]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/direct.c
direct-io: eliminate the offset argument to ->direct_IO
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_mirror {
70 ssize_t count;
71 };
72
73 struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 ssize_t count, /* bytes actually processed */
90 bytes_left, /* bytes left to be sent */
91 io_start, /* start of IO */
92 error; /* any reported error */
93 struct completion completion; /* wait for i/o completion */
94
95 /* commit state */
96 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
97 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
98 struct work_struct work;
99 int flags;
100 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
101 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
102 struct nfs_writeverf verf; /* unstable write verifier */
103 };
104
105 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
106 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
107 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
108 static void nfs_direct_write_schedule_work(struct work_struct *work);
109
110 static inline void get_dreq(struct nfs_direct_req *dreq)
111 {
112 atomic_inc(&dreq->io_count);
113 }
114
115 static inline int put_dreq(struct nfs_direct_req *dreq)
116 {
117 return atomic_dec_and_test(&dreq->io_count);
118 }
119
120 static void
121 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
122 {
123 int i;
124 ssize_t count;
125
126 if (dreq->mirror_count == 1) {
127 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
128 dreq->count += hdr->good_bytes;
129 } else {
130 /* mirrored writes */
131 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
132 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
133 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
134 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
135 }
136 /* update the dreq->count by finding the minimum agreed count from all
137 * mirrors */
138 count = dreq->mirrors[0].count;
139
140 for (i = 1; i < dreq->mirror_count; i++)
141 count = min(count, dreq->mirrors[i].count);
142
143 dreq->count = count;
144 }
145 }
146
147 /*
148 * nfs_direct_select_verf - select the right verifier
149 * @dreq - direct request possibly spanning multiple servers
150 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
151 * @commit_idx - commit bucket index for the DS
152 *
153 * returns the correct verifier to use given the role of the server
154 */
155 static struct nfs_writeverf *
156 nfs_direct_select_verf(struct nfs_direct_req *dreq,
157 struct nfs_client *ds_clp,
158 int commit_idx)
159 {
160 struct nfs_writeverf *verfp = &dreq->verf;
161
162 #ifdef CONFIG_NFS_V4_1
163 /*
164 * pNFS is in use, use the DS verf except commit_through_mds is set
165 * for layout segment where nbuckets is zero.
166 */
167 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
168 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
169 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
170 else
171 WARN_ON_ONCE(1);
172 }
173 #endif
174 return verfp;
175 }
176
177
178 /*
179 * nfs_direct_set_hdr_verf - set the write/commit verifier
180 * @dreq - direct request possibly spanning multiple servers
181 * @hdr - pageio header to validate against previously seen verfs
182 *
183 * Set the server's (MDS or DS) "seen" verifier
184 */
185 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
186 struct nfs_pgio_header *hdr)
187 {
188 struct nfs_writeverf *verfp;
189
190 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
191 WARN_ON_ONCE(verfp->committed >= 0);
192 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
193 WARN_ON_ONCE(verfp->committed < 0);
194 }
195
196 /*
197 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
198 * @dreq - direct request possibly spanning multiple servers
199 * @hdr - pageio header to validate against previously seen verf
200 *
201 * set the server's "seen" verf if not initialized.
202 * returns result of comparison between @hdr->verf and the "seen"
203 * verf of the server used by @hdr (DS or MDS)
204 */
205 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
206 struct nfs_pgio_header *hdr)
207 {
208 struct nfs_writeverf *verfp;
209
210 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
211 if (verfp->committed < 0) {
212 nfs_direct_set_hdr_verf(dreq, hdr);
213 return 0;
214 }
215 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
216 }
217
218 /*
219 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
220 * @dreq - direct request possibly spanning multiple servers
221 * @data - commit data to validate against previously seen verf
222 *
223 * returns result of comparison between @data->verf and the verf of
224 * the server used by @data (DS or MDS)
225 */
226 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
227 struct nfs_commit_data *data)
228 {
229 struct nfs_writeverf *verfp;
230
231 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
232 data->ds_commit_index);
233
234 /* verifier not set so always fail */
235 if (verfp->committed < 0)
236 return 1;
237
238 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
239 }
240
241 /**
242 * nfs_direct_IO - NFS address space operation for direct I/O
243 * @iocb: target I/O control block
244 * @iov: array of vectors that define I/O buffer
245 * @pos: offset in file to begin the operation
246 * @nr_segs: size of iovec array
247 *
248 * The presence of this routine in the address space ops vector means
249 * the NFS client supports direct I/O. However, for most direct IO, we
250 * shunt off direct read and write requests before the VFS gets them,
251 * so this method is only ever called for swap.
252 */
253 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
254 {
255 struct inode *inode = iocb->ki_filp->f_mapping->host;
256
257 /* we only support swap file calling nfs_direct_IO */
258 if (!IS_SWAPFILE(inode))
259 return 0;
260
261 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
262
263 if (iov_iter_rw(iter) == READ)
264 return nfs_file_direct_read(iocb, iter);
265 return nfs_file_direct_write(iocb, iter);
266 }
267
268 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
269 {
270 unsigned int i;
271 for (i = 0; i < npages; i++)
272 put_page(pages[i]);
273 }
274
275 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
276 struct nfs_direct_req *dreq)
277 {
278 cinfo->lock = &dreq->inode->i_lock;
279 cinfo->mds = &dreq->mds_cinfo;
280 cinfo->ds = &dreq->ds_cinfo;
281 cinfo->dreq = dreq;
282 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
283 }
284
285 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
286 struct nfs_pageio_descriptor *pgio,
287 struct nfs_page *req)
288 {
289 int mirror_count = 1;
290
291 if (pgio->pg_ops->pg_get_mirror_count)
292 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
293
294 dreq->mirror_count = mirror_count;
295 }
296
297 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
298 {
299 struct nfs_direct_req *dreq;
300
301 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
302 if (!dreq)
303 return NULL;
304
305 kref_init(&dreq->kref);
306 kref_get(&dreq->kref);
307 init_completion(&dreq->completion);
308 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
309 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
310 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
311 dreq->mirror_count = 1;
312 spin_lock_init(&dreq->lock);
313
314 return dreq;
315 }
316
317 static void nfs_direct_req_free(struct kref *kref)
318 {
319 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
320
321 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
322 if (dreq->l_ctx != NULL)
323 nfs_put_lock_context(dreq->l_ctx);
324 if (dreq->ctx != NULL)
325 put_nfs_open_context(dreq->ctx);
326 kmem_cache_free(nfs_direct_cachep, dreq);
327 }
328
329 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
330 {
331 kref_put(&dreq->kref, nfs_direct_req_free);
332 }
333
334 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
335 {
336 return dreq->bytes_left;
337 }
338 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
339
340 /*
341 * Collects and returns the final error value/byte-count.
342 */
343 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
344 {
345 ssize_t result = -EIOCBQUEUED;
346
347 /* Async requests don't wait here */
348 if (dreq->iocb)
349 goto out;
350
351 result = wait_for_completion_killable(&dreq->completion);
352
353 if (!result)
354 result = dreq->error;
355 if (!result)
356 result = dreq->count;
357
358 out:
359 return (ssize_t) result;
360 }
361
362 /*
363 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
364 * the iocb is still valid here if this is a synchronous request.
365 */
366 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
367 {
368 struct inode *inode = dreq->inode;
369
370 if (dreq->iocb && write) {
371 loff_t pos = dreq->iocb->ki_pos + dreq->count;
372
373 spin_lock(&inode->i_lock);
374 if (i_size_read(inode) < pos)
375 i_size_write(inode, pos);
376 spin_unlock(&inode->i_lock);
377 }
378
379 if (write)
380 nfs_zap_mapping(inode, inode->i_mapping);
381
382 inode_dio_end(inode);
383
384 if (dreq->iocb) {
385 long res = (long) dreq->error;
386 if (!res)
387 res = (long) dreq->count;
388 dreq->iocb->ki_complete(dreq->iocb, res, 0);
389 }
390
391 complete_all(&dreq->completion);
392
393 nfs_direct_req_release(dreq);
394 }
395
396 static void nfs_direct_readpage_release(struct nfs_page *req)
397 {
398 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
399 d_inode(req->wb_context->dentry)->i_sb->s_id,
400 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
401 req->wb_bytes,
402 (long long)req_offset(req));
403 nfs_release_request(req);
404 }
405
406 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
407 {
408 unsigned long bytes = 0;
409 struct nfs_direct_req *dreq = hdr->dreq;
410
411 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
412 goto out_put;
413
414 spin_lock(&dreq->lock);
415 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
416 dreq->error = hdr->error;
417 else
418 nfs_direct_good_bytes(dreq, hdr);
419
420 spin_unlock(&dreq->lock);
421
422 while (!list_empty(&hdr->pages)) {
423 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
424 struct page *page = req->wb_page;
425
426 if (!PageCompound(page) && bytes < hdr->good_bytes)
427 set_page_dirty(page);
428 bytes += req->wb_bytes;
429 nfs_list_remove_request(req);
430 nfs_direct_readpage_release(req);
431 }
432 out_put:
433 if (put_dreq(dreq))
434 nfs_direct_complete(dreq, false);
435 hdr->release(hdr);
436 }
437
438 static void nfs_read_sync_pgio_error(struct list_head *head)
439 {
440 struct nfs_page *req;
441
442 while (!list_empty(head)) {
443 req = nfs_list_entry(head->next);
444 nfs_list_remove_request(req);
445 nfs_release_request(req);
446 }
447 }
448
449 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
450 {
451 get_dreq(hdr->dreq);
452 }
453
454 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
455 .error_cleanup = nfs_read_sync_pgio_error,
456 .init_hdr = nfs_direct_pgio_init,
457 .completion = nfs_direct_read_completion,
458 };
459
460 /*
461 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
462 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
463 * bail and stop sending more reads. Read length accounting is
464 * handled automatically by nfs_direct_read_result(). Otherwise, if
465 * no requests have been sent, just return an error.
466 */
467
468 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
469 struct iov_iter *iter,
470 loff_t pos)
471 {
472 struct nfs_pageio_descriptor desc;
473 struct inode *inode = dreq->inode;
474 ssize_t result = -EINVAL;
475 size_t requested_bytes = 0;
476 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
477
478 nfs_pageio_init_read(&desc, dreq->inode, false,
479 &nfs_direct_read_completion_ops);
480 get_dreq(dreq);
481 desc.pg_dreq = dreq;
482 inode_dio_begin(inode);
483
484 while (iov_iter_count(iter)) {
485 struct page **pagevec;
486 size_t bytes;
487 size_t pgbase;
488 unsigned npages, i;
489
490 result = iov_iter_get_pages_alloc(iter, &pagevec,
491 rsize, &pgbase);
492 if (result < 0)
493 break;
494
495 bytes = result;
496 iov_iter_advance(iter, bytes);
497 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
498 for (i = 0; i < npages; i++) {
499 struct nfs_page *req;
500 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
501 /* XXX do we need to do the eof zeroing found in async_filler? */
502 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
503 pgbase, req_len);
504 if (IS_ERR(req)) {
505 result = PTR_ERR(req);
506 break;
507 }
508 req->wb_index = pos >> PAGE_SHIFT;
509 req->wb_offset = pos & ~PAGE_MASK;
510 if (!nfs_pageio_add_request(&desc, req)) {
511 result = desc.pg_error;
512 nfs_release_request(req);
513 break;
514 }
515 pgbase = 0;
516 bytes -= req_len;
517 requested_bytes += req_len;
518 pos += req_len;
519 dreq->bytes_left -= req_len;
520 }
521 nfs_direct_release_pages(pagevec, npages);
522 kvfree(pagevec);
523 if (result < 0)
524 break;
525 }
526
527 nfs_pageio_complete(&desc);
528
529 /*
530 * If no bytes were started, return the error, and let the
531 * generic layer handle the completion.
532 */
533 if (requested_bytes == 0) {
534 inode_dio_end(inode);
535 nfs_direct_req_release(dreq);
536 return result < 0 ? result : -EIO;
537 }
538
539 if (put_dreq(dreq))
540 nfs_direct_complete(dreq, false);
541 return 0;
542 }
543
544 /**
545 * nfs_file_direct_read - file direct read operation for NFS files
546 * @iocb: target I/O control block
547 * @iter: vector of user buffers into which to read data
548 *
549 * We use this function for direct reads instead of calling
550 * generic_file_aio_read() in order to avoid gfar's check to see if
551 * the request starts before the end of the file. For that check
552 * to work, we must generate a GETATTR before each direct read, and
553 * even then there is a window between the GETATTR and the subsequent
554 * READ where the file size could change. Our preference is simply
555 * to do all reads the application wants, and the server will take
556 * care of managing the end of file boundary.
557 *
558 * This function also eliminates unnecessarily updating the file's
559 * atime locally, as the NFS server sets the file's atime, and this
560 * client must read the updated atime from the server back into its
561 * cache.
562 */
563 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
564 {
565 struct file *file = iocb->ki_filp;
566 struct address_space *mapping = file->f_mapping;
567 struct inode *inode = mapping->host;
568 struct nfs_direct_req *dreq;
569 struct nfs_lock_context *l_ctx;
570 ssize_t result = -EINVAL;
571 size_t count = iov_iter_count(iter);
572 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
573
574 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
575 file, count, (long long) iocb->ki_pos);
576
577 result = 0;
578 if (!count)
579 goto out;
580
581 inode_lock(inode);
582 result = nfs_sync_mapping(mapping);
583 if (result)
584 goto out_unlock;
585
586 task_io_account_read(count);
587
588 result = -ENOMEM;
589 dreq = nfs_direct_req_alloc();
590 if (dreq == NULL)
591 goto out_unlock;
592
593 dreq->inode = inode;
594 dreq->bytes_left = count;
595 dreq->io_start = iocb->ki_pos;
596 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
597 l_ctx = nfs_get_lock_context(dreq->ctx);
598 if (IS_ERR(l_ctx)) {
599 result = PTR_ERR(l_ctx);
600 goto out_release;
601 }
602 dreq->l_ctx = l_ctx;
603 if (!is_sync_kiocb(iocb))
604 dreq->iocb = iocb;
605
606 NFS_I(inode)->read_io += count;
607 result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
608
609 inode_unlock(inode);
610
611 if (!result) {
612 result = nfs_direct_wait(dreq);
613 if (result > 0)
614 iocb->ki_pos += result;
615 }
616
617 nfs_direct_req_release(dreq);
618 return result;
619
620 out_release:
621 nfs_direct_req_release(dreq);
622 out_unlock:
623 inode_unlock(inode);
624 out:
625 return result;
626 }
627
628 static void
629 nfs_direct_write_scan_commit_list(struct inode *inode,
630 struct list_head *list,
631 struct nfs_commit_info *cinfo)
632 {
633 spin_lock(cinfo->lock);
634 #ifdef CONFIG_NFS_V4_1
635 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
636 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
637 #endif
638 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
639 spin_unlock(cinfo->lock);
640 }
641
642 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
643 {
644 struct nfs_pageio_descriptor desc;
645 struct nfs_page *req, *tmp;
646 LIST_HEAD(reqs);
647 struct nfs_commit_info cinfo;
648 LIST_HEAD(failed);
649 int i;
650
651 nfs_init_cinfo_from_dreq(&cinfo, dreq);
652 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
653
654 dreq->count = 0;
655 for (i = 0; i < dreq->mirror_count; i++)
656 dreq->mirrors[i].count = 0;
657 get_dreq(dreq);
658
659 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
660 &nfs_direct_write_completion_ops);
661 desc.pg_dreq = dreq;
662
663 req = nfs_list_entry(reqs.next);
664 nfs_direct_setup_mirroring(dreq, &desc, req);
665 if (desc.pg_error < 0) {
666 list_splice_init(&reqs, &failed);
667 goto out_failed;
668 }
669
670 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
671 if (!nfs_pageio_add_request(&desc, req)) {
672 nfs_list_remove_request(req);
673 nfs_list_add_request(req, &failed);
674 spin_lock(cinfo.lock);
675 dreq->flags = 0;
676 if (desc.pg_error < 0)
677 dreq->error = desc.pg_error;
678 else
679 dreq->error = -EIO;
680 spin_unlock(cinfo.lock);
681 }
682 nfs_release_request(req);
683 }
684 nfs_pageio_complete(&desc);
685
686 out_failed:
687 while (!list_empty(&failed)) {
688 req = nfs_list_entry(failed.next);
689 nfs_list_remove_request(req);
690 nfs_unlock_and_release_request(req);
691 }
692
693 if (put_dreq(dreq))
694 nfs_direct_write_complete(dreq, dreq->inode);
695 }
696
697 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
698 {
699 struct nfs_direct_req *dreq = data->dreq;
700 struct nfs_commit_info cinfo;
701 struct nfs_page *req;
702 int status = data->task.tk_status;
703
704 nfs_init_cinfo_from_dreq(&cinfo, dreq);
705 if (status < 0) {
706 dprintk("NFS: %5u commit failed with error %d.\n",
707 data->task.tk_pid, status);
708 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
709 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
710 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
711 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
712 }
713
714 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
715 while (!list_empty(&data->pages)) {
716 req = nfs_list_entry(data->pages.next);
717 nfs_list_remove_request(req);
718 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
719 /* Note the rewrite will go through mds */
720 nfs_mark_request_commit(req, NULL, &cinfo, 0);
721 } else
722 nfs_release_request(req);
723 nfs_unlock_and_release_request(req);
724 }
725
726 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
727 nfs_direct_write_complete(dreq, data->inode);
728 }
729
730 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
731 struct nfs_page *req)
732 {
733 struct nfs_direct_req *dreq = cinfo->dreq;
734
735 spin_lock(&dreq->lock);
736 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
737 spin_unlock(&dreq->lock);
738 nfs_mark_request_commit(req, NULL, cinfo, 0);
739 }
740
741 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
742 .completion = nfs_direct_commit_complete,
743 .resched_write = nfs_direct_resched_write,
744 };
745
746 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
747 {
748 int res;
749 struct nfs_commit_info cinfo;
750 LIST_HEAD(mds_list);
751
752 nfs_init_cinfo_from_dreq(&cinfo, dreq);
753 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
754 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
755 if (res < 0) /* res == -ENOMEM */
756 nfs_direct_write_reschedule(dreq);
757 }
758
759 static void nfs_direct_write_schedule_work(struct work_struct *work)
760 {
761 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
762 int flags = dreq->flags;
763
764 dreq->flags = 0;
765 switch (flags) {
766 case NFS_ODIRECT_DO_COMMIT:
767 nfs_direct_commit_schedule(dreq);
768 break;
769 case NFS_ODIRECT_RESCHED_WRITES:
770 nfs_direct_write_reschedule(dreq);
771 break;
772 default:
773 nfs_direct_complete(dreq, true);
774 }
775 }
776
777 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
778 {
779 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
780 }
781
782 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
783 {
784 struct nfs_direct_req *dreq = hdr->dreq;
785 struct nfs_commit_info cinfo;
786 bool request_commit = false;
787 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
788
789 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
790 goto out_put;
791
792 nfs_init_cinfo_from_dreq(&cinfo, dreq);
793
794 spin_lock(&dreq->lock);
795
796 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
797 dreq->flags = 0;
798 dreq->error = hdr->error;
799 }
800 if (dreq->error == 0) {
801 nfs_direct_good_bytes(dreq, hdr);
802 if (nfs_write_need_commit(hdr)) {
803 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
804 request_commit = true;
805 else if (dreq->flags == 0) {
806 nfs_direct_set_hdr_verf(dreq, hdr);
807 request_commit = true;
808 dreq->flags = NFS_ODIRECT_DO_COMMIT;
809 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
810 request_commit = true;
811 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
812 dreq->flags =
813 NFS_ODIRECT_RESCHED_WRITES;
814 }
815 }
816 }
817 spin_unlock(&dreq->lock);
818
819 while (!list_empty(&hdr->pages)) {
820
821 req = nfs_list_entry(hdr->pages.next);
822 nfs_list_remove_request(req);
823 if (request_commit) {
824 kref_get(&req->wb_kref);
825 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
826 hdr->ds_commit_idx);
827 }
828 nfs_unlock_and_release_request(req);
829 }
830
831 out_put:
832 if (put_dreq(dreq))
833 nfs_direct_write_complete(dreq, hdr->inode);
834 hdr->release(hdr);
835 }
836
837 static void nfs_write_sync_pgio_error(struct list_head *head)
838 {
839 struct nfs_page *req;
840
841 while (!list_empty(head)) {
842 req = nfs_list_entry(head->next);
843 nfs_list_remove_request(req);
844 nfs_unlock_and_release_request(req);
845 }
846 }
847
848 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
849 {
850 struct nfs_direct_req *dreq = hdr->dreq;
851
852 spin_lock(&dreq->lock);
853 if (dreq->error == 0) {
854 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
855 /* fake unstable write to let common nfs resend pages */
856 hdr->verf.committed = NFS_UNSTABLE;
857 hdr->good_bytes = hdr->args.count;
858 }
859 spin_unlock(&dreq->lock);
860 }
861
862 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
863 .error_cleanup = nfs_write_sync_pgio_error,
864 .init_hdr = nfs_direct_pgio_init,
865 .completion = nfs_direct_write_completion,
866 .reschedule_io = nfs_direct_write_reschedule_io,
867 };
868
869
870 /*
871 * NB: Return the value of the first error return code. Subsequent
872 * errors after the first one are ignored.
873 */
874 /*
875 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
876 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
877 * bail and stop sending more writes. Write length accounting is
878 * handled automatically by nfs_direct_write_result(). Otherwise, if
879 * no requests have been sent, just return an error.
880 */
881 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
882 struct iov_iter *iter,
883 loff_t pos)
884 {
885 struct nfs_pageio_descriptor desc;
886 struct inode *inode = dreq->inode;
887 ssize_t result = 0;
888 size_t requested_bytes = 0;
889 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
890
891 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
892 &nfs_direct_write_completion_ops);
893 desc.pg_dreq = dreq;
894 get_dreq(dreq);
895 inode_dio_begin(inode);
896
897 NFS_I(inode)->write_io += iov_iter_count(iter);
898 while (iov_iter_count(iter)) {
899 struct page **pagevec;
900 size_t bytes;
901 size_t pgbase;
902 unsigned npages, i;
903
904 result = iov_iter_get_pages_alloc(iter, &pagevec,
905 wsize, &pgbase);
906 if (result < 0)
907 break;
908
909 bytes = result;
910 iov_iter_advance(iter, bytes);
911 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
912 for (i = 0; i < npages; i++) {
913 struct nfs_page *req;
914 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
915
916 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
917 pgbase, req_len);
918 if (IS_ERR(req)) {
919 result = PTR_ERR(req);
920 break;
921 }
922
923 nfs_direct_setup_mirroring(dreq, &desc, req);
924 if (desc.pg_error < 0) {
925 nfs_free_request(req);
926 result = desc.pg_error;
927 break;
928 }
929
930 nfs_lock_request(req);
931 req->wb_index = pos >> PAGE_SHIFT;
932 req->wb_offset = pos & ~PAGE_MASK;
933 if (!nfs_pageio_add_request(&desc, req)) {
934 result = desc.pg_error;
935 nfs_unlock_and_release_request(req);
936 break;
937 }
938 pgbase = 0;
939 bytes -= req_len;
940 requested_bytes += req_len;
941 pos += req_len;
942 dreq->bytes_left -= req_len;
943 }
944 nfs_direct_release_pages(pagevec, npages);
945 kvfree(pagevec);
946 if (result < 0)
947 break;
948 }
949 nfs_pageio_complete(&desc);
950
951 /*
952 * If no bytes were started, return the error, and let the
953 * generic layer handle the completion.
954 */
955 if (requested_bytes == 0) {
956 inode_dio_end(inode);
957 nfs_direct_req_release(dreq);
958 return result < 0 ? result : -EIO;
959 }
960
961 if (put_dreq(dreq))
962 nfs_direct_write_complete(dreq, dreq->inode);
963 return 0;
964 }
965
966 /**
967 * nfs_file_direct_write - file direct write operation for NFS files
968 * @iocb: target I/O control block
969 * @iter: vector of user buffers from which to write data
970 *
971 * We use this function for direct writes instead of calling
972 * generic_file_aio_write() in order to avoid taking the inode
973 * semaphore and updating the i_size. The NFS server will set
974 * the new i_size and this client must read the updated size
975 * back into its cache. We let the server do generic write
976 * parameter checking and report problems.
977 *
978 * We eliminate local atime updates, see direct read above.
979 *
980 * We avoid unnecessary page cache invalidations for normal cached
981 * readers of this file.
982 *
983 * Note that O_APPEND is not supported for NFS direct writes, as there
984 * is no atomic O_APPEND write facility in the NFS protocol.
985 */
986 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
987 {
988 ssize_t result = -EINVAL;
989 struct file *file = iocb->ki_filp;
990 struct address_space *mapping = file->f_mapping;
991 struct inode *inode = mapping->host;
992 struct nfs_direct_req *dreq;
993 struct nfs_lock_context *l_ctx;
994 loff_t pos, end;
995
996 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
997 file, iov_iter_count(iter), (long long) iocb->ki_pos);
998
999 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1000 iov_iter_count(iter));
1001
1002 pos = iocb->ki_pos;
1003 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1004
1005 inode_lock(inode);
1006
1007 result = nfs_sync_mapping(mapping);
1008 if (result)
1009 goto out_unlock;
1010
1011 if (mapping->nrpages) {
1012 result = invalidate_inode_pages2_range(mapping,
1013 pos >> PAGE_SHIFT, end);
1014 if (result)
1015 goto out_unlock;
1016 }
1017
1018 task_io_account_write(iov_iter_count(iter));
1019
1020 result = -ENOMEM;
1021 dreq = nfs_direct_req_alloc();
1022 if (!dreq)
1023 goto out_unlock;
1024
1025 dreq->inode = inode;
1026 dreq->bytes_left = iov_iter_count(iter);
1027 dreq->io_start = pos;
1028 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1029 l_ctx = nfs_get_lock_context(dreq->ctx);
1030 if (IS_ERR(l_ctx)) {
1031 result = PTR_ERR(l_ctx);
1032 goto out_release;
1033 }
1034 dreq->l_ctx = l_ctx;
1035 if (!is_sync_kiocb(iocb))
1036 dreq->iocb = iocb;
1037
1038 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1039
1040 if (mapping->nrpages) {
1041 invalidate_inode_pages2_range(mapping,
1042 pos >> PAGE_SHIFT, end);
1043 }
1044
1045 inode_unlock(inode);
1046
1047 if (!result) {
1048 result = nfs_direct_wait(dreq);
1049 if (result > 0) {
1050 struct inode *inode = mapping->host;
1051
1052 iocb->ki_pos = pos + result;
1053 spin_lock(&inode->i_lock);
1054 if (i_size_read(inode) < iocb->ki_pos)
1055 i_size_write(inode, iocb->ki_pos);
1056 spin_unlock(&inode->i_lock);
1057 generic_write_sync(file, pos, result);
1058 }
1059 }
1060 nfs_direct_req_release(dreq);
1061 return result;
1062
1063 out_release:
1064 nfs_direct_req_release(dreq);
1065 out_unlock:
1066 inode_unlock(inode);
1067 return result;
1068 }
1069
1070 /**
1071 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1072 *
1073 */
1074 int __init nfs_init_directcache(void)
1075 {
1076 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1077 sizeof(struct nfs_direct_req),
1078 0, (SLAB_RECLAIM_ACCOUNT|
1079 SLAB_MEM_SPREAD),
1080 NULL);
1081 if (nfs_direct_cachep == NULL)
1082 return -ENOMEM;
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1089 *
1090 */
1091 void nfs_destroy_directcache(void)
1092 {
1093 kmem_cache_destroy(nfs_direct_cachep);
1094 }