]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
NFS: Client implementation of Labeled-NFS
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44
45 /* #define NFS_DEBUG_VERBOSE 1 */
46
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61 };
62
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65 };
66
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80 }
81
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86 }
87
88 /*
89 * Open file
90 */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120 out:
121 put_rpccred(cred);
122 return res;
123 }
124
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130 }
131
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144 };
145
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
162
163 /*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176 }
177
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181 kunmap(page);
182 }
183
184 /*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197 }
198
199 /*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218 }
219
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
250 }
251
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273 }
274
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320 out:
321 return status;
322 }
323
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
349 }
350
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417 }
418
419 /*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438 int status;
439
440 if (filename.name[0] == '.') {
441 if (filename.len == 1)
442 return;
443 if (filename.len == 2 && filename.name[1] == '.')
444 return;
445 }
446 filename.hash = full_name_hash(filename.name, filename.len);
447
448 dentry = d_lookup(parent, &filename);
449 if (dentry != NULL) {
450 if (nfs_same_file(dentry, entry)) {
451 status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
452 if (!status)
453 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
454 goto out;
455 } else {
456 if (d_invalidate(dentry) != 0)
457 goto out;
458 dput(dentry);
459 }
460 }
461
462 dentry = d_alloc(parent, &filename);
463 if (dentry == NULL)
464 return;
465
466 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
467 if (IS_ERR(inode))
468 goto out;
469
470 alias = d_materialise_unique(dentry, inode);
471 if (IS_ERR(alias))
472 goto out;
473 else if (alias) {
474 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
475 dput(alias);
476 } else
477 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
478
479 out:
480 dput(dentry);
481 }
482
483 /* Perform conversion from xdr to cache array */
484 static
485 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
486 struct page **xdr_pages, struct page *page, unsigned int buflen)
487 {
488 struct xdr_stream stream;
489 struct xdr_buf buf;
490 struct page *scratch;
491 struct nfs_cache_array *array;
492 unsigned int count = 0;
493 int status;
494
495 scratch = alloc_page(GFP_KERNEL);
496 if (scratch == NULL)
497 return -ENOMEM;
498
499 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
500 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
501
502 do {
503 status = xdr_decode(desc, entry, &stream);
504 if (status != 0) {
505 if (status == -EAGAIN)
506 status = 0;
507 break;
508 }
509
510 count++;
511
512 if (desc->plus != 0)
513 nfs_prime_dcache(desc->file->f_path.dentry, entry);
514
515 status = nfs_readdir_add_to_array(entry, page);
516 if (status != 0)
517 break;
518 } while (!entry->eof);
519
520 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
521 array = nfs_readdir_get_array(page);
522 if (!IS_ERR(array)) {
523 array->eof_index = array->size;
524 status = 0;
525 nfs_readdir_release_array(page);
526 } else
527 status = PTR_ERR(array);
528 }
529
530 put_page(scratch);
531 return status;
532 }
533
534 static
535 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
536 {
537 unsigned int i;
538 for (i = 0; i < npages; i++)
539 put_page(pages[i]);
540 }
541
542 static
543 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
544 unsigned int npages)
545 {
546 nfs_readdir_free_pagearray(pages, npages);
547 }
548
549 /*
550 * nfs_readdir_large_page will allocate pages that must be freed with a call
551 * to nfs_readdir_free_large_page
552 */
553 static
554 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
555 {
556 unsigned int i;
557
558 for (i = 0; i < npages; i++) {
559 struct page *page = alloc_page(GFP_KERNEL);
560 if (page == NULL)
561 goto out_freepages;
562 pages[i] = page;
563 }
564 return 0;
565
566 out_freepages:
567 nfs_readdir_free_pagearray(pages, i);
568 return -ENOMEM;
569 }
570
571 static
572 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
573 {
574 struct page *pages[NFS_MAX_READDIR_PAGES];
575 void *pages_ptr = NULL;
576 struct nfs_entry entry;
577 struct file *file = desc->file;
578 struct nfs_cache_array *array;
579 int status = -ENOMEM;
580 unsigned int array_size = ARRAY_SIZE(pages);
581
582 entry.prev_cookie = 0;
583 entry.cookie = desc->last_cookie;
584 entry.eof = 0;
585 entry.fh = nfs_alloc_fhandle();
586 entry.fattr = nfs_alloc_fattr();
587 entry.server = NFS_SERVER(inode);
588 if (entry.fh == NULL || entry.fattr == NULL)
589 goto out;
590
591 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
592 if (IS_ERR(entry.label)) {
593 status = PTR_ERR(entry.label);
594 goto out;
595 }
596
597 array = nfs_readdir_get_array(page);
598 if (IS_ERR(array)) {
599 status = PTR_ERR(array);
600 goto out_label_free;
601 }
602 memset(array, 0, sizeof(struct nfs_cache_array));
603 array->eof_index = -1;
604
605 status = nfs_readdir_large_page(pages, array_size);
606 if (status < 0)
607 goto out_release_array;
608 do {
609 unsigned int pglen;
610 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
611
612 if (status < 0)
613 break;
614 pglen = status;
615 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
616 if (status < 0) {
617 if (status == -ENOSPC)
618 status = 0;
619 break;
620 }
621 } while (array->eof_index < 0);
622
623 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
624 out_release_array:
625 nfs_readdir_release_array(page);
626 out_label_free:
627 nfs4_label_free(entry.label);
628 out:
629 nfs_free_fattr(entry.fattr);
630 nfs_free_fhandle(entry.fh);
631 return status;
632 }
633
634 /*
635 * Now we cache directories properly, by converting xdr information
636 * to an array that can be used for lookups later. This results in
637 * fewer cache pages, since we can store more information on each page.
638 * We only need to convert from xdr once so future lookups are much simpler
639 */
640 static
641 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
642 {
643 struct inode *inode = file_inode(desc->file);
644 int ret;
645
646 ret = nfs_readdir_xdr_to_array(desc, page, inode);
647 if (ret < 0)
648 goto error;
649 SetPageUptodate(page);
650
651 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
652 /* Should never happen */
653 nfs_zap_mapping(inode, inode->i_mapping);
654 }
655 unlock_page(page);
656 return 0;
657 error:
658 unlock_page(page);
659 return ret;
660 }
661
662 static
663 void cache_page_release(nfs_readdir_descriptor_t *desc)
664 {
665 if (!desc->page->mapping)
666 nfs_readdir_clear_array(desc->page);
667 page_cache_release(desc->page);
668 desc->page = NULL;
669 }
670
671 static
672 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
673 {
674 return read_cache_page(file_inode(desc->file)->i_mapping,
675 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
676 }
677
678 /*
679 * Returns 0 if desc->dir_cookie was found on page desc->page_index
680 */
681 static
682 int find_cache_page(nfs_readdir_descriptor_t *desc)
683 {
684 int res;
685
686 desc->page = get_cache_page(desc);
687 if (IS_ERR(desc->page))
688 return PTR_ERR(desc->page);
689
690 res = nfs_readdir_search_array(desc);
691 if (res != 0)
692 cache_page_release(desc);
693 return res;
694 }
695
696 /* Search for desc->dir_cookie from the beginning of the page cache */
697 static inline
698 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
699 {
700 int res;
701
702 if (desc->page_index == 0) {
703 desc->current_index = 0;
704 desc->last_cookie = 0;
705 }
706 do {
707 res = find_cache_page(desc);
708 } while (res == -EAGAIN);
709 return res;
710 }
711
712 /*
713 * Once we've found the start of the dirent within a page: fill 'er up...
714 */
715 static
716 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
717 filldir_t filldir)
718 {
719 struct file *file = desc->file;
720 int i = 0;
721 int res = 0;
722 struct nfs_cache_array *array = NULL;
723 struct nfs_open_dir_context *ctx = file->private_data;
724
725 array = nfs_readdir_get_array(desc->page);
726 if (IS_ERR(array)) {
727 res = PTR_ERR(array);
728 goto out;
729 }
730
731 for (i = desc->cache_entry_index; i < array->size; i++) {
732 struct nfs_cache_array_entry *ent;
733
734 ent = &array->array[i];
735 if (filldir(dirent, ent->string.name, ent->string.len,
736 file->f_pos, nfs_compat_user_ino64(ent->ino),
737 ent->d_type) < 0) {
738 desc->eof = 1;
739 break;
740 }
741 file->f_pos++;
742 if (i < (array->size-1))
743 *desc->dir_cookie = array->array[i+1].cookie;
744 else
745 *desc->dir_cookie = array->last_cookie;
746 if (ctx->duped != 0)
747 ctx->duped = 1;
748 }
749 if (array->eof_index >= 0)
750 desc->eof = 1;
751
752 nfs_readdir_release_array(desc->page);
753 out:
754 cache_page_release(desc);
755 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
756 (unsigned long long)*desc->dir_cookie, res);
757 return res;
758 }
759
760 /*
761 * If we cannot find a cookie in our cache, we suspect that this is
762 * because it points to a deleted file, so we ask the server to return
763 * whatever it thinks is the next entry. We then feed this to filldir.
764 * If all goes well, we should then be able to find our way round the
765 * cache on the next call to readdir_search_pagecache();
766 *
767 * NOTE: we cannot add the anonymous page to the pagecache because
768 * the data it contains might not be page aligned. Besides,
769 * we should already have a complete representation of the
770 * directory in the page cache by the time we get here.
771 */
772 static inline
773 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
774 filldir_t filldir)
775 {
776 struct page *page = NULL;
777 int status;
778 struct inode *inode = file_inode(desc->file);
779 struct nfs_open_dir_context *ctx = desc->file->private_data;
780
781 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
782 (unsigned long long)*desc->dir_cookie);
783
784 page = alloc_page(GFP_HIGHUSER);
785 if (!page) {
786 status = -ENOMEM;
787 goto out;
788 }
789
790 desc->page_index = 0;
791 desc->last_cookie = *desc->dir_cookie;
792 desc->page = page;
793 ctx->duped = 0;
794
795 status = nfs_readdir_xdr_to_array(desc, page, inode);
796 if (status < 0)
797 goto out_release;
798
799 status = nfs_do_filldir(desc, dirent, filldir);
800
801 out:
802 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
803 __func__, status);
804 return status;
805 out_release:
806 cache_page_release(desc);
807 goto out;
808 }
809
810 /* The file offset position represents the dirent entry number. A
811 last cookie cache takes care of the common case of reading the
812 whole directory.
813 */
814 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
815 {
816 struct dentry *dentry = filp->f_path.dentry;
817 struct inode *inode = dentry->d_inode;
818 nfs_readdir_descriptor_t my_desc,
819 *desc = &my_desc;
820 struct nfs_open_dir_context *dir_ctx = filp->private_data;
821 int res;
822
823 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
824 dentry->d_parent->d_name.name, dentry->d_name.name,
825 (long long)filp->f_pos);
826 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
827
828 /*
829 * filp->f_pos points to the dirent entry number.
830 * *desc->dir_cookie has the cookie for the next entry. We have
831 * to either find the entry with the appropriate number or
832 * revalidate the cookie.
833 */
834 memset(desc, 0, sizeof(*desc));
835
836 desc->file = filp;
837 desc->dir_cookie = &dir_ctx->dir_cookie;
838 desc->decode = NFS_PROTO(inode)->decode_dirent;
839 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
840
841 nfs_block_sillyrename(dentry);
842 res = nfs_revalidate_mapping(inode, filp->f_mapping);
843 if (res < 0)
844 goto out;
845
846 do {
847 res = readdir_search_pagecache(desc);
848
849 if (res == -EBADCOOKIE) {
850 res = 0;
851 /* This means either end of directory */
852 if (*desc->dir_cookie && desc->eof == 0) {
853 /* Or that the server has 'lost' a cookie */
854 res = uncached_readdir(desc, dirent, filldir);
855 if (res == 0)
856 continue;
857 }
858 break;
859 }
860 if (res == -ETOOSMALL && desc->plus) {
861 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
862 nfs_zap_caches(inode);
863 desc->page_index = 0;
864 desc->plus = 0;
865 desc->eof = 0;
866 continue;
867 }
868 if (res < 0)
869 break;
870
871 res = nfs_do_filldir(desc, dirent, filldir);
872 if (res < 0)
873 break;
874 } while (!desc->eof);
875 out:
876 nfs_unblock_sillyrename(dentry);
877 if (res > 0)
878 res = 0;
879 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
880 dentry->d_parent->d_name.name, dentry->d_name.name,
881 res);
882 return res;
883 }
884
885 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
886 {
887 struct dentry *dentry = filp->f_path.dentry;
888 struct inode *inode = dentry->d_inode;
889 struct nfs_open_dir_context *dir_ctx = filp->private_data;
890
891 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
892 dentry->d_parent->d_name.name,
893 dentry->d_name.name,
894 offset, whence);
895
896 mutex_lock(&inode->i_mutex);
897 switch (whence) {
898 case 1:
899 offset += filp->f_pos;
900 case 0:
901 if (offset >= 0)
902 break;
903 default:
904 offset = -EINVAL;
905 goto out;
906 }
907 if (offset != filp->f_pos) {
908 filp->f_pos = offset;
909 dir_ctx->dir_cookie = 0;
910 dir_ctx->duped = 0;
911 }
912 out:
913 mutex_unlock(&inode->i_mutex);
914 return offset;
915 }
916
917 /*
918 * All directory operations under NFS are synchronous, so fsync()
919 * is a dummy operation.
920 */
921 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
922 int datasync)
923 {
924 struct dentry *dentry = filp->f_path.dentry;
925 struct inode *inode = dentry->d_inode;
926
927 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
928 dentry->d_parent->d_name.name, dentry->d_name.name,
929 datasync);
930
931 mutex_lock(&inode->i_mutex);
932 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
933 mutex_unlock(&inode->i_mutex);
934 return 0;
935 }
936
937 /**
938 * nfs_force_lookup_revalidate - Mark the directory as having changed
939 * @dir - pointer to directory inode
940 *
941 * This forces the revalidation code in nfs_lookup_revalidate() to do a
942 * full lookup on all child dentries of 'dir' whenever a change occurs
943 * on the server that might have invalidated our dcache.
944 *
945 * The caller should be holding dir->i_lock
946 */
947 void nfs_force_lookup_revalidate(struct inode *dir)
948 {
949 NFS_I(dir)->cache_change_attribute++;
950 }
951 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
952
953 /*
954 * A check for whether or not the parent directory has changed.
955 * In the case it has, we assume that the dentries are untrustworthy
956 * and may need to be looked up again.
957 */
958 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
959 {
960 if (IS_ROOT(dentry))
961 return 1;
962 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
963 return 0;
964 if (!nfs_verify_change_attribute(dir, dentry->d_time))
965 return 0;
966 /* Revalidate nfsi->cache_change_attribute before we declare a match */
967 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
968 return 0;
969 if (!nfs_verify_change_attribute(dir, dentry->d_time))
970 return 0;
971 return 1;
972 }
973
974 /*
975 * Use intent information to check whether or not we're going to do
976 * an O_EXCL create using this path component.
977 */
978 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
979 {
980 if (NFS_PROTO(dir)->version == 2)
981 return 0;
982 return flags & LOOKUP_EXCL;
983 }
984
985 /*
986 * Inode and filehandle revalidation for lookups.
987 *
988 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
989 * or if the intent information indicates that we're about to open this
990 * particular file and the "nocto" mount flag is not set.
991 *
992 */
993 static
994 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
995 {
996 struct nfs_server *server = NFS_SERVER(inode);
997 int ret;
998
999 if (IS_AUTOMOUNT(inode))
1000 return 0;
1001 /* VFS wants an on-the-wire revalidation */
1002 if (flags & LOOKUP_REVAL)
1003 goto out_force;
1004 /* This is an open(2) */
1005 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1006 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1007 goto out_force;
1008 out:
1009 return (inode->i_nlink == 0) ? -ENOENT : 0;
1010 out_force:
1011 ret = __nfs_revalidate_inode(server, inode);
1012 if (ret != 0)
1013 return ret;
1014 goto out;
1015 }
1016
1017 /*
1018 * We judge how long we want to trust negative
1019 * dentries by looking at the parent inode mtime.
1020 *
1021 * If parent mtime has changed, we revalidate, else we wait for a
1022 * period corresponding to the parent's attribute cache timeout value.
1023 */
1024 static inline
1025 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1026 unsigned int flags)
1027 {
1028 /* Don't revalidate a negative dentry if we're creating a new file */
1029 if (flags & LOOKUP_CREATE)
1030 return 0;
1031 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1032 return 1;
1033 return !nfs_check_verifier(dir, dentry);
1034 }
1035
1036 /*
1037 * This is called every time the dcache has a lookup hit,
1038 * and we should check whether we can really trust that
1039 * lookup.
1040 *
1041 * NOTE! The hit can be a negative hit too, don't assume
1042 * we have an inode!
1043 *
1044 * If the parent directory is seen to have changed, we throw out the
1045 * cached dentry and do a new lookup.
1046 */
1047 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1048 {
1049 struct inode *dir;
1050 struct inode *inode;
1051 struct dentry *parent;
1052 struct nfs_fh *fhandle = NULL;
1053 struct nfs_fattr *fattr = NULL;
1054 struct nfs4_label *label = NULL;
1055 int error;
1056
1057 if (flags & LOOKUP_RCU)
1058 return -ECHILD;
1059
1060 parent = dget_parent(dentry);
1061 dir = parent->d_inode;
1062 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1063 inode = dentry->d_inode;
1064
1065 if (!inode) {
1066 if (nfs_neg_need_reval(dir, dentry, flags))
1067 goto out_bad;
1068 goto out_valid_noent;
1069 }
1070
1071 if (is_bad_inode(inode)) {
1072 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1073 __func__, dentry->d_parent->d_name.name,
1074 dentry->d_name.name);
1075 goto out_bad;
1076 }
1077
1078 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1079 goto out_set_verifier;
1080
1081 /* Force a full look up iff the parent directory has changed */
1082 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1083 if (nfs_lookup_verify_inode(inode, flags))
1084 goto out_zap_parent;
1085 goto out_valid;
1086 }
1087
1088 if (NFS_STALE(inode))
1089 goto out_bad;
1090
1091 error = -ENOMEM;
1092 fhandle = nfs_alloc_fhandle();
1093 fattr = nfs_alloc_fattr();
1094 if (fhandle == NULL || fattr == NULL)
1095 goto out_error;
1096
1097 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1098 if (IS_ERR(label))
1099 goto out_error;
1100
1101 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1102 if (error)
1103 goto out_bad;
1104 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1105 goto out_bad;
1106 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1107 goto out_bad;
1108
1109 nfs_setsecurity(inode, fattr, label);
1110
1111 nfs_free_fattr(fattr);
1112 nfs_free_fhandle(fhandle);
1113 nfs4_label_free(label);
1114
1115 out_set_verifier:
1116 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1117 out_valid:
1118 /* Success: notify readdir to use READDIRPLUS */
1119 nfs_advise_use_readdirplus(dir);
1120 out_valid_noent:
1121 dput(parent);
1122 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1123 __func__, dentry->d_parent->d_name.name,
1124 dentry->d_name.name);
1125 return 1;
1126 out_zap_parent:
1127 nfs_zap_caches(dir);
1128 out_bad:
1129 nfs_free_fattr(fattr);
1130 nfs_free_fhandle(fhandle);
1131 nfs4_label_free(label);
1132 nfs_mark_for_revalidate(dir);
1133 if (inode && S_ISDIR(inode->i_mode)) {
1134 /* Purge readdir caches. */
1135 nfs_zap_caches(inode);
1136 /* If we have submounts, don't unhash ! */
1137 if (have_submounts(dentry))
1138 goto out_valid;
1139 if (dentry->d_flags & DCACHE_DISCONNECTED)
1140 goto out_valid;
1141 shrink_dcache_parent(dentry);
1142 }
1143 d_drop(dentry);
1144 dput(parent);
1145 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1146 __func__, dentry->d_parent->d_name.name,
1147 dentry->d_name.name);
1148 return 0;
1149 out_error:
1150 nfs_free_fattr(fattr);
1151 nfs_free_fhandle(fhandle);
1152 nfs4_label_free(label);
1153 dput(parent);
1154 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1155 __func__, dentry->d_parent->d_name.name,
1156 dentry->d_name.name, error);
1157 return error;
1158 }
1159
1160 /*
1161 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1162 * when we don't really care about the dentry name. This is called when a
1163 * pathwalk ends on a dentry that was not found via a normal lookup in the
1164 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1165 *
1166 * In this situation, we just want to verify that the inode itself is OK
1167 * since the dentry might have changed on the server.
1168 */
1169 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1170 {
1171 int error;
1172 struct inode *inode = dentry->d_inode;
1173
1174 /*
1175 * I believe we can only get a negative dentry here in the case of a
1176 * procfs-style symlink. Just assume it's correct for now, but we may
1177 * eventually need to do something more here.
1178 */
1179 if (!inode) {
1180 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1181 __func__, dentry->d_parent->d_name.name,
1182 dentry->d_name.name);
1183 return 1;
1184 }
1185
1186 if (is_bad_inode(inode)) {
1187 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1188 __func__, dentry->d_parent->d_name.name,
1189 dentry->d_name.name);
1190 return 0;
1191 }
1192
1193 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1194 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1195 __func__, inode->i_ino, error ? "invalid" : "valid");
1196 return !error;
1197 }
1198
1199 /*
1200 * This is called from dput() when d_count is going to 0.
1201 */
1202 static int nfs_dentry_delete(const struct dentry *dentry)
1203 {
1204 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1205 dentry->d_parent->d_name.name, dentry->d_name.name,
1206 dentry->d_flags);
1207
1208 /* Unhash any dentry with a stale inode */
1209 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1210 return 1;
1211
1212 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1213 /* Unhash it, so that ->d_iput() would be called */
1214 return 1;
1215 }
1216 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1217 /* Unhash it, so that ancestors of killed async unlink
1218 * files will be cleaned up during umount */
1219 return 1;
1220 }
1221 return 0;
1222
1223 }
1224
1225 /* Ensure that we revalidate inode->i_nlink */
1226 static void nfs_drop_nlink(struct inode *inode)
1227 {
1228 spin_lock(&inode->i_lock);
1229 /* drop the inode if we're reasonably sure this is the last link */
1230 if (inode->i_nlink == 1)
1231 clear_nlink(inode);
1232 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1233 spin_unlock(&inode->i_lock);
1234 }
1235
1236 /*
1237 * Called when the dentry loses inode.
1238 * We use it to clean up silly-renamed files.
1239 */
1240 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1241 {
1242 if (S_ISDIR(inode->i_mode))
1243 /* drop any readdir cache as it could easily be old */
1244 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1245
1246 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1247 nfs_complete_unlink(dentry, inode);
1248 nfs_drop_nlink(inode);
1249 }
1250 iput(inode);
1251 }
1252
1253 static void nfs_d_release(struct dentry *dentry)
1254 {
1255 /* free cached devname value, if it survived that far */
1256 if (unlikely(dentry->d_fsdata)) {
1257 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1258 WARN_ON(1);
1259 else
1260 kfree(dentry->d_fsdata);
1261 }
1262 }
1263
1264 const struct dentry_operations nfs_dentry_operations = {
1265 .d_revalidate = nfs_lookup_revalidate,
1266 .d_weak_revalidate = nfs_weak_revalidate,
1267 .d_delete = nfs_dentry_delete,
1268 .d_iput = nfs_dentry_iput,
1269 .d_automount = nfs_d_automount,
1270 .d_release = nfs_d_release,
1271 };
1272 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1273
1274 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1275 {
1276 struct dentry *res;
1277 struct dentry *parent;
1278 struct inode *inode = NULL;
1279 struct nfs_fh *fhandle = NULL;
1280 struct nfs_fattr *fattr = NULL;
1281 struct nfs4_label *label = NULL;
1282 int error;
1283
1284 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1285 dentry->d_parent->d_name.name, dentry->d_name.name);
1286 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1287
1288 res = ERR_PTR(-ENAMETOOLONG);
1289 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1290 goto out;
1291
1292 /*
1293 * If we're doing an exclusive create, optimize away the lookup
1294 * but don't hash the dentry.
1295 */
1296 if (nfs_is_exclusive_create(dir, flags)) {
1297 d_instantiate(dentry, NULL);
1298 res = NULL;
1299 goto out;
1300 }
1301
1302 res = ERR_PTR(-ENOMEM);
1303 fhandle = nfs_alloc_fhandle();
1304 fattr = nfs_alloc_fattr();
1305 if (fhandle == NULL || fattr == NULL)
1306 goto out;
1307
1308 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1309 if (IS_ERR(label))
1310 goto out;
1311
1312 parent = dentry->d_parent;
1313 /* Protect against concurrent sillydeletes */
1314 nfs_block_sillyrename(parent);
1315 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1316 if (error == -ENOENT)
1317 goto no_entry;
1318 if (error < 0) {
1319 res = ERR_PTR(error);
1320 goto out_unblock_sillyrename;
1321 }
1322 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1323 res = ERR_CAST(inode);
1324 if (IS_ERR(res))
1325 goto out_unblock_sillyrename;
1326
1327 /* Success: notify readdir to use READDIRPLUS */
1328 nfs_advise_use_readdirplus(dir);
1329
1330 no_entry:
1331 res = d_materialise_unique(dentry, inode);
1332 if (res != NULL) {
1333 if (IS_ERR(res))
1334 goto out_unblock_sillyrename;
1335 dentry = res;
1336 }
1337 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1338 out_unblock_sillyrename:
1339 nfs_unblock_sillyrename(parent);
1340 nfs4_label_free(label);
1341 out:
1342 nfs_free_fattr(fattr);
1343 nfs_free_fhandle(fhandle);
1344 return res;
1345 }
1346 EXPORT_SYMBOL_GPL(nfs_lookup);
1347
1348 #if IS_ENABLED(CONFIG_NFS_V4)
1349 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1350
1351 const struct dentry_operations nfs4_dentry_operations = {
1352 .d_revalidate = nfs4_lookup_revalidate,
1353 .d_delete = nfs_dentry_delete,
1354 .d_iput = nfs_dentry_iput,
1355 .d_automount = nfs_d_automount,
1356 .d_release = nfs_d_release,
1357 };
1358 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1359
1360 static fmode_t flags_to_mode(int flags)
1361 {
1362 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1363 if ((flags & O_ACCMODE) != O_WRONLY)
1364 res |= FMODE_READ;
1365 if ((flags & O_ACCMODE) != O_RDONLY)
1366 res |= FMODE_WRITE;
1367 return res;
1368 }
1369
1370 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1371 {
1372 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1373 }
1374
1375 static int do_open(struct inode *inode, struct file *filp)
1376 {
1377 nfs_fscache_set_inode_cookie(inode, filp);
1378 return 0;
1379 }
1380
1381 static int nfs_finish_open(struct nfs_open_context *ctx,
1382 struct dentry *dentry,
1383 struct file *file, unsigned open_flags,
1384 int *opened)
1385 {
1386 int err;
1387
1388 if (ctx->dentry != dentry) {
1389 dput(ctx->dentry);
1390 ctx->dentry = dget(dentry);
1391 }
1392
1393 /* If the open_intent is for execute, we have an extra check to make */
1394 if (ctx->mode & FMODE_EXEC) {
1395 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1396 if (err < 0)
1397 goto out;
1398 }
1399
1400 err = finish_open(file, dentry, do_open, opened);
1401 if (err)
1402 goto out;
1403 nfs_file_set_open_context(file, ctx);
1404
1405 out:
1406 put_nfs_open_context(ctx);
1407 return err;
1408 }
1409
1410 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1411 struct file *file, unsigned open_flags,
1412 umode_t mode, int *opened)
1413 {
1414 struct nfs_open_context *ctx;
1415 struct dentry *res;
1416 struct iattr attr = { .ia_valid = ATTR_OPEN };
1417 struct inode *inode;
1418 int err;
1419
1420 /* Expect a negative dentry */
1421 BUG_ON(dentry->d_inode);
1422
1423 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1424 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1425
1426 /* NFS only supports OPEN on regular files */
1427 if ((open_flags & O_DIRECTORY)) {
1428 if (!d_unhashed(dentry)) {
1429 /*
1430 * Hashed negative dentry with O_DIRECTORY: dentry was
1431 * revalidated and is fine, no need to perform lookup
1432 * again
1433 */
1434 return -ENOENT;
1435 }
1436 goto no_open;
1437 }
1438
1439 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1440 return -ENAMETOOLONG;
1441
1442 if (open_flags & O_CREAT) {
1443 attr.ia_valid |= ATTR_MODE;
1444 attr.ia_mode = mode & ~current_umask();
1445 }
1446 if (open_flags & O_TRUNC) {
1447 attr.ia_valid |= ATTR_SIZE;
1448 attr.ia_size = 0;
1449 }
1450
1451 ctx = create_nfs_open_context(dentry, open_flags);
1452 err = PTR_ERR(ctx);
1453 if (IS_ERR(ctx))
1454 goto out;
1455
1456 nfs_block_sillyrename(dentry->d_parent);
1457 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1458 d_drop(dentry);
1459 if (IS_ERR(inode)) {
1460 nfs_unblock_sillyrename(dentry->d_parent);
1461 put_nfs_open_context(ctx);
1462 err = PTR_ERR(inode);
1463 switch (err) {
1464 case -ENOENT:
1465 d_add(dentry, NULL);
1466 break;
1467 case -EISDIR:
1468 case -ENOTDIR:
1469 goto no_open;
1470 case -ELOOP:
1471 if (!(open_flags & O_NOFOLLOW))
1472 goto no_open;
1473 break;
1474 /* case -EINVAL: */
1475 default:
1476 break;
1477 }
1478 goto out;
1479 }
1480 res = d_add_unique(dentry, inode);
1481 if (res != NULL)
1482 dentry = res;
1483
1484 nfs_unblock_sillyrename(dentry->d_parent);
1485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1486
1487 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1488
1489 dput(res);
1490 out:
1491 return err;
1492
1493 no_open:
1494 res = nfs_lookup(dir, dentry, 0);
1495 err = PTR_ERR(res);
1496 if (IS_ERR(res))
1497 goto out;
1498
1499 return finish_no_open(file, res);
1500 }
1501 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1502
1503 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1504 {
1505 struct dentry *parent = NULL;
1506 struct inode *inode;
1507 struct inode *dir;
1508 int ret = 0;
1509
1510 if (flags & LOOKUP_RCU)
1511 return -ECHILD;
1512
1513 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1514 goto no_open;
1515 if (d_mountpoint(dentry))
1516 goto no_open;
1517 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1518 goto no_open;
1519
1520 inode = dentry->d_inode;
1521 parent = dget_parent(dentry);
1522 dir = parent->d_inode;
1523
1524 /* We can't create new files in nfs_open_revalidate(), so we
1525 * optimize away revalidation of negative dentries.
1526 */
1527 if (inode == NULL) {
1528 if (!nfs_neg_need_reval(dir, dentry, flags))
1529 ret = 1;
1530 goto out;
1531 }
1532
1533 /* NFS only supports OPEN on regular files */
1534 if (!S_ISREG(inode->i_mode))
1535 goto no_open_dput;
1536 /* We cannot do exclusive creation on a positive dentry */
1537 if (flags & LOOKUP_EXCL)
1538 goto no_open_dput;
1539
1540 /* Let f_op->open() actually open (and revalidate) the file */
1541 ret = 1;
1542
1543 out:
1544 dput(parent);
1545 return ret;
1546
1547 no_open_dput:
1548 dput(parent);
1549 no_open:
1550 return nfs_lookup_revalidate(dentry, flags);
1551 }
1552
1553 #endif /* CONFIG_NFSV4 */
1554
1555 /*
1556 * Code common to create, mkdir, and mknod.
1557 */
1558 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1559 struct nfs_fattr *fattr,
1560 struct nfs4_label *label)
1561 {
1562 struct dentry *parent = dget_parent(dentry);
1563 struct inode *dir = parent->d_inode;
1564 struct inode *inode;
1565 int error = -EACCES;
1566
1567 d_drop(dentry);
1568
1569 /* We may have been initialized further down */
1570 if (dentry->d_inode)
1571 goto out;
1572 if (fhandle->size == 0) {
1573 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1574 if (error)
1575 goto out_error;
1576 }
1577 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1578 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1579 struct nfs_server *server = NFS_SB(dentry->d_sb);
1580 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1581 if (error < 0)
1582 goto out_error;
1583 }
1584 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1585 error = PTR_ERR(inode);
1586 if (IS_ERR(inode))
1587 goto out_error;
1588 d_add(dentry, inode);
1589 out:
1590 dput(parent);
1591 return 0;
1592 out_error:
1593 nfs_mark_for_revalidate(dir);
1594 dput(parent);
1595 return error;
1596 }
1597 EXPORT_SYMBOL_GPL(nfs_instantiate);
1598
1599 /*
1600 * Following a failed create operation, we drop the dentry rather
1601 * than retain a negative dentry. This avoids a problem in the event
1602 * that the operation succeeded on the server, but an error in the
1603 * reply path made it appear to have failed.
1604 */
1605 int nfs_create(struct inode *dir, struct dentry *dentry,
1606 umode_t mode, bool excl)
1607 {
1608 struct iattr attr;
1609 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1610 int error;
1611
1612 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1613 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1614
1615 attr.ia_mode = mode;
1616 attr.ia_valid = ATTR_MODE;
1617
1618 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1619 if (error != 0)
1620 goto out_err;
1621 return 0;
1622 out_err:
1623 d_drop(dentry);
1624 return error;
1625 }
1626 EXPORT_SYMBOL_GPL(nfs_create);
1627
1628 /*
1629 * See comments for nfs_proc_create regarding failed operations.
1630 */
1631 int
1632 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1633 {
1634 struct iattr attr;
1635 int status;
1636
1637 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1638 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1639
1640 if (!new_valid_dev(rdev))
1641 return -EINVAL;
1642
1643 attr.ia_mode = mode;
1644 attr.ia_valid = ATTR_MODE;
1645
1646 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1647 if (status != 0)
1648 goto out_err;
1649 return 0;
1650 out_err:
1651 d_drop(dentry);
1652 return status;
1653 }
1654 EXPORT_SYMBOL_GPL(nfs_mknod);
1655
1656 /*
1657 * See comments for nfs_proc_create regarding failed operations.
1658 */
1659 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1660 {
1661 struct iattr attr;
1662 int error;
1663
1664 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1665 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1666
1667 attr.ia_valid = ATTR_MODE;
1668 attr.ia_mode = mode | S_IFDIR;
1669
1670 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1671 if (error != 0)
1672 goto out_err;
1673 return 0;
1674 out_err:
1675 d_drop(dentry);
1676 return error;
1677 }
1678 EXPORT_SYMBOL_GPL(nfs_mkdir);
1679
1680 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1681 {
1682 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1683 d_delete(dentry);
1684 }
1685
1686 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1687 {
1688 int error;
1689
1690 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1691 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1692
1693 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1694 /* Ensure the VFS deletes this inode */
1695 if (error == 0 && dentry->d_inode != NULL)
1696 clear_nlink(dentry->d_inode);
1697 else if (error == -ENOENT)
1698 nfs_dentry_handle_enoent(dentry);
1699
1700 return error;
1701 }
1702 EXPORT_SYMBOL_GPL(nfs_rmdir);
1703
1704 /*
1705 * Remove a file after making sure there are no pending writes,
1706 * and after checking that the file has only one user.
1707 *
1708 * We invalidate the attribute cache and free the inode prior to the operation
1709 * to avoid possible races if the server reuses the inode.
1710 */
1711 static int nfs_safe_remove(struct dentry *dentry)
1712 {
1713 struct inode *dir = dentry->d_parent->d_inode;
1714 struct inode *inode = dentry->d_inode;
1715 int error = -EBUSY;
1716
1717 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1718 dentry->d_parent->d_name.name, dentry->d_name.name);
1719
1720 /* If the dentry was sillyrenamed, we simply call d_delete() */
1721 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1722 error = 0;
1723 goto out;
1724 }
1725
1726 if (inode != NULL) {
1727 NFS_PROTO(inode)->return_delegation(inode);
1728 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1729 if (error == 0)
1730 nfs_drop_nlink(inode);
1731 } else
1732 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1733 if (error == -ENOENT)
1734 nfs_dentry_handle_enoent(dentry);
1735 out:
1736 return error;
1737 }
1738
1739 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1740 * belongs to an active ".nfs..." file and we return -EBUSY.
1741 *
1742 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1743 */
1744 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1745 {
1746 int error;
1747 int need_rehash = 0;
1748
1749 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1750 dir->i_ino, dentry->d_name.name);
1751
1752 spin_lock(&dentry->d_lock);
1753 if (dentry->d_count > 1) {
1754 spin_unlock(&dentry->d_lock);
1755 /* Start asynchronous writeout of the inode */
1756 write_inode_now(dentry->d_inode, 0);
1757 error = nfs_sillyrename(dir, dentry);
1758 return error;
1759 }
1760 if (!d_unhashed(dentry)) {
1761 __d_drop(dentry);
1762 need_rehash = 1;
1763 }
1764 spin_unlock(&dentry->d_lock);
1765 error = nfs_safe_remove(dentry);
1766 if (!error || error == -ENOENT) {
1767 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1768 } else if (need_rehash)
1769 d_rehash(dentry);
1770 return error;
1771 }
1772 EXPORT_SYMBOL_GPL(nfs_unlink);
1773
1774 /*
1775 * To create a symbolic link, most file systems instantiate a new inode,
1776 * add a page to it containing the path, then write it out to the disk
1777 * using prepare_write/commit_write.
1778 *
1779 * Unfortunately the NFS client can't create the in-core inode first
1780 * because it needs a file handle to create an in-core inode (see
1781 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1782 * symlink request has completed on the server.
1783 *
1784 * So instead we allocate a raw page, copy the symname into it, then do
1785 * the SYMLINK request with the page as the buffer. If it succeeds, we
1786 * now have a new file handle and can instantiate an in-core NFS inode
1787 * and move the raw page into its mapping.
1788 */
1789 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1790 {
1791 struct pagevec lru_pvec;
1792 struct page *page;
1793 char *kaddr;
1794 struct iattr attr;
1795 unsigned int pathlen = strlen(symname);
1796 int error;
1797
1798 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1799 dir->i_ino, dentry->d_name.name, symname);
1800
1801 if (pathlen > PAGE_SIZE)
1802 return -ENAMETOOLONG;
1803
1804 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1805 attr.ia_valid = ATTR_MODE;
1806
1807 page = alloc_page(GFP_HIGHUSER);
1808 if (!page)
1809 return -ENOMEM;
1810
1811 kaddr = kmap_atomic(page);
1812 memcpy(kaddr, symname, pathlen);
1813 if (pathlen < PAGE_SIZE)
1814 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1815 kunmap_atomic(kaddr);
1816
1817 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1818 if (error != 0) {
1819 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1820 dir->i_sb->s_id, dir->i_ino,
1821 dentry->d_name.name, symname, error);
1822 d_drop(dentry);
1823 __free_page(page);
1824 return error;
1825 }
1826
1827 /*
1828 * No big deal if we can't add this page to the page cache here.
1829 * READLINK will get the missing page from the server if needed.
1830 */
1831 pagevec_init(&lru_pvec, 0);
1832 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1833 GFP_KERNEL)) {
1834 pagevec_add(&lru_pvec, page);
1835 pagevec_lru_add_file(&lru_pvec);
1836 SetPageUptodate(page);
1837 unlock_page(page);
1838 } else
1839 __free_page(page);
1840
1841 return 0;
1842 }
1843 EXPORT_SYMBOL_GPL(nfs_symlink);
1844
1845 int
1846 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1847 {
1848 struct inode *inode = old_dentry->d_inode;
1849 int error;
1850
1851 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1852 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1853 dentry->d_parent->d_name.name, dentry->d_name.name);
1854
1855 NFS_PROTO(inode)->return_delegation(inode);
1856
1857 d_drop(dentry);
1858 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1859 if (error == 0) {
1860 ihold(inode);
1861 d_add(dentry, inode);
1862 }
1863 return error;
1864 }
1865 EXPORT_SYMBOL_GPL(nfs_link);
1866
1867 /*
1868 * RENAME
1869 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1870 * different file handle for the same inode after a rename (e.g. when
1871 * moving to a different directory). A fail-safe method to do so would
1872 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1873 * rename the old file using the sillyrename stuff. This way, the original
1874 * file in old_dir will go away when the last process iput()s the inode.
1875 *
1876 * FIXED.
1877 *
1878 * It actually works quite well. One needs to have the possibility for
1879 * at least one ".nfs..." file in each directory the file ever gets
1880 * moved or linked to which happens automagically with the new
1881 * implementation that only depends on the dcache stuff instead of
1882 * using the inode layer
1883 *
1884 * Unfortunately, things are a little more complicated than indicated
1885 * above. For a cross-directory move, we want to make sure we can get
1886 * rid of the old inode after the operation. This means there must be
1887 * no pending writes (if it's a file), and the use count must be 1.
1888 * If these conditions are met, we can drop the dentries before doing
1889 * the rename.
1890 */
1891 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1892 struct inode *new_dir, struct dentry *new_dentry)
1893 {
1894 struct inode *old_inode = old_dentry->d_inode;
1895 struct inode *new_inode = new_dentry->d_inode;
1896 struct dentry *dentry = NULL, *rehash = NULL;
1897 int error = -EBUSY;
1898
1899 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1900 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1901 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1902 new_dentry->d_count);
1903
1904 /*
1905 * For non-directories, check whether the target is busy and if so,
1906 * make a copy of the dentry and then do a silly-rename. If the
1907 * silly-rename succeeds, the copied dentry is hashed and becomes
1908 * the new target.
1909 */
1910 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1911 /*
1912 * To prevent any new references to the target during the
1913 * rename, we unhash the dentry in advance.
1914 */
1915 if (!d_unhashed(new_dentry)) {
1916 d_drop(new_dentry);
1917 rehash = new_dentry;
1918 }
1919
1920 if (new_dentry->d_count > 2) {
1921 int err;
1922
1923 /* copy the target dentry's name */
1924 dentry = d_alloc(new_dentry->d_parent,
1925 &new_dentry->d_name);
1926 if (!dentry)
1927 goto out;
1928
1929 /* silly-rename the existing target ... */
1930 err = nfs_sillyrename(new_dir, new_dentry);
1931 if (err)
1932 goto out;
1933
1934 new_dentry = dentry;
1935 rehash = NULL;
1936 new_inode = NULL;
1937 }
1938 }
1939
1940 NFS_PROTO(old_inode)->return_delegation(old_inode);
1941 if (new_inode != NULL)
1942 NFS_PROTO(new_inode)->return_delegation(new_inode);
1943
1944 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1945 new_dir, &new_dentry->d_name);
1946 nfs_mark_for_revalidate(old_inode);
1947 out:
1948 if (rehash)
1949 d_rehash(rehash);
1950 if (!error) {
1951 if (new_inode != NULL)
1952 nfs_drop_nlink(new_inode);
1953 d_move(old_dentry, new_dentry);
1954 nfs_set_verifier(new_dentry,
1955 nfs_save_change_attribute(new_dir));
1956 } else if (error == -ENOENT)
1957 nfs_dentry_handle_enoent(old_dentry);
1958
1959 /* new dentry created? */
1960 if (dentry)
1961 dput(dentry);
1962 return error;
1963 }
1964 EXPORT_SYMBOL_GPL(nfs_rename);
1965
1966 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1967 static LIST_HEAD(nfs_access_lru_list);
1968 static atomic_long_t nfs_access_nr_entries;
1969
1970 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1971 {
1972 put_rpccred(entry->cred);
1973 kfree(entry);
1974 smp_mb__before_atomic_dec();
1975 atomic_long_dec(&nfs_access_nr_entries);
1976 smp_mb__after_atomic_dec();
1977 }
1978
1979 static void nfs_access_free_list(struct list_head *head)
1980 {
1981 struct nfs_access_entry *cache;
1982
1983 while (!list_empty(head)) {
1984 cache = list_entry(head->next, struct nfs_access_entry, lru);
1985 list_del(&cache->lru);
1986 nfs_access_free_entry(cache);
1987 }
1988 }
1989
1990 int nfs_access_cache_shrinker(struct shrinker *shrink,
1991 struct shrink_control *sc)
1992 {
1993 LIST_HEAD(head);
1994 struct nfs_inode *nfsi, *next;
1995 struct nfs_access_entry *cache;
1996 int nr_to_scan = sc->nr_to_scan;
1997 gfp_t gfp_mask = sc->gfp_mask;
1998
1999 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2000 return (nr_to_scan == 0) ? 0 : -1;
2001
2002 spin_lock(&nfs_access_lru_lock);
2003 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2004 struct inode *inode;
2005
2006 if (nr_to_scan-- == 0)
2007 break;
2008 inode = &nfsi->vfs_inode;
2009 spin_lock(&inode->i_lock);
2010 if (list_empty(&nfsi->access_cache_entry_lru))
2011 goto remove_lru_entry;
2012 cache = list_entry(nfsi->access_cache_entry_lru.next,
2013 struct nfs_access_entry, lru);
2014 list_move(&cache->lru, &head);
2015 rb_erase(&cache->rb_node, &nfsi->access_cache);
2016 if (!list_empty(&nfsi->access_cache_entry_lru))
2017 list_move_tail(&nfsi->access_cache_inode_lru,
2018 &nfs_access_lru_list);
2019 else {
2020 remove_lru_entry:
2021 list_del_init(&nfsi->access_cache_inode_lru);
2022 smp_mb__before_clear_bit();
2023 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2024 smp_mb__after_clear_bit();
2025 }
2026 spin_unlock(&inode->i_lock);
2027 }
2028 spin_unlock(&nfs_access_lru_lock);
2029 nfs_access_free_list(&head);
2030 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2031 }
2032
2033 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2034 {
2035 struct rb_root *root_node = &nfsi->access_cache;
2036 struct rb_node *n;
2037 struct nfs_access_entry *entry;
2038
2039 /* Unhook entries from the cache */
2040 while ((n = rb_first(root_node)) != NULL) {
2041 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2042 rb_erase(n, root_node);
2043 list_move(&entry->lru, head);
2044 }
2045 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2046 }
2047
2048 void nfs_access_zap_cache(struct inode *inode)
2049 {
2050 LIST_HEAD(head);
2051
2052 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2053 return;
2054 /* Remove from global LRU init */
2055 spin_lock(&nfs_access_lru_lock);
2056 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2057 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2058
2059 spin_lock(&inode->i_lock);
2060 __nfs_access_zap_cache(NFS_I(inode), &head);
2061 spin_unlock(&inode->i_lock);
2062 spin_unlock(&nfs_access_lru_lock);
2063 nfs_access_free_list(&head);
2064 }
2065 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2066
2067 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2068 {
2069 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2070 struct nfs_access_entry *entry;
2071
2072 while (n != NULL) {
2073 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2074
2075 if (cred < entry->cred)
2076 n = n->rb_left;
2077 else if (cred > entry->cred)
2078 n = n->rb_right;
2079 else
2080 return entry;
2081 }
2082 return NULL;
2083 }
2084
2085 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2086 {
2087 struct nfs_inode *nfsi = NFS_I(inode);
2088 struct nfs_access_entry *cache;
2089 int err = -ENOENT;
2090
2091 spin_lock(&inode->i_lock);
2092 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2093 goto out_zap;
2094 cache = nfs_access_search_rbtree(inode, cred);
2095 if (cache == NULL)
2096 goto out;
2097 if (!nfs_have_delegated_attributes(inode) &&
2098 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2099 goto out_stale;
2100 res->jiffies = cache->jiffies;
2101 res->cred = cache->cred;
2102 res->mask = cache->mask;
2103 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2104 err = 0;
2105 out:
2106 spin_unlock(&inode->i_lock);
2107 return err;
2108 out_stale:
2109 rb_erase(&cache->rb_node, &nfsi->access_cache);
2110 list_del(&cache->lru);
2111 spin_unlock(&inode->i_lock);
2112 nfs_access_free_entry(cache);
2113 return -ENOENT;
2114 out_zap:
2115 spin_unlock(&inode->i_lock);
2116 nfs_access_zap_cache(inode);
2117 return -ENOENT;
2118 }
2119
2120 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2121 {
2122 struct nfs_inode *nfsi = NFS_I(inode);
2123 struct rb_root *root_node = &nfsi->access_cache;
2124 struct rb_node **p = &root_node->rb_node;
2125 struct rb_node *parent = NULL;
2126 struct nfs_access_entry *entry;
2127
2128 spin_lock(&inode->i_lock);
2129 while (*p != NULL) {
2130 parent = *p;
2131 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2132
2133 if (set->cred < entry->cred)
2134 p = &parent->rb_left;
2135 else if (set->cred > entry->cred)
2136 p = &parent->rb_right;
2137 else
2138 goto found;
2139 }
2140 rb_link_node(&set->rb_node, parent, p);
2141 rb_insert_color(&set->rb_node, root_node);
2142 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2143 spin_unlock(&inode->i_lock);
2144 return;
2145 found:
2146 rb_replace_node(parent, &set->rb_node, root_node);
2147 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2148 list_del(&entry->lru);
2149 spin_unlock(&inode->i_lock);
2150 nfs_access_free_entry(entry);
2151 }
2152
2153 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2154 {
2155 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2156 if (cache == NULL)
2157 return;
2158 RB_CLEAR_NODE(&cache->rb_node);
2159 cache->jiffies = set->jiffies;
2160 cache->cred = get_rpccred(set->cred);
2161 cache->mask = set->mask;
2162
2163 nfs_access_add_rbtree(inode, cache);
2164
2165 /* Update accounting */
2166 smp_mb__before_atomic_inc();
2167 atomic_long_inc(&nfs_access_nr_entries);
2168 smp_mb__after_atomic_inc();
2169
2170 /* Add inode to global LRU list */
2171 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2172 spin_lock(&nfs_access_lru_lock);
2173 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2174 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2175 &nfs_access_lru_list);
2176 spin_unlock(&nfs_access_lru_lock);
2177 }
2178 }
2179 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2180
2181 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2182 {
2183 entry->mask = 0;
2184 if (access_result & NFS4_ACCESS_READ)
2185 entry->mask |= MAY_READ;
2186 if (access_result &
2187 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2188 entry->mask |= MAY_WRITE;
2189 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2190 entry->mask |= MAY_EXEC;
2191 }
2192 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2193
2194 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2195 {
2196 struct nfs_access_entry cache;
2197 int status;
2198
2199 status = nfs_access_get_cached(inode, cred, &cache);
2200 if (status == 0)
2201 goto out;
2202
2203 /* Be clever: ask server to check for all possible rights */
2204 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2205 cache.cred = cred;
2206 cache.jiffies = jiffies;
2207 status = NFS_PROTO(inode)->access(inode, &cache);
2208 if (status != 0) {
2209 if (status == -ESTALE) {
2210 nfs_zap_caches(inode);
2211 if (!S_ISDIR(inode->i_mode))
2212 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2213 }
2214 return status;
2215 }
2216 nfs_access_add_cache(inode, &cache);
2217 out:
2218 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2219 return 0;
2220 return -EACCES;
2221 }
2222
2223 static int nfs_open_permission_mask(int openflags)
2224 {
2225 int mask = 0;
2226
2227 if (openflags & __FMODE_EXEC) {
2228 /* ONLY check exec rights */
2229 mask = MAY_EXEC;
2230 } else {
2231 if ((openflags & O_ACCMODE) != O_WRONLY)
2232 mask |= MAY_READ;
2233 if ((openflags & O_ACCMODE) != O_RDONLY)
2234 mask |= MAY_WRITE;
2235 }
2236
2237 return mask;
2238 }
2239
2240 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2241 {
2242 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2243 }
2244 EXPORT_SYMBOL_GPL(nfs_may_open);
2245
2246 int nfs_permission(struct inode *inode, int mask)
2247 {
2248 struct rpc_cred *cred;
2249 int res = 0;
2250
2251 if (mask & MAY_NOT_BLOCK)
2252 return -ECHILD;
2253
2254 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2255
2256 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2257 goto out;
2258 /* Is this sys_access() ? */
2259 if (mask & (MAY_ACCESS | MAY_CHDIR))
2260 goto force_lookup;
2261
2262 switch (inode->i_mode & S_IFMT) {
2263 case S_IFLNK:
2264 goto out;
2265 case S_IFREG:
2266 /* NFSv4 has atomic_open... */
2267 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2268 && (mask & MAY_OPEN)
2269 && !(mask & MAY_EXEC))
2270 goto out;
2271 break;
2272 case S_IFDIR:
2273 /*
2274 * Optimize away all write operations, since the server
2275 * will check permissions when we perform the op.
2276 */
2277 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2278 goto out;
2279 }
2280
2281 force_lookup:
2282 if (!NFS_PROTO(inode)->access)
2283 goto out_notsup;
2284
2285 cred = rpc_lookup_cred();
2286 if (!IS_ERR(cred)) {
2287 res = nfs_do_access(inode, cred, mask);
2288 put_rpccred(cred);
2289 } else
2290 res = PTR_ERR(cred);
2291 out:
2292 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2293 res = -EACCES;
2294
2295 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2296 inode->i_sb->s_id, inode->i_ino, mask, res);
2297 return res;
2298 out_notsup:
2299 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2300 if (res == 0)
2301 res = generic_permission(inode, mask);
2302 goto out;
2303 }
2304 EXPORT_SYMBOL_GPL(nfs_permission);
2305
2306 /*
2307 * Local variables:
2308 * version-control: t
2309 * kept-new-versions: 5
2310 * End:
2311 */