_JBD2_DEBUG
2407 atomic_dec(&nr_journal_heads);
2408 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2409 #endif
2410 kmem_cache_free(jbd2_journal_head_cache, jh);
2411 }
2412
2413 /*
2414 * A journal_head is attached to a buffer_head whenever JBD has an
2415 * interest in the buffer.
2416 *
2417 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2418 * is set. This bit is tested in core kernel code where we need to take
2419 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2420 * there.
2421 *
2422 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2423 *
2424 * When a buffer has its BH_JBD bit set it is immune from being released by
2425 * core kernel code, mainly via ->b_count.
2426 *
2427 * A journal_head is detached from its buffer_head when the journal_head's
2428 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2429 * transaction (b_cp_transaction) hold their references to b_jcount.
2430 *
2431 * Various places in the kernel want to attach a journal_head to a buffer_head
2432 * _before_ attaching the journal_head to a transaction. To protect the
2433 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2434 * journal_head's b_jcount refcount by one. The caller must call
2435 * jbd2_journal_put_journal_head() to undo this.
2436 *
2437 * So the typical usage would be:
2438 *
2439 * (Attach a journal_head if needed. Increments b_jcount)
2440 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2441 * ...
2442 * (Get another reference for transaction)
2443 * jbd2_journal_grab_journal_head(bh);
2444 * jh->b_transaction = xxx;
2445 * (Put original reference)
2446 * jbd2_journal_put_journal_head(jh);
2447 */
2448
2449 /*
2450 * Give a buffer_head a journal_head.
2451 *
2452 * May sleep.
2453 */
2454 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2455 {
2456 struct journal_head *jh;
2457 struct journal_head *new_jh = NULL;
2458
2459 repeat:
2460 if (!buffer_jbd(bh))
2461 new_jh = journal_alloc_journal_head();
2462
2463 jbd_lock_bh_journal_head(bh);
2464 if (buffer_jbd(bh)) {
2465 jh = bh2jh(bh);
2466 } else {
2467 J_ASSERT_BH(bh,
2468 (atomic_read(&bh->b_count) > 0) ||
2469 (bh->b_page && bh->b_page->mapping));
2470
2471 if (!new_jh) {
2472 jbd_unlock_bh_journal_head(bh);
2473 goto repeat;
2474 }
2475
2476 jh = new_jh;
2477 new_jh = NULL; /* We consumed it */
2478 set_buffer_jbd(bh);
2479 bh->b_private = jh;
2480 jh->b_bh = bh;
2481 get_bh(bh);
2482 BUFFER_TRACE(bh, "added journal_head");
2483 }
2484 jh->b_jcount++;
2485 jbd_unlock_bh_journal_head(bh);
2486 if (new_jh)
2487 journal_free_journal_head(new_jh);
2488 return bh->b_private;
2489 }
2490
2491 /*
2492 * Grab a ref against this buffer_head's journal_head. If it ended up not
2493 * having a journal_head, return NULL
2494 */
2495 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2496 {
2497 struct journal_head *jh = NULL;
2498
2499 jbd_lock_bh_journal_head(bh);
2500 if (buffer_jbd(bh)) {
2501 jh = bh2jh(bh);
2502 jh->b_jcount++;
2503 }
2504 jbd_unlock_bh_journal_head(bh);
2505 return jh;
2506 }
2507
2508 static void __journal_remove_journal_head(struct buffer_head *bh)
2509 {
2510 struct journal_head *jh = bh2jh(bh);
2511
2512 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2513 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2514 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2515 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2516 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2517 J_ASSERT_BH(bh, buffer_jbd(bh));
2518 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2519 BUFFER_TRACE(bh, "remove journal_head");
2520 if (jh->b_frozen_data) {
2521 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2522 jbd2_free(jh->b_frozen_data, bh->b_size);
2523 }
2524 if (jh->b_committed_data) {
2525 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2526 jbd2_free(jh->b_committed_data, bh->b_size);
2527 }
2528 bh->b_private = NULL;
2529 jh->b_bh = NULL; /* debug, really */
2530 clear_buffer_jbd(bh);
2531 journal_free_journal_head(jh);
2532 }
2533
2534 /*
2535 * Drop a reference on the passed journal_head. If it fell to zero then
2536 * release the journal_head from the buffer_head.
2537 */
2538 void jbd2_journal_put_journal_head(struct journal_head *jh)
2539 {
2540 struct buffer_head *bh = jh2bh(jh);
2541
2542 jbd_lock_bh_journal_head(bh);
2543 J_ASSERT_JH(jh, jh->b_jcount > 0);
2544 --jh->b_jcount;
2545 if (!jh->b_jcount) {
2546 __journal_remove_journal_head(bh);
2547 jbd_unlock_bh_journal_head(bh);
2548 __brelse(bh);
2549 } else
2550 jbd_unlock_bh_journal_head(bh);
2551 }
2552
2553 /*
2554 * Initialize jbd inode head
2555 */
2556 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2557 {
2558 jinode->i_transaction = NULL;
2559 jinode->i_next_transaction = NULL;
2560 jinode->i_vfs_inode = inode;
2561 jinode->i_flags = 0;
2562 INIT_LIST_HEAD(&jinode->i_list);
2563 }
2564
2565 /*
2566 * Function to be called before we start removing inode from memory (i.e.,
2567 * clear_inode() is a fine place to be called from). It removes inode from
2568 * transaction's lists.
2569 */
2570 void jbd2_journal_release_jbd_inode(journal_t *journal,
2571 struct jbd2_inode *jinode)
2572 {
2573 if (!journal)
2574 return;
2575 restart:
2576 spin_lock(&journal->j_list_lock);
2577 /* Is commit writing out inode - we have to wait */
2578 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2579 wait_queue_head_t *wq;
2580 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2581 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2582 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2583 spin_unlock(&journal->j_list_lock);
2584 schedule();
2585 finish_wait(wq, &wait.wq_entry);
2586 goto restart;
2587 }
2588
2589 if (jinode->i_transaction) {
2590 list_del(&jinode->i_list);
2591 jinode->i_transaction = NULL;
2592 }
2593 spin_unlock(&journal->j_list_lock);
2594 }
2595
2596
2597 #ifdef CONFIG_PROC_FS
2598
2599 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2600
2601 static void __init jbd2_create_jbd_stats_proc_entry(void)
2602 {
2603 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2604 }
2605
2606 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2607 {
2608 if (proc_jbd2_stats)
2609 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2610 }
2611
2612 #else
2613
2614 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2615 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2616
2617 #endif
2618
2619 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2620
2621 static int __init jbd2_journal_init_handle_cache(void)
2622 {
2623 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2624 if (jbd2_handle_cache == NULL) {
2625 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2626 return -ENOMEM;
2627 }
2628 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2629 if (jbd2_inode_cache == NULL) {
2630 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2631 kmem_cache_destroy(jbd2_handle_cache);
2632 return -ENOMEM;
2633 }
2634 return 0;
2635 }
2636
2637 static void jbd2_journal_destroy_handle_cache(void)
2638 {
2639 if (jbd2_handle_cache)
2640 kmem_cache_destroy(jbd2_handle_cache);
2641 if (jbd2_inode_cache)
2642 kmem_cache_destroy(jbd2_inode_cache);
2643
2644 }
2645
2646 /*
2647 * Module startup and shutdown
2648 */
2649
2650 static int __init journal_init_caches(void)
2651 {
2652 int ret;
2653
2654 ret = jbd2_journal_init_revoke_caches();
2655 if (ret == 0)
2656 ret = jbd2_journal_init_journal_head_cache();
2657 if (ret == 0)
2658 ret = jbd2_journal_init_handle_cache();
2659 if (ret == 0)
2660 ret = jbd2_journal_init_transaction_cache();
2661 return ret;
2662 }
2663
2664 static void jbd2_journal_destroy_caches(void)
2665 {
2666 jbd2_journal_destroy_revoke_caches();
2667 jbd2_journal_destroy_journal_head_cache();
2668 jbd2_journal_destroy_handle_cache();
2669 jbd2_journal_destroy_transaction_cache();
2670 jbd2_journal_destroy_slabs();
2671 }
2672
2673 static int __init journal_init(void)
2674 {
2675 int ret;
2676
2677 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2678
2679 ret = journal_init_caches();
2680 if (ret == 0) {
2681 jbd2_create_jbd_stats_proc_entry();
2682 } else {
2683 jbd2_journal_destroy_caches();
2684 }
2685 return ret;
2686 }
2687
2688 static void __exit journal_exit(void)
2689 {
2690 #ifdef CONFIG_JBD2_DEBUG
2691 int n = atomic_read(&nr_journal_heads);
2692 if (n)
2693 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2694 #endif
2695 jbd2_remove_jbd_stats_proc_entry();
2696 jbd2_journal_destroy_caches();
2697 }
2698
2699 MODULE_LICENSE("GPL");
2700 module_init(journal_init);
2701 module_exit(journal_exit);
2702