]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ocfs2/alloc.c
ea4c822531cc9a86c9c75527dfd4b3fd79a16f23
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
54
55 #include "buffer_head_io.h"
56
57 enum ocfs2_contig_type {
58 CONTIG_NONE = 0,
59 CONTIG_LEFT,
60 CONTIG_RIGHT,
61 CONTIG_LEFTRIGHT,
62 };
63
64 static enum ocfs2_contig_type
65 ocfs2_extent_rec_contig(struct super_block *sb,
66 struct ocfs2_extent_rec *ext,
67 struct ocfs2_extent_rec *insert_rec);
68 /*
69 * Operations for a specific extent tree type.
70 *
71 * To implement an on-disk btree (extent tree) type in ocfs2, add
72 * an ocfs2_extent_tree_operations structure and the matching
73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74 * for the allocation portion of the extent tree.
75 */
76 struct ocfs2_extent_tree_operations {
77 /*
78 * last_eb_blk is the block number of the right most leaf extent
79 * block. Most on-disk structures containing an extent tree store
80 * this value for fast access. The ->eo_set_last_eb_blk() and
81 * ->eo_get_last_eb_blk() operations access this value. They are
82 * both required.
83 */
84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 u64 blkno);
86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
87
88 /*
89 * The on-disk structure usually keeps track of how many total
90 * clusters are stored in this extent tree. This function updates
91 * that value. new_clusters is the delta, and must be
92 * added to the total. Required.
93 */
94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
95 u32 new_clusters);
96
97 /*
98 * If this extent tree is supported by an extent map, insert
99 * a record into the map.
100 */
101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 struct ocfs2_extent_rec *rec);
103
104 /*
105 * If this extent tree is supported by an extent map, truncate the
106 * map to clusters,
107 */
108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
109 u32 clusters);
110
111 /*
112 * If ->eo_insert_check() exists, it is called before rec is
113 * inserted into the extent tree. It is optional.
114 */
115 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 struct ocfs2_extent_rec *rec);
117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
118
119 /*
120 * --------------------------------------------------------------
121 * The remaining are internal to ocfs2_extent_tree and don't have
122 * accessor functions
123 */
124
125 /*
126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127 * It is required.
128 */
129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
130
131 /*
132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 * it exists. If it does not, et->et_max_leaf_clusters is set
134 * to 0 (unlimited). Optional.
135 */
136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
137
138 /*
139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 * are contiguous or not. Optional. Don't need to set it if use
141 * ocfs2_extent_rec as the tree leaf.
142 */
143 enum ocfs2_contig_type
144 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 struct ocfs2_extent_rec *ext,
146 struct ocfs2_extent_rec *insert_rec);
147 };
148
149
150 /*
151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152 * in the methods.
153 */
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
170 .eo_update_clusters = ocfs2_dinode_update_clusters,
171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
173 .eo_insert_check = ocfs2_dinode_insert_check,
174 .eo_sanity_check = ocfs2_dinode_sanity_check,
175 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
176 };
177
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179 u64 blkno)
180 {
181 struct ocfs2_dinode *di = et->et_object;
182
183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 di->i_last_eb_blk = cpu_to_le64(blkno);
185 }
186
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 {
189 struct ocfs2_dinode *di = et->et_object;
190
191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 return le64_to_cpu(di->i_last_eb_blk);
193 }
194
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196 u32 clusters)
197 {
198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 struct ocfs2_dinode *di = et->et_object;
200
201 le32_add_cpu(&di->i_clusters, clusters);
202 spin_lock(&oi->ip_lock);
203 oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 spin_unlock(&oi->ip_lock);
205 }
206
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 struct ocfs2_extent_rec *rec)
209 {
210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211
212 ocfs2_extent_map_insert_rec(inode, rec);
213 }
214
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216 u32 clusters)
217 {
218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219
220 ocfs2_extent_map_trunc(inode, clusters);
221 }
222
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 struct ocfs2_extent_rec *rec)
225 {
226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228
229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 "Device %s, asking for sparse allocation: inode %llu, "
233 "cpos %u, clusters %u\n",
234 osb->dev_str,
235 (unsigned long long)oi->ip_blkno,
236 rec->e_cpos, oi->ip_clusters);
237
238 return 0;
239 }
240
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 {
243 struct ocfs2_dinode *di = et->et_object;
244
245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
247
248 return 0;
249 }
250
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 struct ocfs2_dinode *di = et->et_object;
254
255 et->et_root_el = &di->id2.i_list;
256 }
257
258
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261 struct ocfs2_xattr_value_buf *vb = et->et_object;
262
263 et->et_root_el = &vb->vb_xv->xr_list;
264 }
265
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267 u64 blkno)
268 {
269 struct ocfs2_xattr_value_buf *vb = et->et_object;
270
271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
272 }
273
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276 struct ocfs2_xattr_value_buf *vb = et->et_object;
277
278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
279 }
280
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282 u32 clusters)
283 {
284 struct ocfs2_xattr_value_buf *vb = et->et_object;
285
286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
292 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
294 };
295
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 {
298 struct ocfs2_xattr_block *xb = et->et_object;
299
300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
301 }
302
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 {
305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 et->et_max_leaf_clusters =
307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
308 }
309
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311 u64 blkno)
312 {
313 struct ocfs2_xattr_block *xb = et->et_object;
314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315
316 xt->xt_last_eb_blk = cpu_to_le64(blkno);
317 }
318
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 {
321 struct ocfs2_xattr_block *xb = et->et_object;
322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323
324 return le64_to_cpu(xt->xt_last_eb_blk);
325 }
326
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328 u32 clusters)
329 {
330 struct ocfs2_xattr_block *xb = et->et_object;
331
332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
333 }
334
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
341 };
342
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 u64 blkno)
345 {
346 struct ocfs2_dx_root_block *dx_root = et->et_object;
347
348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
349 }
350
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 {
353 struct ocfs2_dx_root_block *dx_root = et->et_object;
354
355 return le64_to_cpu(dx_root->dr_last_eb_blk);
356 }
357
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359 u32 clusters)
360 {
361 struct ocfs2_dx_root_block *dx_root = et->et_object;
362
363 le32_add_cpu(&dx_root->dr_clusters, clusters);
364 }
365
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 {
368 struct ocfs2_dx_root_block *dx_root = et->et_object;
369
370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371
372 return 0;
373 }
374
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 {
377 struct ocfs2_dx_root_block *dx_root = et->et_object;
378
379 et->et_root_el = &dx_root->dr_list;
380 }
381
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
385 .eo_update_clusters = ocfs2_dx_root_update_clusters,
386 .eo_sanity_check = ocfs2_dx_root_sanity_check,
387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
388 };
389
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 {
392 struct ocfs2_refcount_block *rb = et->et_object;
393
394 et->et_root_el = &rb->rf_list;
395 }
396
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398 u64 blkno)
399 {
400 struct ocfs2_refcount_block *rb = et->et_object;
401
402 rb->rf_last_eb_blk = cpu_to_le64(blkno);
403 }
404
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 struct ocfs2_refcount_block *rb = et->et_object;
408
409 return le64_to_cpu(rb->rf_last_eb_blk);
410 }
411
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413 u32 clusters)
414 {
415 struct ocfs2_refcount_block *rb = et->et_object;
416
417 le32_add_cpu(&rb->rf_clusters, clusters);
418 }
419
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 struct ocfs2_extent_rec *ext,
423 struct ocfs2_extent_rec *insert_rec)
424 {
425 return CONTIG_NONE;
426 }
427
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
434 };
435
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 struct ocfs2_caching_info *ci,
438 struct buffer_head *bh,
439 ocfs2_journal_access_func access,
440 void *obj,
441 struct ocfs2_extent_tree_operations *ops)
442 {
443 et->et_ops = ops;
444 et->et_root_bh = bh;
445 et->et_ci = ci;
446 et->et_root_journal_access = access;
447 if (!obj)
448 obj = (void *)bh->b_data;
449 et->et_object = obj;
450
451 et->et_ops->eo_fill_root_el(et);
452 if (!et->et_ops->eo_fill_max_leaf_clusters)
453 et->et_max_leaf_clusters = 0;
454 else
455 et->et_ops->eo_fill_max_leaf_clusters(et);
456 }
457
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 struct ocfs2_caching_info *ci,
460 struct buffer_head *bh)
461 {
462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 NULL, &ocfs2_dinode_et_ops);
464 }
465
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 struct ocfs2_caching_info *ci,
468 struct buffer_head *bh)
469 {
470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 NULL, &ocfs2_xattr_tree_et_ops);
472 }
473
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 struct ocfs2_caching_info *ci,
476 struct ocfs2_xattr_value_buf *vb)
477 {
478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 &ocfs2_xattr_value_et_ops);
480 }
481
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 struct ocfs2_caching_info *ci,
484 struct buffer_head *bh)
485 {
486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 NULL, &ocfs2_dx_root_et_ops);
488 }
489
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 struct ocfs2_caching_info *ci,
492 struct buffer_head *bh)
493 {
494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 NULL, &ocfs2_refcount_tree_et_ops);
496 }
497
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499 u64 new_last_eb_blk)
500 {
501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
502 }
503
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 {
506 return et->et_ops->eo_get_last_eb_blk(et);
507 }
508
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510 u32 clusters)
511 {
512 et->et_ops->eo_update_clusters(et, clusters);
513 }
514
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 struct ocfs2_extent_rec *rec)
517 {
518 if (et->et_ops->eo_extent_map_insert)
519 et->et_ops->eo_extent_map_insert(et, rec);
520 }
521
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523 u32 clusters)
524 {
525 if (et->et_ops->eo_extent_map_truncate)
526 et->et_ops->eo_extent_map_truncate(et, clusters);
527 }
528
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 struct ocfs2_extent_tree *et,
531 int type)
532 {
533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534 type);
535 }
536
537 static inline enum ocfs2_contig_type
538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 struct ocfs2_extent_rec *rec,
540 struct ocfs2_extent_rec *insert_rec)
541 {
542 if (et->et_ops->eo_extent_contig)
543 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544
545 return ocfs2_extent_rec_contig(
546 ocfs2_metadata_cache_get_super(et->et_ci),
547 rec, insert_rec);
548 }
549
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 struct ocfs2_extent_rec *rec)
552 {
553 int ret = 0;
554
555 if (et->et_ops->eo_insert_check)
556 ret = et->et_ops->eo_insert_check(et, rec);
557 return ret;
558 }
559
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 {
562 int ret = 0;
563
564 if (et->et_ops->eo_sanity_check)
565 ret = et->et_ops->eo_sanity_check(et);
566 return ret;
567 }
568
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 struct ocfs2_extent_tree *et,
573 struct ocfs2_path *path,
574 struct ocfs2_extent_rec *insert_rec);
575 /*
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
578 * heads.
579 */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 int i, start = 0, depth = 0;
583 struct ocfs2_path_item *node;
584
585 if (keep_root)
586 start = 1;
587
588 for(i = start; i < path_num_items(path); i++) {
589 node = &path->p_node[i];
590
591 brelse(node->bh);
592 node->bh = NULL;
593 node->el = NULL;
594 }
595
596 /*
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
600 */
601 if (keep_root)
602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 else
604 path_root_access(path) = NULL;
605
606 path->p_tree_depth = depth;
607 }
608
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 if (path) {
612 ocfs2_reinit_path(path, 0);
613 kfree(path);
614 }
615 }
616
617 /*
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
620 *
621 * Both paths should have the same root. Any non-root elements of dest
622 * will be freed.
623 */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 int i;
627
628 BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 BUG_ON(path_root_el(dest) != path_root_el(src));
630 BUG_ON(path_root_access(dest) != path_root_access(src));
631
632 ocfs2_reinit_path(dest, 1);
633
634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 dest->p_node[i].bh = src->p_node[i].bh;
636 dest->p_node[i].el = src->p_node[i].el;
637
638 if (dest->p_node[i].bh)
639 get_bh(dest->p_node[i].bh);
640 }
641 }
642
643 /*
644 * Make the *dest path the same as src and re-initialize src path to
645 * have a root only.
646 */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 int i;
650
651 BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 BUG_ON(path_root_access(dest) != path_root_access(src));
653
654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 brelse(dest->p_node[i].bh);
656
657 dest->p_node[i].bh = src->p_node[i].bh;
658 dest->p_node[i].el = src->p_node[i].el;
659
660 src->p_node[i].bh = NULL;
661 src->p_node[i].el = NULL;
662 }
663 }
664
665 /*
666 * Insert an extent block at given index.
667 *
668 * This will not take an additional reference on eb_bh.
669 */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 struct buffer_head *eb_bh)
672 {
673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674
675 /*
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
680 */
681 BUG_ON(index == 0);
682
683 path->p_node[index].bh = eb_bh;
684 path->p_node[index].el = &eb->h_list;
685 }
686
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 struct ocfs2_extent_list *root_el,
689 ocfs2_journal_access_func access)
690 {
691 struct ocfs2_path *path;
692
693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694
695 path = kzalloc(sizeof(*path), GFP_NOFS);
696 if (path) {
697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 get_bh(root_bh);
699 path_root_bh(path) = root_bh;
700 path_root_el(path) = root_el;
701 path_root_access(path) = access;
702 }
703
704 return path;
705 }
706
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 path_root_access(path));
711 }
712
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 et->et_root_journal_access);
717 }
718
719 /*
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
722 *
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
725 */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 struct ocfs2_caching_info *ci,
728 struct ocfs2_path *path,
729 int idx)
730 {
731 ocfs2_journal_access_func access = path_root_access(path);
732
733 if (!access)
734 access = ocfs2_journal_access;
735
736 if (idx)
737 access = ocfs2_journal_access_eb;
738
739 return access(handle, ci, path->p_node[idx].bh,
740 OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742
743 /*
744 * Convenience function to journal all components in a path.
745 */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 handle_t *handle,
748 struct ocfs2_path *path)
749 {
750 int i, ret = 0;
751
752 if (!path)
753 goto out;
754
755 for(i = 0; i < path_num_items(path); i++) {
756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 if (ret < 0) {
758 mlog_errno(ret);
759 goto out;
760 }
761 }
762
763 out:
764 return ret;
765 }
766
767 /*
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
770 *
771 * Should work fine on interior and exterior nodes.
772 */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 int ret = -1;
776 int i;
777 struct ocfs2_extent_rec *rec;
778 u32 rec_end, rec_start, clusters;
779
780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 rec = &el->l_recs[i];
782
783 rec_start = le32_to_cpu(rec->e_cpos);
784 clusters = ocfs2_rec_clusters(el, rec);
785
786 rec_end = rec_start + clusters;
787
788 if (v_cluster >= rec_start && v_cluster < rec_end) {
789 ret = i;
790 break;
791 }
792 }
793
794 return ret;
795 }
796
797 /*
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
800 */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 struct ocfs2_extent_rec *ext,
803 u64 blkno)
804 {
805 u64 blk_end = le64_to_cpu(ext->e_blkno);
806
807 blk_end += ocfs2_clusters_to_blocks(sb,
808 le16_to_cpu(ext->e_leaf_clusters));
809
810 return blkno == blk_end;
811 }
812
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 struct ocfs2_extent_rec *right)
815 {
816 u32 left_range;
817
818 left_range = le32_to_cpu(left->e_cpos) +
819 le16_to_cpu(left->e_leaf_clusters);
820
821 return (left_range == le32_to_cpu(right->e_cpos));
822 }
823
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block *sb,
826 struct ocfs2_extent_rec *ext,
827 struct ocfs2_extent_rec *insert_rec)
828 {
829 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830
831 /*
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
834 * data.
835 */
836 if (ext->e_flags != insert_rec->e_flags)
837 return CONTIG_NONE;
838
839 if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 ocfs2_block_extent_contig(sb, ext, blkno))
841 return CONTIG_RIGHT;
842
843 blkno = le64_to_cpu(ext->e_blkno);
844 if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 return CONTIG_LEFT;
847
848 return CONTIG_NONE;
849 }
850
851 /*
852 * NOTE: We can have pretty much any combination of contiguousness and
853 * appending.
854 *
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
857 */
858 enum ocfs2_append_type {
859 APPEND_NONE = 0,
860 APPEND_TAIL,
861 };
862
863 enum ocfs2_split_type {
864 SPLIT_NONE = 0,
865 SPLIT_LEFT,
866 SPLIT_RIGHT,
867 };
868
869 struct ocfs2_insert_type {
870 enum ocfs2_split_type ins_split;
871 enum ocfs2_append_type ins_appending;
872 enum ocfs2_contig_type ins_contig;
873 int ins_contig_index;
874 int ins_tree_depth;
875 };
876
877 struct ocfs2_merge_ctxt {
878 enum ocfs2_contig_type c_contig_type;
879 int c_has_empty_extent;
880 int c_split_covers_rec;
881 };
882
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 struct buffer_head *bh)
885 {
886 int rc;
887 struct ocfs2_extent_block *eb =
888 (struct ocfs2_extent_block *)bh->b_data;
889
890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
891
892 BUG_ON(!buffer_uptodate(bh));
893
894 /*
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
898 */
899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 if (rc) {
901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh->b_blocknr);
903 return rc;
904 }
905
906 /*
907 * Errors after here are fatal.
908 */
909
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 ocfs2_error(sb,
912 "Extent block #%llu has bad signature %.*s",
913 (unsigned long long)bh->b_blocknr, 7,
914 eb->h_signature);
915 return -EINVAL;
916 }
917
918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 ocfs2_error(sb,
920 "Extent block #%llu has an invalid h_blkno "
921 "of %llu",
922 (unsigned long long)bh->b_blocknr,
923 (unsigned long long)le64_to_cpu(eb->h_blkno));
924 return -EINVAL;
925 }
926
927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 ocfs2_error(sb,
929 "Extent block #%llu has an invalid "
930 "h_fs_generation of #%u",
931 (unsigned long long)bh->b_blocknr,
932 le32_to_cpu(eb->h_fs_generation));
933 return -EINVAL;
934 }
935
936 return 0;
937 }
938
939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
940 struct buffer_head **bh)
941 {
942 int rc;
943 struct buffer_head *tmp = *bh;
944
945 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946 ocfs2_validate_extent_block);
947
948 /* If ocfs2_read_block() got us a new bh, pass it up. */
949 if (!rc && !*bh)
950 *bh = tmp;
951
952 return rc;
953 }
954
955
956 /*
957 * How many free extents have we got before we need more meta data?
958 */
959 int ocfs2_num_free_extents(struct ocfs2_super *osb,
960 struct ocfs2_extent_tree *et)
961 {
962 int retval;
963 struct ocfs2_extent_list *el = NULL;
964 struct ocfs2_extent_block *eb;
965 struct buffer_head *eb_bh = NULL;
966 u64 last_eb_blk = 0;
967
968 el = et->et_root_el;
969 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
970
971 if (last_eb_blk) {
972 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
973 &eb_bh);
974 if (retval < 0) {
975 mlog_errno(retval);
976 goto bail;
977 }
978 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
979 el = &eb->h_list;
980 }
981
982 BUG_ON(el->l_tree_depth != 0);
983
984 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
985 bail:
986 brelse(eb_bh);
987
988 trace_ocfs2_num_free_extents(retval);
989 return retval;
990 }
991
992 /* expects array to already be allocated
993 *
994 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995 * l_count for you
996 */
997 static int ocfs2_create_new_meta_bhs(handle_t *handle,
998 struct ocfs2_extent_tree *et,
999 int wanted,
1000 struct ocfs2_alloc_context *meta_ac,
1001 struct buffer_head *bhs[])
1002 {
1003 int count, status, i;
1004 u16 suballoc_bit_start;
1005 u32 num_got;
1006 u64 suballoc_loc, first_blkno;
1007 struct ocfs2_super *osb =
1008 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1009 struct ocfs2_extent_block *eb;
1010
1011 count = 0;
1012 while (count < wanted) {
1013 status = ocfs2_claim_metadata(handle,
1014 meta_ac,
1015 wanted - count,
1016 &suballoc_loc,
1017 &suballoc_bit_start,
1018 &num_got,
1019 &first_blkno);
1020 if (status < 0) {
1021 mlog_errno(status);
1022 goto bail;
1023 }
1024
1025 for(i = count; i < (num_got + count); i++) {
1026 bhs[i] = sb_getblk(osb->sb, first_blkno);
1027 if (bhs[i] == NULL) {
1028 status = -ENOMEM;
1029 mlog_errno(status);
1030 goto bail;
1031 }
1032 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1033
1034 status = ocfs2_journal_access_eb(handle, et->et_ci,
1035 bhs[i],
1036 OCFS2_JOURNAL_ACCESS_CREATE);
1037 if (status < 0) {
1038 mlog_errno(status);
1039 goto bail;
1040 }
1041
1042 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1043 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1044 /* Ok, setup the minimal stuff here. */
1045 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1046 eb->h_blkno = cpu_to_le64(first_blkno);
1047 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1048 eb->h_suballoc_slot =
1049 cpu_to_le16(meta_ac->ac_alloc_slot);
1050 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1051 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1052 eb->h_list.l_count =
1053 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1054
1055 suballoc_bit_start++;
1056 first_blkno++;
1057
1058 /* We'll also be dirtied by the caller, so
1059 * this isn't absolutely necessary. */
1060 ocfs2_journal_dirty(handle, bhs[i]);
1061 }
1062
1063 count += num_got;
1064 }
1065
1066 status = 0;
1067 bail:
1068 if (status < 0) {
1069 for(i = 0; i < wanted; i++) {
1070 brelse(bhs[i]);
1071 bhs[i] = NULL;
1072 }
1073 mlog_errno(status);
1074 }
1075 return status;
1076 }
1077
1078 /*
1079 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1080 *
1081 * Returns the sum of the rightmost extent rec logical offset and
1082 * cluster count.
1083 *
1084 * ocfs2_add_branch() uses this to determine what logical cluster
1085 * value should be populated into the leftmost new branch records.
1086 *
1087 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1088 * value for the new topmost tree record.
1089 */
1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1091 {
1092 int i;
1093
1094 i = le16_to_cpu(el->l_next_free_rec) - 1;
1095
1096 return le32_to_cpu(el->l_recs[i].e_cpos) +
1097 ocfs2_rec_clusters(el, &el->l_recs[i]);
1098 }
1099
1100 /*
1101 * Change range of the branches in the right most path according to the leaf
1102 * extent block's rightmost record.
1103 */
1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1105 struct ocfs2_extent_tree *et)
1106 {
1107 int status;
1108 struct ocfs2_path *path = NULL;
1109 struct ocfs2_extent_list *el;
1110 struct ocfs2_extent_rec *rec;
1111
1112 path = ocfs2_new_path_from_et(et);
1113 if (!path) {
1114 status = -ENOMEM;
1115 return status;
1116 }
1117
1118 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1119 if (status < 0) {
1120 mlog_errno(status);
1121 goto out;
1122 }
1123
1124 status = ocfs2_extend_trans(handle, path_num_items(path));
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto out;
1128 }
1129
1130 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1131 if (status < 0) {
1132 mlog_errno(status);
1133 goto out;
1134 }
1135
1136 el = path_leaf_el(path);
1137 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1138
1139 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1140
1141 out:
1142 ocfs2_free_path(path);
1143 return status;
1144 }
1145
1146 /*
1147 * Add an entire tree branch to our inode. eb_bh is the extent block
1148 * to start at, if we don't want to start the branch at the root
1149 * structure.
1150 *
1151 * last_eb_bh is required as we have to update it's next_leaf pointer
1152 * for the new last extent block.
1153 *
1154 * the new branch will be 'empty' in the sense that every block will
1155 * contain a single record with cluster count == 0.
1156 */
1157 static int ocfs2_add_branch(handle_t *handle,
1158 struct ocfs2_extent_tree *et,
1159 struct buffer_head *eb_bh,
1160 struct buffer_head **last_eb_bh,
1161 struct ocfs2_alloc_context *meta_ac)
1162 {
1163 int status, new_blocks, i;
1164 u64 next_blkno, new_last_eb_blk;
1165 struct buffer_head *bh;
1166 struct buffer_head **new_eb_bhs = NULL;
1167 struct ocfs2_extent_block *eb;
1168 struct ocfs2_extent_list *eb_el;
1169 struct ocfs2_extent_list *el;
1170 u32 new_cpos, root_end;
1171
1172 BUG_ON(!last_eb_bh || !*last_eb_bh);
1173
1174 if (eb_bh) {
1175 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1176 el = &eb->h_list;
1177 } else
1178 el = et->et_root_el;
1179
1180 /* we never add a branch to a leaf. */
1181 BUG_ON(!el->l_tree_depth);
1182
1183 new_blocks = le16_to_cpu(el->l_tree_depth);
1184
1185 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1186 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1187 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1188
1189 /*
1190 * If there is a gap before the root end and the real end
1191 * of the righmost leaf block, we need to remove the gap
1192 * between new_cpos and root_end first so that the tree
1193 * is consistent after we add a new branch(it will start
1194 * from new_cpos).
1195 */
1196 if (root_end > new_cpos) {
1197 trace_ocfs2_adjust_rightmost_branch(
1198 (unsigned long long)
1199 ocfs2_metadata_cache_owner(et->et_ci),
1200 root_end, new_cpos);
1201
1202 status = ocfs2_adjust_rightmost_branch(handle, et);
1203 if (status) {
1204 mlog_errno(status);
1205 goto bail;
1206 }
1207 }
1208
1209 /* allocate the number of new eb blocks we need */
1210 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1211 GFP_KERNEL);
1212 if (!new_eb_bhs) {
1213 status = -ENOMEM;
1214 mlog_errno(status);
1215 goto bail;
1216 }
1217
1218 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1219 meta_ac, new_eb_bhs);
1220 if (status < 0) {
1221 mlog_errno(status);
1222 goto bail;
1223 }
1224
1225 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1226 * linked with the rest of the tree.
1227 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1228 *
1229 * when we leave the loop, new_last_eb_blk will point to the
1230 * newest leaf, and next_blkno will point to the topmost extent
1231 * block. */
1232 next_blkno = new_last_eb_blk = 0;
1233 for(i = 0; i < new_blocks; i++) {
1234 bh = new_eb_bhs[i];
1235 eb = (struct ocfs2_extent_block *) bh->b_data;
1236 /* ocfs2_create_new_meta_bhs() should create it right! */
1237 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1238 eb_el = &eb->h_list;
1239
1240 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1241 OCFS2_JOURNAL_ACCESS_CREATE);
1242 if (status < 0) {
1243 mlog_errno(status);
1244 goto bail;
1245 }
1246
1247 eb->h_next_leaf_blk = 0;
1248 eb_el->l_tree_depth = cpu_to_le16(i);
1249 eb_el->l_next_free_rec = cpu_to_le16(1);
1250 /*
1251 * This actually counts as an empty extent as
1252 * c_clusters == 0
1253 */
1254 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1255 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1256 /*
1257 * eb_el isn't always an interior node, but even leaf
1258 * nodes want a zero'd flags and reserved field so
1259 * this gets the whole 32 bits regardless of use.
1260 */
1261 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1262 if (!eb_el->l_tree_depth)
1263 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1264
1265 ocfs2_journal_dirty(handle, bh);
1266 next_blkno = le64_to_cpu(eb->h_blkno);
1267 }
1268
1269 /* This is a bit hairy. We want to update up to three blocks
1270 * here without leaving any of them in an inconsistent state
1271 * in case of error. We don't have to worry about
1272 * journal_dirty erroring as it won't unless we've aborted the
1273 * handle (in which case we would never be here) so reserving
1274 * the write with journal_access is all we need to do. */
1275 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1276 OCFS2_JOURNAL_ACCESS_WRITE);
1277 if (status < 0) {
1278 mlog_errno(status);
1279 goto bail;
1280 }
1281 status = ocfs2_et_root_journal_access(handle, et,
1282 OCFS2_JOURNAL_ACCESS_WRITE);
1283 if (status < 0) {
1284 mlog_errno(status);
1285 goto bail;
1286 }
1287 if (eb_bh) {
1288 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1289 OCFS2_JOURNAL_ACCESS_WRITE);
1290 if (status < 0) {
1291 mlog_errno(status);
1292 goto bail;
1293 }
1294 }
1295
1296 /* Link the new branch into the rest of the tree (el will
1297 * either be on the root_bh, or the extent block passed in. */
1298 i = le16_to_cpu(el->l_next_free_rec);
1299 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1300 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1301 el->l_recs[i].e_int_clusters = 0;
1302 le16_add_cpu(&el->l_next_free_rec, 1);
1303
1304 /* fe needs a new last extent block pointer, as does the
1305 * next_leaf on the previously last-extent-block. */
1306 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1307
1308 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1309 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1310
1311 ocfs2_journal_dirty(handle, *last_eb_bh);
1312 ocfs2_journal_dirty(handle, et->et_root_bh);
1313 if (eb_bh)
1314 ocfs2_journal_dirty(handle, eb_bh);
1315
1316 /*
1317 * Some callers want to track the rightmost leaf so pass it
1318 * back here.
1319 */
1320 brelse(*last_eb_bh);
1321 get_bh(new_eb_bhs[0]);
1322 *last_eb_bh = new_eb_bhs[0];
1323
1324 status = 0;
1325 bail:
1326 if (new_eb_bhs) {
1327 for (i = 0; i < new_blocks; i++)
1328 brelse(new_eb_bhs[i]);
1329 kfree(new_eb_bhs);
1330 }
1331
1332 return status;
1333 }
1334
1335 /*
1336 * adds another level to the allocation tree.
1337 * returns back the new extent block so you can add a branch to it
1338 * after this call.
1339 */
1340 static int ocfs2_shift_tree_depth(handle_t *handle,
1341 struct ocfs2_extent_tree *et,
1342 struct ocfs2_alloc_context *meta_ac,
1343 struct buffer_head **ret_new_eb_bh)
1344 {
1345 int status, i;
1346 u32 new_clusters;
1347 struct buffer_head *new_eb_bh = NULL;
1348 struct ocfs2_extent_block *eb;
1349 struct ocfs2_extent_list *root_el;
1350 struct ocfs2_extent_list *eb_el;
1351
1352 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1353 &new_eb_bh);
1354 if (status < 0) {
1355 mlog_errno(status);
1356 goto bail;
1357 }
1358
1359 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1360 /* ocfs2_create_new_meta_bhs() should create it right! */
1361 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1362
1363 eb_el = &eb->h_list;
1364 root_el = et->et_root_el;
1365
1366 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1367 OCFS2_JOURNAL_ACCESS_CREATE);
1368 if (status < 0) {
1369 mlog_errno(status);
1370 goto bail;
1371 }
1372
1373 /* copy the root extent list data into the new extent block */
1374 eb_el->l_tree_depth = root_el->l_tree_depth;
1375 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1376 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1377 eb_el->l_recs[i] = root_el->l_recs[i];
1378
1379 ocfs2_journal_dirty(handle, new_eb_bh);
1380
1381 status = ocfs2_et_root_journal_access(handle, et,
1382 OCFS2_JOURNAL_ACCESS_WRITE);
1383 if (status < 0) {
1384 mlog_errno(status);
1385 goto bail;
1386 }
1387
1388 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1389
1390 /* update root_bh now */
1391 le16_add_cpu(&root_el->l_tree_depth, 1);
1392 root_el->l_recs[0].e_cpos = 0;
1393 root_el->l_recs[0].e_blkno = eb->h_blkno;
1394 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1395 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1397 root_el->l_next_free_rec = cpu_to_le16(1);
1398
1399 /* If this is our 1st tree depth shift, then last_eb_blk
1400 * becomes the allocated extent block */
1401 if (root_el->l_tree_depth == cpu_to_le16(1))
1402 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1403
1404 ocfs2_journal_dirty(handle, et->et_root_bh);
1405
1406 *ret_new_eb_bh = new_eb_bh;
1407 new_eb_bh = NULL;
1408 status = 0;
1409 bail:
1410 brelse(new_eb_bh);
1411
1412 return status;
1413 }
1414
1415 /*
1416 * Should only be called when there is no space left in any of the
1417 * leaf nodes. What we want to do is find the lowest tree depth
1418 * non-leaf extent block with room for new records. There are three
1419 * valid results of this search:
1420 *
1421 * 1) a lowest extent block is found, then we pass it back in
1422 * *lowest_eb_bh and return '0'
1423 *
1424 * 2) the search fails to find anything, but the root_el has room. We
1425 * pass NULL back in *lowest_eb_bh, but still return '0'
1426 *
1427 * 3) the search fails to find anything AND the root_el is full, in
1428 * which case we return > 0
1429 *
1430 * return status < 0 indicates an error.
1431 */
1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1433 struct buffer_head **target_bh)
1434 {
1435 int status = 0, i;
1436 u64 blkno;
1437 struct ocfs2_extent_block *eb;
1438 struct ocfs2_extent_list *el;
1439 struct buffer_head *bh = NULL;
1440 struct buffer_head *lowest_bh = NULL;
1441
1442 *target_bh = NULL;
1443
1444 el = et->et_root_el;
1445
1446 while(le16_to_cpu(el->l_tree_depth) > 1) {
1447 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1448 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1449 "Owner %llu has empty "
1450 "extent list (next_free_rec == 0)",
1451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1452 status = -EIO;
1453 goto bail;
1454 }
1455 i = le16_to_cpu(el->l_next_free_rec) - 1;
1456 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1457 if (!blkno) {
1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 "Owner %llu has extent "
1460 "list where extent # %d has no physical "
1461 "block start",
1462 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1463 status = -EIO;
1464 goto bail;
1465 }
1466
1467 brelse(bh);
1468 bh = NULL;
1469
1470 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1471 if (status < 0) {
1472 mlog_errno(status);
1473 goto bail;
1474 }
1475
1476 eb = (struct ocfs2_extent_block *) bh->b_data;
1477 el = &eb->h_list;
1478
1479 if (le16_to_cpu(el->l_next_free_rec) <
1480 le16_to_cpu(el->l_count)) {
1481 brelse(lowest_bh);
1482 lowest_bh = bh;
1483 get_bh(lowest_bh);
1484 }
1485 }
1486
1487 /* If we didn't find one and the fe doesn't have any room,
1488 * then return '1' */
1489 el = et->et_root_el;
1490 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1491 status = 1;
1492
1493 *target_bh = lowest_bh;
1494 bail:
1495 brelse(bh);
1496
1497 return status;
1498 }
1499
1500 /*
1501 * Grow a b-tree so that it has more records.
1502 *
1503 * We might shift the tree depth in which case existing paths should
1504 * be considered invalid.
1505 *
1506 * Tree depth after the grow is returned via *final_depth.
1507 *
1508 * *last_eb_bh will be updated by ocfs2_add_branch().
1509 */
1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1511 int *final_depth, struct buffer_head **last_eb_bh,
1512 struct ocfs2_alloc_context *meta_ac)
1513 {
1514 int ret, shift;
1515 struct ocfs2_extent_list *el = et->et_root_el;
1516 int depth = le16_to_cpu(el->l_tree_depth);
1517 struct buffer_head *bh = NULL;
1518
1519 BUG_ON(meta_ac == NULL);
1520
1521 shift = ocfs2_find_branch_target(et, &bh);
1522 if (shift < 0) {
1523 ret = shift;
1524 mlog_errno(ret);
1525 goto out;
1526 }
1527
1528 /* We traveled all the way to the bottom of the allocation tree
1529 * and didn't find room for any more extents - we need to add
1530 * another tree level */
1531 if (shift) {
1532 BUG_ON(bh);
1533 trace_ocfs2_grow_tree(
1534 (unsigned long long)
1535 ocfs2_metadata_cache_owner(et->et_ci),
1536 depth);
1537
1538 /* ocfs2_shift_tree_depth will return us a buffer with
1539 * the new extent block (so we can pass that to
1540 * ocfs2_add_branch). */
1541 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1542 if (ret < 0) {
1543 mlog_errno(ret);
1544 goto out;
1545 }
1546 depth++;
1547 if (depth == 1) {
1548 /*
1549 * Special case: we have room now if we shifted from
1550 * tree_depth 0, so no more work needs to be done.
1551 *
1552 * We won't be calling add_branch, so pass
1553 * back *last_eb_bh as the new leaf. At depth
1554 * zero, it should always be null so there's
1555 * no reason to brelse.
1556 */
1557 BUG_ON(*last_eb_bh);
1558 get_bh(bh);
1559 *last_eb_bh = bh;
1560 goto out;
1561 }
1562 }
1563
1564 /* call ocfs2_add_branch to add the final part of the tree with
1565 * the new data. */
1566 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1567 meta_ac);
1568 if (ret < 0) {
1569 mlog_errno(ret);
1570 goto out;
1571 }
1572
1573 out:
1574 if (final_depth)
1575 *final_depth = depth;
1576 brelse(bh);
1577 return ret;
1578 }
1579
1580 /*
1581 * This function will discard the rightmost extent record.
1582 */
1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1584 {
1585 int next_free = le16_to_cpu(el->l_next_free_rec);
1586 int count = le16_to_cpu(el->l_count);
1587 unsigned int num_bytes;
1588
1589 BUG_ON(!next_free);
1590 /* This will cause us to go off the end of our extent list. */
1591 BUG_ON(next_free >= count);
1592
1593 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1594
1595 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1596 }
1597
1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1599 struct ocfs2_extent_rec *insert_rec)
1600 {
1601 int i, insert_index, next_free, has_empty, num_bytes;
1602 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1603 struct ocfs2_extent_rec *rec;
1604
1605 next_free = le16_to_cpu(el->l_next_free_rec);
1606 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1607
1608 BUG_ON(!next_free);
1609
1610 /* The tree code before us didn't allow enough room in the leaf. */
1611 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1612
1613 /*
1614 * The easiest way to approach this is to just remove the
1615 * empty extent and temporarily decrement next_free.
1616 */
1617 if (has_empty) {
1618 /*
1619 * If next_free was 1 (only an empty extent), this
1620 * loop won't execute, which is fine. We still want
1621 * the decrement above to happen.
1622 */
1623 for(i = 0; i < (next_free - 1); i++)
1624 el->l_recs[i] = el->l_recs[i+1];
1625
1626 next_free--;
1627 }
1628
1629 /*
1630 * Figure out what the new record index should be.
1631 */
1632 for(i = 0; i < next_free; i++) {
1633 rec = &el->l_recs[i];
1634
1635 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1636 break;
1637 }
1638 insert_index = i;
1639
1640 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1641 has_empty, next_free,
1642 le16_to_cpu(el->l_count));
1643
1644 BUG_ON(insert_index < 0);
1645 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1646 BUG_ON(insert_index > next_free);
1647
1648 /*
1649 * No need to memmove if we're just adding to the tail.
1650 */
1651 if (insert_index != next_free) {
1652 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1653
1654 num_bytes = next_free - insert_index;
1655 num_bytes *= sizeof(struct ocfs2_extent_rec);
1656 memmove(&el->l_recs[insert_index + 1],
1657 &el->l_recs[insert_index],
1658 num_bytes);
1659 }
1660
1661 /*
1662 * Either we had an empty extent, and need to re-increment or
1663 * there was no empty extent on a non full rightmost leaf node,
1664 * in which case we still need to increment.
1665 */
1666 next_free++;
1667 el->l_next_free_rec = cpu_to_le16(next_free);
1668 /*
1669 * Make sure none of the math above just messed up our tree.
1670 */
1671 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1672
1673 el->l_recs[insert_index] = *insert_rec;
1674
1675 }
1676
1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1678 {
1679 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1680
1681 BUG_ON(num_recs == 0);
1682
1683 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1684 num_recs--;
1685 size = num_recs * sizeof(struct ocfs2_extent_rec);
1686 memmove(&el->l_recs[0], &el->l_recs[1], size);
1687 memset(&el->l_recs[num_recs], 0,
1688 sizeof(struct ocfs2_extent_rec));
1689 el->l_next_free_rec = cpu_to_le16(num_recs);
1690 }
1691 }
1692
1693 /*
1694 * Create an empty extent record .
1695 *
1696 * l_next_free_rec may be updated.
1697 *
1698 * If an empty extent already exists do nothing.
1699 */
1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1701 {
1702 int next_free = le16_to_cpu(el->l_next_free_rec);
1703
1704 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1705
1706 if (next_free == 0)
1707 goto set_and_inc;
1708
1709 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1710 return;
1711
1712 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1713 "Asked to create an empty extent in a full list:\n"
1714 "count = %u, tree depth = %u",
1715 le16_to_cpu(el->l_count),
1716 le16_to_cpu(el->l_tree_depth));
1717
1718 ocfs2_shift_records_right(el);
1719
1720 set_and_inc:
1721 le16_add_cpu(&el->l_next_free_rec, 1);
1722 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1723 }
1724
1725 /*
1726 * For a rotation which involves two leaf nodes, the "root node" is
1727 * the lowest level tree node which contains a path to both leafs. This
1728 * resulting set of information can be used to form a complete "subtree"
1729 *
1730 * This function is passed two full paths from the dinode down to a
1731 * pair of adjacent leaves. It's task is to figure out which path
1732 * index contains the subtree root - this can be the root index itself
1733 * in a worst-case rotation.
1734 *
1735 * The array index of the subtree root is passed back.
1736 */
1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1738 struct ocfs2_path *left,
1739 struct ocfs2_path *right)
1740 {
1741 int i = 0;
1742
1743 /*
1744 * Check that the caller passed in two paths from the same tree.
1745 */
1746 BUG_ON(path_root_bh(left) != path_root_bh(right));
1747
1748 do {
1749 i++;
1750
1751 /*
1752 * The caller didn't pass two adjacent paths.
1753 */
1754 mlog_bug_on_msg(i > left->p_tree_depth,
1755 "Owner %llu, left depth %u, right depth %u\n"
1756 "left leaf blk %llu, right leaf blk %llu\n",
1757 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1758 left->p_tree_depth, right->p_tree_depth,
1759 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1760 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1761 } while (left->p_node[i].bh->b_blocknr ==
1762 right->p_node[i].bh->b_blocknr);
1763
1764 return i - 1;
1765 }
1766
1767 typedef void (path_insert_t)(void *, struct buffer_head *);
1768
1769 /*
1770 * Traverse a btree path in search of cpos, starting at root_el.
1771 *
1772 * This code can be called with a cpos larger than the tree, in which
1773 * case it will return the rightmost path.
1774 */
1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1776 struct ocfs2_extent_list *root_el, u32 cpos,
1777 path_insert_t *func, void *data)
1778 {
1779 int i, ret = 0;
1780 u32 range;
1781 u64 blkno;
1782 struct buffer_head *bh = NULL;
1783 struct ocfs2_extent_block *eb;
1784 struct ocfs2_extent_list *el;
1785 struct ocfs2_extent_rec *rec;
1786
1787 el = root_el;
1788 while (el->l_tree_depth) {
1789 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1790 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1791 "Owner %llu has empty extent list at "
1792 "depth %u\n",
1793 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1794 le16_to_cpu(el->l_tree_depth));
1795 ret = -EROFS;
1796 goto out;
1797
1798 }
1799
1800 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1801 rec = &el->l_recs[i];
1802
1803 /*
1804 * In the case that cpos is off the allocation
1805 * tree, this should just wind up returning the
1806 * rightmost record.
1807 */
1808 range = le32_to_cpu(rec->e_cpos) +
1809 ocfs2_rec_clusters(el, rec);
1810 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1811 break;
1812 }
1813
1814 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1815 if (blkno == 0) {
1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1817 "Owner %llu has bad blkno in extent list "
1818 "at depth %u (index %d)\n",
1819 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1820 le16_to_cpu(el->l_tree_depth), i);
1821 ret = -EROFS;
1822 goto out;
1823 }
1824
1825 brelse(bh);
1826 bh = NULL;
1827 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out;
1831 }
1832
1833 eb = (struct ocfs2_extent_block *) bh->b_data;
1834 el = &eb->h_list;
1835
1836 if (le16_to_cpu(el->l_next_free_rec) >
1837 le16_to_cpu(el->l_count)) {
1838 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1839 "Owner %llu has bad count in extent list "
1840 "at block %llu (next free=%u, count=%u)\n",
1841 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1842 (unsigned long long)bh->b_blocknr,
1843 le16_to_cpu(el->l_next_free_rec),
1844 le16_to_cpu(el->l_count));
1845 ret = -EROFS;
1846 goto out;
1847 }
1848
1849 if (func)
1850 func(data, bh);
1851 }
1852
1853 out:
1854 /*
1855 * Catch any trailing bh that the loop didn't handle.
1856 */
1857 brelse(bh);
1858
1859 return ret;
1860 }
1861
1862 /*
1863 * Given an initialized path (that is, it has a valid root extent
1864 * list), this function will traverse the btree in search of the path
1865 * which would contain cpos.
1866 *
1867 * The path traveled is recorded in the path structure.
1868 *
1869 * Note that this will not do any comparisons on leaf node extent
1870 * records, so it will work fine in the case that we just added a tree
1871 * branch.
1872 */
1873 struct find_path_data {
1874 int index;
1875 struct ocfs2_path *path;
1876 };
1877 static void find_path_ins(void *data, struct buffer_head *bh)
1878 {
1879 struct find_path_data *fp = data;
1880
1881 get_bh(bh);
1882 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1883 fp->index++;
1884 }
1885 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1886 struct ocfs2_path *path, u32 cpos)
1887 {
1888 struct find_path_data data;
1889
1890 data.index = 1;
1891 data.path = path;
1892 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1893 find_path_ins, &data);
1894 }
1895
1896 static void find_leaf_ins(void *data, struct buffer_head *bh)
1897 {
1898 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1899 struct ocfs2_extent_list *el = &eb->h_list;
1900 struct buffer_head **ret = data;
1901
1902 /* We want to retain only the leaf block. */
1903 if (le16_to_cpu(el->l_tree_depth) == 0) {
1904 get_bh(bh);
1905 *ret = bh;
1906 }
1907 }
1908 /*
1909 * Find the leaf block in the tree which would contain cpos. No
1910 * checking of the actual leaf is done.
1911 *
1912 * Some paths want to call this instead of allocating a path structure
1913 * and calling ocfs2_find_path().
1914 *
1915 * This function doesn't handle non btree extent lists.
1916 */
1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1918 struct ocfs2_extent_list *root_el, u32 cpos,
1919 struct buffer_head **leaf_bh)
1920 {
1921 int ret;
1922 struct buffer_head *bh = NULL;
1923
1924 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1925 if (ret) {
1926 mlog_errno(ret);
1927 goto out;
1928 }
1929
1930 *leaf_bh = bh;
1931 out:
1932 return ret;
1933 }
1934
1935 /*
1936 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1937 *
1938 * Basically, we've moved stuff around at the bottom of the tree and
1939 * we need to fix up the extent records above the changes to reflect
1940 * the new changes.
1941 *
1942 * left_rec: the record on the left.
1943 * left_child_el: is the child list pointed to by left_rec
1944 * right_rec: the record to the right of left_rec
1945 * right_child_el: is the child list pointed to by right_rec
1946 *
1947 * By definition, this only works on interior nodes.
1948 */
1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1950 struct ocfs2_extent_list *left_child_el,
1951 struct ocfs2_extent_rec *right_rec,
1952 struct ocfs2_extent_list *right_child_el)
1953 {
1954 u32 left_clusters, right_end;
1955
1956 /*
1957 * Interior nodes never have holes. Their cpos is the cpos of
1958 * the leftmost record in their child list. Their cluster
1959 * count covers the full theoretical range of their child list
1960 * - the range between their cpos and the cpos of the record
1961 * immediately to their right.
1962 */
1963 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1964 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1965 BUG_ON(right_child_el->l_tree_depth);
1966 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1967 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1968 }
1969 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1970 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1971
1972 /*
1973 * Calculate the rightmost cluster count boundary before
1974 * moving cpos - we will need to adjust clusters after
1975 * updating e_cpos to keep the same highest cluster count.
1976 */
1977 right_end = le32_to_cpu(right_rec->e_cpos);
1978 right_end += le32_to_cpu(right_rec->e_int_clusters);
1979
1980 right_rec->e_cpos = left_rec->e_cpos;
1981 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1982
1983 right_end -= le32_to_cpu(right_rec->e_cpos);
1984 right_rec->e_int_clusters = cpu_to_le32(right_end);
1985 }
1986
1987 /*
1988 * Adjust the adjacent root node records involved in a
1989 * rotation. left_el_blkno is passed in as a key so that we can easily
1990 * find it's index in the root list.
1991 */
1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1993 struct ocfs2_extent_list *left_el,
1994 struct ocfs2_extent_list *right_el,
1995 u64 left_el_blkno)
1996 {
1997 int i;
1998
1999 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2000 le16_to_cpu(left_el->l_tree_depth));
2001
2002 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2003 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2004 break;
2005 }
2006
2007 /*
2008 * The path walking code should have never returned a root and
2009 * two paths which are not adjacent.
2010 */
2011 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2012
2013 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2014 &root_el->l_recs[i + 1], right_el);
2015 }
2016
2017 /*
2018 * We've changed a leaf block (in right_path) and need to reflect that
2019 * change back up the subtree.
2020 *
2021 * This happens in multiple places:
2022 * - When we've moved an extent record from the left path leaf to the right
2023 * path leaf to make room for an empty extent in the left path leaf.
2024 * - When our insert into the right path leaf is at the leftmost edge
2025 * and requires an update of the path immediately to it's left. This
2026 * can occur at the end of some types of rotation and appending inserts.
2027 * - When we've adjusted the last extent record in the left path leaf and the
2028 * 1st extent record in the right path leaf during cross extent block merge.
2029 */
2030 static void ocfs2_complete_edge_insert(handle_t *handle,
2031 struct ocfs2_path *left_path,
2032 struct ocfs2_path *right_path,
2033 int subtree_index)
2034 {
2035 int i, idx;
2036 struct ocfs2_extent_list *el, *left_el, *right_el;
2037 struct ocfs2_extent_rec *left_rec, *right_rec;
2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039
2040 /*
2041 * Update the counts and position values within all the
2042 * interior nodes to reflect the leaf rotation we just did.
2043 *
2044 * The root node is handled below the loop.
2045 *
2046 * We begin the loop with right_el and left_el pointing to the
2047 * leaf lists and work our way up.
2048 *
2049 * NOTE: within this loop, left_el and right_el always refer
2050 * to the *child* lists.
2051 */
2052 left_el = path_leaf_el(left_path);
2053 right_el = path_leaf_el(right_path);
2054 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2055 trace_ocfs2_complete_edge_insert(i);
2056
2057 /*
2058 * One nice property of knowing that all of these
2059 * nodes are below the root is that we only deal with
2060 * the leftmost right node record and the rightmost
2061 * left node record.
2062 */
2063 el = left_path->p_node[i].el;
2064 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2065 left_rec = &el->l_recs[idx];
2066
2067 el = right_path->p_node[i].el;
2068 right_rec = &el->l_recs[0];
2069
2070 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2071 right_el);
2072
2073 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2074 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2075
2076 /*
2077 * Setup our list pointers now so that the current
2078 * parents become children in the next iteration.
2079 */
2080 left_el = left_path->p_node[i].el;
2081 right_el = right_path->p_node[i].el;
2082 }
2083
2084 /*
2085 * At the root node, adjust the two adjacent records which
2086 * begin our path to the leaves.
2087 */
2088
2089 el = left_path->p_node[subtree_index].el;
2090 left_el = left_path->p_node[subtree_index + 1].el;
2091 right_el = right_path->p_node[subtree_index + 1].el;
2092
2093 ocfs2_adjust_root_records(el, left_el, right_el,
2094 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2095
2096 root_bh = left_path->p_node[subtree_index].bh;
2097
2098 ocfs2_journal_dirty(handle, root_bh);
2099 }
2100
2101 static int ocfs2_rotate_subtree_right(handle_t *handle,
2102 struct ocfs2_extent_tree *et,
2103 struct ocfs2_path *left_path,
2104 struct ocfs2_path *right_path,
2105 int subtree_index)
2106 {
2107 int ret, i;
2108 struct buffer_head *right_leaf_bh;
2109 struct buffer_head *left_leaf_bh = NULL;
2110 struct buffer_head *root_bh;
2111 struct ocfs2_extent_list *right_el, *left_el;
2112 struct ocfs2_extent_rec move_rec;
2113
2114 left_leaf_bh = path_leaf_bh(left_path);
2115 left_el = path_leaf_el(left_path);
2116
2117 if (left_el->l_next_free_rec != left_el->l_count) {
2118 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2119 "Inode %llu has non-full interior leaf node %llu"
2120 "(next free = %u)",
2121 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2122 (unsigned long long)left_leaf_bh->b_blocknr,
2123 le16_to_cpu(left_el->l_next_free_rec));
2124 return -EROFS;
2125 }
2126
2127 /*
2128 * This extent block may already have an empty record, so we
2129 * return early if so.
2130 */
2131 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2132 return 0;
2133
2134 root_bh = left_path->p_node[subtree_index].bh;
2135 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2136
2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2138 subtree_index);
2139 if (ret) {
2140 mlog_errno(ret);
2141 goto out;
2142 }
2143
2144 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2146 right_path, i);
2147 if (ret) {
2148 mlog_errno(ret);
2149 goto out;
2150 }
2151
2152 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2153 left_path, i);
2154 if (ret) {
2155 mlog_errno(ret);
2156 goto out;
2157 }
2158 }
2159
2160 right_leaf_bh = path_leaf_bh(right_path);
2161 right_el = path_leaf_el(right_path);
2162
2163 /* This is a code error, not a disk corruption. */
2164 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2165 "because rightmost leaf block %llu is empty\n",
2166 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2167 (unsigned long long)right_leaf_bh->b_blocknr);
2168
2169 ocfs2_create_empty_extent(right_el);
2170
2171 ocfs2_journal_dirty(handle, right_leaf_bh);
2172
2173 /* Do the copy now. */
2174 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2175 move_rec = left_el->l_recs[i];
2176 right_el->l_recs[0] = move_rec;
2177
2178 /*
2179 * Clear out the record we just copied and shift everything
2180 * over, leaving an empty extent in the left leaf.
2181 *
2182 * We temporarily subtract from next_free_rec so that the
2183 * shift will lose the tail record (which is now defunct).
2184 */
2185 le16_add_cpu(&left_el->l_next_free_rec, -1);
2186 ocfs2_shift_records_right(left_el);
2187 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2188 le16_add_cpu(&left_el->l_next_free_rec, 1);
2189
2190 ocfs2_journal_dirty(handle, left_leaf_bh);
2191
2192 ocfs2_complete_edge_insert(handle, left_path, right_path,
2193 subtree_index);
2194
2195 out:
2196 return ret;
2197 }
2198
2199 /*
2200 * Given a full path, determine what cpos value would return us a path
2201 * containing the leaf immediately to the left of the current one.
2202 *
2203 * Will return zero if the path passed in is already the leftmost path.
2204 */
2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2206 struct ocfs2_path *path, u32 *cpos)
2207 {
2208 int i, j, ret = 0;
2209 u64 blkno;
2210 struct ocfs2_extent_list *el;
2211
2212 BUG_ON(path->p_tree_depth == 0);
2213
2214 *cpos = 0;
2215
2216 blkno = path_leaf_bh(path)->b_blocknr;
2217
2218 /* Start at the tree node just above the leaf and work our way up. */
2219 i = path->p_tree_depth - 1;
2220 while (i >= 0) {
2221 el = path->p_node[i].el;
2222
2223 /*
2224 * Find the extent record just before the one in our
2225 * path.
2226 */
2227 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2228 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2229 if (j == 0) {
2230 if (i == 0) {
2231 /*
2232 * We've determined that the
2233 * path specified is already
2234 * the leftmost one - return a
2235 * cpos of zero.
2236 */
2237 goto out;
2238 }
2239 /*
2240 * The leftmost record points to our
2241 * leaf - we need to travel up the
2242 * tree one level.
2243 */
2244 goto next_node;
2245 }
2246
2247 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2248 *cpos = *cpos + ocfs2_rec_clusters(el,
2249 &el->l_recs[j - 1]);
2250 *cpos = *cpos - 1;
2251 goto out;
2252 }
2253 }
2254
2255 /*
2256 * If we got here, we never found a valid node where
2257 * the tree indicated one should be.
2258 */
2259 ocfs2_error(sb,
2260 "Invalid extent tree at extent block %llu\n",
2261 (unsigned long long)blkno);
2262 ret = -EROFS;
2263 goto out;
2264
2265 next_node:
2266 blkno = path->p_node[i].bh->b_blocknr;
2267 i--;
2268 }
2269
2270 out:
2271 return ret;
2272 }
2273
2274 /*
2275 * Extend the transaction by enough credits to complete the rotation,
2276 * and still leave at least the original number of credits allocated
2277 * to this transaction.
2278 */
2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2280 int op_credits,
2281 struct ocfs2_path *path)
2282 {
2283 int ret = 0;
2284 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2285
2286 if (handle->h_buffer_credits < credits)
2287 ret = ocfs2_extend_trans(handle,
2288 credits - handle->h_buffer_credits);
2289
2290 return ret;
2291 }
2292
2293 /*
2294 * Trap the case where we're inserting into the theoretical range past
2295 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2296 * whose cpos is less than ours into the right leaf.
2297 *
2298 * It's only necessary to look at the rightmost record of the left
2299 * leaf because the logic that calls us should ensure that the
2300 * theoretical ranges in the path components above the leaves are
2301 * correct.
2302 */
2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2304 u32 insert_cpos)
2305 {
2306 struct ocfs2_extent_list *left_el;
2307 struct ocfs2_extent_rec *rec;
2308 int next_free;
2309
2310 left_el = path_leaf_el(left_path);
2311 next_free = le16_to_cpu(left_el->l_next_free_rec);
2312 rec = &left_el->l_recs[next_free - 1];
2313
2314 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2315 return 1;
2316 return 0;
2317 }
2318
2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2320 {
2321 int next_free = le16_to_cpu(el->l_next_free_rec);
2322 unsigned int range;
2323 struct ocfs2_extent_rec *rec;
2324
2325 if (next_free == 0)
2326 return 0;
2327
2328 rec = &el->l_recs[0];
2329 if (ocfs2_is_empty_extent(rec)) {
2330 /* Empty list. */
2331 if (next_free == 1)
2332 return 0;
2333 rec = &el->l_recs[1];
2334 }
2335
2336 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2337 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2338 return 1;
2339 return 0;
2340 }
2341
2342 /*
2343 * Rotate all the records in a btree right one record, starting at insert_cpos.
2344 *
2345 * The path to the rightmost leaf should be passed in.
2346 *
2347 * The array is assumed to be large enough to hold an entire path (tree depth).
2348 *
2349 * Upon successful return from this function:
2350 *
2351 * - The 'right_path' array will contain a path to the leaf block
2352 * whose range contains e_cpos.
2353 * - That leaf block will have a single empty extent in list index 0.
2354 * - In the case that the rotation requires a post-insert update,
2355 * *ret_left_path will contain a valid path which can be passed to
2356 * ocfs2_insert_path().
2357 */
2358 static int ocfs2_rotate_tree_right(handle_t *handle,
2359 struct ocfs2_extent_tree *et,
2360 enum ocfs2_split_type split,
2361 u32 insert_cpos,
2362 struct ocfs2_path *right_path,
2363 struct ocfs2_path **ret_left_path)
2364 {
2365 int ret, start, orig_credits = handle->h_buffer_credits;
2366 u32 cpos;
2367 struct ocfs2_path *left_path = NULL;
2368 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2369
2370 *ret_left_path = NULL;
2371
2372 left_path = ocfs2_new_path_from_path(right_path);
2373 if (!left_path) {
2374 ret = -ENOMEM;
2375 mlog_errno(ret);
2376 goto out;
2377 }
2378
2379 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2380 if (ret) {
2381 mlog_errno(ret);
2382 goto out;
2383 }
2384
2385 trace_ocfs2_rotate_tree_right(
2386 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2387 insert_cpos, cpos);
2388
2389 /*
2390 * What we want to do here is:
2391 *
2392 * 1) Start with the rightmost path.
2393 *
2394 * 2) Determine a path to the leaf block directly to the left
2395 * of that leaf.
2396 *
2397 * 3) Determine the 'subtree root' - the lowest level tree node
2398 * which contains a path to both leaves.
2399 *
2400 * 4) Rotate the subtree.
2401 *
2402 * 5) Find the next subtree by considering the left path to be
2403 * the new right path.
2404 *
2405 * The check at the top of this while loop also accepts
2406 * insert_cpos == cpos because cpos is only a _theoretical_
2407 * value to get us the left path - insert_cpos might very well
2408 * be filling that hole.
2409 *
2410 * Stop at a cpos of '0' because we either started at the
2411 * leftmost branch (i.e., a tree with one branch and a
2412 * rotation inside of it), or we've gone as far as we can in
2413 * rotating subtrees.
2414 */
2415 while (cpos && insert_cpos <= cpos) {
2416 trace_ocfs2_rotate_tree_right(
2417 (unsigned long long)
2418 ocfs2_metadata_cache_owner(et->et_ci),
2419 insert_cpos, cpos);
2420
2421 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2422 if (ret) {
2423 mlog_errno(ret);
2424 goto out;
2425 }
2426
2427 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2428 path_leaf_bh(right_path),
2429 "Owner %llu: error during insert of %u "
2430 "(left path cpos %u) results in two identical "
2431 "paths ending at %llu\n",
2432 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2433 insert_cpos, cpos,
2434 (unsigned long long)
2435 path_leaf_bh(left_path)->b_blocknr);
2436
2437 if (split == SPLIT_NONE &&
2438 ocfs2_rotate_requires_path_adjustment(left_path,
2439 insert_cpos)) {
2440
2441 /*
2442 * We've rotated the tree as much as we
2443 * should. The rest is up to
2444 * ocfs2_insert_path() to complete, after the
2445 * record insertion. We indicate this
2446 * situation by returning the left path.
2447 *
2448 * The reason we don't adjust the records here
2449 * before the record insert is that an error
2450 * later might break the rule where a parent
2451 * record e_cpos will reflect the actual
2452 * e_cpos of the 1st nonempty record of the
2453 * child list.
2454 */
2455 *ret_left_path = left_path;
2456 goto out_ret_path;
2457 }
2458
2459 start = ocfs2_find_subtree_root(et, left_path, right_path);
2460
2461 trace_ocfs2_rotate_subtree(start,
2462 (unsigned long long)
2463 right_path->p_node[start].bh->b_blocknr,
2464 right_path->p_tree_depth);
2465
2466 ret = ocfs2_extend_rotate_transaction(handle, start,
2467 orig_credits, right_path);
2468 if (ret) {
2469 mlog_errno(ret);
2470 goto out;
2471 }
2472
2473 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2474 right_path, start);
2475 if (ret) {
2476 mlog_errno(ret);
2477 goto out;
2478 }
2479
2480 if (split != SPLIT_NONE &&
2481 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2482 insert_cpos)) {
2483 /*
2484 * A rotate moves the rightmost left leaf
2485 * record over to the leftmost right leaf
2486 * slot. If we're doing an extent split
2487 * instead of a real insert, then we have to
2488 * check that the extent to be split wasn't
2489 * just moved over. If it was, then we can
2490 * exit here, passing left_path back -
2491 * ocfs2_split_extent() is smart enough to
2492 * search both leaves.
2493 */
2494 *ret_left_path = left_path;
2495 goto out_ret_path;
2496 }
2497
2498 /*
2499 * There is no need to re-read the next right path
2500 * as we know that it'll be our current left
2501 * path. Optimize by copying values instead.
2502 */
2503 ocfs2_mv_path(right_path, left_path);
2504
2505 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2506 if (ret) {
2507 mlog_errno(ret);
2508 goto out;
2509 }
2510 }
2511
2512 out:
2513 ocfs2_free_path(left_path);
2514
2515 out_ret_path:
2516 return ret;
2517 }
2518
2519 static int ocfs2_update_edge_lengths(handle_t *handle,
2520 struct ocfs2_extent_tree *et,
2521 int subtree_index, struct ocfs2_path *path)
2522 {
2523 int i, idx, ret;
2524 struct ocfs2_extent_rec *rec;
2525 struct ocfs2_extent_list *el;
2526 struct ocfs2_extent_block *eb;
2527 u32 range;
2528
2529 /*
2530 * In normal tree rotation process, we will never touch the
2531 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2532 * doesn't reserve the credits for them either.
2533 *
2534 * But we do have a special case here which will update the rightmost
2535 * records for all the bh in the path.
2536 * So we have to allocate extra credits and access them.
2537 */
2538 ret = ocfs2_extend_trans(handle, subtree_index);
2539 if (ret) {
2540 mlog_errno(ret);
2541 goto out;
2542 }
2543
2544 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2545 if (ret) {
2546 mlog_errno(ret);
2547 goto out;
2548 }
2549
2550 /* Path should always be rightmost. */
2551 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2552 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2553
2554 el = &eb->h_list;
2555 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2556 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557 rec = &el->l_recs[idx];
2558 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2559
2560 for (i = 0; i < path->p_tree_depth; i++) {
2561 el = path->p_node[i].el;
2562 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2563 rec = &el->l_recs[idx];
2564
2565 rec->e_int_clusters = cpu_to_le32(range);
2566 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2567
2568 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2569 }
2570 out:
2571 return ret;
2572 }
2573
2574 static void ocfs2_unlink_path(handle_t *handle,
2575 struct ocfs2_extent_tree *et,
2576 struct ocfs2_cached_dealloc_ctxt *dealloc,
2577 struct ocfs2_path *path, int unlink_start)
2578 {
2579 int ret, i;
2580 struct ocfs2_extent_block *eb;
2581 struct ocfs2_extent_list *el;
2582 struct buffer_head *bh;
2583
2584 for(i = unlink_start; i < path_num_items(path); i++) {
2585 bh = path->p_node[i].bh;
2586
2587 eb = (struct ocfs2_extent_block *)bh->b_data;
2588 /*
2589 * Not all nodes might have had their final count
2590 * decremented by the caller - handle this here.
2591 */
2592 el = &eb->h_list;
2593 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2594 mlog(ML_ERROR,
2595 "Inode %llu, attempted to remove extent block "
2596 "%llu with %u records\n",
2597 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2598 (unsigned long long)le64_to_cpu(eb->h_blkno),
2599 le16_to_cpu(el->l_next_free_rec));
2600
2601 ocfs2_journal_dirty(handle, bh);
2602 ocfs2_remove_from_cache(et->et_ci, bh);
2603 continue;
2604 }
2605
2606 el->l_next_free_rec = 0;
2607 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2608
2609 ocfs2_journal_dirty(handle, bh);
2610
2611 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2612 if (ret)
2613 mlog_errno(ret);
2614
2615 ocfs2_remove_from_cache(et->et_ci, bh);
2616 }
2617 }
2618
2619 static void ocfs2_unlink_subtree(handle_t *handle,
2620 struct ocfs2_extent_tree *et,
2621 struct ocfs2_path *left_path,
2622 struct ocfs2_path *right_path,
2623 int subtree_index,
2624 struct ocfs2_cached_dealloc_ctxt *dealloc)
2625 {
2626 int i;
2627 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2628 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2629 struct ocfs2_extent_list *el;
2630 struct ocfs2_extent_block *eb;
2631
2632 el = path_leaf_el(left_path);
2633
2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2635
2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2638 break;
2639
2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2641
2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2643 le16_add_cpu(&root_el->l_next_free_rec, -1);
2644
2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2646 eb->h_next_leaf_blk = 0;
2647
2648 ocfs2_journal_dirty(handle, root_bh);
2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2650
2651 ocfs2_unlink_path(handle, et, dealloc, right_path,
2652 subtree_index + 1);
2653 }
2654
2655 static int ocfs2_rotate_subtree_left(handle_t *handle,
2656 struct ocfs2_extent_tree *et,
2657 struct ocfs2_path *left_path,
2658 struct ocfs2_path *right_path,
2659 int subtree_index,
2660 struct ocfs2_cached_dealloc_ctxt *dealloc,
2661 int *deleted)
2662 {
2663 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2666 struct ocfs2_extent_block *eb;
2667
2668 *deleted = 0;
2669
2670 right_leaf_el = path_leaf_el(right_path);
2671 left_leaf_el = path_leaf_el(left_path);
2672 root_bh = left_path->p_node[subtree_index].bh;
2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2674
2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2676 return 0;
2677
2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2680 /*
2681 * It's legal for us to proceed if the right leaf is
2682 * the rightmost one and it has an empty extent. There
2683 * are two cases to handle - whether the leaf will be
2684 * empty after removal or not. If the leaf isn't empty
2685 * then just remove the empty extent up front. The
2686 * next block will handle empty leaves by flagging
2687 * them for unlink.
2688 *
2689 * Non rightmost leaves will throw -EAGAIN and the
2690 * caller can manually move the subtree and retry.
2691 */
2692
2693 if (eb->h_next_leaf_blk != 0ULL)
2694 return -EAGAIN;
2695
2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2697 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2698 path_leaf_bh(right_path),
2699 OCFS2_JOURNAL_ACCESS_WRITE);
2700 if (ret) {
2701 mlog_errno(ret);
2702 goto out;
2703 }
2704
2705 ocfs2_remove_empty_extent(right_leaf_el);
2706 } else
2707 right_has_empty = 1;
2708 }
2709
2710 if (eb->h_next_leaf_blk == 0ULL &&
2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2712 /*
2713 * We have to update i_last_eb_blk during the meta
2714 * data delete.
2715 */
2716 ret = ocfs2_et_root_journal_access(handle, et,
2717 OCFS2_JOURNAL_ACCESS_WRITE);
2718 if (ret) {
2719 mlog_errno(ret);
2720 goto out;
2721 }
2722
2723 del_right_subtree = 1;
2724 }
2725
2726 /*
2727 * Getting here with an empty extent in the right path implies
2728 * that it's the rightmost path and will be deleted.
2729 */
2730 BUG_ON(right_has_empty && !del_right_subtree);
2731
2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2733 subtree_index);
2734 if (ret) {
2735 mlog_errno(ret);
2736 goto out;
2737 }
2738
2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2741 right_path, i);
2742 if (ret) {
2743 mlog_errno(ret);
2744 goto out;
2745 }
2746
2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748 left_path, i);
2749 if (ret) {
2750 mlog_errno(ret);
2751 goto out;
2752 }
2753 }
2754
2755 if (!right_has_empty) {
2756 /*
2757 * Only do this if we're moving a real
2758 * record. Otherwise, the action is delayed until
2759 * after removal of the right path in which case we
2760 * can do a simple shift to remove the empty extent.
2761 */
2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2763 memset(&right_leaf_el->l_recs[0], 0,
2764 sizeof(struct ocfs2_extent_rec));
2765 }
2766 if (eb->h_next_leaf_blk == 0ULL) {
2767 /*
2768 * Move recs over to get rid of empty extent, decrease
2769 * next_free. This is allowed to remove the last
2770 * extent in our leaf (setting l_next_free_rec to
2771 * zero) - the delete code below won't care.
2772 */
2773 ocfs2_remove_empty_extent(right_leaf_el);
2774 }
2775
2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2778
2779 if (del_right_subtree) {
2780 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2781 subtree_index, dealloc);
2782 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2783 left_path);
2784 if (ret) {
2785 mlog_errno(ret);
2786 goto out;
2787 }
2788
2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2791
2792 /*
2793 * Removal of the extent in the left leaf was skipped
2794 * above so we could delete the right path
2795 * 1st.
2796 */
2797 if (right_has_empty)
2798 ocfs2_remove_empty_extent(left_leaf_el);
2799
2800 ocfs2_journal_dirty(handle, et_root_bh);
2801
2802 *deleted = 1;
2803 } else
2804 ocfs2_complete_edge_insert(handle, left_path, right_path,
2805 subtree_index);
2806
2807 out:
2808 return ret;
2809 }
2810
2811 /*
2812 * Given a full path, determine what cpos value would return us a path
2813 * containing the leaf immediately to the right of the current one.
2814 *
2815 * Will return zero if the path passed in is already the rightmost path.
2816 *
2817 * This looks similar, but is subtly different to
2818 * ocfs2_find_cpos_for_left_leaf().
2819 */
2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2821 struct ocfs2_path *path, u32 *cpos)
2822 {
2823 int i, j, ret = 0;
2824 u64 blkno;
2825 struct ocfs2_extent_list *el;
2826
2827 *cpos = 0;
2828
2829 if (path->p_tree_depth == 0)
2830 return 0;
2831
2832 blkno = path_leaf_bh(path)->b_blocknr;
2833
2834 /* Start at the tree node just above the leaf and work our way up. */
2835 i = path->p_tree_depth - 1;
2836 while (i >= 0) {
2837 int next_free;
2838
2839 el = path->p_node[i].el;
2840
2841 /*
2842 * Find the extent record just after the one in our
2843 * path.
2844 */
2845 next_free = le16_to_cpu(el->l_next_free_rec);
2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2848 if (j == (next_free - 1)) {
2849 if (i == 0) {
2850 /*
2851 * We've determined that the
2852 * path specified is already
2853 * the rightmost one - return a
2854 * cpos of zero.
2855 */
2856 goto out;
2857 }
2858 /*
2859 * The rightmost record points to our
2860 * leaf - we need to travel up the
2861 * tree one level.
2862 */
2863 goto next_node;
2864 }
2865
2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2867 goto out;
2868 }
2869 }
2870
2871 /*
2872 * If we got here, we never found a valid node where
2873 * the tree indicated one should be.
2874 */
2875 ocfs2_error(sb,
2876 "Invalid extent tree at extent block %llu\n",
2877 (unsigned long long)blkno);
2878 ret = -EROFS;
2879 goto out;
2880
2881 next_node:
2882 blkno = path->p_node[i].bh->b_blocknr;
2883 i--;
2884 }
2885
2886 out:
2887 return ret;
2888 }
2889
2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2891 struct ocfs2_extent_tree *et,
2892 struct ocfs2_path *path)
2893 {
2894 int ret;
2895 struct buffer_head *bh = path_leaf_bh(path);
2896 struct ocfs2_extent_list *el = path_leaf_el(path);
2897
2898 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899 return 0;
2900
2901 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2902 path_num_items(path) - 1);
2903 if (ret) {
2904 mlog_errno(ret);
2905 goto out;
2906 }
2907
2908 ocfs2_remove_empty_extent(el);
2909 ocfs2_journal_dirty(handle, bh);
2910
2911 out:
2912 return ret;
2913 }
2914
2915 static int __ocfs2_rotate_tree_left(handle_t *handle,
2916 struct ocfs2_extent_tree *et,
2917 int orig_credits,
2918 struct ocfs2_path *path,
2919 struct ocfs2_cached_dealloc_ctxt *dealloc,
2920 struct ocfs2_path **empty_extent_path)
2921 {
2922 int ret, subtree_root, deleted;
2923 u32 right_cpos;
2924 struct ocfs2_path *left_path = NULL;
2925 struct ocfs2_path *right_path = NULL;
2926 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2927
2928 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2929
2930 *empty_extent_path = NULL;
2931
2932 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2933 if (ret) {
2934 mlog_errno(ret);
2935 goto out;
2936 }
2937
2938 left_path = ocfs2_new_path_from_path(path);
2939 if (!left_path) {
2940 ret = -ENOMEM;
2941 mlog_errno(ret);
2942 goto out;
2943 }
2944
2945 ocfs2_cp_path(left_path, path);
2946
2947 right_path = ocfs2_new_path_from_path(path);
2948 if (!right_path) {
2949 ret = -ENOMEM;
2950 mlog_errno(ret);
2951 goto out;
2952 }
2953
2954 while (right_cpos) {
2955 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2956 if (ret) {
2957 mlog_errno(ret);
2958 goto out;
2959 }
2960
2961 subtree_root = ocfs2_find_subtree_root(et, left_path,
2962 right_path);
2963
2964 trace_ocfs2_rotate_subtree(subtree_root,
2965 (unsigned long long)
2966 right_path->p_node[subtree_root].bh->b_blocknr,
2967 right_path->p_tree_depth);
2968
2969 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2970 orig_credits, left_path);
2971 if (ret) {
2972 mlog_errno(ret);
2973 goto out;
2974 }
2975
2976 /*
2977 * Caller might still want to make changes to the
2978 * tree root, so re-add it to the journal here.
2979 */
2980 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2981 left_path, 0);
2982 if (ret) {
2983 mlog_errno(ret);
2984 goto out;
2985 }
2986
2987 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2988 right_path, subtree_root,
2989 dealloc, &deleted);
2990 if (ret == -EAGAIN) {
2991 /*
2992 * The rotation has to temporarily stop due to
2993 * the right subtree having an empty
2994 * extent. Pass it back to the caller for a
2995 * fixup.
2996 */
2997 *empty_extent_path = right_path;
2998 right_path = NULL;
2999 goto out;
3000 }
3001 if (ret) {
3002 mlog_errno(ret);
3003 goto out;
3004 }
3005
3006 /*
3007 * The subtree rotate might have removed records on
3008 * the rightmost edge. If so, then rotation is
3009 * complete.
3010 */
3011 if (deleted)
3012 break;
3013
3014 ocfs2_mv_path(left_path, right_path);
3015
3016 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3017 &right_cpos);
3018 if (ret) {
3019 mlog_errno(ret);
3020 goto out;
3021 }
3022 }
3023
3024 out:
3025 ocfs2_free_path(right_path);
3026 ocfs2_free_path(left_path);
3027
3028 return ret;
3029 }
3030
3031 static int ocfs2_remove_rightmost_path(handle_t *handle,
3032 struct ocfs2_extent_tree *et,
3033 struct ocfs2_path *path,
3034 struct ocfs2_cached_dealloc_ctxt *dealloc)
3035 {
3036 int ret, subtree_index;
3037 u32 cpos;
3038 struct ocfs2_path *left_path = NULL;
3039 struct ocfs2_extent_block *eb;
3040 struct ocfs2_extent_list *el;
3041
3042
3043 ret = ocfs2_et_sanity_check(et);
3044 if (ret)
3045 goto out;
3046 /*
3047 * There's two ways we handle this depending on
3048 * whether path is the only existing one.
3049 */
3050 ret = ocfs2_extend_rotate_transaction(handle, 0,
3051 handle->h_buffer_credits,
3052 path);
3053 if (ret) {
3054 mlog_errno(ret);
3055 goto out;
3056 }
3057
3058 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3059 if (ret) {
3060 mlog_errno(ret);
3061 goto out;
3062 }
3063
3064 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3065 path, &cpos);
3066 if (ret) {
3067 mlog_errno(ret);
3068 goto out;
3069 }
3070
3071 if (cpos) {
3072 /*
3073 * We have a path to the left of this one - it needs
3074 * an update too.
3075 */
3076 left_path = ocfs2_new_path_from_path(path);
3077 if (!left_path) {
3078 ret = -ENOMEM;
3079 mlog_errno(ret);
3080 goto out;
3081 }
3082
3083 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3084 if (ret) {
3085 mlog_errno(ret);
3086 goto out;
3087 }
3088
3089 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3090 if (ret) {
3091 mlog_errno(ret);
3092 goto out;
3093 }
3094
3095 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3096
3097 ocfs2_unlink_subtree(handle, et, left_path, path,
3098 subtree_index, dealloc);
3099 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3100 left_path);
3101 if (ret) {
3102 mlog_errno(ret);
3103 goto out;
3104 }
3105
3106 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3107 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3108 } else {
3109 /*
3110 * 'path' is also the leftmost path which
3111 * means it must be the only one. This gets
3112 * handled differently because we want to
3113 * revert the root back to having extents
3114 * in-line.
3115 */
3116 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3117
3118 el = et->et_root_el;
3119 el->l_tree_depth = 0;
3120 el->l_next_free_rec = 0;
3121 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3122
3123 ocfs2_et_set_last_eb_blk(et, 0);
3124 }
3125
3126 ocfs2_journal_dirty(handle, path_root_bh(path));
3127
3128 out:
3129 ocfs2_free_path(left_path);
3130 return ret;
3131 }
3132
3133 /*
3134 * Left rotation of btree records.
3135 *
3136 * In many ways, this is (unsurprisingly) the opposite of right
3137 * rotation. We start at some non-rightmost path containing an empty
3138 * extent in the leaf block. The code works its way to the rightmost
3139 * path by rotating records to the left in every subtree.
3140 *
3141 * This is used by any code which reduces the number of extent records
3142 * in a leaf. After removal, an empty record should be placed in the
3143 * leftmost list position.
3144 *
3145 * This won't handle a length update of the rightmost path records if
3146 * the rightmost tree leaf record is removed so the caller is
3147 * responsible for detecting and correcting that.
3148 */
3149 static int ocfs2_rotate_tree_left(handle_t *handle,
3150 struct ocfs2_extent_tree *et,
3151 struct ocfs2_path *path,
3152 struct ocfs2_cached_dealloc_ctxt *dealloc)
3153 {
3154 int ret, orig_credits = handle->h_buffer_credits;
3155 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3156 struct ocfs2_extent_block *eb;
3157 struct ocfs2_extent_list *el;
3158
3159 el = path_leaf_el(path);
3160 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3161 return 0;
3162
3163 if (path->p_tree_depth == 0) {
3164 rightmost_no_delete:
3165 /*
3166 * Inline extents. This is trivially handled, so do
3167 * it up front.
3168 */
3169 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3170 if (ret)
3171 mlog_errno(ret);
3172 goto out;
3173 }
3174
3175 /*
3176 * Handle rightmost branch now. There's several cases:
3177 * 1) simple rotation leaving records in there. That's trivial.
3178 * 2) rotation requiring a branch delete - there's no more
3179 * records left. Two cases of this:
3180 * a) There are branches to the left.
3181 * b) This is also the leftmost (the only) branch.
3182 *
3183 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3184 * 2a) we need the left branch so that we can update it with the unlink
3185 * 2b) we need to bring the root back to inline extents.
3186 */
3187
3188 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3189 el = &eb->h_list;
3190 if (eb->h_next_leaf_blk == 0) {
3191 /*
3192 * This gets a bit tricky if we're going to delete the
3193 * rightmost path. Get the other cases out of the way
3194 * 1st.
3195 */
3196 if (le16_to_cpu(el->l_next_free_rec) > 1)
3197 goto rightmost_no_delete;
3198
3199 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3200 ret = -EIO;
3201 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3202 "Owner %llu has empty extent block at %llu",
3203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3204 (unsigned long long)le64_to_cpu(eb->h_blkno));
3205 goto out;
3206 }
3207
3208 /*
3209 * XXX: The caller can not trust "path" any more after
3210 * this as it will have been deleted. What do we do?
3211 *
3212 * In theory the rotate-for-merge code will never get
3213 * here because it'll always ask for a rotate in a
3214 * nonempty list.
3215 */
3216
3217 ret = ocfs2_remove_rightmost_path(handle, et, path,
3218 dealloc);
3219 if (ret)
3220 mlog_errno(ret);
3221 goto out;
3222 }
3223
3224 /*
3225 * Now we can loop, remembering the path we get from -EAGAIN
3226 * and restarting from there.
3227 */
3228 try_rotate:
3229 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3230 dealloc, &restart_path);
3231 if (ret && ret != -EAGAIN) {
3232 mlog_errno(ret);
3233 goto out;
3234 }
3235
3236 while (ret == -EAGAIN) {
3237 tmp_path = restart_path;
3238 restart_path = NULL;
3239
3240 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3241 tmp_path, dealloc,
3242 &restart_path);
3243 if (ret && ret != -EAGAIN) {
3244 mlog_errno(ret);
3245 goto out;
3246 }
3247
3248 ocfs2_free_path(tmp_path);
3249 tmp_path = NULL;
3250
3251 if (ret == 0)
3252 goto try_rotate;
3253 }
3254
3255 out:
3256 ocfs2_free_path(tmp_path);
3257 ocfs2_free_path(restart_path);
3258 return ret;
3259 }
3260
3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3262 int index)
3263 {
3264 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3265 unsigned int size;
3266
3267 if (rec->e_leaf_clusters == 0) {
3268 /*
3269 * We consumed all of the merged-from record. An empty
3270 * extent cannot exist anywhere but the 1st array
3271 * position, so move things over if the merged-from
3272 * record doesn't occupy that position.
3273 *
3274 * This creates a new empty extent so the caller
3275 * should be smart enough to have removed any existing
3276 * ones.
3277 */
3278 if (index > 0) {
3279 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3280 size = index * sizeof(struct ocfs2_extent_rec);
3281 memmove(&el->l_recs[1], &el->l_recs[0], size);
3282 }
3283
3284 /*
3285 * Always memset - the caller doesn't check whether it
3286 * created an empty extent, so there could be junk in
3287 * the other fields.
3288 */
3289 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3290 }
3291 }
3292
3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3294 struct ocfs2_path *left_path,
3295 struct ocfs2_path **ret_right_path)
3296 {
3297 int ret;
3298 u32 right_cpos;
3299 struct ocfs2_path *right_path = NULL;
3300 struct ocfs2_extent_list *left_el;
3301
3302 *ret_right_path = NULL;
3303
3304 /* This function shouldn't be called for non-trees. */
3305 BUG_ON(left_path->p_tree_depth == 0);
3306
3307 left_el = path_leaf_el(left_path);
3308 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3309
3310 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3311 left_path, &right_cpos);
3312 if (ret) {
3313 mlog_errno(ret);
3314 goto out;
3315 }
3316
3317 /* This function shouldn't be called for the rightmost leaf. */
3318 BUG_ON(right_cpos == 0);
3319
3320 right_path = ocfs2_new_path_from_path(left_path);
3321 if (!right_path) {
3322 ret = -ENOMEM;
3323 mlog_errno(ret);
3324 goto out;
3325 }
3326
3327 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3328 if (ret) {
3329 mlog_errno(ret);
3330 goto out;
3331 }
3332
3333 *ret_right_path = right_path;
3334 out:
3335 if (ret)
3336 ocfs2_free_path(right_path);
3337 return ret;
3338 }
3339
3340 /*
3341 * Remove split_rec clusters from the record at index and merge them
3342 * onto the beginning of the record "next" to it.
3343 * For index < l_count - 1, the next means the extent rec at index + 1.
3344 * For index == l_count - 1, the "next" means the 1st extent rec of the
3345 * next extent block.
3346 */
3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3348 handle_t *handle,
3349 struct ocfs2_extent_tree *et,
3350 struct ocfs2_extent_rec *split_rec,
3351 int index)
3352 {
3353 int ret, next_free, i;
3354 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3355 struct ocfs2_extent_rec *left_rec;
3356 struct ocfs2_extent_rec *right_rec;
3357 struct ocfs2_extent_list *right_el;
3358 struct ocfs2_path *right_path = NULL;
3359 int subtree_index = 0;
3360 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3361 struct buffer_head *bh = path_leaf_bh(left_path);
3362 struct buffer_head *root_bh = NULL;
3363
3364 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3365 left_rec = &el->l_recs[index];
3366
3367 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3368 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3369 /* we meet with a cross extent block merge. */
3370 ret = ocfs2_get_right_path(et, left_path, &right_path);
3371 if (ret) {
3372 mlog_errno(ret);
3373 return ret;
3374 }
3375
3376 right_el = path_leaf_el(right_path);
3377 next_free = le16_to_cpu(right_el->l_next_free_rec);
3378 BUG_ON(next_free <= 0);
3379 right_rec = &right_el->l_recs[0];
3380 if (ocfs2_is_empty_extent(right_rec)) {
3381 BUG_ON(next_free <= 1);
3382 right_rec = &right_el->l_recs[1];
3383 }
3384
3385 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3386 le16_to_cpu(left_rec->e_leaf_clusters) !=
3387 le32_to_cpu(right_rec->e_cpos));
3388
3389 subtree_index = ocfs2_find_subtree_root(et, left_path,
3390 right_path);
3391
3392 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3393 handle->h_buffer_credits,
3394 right_path);
3395 if (ret) {
3396 mlog_errno(ret);
3397 goto out;
3398 }
3399
3400 root_bh = left_path->p_node[subtree_index].bh;
3401 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3402
3403 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3404 subtree_index);
3405 if (ret) {
3406 mlog_errno(ret);
3407 goto out;
3408 }
3409
3410 for (i = subtree_index + 1;
3411 i < path_num_items(right_path); i++) {
3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413 right_path, i);
3414 if (ret) {
3415 mlog_errno(ret);
3416 goto out;
3417 }
3418
3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3420 left_path, i);
3421 if (ret) {
3422 mlog_errno(ret);
3423 goto out;
3424 }
3425 }
3426
3427 } else {
3428 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3429 right_rec = &el->l_recs[index + 1];
3430 }
3431
3432 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3433 path_num_items(left_path) - 1);
3434 if (ret) {
3435 mlog_errno(ret);
3436 goto out;
3437 }
3438
3439 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3440
3441 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3442 le64_add_cpu(&right_rec->e_blkno,
3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3444 split_clusters));
3445 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3446
3447 ocfs2_cleanup_merge(el, index);
3448
3449 ocfs2_journal_dirty(handle, bh);
3450 if (right_path) {
3451 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3452 ocfs2_complete_edge_insert(handle, left_path, right_path,
3453 subtree_index);
3454 }
3455 out:
3456 ocfs2_free_path(right_path);
3457 return ret;
3458 }
3459
3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3461 struct ocfs2_path *right_path,
3462 struct ocfs2_path **ret_left_path)
3463 {
3464 int ret;
3465 u32 left_cpos;
3466 struct ocfs2_path *left_path = NULL;
3467
3468 *ret_left_path = NULL;
3469
3470 /* This function shouldn't be called for non-trees. */
3471 BUG_ON(right_path->p_tree_depth == 0);
3472
3473 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3474 right_path, &left_cpos);
3475 if (ret) {
3476 mlog_errno(ret);
3477 goto out;
3478 }
3479
3480 /* This function shouldn't be called for the leftmost leaf. */
3481 BUG_ON(left_cpos == 0);
3482
3483 left_path = ocfs2_new_path_from_path(right_path);
3484 if (!left_path) {
3485 ret = -ENOMEM;
3486 mlog_errno(ret);
3487 goto out;
3488 }
3489
3490 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3491 if (ret) {
3492 mlog_errno(ret);
3493 goto out;
3494 }
3495
3496 *ret_left_path = left_path;
3497 out:
3498 if (ret)
3499 ocfs2_free_path(left_path);
3500 return ret;
3501 }
3502
3503 /*
3504 * Remove split_rec clusters from the record at index and merge them
3505 * onto the tail of the record "before" it.
3506 * For index > 0, the "before" means the extent rec at index - 1.
3507 *
3508 * For index == 0, the "before" means the last record of the previous
3509 * extent block. And there is also a situation that we may need to
3510 * remove the rightmost leaf extent block in the right_path and change
3511 * the right path to indicate the new rightmost path.
3512 */
3513 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3514 handle_t *handle,
3515 struct ocfs2_extent_tree *et,
3516 struct ocfs2_extent_rec *split_rec,
3517 struct ocfs2_cached_dealloc_ctxt *dealloc,
3518 int index)
3519 {
3520 int ret, i, subtree_index = 0, has_empty_extent = 0;
3521 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3522 struct ocfs2_extent_rec *left_rec;
3523 struct ocfs2_extent_rec *right_rec;
3524 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3525 struct buffer_head *bh = path_leaf_bh(right_path);
3526 struct buffer_head *root_bh = NULL;
3527 struct ocfs2_path *left_path = NULL;
3528 struct ocfs2_extent_list *left_el;
3529
3530 BUG_ON(index < 0);
3531
3532 right_rec = &el->l_recs[index];
3533 if (index == 0) {
3534 /* we meet with a cross extent block merge. */
3535 ret = ocfs2_get_left_path(et, right_path, &left_path);
3536 if (ret) {
3537 mlog_errno(ret);
3538 return ret;
3539 }
3540
3541 left_el = path_leaf_el(left_path);
3542 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3543 le16_to_cpu(left_el->l_count));
3544
3545 left_rec = &left_el->l_recs[
3546 le16_to_cpu(left_el->l_next_free_rec) - 1];
3547 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3548 le16_to_cpu(left_rec->e_leaf_clusters) !=
3549 le32_to_cpu(split_rec->e_cpos));
3550
3551 subtree_index = ocfs2_find_subtree_root(et, left_path,
3552 right_path);
3553
3554 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3555 handle->h_buffer_credits,
3556 left_path);
3557 if (ret) {
3558 mlog_errno(ret);
3559 goto out;
3560 }
3561
3562 root_bh = left_path->p_node[subtree_index].bh;
3563 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3564
3565 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3566 subtree_index);
3567 if (ret) {
3568 mlog_errno(ret);
3569 goto out;
3570 }
3571
3572 for (i = subtree_index + 1;
3573 i < path_num_items(right_path); i++) {
3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3575 right_path, i);
3576 if (ret) {
3577 mlog_errno(ret);
3578 goto out;
3579 }
3580
3581 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3582 left_path, i);
3583 if (ret) {
3584 mlog_errno(ret);
3585 goto out;
3586 }
3587 }
3588 } else {
3589 left_rec = &el->l_recs[index - 1];
3590 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3591 has_empty_extent = 1;
3592 }
3593
3594 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3595 path_num_items(right_path) - 1);
3596 if (ret) {
3597 mlog_errno(ret);
3598 goto out;
3599 }
3600
3601 if (has_empty_extent && index == 1) {
3602 /*
3603 * The easy case - we can just plop the record right in.
3604 */
3605 *left_rec = *split_rec;
3606
3607 has_empty_extent = 0;
3608 } else
3609 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3610
3611 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3612 le64_add_cpu(&right_rec->e_blkno,
3613 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3614 split_clusters));
3615 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3616
3617 ocfs2_cleanup_merge(el, index);
3618
3619 ocfs2_journal_dirty(handle, bh);
3620 if (left_path) {
3621 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3622
3623 /*
3624 * In the situation that the right_rec is empty and the extent
3625 * block is empty also, ocfs2_complete_edge_insert can't handle
3626 * it and we need to delete the right extent block.
3627 */
3628 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3629 le16_to_cpu(el->l_next_free_rec) == 1) {
3630
3631 ret = ocfs2_remove_rightmost_path(handle, et,
3632 right_path,
3633 dealloc);
3634 if (ret) {
3635 mlog_errno(ret);
3636 goto out;
3637 }
3638
3639 /* Now the rightmost extent block has been deleted.
3640 * So we use the new rightmost path.
3641 */
3642 ocfs2_mv_path(right_path, left_path);
3643 left_path = NULL;
3644 } else
3645 ocfs2_complete_edge_insert(handle, left_path,
3646 right_path, subtree_index);
3647 }
3648 out:
3649 ocfs2_free_path(left_path);
3650 return ret;
3651 }
3652
3653 static int ocfs2_try_to_merge_extent(handle_t *handle,
3654 struct ocfs2_extent_tree *et,
3655 struct ocfs2_path *path,
3656 int split_index,
3657 struct ocfs2_extent_rec *split_rec,
3658 struct ocfs2_cached_dealloc_ctxt *dealloc,
3659 struct ocfs2_merge_ctxt *ctxt)
3660 {
3661 int ret = 0;
3662 struct ocfs2_extent_list *el = path_leaf_el(path);
3663 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3664
3665 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3666
3667 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3668 /*
3669 * The merge code will need to create an empty
3670 * extent to take the place of the newly
3671 * emptied slot. Remove any pre-existing empty
3672 * extents - having more than one in a leaf is
3673 * illegal.
3674 */
3675 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3676 if (ret) {
3677 mlog_errno(ret);
3678 goto out;
3679 }
3680 split_index--;
3681 rec = &el->l_recs[split_index];
3682 }
3683
3684 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3685 /*
3686 * Left-right contig implies this.
3687 */
3688 BUG_ON(!ctxt->c_split_covers_rec);
3689
3690 /*
3691 * Since the leftright insert always covers the entire
3692 * extent, this call will delete the insert record
3693 * entirely, resulting in an empty extent record added to
3694 * the extent block.
3695 *
3696 * Since the adding of an empty extent shifts
3697 * everything back to the right, there's no need to
3698 * update split_index here.
3699 *
3700 * When the split_index is zero, we need to merge it to the
3701 * prevoius extent block. It is more efficient and easier
3702 * if we do merge_right first and merge_left later.
3703 */
3704 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3705 split_index);
3706 if (ret) {
3707 mlog_errno(ret);
3708 goto out;
3709 }
3710
3711 /*
3712 * We can only get this from logic error above.
3713 */
3714 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3715
3716 /* The merge left us with an empty extent, remove it. */
3717 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3718 if (ret) {
3719 mlog_errno(ret);
3720 goto out;
3721 }
3722
3723 rec = &el->l_recs[split_index];
3724
3725 /*
3726 * Note that we don't pass split_rec here on purpose -
3727 * we've merged it into the rec already.
3728 */
3729 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3730 dealloc, split_index);
3731
3732 if (ret) {
3733 mlog_errno(ret);
3734 goto out;
3735 }
3736
3737 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3738 /*
3739 * Error from this last rotate is not critical, so
3740 * print but don't bubble it up.
3741 */
3742 if (ret)
3743 mlog_errno(ret);
3744 ret = 0;
3745 } else {
3746 /*
3747 * Merge a record to the left or right.
3748 *
3749 * 'contig_type' is relative to the existing record,
3750 * so for example, if we're "right contig", it's to
3751 * the record on the left (hence the left merge).
3752 */
3753 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3754 ret = ocfs2_merge_rec_left(path, handle, et,
3755 split_rec, dealloc,
3756 split_index);
3757 if (ret) {
3758 mlog_errno(ret);
3759 goto out;
3760 }
3761 } else {
3762 ret = ocfs2_merge_rec_right(path, handle,
3763 et, split_rec,
3764 split_index);
3765 if (ret) {
3766 mlog_errno(ret);
3767 goto out;
3768 }
3769 }
3770
3771 if (ctxt->c_split_covers_rec) {
3772 /*
3773 * The merge may have left an empty extent in
3774 * our leaf. Try to rotate it away.
3775 */
3776 ret = ocfs2_rotate_tree_left(handle, et, path,
3777 dealloc);
3778 if (ret)
3779 mlog_errno(ret);
3780 ret = 0;
3781 }
3782 }
3783
3784 out:
3785 return ret;
3786 }
3787
3788 static void ocfs2_subtract_from_rec(struct super_block *sb,
3789 enum ocfs2_split_type split,
3790 struct ocfs2_extent_rec *rec,
3791 struct ocfs2_extent_rec *split_rec)
3792 {
3793 u64 len_blocks;
3794
3795 len_blocks = ocfs2_clusters_to_blocks(sb,
3796 le16_to_cpu(split_rec->e_leaf_clusters));
3797
3798 if (split == SPLIT_LEFT) {
3799 /*
3800 * Region is on the left edge of the existing
3801 * record.
3802 */
3803 le32_add_cpu(&rec->e_cpos,
3804 le16_to_cpu(split_rec->e_leaf_clusters));
3805 le64_add_cpu(&rec->e_blkno, len_blocks);
3806 le16_add_cpu(&rec->e_leaf_clusters,
3807 -le16_to_cpu(split_rec->e_leaf_clusters));
3808 } else {
3809 /*
3810 * Region is on the right edge of the existing
3811 * record.
3812 */
3813 le16_add_cpu(&rec->e_leaf_clusters,
3814 -le16_to_cpu(split_rec->e_leaf_clusters));
3815 }
3816 }
3817
3818 /*
3819 * Do the final bits of extent record insertion at the target leaf
3820 * list. If this leaf is part of an allocation tree, it is assumed
3821 * that the tree above has been prepared.
3822 */
3823 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3824 struct ocfs2_extent_rec *insert_rec,
3825 struct ocfs2_extent_list *el,
3826 struct ocfs2_insert_type *insert)
3827 {
3828 int i = insert->ins_contig_index;
3829 unsigned int range;
3830 struct ocfs2_extent_rec *rec;
3831
3832 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3833
3834 if (insert->ins_split != SPLIT_NONE) {
3835 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3836 BUG_ON(i == -1);
3837 rec = &el->l_recs[i];
3838 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3839 insert->ins_split, rec,
3840 insert_rec);
3841 goto rotate;
3842 }
3843
3844 /*
3845 * Contiguous insert - either left or right.
3846 */
3847 if (insert->ins_contig != CONTIG_NONE) {
3848 rec = &el->l_recs[i];
3849 if (insert->ins_contig == CONTIG_LEFT) {
3850 rec->e_blkno = insert_rec->e_blkno;
3851 rec->e_cpos = insert_rec->e_cpos;
3852 }
3853 le16_add_cpu(&rec->e_leaf_clusters,
3854 le16_to_cpu(insert_rec->e_leaf_clusters));
3855 return;
3856 }
3857
3858 /*
3859 * Handle insert into an empty leaf.
3860 */
3861 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3862 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3863 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3864 el->l_recs[0] = *insert_rec;
3865 el->l_next_free_rec = cpu_to_le16(1);
3866 return;
3867 }
3868
3869 /*
3870 * Appending insert.
3871 */
3872 if (insert->ins_appending == APPEND_TAIL) {
3873 i = le16_to_cpu(el->l_next_free_rec) - 1;
3874 rec = &el->l_recs[i];
3875 range = le32_to_cpu(rec->e_cpos)
3876 + le16_to_cpu(rec->e_leaf_clusters);
3877 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3878
3879 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3880 le16_to_cpu(el->l_count),
3881 "owner %llu, depth %u, count %u, next free %u, "
3882 "rec.cpos %u, rec.clusters %u, "
3883 "insert.cpos %u, insert.clusters %u\n",
3884 ocfs2_metadata_cache_owner(et->et_ci),
3885 le16_to_cpu(el->l_tree_depth),
3886 le16_to_cpu(el->l_count),
3887 le16_to_cpu(el->l_next_free_rec),
3888 le32_to_cpu(el->l_recs[i].e_cpos),
3889 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3890 le32_to_cpu(insert_rec->e_cpos),
3891 le16_to_cpu(insert_rec->e_leaf_clusters));
3892 i++;
3893 el->l_recs[i] = *insert_rec;
3894 le16_add_cpu(&el->l_next_free_rec, 1);
3895 return;
3896 }
3897
3898 rotate:
3899 /*
3900 * Ok, we have to rotate.
3901 *
3902 * At this point, it is safe to assume that inserting into an
3903 * empty leaf and appending to a leaf have both been handled
3904 * above.
3905 *
3906 * This leaf needs to have space, either by the empty 1st
3907 * extent record, or by virtue of an l_next_rec < l_count.
3908 */
3909 ocfs2_rotate_leaf(el, insert_rec);
3910 }
3911
3912 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3913 struct ocfs2_extent_tree *et,
3914 struct ocfs2_path *path,
3915 struct ocfs2_extent_rec *insert_rec)
3916 {
3917 int ret, i, next_free;
3918 struct buffer_head *bh;
3919 struct ocfs2_extent_list *el;
3920 struct ocfs2_extent_rec *rec;
3921
3922 /*
3923 * Update everything except the leaf block.
3924 */
3925 for (i = 0; i < path->p_tree_depth; i++) {
3926 bh = path->p_node[i].bh;
3927 el = path->p_node[i].el;
3928
3929 next_free = le16_to_cpu(el->l_next_free_rec);
3930 if (next_free == 0) {
3931 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3932 "Owner %llu has a bad extent list",
3933 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3934 ret = -EIO;
3935 return;
3936 }
3937
3938 rec = &el->l_recs[next_free - 1];
3939
3940 rec->e_int_clusters = insert_rec->e_cpos;
3941 le32_add_cpu(&rec->e_int_clusters,
3942 le16_to_cpu(insert_rec->e_leaf_clusters));
3943 le32_add_cpu(&rec->e_int_clusters,
3944 -le32_to_cpu(rec->e_cpos));
3945
3946 ocfs2_journal_dirty(handle, bh);
3947 }
3948 }
3949
3950 static int ocfs2_append_rec_to_path(handle_t *handle,
3951 struct ocfs2_extent_tree *et,
3952 struct ocfs2_extent_rec *insert_rec,
3953 struct ocfs2_path *right_path,
3954 struct ocfs2_path **ret_left_path)
3955 {
3956 int ret, next_free;
3957 struct ocfs2_extent_list *el;
3958 struct ocfs2_path *left_path = NULL;
3959
3960 *ret_left_path = NULL;
3961
3962 /*
3963 * This shouldn't happen for non-trees. The extent rec cluster
3964 * count manipulation below only works for interior nodes.
3965 */
3966 BUG_ON(right_path->p_tree_depth == 0);
3967
3968 /*
3969 * If our appending insert is at the leftmost edge of a leaf,
3970 * then we might need to update the rightmost records of the
3971 * neighboring path.
3972 */
3973 el = path_leaf_el(right_path);
3974 next_free = le16_to_cpu(el->l_next_free_rec);
3975 if (next_free == 0 ||
3976 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3977 u32 left_cpos;
3978
3979 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3980 right_path, &left_cpos);
3981 if (ret) {
3982 mlog_errno(ret);
3983 goto out;
3984 }
3985
3986 trace_ocfs2_append_rec_to_path(
3987 (unsigned long long)
3988 ocfs2_metadata_cache_owner(et->et_ci),
3989 le32_to_cpu(insert_rec->e_cpos),
3990 left_cpos);
3991
3992 /*
3993 * No need to worry if the append is already in the
3994 * leftmost leaf.
3995 */
3996 if (left_cpos) {
3997 left_path = ocfs2_new_path_from_path(right_path);
3998 if (!left_path) {
3999 ret = -ENOMEM;
4000 mlog_errno(ret);
4001 goto out;
4002 }
4003
4004 ret = ocfs2_find_path(et->et_ci, left_path,
4005 left_cpos);
4006 if (ret) {
4007 mlog_errno(ret);
4008 goto out;
4009 }
4010
4011 /*
4012 * ocfs2_insert_path() will pass the left_path to the
4013 * journal for us.
4014 */
4015 }
4016 }
4017
4018 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4019 if (ret) {
4020 mlog_errno(ret);
4021 goto out;
4022 }
4023
4024 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4025
4026 *ret_left_path = left_path;
4027 ret = 0;
4028 out:
4029 if (ret != 0)
4030 ocfs2_free_path(left_path);
4031
4032 return ret;
4033 }
4034
4035 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4036 struct ocfs2_path *left_path,
4037 struct ocfs2_path *right_path,
4038 struct ocfs2_extent_rec *split_rec,
4039 enum ocfs2_split_type split)
4040 {
4041 int index;
4042 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4043 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4044 struct ocfs2_extent_rec *rec, *tmprec;
4045
4046 right_el = path_leaf_el(right_path);
4047 if (left_path)
4048 left_el = path_leaf_el(left_path);
4049
4050 el = right_el;
4051 insert_el = right_el;
4052 index = ocfs2_search_extent_list(el, cpos);
4053 if (index != -1) {
4054 if (index == 0 && left_path) {
4055 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4056
4057 /*
4058 * This typically means that the record
4059 * started in the left path but moved to the
4060 * right as a result of rotation. We either
4061 * move the existing record to the left, or we
4062 * do the later insert there.
4063 *
4064 * In this case, the left path should always
4065 * exist as the rotate code will have passed
4066 * it back for a post-insert update.
4067 */
4068
4069 if (split == SPLIT_LEFT) {
4070 /*
4071 * It's a left split. Since we know
4072 * that the rotate code gave us an
4073 * empty extent in the left path, we
4074 * can just do the insert there.
4075 */
4076 insert_el = left_el;
4077 } else {
4078 /*
4079 * Right split - we have to move the
4080 * existing record over to the left
4081 * leaf. The insert will be into the
4082 * newly created empty extent in the
4083 * right leaf.
4084 */
4085 tmprec = &right_el->l_recs[index];
4086 ocfs2_rotate_leaf(left_el, tmprec);
4087 el = left_el;
4088
4089 memset(tmprec, 0, sizeof(*tmprec));
4090 index = ocfs2_search_extent_list(left_el, cpos);
4091 BUG_ON(index == -1);
4092 }
4093 }
4094 } else {
4095 BUG_ON(!left_path);
4096 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4097 /*
4098 * Left path is easy - we can just allow the insert to
4099 * happen.
4100 */
4101 el = left_el;
4102 insert_el = left_el;
4103 index = ocfs2_search_extent_list(el, cpos);
4104 BUG_ON(index == -1);
4105 }
4106
4107 rec = &el->l_recs[index];
4108 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4109 split, rec, split_rec);
4110 ocfs2_rotate_leaf(insert_el, split_rec);
4111 }
4112
4113 /*
4114 * This function only does inserts on an allocation b-tree. For tree
4115 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4116 *
4117 * right_path is the path we want to do the actual insert
4118 * in. left_path should only be passed in if we need to update that
4119 * portion of the tree after an edge insert.
4120 */
4121 static int ocfs2_insert_path(handle_t *handle,
4122 struct ocfs2_extent_tree *et,
4123 struct ocfs2_path *left_path,
4124 struct ocfs2_path *right_path,
4125 struct ocfs2_extent_rec *insert_rec,
4126 struct ocfs2_insert_type *insert)
4127 {
4128 int ret, subtree_index;
4129 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4130
4131 if (left_path) {
4132 /*
4133 * There's a chance that left_path got passed back to
4134 * us without being accounted for in the
4135 * journal. Extend our transaction here to be sure we
4136 * can change those blocks.
4137 */
4138 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4139 if (ret < 0) {
4140 mlog_errno(ret);
4141 goto out;
4142 }
4143
4144 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4145 if (ret < 0) {
4146 mlog_errno(ret);
4147 goto out;
4148 }
4149 }
4150
4151 /*
4152 * Pass both paths to the journal. The majority of inserts
4153 * will be touching all components anyway.
4154 */
4155 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4156 if (ret < 0) {
4157 mlog_errno(ret);
4158 goto out;
4159 }
4160
4161 if (insert->ins_split != SPLIT_NONE) {
4162 /*
4163 * We could call ocfs2_insert_at_leaf() for some types
4164 * of splits, but it's easier to just let one separate
4165 * function sort it all out.
4166 */
4167 ocfs2_split_record(et, left_path, right_path,
4168 insert_rec, insert->ins_split);
4169
4170 /*
4171 * Split might have modified either leaf and we don't
4172 * have a guarantee that the later edge insert will
4173 * dirty this for us.
4174 */
4175 if (left_path)
4176 ocfs2_journal_dirty(handle,
4177 path_leaf_bh(left_path));
4178 } else
4179 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4180 insert);
4181
4182 ocfs2_journal_dirty(handle, leaf_bh);
4183
4184 if (left_path) {
4185 /*
4186 * The rotate code has indicated that we need to fix
4187 * up portions of the tree after the insert.
4188 *
4189 * XXX: Should we extend the transaction here?
4190 */
4191 subtree_index = ocfs2_find_subtree_root(et, left_path,
4192 right_path);
4193 ocfs2_complete_edge_insert(handle, left_path, right_path,
4194 subtree_index);
4195 }
4196
4197 ret = 0;
4198 out:
4199 return ret;
4200 }
4201
4202 static int ocfs2_do_insert_extent(handle_t *handle,
4203 struct ocfs2_extent_tree *et,
4204 struct ocfs2_extent_rec *insert_rec,
4205 struct ocfs2_insert_type *type)
4206 {
4207 int ret, rotate = 0;
4208 u32 cpos;
4209 struct ocfs2_path *right_path = NULL;
4210 struct ocfs2_path *left_path = NULL;
4211 struct ocfs2_extent_list *el;
4212
4213 el = et->et_root_el;
4214
4215 ret = ocfs2_et_root_journal_access(handle, et,
4216 OCFS2_JOURNAL_ACCESS_WRITE);
4217 if (ret) {
4218 mlog_errno(ret);
4219 goto out;
4220 }
4221
4222 if (le16_to_cpu(el->l_tree_depth) == 0) {
4223 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4224 goto out_update_clusters;
4225 }
4226
4227 right_path = ocfs2_new_path_from_et(et);
4228 if (!right_path) {
4229 ret = -ENOMEM;
4230 mlog_errno(ret);
4231 goto out;
4232 }
4233
4234 /*
4235 * Determine the path to start with. Rotations need the
4236 * rightmost path, everything else can go directly to the
4237 * target leaf.
4238 */
4239 cpos = le32_to_cpu(insert_rec->e_cpos);
4240 if (type->ins_appending == APPEND_NONE &&
4241 type->ins_contig == CONTIG_NONE) {
4242 rotate = 1;
4243 cpos = UINT_MAX;
4244 }
4245
4246 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4247 if (ret) {
4248 mlog_errno(ret);
4249 goto out;
4250 }
4251
4252 /*
4253 * Rotations and appends need special treatment - they modify
4254 * parts of the tree's above them.
4255 *
4256 * Both might pass back a path immediate to the left of the
4257 * one being inserted to. This will be cause
4258 * ocfs2_insert_path() to modify the rightmost records of
4259 * left_path to account for an edge insert.
4260 *
4261 * XXX: When modifying this code, keep in mind that an insert
4262 * can wind up skipping both of these two special cases...
4263 */
4264 if (rotate) {
4265 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4266 le32_to_cpu(insert_rec->e_cpos),
4267 right_path, &left_path);
4268 if (ret) {
4269 mlog_errno(ret);
4270 goto out;
4271 }
4272
4273 /*
4274 * ocfs2_rotate_tree_right() might have extended the
4275 * transaction without re-journaling our tree root.
4276 */
4277 ret = ocfs2_et_root_journal_access(handle, et,
4278 OCFS2_JOURNAL_ACCESS_WRITE);
4279 if (ret) {
4280 mlog_errno(ret);
4281 goto out;
4282 }
4283 } else if (type->ins_appending == APPEND_TAIL
4284 && type->ins_contig != CONTIG_LEFT) {
4285 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4286 right_path, &left_path);
4287 if (ret) {
4288 mlog_errno(ret);
4289 goto out;
4290 }
4291 }
4292
4293 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4294 insert_rec, type);
4295 if (ret) {
4296 mlog_errno(ret);
4297 goto out;
4298 }
4299
4300 out_update_clusters:
4301 if (type->ins_split == SPLIT_NONE)
4302 ocfs2_et_update_clusters(et,
4303 le16_to_cpu(insert_rec->e_leaf_clusters));
4304
4305 ocfs2_journal_dirty(handle, et->et_root_bh);
4306
4307 out:
4308 ocfs2_free_path(left_path);
4309 ocfs2_free_path(right_path);
4310
4311 return ret;
4312 }
4313
4314 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4315 struct ocfs2_path *path,
4316 struct ocfs2_extent_list *el, int index,
4317 struct ocfs2_extent_rec *split_rec,
4318 struct ocfs2_merge_ctxt *ctxt)
4319 {
4320 int status = 0;
4321 enum ocfs2_contig_type ret = CONTIG_NONE;
4322 u32 left_cpos, right_cpos;
4323 struct ocfs2_extent_rec *rec = NULL;
4324 struct ocfs2_extent_list *new_el;
4325 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4326 struct buffer_head *bh;
4327 struct ocfs2_extent_block *eb;
4328 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4329
4330 if (index > 0) {
4331 rec = &el->l_recs[index - 1];
4332 } else if (path->p_tree_depth > 0) {
4333 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4334 if (status)
4335 goto exit;
4336
4337 if (left_cpos != 0) {
4338 left_path = ocfs2_new_path_from_path(path);
4339 if (!left_path) {
4340 status = -ENOMEM;
4341 mlog_errno(status);
4342 goto exit;
4343 }
4344
4345 status = ocfs2_find_path(et->et_ci, left_path,
4346 left_cpos);
4347 if (status)
4348 goto free_left_path;
4349
4350 new_el = path_leaf_el(left_path);
4351
4352 if (le16_to_cpu(new_el->l_next_free_rec) !=
4353 le16_to_cpu(new_el->l_count)) {
4354 bh = path_leaf_bh(left_path);
4355 eb = (struct ocfs2_extent_block *)bh->b_data;
4356 ocfs2_error(sb,
4357 "Extent block #%llu has an "
4358 "invalid l_next_free_rec of "
4359 "%d. It should have "
4360 "matched the l_count of %d",
4361 (unsigned long long)le64_to_cpu(eb->h_blkno),
4362 le16_to_cpu(new_el->l_next_free_rec),
4363 le16_to_cpu(new_el->l_count));
4364 status = -EINVAL;
4365 goto free_left_path;
4366 }
4367 rec = &new_el->l_recs[
4368 le16_to_cpu(new_el->l_next_free_rec) - 1];
4369 }
4370 }
4371
4372 /*
4373 * We're careful to check for an empty extent record here -
4374 * the merge code will know what to do if it sees one.
4375 */
4376 if (rec) {
4377 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4378 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4379 ret = CONTIG_RIGHT;
4380 } else {
4381 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4382 }
4383 }
4384
4385 rec = NULL;
4386 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4387 rec = &el->l_recs[index + 1];
4388 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4389 path->p_tree_depth > 0) {
4390 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4391 if (status)
4392 goto free_left_path;
4393
4394 if (right_cpos == 0)
4395 goto free_left_path;
4396
4397 right_path = ocfs2_new_path_from_path(path);
4398 if (!right_path) {
4399 status = -ENOMEM;
4400 mlog_errno(status);
4401 goto free_left_path;
4402 }
4403
4404 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4405 if (status)
4406 goto free_right_path;
4407
4408 new_el = path_leaf_el(right_path);
4409 rec = &new_el->l_recs[0];
4410 if (ocfs2_is_empty_extent(rec)) {
4411 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4412 bh = path_leaf_bh(right_path);
4413 eb = (struct ocfs2_extent_block *)bh->b_data;
4414 ocfs2_error(sb,
4415 "Extent block #%llu has an "
4416 "invalid l_next_free_rec of %d",
4417 (unsigned long long)le64_to_cpu(eb->h_blkno),
4418 le16_to_cpu(new_el->l_next_free_rec));
4419 status = -EINVAL;
4420 goto free_right_path;
4421 }
4422 rec = &new_el->l_recs[1];
4423 }
4424 }
4425
4426 if (rec) {
4427 enum ocfs2_contig_type contig_type;
4428
4429 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4430
4431 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4432 ret = CONTIG_LEFTRIGHT;
4433 else if (ret == CONTIG_NONE)
4434 ret = contig_type;
4435 }
4436
4437 free_right_path:
4438 ocfs2_free_path(right_path);
4439 free_left_path:
4440 ocfs2_free_path(left_path);
4441 exit:
4442 if (status == 0)
4443 ctxt->c_contig_type = ret;
4444
4445 return status;
4446 }
4447
4448 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4449 struct ocfs2_insert_type *insert,
4450 struct ocfs2_extent_list *el,
4451 struct ocfs2_extent_rec *insert_rec)
4452 {
4453 int i;
4454 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4455
4456 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4457
4458 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4459 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4460 insert_rec);
4461 if (contig_type != CONTIG_NONE) {
4462 insert->ins_contig_index = i;
4463 break;
4464 }
4465 }
4466 insert->ins_contig = contig_type;
4467
4468 if (insert->ins_contig != CONTIG_NONE) {
4469 struct ocfs2_extent_rec *rec =
4470 &el->l_recs[insert->ins_contig_index];
4471 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4472 le16_to_cpu(insert_rec->e_leaf_clusters);
4473
4474 /*
4475 * Caller might want us to limit the size of extents, don't
4476 * calculate contiguousness if we might exceed that limit.
4477 */
4478 if (et->et_max_leaf_clusters &&
4479 (len > et->et_max_leaf_clusters))
4480 insert->ins_contig = CONTIG_NONE;
4481 }
4482 }
4483
4484 /*
4485 * This should only be called against the righmost leaf extent list.
4486 *
4487 * ocfs2_figure_appending_type() will figure out whether we'll have to
4488 * insert at the tail of the rightmost leaf.
4489 *
4490 * This should also work against the root extent list for tree's with 0
4491 * depth. If we consider the root extent list to be the rightmost leaf node
4492 * then the logic here makes sense.
4493 */
4494 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4495 struct ocfs2_extent_list *el,
4496 struct ocfs2_extent_rec *insert_rec)
4497 {
4498 int i;
4499 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4500 struct ocfs2_extent_rec *rec;
4501
4502 insert->ins_appending = APPEND_NONE;
4503
4504 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4505
4506 if (!el->l_next_free_rec)
4507 goto set_tail_append;
4508
4509 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4510 /* Were all records empty? */
4511 if (le16_to_cpu(el->l_next_free_rec) == 1)
4512 goto set_tail_append;
4513 }
4514
4515 i = le16_to_cpu(el->l_next_free_rec) - 1;
4516 rec = &el->l_recs[i];
4517
4518 if (cpos >=
4519 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4520 goto set_tail_append;
4521
4522 return;
4523
4524 set_tail_append:
4525 insert->ins_appending = APPEND_TAIL;
4526 }
4527
4528 /*
4529 * Helper function called at the beginning of an insert.
4530 *
4531 * This computes a few things that are commonly used in the process of
4532 * inserting into the btree:
4533 * - Whether the new extent is contiguous with an existing one.
4534 * - The current tree depth.
4535 * - Whether the insert is an appending one.
4536 * - The total # of free records in the tree.
4537 *
4538 * All of the information is stored on the ocfs2_insert_type
4539 * structure.
4540 */
4541 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4542 struct buffer_head **last_eb_bh,
4543 struct ocfs2_extent_rec *insert_rec,
4544 int *free_records,
4545 struct ocfs2_insert_type *insert)
4546 {
4547 int ret;
4548 struct ocfs2_extent_block *eb;
4549 struct ocfs2_extent_list *el;
4550 struct ocfs2_path *path = NULL;
4551 struct buffer_head *bh = NULL;
4552
4553 insert->ins_split = SPLIT_NONE;
4554
4555 el = et->et_root_el;
4556 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4557
4558 if (el->l_tree_depth) {
4559 /*
4560 * If we have tree depth, we read in the
4561 * rightmost extent block ahead of time as
4562 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4563 * may want it later.
4564 */
4565 ret = ocfs2_read_extent_block(et->et_ci,
4566 ocfs2_et_get_last_eb_blk(et),
4567 &bh);
4568 if (ret) {
4569 mlog_errno(ret);
4570 goto out;
4571 }
4572 eb = (struct ocfs2_extent_block *) bh->b_data;
4573 el = &eb->h_list;
4574 }
4575
4576 /*
4577 * Unless we have a contiguous insert, we'll need to know if
4578 * there is room left in our allocation tree for another
4579 * extent record.
4580 *
4581 * XXX: This test is simplistic, we can search for empty
4582 * extent records too.
4583 */
4584 *free_records = le16_to_cpu(el->l_count) -
4585 le16_to_cpu(el->l_next_free_rec);
4586
4587 if (!insert->ins_tree_depth) {
4588 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4589 ocfs2_figure_appending_type(insert, el, insert_rec);
4590 return 0;
4591 }
4592
4593 path = ocfs2_new_path_from_et(et);
4594 if (!path) {
4595 ret = -ENOMEM;
4596 mlog_errno(ret);
4597 goto out;
4598 }
4599
4600 /*
4601 * In the case that we're inserting past what the tree
4602 * currently accounts for, ocfs2_find_path() will return for
4603 * us the rightmost tree path. This is accounted for below in
4604 * the appending code.
4605 */
4606 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4607 if (ret) {
4608 mlog_errno(ret);
4609 goto out;
4610 }
4611
4612 el = path_leaf_el(path);
4613
4614 /*
4615 * Now that we have the path, there's two things we want to determine:
4616 * 1) Contiguousness (also set contig_index if this is so)
4617 *
4618 * 2) Are we doing an append? We can trivially break this up
4619 * into two types of appends: simple record append, or a
4620 * rotate inside the tail leaf.
4621 */
4622 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4623
4624 /*
4625 * The insert code isn't quite ready to deal with all cases of
4626 * left contiguousness. Specifically, if it's an insert into
4627 * the 1st record in a leaf, it will require the adjustment of
4628 * cluster count on the last record of the path directly to it's
4629 * left. For now, just catch that case and fool the layers
4630 * above us. This works just fine for tree_depth == 0, which
4631 * is why we allow that above.
4632 */
4633 if (insert->ins_contig == CONTIG_LEFT &&
4634 insert->ins_contig_index == 0)
4635 insert->ins_contig = CONTIG_NONE;
4636
4637 /*
4638 * Ok, so we can simply compare against last_eb to figure out
4639 * whether the path doesn't exist. This will only happen in
4640 * the case that we're doing a tail append, so maybe we can
4641 * take advantage of that information somehow.
4642 */
4643 if (ocfs2_et_get_last_eb_blk(et) ==
4644 path_leaf_bh(path)->b_blocknr) {
4645 /*
4646 * Ok, ocfs2_find_path() returned us the rightmost
4647 * tree path. This might be an appending insert. There are
4648 * two cases:
4649 * 1) We're doing a true append at the tail:
4650 * -This might even be off the end of the leaf
4651 * 2) We're "appending" by rotating in the tail
4652 */
4653 ocfs2_figure_appending_type(insert, el, insert_rec);
4654 }
4655
4656 out:
4657 ocfs2_free_path(path);
4658
4659 if (ret == 0)
4660 *last_eb_bh = bh;
4661 else
4662 brelse(bh);
4663 return ret;
4664 }
4665
4666 /*
4667 * Insert an extent into a btree.
4668 *
4669 * The caller needs to update the owning btree's cluster count.
4670 */
4671 int ocfs2_insert_extent(handle_t *handle,
4672 struct ocfs2_extent_tree *et,
4673 u32 cpos,
4674 u64 start_blk,
4675 u32 new_clusters,
4676 u8 flags,
4677 struct ocfs2_alloc_context *meta_ac)
4678 {
4679 int status;
4680 int uninitialized_var(free_records);
4681 struct buffer_head *last_eb_bh = NULL;
4682 struct ocfs2_insert_type insert = {0, };
4683 struct ocfs2_extent_rec rec;
4684
4685 trace_ocfs2_insert_extent_start(
4686 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4687 cpos, new_clusters);
4688
4689 memset(&rec, 0, sizeof(rec));
4690 rec.e_cpos = cpu_to_le32(cpos);
4691 rec.e_blkno = cpu_to_le64(start_blk);
4692 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4693 rec.e_flags = flags;
4694 status = ocfs2_et_insert_check(et, &rec);
4695 if (status) {
4696 mlog_errno(status);
4697 goto bail;
4698 }
4699
4700 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4701 &free_records, &insert);
4702 if (status < 0) {
4703 mlog_errno(status);
4704 goto bail;
4705 }
4706
4707 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4708 insert.ins_contig_index, free_records,
4709 insert.ins_tree_depth);
4710
4711 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4712 status = ocfs2_grow_tree(handle, et,
4713 &insert.ins_tree_depth, &last_eb_bh,
4714 meta_ac);
4715 if (status) {
4716 mlog_errno(status);
4717 goto bail;
4718 }
4719 }
4720
4721 /* Finally, we can add clusters. This might rotate the tree for us. */
4722 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4723 if (status < 0)
4724 mlog_errno(status);
4725 else
4726 ocfs2_et_extent_map_insert(et, &rec);
4727
4728 bail:
4729 brelse(last_eb_bh);
4730
4731 return status;
4732 }
4733
4734 /*
4735 * Allcate and add clusters into the extent b-tree.
4736 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4737 * The extent b-tree's root is specified by et, and
4738 * it is not limited to the file storage. Any extent tree can use this
4739 * function if it implements the proper ocfs2_extent_tree.
4740 */
4741 int ocfs2_add_clusters_in_btree(handle_t *handle,
4742 struct ocfs2_extent_tree *et,
4743 u32 *logical_offset,
4744 u32 clusters_to_add,
4745 int mark_unwritten,
4746 struct ocfs2_alloc_context *data_ac,
4747 struct ocfs2_alloc_context *meta_ac,
4748 enum ocfs2_alloc_restarted *reason_ret)
4749 {
4750 int status = 0, err = 0;
4751 int need_free = 0;
4752 int free_extents;
4753 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4754 u32 bit_off, num_bits;
4755 u64 block;
4756 u8 flags = 0;
4757 struct ocfs2_super *osb =
4758 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4759
4760 BUG_ON(!clusters_to_add);
4761
4762 if (mark_unwritten)
4763 flags = OCFS2_EXT_UNWRITTEN;
4764
4765 free_extents = ocfs2_num_free_extents(osb, et);
4766 if (free_extents < 0) {
4767 status = free_extents;
4768 mlog_errno(status);
4769 goto leave;
4770 }
4771
4772 /* there are two cases which could cause us to EAGAIN in the
4773 * we-need-more-metadata case:
4774 * 1) we haven't reserved *any*
4775 * 2) we are so fragmented, we've needed to add metadata too
4776 * many times. */
4777 if (!free_extents && !meta_ac) {
4778 err = -1;
4779 status = -EAGAIN;
4780 reason = RESTART_META;
4781 goto leave;
4782 } else if ((!free_extents)
4783 && (ocfs2_alloc_context_bits_left(meta_ac)
4784 < ocfs2_extend_meta_needed(et->et_root_el))) {
4785 err = -2;
4786 status = -EAGAIN;
4787 reason = RESTART_META;
4788 goto leave;
4789 }
4790
4791 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4792 clusters_to_add, &bit_off, &num_bits);
4793 if (status < 0) {
4794 if (status != -ENOSPC)
4795 mlog_errno(status);
4796 goto leave;
4797 }
4798
4799 BUG_ON(num_bits > clusters_to_add);
4800
4801 /* reserve our write early -- insert_extent may update the tree root */
4802 status = ocfs2_et_root_journal_access(handle, et,
4803 OCFS2_JOURNAL_ACCESS_WRITE);
4804 if (status < 0) {
4805 mlog_errno(status);
4806 need_free = 1;
4807 goto bail;
4808 }
4809
4810 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4811 trace_ocfs2_add_clusters_in_btree(
4812 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4813 bit_off, num_bits);
4814 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4815 num_bits, flags, meta_ac);
4816 if (status < 0) {
4817 mlog_errno(status);
4818 need_free = 1;
4819 goto bail;
4820 }
4821
4822 ocfs2_journal_dirty(handle, et->et_root_bh);
4823
4824 clusters_to_add -= num_bits;
4825 *logical_offset += num_bits;
4826
4827 if (clusters_to_add) {
4828 err = clusters_to_add;
4829 status = -EAGAIN;
4830 reason = RESTART_TRANS;
4831 }
4832
4833 bail:
4834 if (need_free) {
4835 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4836 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4837 bit_off, num_bits);
4838 else
4839 ocfs2_free_clusters(handle,
4840 data_ac->ac_inode,
4841 data_ac->ac_bh,
4842 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4843 num_bits);
4844 }
4845
4846 leave:
4847 if (reason_ret)
4848 *reason_ret = reason;
4849 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4850 return status;
4851 }
4852
4853 static void ocfs2_make_right_split_rec(struct super_block *sb,
4854 struct ocfs2_extent_rec *split_rec,
4855 u32 cpos,
4856 struct ocfs2_extent_rec *rec)
4857 {
4858 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4859 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4860
4861 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4862
4863 split_rec->e_cpos = cpu_to_le32(cpos);
4864 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4865
4866 split_rec->e_blkno = rec->e_blkno;
4867 le64_add_cpu(&split_rec->e_blkno,
4868 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4869
4870 split_rec->e_flags = rec->e_flags;
4871 }
4872
4873 static int ocfs2_split_and_insert(handle_t *handle,
4874 struct ocfs2_extent_tree *et,
4875 struct ocfs2_path *path,
4876 struct buffer_head **last_eb_bh,
4877 int split_index,
4878 struct ocfs2_extent_rec *orig_split_rec,
4879 struct ocfs2_alloc_context *meta_ac)
4880 {
4881 int ret = 0, depth;
4882 unsigned int insert_range, rec_range, do_leftright = 0;
4883 struct ocfs2_extent_rec tmprec;
4884 struct ocfs2_extent_list *rightmost_el;
4885 struct ocfs2_extent_rec rec;
4886 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4887 struct ocfs2_insert_type insert;
4888 struct ocfs2_extent_block *eb;
4889
4890 leftright:
4891 /*
4892 * Store a copy of the record on the stack - it might move
4893 * around as the tree is manipulated below.
4894 */
4895 rec = path_leaf_el(path)->l_recs[split_index];
4896
4897 rightmost_el = et->et_root_el;
4898
4899 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4900 if (depth) {
4901 BUG_ON(!(*last_eb_bh));
4902 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4903 rightmost_el = &eb->h_list;
4904 }
4905
4906 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4907 le16_to_cpu(rightmost_el->l_count)) {
4908 ret = ocfs2_grow_tree(handle, et,
4909 &depth, last_eb_bh, meta_ac);
4910 if (ret) {
4911 mlog_errno(ret);
4912 goto out;
4913 }
4914 }
4915
4916 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4917 insert.ins_appending = APPEND_NONE;
4918 insert.ins_contig = CONTIG_NONE;
4919 insert.ins_tree_depth = depth;
4920
4921 insert_range = le32_to_cpu(split_rec.e_cpos) +
4922 le16_to_cpu(split_rec.e_leaf_clusters);
4923 rec_range = le32_to_cpu(rec.e_cpos) +
4924 le16_to_cpu(rec.e_leaf_clusters);
4925
4926 if (split_rec.e_cpos == rec.e_cpos) {
4927 insert.ins_split = SPLIT_LEFT;
4928 } else if (insert_range == rec_range) {
4929 insert.ins_split = SPLIT_RIGHT;
4930 } else {
4931 /*
4932 * Left/right split. We fake this as a right split
4933 * first and then make a second pass as a left split.
4934 */
4935 insert.ins_split = SPLIT_RIGHT;
4936
4937 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4938 &tmprec, insert_range, &rec);
4939
4940 split_rec = tmprec;
4941
4942 BUG_ON(do_leftright);
4943 do_leftright = 1;
4944 }
4945
4946 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4947 if (ret) {
4948 mlog_errno(ret);
4949 goto out;
4950 }
4951
4952 if (do_leftright == 1) {
4953 u32 cpos;
4954 struct ocfs2_extent_list *el;
4955
4956 do_leftright++;
4957 split_rec = *orig_split_rec;
4958
4959 ocfs2_reinit_path(path, 1);
4960
4961 cpos = le32_to_cpu(split_rec.e_cpos);
4962 ret = ocfs2_find_path(et->et_ci, path, cpos);
4963 if (ret) {
4964 mlog_errno(ret);
4965 goto out;
4966 }
4967
4968 el = path_leaf_el(path);
4969 split_index = ocfs2_search_extent_list(el, cpos);
4970 if (split_index == -1) {
4971 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4972 "Owner %llu has an extent at cpos %u "
4973 "which can no longer be found.\n",
4974 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4975 cpos);
4976 ret = -EROFS;
4977 goto out;
4978 }
4979 goto leftright;
4980 }
4981 out:
4982
4983 return ret;
4984 }
4985
4986 static int ocfs2_replace_extent_rec(handle_t *handle,
4987 struct ocfs2_extent_tree *et,
4988 struct ocfs2_path *path,
4989 struct ocfs2_extent_list *el,
4990 int split_index,
4991 struct ocfs2_extent_rec *split_rec)
4992 {
4993 int ret;
4994
4995 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4996 path_num_items(path) - 1);
4997 if (ret) {
4998 mlog_errno(ret);
4999 goto out;
5000 }
5001
5002 el->l_recs[split_index] = *split_rec;
5003
5004 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5005 out:
5006 return ret;
5007 }
5008
5009 /*
5010 * Split part or all of the extent record at split_index in the leaf
5011 * pointed to by path. Merge with the contiguous extent record if needed.
5012 *
5013 * Care is taken to handle contiguousness so as to not grow the tree.
5014 *
5015 * meta_ac is not strictly necessary - we only truly need it if growth
5016 * of the tree is required. All other cases will degrade into a less
5017 * optimal tree layout.
5018 *
5019 * last_eb_bh should be the rightmost leaf block for any extent
5020 * btree. Since a split may grow the tree or a merge might shrink it,
5021 * the caller cannot trust the contents of that buffer after this call.
5022 *
5023 * This code is optimized for readability - several passes might be
5024 * made over certain portions of the tree. All of those blocks will
5025 * have been brought into cache (and pinned via the journal), so the
5026 * extra overhead is not expressed in terms of disk reads.
5027 */
5028 int ocfs2_split_extent(handle_t *handle,
5029 struct ocfs2_extent_tree *et,
5030 struct ocfs2_path *path,
5031 int split_index,
5032 struct ocfs2_extent_rec *split_rec,
5033 struct ocfs2_alloc_context *meta_ac,
5034 struct ocfs2_cached_dealloc_ctxt *dealloc)
5035 {
5036 int ret = 0;
5037 struct ocfs2_extent_list *el = path_leaf_el(path);
5038 struct buffer_head *last_eb_bh = NULL;
5039 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5040 struct ocfs2_merge_ctxt ctxt;
5041 struct ocfs2_extent_list *rightmost_el;
5042
5043 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5044 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5045 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5046 ret = -EIO;
5047 mlog_errno(ret);
5048 goto out;
5049 }
5050
5051 ret = ocfs2_figure_merge_contig_type(et, path, el,
5052 split_index,
5053 split_rec,
5054 &ctxt);
5055 if (ret) {
5056 mlog_errno(ret);
5057 goto out;
5058 }
5059
5060 /*
5061 * The core merge / split code wants to know how much room is
5062 * left in this allocation tree, so we pass the
5063 * rightmost extent list.
5064 */
5065 if (path->p_tree_depth) {
5066 struct ocfs2_extent_block *eb;
5067
5068 ret = ocfs2_read_extent_block(et->et_ci,
5069 ocfs2_et_get_last_eb_blk(et),
5070 &last_eb_bh);
5071 if (ret) {
5072 mlog_errno(ret);
5073 goto out;
5074 }
5075
5076 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5077 rightmost_el = &eb->h_list;
5078 } else
5079 rightmost_el = path_root_el(path);
5080
5081 if (rec->e_cpos == split_rec->e_cpos &&
5082 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5083 ctxt.c_split_covers_rec = 1;
5084 else
5085 ctxt.c_split_covers_rec = 0;
5086
5087 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5088
5089 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5090 ctxt.c_has_empty_extent,
5091 ctxt.c_split_covers_rec);
5092
5093 if (ctxt.c_contig_type == CONTIG_NONE) {
5094 if (ctxt.c_split_covers_rec)
5095 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5096 split_index, split_rec);
5097 else
5098 ret = ocfs2_split_and_insert(handle, et, path,
5099 &last_eb_bh, split_index,
5100 split_rec, meta_ac);
5101 if (ret)
5102 mlog_errno(ret);
5103 } else {
5104 ret = ocfs2_try_to_merge_extent(handle, et, path,
5105 split_index, split_rec,
5106 dealloc, &ctxt);
5107 if (ret)
5108 mlog_errno(ret);
5109 }
5110
5111 out:
5112 brelse(last_eb_bh);
5113 return ret;
5114 }
5115
5116 /*
5117 * Change the flags of the already-existing extent at cpos for len clusters.
5118 *
5119 * new_flags: the flags we want to set.
5120 * clear_flags: the flags we want to clear.
5121 * phys: the new physical offset we want this new extent starts from.
5122 *
5123 * If the existing extent is larger than the request, initiate a
5124 * split. An attempt will be made at merging with adjacent extents.
5125 *
5126 * The caller is responsible for passing down meta_ac if we'll need it.
5127 */
5128 int ocfs2_change_extent_flag(handle_t *handle,
5129 struct ocfs2_extent_tree *et,
5130 u32 cpos, u32 len, u32 phys,
5131 struct ocfs2_alloc_context *meta_ac,
5132 struct ocfs2_cached_dealloc_ctxt *dealloc,
5133 int new_flags, int clear_flags)
5134 {
5135 int ret, index;
5136 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5137 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5138 struct ocfs2_extent_rec split_rec;
5139 struct ocfs2_path *left_path = NULL;
5140 struct ocfs2_extent_list *el;
5141 struct ocfs2_extent_rec *rec;
5142
5143 left_path = ocfs2_new_path_from_et(et);
5144 if (!left_path) {
5145 ret = -ENOMEM;
5146 mlog_errno(ret);
5147 goto out;
5148 }
5149
5150 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5151 if (ret) {
5152 mlog_errno(ret);
5153 goto out;
5154 }
5155 el = path_leaf_el(left_path);
5156
5157 index = ocfs2_search_extent_list(el, cpos);
5158 if (index == -1) {
5159 ocfs2_error(sb,
5160 "Owner %llu has an extent at cpos %u which can no "
5161 "longer be found.\n",
5162 (unsigned long long)
5163 ocfs2_metadata_cache_owner(et->et_ci), cpos);
5164 ret = -EROFS;
5165 goto out;
5166 }
5167
5168 ret = -EIO;
5169 rec = &el->l_recs[index];
5170 if (new_flags && (rec->e_flags & new_flags)) {
5171 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5172 "extent that already had them",
5173 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5174 new_flags);
5175 goto out;
5176 }
5177
5178 if (clear_flags && !(rec->e_flags & clear_flags)) {
5179 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5180 "extent that didn't have them",
5181 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5182 clear_flags);
5183 goto out;
5184 }
5185
5186 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5187 split_rec.e_cpos = cpu_to_le32(cpos);
5188 split_rec.e_leaf_clusters = cpu_to_le16(len);
5189 split_rec.e_blkno = cpu_to_le64(start_blkno);
5190 split_rec.e_flags = rec->e_flags;
5191 if (new_flags)
5192 split_rec.e_flags |= new_flags;
5193 if (clear_flags)
5194 split_rec.e_flags &= ~clear_flags;
5195
5196 ret = ocfs2_split_extent(handle, et, left_path,
5197 index, &split_rec, meta_ac,
5198 dealloc);
5199 if (ret)
5200 mlog_errno(ret);
5201
5202 out:
5203 ocfs2_free_path(left_path);
5204 return ret;
5205
5206 }
5207
5208 /*
5209 * Mark the already-existing extent at cpos as written for len clusters.
5210 * This removes the unwritten extent flag.
5211 *
5212 * If the existing extent is larger than the request, initiate a
5213 * split. An attempt will be made at merging with adjacent extents.
5214 *
5215 * The caller is responsible for passing down meta_ac if we'll need it.
5216 */
5217 int ocfs2_mark_extent_written(struct inode *inode,
5218 struct ocfs2_extent_tree *et,
5219 handle_t *handle, u32 cpos, u32 len, u32 phys,
5220 struct ocfs2_alloc_context *meta_ac,
5221 struct ocfs2_cached_dealloc_ctxt *dealloc)
5222 {
5223 int ret;
5224
5225 trace_ocfs2_mark_extent_written(
5226 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5227 cpos, len, phys);
5228
5229 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5230 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5231 "that are being written to, but the feature bit "
5232 "is not set in the super block.",
5233 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5234 ret = -EROFS;
5235 goto out;
5236 }
5237
5238 /*
5239 * XXX: This should be fixed up so that we just re-insert the
5240 * next extent records.
5241 */
5242 ocfs2_et_extent_map_truncate(et, 0);
5243
5244 ret = ocfs2_change_extent_flag(handle, et, cpos,
5245 len, phys, meta_ac, dealloc,
5246 0, OCFS2_EXT_UNWRITTEN);
5247 if (ret)
5248 mlog_errno(ret);
5249
5250 out:
5251 return ret;
5252 }
5253
5254 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5255 struct ocfs2_path *path,
5256 int index, u32 new_range,
5257 struct ocfs2_alloc_context *meta_ac)
5258 {
5259 int ret, depth, credits;
5260 struct buffer_head *last_eb_bh = NULL;
5261 struct ocfs2_extent_block *eb;
5262 struct ocfs2_extent_list *rightmost_el, *el;
5263 struct ocfs2_extent_rec split_rec;
5264 struct ocfs2_extent_rec *rec;
5265 struct ocfs2_insert_type insert;
5266
5267 /*
5268 * Setup the record to split before we grow the tree.
5269 */
5270 el = path_leaf_el(path);
5271 rec = &el->l_recs[index];
5272 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5273 &split_rec, new_range, rec);
5274
5275 depth = path->p_tree_depth;
5276 if (depth > 0) {
5277 ret = ocfs2_read_extent_block(et->et_ci,
5278 ocfs2_et_get_last_eb_blk(et),
5279 &last_eb_bh);
5280 if (ret < 0) {
5281 mlog_errno(ret);
5282 goto out;
5283 }
5284
5285 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5286 rightmost_el = &eb->h_list;
5287 } else
5288 rightmost_el = path_leaf_el(path);
5289
5290 credits = path->p_tree_depth +
5291 ocfs2_extend_meta_needed(et->et_root_el);
5292 ret = ocfs2_extend_trans(handle, credits);
5293 if (ret) {
5294 mlog_errno(ret);
5295 goto out;
5296 }
5297
5298 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5299 le16_to_cpu(rightmost_el->l_count)) {
5300 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5301 meta_ac);
5302 if (ret) {
5303 mlog_errno(ret);
5304 goto out;
5305 }
5306 }
5307
5308 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5309 insert.ins_appending = APPEND_NONE;
5310 insert.ins_contig = CONTIG_NONE;
5311 insert.ins_split = SPLIT_RIGHT;
5312 insert.ins_tree_depth = depth;
5313
5314 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5315 if (ret)
5316 mlog_errno(ret);
5317
5318 out:
5319 brelse(last_eb_bh);
5320 return ret;
5321 }
5322
5323 static int ocfs2_truncate_rec(handle_t *handle,
5324 struct ocfs2_extent_tree *et,
5325 struct ocfs2_path *path, int index,
5326 struct ocfs2_cached_dealloc_ctxt *dealloc,
5327 u32 cpos, u32 len)
5328 {
5329 int ret;
5330 u32 left_cpos, rec_range, trunc_range;
5331 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5332 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5333 struct ocfs2_path *left_path = NULL;
5334 struct ocfs2_extent_list *el = path_leaf_el(path);
5335 struct ocfs2_extent_rec *rec;
5336 struct ocfs2_extent_block *eb;
5337
5338 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5339 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5340 if (ret) {
5341 mlog_errno(ret);
5342 goto out;
5343 }
5344
5345 index--;
5346 }
5347
5348 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5349 path->p_tree_depth) {
5350 /*
5351 * Check whether this is the rightmost tree record. If
5352 * we remove all of this record or part of its right
5353 * edge then an update of the record lengths above it
5354 * will be required.
5355 */
5356 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5357 if (eb->h_next_leaf_blk == 0)
5358 is_rightmost_tree_rec = 1;
5359 }
5360
5361 rec = &el->l_recs[index];
5362 if (index == 0 && path->p_tree_depth &&
5363 le32_to_cpu(rec->e_cpos) == cpos) {
5364 /*
5365 * Changing the leftmost offset (via partial or whole
5366 * record truncate) of an interior (or rightmost) path
5367 * means we have to update the subtree that is formed
5368 * by this leaf and the one to it's left.
5369 *
5370 * There are two cases we can skip:
5371 * 1) Path is the leftmost one in our btree.
5372 * 2) The leaf is rightmost and will be empty after
5373 * we remove the extent record - the rotate code
5374 * knows how to update the newly formed edge.
5375 */
5376
5377 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5378 if (ret) {
5379 mlog_errno(ret);
5380 goto out;
5381 }
5382
5383 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5384 left_path = ocfs2_new_path_from_path(path);
5385 if (!left_path) {
5386 ret = -ENOMEM;
5387 mlog_errno(ret);
5388 goto out;
5389 }
5390
5391 ret = ocfs2_find_path(et->et_ci, left_path,
5392 left_cpos);
5393 if (ret) {
5394 mlog_errno(ret);
5395 goto out;
5396 }
5397 }
5398 }
5399
5400 ret = ocfs2_extend_rotate_transaction(handle, 0,
5401 handle->h_buffer_credits,
5402 path);
5403 if (ret) {
5404 mlog_errno(ret);
5405 goto out;
5406 }
5407
5408 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5409 if (ret) {
5410 mlog_errno(ret);
5411 goto out;
5412 }
5413
5414 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5415 if (ret) {
5416 mlog_errno(ret);
5417 goto out;
5418 }
5419
5420 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5421 trunc_range = cpos + len;
5422
5423 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5424 int next_free;
5425
5426 memset(rec, 0, sizeof(*rec));
5427 ocfs2_cleanup_merge(el, index);
5428 wants_rotate = 1;
5429
5430 next_free = le16_to_cpu(el->l_next_free_rec);
5431 if (is_rightmost_tree_rec && next_free > 1) {
5432 /*
5433 * We skip the edge update if this path will
5434 * be deleted by the rotate code.
5435 */
5436 rec = &el->l_recs[next_free - 1];
5437 ocfs2_adjust_rightmost_records(handle, et, path,
5438 rec);
5439 }
5440 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5441 /* Remove leftmost portion of the record. */
5442 le32_add_cpu(&rec->e_cpos, len);
5443 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5444 le16_add_cpu(&rec->e_leaf_clusters, -len);
5445 } else if (rec_range == trunc_range) {
5446 /* Remove rightmost portion of the record */
5447 le16_add_cpu(&rec->e_leaf_clusters, -len);
5448 if (is_rightmost_tree_rec)
5449 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5450 } else {
5451 /* Caller should have trapped this. */
5452 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5453 "(%u, %u)\n",
5454 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5455 le32_to_cpu(rec->e_cpos),
5456 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5457 BUG();
5458 }
5459
5460 if (left_path) {
5461 int subtree_index;
5462
5463 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5464 ocfs2_complete_edge_insert(handle, left_path, path,
5465 subtree_index);
5466 }
5467
5468 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5469
5470 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5471 if (ret) {
5472 mlog_errno(ret);
5473 goto out;
5474 }
5475
5476 out:
5477 ocfs2_free_path(left_path);
5478 return ret;
5479 }
5480
5481 int ocfs2_remove_extent(handle_t *handle,
5482 struct ocfs2_extent_tree *et,
5483 u32 cpos, u32 len,
5484 struct ocfs2_alloc_context *meta_ac,
5485 struct ocfs2_cached_dealloc_ctxt *dealloc)
5486 {
5487 int ret, index;
5488 u32 rec_range, trunc_range;
5489 struct ocfs2_extent_rec *rec;
5490 struct ocfs2_extent_list *el;
5491 struct ocfs2_path *path = NULL;
5492
5493 /*
5494 * XXX: Why are we truncating to 0 instead of wherever this
5495 * affects us?
5496 */
5497 ocfs2_et_extent_map_truncate(et, 0);
5498
5499 path = ocfs2_new_path_from_et(et);
5500 if (!path) {
5501 ret = -ENOMEM;
5502 mlog_errno(ret);
5503 goto out;
5504 }
5505
5506 ret = ocfs2_find_path(et->et_ci, path, cpos);
5507 if (ret) {
5508 mlog_errno(ret);
5509 goto out;
5510 }
5511
5512 el = path_leaf_el(path);
5513 index = ocfs2_search_extent_list(el, cpos);
5514 if (index == -1) {
5515 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5516 "Owner %llu has an extent at cpos %u which can no "
5517 "longer be found.\n",
5518 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5519 cpos);
5520 ret = -EROFS;
5521 goto out;
5522 }
5523
5524 /*
5525 * We have 3 cases of extent removal:
5526 * 1) Range covers the entire extent rec
5527 * 2) Range begins or ends on one edge of the extent rec
5528 * 3) Range is in the middle of the extent rec (no shared edges)
5529 *
5530 * For case 1 we remove the extent rec and left rotate to
5531 * fill the hole.
5532 *
5533 * For case 2 we just shrink the existing extent rec, with a
5534 * tree update if the shrinking edge is also the edge of an
5535 * extent block.
5536 *
5537 * For case 3 we do a right split to turn the extent rec into
5538 * something case 2 can handle.
5539 */
5540 rec = &el->l_recs[index];
5541 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5542 trunc_range = cpos + len;
5543
5544 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5545
5546 trace_ocfs2_remove_extent(
5547 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5548 cpos, len, index, le32_to_cpu(rec->e_cpos),
5549 ocfs2_rec_clusters(el, rec));
5550
5551 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5552 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5553 cpos, len);
5554 if (ret) {
5555 mlog_errno(ret);
5556 goto out;
5557 }
5558 } else {
5559 ret = ocfs2_split_tree(handle, et, path, index,
5560 trunc_range, meta_ac);
5561 if (ret) {
5562 mlog_errno(ret);
5563 goto out;
5564 }
5565
5566 /*
5567 * The split could have manipulated the tree enough to
5568 * move the record location, so we have to look for it again.
5569 */
5570 ocfs2_reinit_path(path, 1);
5571
5572 ret = ocfs2_find_path(et->et_ci, path, cpos);
5573 if (ret) {
5574 mlog_errno(ret);
5575 goto out;
5576 }
5577
5578 el = path_leaf_el(path);
5579 index = ocfs2_search_extent_list(el, cpos);
5580 if (index == -1) {
5581 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5582 "Owner %llu: split at cpos %u lost record.",
5583 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5584 cpos);
5585 ret = -EROFS;
5586 goto out;
5587 }
5588
5589 /*
5590 * Double check our values here. If anything is fishy,
5591 * it's easier to catch it at the top level.
5592 */
5593 rec = &el->l_recs[index];
5594 rec_range = le32_to_cpu(rec->e_cpos) +
5595 ocfs2_rec_clusters(el, rec);
5596 if (rec_range != trunc_range) {
5597 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5598 "Owner %llu: error after split at cpos %u"
5599 "trunc len %u, existing record is (%u,%u)",
5600 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5601 cpos, len, le32_to_cpu(rec->e_cpos),
5602 ocfs2_rec_clusters(el, rec));
5603 ret = -EROFS;
5604 goto out;
5605 }
5606
5607 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5608 cpos, len);
5609 if (ret) {
5610 mlog_errno(ret);
5611 goto out;
5612 }
5613 }
5614
5615 out:
5616 ocfs2_free_path(path);
5617 return ret;
5618 }
5619
5620 /*
5621 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5622 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5623 * number to reserve some extra blocks, and it only handles meta
5624 * data allocations.
5625 *
5626 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5627 * and punching holes.
5628 */
5629 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5630 struct ocfs2_extent_tree *et,
5631 u32 extents_to_split,
5632 struct ocfs2_alloc_context **ac,
5633 int extra_blocks)
5634 {
5635 int ret = 0, num_free_extents;
5636 unsigned int max_recs_needed = 2 * extents_to_split;
5637 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5638
5639 *ac = NULL;
5640
5641 num_free_extents = ocfs2_num_free_extents(osb, et);
5642 if (num_free_extents < 0) {
5643 ret = num_free_extents;
5644 mlog_errno(ret);
5645 goto out;
5646 }
5647
5648 if (!num_free_extents ||
5649 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5650 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5651
5652 if (extra_blocks) {
5653 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5654 if (ret < 0) {
5655 if (ret != -ENOSPC)
5656 mlog_errno(ret);
5657 goto out;
5658 }
5659 }
5660
5661 out:
5662 if (ret) {
5663 if (*ac) {
5664 ocfs2_free_alloc_context(*ac);
5665 *ac = NULL;
5666 }
5667 }
5668
5669 return ret;
5670 }
5671
5672 int ocfs2_remove_btree_range(struct inode *inode,
5673 struct ocfs2_extent_tree *et,
5674 u32 cpos, u32 phys_cpos, u32 len, int flags,
5675 struct ocfs2_cached_dealloc_ctxt *dealloc,
5676 u64 refcount_loc, bool refcount_tree_locked)
5677 {
5678 int ret, credits = 0, extra_blocks = 0;
5679 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5681 struct inode *tl_inode = osb->osb_tl_inode;
5682 handle_t *handle;
5683 struct ocfs2_alloc_context *meta_ac = NULL;
5684 struct ocfs2_refcount_tree *ref_tree = NULL;
5685
5686 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5687 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5688 OCFS2_HAS_REFCOUNT_FL));
5689
5690 if (!refcount_tree_locked) {
5691 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5692 &ref_tree, NULL);
5693 if (ret) {
5694 mlog_errno(ret);
5695 goto bail;
5696 }
5697 }
5698
5699 ret = ocfs2_prepare_refcount_change_for_del(inode,
5700 refcount_loc,
5701 phys_blkno,
5702 len,
5703 &credits,
5704 &extra_blocks);
5705 if (ret < 0) {
5706 mlog_errno(ret);
5707 goto bail;
5708 }
5709 }
5710
5711 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5712 extra_blocks);
5713 if (ret) {
5714 mlog_errno(ret);
5715 goto bail;
5716 }
5717
5718 mutex_lock(&tl_inode->i_mutex);
5719
5720 if (ocfs2_truncate_log_needs_flush(osb)) {
5721 ret = __ocfs2_flush_truncate_log(osb);
5722 if (ret < 0) {
5723 mlog_errno(ret);
5724 goto out;
5725 }
5726 }
5727
5728 handle = ocfs2_start_trans(osb,
5729 ocfs2_remove_extent_credits(osb->sb) + credits);
5730 if (IS_ERR(handle)) {
5731 ret = PTR_ERR(handle);
5732 mlog_errno(ret);
5733 goto out;
5734 }
5735
5736 ret = ocfs2_et_root_journal_access(handle, et,
5737 OCFS2_JOURNAL_ACCESS_WRITE);
5738 if (ret) {
5739 mlog_errno(ret);
5740 goto out_commit;
5741 }
5742
5743 dquot_free_space_nodirty(inode,
5744 ocfs2_clusters_to_bytes(inode->i_sb, len));
5745
5746 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5747 if (ret) {
5748 mlog_errno(ret);
5749 goto out_commit;
5750 }
5751
5752 ocfs2_et_update_clusters(et, -len);
5753 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5754
5755 ocfs2_journal_dirty(handle, et->et_root_bh);
5756
5757 if (phys_blkno) {
5758 if (flags & OCFS2_EXT_REFCOUNTED)
5759 ret = ocfs2_decrease_refcount(inode, handle,
5760 ocfs2_blocks_to_clusters(osb->sb,
5761 phys_blkno),
5762 len, meta_ac,
5763 dealloc, 1);
5764 else
5765 ret = ocfs2_truncate_log_append(osb, handle,
5766 phys_blkno, len);
5767 if (ret)
5768 mlog_errno(ret);
5769
5770 }
5771
5772 out_commit:
5773 ocfs2_commit_trans(osb, handle);
5774 out:
5775 mutex_unlock(&tl_inode->i_mutex);
5776 bail:
5777 if (meta_ac)
5778 ocfs2_free_alloc_context(meta_ac);
5779
5780 if (ref_tree)
5781 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5782
5783 return ret;
5784 }
5785
5786 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5787 {
5788 struct buffer_head *tl_bh = osb->osb_tl_bh;
5789 struct ocfs2_dinode *di;
5790 struct ocfs2_truncate_log *tl;
5791
5792 di = (struct ocfs2_dinode *) tl_bh->b_data;
5793 tl = &di->id2.i_dealloc;
5794
5795 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5796 "slot %d, invalid truncate log parameters: used = "
5797 "%u, count = %u\n", osb->slot_num,
5798 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5799 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5800 }
5801
5802 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5803 unsigned int new_start)
5804 {
5805 unsigned int tail_index;
5806 unsigned int current_tail;
5807
5808 /* No records, nothing to coalesce */
5809 if (!le16_to_cpu(tl->tl_used))
5810 return 0;
5811
5812 tail_index = le16_to_cpu(tl->tl_used) - 1;
5813 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5814 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5815
5816 return current_tail == new_start;
5817 }
5818
5819 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5820 handle_t *handle,
5821 u64 start_blk,
5822 unsigned int num_clusters)
5823 {
5824 int status, index;
5825 unsigned int start_cluster, tl_count;
5826 struct inode *tl_inode = osb->osb_tl_inode;
5827 struct buffer_head *tl_bh = osb->osb_tl_bh;
5828 struct ocfs2_dinode *di;
5829 struct ocfs2_truncate_log *tl;
5830
5831 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5832
5833 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5834
5835 di = (struct ocfs2_dinode *) tl_bh->b_data;
5836
5837 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5838 * by the underlying call to ocfs2_read_inode_block(), so any
5839 * corruption is a code bug */
5840 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5841
5842 tl = &di->id2.i_dealloc;
5843 tl_count = le16_to_cpu(tl->tl_count);
5844 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5845 tl_count == 0,
5846 "Truncate record count on #%llu invalid "
5847 "wanted %u, actual %u\n",
5848 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5849 ocfs2_truncate_recs_per_inode(osb->sb),
5850 le16_to_cpu(tl->tl_count));
5851
5852 /* Caller should have known to flush before calling us. */
5853 index = le16_to_cpu(tl->tl_used);
5854 if (index >= tl_count) {
5855 status = -ENOSPC;
5856 mlog_errno(status);
5857 goto bail;
5858 }
5859
5860 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5861 OCFS2_JOURNAL_ACCESS_WRITE);
5862 if (status < 0) {
5863 mlog_errno(status);
5864 goto bail;
5865 }
5866
5867 trace_ocfs2_truncate_log_append(
5868 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5869 start_cluster, num_clusters);
5870 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5871 /*
5872 * Move index back to the record we are coalescing with.
5873 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5874 */
5875 index--;
5876
5877 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5878 trace_ocfs2_truncate_log_append(
5879 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5880 index, le32_to_cpu(tl->tl_recs[index].t_start),
5881 num_clusters);
5882 } else {
5883 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5884 tl->tl_used = cpu_to_le16(index + 1);
5885 }
5886 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5887
5888 ocfs2_journal_dirty(handle, tl_bh);
5889
5890 osb->truncated_clusters += num_clusters;
5891 bail:
5892 return status;
5893 }
5894
5895 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5896 handle_t *handle,
5897 struct inode *data_alloc_inode,
5898 struct buffer_head *data_alloc_bh)
5899 {
5900 int status = 0;
5901 int i;
5902 unsigned int num_clusters;
5903 u64 start_blk;
5904 struct ocfs2_truncate_rec rec;
5905 struct ocfs2_dinode *di;
5906 struct ocfs2_truncate_log *tl;
5907 struct inode *tl_inode = osb->osb_tl_inode;
5908 struct buffer_head *tl_bh = osb->osb_tl_bh;
5909
5910 di = (struct ocfs2_dinode *) tl_bh->b_data;
5911 tl = &di->id2.i_dealloc;
5912 i = le16_to_cpu(tl->tl_used) - 1;
5913 while (i >= 0) {
5914 /* Caller has given us at least enough credits to
5915 * update the truncate log dinode */
5916 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5917 OCFS2_JOURNAL_ACCESS_WRITE);
5918 if (status < 0) {
5919 mlog_errno(status);
5920 goto bail;
5921 }
5922
5923 tl->tl_used = cpu_to_le16(i);
5924
5925 ocfs2_journal_dirty(handle, tl_bh);
5926
5927 /* TODO: Perhaps we can calculate the bulk of the
5928 * credits up front rather than extending like
5929 * this. */
5930 status = ocfs2_extend_trans(handle,
5931 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5932 if (status < 0) {
5933 mlog_errno(status);
5934 goto bail;
5935 }
5936
5937 rec = tl->tl_recs[i];
5938 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5939 le32_to_cpu(rec.t_start));
5940 num_clusters = le32_to_cpu(rec.t_clusters);
5941
5942 /* if start_blk is not set, we ignore the record as
5943 * invalid. */
5944 if (start_blk) {
5945 trace_ocfs2_replay_truncate_records(
5946 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5947 i, le32_to_cpu(rec.t_start), num_clusters);
5948
5949 status = ocfs2_free_clusters(handle, data_alloc_inode,
5950 data_alloc_bh, start_blk,
5951 num_clusters);
5952 if (status < 0) {
5953 mlog_errno(status);
5954 goto bail;
5955 }
5956 }
5957 i--;
5958 }
5959
5960 osb->truncated_clusters = 0;
5961
5962 bail:
5963 return status;
5964 }
5965
5966 /* Expects you to already be holding tl_inode->i_mutex */
5967 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5968 {
5969 int status;
5970 unsigned int num_to_flush;
5971 handle_t *handle;
5972 struct inode *tl_inode = osb->osb_tl_inode;
5973 struct inode *data_alloc_inode = NULL;
5974 struct buffer_head *tl_bh = osb->osb_tl_bh;
5975 struct buffer_head *data_alloc_bh = NULL;
5976 struct ocfs2_dinode *di;
5977 struct ocfs2_truncate_log *tl;
5978
5979 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5980
5981 di = (struct ocfs2_dinode *) tl_bh->b_data;
5982
5983 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5984 * by the underlying call to ocfs2_read_inode_block(), so any
5985 * corruption is a code bug */
5986 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5987
5988 tl = &di->id2.i_dealloc;
5989 num_to_flush = le16_to_cpu(tl->tl_used);
5990 trace_ocfs2_flush_truncate_log(
5991 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5992 num_to_flush);
5993 if (!num_to_flush) {
5994 status = 0;
5995 goto out;
5996 }
5997
5998 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5999 GLOBAL_BITMAP_SYSTEM_INODE,
6000 OCFS2_INVALID_SLOT);
6001 if (!data_alloc_inode) {
6002 status = -EINVAL;
6003 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6004 goto out;
6005 }
6006
6007 mutex_lock(&data_alloc_inode->i_mutex);
6008
6009 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6010 if (status < 0) {
6011 mlog_errno(status);
6012 goto out_mutex;
6013 }
6014
6015 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6016 if (IS_ERR(handle)) {
6017 status = PTR_ERR(handle);
6018 mlog_errno(status);
6019 goto out_unlock;
6020 }
6021
6022 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6023 data_alloc_bh);
6024 if (status < 0)
6025 mlog_errno(status);
6026
6027 ocfs2_commit_trans(osb, handle);
6028
6029 out_unlock:
6030 brelse(data_alloc_bh);
6031 ocfs2_inode_unlock(data_alloc_inode, 1);
6032
6033 out_mutex:
6034 mutex_unlock(&data_alloc_inode->i_mutex);
6035 iput(data_alloc_inode);
6036
6037 out:
6038 return status;
6039 }
6040
6041 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6042 {
6043 int status;
6044 struct inode *tl_inode = osb->osb_tl_inode;
6045
6046 mutex_lock(&tl_inode->i_mutex);
6047 status = __ocfs2_flush_truncate_log(osb);
6048 mutex_unlock(&tl_inode->i_mutex);
6049
6050 return status;
6051 }
6052
6053 static void ocfs2_truncate_log_worker(struct work_struct *work)
6054 {
6055 int status;
6056 struct ocfs2_super *osb =
6057 container_of(work, struct ocfs2_super,
6058 osb_truncate_log_wq.work);
6059
6060 status = ocfs2_flush_truncate_log(osb);
6061 if (status < 0)
6062 mlog_errno(status);
6063 else
6064 ocfs2_init_steal_slots(osb);
6065 }
6066
6067 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6068 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6069 int cancel)
6070 {
6071 if (osb->osb_tl_inode &&
6072 atomic_read(&osb->osb_tl_disable) == 0) {
6073 /* We want to push off log flushes while truncates are
6074 * still running. */
6075 if (cancel)
6076 cancel_delayed_work(&osb->osb_truncate_log_wq);
6077
6078 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6079 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6080 }
6081 }
6082
6083 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6084 int slot_num,
6085 struct inode **tl_inode,
6086 struct buffer_head **tl_bh)
6087 {
6088 int status;
6089 struct inode *inode = NULL;
6090 struct buffer_head *bh = NULL;
6091
6092 inode = ocfs2_get_system_file_inode(osb,
6093 TRUNCATE_LOG_SYSTEM_INODE,
6094 slot_num);
6095 if (!inode) {
6096 status = -EINVAL;
6097 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6098 goto bail;
6099 }
6100
6101 status = ocfs2_read_inode_block(inode, &bh);
6102 if (status < 0) {
6103 iput(inode);
6104 mlog_errno(status);
6105 goto bail;
6106 }
6107
6108 *tl_inode = inode;
6109 *tl_bh = bh;
6110 bail:
6111 return status;
6112 }
6113
6114 /* called during the 1st stage of node recovery. we stamp a clean
6115 * truncate log and pass back a copy for processing later. if the
6116 * truncate log does not require processing, a *tl_copy is set to
6117 * NULL. */
6118 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6119 int slot_num,
6120 struct ocfs2_dinode **tl_copy)
6121 {
6122 int status;
6123 struct inode *tl_inode = NULL;
6124 struct buffer_head *tl_bh = NULL;
6125 struct ocfs2_dinode *di;
6126 struct ocfs2_truncate_log *tl;
6127
6128 *tl_copy = NULL;
6129
6130 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6131
6132 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6133 if (status < 0) {
6134 mlog_errno(status);
6135 goto bail;
6136 }
6137
6138 di = (struct ocfs2_dinode *) tl_bh->b_data;
6139
6140 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6141 * validated by the underlying call to ocfs2_read_inode_block(),
6142 * so any corruption is a code bug */
6143 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6144
6145 tl = &di->id2.i_dealloc;
6146 if (le16_to_cpu(tl->tl_used)) {
6147 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6148
6149 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6150 if (!(*tl_copy)) {
6151 status = -ENOMEM;
6152 mlog_errno(status);
6153 goto bail;
6154 }
6155
6156 /* Assuming the write-out below goes well, this copy
6157 * will be passed back to recovery for processing. */
6158 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6159
6160 /* All we need to do to clear the truncate log is set
6161 * tl_used. */
6162 tl->tl_used = 0;
6163
6164 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6165 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6166 if (status < 0) {
6167 mlog_errno(status);
6168 goto bail;
6169 }
6170 }
6171
6172 bail:
6173 if (tl_inode)
6174 iput(tl_inode);
6175 brelse(tl_bh);
6176
6177 if (status < 0 && (*tl_copy)) {
6178 kfree(*tl_copy);
6179 *tl_copy = NULL;
6180 mlog_errno(status);
6181 }
6182
6183 return status;
6184 }
6185
6186 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6187 struct ocfs2_dinode *tl_copy)
6188 {
6189 int status = 0;
6190 int i;
6191 unsigned int clusters, num_recs, start_cluster;
6192 u64 start_blk;
6193 handle_t *handle;
6194 struct inode *tl_inode = osb->osb_tl_inode;
6195 struct ocfs2_truncate_log *tl;
6196
6197 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6198 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6199 return -EINVAL;
6200 }
6201
6202 tl = &tl_copy->id2.i_dealloc;
6203 num_recs = le16_to_cpu(tl->tl_used);
6204 trace_ocfs2_complete_truncate_log_recovery(
6205 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6206 num_recs);
6207
6208 mutex_lock(&tl_inode->i_mutex);
6209 for(i = 0; i < num_recs; i++) {
6210 if (ocfs2_truncate_log_needs_flush(osb)) {
6211 status = __ocfs2_flush_truncate_log(osb);
6212 if (status < 0) {
6213 mlog_errno(status);
6214 goto bail_up;
6215 }
6216 }
6217
6218 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6219 if (IS_ERR(handle)) {
6220 status = PTR_ERR(handle);
6221 mlog_errno(status);
6222 goto bail_up;
6223 }
6224
6225 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6226 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6227 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6228
6229 status = ocfs2_truncate_log_append(osb, handle,
6230 start_blk, clusters);
6231 ocfs2_commit_trans(osb, handle);
6232 if (status < 0) {
6233 mlog_errno(status);
6234 goto bail_up;
6235 }
6236 }
6237
6238 bail_up:
6239 mutex_unlock(&tl_inode->i_mutex);
6240
6241 return status;
6242 }
6243
6244 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6245 {
6246 int status;
6247 struct inode *tl_inode = osb->osb_tl_inode;
6248
6249 atomic_set(&osb->osb_tl_disable, 1);
6250
6251 if (tl_inode) {
6252 cancel_delayed_work(&osb->osb_truncate_log_wq);
6253 flush_workqueue(ocfs2_wq);
6254
6255 status = ocfs2_flush_truncate_log(osb);
6256 if (status < 0)
6257 mlog_errno(status);
6258
6259 brelse(osb->osb_tl_bh);
6260 iput(osb->osb_tl_inode);
6261 }
6262 }
6263
6264 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6265 {
6266 int status;
6267 struct inode *tl_inode = NULL;
6268 struct buffer_head *tl_bh = NULL;
6269
6270 status = ocfs2_get_truncate_log_info(osb,
6271 osb->slot_num,
6272 &tl_inode,
6273 &tl_bh);
6274 if (status < 0)
6275 mlog_errno(status);
6276
6277 /* ocfs2_truncate_log_shutdown keys on the existence of
6278 * osb->osb_tl_inode so we don't set any of the osb variables
6279 * until we're sure all is well. */
6280 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6281 ocfs2_truncate_log_worker);
6282 atomic_set(&osb->osb_tl_disable, 0);
6283 osb->osb_tl_bh = tl_bh;
6284 osb->osb_tl_inode = tl_inode;
6285
6286 return status;
6287 }
6288
6289 /*
6290 * Delayed de-allocation of suballocator blocks.
6291 *
6292 * Some sets of block de-allocations might involve multiple suballocator inodes.
6293 *
6294 * The locking for this can get extremely complicated, especially when
6295 * the suballocator inodes to delete from aren't known until deep
6296 * within an unrelated codepath.
6297 *
6298 * ocfs2_extent_block structures are a good example of this - an inode
6299 * btree could have been grown by any number of nodes each allocating
6300 * out of their own suballoc inode.
6301 *
6302 * These structures allow the delay of block de-allocation until a
6303 * later time, when locking of multiple cluster inodes won't cause
6304 * deadlock.
6305 */
6306
6307 /*
6308 * Describe a single bit freed from a suballocator. For the block
6309 * suballocators, it represents one block. For the global cluster
6310 * allocator, it represents some clusters and free_bit indicates
6311 * clusters number.
6312 */
6313 struct ocfs2_cached_block_free {
6314 struct ocfs2_cached_block_free *free_next;
6315 u64 free_bg;
6316 u64 free_blk;
6317 unsigned int free_bit;
6318 };
6319
6320 struct ocfs2_per_slot_free_list {
6321 struct ocfs2_per_slot_free_list *f_next_suballocator;
6322 int f_inode_type;
6323 int f_slot;
6324 struct ocfs2_cached_block_free *f_first;
6325 };
6326
6327 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6328 int sysfile_type,
6329 int slot,
6330 struct ocfs2_cached_block_free *head)
6331 {
6332 int ret;
6333 u64 bg_blkno;
6334 handle_t *handle;
6335 struct inode *inode;
6336 struct buffer_head *di_bh = NULL;
6337 struct ocfs2_cached_block_free *tmp;
6338
6339 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6340 if (!inode) {
6341 ret = -EINVAL;
6342 mlog_errno(ret);
6343 goto out;
6344 }
6345
6346 mutex_lock(&inode->i_mutex);
6347
6348 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6349 if (ret) {
6350 mlog_errno(ret);
6351 goto out_mutex;
6352 }
6353
6354 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6355 if (IS_ERR(handle)) {
6356 ret = PTR_ERR(handle);
6357 mlog_errno(ret);
6358 goto out_unlock;
6359 }
6360
6361 while (head) {
6362 if (head->free_bg)
6363 bg_blkno = head->free_bg;
6364 else
6365 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6366 head->free_bit);
6367 trace_ocfs2_free_cached_blocks(
6368 (unsigned long long)head->free_blk, head->free_bit);
6369
6370 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6371 head->free_bit, bg_blkno, 1);
6372 if (ret) {
6373 mlog_errno(ret);
6374 goto out_journal;
6375 }
6376
6377 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6378 if (ret) {
6379 mlog_errno(ret);
6380 goto out_journal;
6381 }
6382
6383 tmp = head;
6384 head = head->free_next;
6385 kfree(tmp);
6386 }
6387
6388 out_journal:
6389 ocfs2_commit_trans(osb, handle);
6390
6391 out_unlock:
6392 ocfs2_inode_unlock(inode, 1);
6393 brelse(di_bh);
6394 out_mutex:
6395 mutex_unlock(&inode->i_mutex);
6396 iput(inode);
6397 out:
6398 while(head) {
6399 /* Premature exit may have left some dangling items. */
6400 tmp = head;
6401 head = head->free_next;
6402 kfree(tmp);
6403 }
6404
6405 return ret;
6406 }
6407
6408 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6409 u64 blkno, unsigned int bit)
6410 {
6411 int ret = 0;
6412 struct ocfs2_cached_block_free *item;
6413
6414 item = kzalloc(sizeof(*item), GFP_NOFS);
6415 if (item == NULL) {
6416 ret = -ENOMEM;
6417 mlog_errno(ret);
6418 return ret;
6419 }
6420
6421 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6422
6423 item->free_blk = blkno;
6424 item->free_bit = bit;
6425 item->free_next = ctxt->c_global_allocator;
6426
6427 ctxt->c_global_allocator = item;
6428 return ret;
6429 }
6430
6431 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6432 struct ocfs2_cached_block_free *head)
6433 {
6434 struct ocfs2_cached_block_free *tmp;
6435 struct inode *tl_inode = osb->osb_tl_inode;
6436 handle_t *handle;
6437 int ret = 0;
6438
6439 mutex_lock(&tl_inode->i_mutex);
6440
6441 while (head) {
6442 if (ocfs2_truncate_log_needs_flush(osb)) {
6443 ret = __ocfs2_flush_truncate_log(osb);
6444 if (ret < 0) {
6445 mlog_errno(ret);
6446 break;
6447 }
6448 }
6449
6450 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6451 if (IS_ERR(handle)) {
6452 ret = PTR_ERR(handle);
6453 mlog_errno(ret);
6454 break;
6455 }
6456
6457 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6458 head->free_bit);
6459
6460 ocfs2_commit_trans(osb, handle);
6461 tmp = head;
6462 head = head->free_next;
6463 kfree(tmp);
6464
6465 if (ret < 0) {
6466 mlog_errno(ret);
6467 break;
6468 }
6469 }
6470
6471 mutex_unlock(&tl_inode->i_mutex);
6472
6473 while (head) {
6474 /* Premature exit may have left some dangling items. */
6475 tmp = head;
6476 head = head->free_next;
6477 kfree(tmp);
6478 }
6479
6480 return ret;
6481 }
6482
6483 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6484 struct ocfs2_cached_dealloc_ctxt *ctxt)
6485 {
6486 int ret = 0, ret2;
6487 struct ocfs2_per_slot_free_list *fl;
6488
6489 if (!ctxt)
6490 return 0;
6491
6492 while (ctxt->c_first_suballocator) {
6493 fl = ctxt->c_first_suballocator;
6494
6495 if (fl->f_first) {
6496 trace_ocfs2_run_deallocs(fl->f_inode_type,
6497 fl->f_slot);
6498 ret2 = ocfs2_free_cached_blocks(osb,
6499 fl->f_inode_type,
6500 fl->f_slot,
6501 fl->f_first);
6502 if (ret2)
6503 mlog_errno(ret2);
6504 if (!ret)
6505 ret = ret2;
6506 }
6507
6508 ctxt->c_first_suballocator = fl->f_next_suballocator;
6509 kfree(fl);
6510 }
6511
6512 if (ctxt->c_global_allocator) {
6513 ret2 = ocfs2_free_cached_clusters(osb,
6514 ctxt->c_global_allocator);
6515 if (ret2)
6516 mlog_errno(ret2);
6517 if (!ret)
6518 ret = ret2;
6519
6520 ctxt->c_global_allocator = NULL;
6521 }
6522
6523 return ret;
6524 }
6525
6526 static struct ocfs2_per_slot_free_list *
6527 ocfs2_find_per_slot_free_list(int type,
6528 int slot,
6529 struct ocfs2_cached_dealloc_ctxt *ctxt)
6530 {
6531 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6532
6533 while (fl) {
6534 if (fl->f_inode_type == type && fl->f_slot == slot)
6535 return fl;
6536
6537 fl = fl->f_next_suballocator;
6538 }
6539
6540 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6541 if (fl) {
6542 fl->f_inode_type = type;
6543 fl->f_slot = slot;
6544 fl->f_first = NULL;
6545 fl->f_next_suballocator = ctxt->c_first_suballocator;
6546
6547 ctxt->c_first_suballocator = fl;
6548 }
6549 return fl;
6550 }
6551
6552 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6553 int type, int slot, u64 suballoc,
6554 u64 blkno, unsigned int bit)
6555 {
6556 int ret;
6557 struct ocfs2_per_slot_free_list *fl;
6558 struct ocfs2_cached_block_free *item;
6559
6560 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6561 if (fl == NULL) {
6562 ret = -ENOMEM;
6563 mlog_errno(ret);
6564 goto out;
6565 }
6566
6567 item = kzalloc(sizeof(*item), GFP_NOFS);
6568 if (item == NULL) {
6569 ret = -ENOMEM;
6570 mlog_errno(ret);
6571 goto out;
6572 }
6573
6574 trace_ocfs2_cache_block_dealloc(type, slot,
6575 (unsigned long long)suballoc,
6576 (unsigned long long)blkno, bit);
6577
6578 item->free_bg = suballoc;
6579 item->free_blk = blkno;
6580 item->free_bit = bit;
6581 item->free_next = fl->f_first;
6582
6583 fl->f_first = item;
6584
6585 ret = 0;
6586 out:
6587 return ret;
6588 }
6589
6590 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6591 struct ocfs2_extent_block *eb)
6592 {
6593 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6594 le16_to_cpu(eb->h_suballoc_slot),
6595 le64_to_cpu(eb->h_suballoc_loc),
6596 le64_to_cpu(eb->h_blkno),
6597 le16_to_cpu(eb->h_suballoc_bit));
6598 }
6599
6600 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6601 {
6602 set_buffer_uptodate(bh);
6603 mark_buffer_dirty(bh);
6604 return 0;
6605 }
6606
6607 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6608 unsigned int from, unsigned int to,
6609 struct page *page, int zero, u64 *phys)
6610 {
6611 int ret, partial = 0;
6612
6613 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6614 if (ret)
6615 mlog_errno(ret);
6616
6617 if (zero)
6618 zero_user_segment(page, from, to);
6619
6620 /*
6621 * Need to set the buffers we zero'd into uptodate
6622 * here if they aren't - ocfs2_map_page_blocks()
6623 * might've skipped some
6624 */
6625 ret = walk_page_buffers(handle, page_buffers(page),
6626 from, to, &partial,
6627 ocfs2_zero_func);
6628 if (ret < 0)
6629 mlog_errno(ret);
6630 else if (ocfs2_should_order_data(inode)) {
6631 ret = ocfs2_jbd2_file_inode(handle, inode);
6632 if (ret < 0)
6633 mlog_errno(ret);
6634 }
6635
6636 if (!partial)
6637 SetPageUptodate(page);
6638
6639 flush_dcache_page(page);
6640 }
6641
6642 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6643 loff_t end, struct page **pages,
6644 int numpages, u64 phys, handle_t *handle)
6645 {
6646 int i;
6647 struct page *page;
6648 unsigned int from, to = PAGE_CACHE_SIZE;
6649 struct super_block *sb = inode->i_sb;
6650
6651 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6652
6653 if (numpages == 0)
6654 goto out;
6655
6656 to = PAGE_CACHE_SIZE;
6657 for(i = 0; i < numpages; i++) {
6658 page = pages[i];
6659
6660 from = start & (PAGE_CACHE_SIZE - 1);
6661 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6662 to = end & (PAGE_CACHE_SIZE - 1);
6663
6664 BUG_ON(from > PAGE_CACHE_SIZE);
6665 BUG_ON(to > PAGE_CACHE_SIZE);
6666
6667 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6668 &phys);
6669
6670 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6671 }
6672 out:
6673 if (pages)
6674 ocfs2_unlock_and_free_pages(pages, numpages);
6675 }
6676
6677 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6678 struct page **pages, int *num)
6679 {
6680 int numpages, ret = 0;
6681 struct address_space *mapping = inode->i_mapping;
6682 unsigned long index;
6683 loff_t last_page_bytes;
6684
6685 BUG_ON(start > end);
6686
6687 numpages = 0;
6688 last_page_bytes = PAGE_ALIGN(end);
6689 index = start >> PAGE_CACHE_SHIFT;
6690 do {
6691 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6692 if (!pages[numpages]) {
6693 ret = -ENOMEM;
6694 mlog_errno(ret);
6695 goto out;
6696 }
6697
6698 numpages++;
6699 index++;
6700 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6701
6702 out:
6703 if (ret != 0) {
6704 if (pages)
6705 ocfs2_unlock_and_free_pages(pages, numpages);
6706 numpages = 0;
6707 }
6708
6709 *num = numpages;
6710
6711 return ret;
6712 }
6713
6714 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6715 struct page **pages, int *num)
6716 {
6717 struct super_block *sb = inode->i_sb;
6718
6719 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6720 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6721
6722 return ocfs2_grab_pages(inode, start, end, pages, num);
6723 }
6724
6725 /*
6726 * Zero the area past i_size but still within an allocated
6727 * cluster. This avoids exposing nonzero data on subsequent file
6728 * extends.
6729 *
6730 * We need to call this before i_size is updated on the inode because
6731 * otherwise block_write_full_page() will skip writeout of pages past
6732 * i_size. The new_i_size parameter is passed for this reason.
6733 */
6734 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6735 u64 range_start, u64 range_end)
6736 {
6737 int ret = 0, numpages;
6738 struct page **pages = NULL;
6739 u64 phys;
6740 unsigned int ext_flags;
6741 struct super_block *sb = inode->i_sb;
6742
6743 /*
6744 * File systems which don't support sparse files zero on every
6745 * extend.
6746 */
6747 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6748 return 0;
6749
6750 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6751 sizeof(struct page *), GFP_NOFS);
6752 if (pages == NULL) {
6753 ret = -ENOMEM;
6754 mlog_errno(ret);
6755 goto out;
6756 }
6757
6758 if (range_start == range_end)
6759 goto out;
6760
6761 ret = ocfs2_extent_map_get_blocks(inode,
6762 range_start >> sb->s_blocksize_bits,
6763 &phys, NULL, &ext_flags);
6764 if (ret) {
6765 mlog_errno(ret);
6766 goto out;
6767 }
6768
6769 /*
6770 * Tail is a hole, or is marked unwritten. In either case, we
6771 * can count on read and write to return/push zero's.
6772 */
6773 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6774 goto out;
6775
6776 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6777 &numpages);
6778 if (ret) {
6779 mlog_errno(ret);
6780 goto out;
6781 }
6782
6783 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6784 numpages, phys, handle);
6785
6786 /*
6787 * Initiate writeout of the pages we zero'd here. We don't
6788 * wait on them - the truncate_inode_pages() call later will
6789 * do that for us.
6790 */
6791 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6792 range_end - 1);
6793 if (ret)
6794 mlog_errno(ret);
6795
6796 out:
6797 kfree(pages);
6798
6799 return ret;
6800 }
6801
6802 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6803 struct ocfs2_dinode *di)
6804 {
6805 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6806 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6807
6808 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6809 memset(&di->id2, 0, blocksize -
6810 offsetof(struct ocfs2_dinode, id2) -
6811 xattrsize);
6812 else
6813 memset(&di->id2, 0, blocksize -
6814 offsetof(struct ocfs2_dinode, id2));
6815 }
6816
6817 void ocfs2_dinode_new_extent_list(struct inode *inode,
6818 struct ocfs2_dinode *di)
6819 {
6820 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6821 di->id2.i_list.l_tree_depth = 0;
6822 di->id2.i_list.l_next_free_rec = 0;
6823 di->id2.i_list.l_count = cpu_to_le16(
6824 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6825 }
6826
6827 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6828 {
6829 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6830 struct ocfs2_inline_data *idata = &di->id2.i_data;
6831
6832 spin_lock(&oi->ip_lock);
6833 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6834 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6835 spin_unlock(&oi->ip_lock);
6836
6837 /*
6838 * We clear the entire i_data structure here so that all
6839 * fields can be properly initialized.
6840 */
6841 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6842
6843 idata->id_count = cpu_to_le16(
6844 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6845 }
6846
6847 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6848 struct buffer_head *di_bh)
6849 {
6850 int ret, i, has_data, num_pages = 0;
6851 int need_free = 0;
6852 u32 bit_off, num;
6853 handle_t *handle;
6854 u64 uninitialized_var(block);
6855 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6856 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6857 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6858 struct ocfs2_alloc_context *data_ac = NULL;
6859 struct page **pages = NULL;
6860 loff_t end = osb->s_clustersize;
6861 struct ocfs2_extent_tree et;
6862 int did_quota = 0;
6863
6864 has_data = i_size_read(inode) ? 1 : 0;
6865
6866 if (has_data) {
6867 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6868 sizeof(struct page *), GFP_NOFS);
6869 if (pages == NULL) {
6870 ret = -ENOMEM;
6871 mlog_errno(ret);
6872 return ret;
6873 }
6874
6875 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6876 if (ret) {
6877 mlog_errno(ret);
6878 goto free_pages;
6879 }
6880 }
6881
6882 handle = ocfs2_start_trans(osb,
6883 ocfs2_inline_to_extents_credits(osb->sb));
6884 if (IS_ERR(handle)) {
6885 ret = PTR_ERR(handle);
6886 mlog_errno(ret);
6887 goto out;
6888 }
6889
6890 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6891 OCFS2_JOURNAL_ACCESS_WRITE);
6892 if (ret) {
6893 mlog_errno(ret);
6894 goto out_commit;
6895 }
6896
6897 if (has_data) {
6898 unsigned int page_end;
6899 u64 phys;
6900
6901 ret = dquot_alloc_space_nodirty(inode,
6902 ocfs2_clusters_to_bytes(osb->sb, 1));
6903 if (ret)
6904 goto out_commit;
6905 did_quota = 1;
6906
6907 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6908
6909 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6910 &num);
6911 if (ret) {
6912 mlog_errno(ret);
6913 goto out_commit;
6914 }
6915
6916 /*
6917 * Save two copies, one for insert, and one that can
6918 * be changed by ocfs2_map_and_dirty_page() below.
6919 */
6920 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6921
6922 /*
6923 * Non sparse file systems zero on extend, so no need
6924 * to do that now.
6925 */
6926 if (!ocfs2_sparse_alloc(osb) &&
6927 PAGE_CACHE_SIZE < osb->s_clustersize)
6928 end = PAGE_CACHE_SIZE;
6929
6930 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6931 if (ret) {
6932 mlog_errno(ret);
6933 need_free = 1;
6934 goto out_commit;
6935 }
6936
6937 /*
6938 * This should populate the 1st page for us and mark
6939 * it up to date.
6940 */
6941 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6942 if (ret) {
6943 mlog_errno(ret);
6944 need_free = 1;
6945 goto out_unlock;
6946 }
6947
6948 page_end = PAGE_CACHE_SIZE;
6949 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6950 page_end = osb->s_clustersize;
6951
6952 for (i = 0; i < num_pages; i++)
6953 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6954 pages[i], i > 0, &phys);
6955 }
6956
6957 spin_lock(&oi->ip_lock);
6958 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6959 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6960 spin_unlock(&oi->ip_lock);
6961
6962 ocfs2_update_inode_fsync_trans(handle, inode, 1);
6963 ocfs2_dinode_new_extent_list(inode, di);
6964
6965 ocfs2_journal_dirty(handle, di_bh);
6966
6967 if (has_data) {
6968 /*
6969 * An error at this point should be extremely rare. If
6970 * this proves to be false, we could always re-build
6971 * the in-inode data from our pages.
6972 */
6973 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6974 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6975 if (ret) {
6976 mlog_errno(ret);
6977 need_free = 1;
6978 goto out_unlock;
6979 }
6980
6981 inode->i_blocks = ocfs2_inode_sector_count(inode);
6982 }
6983
6984 out_unlock:
6985 if (pages)
6986 ocfs2_unlock_and_free_pages(pages, num_pages);
6987
6988 out_commit:
6989 if (ret < 0 && did_quota)
6990 dquot_free_space_nodirty(inode,
6991 ocfs2_clusters_to_bytes(osb->sb, 1));
6992
6993 if (need_free) {
6994 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
6995 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
6996 bit_off, num);
6997 else
6998 ocfs2_free_clusters(handle,
6999 data_ac->ac_inode,
7000 data_ac->ac_bh,
7001 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7002 num);
7003 }
7004
7005 ocfs2_commit_trans(osb, handle);
7006
7007 out:
7008 if (data_ac)
7009 ocfs2_free_alloc_context(data_ac);
7010 free_pages:
7011 kfree(pages);
7012 return ret;
7013 }
7014
7015 /*
7016 * It is expected, that by the time you call this function,
7017 * inode->i_size and fe->i_size have been adjusted.
7018 *
7019 * WARNING: This will kfree the truncate context
7020 */
7021 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7022 struct inode *inode,
7023 struct buffer_head *di_bh)
7024 {
7025 int status = 0, i, flags = 0;
7026 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7027 u64 blkno = 0;
7028 struct ocfs2_extent_list *el;
7029 struct ocfs2_extent_rec *rec;
7030 struct ocfs2_path *path = NULL;
7031 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7032 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7033 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7034 struct ocfs2_extent_tree et;
7035 struct ocfs2_cached_dealloc_ctxt dealloc;
7036 struct ocfs2_refcount_tree *ref_tree = NULL;
7037
7038 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7039 ocfs2_init_dealloc_ctxt(&dealloc);
7040
7041 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7042 i_size_read(inode));
7043
7044 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7045 ocfs2_journal_access_di);
7046 if (!path) {
7047 status = -ENOMEM;
7048 mlog_errno(status);
7049 goto bail;
7050 }
7051
7052 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7053
7054 start:
7055 /*
7056 * Check that we still have allocation to delete.
7057 */
7058 if (OCFS2_I(inode)->ip_clusters == 0) {
7059 status = 0;
7060 goto bail;
7061 }
7062
7063 /*
7064 * Truncate always works against the rightmost tree branch.
7065 */
7066 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7067 if (status) {
7068 mlog_errno(status);
7069 goto bail;
7070 }
7071
7072 trace_ocfs2_commit_truncate(
7073 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7074 new_highest_cpos,
7075 OCFS2_I(inode)->ip_clusters,
7076 path->p_tree_depth);
7077
7078 /*
7079 * By now, el will point to the extent list on the bottom most
7080 * portion of this tree. Only the tail record is considered in
7081 * each pass.
7082 *
7083 * We handle the following cases, in order:
7084 * - empty extent: delete the remaining branch
7085 * - remove the entire record
7086 * - remove a partial record
7087 * - no record needs to be removed (truncate has completed)
7088 */
7089 el = path_leaf_el(path);
7090 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7091 ocfs2_error(inode->i_sb,
7092 "Inode %llu has empty extent block at %llu\n",
7093 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7094 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7095 status = -EROFS;
7096 goto bail;
7097 }
7098
7099 i = le16_to_cpu(el->l_next_free_rec) - 1;
7100 rec = &el->l_recs[i];
7101 flags = rec->e_flags;
7102 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7103
7104 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7105 /*
7106 * Lower levels depend on this never happening, but it's best
7107 * to check it up here before changing the tree.
7108 */
7109 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7110 ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7111 "extent record, depth %u\n", inode->i_ino,
7112 le16_to_cpu(root_el->l_tree_depth));
7113 status = -EROFS;
7114 goto bail;
7115 }
7116 trunc_cpos = le32_to_cpu(rec->e_cpos);
7117 trunc_len = 0;
7118 blkno = 0;
7119 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7120 /*
7121 * Truncate entire record.
7122 */
7123 trunc_cpos = le32_to_cpu(rec->e_cpos);
7124 trunc_len = ocfs2_rec_clusters(el, rec);
7125 blkno = le64_to_cpu(rec->e_blkno);
7126 } else if (range > new_highest_cpos) {
7127 /*
7128 * Partial truncate. it also should be
7129 * the last truncate we're doing.
7130 */
7131 trunc_cpos = new_highest_cpos;
7132 trunc_len = range - new_highest_cpos;
7133 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7134 blkno = le64_to_cpu(rec->e_blkno) +
7135 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7136 } else {
7137 /*
7138 * Truncate completed, leave happily.
7139 */
7140 status = 0;
7141 goto bail;
7142 }
7143
7144 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7145
7146 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7147 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7148 &ref_tree, NULL);
7149 if (status) {
7150 mlog_errno(status);
7151 goto bail;
7152 }
7153 }
7154
7155 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7156 phys_cpos, trunc_len, flags, &dealloc,
7157 refcount_loc, true);
7158 if (status < 0) {
7159 mlog_errno(status);
7160 goto bail;
7161 }
7162
7163 ocfs2_reinit_path(path, 1);
7164
7165 /*
7166 * The check above will catch the case where we've truncated
7167 * away all allocation.
7168 */
7169 goto start;
7170
7171 bail:
7172 if (ref_tree)
7173 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7174
7175 ocfs2_schedule_truncate_log_flush(osb, 1);
7176
7177 ocfs2_run_deallocs(osb, &dealloc);
7178
7179 ocfs2_free_path(path);
7180
7181 return status;
7182 }
7183
7184 /*
7185 * 'start' is inclusive, 'end' is not.
7186 */
7187 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7188 unsigned int start, unsigned int end, int trunc)
7189 {
7190 int ret;
7191 unsigned int numbytes;
7192 handle_t *handle;
7193 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7194 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7195 struct ocfs2_inline_data *idata = &di->id2.i_data;
7196
7197 if (end > i_size_read(inode))
7198 end = i_size_read(inode);
7199
7200 BUG_ON(start > end);
7201
7202 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7203 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7204 !ocfs2_supports_inline_data(osb)) {
7205 ocfs2_error(inode->i_sb,
7206 "Inline data flags for inode %llu don't agree! "
7207 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7208 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7209 le16_to_cpu(di->i_dyn_features),
7210 OCFS2_I(inode)->ip_dyn_features,
7211 osb->s_feature_incompat);
7212 ret = -EROFS;
7213 goto out;
7214 }
7215
7216 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7217 if (IS_ERR(handle)) {
7218 ret = PTR_ERR(handle);
7219 mlog_errno(ret);
7220 goto out;
7221 }
7222
7223 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7224 OCFS2_JOURNAL_ACCESS_WRITE);
7225 if (ret) {
7226 mlog_errno(ret);
7227 goto out_commit;
7228 }
7229
7230 numbytes = end - start;
7231 memset(idata->id_data + start, 0, numbytes);
7232
7233 /*
7234 * No need to worry about the data page here - it's been
7235 * truncated already and inline data doesn't need it for
7236 * pushing zero's to disk, so we'll let readpage pick it up
7237 * later.
7238 */
7239 if (trunc) {
7240 i_size_write(inode, start);
7241 di->i_size = cpu_to_le64(start);
7242 }
7243
7244 inode->i_blocks = ocfs2_inode_sector_count(inode);
7245 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7246
7247 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7248 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7249
7250 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7251 ocfs2_journal_dirty(handle, di_bh);
7252
7253 out_commit:
7254 ocfs2_commit_trans(osb, handle);
7255
7256 out:
7257 return ret;
7258 }
7259
7260 static int ocfs2_trim_extent(struct super_block *sb,
7261 struct ocfs2_group_desc *gd,
7262 u32 start, u32 count)
7263 {
7264 u64 discard, bcount;
7265
7266 bcount = ocfs2_clusters_to_blocks(sb, count);
7267 discard = le64_to_cpu(gd->bg_blkno) +
7268 ocfs2_clusters_to_blocks(sb, start);
7269
7270 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7271
7272 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7273 }
7274
7275 static int ocfs2_trim_group(struct super_block *sb,
7276 struct ocfs2_group_desc *gd,
7277 u32 start, u32 max, u32 minbits)
7278 {
7279 int ret = 0, count = 0, next;
7280 void *bitmap = gd->bg_bitmap;
7281
7282 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7283 return 0;
7284
7285 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7286 start, max, minbits);
7287
7288 while (start < max) {
7289 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7290 if (start >= max)
7291 break;
7292 next = ocfs2_find_next_bit(bitmap, max, start);
7293
7294 if ((next - start) >= minbits) {
7295 ret = ocfs2_trim_extent(sb, gd,
7296 start, next - start);
7297 if (ret < 0) {
7298 mlog_errno(ret);
7299 break;
7300 }
7301 count += next - start;
7302 }
7303 start = next + 1;
7304
7305 if (fatal_signal_pending(current)) {
7306 count = -ERESTARTSYS;
7307 break;
7308 }
7309
7310 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7311 break;
7312 }
7313
7314 if (ret < 0)
7315 count = ret;
7316
7317 return count;
7318 }
7319
7320 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7321 {
7322 struct ocfs2_super *osb = OCFS2_SB(sb);
7323 u64 start, len, trimmed, first_group, last_group, group;
7324 int ret, cnt;
7325 u32 first_bit, last_bit, minlen;
7326 struct buffer_head *main_bm_bh = NULL;
7327 struct inode *main_bm_inode = NULL;
7328 struct buffer_head *gd_bh = NULL;
7329 struct ocfs2_dinode *main_bm;
7330 struct ocfs2_group_desc *gd = NULL;
7331
7332 start = range->start >> osb->s_clustersize_bits;
7333 len = range->len >> osb->s_clustersize_bits;
7334 minlen = range->minlen >> osb->s_clustersize_bits;
7335
7336 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7337 return -EINVAL;
7338
7339 main_bm_inode = ocfs2_get_system_file_inode(osb,
7340 GLOBAL_BITMAP_SYSTEM_INODE,
7341 OCFS2_INVALID_SLOT);
7342 if (!main_bm_inode) {
7343 ret = -EIO;
7344 mlog_errno(ret);
7345 goto out;
7346 }
7347
7348 mutex_lock(&main_bm_inode->i_mutex);
7349
7350 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7351 if (ret < 0) {
7352 mlog_errno(ret);
7353 goto out_mutex;
7354 }
7355 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7356
7357 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7358 ret = -EINVAL;
7359 goto out_unlock;
7360 }
7361
7362 len = range->len >> osb->s_clustersize_bits;
7363 if (start + len > le32_to_cpu(main_bm->i_clusters))
7364 len = le32_to_cpu(main_bm->i_clusters) - start;
7365
7366 trace_ocfs2_trim_fs(start, len, minlen);
7367
7368 /* Determine first and last group to examine based on start and len */
7369 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7370 if (first_group == osb->first_cluster_group_blkno)
7371 first_bit = start;
7372 else
7373 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7374 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7375 last_bit = osb->bitmap_cpg;
7376
7377 trimmed = 0;
7378 for (group = first_group; group <= last_group;) {
7379 if (first_bit + len >= osb->bitmap_cpg)
7380 last_bit = osb->bitmap_cpg;
7381 else
7382 last_bit = first_bit + len;
7383
7384 ret = ocfs2_read_group_descriptor(main_bm_inode,
7385 main_bm, group,
7386 &gd_bh);
7387 if (ret < 0) {
7388 mlog_errno(ret);
7389 break;
7390 }
7391
7392 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7393 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7394 brelse(gd_bh);
7395 gd_bh = NULL;
7396 if (cnt < 0) {
7397 ret = cnt;
7398 mlog_errno(ret);
7399 break;
7400 }
7401
7402 trimmed += cnt;
7403 len -= osb->bitmap_cpg - first_bit;
7404 first_bit = 0;
7405 if (group == osb->first_cluster_group_blkno)
7406 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7407 else
7408 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7409 }
7410 range->len = trimmed * sb->s_blocksize;
7411 out_unlock:
7412 ocfs2_inode_unlock(main_bm_inode, 0);
7413 brelse(main_bm_bh);
7414 out_mutex:
7415 mutex_unlock(&main_bm_inode->i_mutex);
7416 iput(main_bm_inode);
7417 out:
7418 return ret;
7419 }