]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/libfs.c
Merge tag 'nfsd-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[mirror_ubuntu-jammy-kernel.git] / fs / libfs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25
26 #include <linux/uaccess.h>
27
28 #include "internal.h"
29
30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 struct kstat *stat, u32 request_mask,
32 unsigned int query_flags)
33 {
34 struct inode *inode = d_inode(path->dentry);
35 generic_fillattr(&init_user_ns, inode, stat);
36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40
41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 buf->f_type = dentry->d_sb->s_magic;
44 buf->f_bsize = PAGE_SIZE;
45 buf->f_namelen = NAME_MAX;
46 return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49
50 /*
51 * Retaining negative dentries for an in-memory filesystem just wastes
52 * memory and lookup time: arrange for them to be deleted immediately.
53 */
54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59
60 const struct dentry_operations simple_dentry_operations = {
61 .d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64
65 /*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_sb->s_d_op)
74 d_set_d_op(dentry, &simple_dentry_operations);
75 d_add(dentry, NULL);
76 return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79
80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 file->private_data = d_alloc_cursor(file->f_path.dentry);
83
84 return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87
88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 dput(file->private_data);
91 return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94
95 /* parent is locked at least shared */
96 /*
97 * Returns an element of siblings' list.
98 * We are looking for <count>th positive after <p>; if
99 * found, dentry is grabbed and returned to caller.
100 * If no such element exists, NULL is returned.
101 */
102 static struct dentry *scan_positives(struct dentry *cursor,
103 struct list_head *p,
104 loff_t count,
105 struct dentry *last)
106 {
107 struct dentry *dentry = cursor->d_parent, *found = NULL;
108
109 spin_lock(&dentry->d_lock);
110 while ((p = p->next) != &dentry->d_subdirs) {
111 struct dentry *d = list_entry(p, struct dentry, d_child);
112 // we must at least skip cursors, to avoid livelocks
113 if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 continue;
115 if (simple_positive(d) && !--count) {
116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 if (simple_positive(d))
118 found = dget_dlock(d);
119 spin_unlock(&d->d_lock);
120 if (likely(found))
121 break;
122 count = 1;
123 }
124 if (need_resched()) {
125 list_move(&cursor->d_child, p);
126 p = &cursor->d_child;
127 spin_unlock(&dentry->d_lock);
128 cond_resched();
129 spin_lock(&dentry->d_lock);
130 }
131 }
132 spin_unlock(&dentry->d_lock);
133 dput(last);
134 return found;
135 }
136
137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 struct dentry *dentry = file->f_path.dentry;
140 switch (whence) {
141 case 1:
142 offset += file->f_pos;
143 fallthrough;
144 case 0:
145 if (offset >= 0)
146 break;
147 fallthrough;
148 default:
149 return -EINVAL;
150 }
151 if (offset != file->f_pos) {
152 struct dentry *cursor = file->private_data;
153 struct dentry *to = NULL;
154
155 inode_lock_shared(dentry->d_inode);
156
157 if (offset > 2)
158 to = scan_positives(cursor, &dentry->d_subdirs,
159 offset - 2, NULL);
160 spin_lock(&dentry->d_lock);
161 if (to)
162 list_move(&cursor->d_child, &to->d_child);
163 else
164 list_del_init(&cursor->d_child);
165 spin_unlock(&dentry->d_lock);
166 dput(to);
167
168 file->f_pos = offset;
169
170 inode_unlock_shared(dentry->d_inode);
171 }
172 return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175
176 /* Relationship between i_mode and the DT_xxx types */
177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 return (inode->i_mode >> 12) & 15;
180 }
181
182 /*
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
186 */
187
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct list_head *anchor = &dentry->d_subdirs;
193 struct dentry *next = NULL;
194 struct list_head *p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = anchor;
201 else if (!list_empty(&cursor->d_child))
202 p = &cursor->d_child;
203 else
204 return 0;
205
206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 d_inode(next)->i_ino, dt_type(d_inode(next))))
209 break;
210 ctx->pos++;
211 p = &next->d_child;
212 }
213 spin_lock(&dentry->d_lock);
214 if (next)
215 list_move_tail(&cursor->d_child, &next->d_child);
216 else
217 list_del_init(&cursor->d_child);
218 spin_unlock(&dentry->d_lock);
219 dput(next);
220
221 return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230
231 const struct file_operations simple_dir_operations = {
232 .open = dcache_dir_open,
233 .release = dcache_dir_close,
234 .llseek = dcache_dir_lseek,
235 .read = generic_read_dir,
236 .iterate_shared = dcache_readdir,
237 .fsync = noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240
241 const struct inode_operations simple_dir_inode_operations = {
242 .lookup = simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245
246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 struct dentry *child = NULL;
249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250
251 spin_lock(&parent->d_lock);
252 while ((p = p->next) != &parent->d_subdirs) {
253 struct dentry *d = container_of(p, struct dentry, d_child);
254 if (simple_positive(d)) {
255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 if (simple_positive(d))
257 child = dget_dlock(d);
258 spin_unlock(&d->d_lock);
259 if (likely(child))
260 break;
261 }
262 }
263 spin_unlock(&parent->d_lock);
264 dput(prev);
265 return child;
266 }
267
268 void simple_recursive_removal(struct dentry *dentry,
269 void (*callback)(struct dentry *))
270 {
271 struct dentry *this = dget(dentry);
272 while (true) {
273 struct dentry *victim = NULL, *child;
274 struct inode *inode = this->d_inode;
275
276 inode_lock(inode);
277 if (d_is_dir(this))
278 inode->i_flags |= S_DEAD;
279 while ((child = find_next_child(this, victim)) == NULL) {
280 // kill and ascend
281 // update metadata while it's still locked
282 inode->i_ctime = current_time(inode);
283 clear_nlink(inode);
284 inode_unlock(inode);
285 victim = this;
286 this = this->d_parent;
287 inode = this->d_inode;
288 inode_lock(inode);
289 if (simple_positive(victim)) {
290 d_invalidate(victim); // avoid lost mounts
291 if (d_is_dir(victim))
292 fsnotify_rmdir(inode, victim);
293 else
294 fsnotify_unlink(inode, victim);
295 if (callback)
296 callback(victim);
297 dput(victim); // unpin it
298 }
299 if (victim == dentry) {
300 inode->i_ctime = inode->i_mtime =
301 current_time(inode);
302 if (d_is_dir(dentry))
303 drop_nlink(inode);
304 inode_unlock(inode);
305 dput(dentry);
306 return;
307 }
308 }
309 inode_unlock(inode);
310 this = child;
311 }
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314
315 static const struct super_operations simple_super_operations = {
316 .statfs = simple_statfs,
317 };
318
319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 struct pseudo_fs_context *ctx = fc->fs_private;
322 struct inode *root;
323
324 s->s_maxbytes = MAX_LFS_FILESIZE;
325 s->s_blocksize = PAGE_SIZE;
326 s->s_blocksize_bits = PAGE_SHIFT;
327 s->s_magic = ctx->magic;
328 s->s_op = ctx->ops ?: &simple_super_operations;
329 s->s_xattr = ctx->xattr;
330 s->s_time_gran = 1;
331 root = new_inode(s);
332 if (!root)
333 return -ENOMEM;
334
335 /*
336 * since this is the first inode, make it number 1. New inodes created
337 * after this must take care not to collide with it (by passing
338 * max_reserved of 1 to iunique).
339 */
340 root->i_ino = 1;
341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 s->s_root = d_make_root(root);
344 if (!s->s_root)
345 return -ENOMEM;
346 s->s_d_op = ctx->dops;
347 return 0;
348 }
349
350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354
355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 kfree(fc->fs_private);
358 }
359
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 .free = pseudo_fs_free,
362 .get_tree = pseudo_fs_get_tree,
363 };
364
365 /*
366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367 * will never be mountable)
368 */
369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 unsigned long magic)
371 {
372 struct pseudo_fs_context *ctx;
373
374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 if (likely(ctx)) {
376 ctx->magic = magic;
377 fc->fs_private = ctx;
378 fc->ops = &pseudo_fs_context_ops;
379 fc->sb_flags |= SB_NOUSER;
380 fc->global = true;
381 }
382 return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385
386 int simple_open(struct inode *inode, struct file *file)
387 {
388 if (inode->i_private)
389 file->private_data = inode->i_private;
390 return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393
394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 struct inode *inode = d_inode(old_dentry);
397
398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 inc_nlink(inode);
400 ihold(inode);
401 dget(dentry);
402 d_instantiate(dentry, inode);
403 return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406
407 int simple_empty(struct dentry *dentry)
408 {
409 struct dentry *child;
410 int ret = 0;
411
412 spin_lock(&dentry->d_lock);
413 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 if (simple_positive(child)) {
416 spin_unlock(&child->d_lock);
417 goto out;
418 }
419 spin_unlock(&child->d_lock);
420 }
421 ret = 1;
422 out:
423 spin_unlock(&dentry->d_lock);
424 return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427
428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 struct inode *inode = d_inode(dentry);
431
432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 drop_nlink(inode);
434 dput(dentry);
435 return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438
439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 if (!simple_empty(dentry))
442 return -ENOTEMPTY;
443
444 drop_nlink(d_inode(dentry));
445 simple_unlink(dir, dentry);
446 drop_nlink(dir);
447 return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450
451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 struct dentry *old_dentry, struct inode *new_dir,
453 struct dentry *new_dentry, unsigned int flags)
454 {
455 struct inode *inode = d_inode(old_dentry);
456 int they_are_dirs = d_is_dir(old_dentry);
457
458 if (flags & ~RENAME_NOREPLACE)
459 return -EINVAL;
460
461 if (!simple_empty(new_dentry))
462 return -ENOTEMPTY;
463
464 if (d_really_is_positive(new_dentry)) {
465 simple_unlink(new_dir, new_dentry);
466 if (they_are_dirs) {
467 drop_nlink(d_inode(new_dentry));
468 drop_nlink(old_dir);
469 }
470 } else if (they_are_dirs) {
471 drop_nlink(old_dir);
472 inc_nlink(new_dir);
473 }
474
475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
477
478 return 0;
479 }
480 EXPORT_SYMBOL(simple_rename);
481
482 /**
483 * simple_setattr - setattr for simple filesystem
484 * @mnt_userns: user namespace of the target mount
485 * @dentry: dentry
486 * @iattr: iattr structure
487 *
488 * Returns 0 on success, -error on failure.
489 *
490 * simple_setattr is a simple ->setattr implementation without a proper
491 * implementation of size changes.
492 *
493 * It can either be used for in-memory filesystems or special files
494 * on simple regular filesystems. Anything that needs to change on-disk
495 * or wire state on size changes needs its own setattr method.
496 */
497 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
498 struct iattr *iattr)
499 {
500 struct inode *inode = d_inode(dentry);
501 int error;
502
503 error = setattr_prepare(mnt_userns, dentry, iattr);
504 if (error)
505 return error;
506
507 if (iattr->ia_valid & ATTR_SIZE)
508 truncate_setsize(inode, iattr->ia_size);
509 setattr_copy(mnt_userns, inode, iattr);
510 mark_inode_dirty(inode);
511 return 0;
512 }
513 EXPORT_SYMBOL(simple_setattr);
514
515 int simple_readpage(struct file *file, struct page *page)
516 {
517 clear_highpage(page);
518 flush_dcache_page(page);
519 SetPageUptodate(page);
520 unlock_page(page);
521 return 0;
522 }
523 EXPORT_SYMBOL(simple_readpage);
524
525 int simple_write_begin(struct file *file, struct address_space *mapping,
526 loff_t pos, unsigned len, unsigned flags,
527 struct page **pagep, void **fsdata)
528 {
529 struct page *page;
530 pgoff_t index;
531
532 index = pos >> PAGE_SHIFT;
533
534 page = grab_cache_page_write_begin(mapping, index, flags);
535 if (!page)
536 return -ENOMEM;
537
538 *pagep = page;
539
540 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
541 unsigned from = pos & (PAGE_SIZE - 1);
542
543 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
544 }
545 return 0;
546 }
547 EXPORT_SYMBOL(simple_write_begin);
548
549 /**
550 * simple_write_end - .write_end helper for non-block-device FSes
551 * @file: See .write_end of address_space_operations
552 * @mapping: "
553 * @pos: "
554 * @len: "
555 * @copied: "
556 * @page: "
557 * @fsdata: "
558 *
559 * simple_write_end does the minimum needed for updating a page after writing is
560 * done. It has the same API signature as the .write_end of
561 * address_space_operations vector. So it can just be set onto .write_end for
562 * FSes that don't need any other processing. i_mutex is assumed to be held.
563 * Block based filesystems should use generic_write_end().
564 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
565 * is not called, so a filesystem that actually does store data in .write_inode
566 * should extend on what's done here with a call to mark_inode_dirty() in the
567 * case that i_size has changed.
568 *
569 * Use *ONLY* with simple_readpage()
570 */
571 int simple_write_end(struct file *file, struct address_space *mapping,
572 loff_t pos, unsigned len, unsigned copied,
573 struct page *page, void *fsdata)
574 {
575 struct inode *inode = page->mapping->host;
576 loff_t last_pos = pos + copied;
577
578 /* zero the stale part of the page if we did a short copy */
579 if (!PageUptodate(page)) {
580 if (copied < len) {
581 unsigned from = pos & (PAGE_SIZE - 1);
582
583 zero_user(page, from + copied, len - copied);
584 }
585 SetPageUptodate(page);
586 }
587 /*
588 * No need to use i_size_read() here, the i_size
589 * cannot change under us because we hold the i_mutex.
590 */
591 if (last_pos > inode->i_size)
592 i_size_write(inode, last_pos);
593
594 set_page_dirty(page);
595 unlock_page(page);
596 put_page(page);
597
598 return copied;
599 }
600 EXPORT_SYMBOL(simple_write_end);
601
602 /*
603 * the inodes created here are not hashed. If you use iunique to generate
604 * unique inode values later for this filesystem, then you must take care
605 * to pass it an appropriate max_reserved value to avoid collisions.
606 */
607 int simple_fill_super(struct super_block *s, unsigned long magic,
608 const struct tree_descr *files)
609 {
610 struct inode *inode;
611 struct dentry *root;
612 struct dentry *dentry;
613 int i;
614
615 s->s_blocksize = PAGE_SIZE;
616 s->s_blocksize_bits = PAGE_SHIFT;
617 s->s_magic = magic;
618 s->s_op = &simple_super_operations;
619 s->s_time_gran = 1;
620
621 inode = new_inode(s);
622 if (!inode)
623 return -ENOMEM;
624 /*
625 * because the root inode is 1, the files array must not contain an
626 * entry at index 1
627 */
628 inode->i_ino = 1;
629 inode->i_mode = S_IFDIR | 0755;
630 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
631 inode->i_op = &simple_dir_inode_operations;
632 inode->i_fop = &simple_dir_operations;
633 set_nlink(inode, 2);
634 root = d_make_root(inode);
635 if (!root)
636 return -ENOMEM;
637 for (i = 0; !files->name || files->name[0]; i++, files++) {
638 if (!files->name)
639 continue;
640
641 /* warn if it tries to conflict with the root inode */
642 if (unlikely(i == 1))
643 printk(KERN_WARNING "%s: %s passed in a files array"
644 "with an index of 1!\n", __func__,
645 s->s_type->name);
646
647 dentry = d_alloc_name(root, files->name);
648 if (!dentry)
649 goto out;
650 inode = new_inode(s);
651 if (!inode) {
652 dput(dentry);
653 goto out;
654 }
655 inode->i_mode = S_IFREG | files->mode;
656 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
657 inode->i_fop = files->ops;
658 inode->i_ino = i;
659 d_add(dentry, inode);
660 }
661 s->s_root = root;
662 return 0;
663 out:
664 d_genocide(root);
665 shrink_dcache_parent(root);
666 dput(root);
667 return -ENOMEM;
668 }
669 EXPORT_SYMBOL(simple_fill_super);
670
671 static DEFINE_SPINLOCK(pin_fs_lock);
672
673 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
674 {
675 struct vfsmount *mnt = NULL;
676 spin_lock(&pin_fs_lock);
677 if (unlikely(!*mount)) {
678 spin_unlock(&pin_fs_lock);
679 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
680 if (IS_ERR(mnt))
681 return PTR_ERR(mnt);
682 spin_lock(&pin_fs_lock);
683 if (!*mount)
684 *mount = mnt;
685 }
686 mntget(*mount);
687 ++*count;
688 spin_unlock(&pin_fs_lock);
689 mntput(mnt);
690 return 0;
691 }
692 EXPORT_SYMBOL(simple_pin_fs);
693
694 void simple_release_fs(struct vfsmount **mount, int *count)
695 {
696 struct vfsmount *mnt;
697 spin_lock(&pin_fs_lock);
698 mnt = *mount;
699 if (!--*count)
700 *mount = NULL;
701 spin_unlock(&pin_fs_lock);
702 mntput(mnt);
703 }
704 EXPORT_SYMBOL(simple_release_fs);
705
706 /**
707 * simple_read_from_buffer - copy data from the buffer to user space
708 * @to: the user space buffer to read to
709 * @count: the maximum number of bytes to read
710 * @ppos: the current position in the buffer
711 * @from: the buffer to read from
712 * @available: the size of the buffer
713 *
714 * The simple_read_from_buffer() function reads up to @count bytes from the
715 * buffer @from at offset @ppos into the user space address starting at @to.
716 *
717 * On success, the number of bytes read is returned and the offset @ppos is
718 * advanced by this number, or negative value is returned on error.
719 **/
720 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
721 const void *from, size_t available)
722 {
723 loff_t pos = *ppos;
724 size_t ret;
725
726 if (pos < 0)
727 return -EINVAL;
728 if (pos >= available || !count)
729 return 0;
730 if (count > available - pos)
731 count = available - pos;
732 ret = copy_to_user(to, from + pos, count);
733 if (ret == count)
734 return -EFAULT;
735 count -= ret;
736 *ppos = pos + count;
737 return count;
738 }
739 EXPORT_SYMBOL(simple_read_from_buffer);
740
741 /**
742 * simple_write_to_buffer - copy data from user space to the buffer
743 * @to: the buffer to write to
744 * @available: the size of the buffer
745 * @ppos: the current position in the buffer
746 * @from: the user space buffer to read from
747 * @count: the maximum number of bytes to read
748 *
749 * The simple_write_to_buffer() function reads up to @count bytes from the user
750 * space address starting at @from into the buffer @to at offset @ppos.
751 *
752 * On success, the number of bytes written is returned and the offset @ppos is
753 * advanced by this number, or negative value is returned on error.
754 **/
755 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
756 const void __user *from, size_t count)
757 {
758 loff_t pos = *ppos;
759 size_t res;
760
761 if (pos < 0)
762 return -EINVAL;
763 if (pos >= available || !count)
764 return 0;
765 if (count > available - pos)
766 count = available - pos;
767 res = copy_from_user(to + pos, from, count);
768 if (res == count)
769 return -EFAULT;
770 count -= res;
771 *ppos = pos + count;
772 return count;
773 }
774 EXPORT_SYMBOL(simple_write_to_buffer);
775
776 /**
777 * memory_read_from_buffer - copy data from the buffer
778 * @to: the kernel space buffer to read to
779 * @count: the maximum number of bytes to read
780 * @ppos: the current position in the buffer
781 * @from: the buffer to read from
782 * @available: the size of the buffer
783 *
784 * The memory_read_from_buffer() function reads up to @count bytes from the
785 * buffer @from at offset @ppos into the kernel space address starting at @to.
786 *
787 * On success, the number of bytes read is returned and the offset @ppos is
788 * advanced by this number, or negative value is returned on error.
789 **/
790 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
791 const void *from, size_t available)
792 {
793 loff_t pos = *ppos;
794
795 if (pos < 0)
796 return -EINVAL;
797 if (pos >= available)
798 return 0;
799 if (count > available - pos)
800 count = available - pos;
801 memcpy(to, from + pos, count);
802 *ppos = pos + count;
803
804 return count;
805 }
806 EXPORT_SYMBOL(memory_read_from_buffer);
807
808 /*
809 * Transaction based IO.
810 * The file expects a single write which triggers the transaction, and then
811 * possibly a read which collects the result - which is stored in a
812 * file-local buffer.
813 */
814
815 void simple_transaction_set(struct file *file, size_t n)
816 {
817 struct simple_transaction_argresp *ar = file->private_data;
818
819 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
820
821 /*
822 * The barrier ensures that ar->size will really remain zero until
823 * ar->data is ready for reading.
824 */
825 smp_mb();
826 ar->size = n;
827 }
828 EXPORT_SYMBOL(simple_transaction_set);
829
830 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
831 {
832 struct simple_transaction_argresp *ar;
833 static DEFINE_SPINLOCK(simple_transaction_lock);
834
835 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
836 return ERR_PTR(-EFBIG);
837
838 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
839 if (!ar)
840 return ERR_PTR(-ENOMEM);
841
842 spin_lock(&simple_transaction_lock);
843
844 /* only one write allowed per open */
845 if (file->private_data) {
846 spin_unlock(&simple_transaction_lock);
847 free_page((unsigned long)ar);
848 return ERR_PTR(-EBUSY);
849 }
850
851 file->private_data = ar;
852
853 spin_unlock(&simple_transaction_lock);
854
855 if (copy_from_user(ar->data, buf, size))
856 return ERR_PTR(-EFAULT);
857
858 return ar->data;
859 }
860 EXPORT_SYMBOL(simple_transaction_get);
861
862 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
863 {
864 struct simple_transaction_argresp *ar = file->private_data;
865
866 if (!ar)
867 return 0;
868 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
869 }
870 EXPORT_SYMBOL(simple_transaction_read);
871
872 int simple_transaction_release(struct inode *inode, struct file *file)
873 {
874 free_page((unsigned long)file->private_data);
875 return 0;
876 }
877 EXPORT_SYMBOL(simple_transaction_release);
878
879 /* Simple attribute files */
880
881 struct simple_attr {
882 int (*get)(void *, u64 *);
883 int (*set)(void *, u64);
884 char get_buf[24]; /* enough to store a u64 and "\n\0" */
885 char set_buf[24];
886 void *data;
887 const char *fmt; /* format for read operation */
888 struct mutex mutex; /* protects access to these buffers */
889 };
890
891 /* simple_attr_open is called by an actual attribute open file operation
892 * to set the attribute specific access operations. */
893 int simple_attr_open(struct inode *inode, struct file *file,
894 int (*get)(void *, u64 *), int (*set)(void *, u64),
895 const char *fmt)
896 {
897 struct simple_attr *attr;
898
899 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
900 if (!attr)
901 return -ENOMEM;
902
903 attr->get = get;
904 attr->set = set;
905 attr->data = inode->i_private;
906 attr->fmt = fmt;
907 mutex_init(&attr->mutex);
908
909 file->private_data = attr;
910
911 return nonseekable_open(inode, file);
912 }
913 EXPORT_SYMBOL_GPL(simple_attr_open);
914
915 int simple_attr_release(struct inode *inode, struct file *file)
916 {
917 kfree(file->private_data);
918 return 0;
919 }
920 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
921
922 /* read from the buffer that is filled with the get function */
923 ssize_t simple_attr_read(struct file *file, char __user *buf,
924 size_t len, loff_t *ppos)
925 {
926 struct simple_attr *attr;
927 size_t size;
928 ssize_t ret;
929
930 attr = file->private_data;
931
932 if (!attr->get)
933 return -EACCES;
934
935 ret = mutex_lock_interruptible(&attr->mutex);
936 if (ret)
937 return ret;
938
939 if (*ppos && attr->get_buf[0]) {
940 /* continued read */
941 size = strlen(attr->get_buf);
942 } else {
943 /* first read */
944 u64 val;
945 ret = attr->get(attr->data, &val);
946 if (ret)
947 goto out;
948
949 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
950 attr->fmt, (unsigned long long)val);
951 }
952
953 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
954 out:
955 mutex_unlock(&attr->mutex);
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(simple_attr_read);
959
960 /* interpret the buffer as a number to call the set function with */
961 ssize_t simple_attr_write(struct file *file, const char __user *buf,
962 size_t len, loff_t *ppos)
963 {
964 struct simple_attr *attr;
965 unsigned long long val;
966 size_t size;
967 ssize_t ret;
968
969 attr = file->private_data;
970 if (!attr->set)
971 return -EACCES;
972
973 ret = mutex_lock_interruptible(&attr->mutex);
974 if (ret)
975 return ret;
976
977 ret = -EFAULT;
978 size = min(sizeof(attr->set_buf) - 1, len);
979 if (copy_from_user(attr->set_buf, buf, size))
980 goto out;
981
982 attr->set_buf[size] = '\0';
983 ret = kstrtoull(attr->set_buf, 0, &val);
984 if (ret)
985 goto out;
986 ret = attr->set(attr->data, val);
987 if (ret == 0)
988 ret = len; /* on success, claim we got the whole input */
989 out:
990 mutex_unlock(&attr->mutex);
991 return ret;
992 }
993 EXPORT_SYMBOL_GPL(simple_attr_write);
994
995 /**
996 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
997 * @sb: filesystem to do the file handle conversion on
998 * @fid: file handle to convert
999 * @fh_len: length of the file handle in bytes
1000 * @fh_type: type of file handle
1001 * @get_inode: filesystem callback to retrieve inode
1002 *
1003 * This function decodes @fid as long as it has one of the well-known
1004 * Linux filehandle types and calls @get_inode on it to retrieve the
1005 * inode for the object specified in the file handle.
1006 */
1007 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1008 int fh_len, int fh_type, struct inode *(*get_inode)
1009 (struct super_block *sb, u64 ino, u32 gen))
1010 {
1011 struct inode *inode = NULL;
1012
1013 if (fh_len < 2)
1014 return NULL;
1015
1016 switch (fh_type) {
1017 case FILEID_INO32_GEN:
1018 case FILEID_INO32_GEN_PARENT:
1019 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1020 break;
1021 }
1022
1023 return d_obtain_alias(inode);
1024 }
1025 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1026
1027 /**
1028 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1029 * @sb: filesystem to do the file handle conversion on
1030 * @fid: file handle to convert
1031 * @fh_len: length of the file handle in bytes
1032 * @fh_type: type of file handle
1033 * @get_inode: filesystem callback to retrieve inode
1034 *
1035 * This function decodes @fid as long as it has one of the well-known
1036 * Linux filehandle types and calls @get_inode on it to retrieve the
1037 * inode for the _parent_ object specified in the file handle if it
1038 * is specified in the file handle, or NULL otherwise.
1039 */
1040 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1041 int fh_len, int fh_type, struct inode *(*get_inode)
1042 (struct super_block *sb, u64 ino, u32 gen))
1043 {
1044 struct inode *inode = NULL;
1045
1046 if (fh_len <= 2)
1047 return NULL;
1048
1049 switch (fh_type) {
1050 case FILEID_INO32_GEN_PARENT:
1051 inode = get_inode(sb, fid->i32.parent_ino,
1052 (fh_len > 3 ? fid->i32.parent_gen : 0));
1053 break;
1054 }
1055
1056 return d_obtain_alias(inode);
1057 }
1058 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1059
1060 /**
1061 * __generic_file_fsync - generic fsync implementation for simple filesystems
1062 *
1063 * @file: file to synchronize
1064 * @start: start offset in bytes
1065 * @end: end offset in bytes (inclusive)
1066 * @datasync: only synchronize essential metadata if true
1067 *
1068 * This is a generic implementation of the fsync method for simple
1069 * filesystems which track all non-inode metadata in the buffers list
1070 * hanging off the address_space structure.
1071 */
1072 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1073 int datasync)
1074 {
1075 struct inode *inode = file->f_mapping->host;
1076 int err;
1077 int ret;
1078
1079 err = file_write_and_wait_range(file, start, end);
1080 if (err)
1081 return err;
1082
1083 inode_lock(inode);
1084 ret = sync_mapping_buffers(inode->i_mapping);
1085 if (!(inode->i_state & I_DIRTY_ALL))
1086 goto out;
1087 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1088 goto out;
1089
1090 err = sync_inode_metadata(inode, 1);
1091 if (ret == 0)
1092 ret = err;
1093
1094 out:
1095 inode_unlock(inode);
1096 /* check and advance again to catch errors after syncing out buffers */
1097 err = file_check_and_advance_wb_err(file);
1098 if (ret == 0)
1099 ret = err;
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(__generic_file_fsync);
1103
1104 /**
1105 * generic_file_fsync - generic fsync implementation for simple filesystems
1106 * with flush
1107 * @file: file to synchronize
1108 * @start: start offset in bytes
1109 * @end: end offset in bytes (inclusive)
1110 * @datasync: only synchronize essential metadata if true
1111 *
1112 */
1113
1114 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1115 int datasync)
1116 {
1117 struct inode *inode = file->f_mapping->host;
1118 int err;
1119
1120 err = __generic_file_fsync(file, start, end, datasync);
1121 if (err)
1122 return err;
1123 return blkdev_issue_flush(inode->i_sb->s_bdev);
1124 }
1125 EXPORT_SYMBOL(generic_file_fsync);
1126
1127 /**
1128 * generic_check_addressable - Check addressability of file system
1129 * @blocksize_bits: log of file system block size
1130 * @num_blocks: number of blocks in file system
1131 *
1132 * Determine whether a file system with @num_blocks blocks (and a
1133 * block size of 2**@blocksize_bits) is addressable by the sector_t
1134 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1135 */
1136 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1137 {
1138 u64 last_fs_block = num_blocks - 1;
1139 u64 last_fs_page =
1140 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1141
1142 if (unlikely(num_blocks == 0))
1143 return 0;
1144
1145 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1146 return -EINVAL;
1147
1148 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1149 (last_fs_page > (pgoff_t)(~0ULL))) {
1150 return -EFBIG;
1151 }
1152 return 0;
1153 }
1154 EXPORT_SYMBOL(generic_check_addressable);
1155
1156 /*
1157 * No-op implementation of ->fsync for in-memory filesystems.
1158 */
1159 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1160 {
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(noop_fsync);
1164
1165 int noop_set_page_dirty(struct page *page)
1166 {
1167 /*
1168 * Unlike __set_page_dirty_no_writeback that handles dirty page
1169 * tracking in the page object, dax does all dirty tracking in
1170 * the inode address_space in response to mkwrite faults. In the
1171 * dax case we only need to worry about potentially dirty CPU
1172 * caches, not dirty page cache pages to write back.
1173 *
1174 * This callback is defined to prevent fallback to
1175 * __set_page_dirty_buffers() in set_page_dirty().
1176 */
1177 return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1180
1181 void noop_invalidatepage(struct page *page, unsigned int offset,
1182 unsigned int length)
1183 {
1184 /*
1185 * There is no page cache to invalidate in the dax case, however
1186 * we need this callback defined to prevent falling back to
1187 * block_invalidatepage() in do_invalidatepage().
1188 */
1189 }
1190 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1191
1192 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1193 {
1194 /*
1195 * iomap based filesystems support direct I/O without need for
1196 * this callback. However, it still needs to be set in
1197 * inode->a_ops so that open/fcntl know that direct I/O is
1198 * generally supported.
1199 */
1200 return -EINVAL;
1201 }
1202 EXPORT_SYMBOL_GPL(noop_direct_IO);
1203
1204 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1205 void kfree_link(void *p)
1206 {
1207 kfree(p);
1208 }
1209 EXPORT_SYMBOL(kfree_link);
1210
1211 /*
1212 * nop .set_page_dirty method so that people can use .page_mkwrite on
1213 * anon inodes.
1214 */
1215 static int anon_set_page_dirty(struct page *page)
1216 {
1217 return 0;
1218 };
1219
1220 struct inode *alloc_anon_inode(struct super_block *s)
1221 {
1222 static const struct address_space_operations anon_aops = {
1223 .set_page_dirty = anon_set_page_dirty,
1224 };
1225 struct inode *inode = new_inode_pseudo(s);
1226
1227 if (!inode)
1228 return ERR_PTR(-ENOMEM);
1229
1230 inode->i_ino = get_next_ino();
1231 inode->i_mapping->a_ops = &anon_aops;
1232
1233 /*
1234 * Mark the inode dirty from the very beginning,
1235 * that way it will never be moved to the dirty
1236 * list because mark_inode_dirty() will think
1237 * that it already _is_ on the dirty list.
1238 */
1239 inode->i_state = I_DIRTY;
1240 inode->i_mode = S_IRUSR | S_IWUSR;
1241 inode->i_uid = current_fsuid();
1242 inode->i_gid = current_fsgid();
1243 inode->i_flags |= S_PRIVATE;
1244 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1245 return inode;
1246 }
1247 EXPORT_SYMBOL(alloc_anon_inode);
1248
1249 /**
1250 * simple_nosetlease - generic helper for prohibiting leases
1251 * @filp: file pointer
1252 * @arg: type of lease to obtain
1253 * @flp: new lease supplied for insertion
1254 * @priv: private data for lm_setup operation
1255 *
1256 * Generic helper for filesystems that do not wish to allow leases to be set.
1257 * All arguments are ignored and it just returns -EINVAL.
1258 */
1259 int
1260 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1261 void **priv)
1262 {
1263 return -EINVAL;
1264 }
1265 EXPORT_SYMBOL(simple_nosetlease);
1266
1267 /**
1268 * simple_get_link - generic helper to get the target of "fast" symlinks
1269 * @dentry: not used here
1270 * @inode: the symlink inode
1271 * @done: not used here
1272 *
1273 * Generic helper for filesystems to use for symlink inodes where a pointer to
1274 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1275 * since as an optimization the path lookup code uses any non-NULL ->i_link
1276 * directly, without calling ->get_link(). But ->get_link() still must be set,
1277 * to mark the inode_operations as being for a symlink.
1278 *
1279 * Return: the symlink target
1280 */
1281 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1282 struct delayed_call *done)
1283 {
1284 return inode->i_link;
1285 }
1286 EXPORT_SYMBOL(simple_get_link);
1287
1288 const struct inode_operations simple_symlink_inode_operations = {
1289 .get_link = simple_get_link,
1290 };
1291 EXPORT_SYMBOL(simple_symlink_inode_operations);
1292
1293 /*
1294 * Operations for a permanently empty directory.
1295 */
1296 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1297 {
1298 return ERR_PTR(-ENOENT);
1299 }
1300
1301 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1302 const struct path *path, struct kstat *stat,
1303 u32 request_mask, unsigned int query_flags)
1304 {
1305 struct inode *inode = d_inode(path->dentry);
1306 generic_fillattr(&init_user_ns, inode, stat);
1307 return 0;
1308 }
1309
1310 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1311 struct dentry *dentry, struct iattr *attr)
1312 {
1313 return -EPERM;
1314 }
1315
1316 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1317 {
1318 return -EOPNOTSUPP;
1319 }
1320
1321 static const struct inode_operations empty_dir_inode_operations = {
1322 .lookup = empty_dir_lookup,
1323 .permission = generic_permission,
1324 .setattr = empty_dir_setattr,
1325 .getattr = empty_dir_getattr,
1326 .listxattr = empty_dir_listxattr,
1327 };
1328
1329 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1330 {
1331 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1332 return generic_file_llseek_size(file, offset, whence, 2, 2);
1333 }
1334
1335 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1336 {
1337 dir_emit_dots(file, ctx);
1338 return 0;
1339 }
1340
1341 static const struct file_operations empty_dir_operations = {
1342 .llseek = empty_dir_llseek,
1343 .read = generic_read_dir,
1344 .iterate_shared = empty_dir_readdir,
1345 .fsync = noop_fsync,
1346 };
1347
1348
1349 void make_empty_dir_inode(struct inode *inode)
1350 {
1351 set_nlink(inode, 2);
1352 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1353 inode->i_uid = GLOBAL_ROOT_UID;
1354 inode->i_gid = GLOBAL_ROOT_GID;
1355 inode->i_rdev = 0;
1356 inode->i_size = 0;
1357 inode->i_blkbits = PAGE_SHIFT;
1358 inode->i_blocks = 0;
1359
1360 inode->i_op = &empty_dir_inode_operations;
1361 inode->i_opflags &= ~IOP_XATTR;
1362 inode->i_fop = &empty_dir_operations;
1363 }
1364
1365 bool is_empty_dir_inode(struct inode *inode)
1366 {
1367 return (inode->i_fop == &empty_dir_operations) &&
1368 (inode->i_op == &empty_dir_inode_operations);
1369 }
1370
1371 #ifdef CONFIG_UNICODE
1372 /*
1373 * Determine if the name of a dentry should be casefolded.
1374 *
1375 * Return: if names will need casefolding
1376 */
1377 static bool needs_casefold(const struct inode *dir)
1378 {
1379 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1380 }
1381
1382 /**
1383 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1384 * @dentry: dentry whose name we are checking against
1385 * @len: len of name of dentry
1386 * @str: str pointer to name of dentry
1387 * @name: Name to compare against
1388 *
1389 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1390 */
1391 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1392 const char *str, const struct qstr *name)
1393 {
1394 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1395 const struct inode *dir = READ_ONCE(parent->d_inode);
1396 const struct super_block *sb = dentry->d_sb;
1397 const struct unicode_map *um = sb->s_encoding;
1398 struct qstr qstr = QSTR_INIT(str, len);
1399 char strbuf[DNAME_INLINE_LEN];
1400 int ret;
1401
1402 if (!dir || !needs_casefold(dir))
1403 goto fallback;
1404 /*
1405 * If the dentry name is stored in-line, then it may be concurrently
1406 * modified by a rename. If this happens, the VFS will eventually retry
1407 * the lookup, so it doesn't matter what ->d_compare() returns.
1408 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1409 * string. Therefore, we have to copy the name into a temporary buffer.
1410 */
1411 if (len <= DNAME_INLINE_LEN - 1) {
1412 memcpy(strbuf, str, len);
1413 strbuf[len] = 0;
1414 qstr.name = strbuf;
1415 /* prevent compiler from optimizing out the temporary buffer */
1416 barrier();
1417 }
1418 ret = utf8_strncasecmp(um, name, &qstr);
1419 if (ret >= 0)
1420 return ret;
1421
1422 if (sb_has_strict_encoding(sb))
1423 return -EINVAL;
1424 fallback:
1425 if (len != name->len)
1426 return 1;
1427 return !!memcmp(str, name->name, len);
1428 }
1429
1430 /**
1431 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1432 * @dentry: dentry of the parent directory
1433 * @str: qstr of name whose hash we should fill in
1434 *
1435 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1436 */
1437 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1438 {
1439 const struct inode *dir = READ_ONCE(dentry->d_inode);
1440 struct super_block *sb = dentry->d_sb;
1441 const struct unicode_map *um = sb->s_encoding;
1442 int ret = 0;
1443
1444 if (!dir || !needs_casefold(dir))
1445 return 0;
1446
1447 ret = utf8_casefold_hash(um, dentry, str);
1448 if (ret < 0 && sb_has_strict_encoding(sb))
1449 return -EINVAL;
1450 return 0;
1451 }
1452
1453 static const struct dentry_operations generic_ci_dentry_ops = {
1454 .d_hash = generic_ci_d_hash,
1455 .d_compare = generic_ci_d_compare,
1456 };
1457 #endif
1458
1459 #ifdef CONFIG_FS_ENCRYPTION
1460 static const struct dentry_operations generic_encrypted_dentry_ops = {
1461 .d_revalidate = fscrypt_d_revalidate,
1462 };
1463 #endif
1464
1465 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1466 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1467 .d_hash = generic_ci_d_hash,
1468 .d_compare = generic_ci_d_compare,
1469 .d_revalidate = fscrypt_d_revalidate,
1470 };
1471 #endif
1472
1473 /**
1474 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1475 * @dentry: dentry to set ops on
1476 *
1477 * Casefolded directories need d_hash and d_compare set, so that the dentries
1478 * contained in them are handled case-insensitively. Note that these operations
1479 * are needed on the parent directory rather than on the dentries in it, and
1480 * while the casefolding flag can be toggled on and off on an empty directory,
1481 * dentry_operations can't be changed later. As a result, if the filesystem has
1482 * casefolding support enabled at all, we have to give all dentries the
1483 * casefolding operations even if their inode doesn't have the casefolding flag
1484 * currently (and thus the casefolding ops would be no-ops for now).
1485 *
1486 * Encryption works differently in that the only dentry operation it needs is
1487 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1488 * The no-key flag can't be set "later", so we don't have to worry about that.
1489 *
1490 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1491 * with certain dentry operations) and to avoid taking an unnecessary
1492 * performance hit, we use custom dentry_operations for each possible
1493 * combination rather than always installing all operations.
1494 */
1495 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1496 {
1497 #ifdef CONFIG_FS_ENCRYPTION
1498 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1499 #endif
1500 #ifdef CONFIG_UNICODE
1501 bool needs_ci_ops = dentry->d_sb->s_encoding;
1502 #endif
1503 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1504 if (needs_encrypt_ops && needs_ci_ops) {
1505 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1506 return;
1507 }
1508 #endif
1509 #ifdef CONFIG_FS_ENCRYPTION
1510 if (needs_encrypt_ops) {
1511 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1512 return;
1513 }
1514 #endif
1515 #ifdef CONFIG_UNICODE
1516 if (needs_ci_ops) {
1517 d_set_d_op(dentry, &generic_ci_dentry_ops);
1518 return;
1519 }
1520 #endif
1521 }
1522 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);