]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/write.c
Merge branches 'stable/irq.fairness' and 'stable/irq.ween_of_nr_irqs' of git://git...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
37
38 /*
39 * Local function declarations
40 */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55
56 if (p) {
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
59 }
60 return p;
61 }
62
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
68 }
69
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 if (pagecount <= ARRAY_SIZE(p->page_array))
79 p->pagevec = p->page_array;
80 else {
81 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
82 if (!p->pagevec) {
83 mempool_free(p, nfs_wdata_mempool);
84 p = NULL;
85 }
86 }
87 }
88 return p;
89 }
90
91 void nfs_writedata_free(struct nfs_write_data *p)
92 {
93 if (p && (p->pagevec != &p->page_array[0]))
94 kfree(p->pagevec);
95 mempool_free(p, nfs_wdata_mempool);
96 }
97
98 static void nfs_writedata_release(struct nfs_write_data *wdata)
99 {
100 put_lseg(wdata->lseg);
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
103 }
104
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 struct nfs_page *req = NULL;
115
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
120 }
121 return req;
122 }
123
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
128
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
133 }
134
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
141
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
154 }
155
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
165 */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
175 }
176
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
184 }
185
186 /*
187 * NFS congestion control
188 */
189
190 int nfs_congestion_kb;
191
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 int ret = test_set_page_writeback(page);
199
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
203
204 page_cache_get(page);
205 if (atomic_long_inc_return(&nfss->writeback) >
206 NFS_CONGESTION_ON_THRESH) {
207 set_bdi_congested(&nfss->backing_dev_info,
208 BLK_RW_ASYNC);
209 }
210 }
211 return ret;
212 }
213
214 static void nfs_end_page_writeback(struct page *page)
215 {
216 struct inode *inode = page->mapping->host;
217 struct nfs_server *nfss = NFS_SERVER(inode);
218
219 end_page_writeback(page);
220 page_cache_release(page);
221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
226 {
227 struct inode *inode = page->mapping->host;
228 struct nfs_page *req;
229 int ret;
230
231 spin_lock(&inode->i_lock);
232 for (;;) {
233 req = nfs_page_find_request_locked(page);
234 if (req == NULL)
235 break;
236 if (nfs_set_page_tag_locked(req))
237 break;
238 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239 * then the call to nfs_set_page_tag_locked() will always
240 * succeed provided that someone hasn't already marked the
241 * request as dirty (in which case we don't care).
242 */
243 spin_unlock(&inode->i_lock);
244 if (!nonblock)
245 ret = nfs_wait_on_request(req);
246 else
247 ret = -EAGAIN;
248 nfs_release_request(req);
249 if (ret != 0)
250 return ERR_PTR(ret);
251 spin_lock(&inode->i_lock);
252 }
253 spin_unlock(&inode->i_lock);
254 return req;
255 }
256
257 /*
258 * Find an associated nfs write request, and prepare to flush it out
259 * May return an error if the user signalled nfs_wait_on_request().
260 */
261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
262 struct page *page, bool nonblock)
263 {
264 struct nfs_page *req;
265 int ret = 0;
266
267 req = nfs_find_and_lock_request(page, nonblock);
268 if (!req)
269 goto out;
270 ret = PTR_ERR(req);
271 if (IS_ERR(req))
272 goto out;
273
274 ret = nfs_set_page_writeback(page);
275 BUG_ON(ret != 0);
276 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
277
278 if (!nfs_pageio_add_request(pgio, req)) {
279 nfs_redirty_request(req);
280 ret = pgio->pg_error;
281 }
282 out:
283 return ret;
284 }
285
286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
287 {
288 struct inode *inode = page->mapping->host;
289 int ret;
290
291 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
292 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
293
294 nfs_pageio_cond_complete(pgio, page->index);
295 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
296 if (ret == -EAGAIN) {
297 redirty_page_for_writepage(wbc, page);
298 ret = 0;
299 }
300 return ret;
301 }
302
303 /*
304 * Write an mmapped page to the server.
305 */
306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
307 {
308 struct nfs_pageio_descriptor pgio;
309 int err;
310
311 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
312 err = nfs_do_writepage(page, wbc, &pgio);
313 nfs_pageio_complete(&pgio);
314 if (err < 0)
315 return err;
316 if (pgio.pg_error < 0)
317 return pgio.pg_error;
318 return 0;
319 }
320
321 int nfs_writepage(struct page *page, struct writeback_control *wbc)
322 {
323 int ret;
324
325 ret = nfs_writepage_locked(page, wbc);
326 unlock_page(page);
327 return ret;
328 }
329
330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
331 {
332 int ret;
333
334 ret = nfs_do_writepage(page, wbc, data);
335 unlock_page(page);
336 return ret;
337 }
338
339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
340 {
341 struct inode *inode = mapping->host;
342 unsigned long *bitlock = &NFS_I(inode)->flags;
343 struct nfs_pageio_descriptor pgio;
344 int err;
345
346 /* Stop dirtying of new pages while we sync */
347 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
348 nfs_wait_bit_killable, TASK_KILLABLE);
349 if (err)
350 goto out_err;
351
352 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
353
354 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
355 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
356 nfs_pageio_complete(&pgio);
357
358 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
359 smp_mb__after_clear_bit();
360 wake_up_bit(bitlock, NFS_INO_FLUSHING);
361
362 if (err < 0)
363 goto out_err;
364 err = pgio.pg_error;
365 if (err < 0)
366 goto out_err;
367 return 0;
368 out_err:
369 return err;
370 }
371
372 /*
373 * Insert a write request into an inode
374 */
375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
376 {
377 struct nfs_inode *nfsi = NFS_I(inode);
378 int error;
379
380 error = radix_tree_preload(GFP_NOFS);
381 if (error != 0)
382 goto out;
383
384 /* Lock the request! */
385 nfs_lock_request_dontget(req);
386
387 spin_lock(&inode->i_lock);
388 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
389 BUG_ON(error);
390 if (!nfsi->npages) {
391 igrab(inode);
392 if (nfs_have_delegation(inode, FMODE_WRITE))
393 nfsi->change_attr++;
394 }
395 set_bit(PG_MAPPED, &req->wb_flags);
396 SetPagePrivate(req->wb_page);
397 set_page_private(req->wb_page, (unsigned long)req);
398 nfsi->npages++;
399 kref_get(&req->wb_kref);
400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 NFS_PAGE_TAG_LOCKED);
402 spin_unlock(&inode->i_lock);
403 radix_tree_preload_end();
404 out:
405 return error;
406 }
407
408 /*
409 * Remove a write request from an inode
410 */
411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 struct inode *inode = req->wb_context->path.dentry->d_inode;
414 struct nfs_inode *nfsi = NFS_I(inode);
415
416 BUG_ON (!NFS_WBACK_BUSY(req));
417
418 spin_lock(&inode->i_lock);
419 set_page_private(req->wb_page, 0);
420 ClearPagePrivate(req->wb_page);
421 clear_bit(PG_MAPPED, &req->wb_flags);
422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 nfsi->npages--;
424 if (!nfsi->npages) {
425 spin_unlock(&inode->i_lock);
426 iput(inode);
427 } else
428 spin_unlock(&inode->i_lock);
429 nfs_release_request(req);
430 }
431
432 static void
433 nfs_mark_request_dirty(struct nfs_page *req)
434 {
435 __set_page_dirty_nobuffers(req->wb_page);
436 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
437 }
438
439 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
440 /*
441 * Add a request to the inode's commit list.
442 */
443 static void
444 nfs_mark_request_commit(struct nfs_page *req)
445 {
446 struct inode *inode = req->wb_context->path.dentry->d_inode;
447 struct nfs_inode *nfsi = NFS_I(inode);
448
449 spin_lock(&inode->i_lock);
450 set_bit(PG_CLEAN, &(req)->wb_flags);
451 radix_tree_tag_set(&nfsi->nfs_page_tree,
452 req->wb_index,
453 NFS_PAGE_TAG_COMMIT);
454 nfsi->ncommit++;
455 spin_unlock(&inode->i_lock);
456 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
457 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
458 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
459 }
460
461 static int
462 nfs_clear_request_commit(struct nfs_page *req)
463 {
464 struct page *page = req->wb_page;
465
466 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
467 dec_zone_page_state(page, NR_UNSTABLE_NFS);
468 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
469 return 1;
470 }
471 return 0;
472 }
473
474 static inline
475 int nfs_write_need_commit(struct nfs_write_data *data)
476 {
477 return data->verf.committed != NFS_FILE_SYNC;
478 }
479
480 static inline
481 int nfs_reschedule_unstable_write(struct nfs_page *req)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req)
496 {
497 }
498
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req)
513 {
514 return 0;
515 }
516 #endif
517
518 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
519 static int
520 nfs_need_commit(struct nfs_inode *nfsi)
521 {
522 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
523 }
524
525 /*
526 * nfs_scan_commit - Scan an inode for commit requests
527 * @inode: NFS inode to scan
528 * @dst: destination list
529 * @idx_start: lower bound of page->index to scan.
530 * @npages: idx_start + npages sets the upper bound to scan.
531 *
532 * Moves requests from the inode's 'commit' request list.
533 * The requests are *not* checked to ensure that they form a contiguous set.
534 */
535 static int
536 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
537 {
538 struct nfs_inode *nfsi = NFS_I(inode);
539 int ret;
540
541 if (!nfs_need_commit(nfsi))
542 return 0;
543
544 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
545 if (ret > 0)
546 nfsi->ncommit -= ret;
547 if (nfs_need_commit(NFS_I(inode)))
548 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
549 return ret;
550 }
551 #else
552 static inline int nfs_need_commit(struct nfs_inode *nfsi)
553 {
554 return 0;
555 }
556
557 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
558 {
559 return 0;
560 }
561 #endif
562
563 /*
564 * Search for an existing write request, and attempt to update
565 * it to reflect a new dirty region on a given page.
566 *
567 * If the attempt fails, then the existing request is flushed out
568 * to disk.
569 */
570 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
571 struct page *page,
572 unsigned int offset,
573 unsigned int bytes)
574 {
575 struct nfs_page *req;
576 unsigned int rqend;
577 unsigned int end;
578 int error;
579
580 if (!PagePrivate(page))
581 return NULL;
582
583 end = offset + bytes;
584 spin_lock(&inode->i_lock);
585
586 for (;;) {
587 req = nfs_page_find_request_locked(page);
588 if (req == NULL)
589 goto out_unlock;
590
591 rqend = req->wb_offset + req->wb_bytes;
592 /*
593 * Tell the caller to flush out the request if
594 * the offsets are non-contiguous.
595 * Note: nfs_flush_incompatible() will already
596 * have flushed out requests having wrong owners.
597 */
598 if (offset > rqend
599 || end < req->wb_offset)
600 goto out_flushme;
601
602 if (nfs_set_page_tag_locked(req))
603 break;
604
605 /* The request is locked, so wait and then retry */
606 spin_unlock(&inode->i_lock);
607 error = nfs_wait_on_request(req);
608 nfs_release_request(req);
609 if (error != 0)
610 goto out_err;
611 spin_lock(&inode->i_lock);
612 }
613
614 if (nfs_clear_request_commit(req) &&
615 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
616 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
617 NFS_I(inode)->ncommit--;
618
619 /* Okay, the request matches. Update the region */
620 if (offset < req->wb_offset) {
621 req->wb_offset = offset;
622 req->wb_pgbase = offset;
623 }
624 if (end > rqend)
625 req->wb_bytes = end - req->wb_offset;
626 else
627 req->wb_bytes = rqend - req->wb_offset;
628 out_unlock:
629 spin_unlock(&inode->i_lock);
630 return req;
631 out_flushme:
632 spin_unlock(&inode->i_lock);
633 nfs_release_request(req);
634 error = nfs_wb_page(inode, page);
635 out_err:
636 return ERR_PTR(error);
637 }
638
639 /*
640 * Try to update an existing write request, or create one if there is none.
641 *
642 * Note: Should always be called with the Page Lock held to prevent races
643 * if we have to add a new request. Also assumes that the caller has
644 * already called nfs_flush_incompatible() if necessary.
645 */
646 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
647 struct page *page, unsigned int offset, unsigned int bytes)
648 {
649 struct inode *inode = page->mapping->host;
650 struct nfs_page *req;
651 int error;
652
653 req = nfs_try_to_update_request(inode, page, offset, bytes);
654 if (req != NULL)
655 goto out;
656 req = nfs_create_request(ctx, inode, page, offset, bytes);
657 if (IS_ERR(req))
658 goto out;
659 error = nfs_inode_add_request(inode, req);
660 if (error != 0) {
661 nfs_release_request(req);
662 req = ERR_PTR(error);
663 }
664 out:
665 return req;
666 }
667
668 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
669 unsigned int offset, unsigned int count)
670 {
671 struct nfs_page *req;
672
673 req = nfs_setup_write_request(ctx, page, offset, count);
674 if (IS_ERR(req))
675 return PTR_ERR(req);
676 nfs_mark_request_dirty(req);
677 /* Update file length */
678 nfs_grow_file(page, offset, count);
679 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
680 nfs_mark_request_dirty(req);
681 nfs_clear_page_tag_locked(req);
682 return 0;
683 }
684
685 int nfs_flush_incompatible(struct file *file, struct page *page)
686 {
687 struct nfs_open_context *ctx = nfs_file_open_context(file);
688 struct nfs_page *req;
689 int do_flush, status;
690 /*
691 * Look for a request corresponding to this page. If there
692 * is one, and it belongs to another file, we flush it out
693 * before we try to copy anything into the page. Do this
694 * due to the lack of an ACCESS-type call in NFSv2.
695 * Also do the same if we find a request from an existing
696 * dropped page.
697 */
698 do {
699 req = nfs_page_find_request(page);
700 if (req == NULL)
701 return 0;
702 do_flush = req->wb_page != page || req->wb_context != ctx ||
703 req->wb_lock_context->lockowner != current->files ||
704 req->wb_lock_context->pid != current->tgid;
705 nfs_release_request(req);
706 if (!do_flush)
707 return 0;
708 status = nfs_wb_page(page->mapping->host, page);
709 } while (status == 0);
710 return status;
711 }
712
713 /*
714 * If the page cache is marked as unsafe or invalid, then we can't rely on
715 * the PageUptodate() flag. In this case, we will need to turn off
716 * write optimisations that depend on the page contents being correct.
717 */
718 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
719 {
720 return PageUptodate(page) &&
721 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
722 }
723
724 /*
725 * Update and possibly write a cached page of an NFS file.
726 *
727 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
728 * things with a page scheduled for an RPC call (e.g. invalidate it).
729 */
730 int nfs_updatepage(struct file *file, struct page *page,
731 unsigned int offset, unsigned int count)
732 {
733 struct nfs_open_context *ctx = nfs_file_open_context(file);
734 struct inode *inode = page->mapping->host;
735 int status = 0;
736
737 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
738
739 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
740 file->f_path.dentry->d_parent->d_name.name,
741 file->f_path.dentry->d_name.name, count,
742 (long long)(page_offset(page) + offset));
743
744 /* If we're not using byte range locks, and we know the page
745 * is up to date, it may be more efficient to extend the write
746 * to cover the entire page in order to avoid fragmentation
747 * inefficiencies.
748 */
749 if (nfs_write_pageuptodate(page, inode) &&
750 inode->i_flock == NULL &&
751 !(file->f_flags & O_DSYNC)) {
752 count = max(count + offset, nfs_page_length(page));
753 offset = 0;
754 }
755
756 status = nfs_writepage_setup(ctx, page, offset, count);
757 if (status < 0)
758 nfs_set_pageerror(page);
759
760 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
761 status, (long long)i_size_read(inode));
762 return status;
763 }
764
765 static void nfs_writepage_release(struct nfs_page *req)
766 {
767 struct page *page = req->wb_page;
768
769 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
770 nfs_inode_remove_request(req);
771 nfs_clear_page_tag_locked(req);
772 nfs_end_page_writeback(page);
773 }
774
775 static int flush_task_priority(int how)
776 {
777 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
778 case FLUSH_HIGHPRI:
779 return RPC_PRIORITY_HIGH;
780 case FLUSH_LOWPRI:
781 return RPC_PRIORITY_LOW;
782 }
783 return RPC_PRIORITY_NORMAL;
784 }
785
786 int nfs_initiate_write(struct nfs_write_data *data,
787 struct rpc_clnt *clnt,
788 const struct rpc_call_ops *call_ops,
789 int how)
790 {
791 struct inode *inode = data->inode;
792 int priority = flush_task_priority(how);
793 struct rpc_task *task;
794 struct rpc_message msg = {
795 .rpc_argp = &data->args,
796 .rpc_resp = &data->res,
797 .rpc_cred = data->cred,
798 };
799 struct rpc_task_setup task_setup_data = {
800 .rpc_client = clnt,
801 .task = &data->task,
802 .rpc_message = &msg,
803 .callback_ops = call_ops,
804 .callback_data = data,
805 .workqueue = nfsiod_workqueue,
806 .flags = RPC_TASK_ASYNC,
807 .priority = priority,
808 };
809 int ret = 0;
810
811 /* Set up the initial task struct. */
812 NFS_PROTO(inode)->write_setup(data, &msg);
813
814 dprintk("NFS: %5u initiated write call "
815 "(req %s/%lld, %u bytes @ offset %llu)\n",
816 data->task.tk_pid,
817 inode->i_sb->s_id,
818 (long long)NFS_FILEID(inode),
819 data->args.count,
820 (unsigned long long)data->args.offset);
821
822 task = rpc_run_task(&task_setup_data);
823 if (IS_ERR(task)) {
824 ret = PTR_ERR(task);
825 goto out;
826 }
827 if (how & FLUSH_SYNC) {
828 ret = rpc_wait_for_completion_task(task);
829 if (ret == 0)
830 ret = task->tk_status;
831 }
832 rpc_put_task(task);
833 out:
834 return ret;
835 }
836 EXPORT_SYMBOL_GPL(nfs_initiate_write);
837
838 /*
839 * Set up the argument/result storage required for the RPC call.
840 */
841 static int nfs_write_rpcsetup(struct nfs_page *req,
842 struct nfs_write_data *data,
843 const struct rpc_call_ops *call_ops,
844 unsigned int count, unsigned int offset,
845 struct pnfs_layout_segment *lseg,
846 int how)
847 {
848 struct inode *inode = req->wb_context->path.dentry->d_inode;
849
850 /* Set up the RPC argument and reply structs
851 * NB: take care not to mess about with data->commit et al. */
852
853 data->req = req;
854 data->inode = inode = req->wb_context->path.dentry->d_inode;
855 data->cred = req->wb_context->cred;
856 data->lseg = get_lseg(lseg);
857
858 data->args.fh = NFS_FH(inode);
859 data->args.offset = req_offset(req) + offset;
860 data->args.pgbase = req->wb_pgbase + offset;
861 data->args.pages = data->pagevec;
862 data->args.count = count;
863 data->args.context = get_nfs_open_context(req->wb_context);
864 data->args.lock_context = req->wb_lock_context;
865 data->args.stable = NFS_UNSTABLE;
866 if (how & FLUSH_STABLE) {
867 data->args.stable = NFS_DATA_SYNC;
868 if (!nfs_need_commit(NFS_I(inode)))
869 data->args.stable = NFS_FILE_SYNC;
870 }
871
872 data->res.fattr = &data->fattr;
873 data->res.count = count;
874 data->res.verf = &data->verf;
875 nfs_fattr_init(&data->fattr);
876
877 if (data->lseg &&
878 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
879 return 0;
880
881 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
882 }
883
884 /* If a nfs_flush_* function fails, it should remove reqs from @head and
885 * call this on each, which will prepare them to be retried on next
886 * writeback using standard nfs.
887 */
888 static void nfs_redirty_request(struct nfs_page *req)
889 {
890 struct page *page = req->wb_page;
891
892 nfs_mark_request_dirty(req);
893 nfs_clear_page_tag_locked(req);
894 nfs_end_page_writeback(page);
895 }
896
897 /*
898 * Generate multiple small requests to write out a single
899 * contiguous dirty area on one page.
900 */
901 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
902 {
903 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
904 struct page *page = req->wb_page;
905 struct nfs_write_data *data;
906 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
907 unsigned int offset;
908 int requests = 0;
909 int ret = 0;
910 struct pnfs_layout_segment *lseg;
911 LIST_HEAD(list);
912
913 nfs_list_remove_request(req);
914
915 nbytes = desc->pg_count;
916 do {
917 size_t len = min(nbytes, wsize);
918
919 data = nfs_writedata_alloc(1);
920 if (!data)
921 goto out_bad;
922 list_add(&data->pages, &list);
923 requests++;
924 nbytes -= len;
925 } while (nbytes != 0);
926 atomic_set(&req->wb_complete, requests);
927
928 BUG_ON(desc->pg_lseg);
929 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
930 ClearPageError(page);
931 offset = 0;
932 nbytes = desc->pg_count;
933 do {
934 int ret2;
935
936 data = list_entry(list.next, struct nfs_write_data, pages);
937 list_del_init(&data->pages);
938
939 data->pagevec[0] = page;
940
941 if (nbytes < wsize)
942 wsize = nbytes;
943 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
944 wsize, offset, lseg, desc->pg_ioflags);
945 if (ret == 0)
946 ret = ret2;
947 offset += wsize;
948 nbytes -= wsize;
949 } while (nbytes != 0);
950
951 put_lseg(lseg);
952 desc->pg_lseg = NULL;
953 return ret;
954
955 out_bad:
956 while (!list_empty(&list)) {
957 data = list_entry(list.next, struct nfs_write_data, pages);
958 list_del(&data->pages);
959 nfs_writedata_free(data);
960 }
961 nfs_redirty_request(req);
962 return -ENOMEM;
963 }
964
965 /*
966 * Create an RPC task for the given write request and kick it.
967 * The page must have been locked by the caller.
968 *
969 * It may happen that the page we're passed is not marked dirty.
970 * This is the case if nfs_updatepage detects a conflicting request
971 * that has been written but not committed.
972 */
973 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
974 {
975 struct nfs_page *req;
976 struct page **pages;
977 struct nfs_write_data *data;
978 struct list_head *head = &desc->pg_list;
979 struct pnfs_layout_segment *lseg = desc->pg_lseg;
980 int ret;
981
982 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
983 desc->pg_count));
984 if (!data) {
985 while (!list_empty(head)) {
986 req = nfs_list_entry(head->next);
987 nfs_list_remove_request(req);
988 nfs_redirty_request(req);
989 }
990 ret = -ENOMEM;
991 goto out;
992 }
993 pages = data->pagevec;
994 while (!list_empty(head)) {
995 req = nfs_list_entry(head->next);
996 nfs_list_remove_request(req);
997 nfs_list_add_request(req, &data->pages);
998 ClearPageError(req->wb_page);
999 *pages++ = req->wb_page;
1000 }
1001 req = nfs_list_entry(data->pages.next);
1002 if ((!lseg) && list_is_singular(&data->pages))
1003 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
1004
1005 /* Set up the argument struct */
1006 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1007 out:
1008 put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1009 desc->pg_lseg = NULL;
1010 return ret;
1011 }
1012
1013 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1014 struct inode *inode, int ioflags)
1015 {
1016 size_t wsize = NFS_SERVER(inode)->wsize;
1017
1018 pnfs_pageio_init_write(pgio, inode);
1019
1020 if (wsize < PAGE_CACHE_SIZE)
1021 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1022 else
1023 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1024 }
1025
1026 /*
1027 * Handle a write reply that flushed part of a page.
1028 */
1029 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1030 {
1031 struct nfs_write_data *data = calldata;
1032
1033 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1034 task->tk_pid,
1035 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1036 (long long)
1037 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1038 data->req->wb_bytes, (long long)req_offset(data->req));
1039
1040 nfs_writeback_done(task, data);
1041 }
1042
1043 static void nfs_writeback_release_partial(void *calldata)
1044 {
1045 struct nfs_write_data *data = calldata;
1046 struct nfs_page *req = data->req;
1047 struct page *page = req->wb_page;
1048 int status = data->task.tk_status;
1049
1050 if (status < 0) {
1051 nfs_set_pageerror(page);
1052 nfs_context_set_write_error(req->wb_context, status);
1053 dprintk(", error = %d\n", status);
1054 goto out;
1055 }
1056
1057 if (nfs_write_need_commit(data)) {
1058 struct inode *inode = page->mapping->host;
1059
1060 spin_lock(&inode->i_lock);
1061 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1062 /* Do nothing we need to resend the writes */
1063 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1064 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1065 dprintk(" defer commit\n");
1066 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1067 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1068 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1069 dprintk(" server reboot detected\n");
1070 }
1071 spin_unlock(&inode->i_lock);
1072 } else
1073 dprintk(" OK\n");
1074
1075 out:
1076 if (atomic_dec_and_test(&req->wb_complete))
1077 nfs_writepage_release(req);
1078 nfs_writedata_release(calldata);
1079 }
1080
1081 #if defined(CONFIG_NFS_V4_1)
1082 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1083 {
1084 struct nfs_write_data *data = calldata;
1085
1086 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1087 &data->args.seq_args,
1088 &data->res.seq_res, 1, task))
1089 return;
1090 rpc_call_start(task);
1091 }
1092 #endif /* CONFIG_NFS_V4_1 */
1093
1094 static const struct rpc_call_ops nfs_write_partial_ops = {
1095 #if defined(CONFIG_NFS_V4_1)
1096 .rpc_call_prepare = nfs_write_prepare,
1097 #endif /* CONFIG_NFS_V4_1 */
1098 .rpc_call_done = nfs_writeback_done_partial,
1099 .rpc_release = nfs_writeback_release_partial,
1100 };
1101
1102 /*
1103 * Handle a write reply that flushes a whole page.
1104 *
1105 * FIXME: There is an inherent race with invalidate_inode_pages and
1106 * writebacks since the page->count is kept > 1 for as long
1107 * as the page has a write request pending.
1108 */
1109 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1110 {
1111 struct nfs_write_data *data = calldata;
1112
1113 nfs_writeback_done(task, data);
1114 }
1115
1116 static void nfs_writeback_release_full(void *calldata)
1117 {
1118 struct nfs_write_data *data = calldata;
1119 int status = data->task.tk_status;
1120
1121 /* Update attributes as result of writeback. */
1122 while (!list_empty(&data->pages)) {
1123 struct nfs_page *req = nfs_list_entry(data->pages.next);
1124 struct page *page = req->wb_page;
1125
1126 nfs_list_remove_request(req);
1127
1128 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1129 data->task.tk_pid,
1130 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1131 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1132 req->wb_bytes,
1133 (long long)req_offset(req));
1134
1135 if (status < 0) {
1136 nfs_set_pageerror(page);
1137 nfs_context_set_write_error(req->wb_context, status);
1138 dprintk(", error = %d\n", status);
1139 goto remove_request;
1140 }
1141
1142 if (nfs_write_need_commit(data)) {
1143 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1144 nfs_mark_request_commit(req);
1145 dprintk(" marked for commit\n");
1146 goto next;
1147 }
1148 dprintk(" OK\n");
1149 remove_request:
1150 nfs_inode_remove_request(req);
1151 next:
1152 nfs_clear_page_tag_locked(req);
1153 nfs_end_page_writeback(page);
1154 }
1155 nfs_writedata_release(calldata);
1156 }
1157
1158 static const struct rpc_call_ops nfs_write_full_ops = {
1159 #if defined(CONFIG_NFS_V4_1)
1160 .rpc_call_prepare = nfs_write_prepare,
1161 #endif /* CONFIG_NFS_V4_1 */
1162 .rpc_call_done = nfs_writeback_done_full,
1163 .rpc_release = nfs_writeback_release_full,
1164 };
1165
1166
1167 /*
1168 * This function is called when the WRITE call is complete.
1169 */
1170 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1171 {
1172 struct nfs_writeargs *argp = &data->args;
1173 struct nfs_writeres *resp = &data->res;
1174 struct nfs_server *server = NFS_SERVER(data->inode);
1175 int status;
1176
1177 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1178 task->tk_pid, task->tk_status);
1179
1180 /*
1181 * ->write_done will attempt to use post-op attributes to detect
1182 * conflicting writes by other clients. A strict interpretation
1183 * of close-to-open would allow us to continue caching even if
1184 * another writer had changed the file, but some applications
1185 * depend on tighter cache coherency when writing.
1186 */
1187 status = NFS_PROTO(data->inode)->write_done(task, data);
1188 if (status != 0)
1189 return;
1190 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1191
1192 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1193 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1194 /* We tried a write call, but the server did not
1195 * commit data to stable storage even though we
1196 * requested it.
1197 * Note: There is a known bug in Tru64 < 5.0 in which
1198 * the server reports NFS_DATA_SYNC, but performs
1199 * NFS_FILE_SYNC. We therefore implement this checking
1200 * as a dprintk() in order to avoid filling syslog.
1201 */
1202 static unsigned long complain;
1203
1204 /* Note this will print the MDS for a DS write */
1205 if (time_before(complain, jiffies)) {
1206 dprintk("NFS: faulty NFS server %s:"
1207 " (committed = %d) != (stable = %d)\n",
1208 server->nfs_client->cl_hostname,
1209 resp->verf->committed, argp->stable);
1210 complain = jiffies + 300 * HZ;
1211 }
1212 }
1213 #endif
1214 /* Is this a short write? */
1215 if (task->tk_status >= 0 && resp->count < argp->count) {
1216 static unsigned long complain;
1217
1218 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1219
1220 /* Has the server at least made some progress? */
1221 if (resp->count != 0) {
1222 /* Was this an NFSv2 write or an NFSv3 stable write? */
1223 if (resp->verf->committed != NFS_UNSTABLE) {
1224 /* Resend from where the server left off */
1225 data->mds_offset += resp->count;
1226 argp->offset += resp->count;
1227 argp->pgbase += resp->count;
1228 argp->count -= resp->count;
1229 } else {
1230 /* Resend as a stable write in order to avoid
1231 * headaches in the case of a server crash.
1232 */
1233 argp->stable = NFS_FILE_SYNC;
1234 }
1235 nfs_restart_rpc(task, server->nfs_client);
1236 return;
1237 }
1238 if (time_before(complain, jiffies)) {
1239 printk(KERN_WARNING
1240 "NFS: Server wrote zero bytes, expected %u.\n",
1241 argp->count);
1242 complain = jiffies + 300 * HZ;
1243 }
1244 /* Can't do anything about it except throw an error. */
1245 task->tk_status = -EIO;
1246 }
1247 return;
1248 }
1249
1250
1251 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1252 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1253 {
1254 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1255 return 1;
1256 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1257 NFS_INO_COMMIT, nfs_wait_bit_killable,
1258 TASK_KILLABLE))
1259 return 1;
1260 return 0;
1261 }
1262
1263 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1264 {
1265 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1266 smp_mb__after_clear_bit();
1267 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1268 }
1269
1270
1271 static void nfs_commitdata_release(void *data)
1272 {
1273 struct nfs_write_data *wdata = data;
1274
1275 put_nfs_open_context(wdata->args.context);
1276 nfs_commit_free(wdata);
1277 }
1278
1279 /*
1280 * Set up the argument/result storage required for the RPC call.
1281 */
1282 static int nfs_commit_rpcsetup(struct list_head *head,
1283 struct nfs_write_data *data,
1284 int how)
1285 {
1286 struct nfs_page *first = nfs_list_entry(head->next);
1287 struct inode *inode = first->wb_context->path.dentry->d_inode;
1288 int priority = flush_task_priority(how);
1289 struct rpc_task *task;
1290 struct rpc_message msg = {
1291 .rpc_argp = &data->args,
1292 .rpc_resp = &data->res,
1293 .rpc_cred = first->wb_context->cred,
1294 };
1295 struct rpc_task_setup task_setup_data = {
1296 .task = &data->task,
1297 .rpc_client = NFS_CLIENT(inode),
1298 .rpc_message = &msg,
1299 .callback_ops = &nfs_commit_ops,
1300 .callback_data = data,
1301 .workqueue = nfsiod_workqueue,
1302 .flags = RPC_TASK_ASYNC,
1303 .priority = priority,
1304 };
1305
1306 /* Set up the RPC argument and reply structs
1307 * NB: take care not to mess about with data->commit et al. */
1308
1309 list_splice_init(head, &data->pages);
1310
1311 data->inode = inode;
1312 data->cred = msg.rpc_cred;
1313
1314 data->args.fh = NFS_FH(data->inode);
1315 /* Note: we always request a commit of the entire inode */
1316 data->args.offset = 0;
1317 data->args.count = 0;
1318 data->args.context = get_nfs_open_context(first->wb_context);
1319 data->res.count = 0;
1320 data->res.fattr = &data->fattr;
1321 data->res.verf = &data->verf;
1322 nfs_fattr_init(&data->fattr);
1323
1324 /* Set up the initial task struct. */
1325 NFS_PROTO(inode)->commit_setup(data, &msg);
1326
1327 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1328
1329 task = rpc_run_task(&task_setup_data);
1330 if (IS_ERR(task))
1331 return PTR_ERR(task);
1332 if (how & FLUSH_SYNC)
1333 rpc_wait_for_completion_task(task);
1334 rpc_put_task(task);
1335 return 0;
1336 }
1337
1338 /*
1339 * Commit dirty pages
1340 */
1341 static int
1342 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1343 {
1344 struct nfs_write_data *data;
1345 struct nfs_page *req;
1346
1347 data = nfs_commitdata_alloc();
1348
1349 if (!data)
1350 goto out_bad;
1351
1352 /* Set up the argument struct */
1353 return nfs_commit_rpcsetup(head, data, how);
1354 out_bad:
1355 while (!list_empty(head)) {
1356 req = nfs_list_entry(head->next);
1357 nfs_list_remove_request(req);
1358 nfs_mark_request_commit(req);
1359 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1360 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1361 BDI_RECLAIMABLE);
1362 nfs_clear_page_tag_locked(req);
1363 }
1364 nfs_commit_clear_lock(NFS_I(inode));
1365 return -ENOMEM;
1366 }
1367
1368 /*
1369 * COMMIT call returned
1370 */
1371 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1372 {
1373 struct nfs_write_data *data = calldata;
1374
1375 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1376 task->tk_pid, task->tk_status);
1377
1378 /* Call the NFS version-specific code */
1379 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1380 return;
1381 }
1382
1383 static void nfs_commit_release(void *calldata)
1384 {
1385 struct nfs_write_data *data = calldata;
1386 struct nfs_page *req;
1387 int status = data->task.tk_status;
1388
1389 while (!list_empty(&data->pages)) {
1390 req = nfs_list_entry(data->pages.next);
1391 nfs_list_remove_request(req);
1392 nfs_clear_request_commit(req);
1393
1394 dprintk("NFS: commit (%s/%lld %d@%lld)",
1395 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1396 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1397 req->wb_bytes,
1398 (long long)req_offset(req));
1399 if (status < 0) {
1400 nfs_context_set_write_error(req->wb_context, status);
1401 nfs_inode_remove_request(req);
1402 dprintk(", error = %d\n", status);
1403 goto next;
1404 }
1405
1406 /* Okay, COMMIT succeeded, apparently. Check the verifier
1407 * returned by the server against all stored verfs. */
1408 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1409 /* We have a match */
1410 nfs_inode_remove_request(req);
1411 dprintk(" OK\n");
1412 goto next;
1413 }
1414 /* We have a mismatch. Write the page again */
1415 dprintk(" mismatch\n");
1416 nfs_mark_request_dirty(req);
1417 next:
1418 nfs_clear_page_tag_locked(req);
1419 }
1420 nfs_commit_clear_lock(NFS_I(data->inode));
1421 nfs_commitdata_release(calldata);
1422 }
1423
1424 static const struct rpc_call_ops nfs_commit_ops = {
1425 #if defined(CONFIG_NFS_V4_1)
1426 .rpc_call_prepare = nfs_write_prepare,
1427 #endif /* CONFIG_NFS_V4_1 */
1428 .rpc_call_done = nfs_commit_done,
1429 .rpc_release = nfs_commit_release,
1430 };
1431
1432 int nfs_commit_inode(struct inode *inode, int how)
1433 {
1434 LIST_HEAD(head);
1435 int may_wait = how & FLUSH_SYNC;
1436 int res = 0;
1437
1438 if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1439 goto out_mark_dirty;
1440 spin_lock(&inode->i_lock);
1441 res = nfs_scan_commit(inode, &head, 0, 0);
1442 spin_unlock(&inode->i_lock);
1443 if (res) {
1444 int error = nfs_commit_list(inode, &head, how);
1445 if (error < 0)
1446 return error;
1447 if (may_wait)
1448 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1449 nfs_wait_bit_killable,
1450 TASK_KILLABLE);
1451 else
1452 goto out_mark_dirty;
1453 } else
1454 nfs_commit_clear_lock(NFS_I(inode));
1455 return res;
1456 /* Note: If we exit without ensuring that the commit is complete,
1457 * we must mark the inode as dirty. Otherwise, future calls to
1458 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1459 * that the data is on the disk.
1460 */
1461 out_mark_dirty:
1462 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1463 return res;
1464 }
1465
1466 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1467 {
1468 struct nfs_inode *nfsi = NFS_I(inode);
1469 int flags = FLUSH_SYNC;
1470 int ret = 0;
1471
1472 if (wbc->sync_mode == WB_SYNC_NONE) {
1473 /* Don't commit yet if this is a non-blocking flush and there
1474 * are a lot of outstanding writes for this mapping.
1475 */
1476 if (nfsi->ncommit <= (nfsi->npages >> 1))
1477 goto out_mark_dirty;
1478
1479 /* don't wait for the COMMIT response */
1480 flags = 0;
1481 }
1482
1483 ret = nfs_commit_inode(inode, flags);
1484 if (ret >= 0) {
1485 if (wbc->sync_mode == WB_SYNC_NONE) {
1486 if (ret < wbc->nr_to_write)
1487 wbc->nr_to_write -= ret;
1488 else
1489 wbc->nr_to_write = 0;
1490 }
1491 return 0;
1492 }
1493 out_mark_dirty:
1494 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1495 return ret;
1496 }
1497 #else
1498 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1499 {
1500 return 0;
1501 }
1502 #endif
1503
1504 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1505 {
1506 return nfs_commit_unstable_pages(inode, wbc);
1507 }
1508
1509 /*
1510 * flush the inode to disk.
1511 */
1512 int nfs_wb_all(struct inode *inode)
1513 {
1514 struct writeback_control wbc = {
1515 .sync_mode = WB_SYNC_ALL,
1516 .nr_to_write = LONG_MAX,
1517 .range_start = 0,
1518 .range_end = LLONG_MAX,
1519 };
1520
1521 return sync_inode(inode, &wbc);
1522 }
1523
1524 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1525 {
1526 struct nfs_page *req;
1527 int ret = 0;
1528
1529 BUG_ON(!PageLocked(page));
1530 for (;;) {
1531 wait_on_page_writeback(page);
1532 req = nfs_page_find_request(page);
1533 if (req == NULL)
1534 break;
1535 if (nfs_lock_request_dontget(req)) {
1536 nfs_inode_remove_request(req);
1537 /*
1538 * In case nfs_inode_remove_request has marked the
1539 * page as being dirty
1540 */
1541 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1542 nfs_unlock_request(req);
1543 break;
1544 }
1545 ret = nfs_wait_on_request(req);
1546 nfs_release_request(req);
1547 if (ret < 0)
1548 break;
1549 }
1550 return ret;
1551 }
1552
1553 /*
1554 * Write back all requests on one page - we do this before reading it.
1555 */
1556 int nfs_wb_page(struct inode *inode, struct page *page)
1557 {
1558 loff_t range_start = page_offset(page);
1559 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1560 struct writeback_control wbc = {
1561 .sync_mode = WB_SYNC_ALL,
1562 .nr_to_write = 0,
1563 .range_start = range_start,
1564 .range_end = range_end,
1565 };
1566 int ret;
1567
1568 for (;;) {
1569 wait_on_page_writeback(page);
1570 if (clear_page_dirty_for_io(page)) {
1571 ret = nfs_writepage_locked(page, &wbc);
1572 if (ret < 0)
1573 goto out_error;
1574 continue;
1575 }
1576 if (!PagePrivate(page))
1577 break;
1578 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1579 if (ret < 0)
1580 goto out_error;
1581 }
1582 return 0;
1583 out_error:
1584 return ret;
1585 }
1586
1587 #ifdef CONFIG_MIGRATION
1588 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1589 struct page *page)
1590 {
1591 struct nfs_page *req;
1592 int ret;
1593
1594 nfs_fscache_release_page(page, GFP_KERNEL);
1595
1596 req = nfs_find_and_lock_request(page, false);
1597 ret = PTR_ERR(req);
1598 if (IS_ERR(req))
1599 goto out;
1600
1601 ret = migrate_page(mapping, newpage, page);
1602 if (!req)
1603 goto out;
1604 if (ret)
1605 goto out_unlock;
1606 page_cache_get(newpage);
1607 spin_lock(&mapping->host->i_lock);
1608 req->wb_page = newpage;
1609 SetPagePrivate(newpage);
1610 set_page_private(newpage, (unsigned long)req);
1611 ClearPagePrivate(page);
1612 set_page_private(page, 0);
1613 spin_unlock(&mapping->host->i_lock);
1614 page_cache_release(page);
1615 out_unlock:
1616 nfs_clear_page_tag_locked(req);
1617 out:
1618 return ret;
1619 }
1620 #endif
1621
1622 int __init nfs_init_writepagecache(void)
1623 {
1624 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1625 sizeof(struct nfs_write_data),
1626 0, SLAB_HWCACHE_ALIGN,
1627 NULL);
1628 if (nfs_wdata_cachep == NULL)
1629 return -ENOMEM;
1630
1631 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1632 nfs_wdata_cachep);
1633 if (nfs_wdata_mempool == NULL)
1634 return -ENOMEM;
1635
1636 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1637 nfs_wdata_cachep);
1638 if (nfs_commit_mempool == NULL)
1639 return -ENOMEM;
1640
1641 /*
1642 * NFS congestion size, scale with available memory.
1643 *
1644 * 64MB: 8192k
1645 * 128MB: 11585k
1646 * 256MB: 16384k
1647 * 512MB: 23170k
1648 * 1GB: 32768k
1649 * 2GB: 46340k
1650 * 4GB: 65536k
1651 * 8GB: 92681k
1652 * 16GB: 131072k
1653 *
1654 * This allows larger machines to have larger/more transfers.
1655 * Limit the default to 256M
1656 */
1657 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1658 if (nfs_congestion_kb > 256*1024)
1659 nfs_congestion_kb = 256*1024;
1660
1661 return 0;
1662 }
1663
1664 void nfs_destroy_writepagecache(void)
1665 {
1666 mempool_destroy(nfs_commit_mempool);
1667 mempool_destroy(nfs_wdata_mempool);
1668 kmem_cache_destroy(nfs_wdata_cachep);
1669 }
1670