]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
nfs: add support for the umask attribute
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153 };
154
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171 } nfs_readdir_descriptor_t;
172
173 /*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186 }
187
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 kunmap(page);
192 }
193
194 /*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208 }
209
210 static bool grab_page(struct page *page)
211 {
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216 }
217
218 /*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237 }
238
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266 out:
267 nfs_readdir_release_array(page);
268 return ret;
269 }
270
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289 out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292 }
293
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346 out:
347 return status;
348 }
349
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373 out:
374 return status;
375 }
376
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404 error:
405 return error;
406 }
407
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419 }
420
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid != nfsi->fileid)
439 return 0;
440 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 return 0;
442 return 1;
443 }
444
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455 }
456
457 /*
458 * This function is called by the lookup and getattr code to request the
459 * use of readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462 void nfs_advise_use_readdirplus(struct inode *dir)
463 {
464 struct nfs_inode *nfsi = NFS_I(dir);
465
466 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
467 !list_empty(&nfsi->open_files))
468 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
469 }
470
471 /*
472 * This function is mainly for use by nfs_getattr().
473 *
474 * If this is an 'ls -l', we want to force use of readdirplus.
475 * Do this by checking if there is an active file descriptor
476 * and calling nfs_advise_use_readdirplus, then forcing a
477 * cache flush.
478 */
479 void nfs_force_use_readdirplus(struct inode *dir)
480 {
481 struct nfs_inode *nfsi = NFS_I(dir);
482
483 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
484 !list_empty(&nfsi->open_files)) {
485 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
486 invalidate_mapping_pages(dir->i_mapping, 0, -1);
487 }
488 }
489
490 static
491 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
492 {
493 struct qstr filename = QSTR_INIT(entry->name, entry->len);
494 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
495 struct dentry *dentry;
496 struct dentry *alias;
497 struct inode *dir = d_inode(parent);
498 struct inode *inode;
499 int status;
500
501 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
502 return;
503 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
504 return;
505 if (filename.len == 0)
506 return;
507 /* Validate that the name doesn't contain any illegal '\0' */
508 if (strnlen(filename.name, filename.len) != filename.len)
509 return;
510 /* ...or '/' */
511 if (strnchr(filename.name, filename.len, '/'))
512 return;
513 if (filename.name[0] == '.') {
514 if (filename.len == 1)
515 return;
516 if (filename.len == 2 && filename.name[1] == '.')
517 return;
518 }
519 filename.hash = full_name_hash(parent, filename.name, filename.len);
520
521 dentry = d_lookup(parent, &filename);
522 again:
523 if (!dentry) {
524 dentry = d_alloc_parallel(parent, &filename, &wq);
525 if (IS_ERR(dentry))
526 return;
527 }
528 if (!d_in_lookup(dentry)) {
529 /* Is there a mountpoint here? If so, just exit */
530 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
531 &entry->fattr->fsid))
532 goto out;
533 if (nfs_same_file(dentry, entry)) {
534 if (!entry->fh->size)
535 goto out;
536 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
537 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
538 if (!status)
539 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
540 goto out;
541 } else {
542 d_invalidate(dentry);
543 dput(dentry);
544 dentry = NULL;
545 goto again;
546 }
547 }
548 if (!entry->fh->size) {
549 d_lookup_done(dentry);
550 goto out;
551 }
552
553 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
554 alias = d_splice_alias(inode, dentry);
555 d_lookup_done(dentry);
556 if (alias) {
557 if (IS_ERR(alias))
558 goto out;
559 dput(dentry);
560 dentry = alias;
561 }
562 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
563 out:
564 dput(dentry);
565 }
566
567 /* Perform conversion from xdr to cache array */
568 static
569 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
570 struct page **xdr_pages, struct page *page, unsigned int buflen)
571 {
572 struct xdr_stream stream;
573 struct xdr_buf buf;
574 struct page *scratch;
575 struct nfs_cache_array *array;
576 unsigned int count = 0;
577 int status;
578
579 scratch = alloc_page(GFP_KERNEL);
580 if (scratch == NULL)
581 return -ENOMEM;
582
583 if (buflen == 0)
584 goto out_nopages;
585
586 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
587 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
588
589 do {
590 status = xdr_decode(desc, entry, &stream);
591 if (status != 0) {
592 if (status == -EAGAIN)
593 status = 0;
594 break;
595 }
596
597 count++;
598
599 if (desc->plus != 0)
600 nfs_prime_dcache(file_dentry(desc->file), entry);
601
602 status = nfs_readdir_add_to_array(entry, page);
603 if (status != 0)
604 break;
605 } while (!entry->eof);
606
607 out_nopages:
608 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
609 array = nfs_readdir_get_array(page);
610 if (!IS_ERR(array)) {
611 array->eof_index = array->size;
612 status = 0;
613 nfs_readdir_release_array(page);
614 } else
615 status = PTR_ERR(array);
616 }
617
618 put_page(scratch);
619 return status;
620 }
621
622 static
623 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
624 {
625 unsigned int i;
626 for (i = 0; i < npages; i++)
627 put_page(pages[i]);
628 }
629
630 /*
631 * nfs_readdir_large_page will allocate pages that must be freed with a call
632 * to nfs_readdir_free_pagearray
633 */
634 static
635 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
636 {
637 unsigned int i;
638
639 for (i = 0; i < npages; i++) {
640 struct page *page = alloc_page(GFP_KERNEL);
641 if (page == NULL)
642 goto out_freepages;
643 pages[i] = page;
644 }
645 return 0;
646
647 out_freepages:
648 nfs_readdir_free_pages(pages, i);
649 return -ENOMEM;
650 }
651
652 static
653 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
654 {
655 struct page *pages[NFS_MAX_READDIR_PAGES];
656 struct nfs_entry entry;
657 struct file *file = desc->file;
658 struct nfs_cache_array *array;
659 int status = -ENOMEM;
660 unsigned int array_size = ARRAY_SIZE(pages);
661
662 entry.prev_cookie = 0;
663 entry.cookie = desc->last_cookie;
664 entry.eof = 0;
665 entry.fh = nfs_alloc_fhandle();
666 entry.fattr = nfs_alloc_fattr();
667 entry.server = NFS_SERVER(inode);
668 if (entry.fh == NULL || entry.fattr == NULL)
669 goto out;
670
671 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
672 if (IS_ERR(entry.label)) {
673 status = PTR_ERR(entry.label);
674 goto out;
675 }
676
677 array = nfs_readdir_get_array(page);
678 if (IS_ERR(array)) {
679 status = PTR_ERR(array);
680 goto out_label_free;
681 }
682 memset(array, 0, sizeof(struct nfs_cache_array));
683 atomic_set(&array->refcount, 1);
684 array->eof_index = -1;
685
686 status = nfs_readdir_alloc_pages(pages, array_size);
687 if (status < 0)
688 goto out_release_array;
689 do {
690 unsigned int pglen;
691 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
692
693 if (status < 0)
694 break;
695 pglen = status;
696 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
697 if (status < 0) {
698 if (status == -ENOSPC)
699 status = 0;
700 break;
701 }
702 } while (array->eof_index < 0);
703
704 nfs_readdir_free_pages(pages, array_size);
705 out_release_array:
706 nfs_readdir_release_array(page);
707 out_label_free:
708 nfs4_label_free(entry.label);
709 out:
710 nfs_free_fattr(entry.fattr);
711 nfs_free_fhandle(entry.fh);
712 return status;
713 }
714
715 /*
716 * Now we cache directories properly, by converting xdr information
717 * to an array that can be used for lookups later. This results in
718 * fewer cache pages, since we can store more information on each page.
719 * We only need to convert from xdr once so future lookups are much simpler
720 */
721 static
722 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
723 {
724 struct inode *inode = file_inode(desc->file);
725 int ret;
726
727 ret = nfs_readdir_xdr_to_array(desc, page, inode);
728 if (ret < 0)
729 goto error;
730 SetPageUptodate(page);
731
732 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
733 /* Should never happen */
734 nfs_zap_mapping(inode, inode->i_mapping);
735 }
736 unlock_page(page);
737 return 0;
738 error:
739 unlock_page(page);
740 return ret;
741 }
742
743 static
744 void cache_page_release(nfs_readdir_descriptor_t *desc)
745 {
746 nfs_readdir_clear_array(desc->page);
747 put_page(desc->page);
748 desc->page = NULL;
749 }
750
751 static
752 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
753 {
754 struct page *page;
755
756 for (;;) {
757 page = read_cache_page(desc->file->f_mapping,
758 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
759 if (IS_ERR(page) || grab_page(page))
760 break;
761 put_page(page);
762 }
763 return page;
764 }
765
766 /*
767 * Returns 0 if desc->dir_cookie was found on page desc->page_index
768 */
769 static
770 int find_cache_page(nfs_readdir_descriptor_t *desc)
771 {
772 int res;
773
774 desc->page = get_cache_page(desc);
775 if (IS_ERR(desc->page))
776 return PTR_ERR(desc->page);
777
778 res = nfs_readdir_search_array(desc);
779 if (res != 0)
780 cache_page_release(desc);
781 return res;
782 }
783
784 /* Search for desc->dir_cookie from the beginning of the page cache */
785 static inline
786 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
787 {
788 int res;
789
790 if (desc->page_index == 0) {
791 desc->current_index = 0;
792 desc->last_cookie = 0;
793 }
794 do {
795 res = find_cache_page(desc);
796 } while (res == -EAGAIN);
797 return res;
798 }
799
800 /*
801 * Once we've found the start of the dirent within a page: fill 'er up...
802 */
803 static
804 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
805 {
806 struct file *file = desc->file;
807 int i = 0;
808 int res = 0;
809 struct nfs_cache_array *array = NULL;
810 struct nfs_open_dir_context *ctx = file->private_data;
811
812 array = nfs_readdir_get_array(desc->page);
813 if (IS_ERR(array)) {
814 res = PTR_ERR(array);
815 goto out;
816 }
817
818 for (i = desc->cache_entry_index; i < array->size; i++) {
819 struct nfs_cache_array_entry *ent;
820
821 ent = &array->array[i];
822 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
823 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
824 desc->eof = 1;
825 break;
826 }
827 desc->ctx->pos++;
828 if (i < (array->size-1))
829 *desc->dir_cookie = array->array[i+1].cookie;
830 else
831 *desc->dir_cookie = array->last_cookie;
832 if (ctx->duped != 0)
833 ctx->duped = 1;
834 }
835 if (array->eof_index >= 0)
836 desc->eof = 1;
837
838 nfs_readdir_release_array(desc->page);
839 out:
840 cache_page_release(desc);
841 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
842 (unsigned long long)*desc->dir_cookie, res);
843 return res;
844 }
845
846 /*
847 * If we cannot find a cookie in our cache, we suspect that this is
848 * because it points to a deleted file, so we ask the server to return
849 * whatever it thinks is the next entry. We then feed this to filldir.
850 * If all goes well, we should then be able to find our way round the
851 * cache on the next call to readdir_search_pagecache();
852 *
853 * NOTE: we cannot add the anonymous page to the pagecache because
854 * the data it contains might not be page aligned. Besides,
855 * we should already have a complete representation of the
856 * directory in the page cache by the time we get here.
857 */
858 static inline
859 int uncached_readdir(nfs_readdir_descriptor_t *desc)
860 {
861 struct page *page = NULL;
862 int status;
863 struct inode *inode = file_inode(desc->file);
864 struct nfs_open_dir_context *ctx = desc->file->private_data;
865
866 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
867 (unsigned long long)*desc->dir_cookie);
868
869 page = alloc_page(GFP_HIGHUSER);
870 if (!page) {
871 status = -ENOMEM;
872 goto out;
873 }
874
875 desc->page_index = 0;
876 desc->last_cookie = *desc->dir_cookie;
877 desc->page = page;
878 ctx->duped = 0;
879
880 status = nfs_readdir_xdr_to_array(desc, page, inode);
881 if (status < 0)
882 goto out_release;
883
884 status = nfs_do_filldir(desc);
885
886 out:
887 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
888 __func__, status);
889 return status;
890 out_release:
891 cache_page_release(desc);
892 goto out;
893 }
894
895 /* The file offset position represents the dirent entry number. A
896 last cookie cache takes care of the common case of reading the
897 whole directory.
898 */
899 static int nfs_readdir(struct file *file, struct dir_context *ctx)
900 {
901 struct dentry *dentry = file_dentry(file);
902 struct inode *inode = d_inode(dentry);
903 nfs_readdir_descriptor_t my_desc,
904 *desc = &my_desc;
905 struct nfs_open_dir_context *dir_ctx = file->private_data;
906 int res = 0;
907
908 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
909 file, (long long)ctx->pos);
910 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911
912 /*
913 * ctx->pos points to the dirent entry number.
914 * *desc->dir_cookie has the cookie for the next entry. We have
915 * to either find the entry with the appropriate number or
916 * revalidate the cookie.
917 */
918 memset(desc, 0, sizeof(*desc));
919
920 desc->file = file;
921 desc->ctx = ctx;
922 desc->dir_cookie = &dir_ctx->dir_cookie;
923 desc->decode = NFS_PROTO(inode)->decode_dirent;
924 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
925
926 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
927 res = nfs_revalidate_mapping(inode, file->f_mapping);
928 if (res < 0)
929 goto out;
930
931 do {
932 res = readdir_search_pagecache(desc);
933
934 if (res == -EBADCOOKIE) {
935 res = 0;
936 /* This means either end of directory */
937 if (*desc->dir_cookie && desc->eof == 0) {
938 /* Or that the server has 'lost' a cookie */
939 res = uncached_readdir(desc);
940 if (res == 0)
941 continue;
942 }
943 break;
944 }
945 if (res == -ETOOSMALL && desc->plus) {
946 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
947 nfs_zap_caches(inode);
948 desc->page_index = 0;
949 desc->plus = 0;
950 desc->eof = 0;
951 continue;
952 }
953 if (res < 0)
954 break;
955
956 res = nfs_do_filldir(desc);
957 if (res < 0)
958 break;
959 } while (!desc->eof);
960 out:
961 if (res > 0)
962 res = 0;
963 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
964 return res;
965 }
966
967 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
968 {
969 struct nfs_open_dir_context *dir_ctx = filp->private_data;
970
971 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
972 filp, offset, whence);
973
974 switch (whence) {
975 case 1:
976 offset += filp->f_pos;
977 case 0:
978 if (offset >= 0)
979 break;
980 default:
981 return -EINVAL;
982 }
983 if (offset != filp->f_pos) {
984 filp->f_pos = offset;
985 dir_ctx->dir_cookie = 0;
986 dir_ctx->duped = 0;
987 }
988 return offset;
989 }
990
991 /*
992 * All directory operations under NFS are synchronous, so fsync()
993 * is a dummy operation.
994 */
995 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 int datasync)
997 {
998 struct inode *inode = file_inode(filp);
999
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 inode_lock(inode);
1003 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 inode_unlock(inode);
1005 return 0;
1006 }
1007
1008 /**
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir - pointer to directory inode
1011 *
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1015 *
1016 * The caller should be holding dir->i_lock
1017 */
1018 void nfs_force_lookup_revalidate(struct inode *dir)
1019 {
1020 NFS_I(dir)->cache_change_attribute++;
1021 }
1022 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1023
1024 /*
1025 * A check for whether or not the parent directory has changed.
1026 * In the case it has, we assume that the dentries are untrustworthy
1027 * and may need to be looked up again.
1028 * If rcu_walk prevents us from performing a full check, return 0.
1029 */
1030 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1031 int rcu_walk)
1032 {
1033 if (IS_ROOT(dentry))
1034 return 1;
1035 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1036 return 0;
1037 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1038 return 0;
1039 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1040 if (nfs_mapping_need_revalidate_inode(dir)) {
1041 if (rcu_walk)
1042 return 0;
1043 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1044 return 0;
1045 }
1046 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1047 return 0;
1048 return 1;
1049 }
1050
1051 /*
1052 * Use intent information to check whether or not we're going to do
1053 * an O_EXCL create using this path component.
1054 */
1055 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1056 {
1057 if (NFS_PROTO(dir)->version == 2)
1058 return 0;
1059 return flags & LOOKUP_EXCL;
1060 }
1061
1062 /*
1063 * Inode and filehandle revalidation for lookups.
1064 *
1065 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1066 * or if the intent information indicates that we're about to open this
1067 * particular file and the "nocto" mount flag is not set.
1068 *
1069 */
1070 static
1071 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1072 {
1073 struct nfs_server *server = NFS_SERVER(inode);
1074 int ret;
1075
1076 if (IS_AUTOMOUNT(inode))
1077 return 0;
1078 /* VFS wants an on-the-wire revalidation */
1079 if (flags & LOOKUP_REVAL)
1080 goto out_force;
1081 /* This is an open(2) */
1082 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1083 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1084 goto out_force;
1085 out:
1086 return (inode->i_nlink == 0) ? -ENOENT : 0;
1087 out_force:
1088 if (flags & LOOKUP_RCU)
1089 return -ECHILD;
1090 ret = __nfs_revalidate_inode(server, inode);
1091 if (ret != 0)
1092 return ret;
1093 goto out;
1094 }
1095
1096 /*
1097 * We judge how long we want to trust negative
1098 * dentries by looking at the parent inode mtime.
1099 *
1100 * If parent mtime has changed, we revalidate, else we wait for a
1101 * period corresponding to the parent's attribute cache timeout value.
1102 *
1103 * If LOOKUP_RCU prevents us from performing a full check, return 1
1104 * suggesting a reval is needed.
1105 */
1106 static inline
1107 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1108 unsigned int flags)
1109 {
1110 /* Don't revalidate a negative dentry if we're creating a new file */
1111 if (flags & LOOKUP_CREATE)
1112 return 0;
1113 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1114 return 1;
1115 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1116 }
1117
1118 /*
1119 * This is called every time the dcache has a lookup hit,
1120 * and we should check whether we can really trust that
1121 * lookup.
1122 *
1123 * NOTE! The hit can be a negative hit too, don't assume
1124 * we have an inode!
1125 *
1126 * If the parent directory is seen to have changed, we throw out the
1127 * cached dentry and do a new lookup.
1128 */
1129 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1130 {
1131 struct inode *dir;
1132 struct inode *inode;
1133 struct dentry *parent;
1134 struct nfs_fh *fhandle = NULL;
1135 struct nfs_fattr *fattr = NULL;
1136 struct nfs4_label *label = NULL;
1137 int error;
1138
1139 if (flags & LOOKUP_RCU) {
1140 parent = ACCESS_ONCE(dentry->d_parent);
1141 dir = d_inode_rcu(parent);
1142 if (!dir)
1143 return -ECHILD;
1144 } else {
1145 parent = dget_parent(dentry);
1146 dir = d_inode(parent);
1147 }
1148 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1149 inode = d_inode(dentry);
1150
1151 if (!inode) {
1152 if (nfs_neg_need_reval(dir, dentry, flags)) {
1153 if (flags & LOOKUP_RCU)
1154 return -ECHILD;
1155 goto out_bad;
1156 }
1157 goto out_valid;
1158 }
1159
1160 if (is_bad_inode(inode)) {
1161 if (flags & LOOKUP_RCU)
1162 return -ECHILD;
1163 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1164 __func__, dentry);
1165 goto out_bad;
1166 }
1167
1168 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1169 goto out_set_verifier;
1170
1171 /* Force a full look up iff the parent directory has changed */
1172 if (!nfs_is_exclusive_create(dir, flags) &&
1173 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1174
1175 if (nfs_lookup_verify_inode(inode, flags)) {
1176 if (flags & LOOKUP_RCU)
1177 return -ECHILD;
1178 goto out_zap_parent;
1179 }
1180 nfs_advise_use_readdirplus(dir);
1181 goto out_valid;
1182 }
1183
1184 if (flags & LOOKUP_RCU)
1185 return -ECHILD;
1186
1187 if (NFS_STALE(inode))
1188 goto out_bad;
1189
1190 error = -ENOMEM;
1191 fhandle = nfs_alloc_fhandle();
1192 fattr = nfs_alloc_fattr();
1193 if (fhandle == NULL || fattr == NULL)
1194 goto out_error;
1195
1196 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1197 if (IS_ERR(label))
1198 goto out_error;
1199
1200 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1201 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1202 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1203 if (error)
1204 goto out_bad;
1205 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1206 goto out_bad;
1207 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1208 goto out_bad;
1209
1210 nfs_setsecurity(inode, fattr, label);
1211
1212 nfs_free_fattr(fattr);
1213 nfs_free_fhandle(fhandle);
1214 nfs4_label_free(label);
1215
1216 /* set a readdirplus hint that we had a cache miss */
1217 nfs_force_use_readdirplus(dir);
1218
1219 out_set_verifier:
1220 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1221 out_valid:
1222 if (flags & LOOKUP_RCU) {
1223 if (parent != ACCESS_ONCE(dentry->d_parent))
1224 return -ECHILD;
1225 } else
1226 dput(parent);
1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1228 __func__, dentry);
1229 return 1;
1230 out_zap_parent:
1231 nfs_zap_caches(dir);
1232 out_bad:
1233 WARN_ON(flags & LOOKUP_RCU);
1234 nfs_free_fattr(fattr);
1235 nfs_free_fhandle(fhandle);
1236 nfs4_label_free(label);
1237 nfs_mark_for_revalidate(dir);
1238 if (inode && S_ISDIR(inode->i_mode)) {
1239 /* Purge readdir caches. */
1240 nfs_zap_caches(inode);
1241 /*
1242 * We can't d_drop the root of a disconnected tree:
1243 * its d_hash is on the s_anon list and d_drop() would hide
1244 * it from shrink_dcache_for_unmount(), leading to busy
1245 * inodes on unmount and further oopses.
1246 */
1247 if (IS_ROOT(dentry))
1248 goto out_valid;
1249 }
1250 dput(parent);
1251 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1252 __func__, dentry);
1253 return 0;
1254 out_error:
1255 WARN_ON(flags & LOOKUP_RCU);
1256 nfs_free_fattr(fattr);
1257 nfs_free_fhandle(fhandle);
1258 nfs4_label_free(label);
1259 dput(parent);
1260 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 __func__, dentry, error);
1262 return error;
1263 }
1264
1265 /*
1266 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1267 * when we don't really care about the dentry name. This is called when a
1268 * pathwalk ends on a dentry that was not found via a normal lookup in the
1269 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1270 *
1271 * In this situation, we just want to verify that the inode itself is OK
1272 * since the dentry might have changed on the server.
1273 */
1274 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1275 {
1276 int error;
1277 struct inode *inode = d_inode(dentry);
1278
1279 /*
1280 * I believe we can only get a negative dentry here in the case of a
1281 * procfs-style symlink. Just assume it's correct for now, but we may
1282 * eventually need to do something more here.
1283 */
1284 if (!inode) {
1285 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1286 __func__, dentry);
1287 return 1;
1288 }
1289
1290 if (is_bad_inode(inode)) {
1291 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1292 __func__, dentry);
1293 return 0;
1294 }
1295
1296 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1297 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1298 __func__, inode->i_ino, error ? "invalid" : "valid");
1299 return !error;
1300 }
1301
1302 /*
1303 * This is called from dput() when d_count is going to 0.
1304 */
1305 static int nfs_dentry_delete(const struct dentry *dentry)
1306 {
1307 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1308 dentry, dentry->d_flags);
1309
1310 /* Unhash any dentry with a stale inode */
1311 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1312 return 1;
1313
1314 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1315 /* Unhash it, so that ->d_iput() would be called */
1316 return 1;
1317 }
1318 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1319 /* Unhash it, so that ancestors of killed async unlink
1320 * files will be cleaned up during umount */
1321 return 1;
1322 }
1323 return 0;
1324
1325 }
1326
1327 /* Ensure that we revalidate inode->i_nlink */
1328 static void nfs_drop_nlink(struct inode *inode)
1329 {
1330 spin_lock(&inode->i_lock);
1331 /* drop the inode if we're reasonably sure this is the last link */
1332 if (inode->i_nlink == 1)
1333 clear_nlink(inode);
1334 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1335 spin_unlock(&inode->i_lock);
1336 }
1337
1338 /*
1339 * Called when the dentry loses inode.
1340 * We use it to clean up silly-renamed files.
1341 */
1342 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1343 {
1344 if (S_ISDIR(inode->i_mode))
1345 /* drop any readdir cache as it could easily be old */
1346 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1347
1348 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1349 nfs_complete_unlink(dentry, inode);
1350 nfs_drop_nlink(inode);
1351 }
1352 iput(inode);
1353 }
1354
1355 static void nfs_d_release(struct dentry *dentry)
1356 {
1357 /* free cached devname value, if it survived that far */
1358 if (unlikely(dentry->d_fsdata)) {
1359 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1360 WARN_ON(1);
1361 else
1362 kfree(dentry->d_fsdata);
1363 }
1364 }
1365
1366 const struct dentry_operations nfs_dentry_operations = {
1367 .d_revalidate = nfs_lookup_revalidate,
1368 .d_weak_revalidate = nfs_weak_revalidate,
1369 .d_delete = nfs_dentry_delete,
1370 .d_iput = nfs_dentry_iput,
1371 .d_automount = nfs_d_automount,
1372 .d_release = nfs_d_release,
1373 };
1374 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1375
1376 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1377 {
1378 struct dentry *res;
1379 struct inode *inode = NULL;
1380 struct nfs_fh *fhandle = NULL;
1381 struct nfs_fattr *fattr = NULL;
1382 struct nfs4_label *label = NULL;
1383 int error;
1384
1385 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1386 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1387
1388 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1389 return ERR_PTR(-ENAMETOOLONG);
1390
1391 /*
1392 * If we're doing an exclusive create, optimize away the lookup
1393 * but don't hash the dentry.
1394 */
1395 if (nfs_is_exclusive_create(dir, flags))
1396 return NULL;
1397
1398 res = ERR_PTR(-ENOMEM);
1399 fhandle = nfs_alloc_fhandle();
1400 fattr = nfs_alloc_fattr();
1401 if (fhandle == NULL || fattr == NULL)
1402 goto out;
1403
1404 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1405 if (IS_ERR(label))
1406 goto out;
1407
1408 trace_nfs_lookup_enter(dir, dentry, flags);
1409 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1410 if (error == -ENOENT)
1411 goto no_entry;
1412 if (error < 0) {
1413 res = ERR_PTR(error);
1414 goto out_label;
1415 }
1416 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1417 res = ERR_CAST(inode);
1418 if (IS_ERR(res))
1419 goto out_label;
1420
1421 /* Notify readdir to use READDIRPLUS */
1422 nfs_force_use_readdirplus(dir);
1423
1424 no_entry:
1425 res = d_splice_alias(inode, dentry);
1426 if (res != NULL) {
1427 if (IS_ERR(res))
1428 goto out_label;
1429 dentry = res;
1430 }
1431 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1432 out_label:
1433 trace_nfs_lookup_exit(dir, dentry, flags, error);
1434 nfs4_label_free(label);
1435 out:
1436 nfs_free_fattr(fattr);
1437 nfs_free_fhandle(fhandle);
1438 return res;
1439 }
1440 EXPORT_SYMBOL_GPL(nfs_lookup);
1441
1442 #if IS_ENABLED(CONFIG_NFS_V4)
1443 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1444
1445 const struct dentry_operations nfs4_dentry_operations = {
1446 .d_revalidate = nfs4_lookup_revalidate,
1447 .d_delete = nfs_dentry_delete,
1448 .d_iput = nfs_dentry_iput,
1449 .d_automount = nfs_d_automount,
1450 .d_release = nfs_d_release,
1451 };
1452 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1453
1454 static fmode_t flags_to_mode(int flags)
1455 {
1456 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1457 if ((flags & O_ACCMODE) != O_WRONLY)
1458 res |= FMODE_READ;
1459 if ((flags & O_ACCMODE) != O_RDONLY)
1460 res |= FMODE_WRITE;
1461 return res;
1462 }
1463
1464 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1465 {
1466 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1467 }
1468
1469 static int do_open(struct inode *inode, struct file *filp)
1470 {
1471 nfs_fscache_open_file(inode, filp);
1472 return 0;
1473 }
1474
1475 static int nfs_finish_open(struct nfs_open_context *ctx,
1476 struct dentry *dentry,
1477 struct file *file, unsigned open_flags,
1478 int *opened)
1479 {
1480 int err;
1481
1482 err = finish_open(file, dentry, do_open, opened);
1483 if (err)
1484 goto out;
1485 nfs_file_set_open_context(file, ctx);
1486
1487 out:
1488 return err;
1489 }
1490
1491 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1492 struct file *file, unsigned open_flags,
1493 umode_t mode, int *opened)
1494 {
1495 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1496 struct nfs_open_context *ctx;
1497 struct dentry *res;
1498 struct iattr attr = { .ia_valid = ATTR_OPEN };
1499 struct inode *inode;
1500 unsigned int lookup_flags = 0;
1501 bool switched = false;
1502 int err;
1503
1504 /* Expect a negative dentry */
1505 BUG_ON(d_inode(dentry));
1506
1507 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1508 dir->i_sb->s_id, dir->i_ino, dentry);
1509
1510 err = nfs_check_flags(open_flags);
1511 if (err)
1512 return err;
1513
1514 /* NFS only supports OPEN on regular files */
1515 if ((open_flags & O_DIRECTORY)) {
1516 if (!d_in_lookup(dentry)) {
1517 /*
1518 * Hashed negative dentry with O_DIRECTORY: dentry was
1519 * revalidated and is fine, no need to perform lookup
1520 * again
1521 */
1522 return -ENOENT;
1523 }
1524 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1525 goto no_open;
1526 }
1527
1528 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1529 return -ENAMETOOLONG;
1530
1531 if (open_flags & O_CREAT) {
1532 struct nfs_server *server = NFS_SERVER(dir);
1533
1534 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1535 mode &= ~current_umask();
1536
1537 attr.ia_valid |= ATTR_MODE;
1538 attr.ia_mode = mode;
1539 }
1540 if (open_flags & O_TRUNC) {
1541 attr.ia_valid |= ATTR_SIZE;
1542 attr.ia_size = 0;
1543 }
1544
1545 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1546 d_drop(dentry);
1547 switched = true;
1548 dentry = d_alloc_parallel(dentry->d_parent,
1549 &dentry->d_name, &wq);
1550 if (IS_ERR(dentry))
1551 return PTR_ERR(dentry);
1552 if (unlikely(!d_in_lookup(dentry)))
1553 return finish_no_open(file, dentry);
1554 }
1555
1556 ctx = create_nfs_open_context(dentry, open_flags, file);
1557 err = PTR_ERR(ctx);
1558 if (IS_ERR(ctx))
1559 goto out;
1560
1561 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1562 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1563 if (IS_ERR(inode)) {
1564 err = PTR_ERR(inode);
1565 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1566 put_nfs_open_context(ctx);
1567 d_drop(dentry);
1568 switch (err) {
1569 case -ENOENT:
1570 d_add(dentry, NULL);
1571 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1572 break;
1573 case -EISDIR:
1574 case -ENOTDIR:
1575 goto no_open;
1576 case -ELOOP:
1577 if (!(open_flags & O_NOFOLLOW))
1578 goto no_open;
1579 break;
1580 /* case -EINVAL: */
1581 default:
1582 break;
1583 }
1584 goto out;
1585 }
1586
1587 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1588 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1589 put_nfs_open_context(ctx);
1590 out:
1591 if (unlikely(switched)) {
1592 d_lookup_done(dentry);
1593 dput(dentry);
1594 }
1595 return err;
1596
1597 no_open:
1598 res = nfs_lookup(dir, dentry, lookup_flags);
1599 if (switched) {
1600 d_lookup_done(dentry);
1601 if (!res)
1602 res = dentry;
1603 else
1604 dput(dentry);
1605 }
1606 if (IS_ERR(res))
1607 return PTR_ERR(res);
1608 return finish_no_open(file, res);
1609 }
1610 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1611
1612 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1613 {
1614 struct inode *inode;
1615 int ret = 0;
1616
1617 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1618 goto no_open;
1619 if (d_mountpoint(dentry))
1620 goto no_open;
1621 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1622 goto no_open;
1623
1624 inode = d_inode(dentry);
1625
1626 /* We can't create new files in nfs_open_revalidate(), so we
1627 * optimize away revalidation of negative dentries.
1628 */
1629 if (inode == NULL) {
1630 struct dentry *parent;
1631 struct inode *dir;
1632
1633 if (flags & LOOKUP_RCU) {
1634 parent = ACCESS_ONCE(dentry->d_parent);
1635 dir = d_inode_rcu(parent);
1636 if (!dir)
1637 return -ECHILD;
1638 } else {
1639 parent = dget_parent(dentry);
1640 dir = d_inode(parent);
1641 }
1642 if (!nfs_neg_need_reval(dir, dentry, flags))
1643 ret = 1;
1644 else if (flags & LOOKUP_RCU)
1645 ret = -ECHILD;
1646 if (!(flags & LOOKUP_RCU))
1647 dput(parent);
1648 else if (parent != ACCESS_ONCE(dentry->d_parent))
1649 return -ECHILD;
1650 goto out;
1651 }
1652
1653 /* NFS only supports OPEN on regular files */
1654 if (!S_ISREG(inode->i_mode))
1655 goto no_open;
1656 /* We cannot do exclusive creation on a positive dentry */
1657 if (flags & LOOKUP_EXCL)
1658 goto no_open;
1659
1660 /* Let f_op->open() actually open (and revalidate) the file */
1661 ret = 1;
1662
1663 out:
1664 return ret;
1665
1666 no_open:
1667 return nfs_lookup_revalidate(dentry, flags);
1668 }
1669
1670 #endif /* CONFIG_NFSV4 */
1671
1672 /*
1673 * Code common to create, mkdir, and mknod.
1674 */
1675 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1676 struct nfs_fattr *fattr,
1677 struct nfs4_label *label)
1678 {
1679 struct dentry *parent = dget_parent(dentry);
1680 struct inode *dir = d_inode(parent);
1681 struct inode *inode;
1682 int error = -EACCES;
1683
1684 d_drop(dentry);
1685
1686 /* We may have been initialized further down */
1687 if (d_really_is_positive(dentry))
1688 goto out;
1689 if (fhandle->size == 0) {
1690 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1691 if (error)
1692 goto out_error;
1693 }
1694 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1695 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1696 struct nfs_server *server = NFS_SB(dentry->d_sb);
1697 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1698 if (error < 0)
1699 goto out_error;
1700 }
1701 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1702 error = PTR_ERR(inode);
1703 if (IS_ERR(inode))
1704 goto out_error;
1705 d_add(dentry, inode);
1706 out:
1707 dput(parent);
1708 return 0;
1709 out_error:
1710 nfs_mark_for_revalidate(dir);
1711 dput(parent);
1712 return error;
1713 }
1714 EXPORT_SYMBOL_GPL(nfs_instantiate);
1715
1716 /*
1717 * Following a failed create operation, we drop the dentry rather
1718 * than retain a negative dentry. This avoids a problem in the event
1719 * that the operation succeeded on the server, but an error in the
1720 * reply path made it appear to have failed.
1721 */
1722 int nfs_create(struct inode *dir, struct dentry *dentry,
1723 umode_t mode, bool excl)
1724 {
1725 struct iattr attr;
1726 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1727 int error;
1728
1729 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1730 dir->i_sb->s_id, dir->i_ino, dentry);
1731
1732 attr.ia_mode = mode;
1733 attr.ia_valid = ATTR_MODE;
1734
1735 trace_nfs_create_enter(dir, dentry, open_flags);
1736 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1737 trace_nfs_create_exit(dir, dentry, open_flags, error);
1738 if (error != 0)
1739 goto out_err;
1740 return 0;
1741 out_err:
1742 d_drop(dentry);
1743 return error;
1744 }
1745 EXPORT_SYMBOL_GPL(nfs_create);
1746
1747 /*
1748 * See comments for nfs_proc_create regarding failed operations.
1749 */
1750 int
1751 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1752 {
1753 struct iattr attr;
1754 int status;
1755
1756 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1757 dir->i_sb->s_id, dir->i_ino, dentry);
1758
1759 attr.ia_mode = mode;
1760 attr.ia_valid = ATTR_MODE;
1761
1762 trace_nfs_mknod_enter(dir, dentry);
1763 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1764 trace_nfs_mknod_exit(dir, dentry, status);
1765 if (status != 0)
1766 goto out_err;
1767 return 0;
1768 out_err:
1769 d_drop(dentry);
1770 return status;
1771 }
1772 EXPORT_SYMBOL_GPL(nfs_mknod);
1773
1774 /*
1775 * See comments for nfs_proc_create regarding failed operations.
1776 */
1777 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1778 {
1779 struct iattr attr;
1780 int error;
1781
1782 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1783 dir->i_sb->s_id, dir->i_ino, dentry);
1784
1785 attr.ia_valid = ATTR_MODE;
1786 attr.ia_mode = mode | S_IFDIR;
1787
1788 trace_nfs_mkdir_enter(dir, dentry);
1789 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1790 trace_nfs_mkdir_exit(dir, dentry, error);
1791 if (error != 0)
1792 goto out_err;
1793 return 0;
1794 out_err:
1795 d_drop(dentry);
1796 return error;
1797 }
1798 EXPORT_SYMBOL_GPL(nfs_mkdir);
1799
1800 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1801 {
1802 if (simple_positive(dentry))
1803 d_delete(dentry);
1804 }
1805
1806 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1807 {
1808 int error;
1809
1810 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1811 dir->i_sb->s_id, dir->i_ino, dentry);
1812
1813 trace_nfs_rmdir_enter(dir, dentry);
1814 if (d_really_is_positive(dentry)) {
1815 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1816 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1817 /* Ensure the VFS deletes this inode */
1818 switch (error) {
1819 case 0:
1820 clear_nlink(d_inode(dentry));
1821 break;
1822 case -ENOENT:
1823 nfs_dentry_handle_enoent(dentry);
1824 }
1825 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1826 } else
1827 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1828 trace_nfs_rmdir_exit(dir, dentry, error);
1829
1830 return error;
1831 }
1832 EXPORT_SYMBOL_GPL(nfs_rmdir);
1833
1834 /*
1835 * Remove a file after making sure there are no pending writes,
1836 * and after checking that the file has only one user.
1837 *
1838 * We invalidate the attribute cache and free the inode prior to the operation
1839 * to avoid possible races if the server reuses the inode.
1840 */
1841 static int nfs_safe_remove(struct dentry *dentry)
1842 {
1843 struct inode *dir = d_inode(dentry->d_parent);
1844 struct inode *inode = d_inode(dentry);
1845 int error = -EBUSY;
1846
1847 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1848
1849 /* If the dentry was sillyrenamed, we simply call d_delete() */
1850 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1851 error = 0;
1852 goto out;
1853 }
1854
1855 trace_nfs_remove_enter(dir, dentry);
1856 if (inode != NULL) {
1857 NFS_PROTO(inode)->return_delegation(inode);
1858 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1859 if (error == 0)
1860 nfs_drop_nlink(inode);
1861 } else
1862 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1863 if (error == -ENOENT)
1864 nfs_dentry_handle_enoent(dentry);
1865 trace_nfs_remove_exit(dir, dentry, error);
1866 out:
1867 return error;
1868 }
1869
1870 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1871 * belongs to an active ".nfs..." file and we return -EBUSY.
1872 *
1873 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1874 */
1875 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1876 {
1877 int error;
1878 int need_rehash = 0;
1879
1880 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1881 dir->i_ino, dentry);
1882
1883 trace_nfs_unlink_enter(dir, dentry);
1884 spin_lock(&dentry->d_lock);
1885 if (d_count(dentry) > 1) {
1886 spin_unlock(&dentry->d_lock);
1887 /* Start asynchronous writeout of the inode */
1888 write_inode_now(d_inode(dentry), 0);
1889 error = nfs_sillyrename(dir, dentry);
1890 goto out;
1891 }
1892 if (!d_unhashed(dentry)) {
1893 __d_drop(dentry);
1894 need_rehash = 1;
1895 }
1896 spin_unlock(&dentry->d_lock);
1897 error = nfs_safe_remove(dentry);
1898 if (!error || error == -ENOENT) {
1899 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1900 } else if (need_rehash)
1901 d_rehash(dentry);
1902 out:
1903 trace_nfs_unlink_exit(dir, dentry, error);
1904 return error;
1905 }
1906 EXPORT_SYMBOL_GPL(nfs_unlink);
1907
1908 /*
1909 * To create a symbolic link, most file systems instantiate a new inode,
1910 * add a page to it containing the path, then write it out to the disk
1911 * using prepare_write/commit_write.
1912 *
1913 * Unfortunately the NFS client can't create the in-core inode first
1914 * because it needs a file handle to create an in-core inode (see
1915 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1916 * symlink request has completed on the server.
1917 *
1918 * So instead we allocate a raw page, copy the symname into it, then do
1919 * the SYMLINK request with the page as the buffer. If it succeeds, we
1920 * now have a new file handle and can instantiate an in-core NFS inode
1921 * and move the raw page into its mapping.
1922 */
1923 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1924 {
1925 struct page *page;
1926 char *kaddr;
1927 struct iattr attr;
1928 unsigned int pathlen = strlen(symname);
1929 int error;
1930
1931 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1932 dir->i_ino, dentry, symname);
1933
1934 if (pathlen > PAGE_SIZE)
1935 return -ENAMETOOLONG;
1936
1937 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1938 attr.ia_valid = ATTR_MODE;
1939
1940 page = alloc_page(GFP_USER);
1941 if (!page)
1942 return -ENOMEM;
1943
1944 kaddr = page_address(page);
1945 memcpy(kaddr, symname, pathlen);
1946 if (pathlen < PAGE_SIZE)
1947 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1948
1949 trace_nfs_symlink_enter(dir, dentry);
1950 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1951 trace_nfs_symlink_exit(dir, dentry, error);
1952 if (error != 0) {
1953 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1954 dir->i_sb->s_id, dir->i_ino,
1955 dentry, symname, error);
1956 d_drop(dentry);
1957 __free_page(page);
1958 return error;
1959 }
1960
1961 /*
1962 * No big deal if we can't add this page to the page cache here.
1963 * READLINK will get the missing page from the server if needed.
1964 */
1965 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1966 GFP_KERNEL)) {
1967 SetPageUptodate(page);
1968 unlock_page(page);
1969 /*
1970 * add_to_page_cache_lru() grabs an extra page refcount.
1971 * Drop it here to avoid leaking this page later.
1972 */
1973 put_page(page);
1974 } else
1975 __free_page(page);
1976
1977 return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nfs_symlink);
1980
1981 int
1982 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1983 {
1984 struct inode *inode = d_inode(old_dentry);
1985 int error;
1986
1987 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1988 old_dentry, dentry);
1989
1990 trace_nfs_link_enter(inode, dir, dentry);
1991 NFS_PROTO(inode)->return_delegation(inode);
1992
1993 d_drop(dentry);
1994 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1995 if (error == 0) {
1996 ihold(inode);
1997 d_add(dentry, inode);
1998 }
1999 trace_nfs_link_exit(inode, dir, dentry, error);
2000 return error;
2001 }
2002 EXPORT_SYMBOL_GPL(nfs_link);
2003
2004 /*
2005 * RENAME
2006 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2007 * different file handle for the same inode after a rename (e.g. when
2008 * moving to a different directory). A fail-safe method to do so would
2009 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2010 * rename the old file using the sillyrename stuff. This way, the original
2011 * file in old_dir will go away when the last process iput()s the inode.
2012 *
2013 * FIXED.
2014 *
2015 * It actually works quite well. One needs to have the possibility for
2016 * at least one ".nfs..." file in each directory the file ever gets
2017 * moved or linked to which happens automagically with the new
2018 * implementation that only depends on the dcache stuff instead of
2019 * using the inode layer
2020 *
2021 * Unfortunately, things are a little more complicated than indicated
2022 * above. For a cross-directory move, we want to make sure we can get
2023 * rid of the old inode after the operation. This means there must be
2024 * no pending writes (if it's a file), and the use count must be 1.
2025 * If these conditions are met, we can drop the dentries before doing
2026 * the rename.
2027 */
2028 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2029 struct inode *new_dir, struct dentry *new_dentry,
2030 unsigned int flags)
2031 {
2032 struct inode *old_inode = d_inode(old_dentry);
2033 struct inode *new_inode = d_inode(new_dentry);
2034 struct dentry *dentry = NULL, *rehash = NULL;
2035 struct rpc_task *task;
2036 int error = -EBUSY;
2037
2038 if (flags)
2039 return -EINVAL;
2040
2041 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2042 old_dentry, new_dentry,
2043 d_count(new_dentry));
2044
2045 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2046 /*
2047 * For non-directories, check whether the target is busy and if so,
2048 * make a copy of the dentry and then do a silly-rename. If the
2049 * silly-rename succeeds, the copied dentry is hashed and becomes
2050 * the new target.
2051 */
2052 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2053 /*
2054 * To prevent any new references to the target during the
2055 * rename, we unhash the dentry in advance.
2056 */
2057 if (!d_unhashed(new_dentry)) {
2058 d_drop(new_dentry);
2059 rehash = new_dentry;
2060 }
2061
2062 if (d_count(new_dentry) > 2) {
2063 int err;
2064
2065 /* copy the target dentry's name */
2066 dentry = d_alloc(new_dentry->d_parent,
2067 &new_dentry->d_name);
2068 if (!dentry)
2069 goto out;
2070
2071 /* silly-rename the existing target ... */
2072 err = nfs_sillyrename(new_dir, new_dentry);
2073 if (err)
2074 goto out;
2075
2076 new_dentry = dentry;
2077 rehash = NULL;
2078 new_inode = NULL;
2079 }
2080 }
2081
2082 NFS_PROTO(old_inode)->return_delegation(old_inode);
2083 if (new_inode != NULL)
2084 NFS_PROTO(new_inode)->return_delegation(new_inode);
2085
2086 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2087 if (IS_ERR(task)) {
2088 error = PTR_ERR(task);
2089 goto out;
2090 }
2091
2092 error = rpc_wait_for_completion_task(task);
2093 if (error == 0)
2094 error = task->tk_status;
2095 rpc_put_task(task);
2096 nfs_mark_for_revalidate(old_inode);
2097 out:
2098 if (rehash)
2099 d_rehash(rehash);
2100 trace_nfs_rename_exit(old_dir, old_dentry,
2101 new_dir, new_dentry, error);
2102 if (!error) {
2103 if (new_inode != NULL)
2104 nfs_drop_nlink(new_inode);
2105 d_move(old_dentry, new_dentry);
2106 nfs_set_verifier(new_dentry,
2107 nfs_save_change_attribute(new_dir));
2108 } else if (error == -ENOENT)
2109 nfs_dentry_handle_enoent(old_dentry);
2110
2111 /* new dentry created? */
2112 if (dentry)
2113 dput(dentry);
2114 return error;
2115 }
2116 EXPORT_SYMBOL_GPL(nfs_rename);
2117
2118 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2119 static LIST_HEAD(nfs_access_lru_list);
2120 static atomic_long_t nfs_access_nr_entries;
2121
2122 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2123 module_param(nfs_access_max_cachesize, ulong, 0644);
2124 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2125
2126 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2127 {
2128 put_rpccred(entry->cred);
2129 kfree_rcu(entry, rcu_head);
2130 smp_mb__before_atomic();
2131 atomic_long_dec(&nfs_access_nr_entries);
2132 smp_mb__after_atomic();
2133 }
2134
2135 static void nfs_access_free_list(struct list_head *head)
2136 {
2137 struct nfs_access_entry *cache;
2138
2139 while (!list_empty(head)) {
2140 cache = list_entry(head->next, struct nfs_access_entry, lru);
2141 list_del(&cache->lru);
2142 nfs_access_free_entry(cache);
2143 }
2144 }
2145
2146 static unsigned long
2147 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2148 {
2149 LIST_HEAD(head);
2150 struct nfs_inode *nfsi, *next;
2151 struct nfs_access_entry *cache;
2152 long freed = 0;
2153
2154 spin_lock(&nfs_access_lru_lock);
2155 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2156 struct inode *inode;
2157
2158 if (nr_to_scan-- == 0)
2159 break;
2160 inode = &nfsi->vfs_inode;
2161 spin_lock(&inode->i_lock);
2162 if (list_empty(&nfsi->access_cache_entry_lru))
2163 goto remove_lru_entry;
2164 cache = list_entry(nfsi->access_cache_entry_lru.next,
2165 struct nfs_access_entry, lru);
2166 list_move(&cache->lru, &head);
2167 rb_erase(&cache->rb_node, &nfsi->access_cache);
2168 freed++;
2169 if (!list_empty(&nfsi->access_cache_entry_lru))
2170 list_move_tail(&nfsi->access_cache_inode_lru,
2171 &nfs_access_lru_list);
2172 else {
2173 remove_lru_entry:
2174 list_del_init(&nfsi->access_cache_inode_lru);
2175 smp_mb__before_atomic();
2176 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2177 smp_mb__after_atomic();
2178 }
2179 spin_unlock(&inode->i_lock);
2180 }
2181 spin_unlock(&nfs_access_lru_lock);
2182 nfs_access_free_list(&head);
2183 return freed;
2184 }
2185
2186 unsigned long
2187 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2188 {
2189 int nr_to_scan = sc->nr_to_scan;
2190 gfp_t gfp_mask = sc->gfp_mask;
2191
2192 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2193 return SHRINK_STOP;
2194 return nfs_do_access_cache_scan(nr_to_scan);
2195 }
2196
2197
2198 unsigned long
2199 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2200 {
2201 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2202 }
2203
2204 static void
2205 nfs_access_cache_enforce_limit(void)
2206 {
2207 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2208 unsigned long diff;
2209 unsigned int nr_to_scan;
2210
2211 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2212 return;
2213 nr_to_scan = 100;
2214 diff = nr_entries - nfs_access_max_cachesize;
2215 if (diff < nr_to_scan)
2216 nr_to_scan = diff;
2217 nfs_do_access_cache_scan(nr_to_scan);
2218 }
2219
2220 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2221 {
2222 struct rb_root *root_node = &nfsi->access_cache;
2223 struct rb_node *n;
2224 struct nfs_access_entry *entry;
2225
2226 /* Unhook entries from the cache */
2227 while ((n = rb_first(root_node)) != NULL) {
2228 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2229 rb_erase(n, root_node);
2230 list_move(&entry->lru, head);
2231 }
2232 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2233 }
2234
2235 void nfs_access_zap_cache(struct inode *inode)
2236 {
2237 LIST_HEAD(head);
2238
2239 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2240 return;
2241 /* Remove from global LRU init */
2242 spin_lock(&nfs_access_lru_lock);
2243 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2244 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2245
2246 spin_lock(&inode->i_lock);
2247 __nfs_access_zap_cache(NFS_I(inode), &head);
2248 spin_unlock(&inode->i_lock);
2249 spin_unlock(&nfs_access_lru_lock);
2250 nfs_access_free_list(&head);
2251 }
2252 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2253
2254 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2255 {
2256 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2257 struct nfs_access_entry *entry;
2258
2259 while (n != NULL) {
2260 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2261
2262 if (cred < entry->cred)
2263 n = n->rb_left;
2264 else if (cred > entry->cred)
2265 n = n->rb_right;
2266 else
2267 return entry;
2268 }
2269 return NULL;
2270 }
2271
2272 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2273 {
2274 struct nfs_inode *nfsi = NFS_I(inode);
2275 struct nfs_access_entry *cache;
2276 bool retry = true;
2277 int err;
2278
2279 spin_lock(&inode->i_lock);
2280 for(;;) {
2281 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2282 goto out_zap;
2283 cache = nfs_access_search_rbtree(inode, cred);
2284 err = -ENOENT;
2285 if (cache == NULL)
2286 goto out;
2287 /* Found an entry, is our attribute cache valid? */
2288 if (!nfs_attribute_cache_expired(inode) &&
2289 !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2290 break;
2291 err = -ECHILD;
2292 if (!may_block)
2293 goto out;
2294 if (!retry)
2295 goto out_zap;
2296 spin_unlock(&inode->i_lock);
2297 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2298 if (err)
2299 return err;
2300 spin_lock(&inode->i_lock);
2301 retry = false;
2302 }
2303 res->jiffies = cache->jiffies;
2304 res->cred = cache->cred;
2305 res->mask = cache->mask;
2306 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2307 err = 0;
2308 out:
2309 spin_unlock(&inode->i_lock);
2310 return err;
2311 out_zap:
2312 spin_unlock(&inode->i_lock);
2313 nfs_access_zap_cache(inode);
2314 return -ENOENT;
2315 }
2316
2317 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2318 {
2319 /* Only check the most recently returned cache entry,
2320 * but do it without locking.
2321 */
2322 struct nfs_inode *nfsi = NFS_I(inode);
2323 struct nfs_access_entry *cache;
2324 int err = -ECHILD;
2325 struct list_head *lh;
2326
2327 rcu_read_lock();
2328 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2329 goto out;
2330 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2331 cache = list_entry(lh, struct nfs_access_entry, lru);
2332 if (lh == &nfsi->access_cache_entry_lru ||
2333 cred != cache->cred)
2334 cache = NULL;
2335 if (cache == NULL)
2336 goto out;
2337 err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2338 if (err)
2339 goto out;
2340 res->jiffies = cache->jiffies;
2341 res->cred = cache->cred;
2342 res->mask = cache->mask;
2343 out:
2344 rcu_read_unlock();
2345 return err;
2346 }
2347
2348 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2349 {
2350 struct nfs_inode *nfsi = NFS_I(inode);
2351 struct rb_root *root_node = &nfsi->access_cache;
2352 struct rb_node **p = &root_node->rb_node;
2353 struct rb_node *parent = NULL;
2354 struct nfs_access_entry *entry;
2355
2356 spin_lock(&inode->i_lock);
2357 while (*p != NULL) {
2358 parent = *p;
2359 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2360
2361 if (set->cred < entry->cred)
2362 p = &parent->rb_left;
2363 else if (set->cred > entry->cred)
2364 p = &parent->rb_right;
2365 else
2366 goto found;
2367 }
2368 rb_link_node(&set->rb_node, parent, p);
2369 rb_insert_color(&set->rb_node, root_node);
2370 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2371 spin_unlock(&inode->i_lock);
2372 return;
2373 found:
2374 rb_replace_node(parent, &set->rb_node, root_node);
2375 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2376 list_del(&entry->lru);
2377 spin_unlock(&inode->i_lock);
2378 nfs_access_free_entry(entry);
2379 }
2380
2381 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2382 {
2383 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2384 if (cache == NULL)
2385 return;
2386 RB_CLEAR_NODE(&cache->rb_node);
2387 cache->jiffies = set->jiffies;
2388 cache->cred = get_rpccred(set->cred);
2389 cache->mask = set->mask;
2390
2391 /* The above field assignments must be visible
2392 * before this item appears on the lru. We cannot easily
2393 * use rcu_assign_pointer, so just force the memory barrier.
2394 */
2395 smp_wmb();
2396 nfs_access_add_rbtree(inode, cache);
2397
2398 /* Update accounting */
2399 smp_mb__before_atomic();
2400 atomic_long_inc(&nfs_access_nr_entries);
2401 smp_mb__after_atomic();
2402
2403 /* Add inode to global LRU list */
2404 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2405 spin_lock(&nfs_access_lru_lock);
2406 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2407 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2408 &nfs_access_lru_list);
2409 spin_unlock(&nfs_access_lru_lock);
2410 }
2411 nfs_access_cache_enforce_limit();
2412 }
2413 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2414
2415 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2416 {
2417 entry->mask = 0;
2418 if (access_result & NFS4_ACCESS_READ)
2419 entry->mask |= MAY_READ;
2420 if (access_result &
2421 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2422 entry->mask |= MAY_WRITE;
2423 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2424 entry->mask |= MAY_EXEC;
2425 }
2426 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2427
2428 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2429 {
2430 struct nfs_access_entry cache;
2431 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2432 int status;
2433
2434 trace_nfs_access_enter(inode);
2435
2436 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2437 if (status != 0)
2438 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2439 if (status == 0)
2440 goto out_cached;
2441
2442 status = -ECHILD;
2443 if (!may_block)
2444 goto out;
2445
2446 /* Be clever: ask server to check for all possible rights */
2447 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2448 cache.cred = cred;
2449 cache.jiffies = jiffies;
2450 status = NFS_PROTO(inode)->access(inode, &cache);
2451 if (status != 0) {
2452 if (status == -ESTALE) {
2453 nfs_zap_caches(inode);
2454 if (!S_ISDIR(inode->i_mode))
2455 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2456 }
2457 goto out;
2458 }
2459 nfs_access_add_cache(inode, &cache);
2460 out_cached:
2461 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2462 status = -EACCES;
2463 out:
2464 trace_nfs_access_exit(inode, status);
2465 return status;
2466 }
2467
2468 static int nfs_open_permission_mask(int openflags)
2469 {
2470 int mask = 0;
2471
2472 if (openflags & __FMODE_EXEC) {
2473 /* ONLY check exec rights */
2474 mask = MAY_EXEC;
2475 } else {
2476 if ((openflags & O_ACCMODE) != O_WRONLY)
2477 mask |= MAY_READ;
2478 if ((openflags & O_ACCMODE) != O_RDONLY)
2479 mask |= MAY_WRITE;
2480 }
2481
2482 return mask;
2483 }
2484
2485 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2486 {
2487 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2488 }
2489 EXPORT_SYMBOL_GPL(nfs_may_open);
2490
2491 static int nfs_execute_ok(struct inode *inode, int mask)
2492 {
2493 struct nfs_server *server = NFS_SERVER(inode);
2494 int ret;
2495
2496 if (mask & MAY_NOT_BLOCK)
2497 ret = nfs_revalidate_inode_rcu(server, inode);
2498 else
2499 ret = nfs_revalidate_inode(server, inode);
2500 if (ret == 0 && !execute_ok(inode))
2501 ret = -EACCES;
2502 return ret;
2503 }
2504
2505 int nfs_permission(struct inode *inode, int mask)
2506 {
2507 struct rpc_cred *cred;
2508 int res = 0;
2509
2510 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2511
2512 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2513 goto out;
2514 /* Is this sys_access() ? */
2515 if (mask & (MAY_ACCESS | MAY_CHDIR))
2516 goto force_lookup;
2517
2518 switch (inode->i_mode & S_IFMT) {
2519 case S_IFLNK:
2520 goto out;
2521 case S_IFREG:
2522 if ((mask & MAY_OPEN) &&
2523 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2524 return 0;
2525 break;
2526 case S_IFDIR:
2527 /*
2528 * Optimize away all write operations, since the server
2529 * will check permissions when we perform the op.
2530 */
2531 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2532 goto out;
2533 }
2534
2535 force_lookup:
2536 if (!NFS_PROTO(inode)->access)
2537 goto out_notsup;
2538
2539 /* Always try fast lookups first */
2540 rcu_read_lock();
2541 cred = rpc_lookup_cred_nonblock();
2542 if (!IS_ERR(cred))
2543 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2544 else
2545 res = PTR_ERR(cred);
2546 rcu_read_unlock();
2547 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2548 /* Fast lookup failed, try the slow way */
2549 cred = rpc_lookup_cred();
2550 if (!IS_ERR(cred)) {
2551 res = nfs_do_access(inode, cred, mask);
2552 put_rpccred(cred);
2553 } else
2554 res = PTR_ERR(cred);
2555 }
2556 out:
2557 if (!res && (mask & MAY_EXEC))
2558 res = nfs_execute_ok(inode, mask);
2559
2560 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2561 inode->i_sb->s_id, inode->i_ino, mask, res);
2562 return res;
2563 out_notsup:
2564 if (mask & MAY_NOT_BLOCK)
2565 return -ECHILD;
2566
2567 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2568 if (res == 0)
2569 res = generic_permission(inode, mask);
2570 goto out;
2571 }
2572 EXPORT_SYMBOL_GPL(nfs_permission);
2573
2574 /*
2575 * Local variables:
2576 * version-control: t
2577 * kept-new-versions: 5
2578 * End:
2579 */