]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/base.c
Merge tag 'gcc-plugins-v4.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <linux/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/sched/autogroup.h>
89 #include <linux/sched/mm.h>
90 #include <linux/sched/coredump.h>
91 #include <linux/sched/debug.h>
92 #include <linux/sched/stat.h>
93 #include <linux/flex_array.h>
94 #include <linux/posix-timers.h>
95 #ifdef CONFIG_HARDWALL
96 #include <asm/hardwall.h>
97 #endif
98 #include <trace/events/oom.h>
99 #include "internal.h"
100 #include "fd.h"
101
102 /* NOTE:
103 * Implementing inode permission operations in /proc is almost
104 * certainly an error. Permission checks need to happen during
105 * each system call not at open time. The reason is that most of
106 * what we wish to check for permissions in /proc varies at runtime.
107 *
108 * The classic example of a problem is opening file descriptors
109 * in /proc for a task before it execs a suid executable.
110 */
111
112 static u8 nlink_tid;
113 static u8 nlink_tgid;
114
115 struct pid_entry {
116 const char *name;
117 unsigned int len;
118 umode_t mode;
119 const struct inode_operations *iop;
120 const struct file_operations *fop;
121 union proc_op op;
122 };
123
124 #define NOD(NAME, MODE, IOP, FOP, OP) { \
125 .name = (NAME), \
126 .len = sizeof(NAME) - 1, \
127 .mode = MODE, \
128 .iop = IOP, \
129 .fop = FOP, \
130 .op = OP, \
131 }
132
133 #define DIR(NAME, MODE, iops, fops) \
134 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
135 #define LNK(NAME, get_link) \
136 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
137 &proc_pid_link_inode_operations, NULL, \
138 { .proc_get_link = get_link } )
139 #define REG(NAME, MODE, fops) \
140 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
141 #define ONE(NAME, MODE, show) \
142 NOD(NAME, (S_IFREG|(MODE)), \
143 NULL, &proc_single_file_operations, \
144 { .proc_show = show } )
145
146 /*
147 * Count the number of hardlinks for the pid_entry table, excluding the .
148 * and .. links.
149 */
150 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
151 unsigned int n)
152 {
153 unsigned int i;
154 unsigned int count;
155
156 count = 2;
157 for (i = 0; i < n; ++i) {
158 if (S_ISDIR(entries[i].mode))
159 ++count;
160 }
161
162 return count;
163 }
164
165 static int get_task_root(struct task_struct *task, struct path *root)
166 {
167 int result = -ENOENT;
168
169 task_lock(task);
170 if (task->fs) {
171 get_fs_root(task->fs, root);
172 result = 0;
173 }
174 task_unlock(task);
175 return result;
176 }
177
178 static int proc_cwd_link(struct dentry *dentry, struct path *path)
179 {
180 struct task_struct *task = get_proc_task(d_inode(dentry));
181 int result = -ENOENT;
182
183 if (task) {
184 task_lock(task);
185 if (task->fs) {
186 get_fs_pwd(task->fs, path);
187 result = 0;
188 }
189 task_unlock(task);
190 put_task_struct(task);
191 }
192 return result;
193 }
194
195 static int proc_root_link(struct dentry *dentry, struct path *path)
196 {
197 struct task_struct *task = get_proc_task(d_inode(dentry));
198 int result = -ENOENT;
199
200 if (task) {
201 result = get_task_root(task, path);
202 put_task_struct(task);
203 }
204 return result;
205 }
206
207 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
208 size_t _count, loff_t *pos)
209 {
210 struct task_struct *tsk;
211 struct mm_struct *mm;
212 char *page;
213 unsigned long count = _count;
214 unsigned long arg_start, arg_end, env_start, env_end;
215 unsigned long len1, len2, len;
216 unsigned long p;
217 char c;
218 ssize_t rv;
219
220 BUG_ON(*pos < 0);
221
222 tsk = get_proc_task(file_inode(file));
223 if (!tsk)
224 return -ESRCH;
225 mm = get_task_mm(tsk);
226 put_task_struct(tsk);
227 if (!mm)
228 return 0;
229 /* Check if process spawned far enough to have cmdline. */
230 if (!mm->env_end) {
231 rv = 0;
232 goto out_mmput;
233 }
234
235 page = (char *)__get_free_page(GFP_TEMPORARY);
236 if (!page) {
237 rv = -ENOMEM;
238 goto out_mmput;
239 }
240
241 down_read(&mm->mmap_sem);
242 arg_start = mm->arg_start;
243 arg_end = mm->arg_end;
244 env_start = mm->env_start;
245 env_end = mm->env_end;
246 up_read(&mm->mmap_sem);
247
248 BUG_ON(arg_start > arg_end);
249 BUG_ON(env_start > env_end);
250
251 len1 = arg_end - arg_start;
252 len2 = env_end - env_start;
253
254 /* Empty ARGV. */
255 if (len1 == 0) {
256 rv = 0;
257 goto out_free_page;
258 }
259 /*
260 * Inherently racy -- command line shares address space
261 * with code and data.
262 */
263 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
264 if (rv <= 0)
265 goto out_free_page;
266
267 rv = 0;
268
269 if (c == '\0') {
270 /* Command line (set of strings) occupies whole ARGV. */
271 if (len1 <= *pos)
272 goto out_free_page;
273
274 p = arg_start + *pos;
275 len = len1 - *pos;
276 while (count > 0 && len > 0) {
277 unsigned int _count;
278 int nr_read;
279
280 _count = min3(count, len, PAGE_SIZE);
281 nr_read = access_remote_vm(mm, p, page, _count, 0);
282 if (nr_read < 0)
283 rv = nr_read;
284 if (nr_read <= 0)
285 goto out_free_page;
286
287 if (copy_to_user(buf, page, nr_read)) {
288 rv = -EFAULT;
289 goto out_free_page;
290 }
291
292 p += nr_read;
293 len -= nr_read;
294 buf += nr_read;
295 count -= nr_read;
296 rv += nr_read;
297 }
298 } else {
299 /*
300 * Command line (1 string) occupies ARGV and
301 * extends into ENVP.
302 */
303 struct {
304 unsigned long p;
305 unsigned long len;
306 } cmdline[2] = {
307 { .p = arg_start, .len = len1 },
308 { .p = env_start, .len = len2 },
309 };
310 loff_t pos1 = *pos;
311 unsigned int i;
312
313 i = 0;
314 while (i < 2 && pos1 >= cmdline[i].len) {
315 pos1 -= cmdline[i].len;
316 i++;
317 }
318 while (i < 2) {
319 p = cmdline[i].p + pos1;
320 len = cmdline[i].len - pos1;
321 while (count > 0 && len > 0) {
322 unsigned int _count, l;
323 int nr_read;
324 bool final;
325
326 _count = min3(count, len, PAGE_SIZE);
327 nr_read = access_remote_vm(mm, p, page, _count, 0);
328 if (nr_read < 0)
329 rv = nr_read;
330 if (nr_read <= 0)
331 goto out_free_page;
332
333 /*
334 * Command line can be shorter than whole ARGV
335 * even if last "marker" byte says it is not.
336 */
337 final = false;
338 l = strnlen(page, nr_read);
339 if (l < nr_read) {
340 nr_read = l;
341 final = true;
342 }
343
344 if (copy_to_user(buf, page, nr_read)) {
345 rv = -EFAULT;
346 goto out_free_page;
347 }
348
349 p += nr_read;
350 len -= nr_read;
351 buf += nr_read;
352 count -= nr_read;
353 rv += nr_read;
354
355 if (final)
356 goto out_free_page;
357 }
358
359 /* Only first chunk can be read partially. */
360 pos1 = 0;
361 i++;
362 }
363 }
364
365 out_free_page:
366 free_page((unsigned long)page);
367 out_mmput:
368 mmput(mm);
369 if (rv > 0)
370 *pos += rv;
371 return rv;
372 }
373
374 static const struct file_operations proc_pid_cmdline_ops = {
375 .read = proc_pid_cmdline_read,
376 .llseek = generic_file_llseek,
377 };
378
379 #ifdef CONFIG_KALLSYMS
380 /*
381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382 * Returns the resolved symbol. If that fails, simply return the address.
383 */
384 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
385 struct pid *pid, struct task_struct *task)
386 {
387 unsigned long wchan;
388 char symname[KSYM_NAME_LEN];
389
390 wchan = get_wchan(task);
391
392 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
393 && !lookup_symbol_name(wchan, symname))
394 seq_printf(m, "%s", symname);
395 else
396 seq_putc(m, '0');
397
398 return 0;
399 }
400 #endif /* CONFIG_KALLSYMS */
401
402 static int lock_trace(struct task_struct *task)
403 {
404 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
405 if (err)
406 return err;
407 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
408 mutex_unlock(&task->signal->cred_guard_mutex);
409 return -EPERM;
410 }
411 return 0;
412 }
413
414 static void unlock_trace(struct task_struct *task)
415 {
416 mutex_unlock(&task->signal->cred_guard_mutex);
417 }
418
419 #ifdef CONFIG_STACKTRACE
420
421 #define MAX_STACK_TRACE_DEPTH 64
422
423 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
424 struct pid *pid, struct task_struct *task)
425 {
426 struct stack_trace trace;
427 unsigned long *entries;
428 int err;
429 int i;
430
431 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
432 if (!entries)
433 return -ENOMEM;
434
435 trace.nr_entries = 0;
436 trace.max_entries = MAX_STACK_TRACE_DEPTH;
437 trace.entries = entries;
438 trace.skip = 0;
439
440 err = lock_trace(task);
441 if (!err) {
442 save_stack_trace_tsk(task, &trace);
443
444 for (i = 0; i < trace.nr_entries; i++) {
445 seq_printf(m, "[<%pK>] %pB\n",
446 (void *)entries[i], (void *)entries[i]);
447 }
448 unlock_trace(task);
449 }
450 kfree(entries);
451
452 return err;
453 }
454 #endif
455
456 #ifdef CONFIG_SCHED_INFO
457 /*
458 * Provides /proc/PID/schedstat
459 */
460 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
461 struct pid *pid, struct task_struct *task)
462 {
463 if (unlikely(!sched_info_on()))
464 seq_printf(m, "0 0 0\n");
465 else
466 seq_printf(m, "%llu %llu %lu\n",
467 (unsigned long long)task->se.sum_exec_runtime,
468 (unsigned long long)task->sched_info.run_delay,
469 task->sched_info.pcount);
470
471 return 0;
472 }
473 #endif
474
475 #ifdef CONFIG_LATENCYTOP
476 static int lstats_show_proc(struct seq_file *m, void *v)
477 {
478 int i;
479 struct inode *inode = m->private;
480 struct task_struct *task = get_proc_task(inode);
481
482 if (!task)
483 return -ESRCH;
484 seq_puts(m, "Latency Top version : v0.1\n");
485 for (i = 0; i < 32; i++) {
486 struct latency_record *lr = &task->latency_record[i];
487 if (lr->backtrace[0]) {
488 int q;
489 seq_printf(m, "%i %li %li",
490 lr->count, lr->time, lr->max);
491 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
492 unsigned long bt = lr->backtrace[q];
493 if (!bt)
494 break;
495 if (bt == ULONG_MAX)
496 break;
497 seq_printf(m, " %ps", (void *)bt);
498 }
499 seq_putc(m, '\n');
500 }
501
502 }
503 put_task_struct(task);
504 return 0;
505 }
506
507 static int lstats_open(struct inode *inode, struct file *file)
508 {
509 return single_open(file, lstats_show_proc, inode);
510 }
511
512 static ssize_t lstats_write(struct file *file, const char __user *buf,
513 size_t count, loff_t *offs)
514 {
515 struct task_struct *task = get_proc_task(file_inode(file));
516
517 if (!task)
518 return -ESRCH;
519 clear_all_latency_tracing(task);
520 put_task_struct(task);
521
522 return count;
523 }
524
525 static const struct file_operations proc_lstats_operations = {
526 .open = lstats_open,
527 .read = seq_read,
528 .write = lstats_write,
529 .llseek = seq_lseek,
530 .release = single_release,
531 };
532
533 #endif
534
535 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
536 struct pid *pid, struct task_struct *task)
537 {
538 unsigned long totalpages = totalram_pages + total_swap_pages;
539 unsigned long points = 0;
540
541 points = oom_badness(task, NULL, NULL, totalpages) *
542 1000 / totalpages;
543 seq_printf(m, "%lu\n", points);
544
545 return 0;
546 }
547
548 struct limit_names {
549 const char *name;
550 const char *unit;
551 };
552
553 static const struct limit_names lnames[RLIM_NLIMITS] = {
554 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
555 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
556 [RLIMIT_DATA] = {"Max data size", "bytes"},
557 [RLIMIT_STACK] = {"Max stack size", "bytes"},
558 [RLIMIT_CORE] = {"Max core file size", "bytes"},
559 [RLIMIT_RSS] = {"Max resident set", "bytes"},
560 [RLIMIT_NPROC] = {"Max processes", "processes"},
561 [RLIMIT_NOFILE] = {"Max open files", "files"},
562 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
563 [RLIMIT_AS] = {"Max address space", "bytes"},
564 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
565 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
566 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
567 [RLIMIT_NICE] = {"Max nice priority", NULL},
568 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
569 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
570 };
571
572 /* Display limits for a process */
573 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
574 struct pid *pid, struct task_struct *task)
575 {
576 unsigned int i;
577 unsigned long flags;
578
579 struct rlimit rlim[RLIM_NLIMITS];
580
581 if (!lock_task_sighand(task, &flags))
582 return 0;
583 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
584 unlock_task_sighand(task, &flags);
585
586 /*
587 * print the file header
588 */
589 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
590 "Limit", "Soft Limit", "Hard Limit", "Units");
591
592 for (i = 0; i < RLIM_NLIMITS; i++) {
593 if (rlim[i].rlim_cur == RLIM_INFINITY)
594 seq_printf(m, "%-25s %-20s ",
595 lnames[i].name, "unlimited");
596 else
597 seq_printf(m, "%-25s %-20lu ",
598 lnames[i].name, rlim[i].rlim_cur);
599
600 if (rlim[i].rlim_max == RLIM_INFINITY)
601 seq_printf(m, "%-20s ", "unlimited");
602 else
603 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
604
605 if (lnames[i].unit)
606 seq_printf(m, "%-10s\n", lnames[i].unit);
607 else
608 seq_putc(m, '\n');
609 }
610
611 return 0;
612 }
613
614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
615 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
616 struct pid *pid, struct task_struct *task)
617 {
618 long nr;
619 unsigned long args[6], sp, pc;
620 int res;
621
622 res = lock_trace(task);
623 if (res)
624 return res;
625
626 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
627 seq_puts(m, "running\n");
628 else if (nr < 0)
629 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
630 else
631 seq_printf(m,
632 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
633 nr,
634 args[0], args[1], args[2], args[3], args[4], args[5],
635 sp, pc);
636 unlock_trace(task);
637
638 return 0;
639 }
640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
641
642 /************************************************************************/
643 /* Here the fs part begins */
644 /************************************************************************/
645
646 /* permission checks */
647 static int proc_fd_access_allowed(struct inode *inode)
648 {
649 struct task_struct *task;
650 int allowed = 0;
651 /* Allow access to a task's file descriptors if it is us or we
652 * may use ptrace attach to the process and find out that
653 * information.
654 */
655 task = get_proc_task(inode);
656 if (task) {
657 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
658 put_task_struct(task);
659 }
660 return allowed;
661 }
662
663 int proc_setattr(struct dentry *dentry, struct iattr *attr)
664 {
665 int error;
666 struct inode *inode = d_inode(dentry);
667
668 if (attr->ia_valid & ATTR_MODE)
669 return -EPERM;
670
671 error = setattr_prepare(dentry, attr);
672 if (error)
673 return error;
674
675 setattr_copy(inode, attr);
676 mark_inode_dirty(inode);
677 return 0;
678 }
679
680 /*
681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
682 * or euid/egid (for hide_pid_min=2)?
683 */
684 static bool has_pid_permissions(struct pid_namespace *pid,
685 struct task_struct *task,
686 int hide_pid_min)
687 {
688 if (pid->hide_pid < hide_pid_min)
689 return true;
690 if (in_group_p(pid->pid_gid))
691 return true;
692 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
693 }
694
695
696 static int proc_pid_permission(struct inode *inode, int mask)
697 {
698 struct pid_namespace *pid = inode->i_sb->s_fs_info;
699 struct task_struct *task;
700 bool has_perms;
701
702 task = get_proc_task(inode);
703 if (!task)
704 return -ESRCH;
705 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
706 put_task_struct(task);
707
708 if (!has_perms) {
709 if (pid->hide_pid == HIDEPID_INVISIBLE) {
710 /*
711 * Let's make getdents(), stat(), and open()
712 * consistent with each other. If a process
713 * may not stat() a file, it shouldn't be seen
714 * in procfs at all.
715 */
716 return -ENOENT;
717 }
718
719 return -EPERM;
720 }
721 return generic_permission(inode, mask);
722 }
723
724
725
726 static const struct inode_operations proc_def_inode_operations = {
727 .setattr = proc_setattr,
728 };
729
730 static int proc_single_show(struct seq_file *m, void *v)
731 {
732 struct inode *inode = m->private;
733 struct pid_namespace *ns;
734 struct pid *pid;
735 struct task_struct *task;
736 int ret;
737
738 ns = inode->i_sb->s_fs_info;
739 pid = proc_pid(inode);
740 task = get_pid_task(pid, PIDTYPE_PID);
741 if (!task)
742 return -ESRCH;
743
744 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
745
746 put_task_struct(task);
747 return ret;
748 }
749
750 static int proc_single_open(struct inode *inode, struct file *filp)
751 {
752 return single_open(filp, proc_single_show, inode);
753 }
754
755 static const struct file_operations proc_single_file_operations = {
756 .open = proc_single_open,
757 .read = seq_read,
758 .llseek = seq_lseek,
759 .release = single_release,
760 };
761
762
763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
764 {
765 struct task_struct *task = get_proc_task(inode);
766 struct mm_struct *mm = ERR_PTR(-ESRCH);
767
768 if (task) {
769 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
770 put_task_struct(task);
771
772 if (!IS_ERR_OR_NULL(mm)) {
773 /* ensure this mm_struct can't be freed */
774 mmgrab(mm);
775 /* but do not pin its memory */
776 mmput(mm);
777 }
778 }
779
780 return mm;
781 }
782
783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
784 {
785 struct mm_struct *mm = proc_mem_open(inode, mode);
786
787 if (IS_ERR(mm))
788 return PTR_ERR(mm);
789
790 file->private_data = mm;
791 return 0;
792 }
793
794 static int mem_open(struct inode *inode, struct file *file)
795 {
796 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
797
798 /* OK to pass negative loff_t, we can catch out-of-range */
799 file->f_mode |= FMODE_UNSIGNED_OFFSET;
800
801 return ret;
802 }
803
804 static ssize_t mem_rw(struct file *file, char __user *buf,
805 size_t count, loff_t *ppos, int write)
806 {
807 struct mm_struct *mm = file->private_data;
808 unsigned long addr = *ppos;
809 ssize_t copied;
810 char *page;
811 unsigned int flags;
812
813 if (!mm)
814 return 0;
815
816 page = (char *)__get_free_page(GFP_TEMPORARY);
817 if (!page)
818 return -ENOMEM;
819
820 copied = 0;
821 if (!mmget_not_zero(mm))
822 goto free;
823
824 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
825
826 while (count > 0) {
827 int this_len = min_t(int, count, PAGE_SIZE);
828
829 if (write && copy_from_user(page, buf, this_len)) {
830 copied = -EFAULT;
831 break;
832 }
833
834 this_len = access_remote_vm(mm, addr, page, this_len, flags);
835 if (!this_len) {
836 if (!copied)
837 copied = -EIO;
838 break;
839 }
840
841 if (!write && copy_to_user(buf, page, this_len)) {
842 copied = -EFAULT;
843 break;
844 }
845
846 buf += this_len;
847 addr += this_len;
848 copied += this_len;
849 count -= this_len;
850 }
851 *ppos = addr;
852
853 mmput(mm);
854 free:
855 free_page((unsigned long) page);
856 return copied;
857 }
858
859 static ssize_t mem_read(struct file *file, char __user *buf,
860 size_t count, loff_t *ppos)
861 {
862 return mem_rw(file, buf, count, ppos, 0);
863 }
864
865 static ssize_t mem_write(struct file *file, const char __user *buf,
866 size_t count, loff_t *ppos)
867 {
868 return mem_rw(file, (char __user*)buf, count, ppos, 1);
869 }
870
871 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
872 {
873 switch (orig) {
874 case 0:
875 file->f_pos = offset;
876 break;
877 case 1:
878 file->f_pos += offset;
879 break;
880 default:
881 return -EINVAL;
882 }
883 force_successful_syscall_return();
884 return file->f_pos;
885 }
886
887 static int mem_release(struct inode *inode, struct file *file)
888 {
889 struct mm_struct *mm = file->private_data;
890 if (mm)
891 mmdrop(mm);
892 return 0;
893 }
894
895 static const struct file_operations proc_mem_operations = {
896 .llseek = mem_lseek,
897 .read = mem_read,
898 .write = mem_write,
899 .open = mem_open,
900 .release = mem_release,
901 };
902
903 static int environ_open(struct inode *inode, struct file *file)
904 {
905 return __mem_open(inode, file, PTRACE_MODE_READ);
906 }
907
908 static ssize_t environ_read(struct file *file, char __user *buf,
909 size_t count, loff_t *ppos)
910 {
911 char *page;
912 unsigned long src = *ppos;
913 int ret = 0;
914 struct mm_struct *mm = file->private_data;
915 unsigned long env_start, env_end;
916
917 /* Ensure the process spawned far enough to have an environment. */
918 if (!mm || !mm->env_end)
919 return 0;
920
921 page = (char *)__get_free_page(GFP_TEMPORARY);
922 if (!page)
923 return -ENOMEM;
924
925 ret = 0;
926 if (!mmget_not_zero(mm))
927 goto free;
928
929 down_read(&mm->mmap_sem);
930 env_start = mm->env_start;
931 env_end = mm->env_end;
932 up_read(&mm->mmap_sem);
933
934 while (count > 0) {
935 size_t this_len, max_len;
936 int retval;
937
938 if (src >= (env_end - env_start))
939 break;
940
941 this_len = env_end - (env_start + src);
942
943 max_len = min_t(size_t, PAGE_SIZE, count);
944 this_len = min(max_len, this_len);
945
946 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
947
948 if (retval <= 0) {
949 ret = retval;
950 break;
951 }
952
953 if (copy_to_user(buf, page, retval)) {
954 ret = -EFAULT;
955 break;
956 }
957
958 ret += retval;
959 src += retval;
960 buf += retval;
961 count -= retval;
962 }
963 *ppos = src;
964 mmput(mm);
965
966 free:
967 free_page((unsigned long) page);
968 return ret;
969 }
970
971 static const struct file_operations proc_environ_operations = {
972 .open = environ_open,
973 .read = environ_read,
974 .llseek = generic_file_llseek,
975 .release = mem_release,
976 };
977
978 static int auxv_open(struct inode *inode, struct file *file)
979 {
980 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
981 }
982
983 static ssize_t auxv_read(struct file *file, char __user *buf,
984 size_t count, loff_t *ppos)
985 {
986 struct mm_struct *mm = file->private_data;
987 unsigned int nwords = 0;
988
989 if (!mm)
990 return 0;
991 do {
992 nwords += 2;
993 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
994 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
995 nwords * sizeof(mm->saved_auxv[0]));
996 }
997
998 static const struct file_operations proc_auxv_operations = {
999 .open = auxv_open,
1000 .read = auxv_read,
1001 .llseek = generic_file_llseek,
1002 .release = mem_release,
1003 };
1004
1005 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006 loff_t *ppos)
1007 {
1008 struct task_struct *task = get_proc_task(file_inode(file));
1009 char buffer[PROC_NUMBUF];
1010 int oom_adj = OOM_ADJUST_MIN;
1011 size_t len;
1012
1013 if (!task)
1014 return -ESRCH;
1015 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016 oom_adj = OOM_ADJUST_MAX;
1017 else
1018 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019 OOM_SCORE_ADJ_MAX;
1020 put_task_struct(task);
1021 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1023 }
1024
1025 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1026 {
1027 static DEFINE_MUTEX(oom_adj_mutex);
1028 struct mm_struct *mm = NULL;
1029 struct task_struct *task;
1030 int err = 0;
1031
1032 task = get_proc_task(file_inode(file));
1033 if (!task)
1034 return -ESRCH;
1035
1036 mutex_lock(&oom_adj_mutex);
1037 if (legacy) {
1038 if (oom_adj < task->signal->oom_score_adj &&
1039 !capable(CAP_SYS_RESOURCE)) {
1040 err = -EACCES;
1041 goto err_unlock;
1042 }
1043 /*
1044 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045 * /proc/pid/oom_score_adj instead.
1046 */
1047 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048 current->comm, task_pid_nr(current), task_pid_nr(task),
1049 task_pid_nr(task));
1050 } else {
1051 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052 !capable(CAP_SYS_RESOURCE)) {
1053 err = -EACCES;
1054 goto err_unlock;
1055 }
1056 }
1057
1058 /*
1059 * Make sure we will check other processes sharing the mm if this is
1060 * not vfrok which wants its own oom_score_adj.
1061 * pin the mm so it doesn't go away and get reused after task_unlock
1062 */
1063 if (!task->vfork_done) {
1064 struct task_struct *p = find_lock_task_mm(task);
1065
1066 if (p) {
1067 if (atomic_read(&p->mm->mm_users) > 1) {
1068 mm = p->mm;
1069 mmgrab(mm);
1070 }
1071 task_unlock(p);
1072 }
1073 }
1074
1075 task->signal->oom_score_adj = oom_adj;
1076 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077 task->signal->oom_score_adj_min = (short)oom_adj;
1078 trace_oom_score_adj_update(task);
1079
1080 if (mm) {
1081 struct task_struct *p;
1082
1083 rcu_read_lock();
1084 for_each_process(p) {
1085 if (same_thread_group(task, p))
1086 continue;
1087
1088 /* do not touch kernel threads or the global init */
1089 if (p->flags & PF_KTHREAD || is_global_init(p))
1090 continue;
1091
1092 task_lock(p);
1093 if (!p->vfork_done && process_shares_mm(p, mm)) {
1094 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1095 task_pid_nr(p), p->comm,
1096 p->signal->oom_score_adj, oom_adj,
1097 task_pid_nr(task), task->comm);
1098 p->signal->oom_score_adj = oom_adj;
1099 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1100 p->signal->oom_score_adj_min = (short)oom_adj;
1101 }
1102 task_unlock(p);
1103 }
1104 rcu_read_unlock();
1105 mmdrop(mm);
1106 }
1107 err_unlock:
1108 mutex_unlock(&oom_adj_mutex);
1109 put_task_struct(task);
1110 return err;
1111 }
1112
1113 /*
1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1115 * kernels. The effective policy is defined by oom_score_adj, which has a
1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1118 * Processes that become oom disabled via oom_adj will still be oom disabled
1119 * with this implementation.
1120 *
1121 * oom_adj cannot be removed since existing userspace binaries use it.
1122 */
1123 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1124 size_t count, loff_t *ppos)
1125 {
1126 char buffer[PROC_NUMBUF];
1127 int oom_adj;
1128 int err;
1129
1130 memset(buffer, 0, sizeof(buffer));
1131 if (count > sizeof(buffer) - 1)
1132 count = sizeof(buffer) - 1;
1133 if (copy_from_user(buffer, buf, count)) {
1134 err = -EFAULT;
1135 goto out;
1136 }
1137
1138 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1139 if (err)
1140 goto out;
1141 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1142 oom_adj != OOM_DISABLE) {
1143 err = -EINVAL;
1144 goto out;
1145 }
1146
1147 /*
1148 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1149 * value is always attainable.
1150 */
1151 if (oom_adj == OOM_ADJUST_MAX)
1152 oom_adj = OOM_SCORE_ADJ_MAX;
1153 else
1154 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1155
1156 err = __set_oom_adj(file, oom_adj, true);
1157 out:
1158 return err < 0 ? err : count;
1159 }
1160
1161 static const struct file_operations proc_oom_adj_operations = {
1162 .read = oom_adj_read,
1163 .write = oom_adj_write,
1164 .llseek = generic_file_llseek,
1165 };
1166
1167 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct task_struct *task = get_proc_task(file_inode(file));
1171 char buffer[PROC_NUMBUF];
1172 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1173 size_t len;
1174
1175 if (!task)
1176 return -ESRCH;
1177 oom_score_adj = task->signal->oom_score_adj;
1178 put_task_struct(task);
1179 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1180 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181 }
1182
1183 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1184 size_t count, loff_t *ppos)
1185 {
1186 char buffer[PROC_NUMBUF];
1187 int oom_score_adj;
1188 int err;
1189
1190 memset(buffer, 0, sizeof(buffer));
1191 if (count > sizeof(buffer) - 1)
1192 count = sizeof(buffer) - 1;
1193 if (copy_from_user(buffer, buf, count)) {
1194 err = -EFAULT;
1195 goto out;
1196 }
1197
1198 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1199 if (err)
1200 goto out;
1201 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1202 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1203 err = -EINVAL;
1204 goto out;
1205 }
1206
1207 err = __set_oom_adj(file, oom_score_adj, false);
1208 out:
1209 return err < 0 ? err : count;
1210 }
1211
1212 static const struct file_operations proc_oom_score_adj_operations = {
1213 .read = oom_score_adj_read,
1214 .write = oom_score_adj_write,
1215 .llseek = default_llseek,
1216 };
1217
1218 #ifdef CONFIG_AUDITSYSCALL
1219 #define TMPBUFLEN 11
1220 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1221 size_t count, loff_t *ppos)
1222 {
1223 struct inode * inode = file_inode(file);
1224 struct task_struct *task = get_proc_task(inode);
1225 ssize_t length;
1226 char tmpbuf[TMPBUFLEN];
1227
1228 if (!task)
1229 return -ESRCH;
1230 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1231 from_kuid(file->f_cred->user_ns,
1232 audit_get_loginuid(task)));
1233 put_task_struct(task);
1234 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1235 }
1236
1237 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1238 size_t count, loff_t *ppos)
1239 {
1240 struct inode * inode = file_inode(file);
1241 uid_t loginuid;
1242 kuid_t kloginuid;
1243 int rv;
1244
1245 rcu_read_lock();
1246 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1247 rcu_read_unlock();
1248 return -EPERM;
1249 }
1250 rcu_read_unlock();
1251
1252 if (*ppos != 0) {
1253 /* No partial writes. */
1254 return -EINVAL;
1255 }
1256
1257 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1258 if (rv < 0)
1259 return rv;
1260
1261 /* is userspace tring to explicitly UNSET the loginuid? */
1262 if (loginuid == AUDIT_UID_UNSET) {
1263 kloginuid = INVALID_UID;
1264 } else {
1265 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1266 if (!uid_valid(kloginuid))
1267 return -EINVAL;
1268 }
1269
1270 rv = audit_set_loginuid(kloginuid);
1271 if (rv < 0)
1272 return rv;
1273 return count;
1274 }
1275
1276 static const struct file_operations proc_loginuid_operations = {
1277 .read = proc_loginuid_read,
1278 .write = proc_loginuid_write,
1279 .llseek = generic_file_llseek,
1280 };
1281
1282 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1283 size_t count, loff_t *ppos)
1284 {
1285 struct inode * inode = file_inode(file);
1286 struct task_struct *task = get_proc_task(inode);
1287 ssize_t length;
1288 char tmpbuf[TMPBUFLEN];
1289
1290 if (!task)
1291 return -ESRCH;
1292 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1293 audit_get_sessionid(task));
1294 put_task_struct(task);
1295 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1296 }
1297
1298 static const struct file_operations proc_sessionid_operations = {
1299 .read = proc_sessionid_read,
1300 .llseek = generic_file_llseek,
1301 };
1302 #endif
1303
1304 #ifdef CONFIG_FAULT_INJECTION
1305 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1306 size_t count, loff_t *ppos)
1307 {
1308 struct task_struct *task = get_proc_task(file_inode(file));
1309 char buffer[PROC_NUMBUF];
1310 size_t len;
1311 int make_it_fail;
1312
1313 if (!task)
1314 return -ESRCH;
1315 make_it_fail = task->make_it_fail;
1316 put_task_struct(task);
1317
1318 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1319
1320 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1321 }
1322
1323 static ssize_t proc_fault_inject_write(struct file * file,
1324 const char __user * buf, size_t count, loff_t *ppos)
1325 {
1326 struct task_struct *task;
1327 char buffer[PROC_NUMBUF];
1328 int make_it_fail;
1329 int rv;
1330
1331 if (!capable(CAP_SYS_RESOURCE))
1332 return -EPERM;
1333 memset(buffer, 0, sizeof(buffer));
1334 if (count > sizeof(buffer) - 1)
1335 count = sizeof(buffer) - 1;
1336 if (copy_from_user(buffer, buf, count))
1337 return -EFAULT;
1338 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1339 if (rv < 0)
1340 return rv;
1341 if (make_it_fail < 0 || make_it_fail > 1)
1342 return -EINVAL;
1343
1344 task = get_proc_task(file_inode(file));
1345 if (!task)
1346 return -ESRCH;
1347 task->make_it_fail = make_it_fail;
1348 put_task_struct(task);
1349
1350 return count;
1351 }
1352
1353 static const struct file_operations proc_fault_inject_operations = {
1354 .read = proc_fault_inject_read,
1355 .write = proc_fault_inject_write,
1356 .llseek = generic_file_llseek,
1357 };
1358 #endif
1359
1360
1361 #ifdef CONFIG_SCHED_DEBUG
1362 /*
1363 * Print out various scheduling related per-task fields:
1364 */
1365 static int sched_show(struct seq_file *m, void *v)
1366 {
1367 struct inode *inode = m->private;
1368 struct task_struct *p;
1369
1370 p = get_proc_task(inode);
1371 if (!p)
1372 return -ESRCH;
1373 proc_sched_show_task(p, m);
1374
1375 put_task_struct(p);
1376
1377 return 0;
1378 }
1379
1380 static ssize_t
1381 sched_write(struct file *file, const char __user *buf,
1382 size_t count, loff_t *offset)
1383 {
1384 struct inode *inode = file_inode(file);
1385 struct task_struct *p;
1386
1387 p = get_proc_task(inode);
1388 if (!p)
1389 return -ESRCH;
1390 proc_sched_set_task(p);
1391
1392 put_task_struct(p);
1393
1394 return count;
1395 }
1396
1397 static int sched_open(struct inode *inode, struct file *filp)
1398 {
1399 return single_open(filp, sched_show, inode);
1400 }
1401
1402 static const struct file_operations proc_pid_sched_operations = {
1403 .open = sched_open,
1404 .read = seq_read,
1405 .write = sched_write,
1406 .llseek = seq_lseek,
1407 .release = single_release,
1408 };
1409
1410 #endif
1411
1412 #ifdef CONFIG_SCHED_AUTOGROUP
1413 /*
1414 * Print out autogroup related information:
1415 */
1416 static int sched_autogroup_show(struct seq_file *m, void *v)
1417 {
1418 struct inode *inode = m->private;
1419 struct task_struct *p;
1420
1421 p = get_proc_task(inode);
1422 if (!p)
1423 return -ESRCH;
1424 proc_sched_autogroup_show_task(p, m);
1425
1426 put_task_struct(p);
1427
1428 return 0;
1429 }
1430
1431 static ssize_t
1432 sched_autogroup_write(struct file *file, const char __user *buf,
1433 size_t count, loff_t *offset)
1434 {
1435 struct inode *inode = file_inode(file);
1436 struct task_struct *p;
1437 char buffer[PROC_NUMBUF];
1438 int nice;
1439 int err;
1440
1441 memset(buffer, 0, sizeof(buffer));
1442 if (count > sizeof(buffer) - 1)
1443 count = sizeof(buffer) - 1;
1444 if (copy_from_user(buffer, buf, count))
1445 return -EFAULT;
1446
1447 err = kstrtoint(strstrip(buffer), 0, &nice);
1448 if (err < 0)
1449 return err;
1450
1451 p = get_proc_task(inode);
1452 if (!p)
1453 return -ESRCH;
1454
1455 err = proc_sched_autogroup_set_nice(p, nice);
1456 if (err)
1457 count = err;
1458
1459 put_task_struct(p);
1460
1461 return count;
1462 }
1463
1464 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1465 {
1466 int ret;
1467
1468 ret = single_open(filp, sched_autogroup_show, NULL);
1469 if (!ret) {
1470 struct seq_file *m = filp->private_data;
1471
1472 m->private = inode;
1473 }
1474 return ret;
1475 }
1476
1477 static const struct file_operations proc_pid_sched_autogroup_operations = {
1478 .open = sched_autogroup_open,
1479 .read = seq_read,
1480 .write = sched_autogroup_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1483 };
1484
1485 #endif /* CONFIG_SCHED_AUTOGROUP */
1486
1487 static ssize_t comm_write(struct file *file, const char __user *buf,
1488 size_t count, loff_t *offset)
1489 {
1490 struct inode *inode = file_inode(file);
1491 struct task_struct *p;
1492 char buffer[TASK_COMM_LEN];
1493 const size_t maxlen = sizeof(buffer) - 1;
1494
1495 memset(buffer, 0, sizeof(buffer));
1496 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1497 return -EFAULT;
1498
1499 p = get_proc_task(inode);
1500 if (!p)
1501 return -ESRCH;
1502
1503 if (same_thread_group(current, p))
1504 set_task_comm(p, buffer);
1505 else
1506 count = -EINVAL;
1507
1508 put_task_struct(p);
1509
1510 return count;
1511 }
1512
1513 static int comm_show(struct seq_file *m, void *v)
1514 {
1515 struct inode *inode = m->private;
1516 struct task_struct *p;
1517
1518 p = get_proc_task(inode);
1519 if (!p)
1520 return -ESRCH;
1521
1522 task_lock(p);
1523 seq_printf(m, "%s\n", p->comm);
1524 task_unlock(p);
1525
1526 put_task_struct(p);
1527
1528 return 0;
1529 }
1530
1531 static int comm_open(struct inode *inode, struct file *filp)
1532 {
1533 return single_open(filp, comm_show, inode);
1534 }
1535
1536 static const struct file_operations proc_pid_set_comm_operations = {
1537 .open = comm_open,
1538 .read = seq_read,
1539 .write = comm_write,
1540 .llseek = seq_lseek,
1541 .release = single_release,
1542 };
1543
1544 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1545 {
1546 struct task_struct *task;
1547 struct file *exe_file;
1548
1549 task = get_proc_task(d_inode(dentry));
1550 if (!task)
1551 return -ENOENT;
1552 exe_file = get_task_exe_file(task);
1553 put_task_struct(task);
1554 if (exe_file) {
1555 *exe_path = exe_file->f_path;
1556 path_get(&exe_file->f_path);
1557 fput(exe_file);
1558 return 0;
1559 } else
1560 return -ENOENT;
1561 }
1562
1563 static const char *proc_pid_get_link(struct dentry *dentry,
1564 struct inode *inode,
1565 struct delayed_call *done)
1566 {
1567 struct path path;
1568 int error = -EACCES;
1569
1570 if (!dentry)
1571 return ERR_PTR(-ECHILD);
1572
1573 /* Are we allowed to snoop on the tasks file descriptors? */
1574 if (!proc_fd_access_allowed(inode))
1575 goto out;
1576
1577 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1578 if (error)
1579 goto out;
1580
1581 nd_jump_link(&path);
1582 return NULL;
1583 out:
1584 return ERR_PTR(error);
1585 }
1586
1587 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1588 {
1589 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1590 char *pathname;
1591 int len;
1592
1593 if (!tmp)
1594 return -ENOMEM;
1595
1596 pathname = d_path(path, tmp, PAGE_SIZE);
1597 len = PTR_ERR(pathname);
1598 if (IS_ERR(pathname))
1599 goto out;
1600 len = tmp + PAGE_SIZE - 1 - pathname;
1601
1602 if (len > buflen)
1603 len = buflen;
1604 if (copy_to_user(buffer, pathname, len))
1605 len = -EFAULT;
1606 out:
1607 free_page((unsigned long)tmp);
1608 return len;
1609 }
1610
1611 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1612 {
1613 int error = -EACCES;
1614 struct inode *inode = d_inode(dentry);
1615 struct path path;
1616
1617 /* Are we allowed to snoop on the tasks file descriptors? */
1618 if (!proc_fd_access_allowed(inode))
1619 goto out;
1620
1621 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1622 if (error)
1623 goto out;
1624
1625 error = do_proc_readlink(&path, buffer, buflen);
1626 path_put(&path);
1627 out:
1628 return error;
1629 }
1630
1631 const struct inode_operations proc_pid_link_inode_operations = {
1632 .readlink = proc_pid_readlink,
1633 .get_link = proc_pid_get_link,
1634 .setattr = proc_setattr,
1635 };
1636
1637
1638 /* building an inode */
1639
1640 void task_dump_owner(struct task_struct *task, mode_t mode,
1641 kuid_t *ruid, kgid_t *rgid)
1642 {
1643 /* Depending on the state of dumpable compute who should own a
1644 * proc file for a task.
1645 */
1646 const struct cred *cred;
1647 kuid_t uid;
1648 kgid_t gid;
1649
1650 /* Default to the tasks effective ownership */
1651 rcu_read_lock();
1652 cred = __task_cred(task);
1653 uid = cred->euid;
1654 gid = cred->egid;
1655 rcu_read_unlock();
1656
1657 /*
1658 * Before the /proc/pid/status file was created the only way to read
1659 * the effective uid of a /process was to stat /proc/pid. Reading
1660 * /proc/pid/status is slow enough that procps and other packages
1661 * kept stating /proc/pid. To keep the rules in /proc simple I have
1662 * made this apply to all per process world readable and executable
1663 * directories.
1664 */
1665 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1666 struct mm_struct *mm;
1667 task_lock(task);
1668 mm = task->mm;
1669 /* Make non-dumpable tasks owned by some root */
1670 if (mm) {
1671 if (get_dumpable(mm) != SUID_DUMP_USER) {
1672 struct user_namespace *user_ns = mm->user_ns;
1673
1674 uid = make_kuid(user_ns, 0);
1675 if (!uid_valid(uid))
1676 uid = GLOBAL_ROOT_UID;
1677
1678 gid = make_kgid(user_ns, 0);
1679 if (!gid_valid(gid))
1680 gid = GLOBAL_ROOT_GID;
1681 }
1682 } else {
1683 uid = GLOBAL_ROOT_UID;
1684 gid = GLOBAL_ROOT_GID;
1685 }
1686 task_unlock(task);
1687 }
1688 *ruid = uid;
1689 *rgid = gid;
1690 }
1691
1692 struct inode *proc_pid_make_inode(struct super_block * sb,
1693 struct task_struct *task, umode_t mode)
1694 {
1695 struct inode * inode;
1696 struct proc_inode *ei;
1697
1698 /* We need a new inode */
1699
1700 inode = new_inode(sb);
1701 if (!inode)
1702 goto out;
1703
1704 /* Common stuff */
1705 ei = PROC_I(inode);
1706 inode->i_mode = mode;
1707 inode->i_ino = get_next_ino();
1708 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1709 inode->i_op = &proc_def_inode_operations;
1710
1711 /*
1712 * grab the reference to task.
1713 */
1714 ei->pid = get_task_pid(task, PIDTYPE_PID);
1715 if (!ei->pid)
1716 goto out_unlock;
1717
1718 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1719 security_task_to_inode(task, inode);
1720
1721 out:
1722 return inode;
1723
1724 out_unlock:
1725 iput(inode);
1726 return NULL;
1727 }
1728
1729 int pid_getattr(const struct path *path, struct kstat *stat,
1730 u32 request_mask, unsigned int query_flags)
1731 {
1732 struct inode *inode = d_inode(path->dentry);
1733 struct task_struct *task;
1734 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1735
1736 generic_fillattr(inode, stat);
1737
1738 rcu_read_lock();
1739 stat->uid = GLOBAL_ROOT_UID;
1740 stat->gid = GLOBAL_ROOT_GID;
1741 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1742 if (task) {
1743 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1744 rcu_read_unlock();
1745 /*
1746 * This doesn't prevent learning whether PID exists,
1747 * it only makes getattr() consistent with readdir().
1748 */
1749 return -ENOENT;
1750 }
1751 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1752 }
1753 rcu_read_unlock();
1754 return 0;
1755 }
1756
1757 /* dentry stuff */
1758
1759 /*
1760 * Exceptional case: normally we are not allowed to unhash a busy
1761 * directory. In this case, however, we can do it - no aliasing problems
1762 * due to the way we treat inodes.
1763 *
1764 * Rewrite the inode's ownerships here because the owning task may have
1765 * performed a setuid(), etc.
1766 *
1767 */
1768 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1769 {
1770 struct inode *inode;
1771 struct task_struct *task;
1772
1773 if (flags & LOOKUP_RCU)
1774 return -ECHILD;
1775
1776 inode = d_inode(dentry);
1777 task = get_proc_task(inode);
1778
1779 if (task) {
1780 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1781
1782 inode->i_mode &= ~(S_ISUID | S_ISGID);
1783 security_task_to_inode(task, inode);
1784 put_task_struct(task);
1785 return 1;
1786 }
1787 return 0;
1788 }
1789
1790 static inline bool proc_inode_is_dead(struct inode *inode)
1791 {
1792 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1793 }
1794
1795 int pid_delete_dentry(const struct dentry *dentry)
1796 {
1797 /* Is the task we represent dead?
1798 * If so, then don't put the dentry on the lru list,
1799 * kill it immediately.
1800 */
1801 return proc_inode_is_dead(d_inode(dentry));
1802 }
1803
1804 const struct dentry_operations pid_dentry_operations =
1805 {
1806 .d_revalidate = pid_revalidate,
1807 .d_delete = pid_delete_dentry,
1808 };
1809
1810 /* Lookups */
1811
1812 /*
1813 * Fill a directory entry.
1814 *
1815 * If possible create the dcache entry and derive our inode number and
1816 * file type from dcache entry.
1817 *
1818 * Since all of the proc inode numbers are dynamically generated, the inode
1819 * numbers do not exist until the inode is cache. This means creating the
1820 * the dcache entry in readdir is necessary to keep the inode numbers
1821 * reported by readdir in sync with the inode numbers reported
1822 * by stat.
1823 */
1824 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1825 const char *name, int len,
1826 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1827 {
1828 struct dentry *child, *dir = file->f_path.dentry;
1829 struct qstr qname = QSTR_INIT(name, len);
1830 struct inode *inode;
1831 unsigned type;
1832 ino_t ino;
1833
1834 child = d_hash_and_lookup(dir, &qname);
1835 if (!child) {
1836 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1837 child = d_alloc_parallel(dir, &qname, &wq);
1838 if (IS_ERR(child))
1839 goto end_instantiate;
1840 if (d_in_lookup(child)) {
1841 int err = instantiate(d_inode(dir), child, task, ptr);
1842 d_lookup_done(child);
1843 if (err < 0) {
1844 dput(child);
1845 goto end_instantiate;
1846 }
1847 }
1848 }
1849 inode = d_inode(child);
1850 ino = inode->i_ino;
1851 type = inode->i_mode >> 12;
1852 dput(child);
1853 return dir_emit(ctx, name, len, ino, type);
1854
1855 end_instantiate:
1856 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1857 }
1858
1859 /*
1860 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1861 * which represent vma start and end addresses.
1862 */
1863 static int dname_to_vma_addr(struct dentry *dentry,
1864 unsigned long *start, unsigned long *end)
1865 {
1866 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1867 return -EINVAL;
1868
1869 return 0;
1870 }
1871
1872 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1873 {
1874 unsigned long vm_start, vm_end;
1875 bool exact_vma_exists = false;
1876 struct mm_struct *mm = NULL;
1877 struct task_struct *task;
1878 struct inode *inode;
1879 int status = 0;
1880
1881 if (flags & LOOKUP_RCU)
1882 return -ECHILD;
1883
1884 inode = d_inode(dentry);
1885 task = get_proc_task(inode);
1886 if (!task)
1887 goto out_notask;
1888
1889 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1890 if (IS_ERR_OR_NULL(mm))
1891 goto out;
1892
1893 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1894 down_read(&mm->mmap_sem);
1895 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1896 up_read(&mm->mmap_sem);
1897 }
1898
1899 mmput(mm);
1900
1901 if (exact_vma_exists) {
1902 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1903
1904 security_task_to_inode(task, inode);
1905 status = 1;
1906 }
1907
1908 out:
1909 put_task_struct(task);
1910
1911 out_notask:
1912 return status;
1913 }
1914
1915 static const struct dentry_operations tid_map_files_dentry_operations = {
1916 .d_revalidate = map_files_d_revalidate,
1917 .d_delete = pid_delete_dentry,
1918 };
1919
1920 static int map_files_get_link(struct dentry *dentry, struct path *path)
1921 {
1922 unsigned long vm_start, vm_end;
1923 struct vm_area_struct *vma;
1924 struct task_struct *task;
1925 struct mm_struct *mm;
1926 int rc;
1927
1928 rc = -ENOENT;
1929 task = get_proc_task(d_inode(dentry));
1930 if (!task)
1931 goto out;
1932
1933 mm = get_task_mm(task);
1934 put_task_struct(task);
1935 if (!mm)
1936 goto out;
1937
1938 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1939 if (rc)
1940 goto out_mmput;
1941
1942 rc = -ENOENT;
1943 down_read(&mm->mmap_sem);
1944 vma = find_exact_vma(mm, vm_start, vm_end);
1945 if (vma && vma->vm_file) {
1946 *path = vma->vm_file->f_path;
1947 path_get(path);
1948 rc = 0;
1949 }
1950 up_read(&mm->mmap_sem);
1951
1952 out_mmput:
1953 mmput(mm);
1954 out:
1955 return rc;
1956 }
1957
1958 struct map_files_info {
1959 fmode_t mode;
1960 unsigned int len;
1961 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1962 };
1963
1964 /*
1965 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1966 * symlinks may be used to bypass permissions on ancestor directories in the
1967 * path to the file in question.
1968 */
1969 static const char *
1970 proc_map_files_get_link(struct dentry *dentry,
1971 struct inode *inode,
1972 struct delayed_call *done)
1973 {
1974 if (!capable(CAP_SYS_ADMIN))
1975 return ERR_PTR(-EPERM);
1976
1977 return proc_pid_get_link(dentry, inode, done);
1978 }
1979
1980 /*
1981 * Identical to proc_pid_link_inode_operations except for get_link()
1982 */
1983 static const struct inode_operations proc_map_files_link_inode_operations = {
1984 .readlink = proc_pid_readlink,
1985 .get_link = proc_map_files_get_link,
1986 .setattr = proc_setattr,
1987 };
1988
1989 static int
1990 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1991 struct task_struct *task, const void *ptr)
1992 {
1993 fmode_t mode = (fmode_t)(unsigned long)ptr;
1994 struct proc_inode *ei;
1995 struct inode *inode;
1996
1997 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
1998 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
1999 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2000 if (!inode)
2001 return -ENOENT;
2002
2003 ei = PROC_I(inode);
2004 ei->op.proc_get_link = map_files_get_link;
2005
2006 inode->i_op = &proc_map_files_link_inode_operations;
2007 inode->i_size = 64;
2008
2009 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2010 d_add(dentry, inode);
2011
2012 return 0;
2013 }
2014
2015 static struct dentry *proc_map_files_lookup(struct inode *dir,
2016 struct dentry *dentry, unsigned int flags)
2017 {
2018 unsigned long vm_start, vm_end;
2019 struct vm_area_struct *vma;
2020 struct task_struct *task;
2021 int result;
2022 struct mm_struct *mm;
2023
2024 result = -ENOENT;
2025 task = get_proc_task(dir);
2026 if (!task)
2027 goto out;
2028
2029 result = -EACCES;
2030 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2031 goto out_put_task;
2032
2033 result = -ENOENT;
2034 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2035 goto out_put_task;
2036
2037 mm = get_task_mm(task);
2038 if (!mm)
2039 goto out_put_task;
2040
2041 down_read(&mm->mmap_sem);
2042 vma = find_exact_vma(mm, vm_start, vm_end);
2043 if (!vma)
2044 goto out_no_vma;
2045
2046 if (vma->vm_file)
2047 result = proc_map_files_instantiate(dir, dentry, task,
2048 (void *)(unsigned long)vma->vm_file->f_mode);
2049
2050 out_no_vma:
2051 up_read(&mm->mmap_sem);
2052 mmput(mm);
2053 out_put_task:
2054 put_task_struct(task);
2055 out:
2056 return ERR_PTR(result);
2057 }
2058
2059 static const struct inode_operations proc_map_files_inode_operations = {
2060 .lookup = proc_map_files_lookup,
2061 .permission = proc_fd_permission,
2062 .setattr = proc_setattr,
2063 };
2064
2065 static int
2066 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2067 {
2068 struct vm_area_struct *vma;
2069 struct task_struct *task;
2070 struct mm_struct *mm;
2071 unsigned long nr_files, pos, i;
2072 struct flex_array *fa = NULL;
2073 struct map_files_info info;
2074 struct map_files_info *p;
2075 int ret;
2076
2077 ret = -ENOENT;
2078 task = get_proc_task(file_inode(file));
2079 if (!task)
2080 goto out;
2081
2082 ret = -EACCES;
2083 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2084 goto out_put_task;
2085
2086 ret = 0;
2087 if (!dir_emit_dots(file, ctx))
2088 goto out_put_task;
2089
2090 mm = get_task_mm(task);
2091 if (!mm)
2092 goto out_put_task;
2093 down_read(&mm->mmap_sem);
2094
2095 nr_files = 0;
2096
2097 /*
2098 * We need two passes here:
2099 *
2100 * 1) Collect vmas of mapped files with mmap_sem taken
2101 * 2) Release mmap_sem and instantiate entries
2102 *
2103 * otherwise we get lockdep complained, since filldir()
2104 * routine might require mmap_sem taken in might_fault().
2105 */
2106
2107 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2108 if (vma->vm_file && ++pos > ctx->pos)
2109 nr_files++;
2110 }
2111
2112 if (nr_files) {
2113 fa = flex_array_alloc(sizeof(info), nr_files,
2114 GFP_KERNEL);
2115 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2116 GFP_KERNEL)) {
2117 ret = -ENOMEM;
2118 if (fa)
2119 flex_array_free(fa);
2120 up_read(&mm->mmap_sem);
2121 mmput(mm);
2122 goto out_put_task;
2123 }
2124 for (i = 0, vma = mm->mmap, pos = 2; vma;
2125 vma = vma->vm_next) {
2126 if (!vma->vm_file)
2127 continue;
2128 if (++pos <= ctx->pos)
2129 continue;
2130
2131 info.mode = vma->vm_file->f_mode;
2132 info.len = snprintf(info.name,
2133 sizeof(info.name), "%lx-%lx",
2134 vma->vm_start, vma->vm_end);
2135 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2136 BUG();
2137 }
2138 }
2139 up_read(&mm->mmap_sem);
2140
2141 for (i = 0; i < nr_files; i++) {
2142 p = flex_array_get(fa, i);
2143 if (!proc_fill_cache(file, ctx,
2144 p->name, p->len,
2145 proc_map_files_instantiate,
2146 task,
2147 (void *)(unsigned long)p->mode))
2148 break;
2149 ctx->pos++;
2150 }
2151 if (fa)
2152 flex_array_free(fa);
2153 mmput(mm);
2154
2155 out_put_task:
2156 put_task_struct(task);
2157 out:
2158 return ret;
2159 }
2160
2161 static const struct file_operations proc_map_files_operations = {
2162 .read = generic_read_dir,
2163 .iterate_shared = proc_map_files_readdir,
2164 .llseek = generic_file_llseek,
2165 };
2166
2167 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2168 struct timers_private {
2169 struct pid *pid;
2170 struct task_struct *task;
2171 struct sighand_struct *sighand;
2172 struct pid_namespace *ns;
2173 unsigned long flags;
2174 };
2175
2176 static void *timers_start(struct seq_file *m, loff_t *pos)
2177 {
2178 struct timers_private *tp = m->private;
2179
2180 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2181 if (!tp->task)
2182 return ERR_PTR(-ESRCH);
2183
2184 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2185 if (!tp->sighand)
2186 return ERR_PTR(-ESRCH);
2187
2188 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2189 }
2190
2191 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2192 {
2193 struct timers_private *tp = m->private;
2194 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2195 }
2196
2197 static void timers_stop(struct seq_file *m, void *v)
2198 {
2199 struct timers_private *tp = m->private;
2200
2201 if (tp->sighand) {
2202 unlock_task_sighand(tp->task, &tp->flags);
2203 tp->sighand = NULL;
2204 }
2205
2206 if (tp->task) {
2207 put_task_struct(tp->task);
2208 tp->task = NULL;
2209 }
2210 }
2211
2212 static int show_timer(struct seq_file *m, void *v)
2213 {
2214 struct k_itimer *timer;
2215 struct timers_private *tp = m->private;
2216 int notify;
2217 static const char * const nstr[] = {
2218 [SIGEV_SIGNAL] = "signal",
2219 [SIGEV_NONE] = "none",
2220 [SIGEV_THREAD] = "thread",
2221 };
2222
2223 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2224 notify = timer->it_sigev_notify;
2225
2226 seq_printf(m, "ID: %d\n", timer->it_id);
2227 seq_printf(m, "signal: %d/%p\n",
2228 timer->sigq->info.si_signo,
2229 timer->sigq->info.si_value.sival_ptr);
2230 seq_printf(m, "notify: %s/%s.%d\n",
2231 nstr[notify & ~SIGEV_THREAD_ID],
2232 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2233 pid_nr_ns(timer->it_pid, tp->ns));
2234 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2235
2236 return 0;
2237 }
2238
2239 static const struct seq_operations proc_timers_seq_ops = {
2240 .start = timers_start,
2241 .next = timers_next,
2242 .stop = timers_stop,
2243 .show = show_timer,
2244 };
2245
2246 static int proc_timers_open(struct inode *inode, struct file *file)
2247 {
2248 struct timers_private *tp;
2249
2250 tp = __seq_open_private(file, &proc_timers_seq_ops,
2251 sizeof(struct timers_private));
2252 if (!tp)
2253 return -ENOMEM;
2254
2255 tp->pid = proc_pid(inode);
2256 tp->ns = inode->i_sb->s_fs_info;
2257 return 0;
2258 }
2259
2260 static const struct file_operations proc_timers_operations = {
2261 .open = proc_timers_open,
2262 .read = seq_read,
2263 .llseek = seq_lseek,
2264 .release = seq_release_private,
2265 };
2266 #endif
2267
2268 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2269 size_t count, loff_t *offset)
2270 {
2271 struct inode *inode = file_inode(file);
2272 struct task_struct *p;
2273 u64 slack_ns;
2274 int err;
2275
2276 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2277 if (err < 0)
2278 return err;
2279
2280 p = get_proc_task(inode);
2281 if (!p)
2282 return -ESRCH;
2283
2284 if (p != current) {
2285 if (!capable(CAP_SYS_NICE)) {
2286 count = -EPERM;
2287 goto out;
2288 }
2289
2290 err = security_task_setscheduler(p);
2291 if (err) {
2292 count = err;
2293 goto out;
2294 }
2295 }
2296
2297 task_lock(p);
2298 if (slack_ns == 0)
2299 p->timer_slack_ns = p->default_timer_slack_ns;
2300 else
2301 p->timer_slack_ns = slack_ns;
2302 task_unlock(p);
2303
2304 out:
2305 put_task_struct(p);
2306
2307 return count;
2308 }
2309
2310 static int timerslack_ns_show(struct seq_file *m, void *v)
2311 {
2312 struct inode *inode = m->private;
2313 struct task_struct *p;
2314 int err = 0;
2315
2316 p = get_proc_task(inode);
2317 if (!p)
2318 return -ESRCH;
2319
2320 if (p != current) {
2321
2322 if (!capable(CAP_SYS_NICE)) {
2323 err = -EPERM;
2324 goto out;
2325 }
2326 err = security_task_getscheduler(p);
2327 if (err)
2328 goto out;
2329 }
2330
2331 task_lock(p);
2332 seq_printf(m, "%llu\n", p->timer_slack_ns);
2333 task_unlock(p);
2334
2335 out:
2336 put_task_struct(p);
2337
2338 return err;
2339 }
2340
2341 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2342 {
2343 return single_open(filp, timerslack_ns_show, inode);
2344 }
2345
2346 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2347 .open = timerslack_ns_open,
2348 .read = seq_read,
2349 .write = timerslack_ns_write,
2350 .llseek = seq_lseek,
2351 .release = single_release,
2352 };
2353
2354 static int proc_pident_instantiate(struct inode *dir,
2355 struct dentry *dentry, struct task_struct *task, const void *ptr)
2356 {
2357 const struct pid_entry *p = ptr;
2358 struct inode *inode;
2359 struct proc_inode *ei;
2360
2361 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2362 if (!inode)
2363 goto out;
2364
2365 ei = PROC_I(inode);
2366 if (S_ISDIR(inode->i_mode))
2367 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2368 if (p->iop)
2369 inode->i_op = p->iop;
2370 if (p->fop)
2371 inode->i_fop = p->fop;
2372 ei->op = p->op;
2373 d_set_d_op(dentry, &pid_dentry_operations);
2374 d_add(dentry, inode);
2375 /* Close the race of the process dying before we return the dentry */
2376 if (pid_revalidate(dentry, 0))
2377 return 0;
2378 out:
2379 return -ENOENT;
2380 }
2381
2382 static struct dentry *proc_pident_lookup(struct inode *dir,
2383 struct dentry *dentry,
2384 const struct pid_entry *ents,
2385 unsigned int nents)
2386 {
2387 int error;
2388 struct task_struct *task = get_proc_task(dir);
2389 const struct pid_entry *p, *last;
2390
2391 error = -ENOENT;
2392
2393 if (!task)
2394 goto out_no_task;
2395
2396 /*
2397 * Yes, it does not scale. And it should not. Don't add
2398 * new entries into /proc/<tgid>/ without very good reasons.
2399 */
2400 last = &ents[nents];
2401 for (p = ents; p < last; p++) {
2402 if (p->len != dentry->d_name.len)
2403 continue;
2404 if (!memcmp(dentry->d_name.name, p->name, p->len))
2405 break;
2406 }
2407 if (p >= last)
2408 goto out;
2409
2410 error = proc_pident_instantiate(dir, dentry, task, p);
2411 out:
2412 put_task_struct(task);
2413 out_no_task:
2414 return ERR_PTR(error);
2415 }
2416
2417 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2418 const struct pid_entry *ents, unsigned int nents)
2419 {
2420 struct task_struct *task = get_proc_task(file_inode(file));
2421 const struct pid_entry *p;
2422
2423 if (!task)
2424 return -ENOENT;
2425
2426 if (!dir_emit_dots(file, ctx))
2427 goto out;
2428
2429 if (ctx->pos >= nents + 2)
2430 goto out;
2431
2432 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2433 if (!proc_fill_cache(file, ctx, p->name, p->len,
2434 proc_pident_instantiate, task, p))
2435 break;
2436 ctx->pos++;
2437 }
2438 out:
2439 put_task_struct(task);
2440 return 0;
2441 }
2442
2443 #ifdef CONFIG_SECURITY
2444 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2445 size_t count, loff_t *ppos)
2446 {
2447 struct inode * inode = file_inode(file);
2448 char *p = NULL;
2449 ssize_t length;
2450 struct task_struct *task = get_proc_task(inode);
2451
2452 if (!task)
2453 return -ESRCH;
2454
2455 length = security_getprocattr(task,
2456 (char*)file->f_path.dentry->d_name.name,
2457 &p);
2458 put_task_struct(task);
2459 if (length > 0)
2460 length = simple_read_from_buffer(buf, count, ppos, p, length);
2461 kfree(p);
2462 return length;
2463 }
2464
2465 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2466 size_t count, loff_t *ppos)
2467 {
2468 struct inode * inode = file_inode(file);
2469 void *page;
2470 ssize_t length;
2471 struct task_struct *task = get_proc_task(inode);
2472
2473 length = -ESRCH;
2474 if (!task)
2475 goto out_no_task;
2476
2477 /* A task may only write its own attributes. */
2478 length = -EACCES;
2479 if (current != task)
2480 goto out;
2481
2482 if (count > PAGE_SIZE)
2483 count = PAGE_SIZE;
2484
2485 /* No partial writes. */
2486 length = -EINVAL;
2487 if (*ppos != 0)
2488 goto out;
2489
2490 page = memdup_user(buf, count);
2491 if (IS_ERR(page)) {
2492 length = PTR_ERR(page);
2493 goto out;
2494 }
2495
2496 /* Guard against adverse ptrace interaction */
2497 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2498 if (length < 0)
2499 goto out_free;
2500
2501 length = security_setprocattr(file->f_path.dentry->d_name.name,
2502 page, count);
2503 mutex_unlock(&current->signal->cred_guard_mutex);
2504 out_free:
2505 kfree(page);
2506 out:
2507 put_task_struct(task);
2508 out_no_task:
2509 return length;
2510 }
2511
2512 static const struct file_operations proc_pid_attr_operations = {
2513 .read = proc_pid_attr_read,
2514 .write = proc_pid_attr_write,
2515 .llseek = generic_file_llseek,
2516 };
2517
2518 static const struct pid_entry attr_dir_stuff[] = {
2519 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2520 REG("prev", S_IRUGO, proc_pid_attr_operations),
2521 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2522 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2523 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2524 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2525 };
2526
2527 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2528 {
2529 return proc_pident_readdir(file, ctx,
2530 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2531 }
2532
2533 static const struct file_operations proc_attr_dir_operations = {
2534 .read = generic_read_dir,
2535 .iterate_shared = proc_attr_dir_readdir,
2536 .llseek = generic_file_llseek,
2537 };
2538
2539 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2540 struct dentry *dentry, unsigned int flags)
2541 {
2542 return proc_pident_lookup(dir, dentry,
2543 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2544 }
2545
2546 static const struct inode_operations proc_attr_dir_inode_operations = {
2547 .lookup = proc_attr_dir_lookup,
2548 .getattr = pid_getattr,
2549 .setattr = proc_setattr,
2550 };
2551
2552 #endif
2553
2554 #ifdef CONFIG_ELF_CORE
2555 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2556 size_t count, loff_t *ppos)
2557 {
2558 struct task_struct *task = get_proc_task(file_inode(file));
2559 struct mm_struct *mm;
2560 char buffer[PROC_NUMBUF];
2561 size_t len;
2562 int ret;
2563
2564 if (!task)
2565 return -ESRCH;
2566
2567 ret = 0;
2568 mm = get_task_mm(task);
2569 if (mm) {
2570 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2571 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2572 MMF_DUMP_FILTER_SHIFT));
2573 mmput(mm);
2574 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2575 }
2576
2577 put_task_struct(task);
2578
2579 return ret;
2580 }
2581
2582 static ssize_t proc_coredump_filter_write(struct file *file,
2583 const char __user *buf,
2584 size_t count,
2585 loff_t *ppos)
2586 {
2587 struct task_struct *task;
2588 struct mm_struct *mm;
2589 unsigned int val;
2590 int ret;
2591 int i;
2592 unsigned long mask;
2593
2594 ret = kstrtouint_from_user(buf, count, 0, &val);
2595 if (ret < 0)
2596 return ret;
2597
2598 ret = -ESRCH;
2599 task = get_proc_task(file_inode(file));
2600 if (!task)
2601 goto out_no_task;
2602
2603 mm = get_task_mm(task);
2604 if (!mm)
2605 goto out_no_mm;
2606 ret = 0;
2607
2608 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2609 if (val & mask)
2610 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2611 else
2612 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2613 }
2614
2615 mmput(mm);
2616 out_no_mm:
2617 put_task_struct(task);
2618 out_no_task:
2619 if (ret < 0)
2620 return ret;
2621 return count;
2622 }
2623
2624 static const struct file_operations proc_coredump_filter_operations = {
2625 .read = proc_coredump_filter_read,
2626 .write = proc_coredump_filter_write,
2627 .llseek = generic_file_llseek,
2628 };
2629 #endif
2630
2631 #ifdef CONFIG_TASK_IO_ACCOUNTING
2632 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2633 {
2634 struct task_io_accounting acct = task->ioac;
2635 unsigned long flags;
2636 int result;
2637
2638 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2639 if (result)
2640 return result;
2641
2642 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2643 result = -EACCES;
2644 goto out_unlock;
2645 }
2646
2647 if (whole && lock_task_sighand(task, &flags)) {
2648 struct task_struct *t = task;
2649
2650 task_io_accounting_add(&acct, &task->signal->ioac);
2651 while_each_thread(task, t)
2652 task_io_accounting_add(&acct, &t->ioac);
2653
2654 unlock_task_sighand(task, &flags);
2655 }
2656 seq_printf(m,
2657 "rchar: %llu\n"
2658 "wchar: %llu\n"
2659 "syscr: %llu\n"
2660 "syscw: %llu\n"
2661 "read_bytes: %llu\n"
2662 "write_bytes: %llu\n"
2663 "cancelled_write_bytes: %llu\n",
2664 (unsigned long long)acct.rchar,
2665 (unsigned long long)acct.wchar,
2666 (unsigned long long)acct.syscr,
2667 (unsigned long long)acct.syscw,
2668 (unsigned long long)acct.read_bytes,
2669 (unsigned long long)acct.write_bytes,
2670 (unsigned long long)acct.cancelled_write_bytes);
2671 result = 0;
2672
2673 out_unlock:
2674 mutex_unlock(&task->signal->cred_guard_mutex);
2675 return result;
2676 }
2677
2678 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2679 struct pid *pid, struct task_struct *task)
2680 {
2681 return do_io_accounting(task, m, 0);
2682 }
2683
2684 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2685 struct pid *pid, struct task_struct *task)
2686 {
2687 return do_io_accounting(task, m, 1);
2688 }
2689 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2690
2691 #ifdef CONFIG_USER_NS
2692 static int proc_id_map_open(struct inode *inode, struct file *file,
2693 const struct seq_operations *seq_ops)
2694 {
2695 struct user_namespace *ns = NULL;
2696 struct task_struct *task;
2697 struct seq_file *seq;
2698 int ret = -EINVAL;
2699
2700 task = get_proc_task(inode);
2701 if (task) {
2702 rcu_read_lock();
2703 ns = get_user_ns(task_cred_xxx(task, user_ns));
2704 rcu_read_unlock();
2705 put_task_struct(task);
2706 }
2707 if (!ns)
2708 goto err;
2709
2710 ret = seq_open(file, seq_ops);
2711 if (ret)
2712 goto err_put_ns;
2713
2714 seq = file->private_data;
2715 seq->private = ns;
2716
2717 return 0;
2718 err_put_ns:
2719 put_user_ns(ns);
2720 err:
2721 return ret;
2722 }
2723
2724 static int proc_id_map_release(struct inode *inode, struct file *file)
2725 {
2726 struct seq_file *seq = file->private_data;
2727 struct user_namespace *ns = seq->private;
2728 put_user_ns(ns);
2729 return seq_release(inode, file);
2730 }
2731
2732 static int proc_uid_map_open(struct inode *inode, struct file *file)
2733 {
2734 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2735 }
2736
2737 static int proc_gid_map_open(struct inode *inode, struct file *file)
2738 {
2739 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2740 }
2741
2742 static int proc_projid_map_open(struct inode *inode, struct file *file)
2743 {
2744 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2745 }
2746
2747 static const struct file_operations proc_uid_map_operations = {
2748 .open = proc_uid_map_open,
2749 .write = proc_uid_map_write,
2750 .read = seq_read,
2751 .llseek = seq_lseek,
2752 .release = proc_id_map_release,
2753 };
2754
2755 static const struct file_operations proc_gid_map_operations = {
2756 .open = proc_gid_map_open,
2757 .write = proc_gid_map_write,
2758 .read = seq_read,
2759 .llseek = seq_lseek,
2760 .release = proc_id_map_release,
2761 };
2762
2763 static const struct file_operations proc_projid_map_operations = {
2764 .open = proc_projid_map_open,
2765 .write = proc_projid_map_write,
2766 .read = seq_read,
2767 .llseek = seq_lseek,
2768 .release = proc_id_map_release,
2769 };
2770
2771 static int proc_setgroups_open(struct inode *inode, struct file *file)
2772 {
2773 struct user_namespace *ns = NULL;
2774 struct task_struct *task;
2775 int ret;
2776
2777 ret = -ESRCH;
2778 task = get_proc_task(inode);
2779 if (task) {
2780 rcu_read_lock();
2781 ns = get_user_ns(task_cred_xxx(task, user_ns));
2782 rcu_read_unlock();
2783 put_task_struct(task);
2784 }
2785 if (!ns)
2786 goto err;
2787
2788 if (file->f_mode & FMODE_WRITE) {
2789 ret = -EACCES;
2790 if (!ns_capable(ns, CAP_SYS_ADMIN))
2791 goto err_put_ns;
2792 }
2793
2794 ret = single_open(file, &proc_setgroups_show, ns);
2795 if (ret)
2796 goto err_put_ns;
2797
2798 return 0;
2799 err_put_ns:
2800 put_user_ns(ns);
2801 err:
2802 return ret;
2803 }
2804
2805 static int proc_setgroups_release(struct inode *inode, struct file *file)
2806 {
2807 struct seq_file *seq = file->private_data;
2808 struct user_namespace *ns = seq->private;
2809 int ret = single_release(inode, file);
2810 put_user_ns(ns);
2811 return ret;
2812 }
2813
2814 static const struct file_operations proc_setgroups_operations = {
2815 .open = proc_setgroups_open,
2816 .write = proc_setgroups_write,
2817 .read = seq_read,
2818 .llseek = seq_lseek,
2819 .release = proc_setgroups_release,
2820 };
2821 #endif /* CONFIG_USER_NS */
2822
2823 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2824 struct pid *pid, struct task_struct *task)
2825 {
2826 int err = lock_trace(task);
2827 if (!err) {
2828 seq_printf(m, "%08x\n", task->personality);
2829 unlock_trace(task);
2830 }
2831 return err;
2832 }
2833
2834 #ifdef CONFIG_LIVEPATCH
2835 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2836 struct pid *pid, struct task_struct *task)
2837 {
2838 seq_printf(m, "%d\n", task->patch_state);
2839 return 0;
2840 }
2841 #endif /* CONFIG_LIVEPATCH */
2842
2843 /*
2844 * Thread groups
2845 */
2846 static const struct file_operations proc_task_operations;
2847 static const struct inode_operations proc_task_inode_operations;
2848
2849 static const struct pid_entry tgid_base_stuff[] = {
2850 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2851 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2852 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2853 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2854 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2855 #ifdef CONFIG_NET
2856 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2857 #endif
2858 REG("environ", S_IRUSR, proc_environ_operations),
2859 REG("auxv", S_IRUSR, proc_auxv_operations),
2860 ONE("status", S_IRUGO, proc_pid_status),
2861 ONE("personality", S_IRUSR, proc_pid_personality),
2862 ONE("limits", S_IRUGO, proc_pid_limits),
2863 #ifdef CONFIG_SCHED_DEBUG
2864 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2865 #endif
2866 #ifdef CONFIG_SCHED_AUTOGROUP
2867 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2868 #endif
2869 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2870 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2871 ONE("syscall", S_IRUSR, proc_pid_syscall),
2872 #endif
2873 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2874 ONE("stat", S_IRUGO, proc_tgid_stat),
2875 ONE("statm", S_IRUGO, proc_pid_statm),
2876 REG("maps", S_IRUGO, proc_pid_maps_operations),
2877 #ifdef CONFIG_NUMA
2878 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2879 #endif
2880 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2881 LNK("cwd", proc_cwd_link),
2882 LNK("root", proc_root_link),
2883 LNK("exe", proc_exe_link),
2884 REG("mounts", S_IRUGO, proc_mounts_operations),
2885 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2886 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2887 #ifdef CONFIG_PROC_PAGE_MONITOR
2888 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2889 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2890 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2891 #endif
2892 #ifdef CONFIG_SECURITY
2893 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2894 #endif
2895 #ifdef CONFIG_KALLSYMS
2896 ONE("wchan", S_IRUGO, proc_pid_wchan),
2897 #endif
2898 #ifdef CONFIG_STACKTRACE
2899 ONE("stack", S_IRUSR, proc_pid_stack),
2900 #endif
2901 #ifdef CONFIG_SCHED_INFO
2902 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2903 #endif
2904 #ifdef CONFIG_LATENCYTOP
2905 REG("latency", S_IRUGO, proc_lstats_operations),
2906 #endif
2907 #ifdef CONFIG_PROC_PID_CPUSET
2908 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2909 #endif
2910 #ifdef CONFIG_CGROUPS
2911 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2912 #endif
2913 ONE("oom_score", S_IRUGO, proc_oom_score),
2914 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2915 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2916 #ifdef CONFIG_AUDITSYSCALL
2917 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2918 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2919 #endif
2920 #ifdef CONFIG_FAULT_INJECTION
2921 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2922 #endif
2923 #ifdef CONFIG_ELF_CORE
2924 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2925 #endif
2926 #ifdef CONFIG_TASK_IO_ACCOUNTING
2927 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2928 #endif
2929 #ifdef CONFIG_HARDWALL
2930 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2931 #endif
2932 #ifdef CONFIG_USER_NS
2933 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2934 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2935 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2936 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2937 #endif
2938 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2939 REG("timers", S_IRUGO, proc_timers_operations),
2940 #endif
2941 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2942 #ifdef CONFIG_LIVEPATCH
2943 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
2944 #endif
2945 };
2946
2947 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2948 {
2949 return proc_pident_readdir(file, ctx,
2950 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2951 }
2952
2953 static const struct file_operations proc_tgid_base_operations = {
2954 .read = generic_read_dir,
2955 .iterate_shared = proc_tgid_base_readdir,
2956 .llseek = generic_file_llseek,
2957 };
2958
2959 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2960 {
2961 return proc_pident_lookup(dir, dentry,
2962 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2963 }
2964
2965 static const struct inode_operations proc_tgid_base_inode_operations = {
2966 .lookup = proc_tgid_base_lookup,
2967 .getattr = pid_getattr,
2968 .setattr = proc_setattr,
2969 .permission = proc_pid_permission,
2970 };
2971
2972 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2973 {
2974 struct dentry *dentry, *leader, *dir;
2975 char buf[PROC_NUMBUF];
2976 struct qstr name;
2977
2978 name.name = buf;
2979 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2980 /* no ->d_hash() rejects on procfs */
2981 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2982 if (dentry) {
2983 d_invalidate(dentry);
2984 dput(dentry);
2985 }
2986
2987 if (pid == tgid)
2988 return;
2989
2990 name.name = buf;
2991 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2992 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2993 if (!leader)
2994 goto out;
2995
2996 name.name = "task";
2997 name.len = strlen(name.name);
2998 dir = d_hash_and_lookup(leader, &name);
2999 if (!dir)
3000 goto out_put_leader;
3001
3002 name.name = buf;
3003 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3004 dentry = d_hash_and_lookup(dir, &name);
3005 if (dentry) {
3006 d_invalidate(dentry);
3007 dput(dentry);
3008 }
3009
3010 dput(dir);
3011 out_put_leader:
3012 dput(leader);
3013 out:
3014 return;
3015 }
3016
3017 /**
3018 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3019 * @task: task that should be flushed.
3020 *
3021 * When flushing dentries from proc, one needs to flush them from global
3022 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3023 * in. This call is supposed to do all of this job.
3024 *
3025 * Looks in the dcache for
3026 * /proc/@pid
3027 * /proc/@tgid/task/@pid
3028 * if either directory is present flushes it and all of it'ts children
3029 * from the dcache.
3030 *
3031 * It is safe and reasonable to cache /proc entries for a task until
3032 * that task exits. After that they just clog up the dcache with
3033 * useless entries, possibly causing useful dcache entries to be
3034 * flushed instead. This routine is proved to flush those useless
3035 * dcache entries at process exit time.
3036 *
3037 * NOTE: This routine is just an optimization so it does not guarantee
3038 * that no dcache entries will exist at process exit time it
3039 * just makes it very unlikely that any will persist.
3040 */
3041
3042 void proc_flush_task(struct task_struct *task)
3043 {
3044 int i;
3045 struct pid *pid, *tgid;
3046 struct upid *upid;
3047
3048 pid = task_pid(task);
3049 tgid = task_tgid(task);
3050
3051 for (i = 0; i <= pid->level; i++) {
3052 upid = &pid->numbers[i];
3053 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3054 tgid->numbers[i].nr);
3055 }
3056 }
3057
3058 static int proc_pid_instantiate(struct inode *dir,
3059 struct dentry * dentry,
3060 struct task_struct *task, const void *ptr)
3061 {
3062 struct inode *inode;
3063
3064 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3065 if (!inode)
3066 goto out;
3067
3068 inode->i_op = &proc_tgid_base_inode_operations;
3069 inode->i_fop = &proc_tgid_base_operations;
3070 inode->i_flags|=S_IMMUTABLE;
3071
3072 set_nlink(inode, nlink_tgid);
3073
3074 d_set_d_op(dentry, &pid_dentry_operations);
3075
3076 d_add(dentry, inode);
3077 /* Close the race of the process dying before we return the dentry */
3078 if (pid_revalidate(dentry, 0))
3079 return 0;
3080 out:
3081 return -ENOENT;
3082 }
3083
3084 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3085 {
3086 int result = -ENOENT;
3087 struct task_struct *task;
3088 unsigned tgid;
3089 struct pid_namespace *ns;
3090
3091 tgid = name_to_int(&dentry->d_name);
3092 if (tgid == ~0U)
3093 goto out;
3094
3095 ns = dentry->d_sb->s_fs_info;
3096 rcu_read_lock();
3097 task = find_task_by_pid_ns(tgid, ns);
3098 if (task)
3099 get_task_struct(task);
3100 rcu_read_unlock();
3101 if (!task)
3102 goto out;
3103
3104 result = proc_pid_instantiate(dir, dentry, task, NULL);
3105 put_task_struct(task);
3106 out:
3107 return ERR_PTR(result);
3108 }
3109
3110 /*
3111 * Find the first task with tgid >= tgid
3112 *
3113 */
3114 struct tgid_iter {
3115 unsigned int tgid;
3116 struct task_struct *task;
3117 };
3118 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3119 {
3120 struct pid *pid;
3121
3122 if (iter.task)
3123 put_task_struct(iter.task);
3124 rcu_read_lock();
3125 retry:
3126 iter.task = NULL;
3127 pid = find_ge_pid(iter.tgid, ns);
3128 if (pid) {
3129 iter.tgid = pid_nr_ns(pid, ns);
3130 iter.task = pid_task(pid, PIDTYPE_PID);
3131 /* What we to know is if the pid we have find is the
3132 * pid of a thread_group_leader. Testing for task
3133 * being a thread_group_leader is the obvious thing
3134 * todo but there is a window when it fails, due to
3135 * the pid transfer logic in de_thread.
3136 *
3137 * So we perform the straight forward test of seeing
3138 * if the pid we have found is the pid of a thread
3139 * group leader, and don't worry if the task we have
3140 * found doesn't happen to be a thread group leader.
3141 * As we don't care in the case of readdir.
3142 */
3143 if (!iter.task || !has_group_leader_pid(iter.task)) {
3144 iter.tgid += 1;
3145 goto retry;
3146 }
3147 get_task_struct(iter.task);
3148 }
3149 rcu_read_unlock();
3150 return iter;
3151 }
3152
3153 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3154
3155 /* for the /proc/ directory itself, after non-process stuff has been done */
3156 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3157 {
3158 struct tgid_iter iter;
3159 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3160 loff_t pos = ctx->pos;
3161
3162 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3163 return 0;
3164
3165 if (pos == TGID_OFFSET - 2) {
3166 struct inode *inode = d_inode(ns->proc_self);
3167 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3168 return 0;
3169 ctx->pos = pos = pos + 1;
3170 }
3171 if (pos == TGID_OFFSET - 1) {
3172 struct inode *inode = d_inode(ns->proc_thread_self);
3173 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3174 return 0;
3175 ctx->pos = pos = pos + 1;
3176 }
3177 iter.tgid = pos - TGID_OFFSET;
3178 iter.task = NULL;
3179 for (iter = next_tgid(ns, iter);
3180 iter.task;
3181 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3182 char name[PROC_NUMBUF];
3183 int len;
3184
3185 cond_resched();
3186 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3187 continue;
3188
3189 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3190 ctx->pos = iter.tgid + TGID_OFFSET;
3191 if (!proc_fill_cache(file, ctx, name, len,
3192 proc_pid_instantiate, iter.task, NULL)) {
3193 put_task_struct(iter.task);
3194 return 0;
3195 }
3196 }
3197 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3198 return 0;
3199 }
3200
3201 /*
3202 * proc_tid_comm_permission is a special permission function exclusively
3203 * used for the node /proc/<pid>/task/<tid>/comm.
3204 * It bypasses generic permission checks in the case where a task of the same
3205 * task group attempts to access the node.
3206 * The rationale behind this is that glibc and bionic access this node for
3207 * cross thread naming (pthread_set/getname_np(!self)). However, if
3208 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3209 * which locks out the cross thread naming implementation.
3210 * This function makes sure that the node is always accessible for members of
3211 * same thread group.
3212 */
3213 static int proc_tid_comm_permission(struct inode *inode, int mask)
3214 {
3215 bool is_same_tgroup;
3216 struct task_struct *task;
3217
3218 task = get_proc_task(inode);
3219 if (!task)
3220 return -ESRCH;
3221 is_same_tgroup = same_thread_group(current, task);
3222 put_task_struct(task);
3223
3224 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3225 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3226 * read or written by the members of the corresponding
3227 * thread group.
3228 */
3229 return 0;
3230 }
3231
3232 return generic_permission(inode, mask);
3233 }
3234
3235 static const struct inode_operations proc_tid_comm_inode_operations = {
3236 .permission = proc_tid_comm_permission,
3237 };
3238
3239 /*
3240 * Tasks
3241 */
3242 static const struct pid_entry tid_base_stuff[] = {
3243 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3244 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3245 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3246 #ifdef CONFIG_NET
3247 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3248 #endif
3249 REG("environ", S_IRUSR, proc_environ_operations),
3250 REG("auxv", S_IRUSR, proc_auxv_operations),
3251 ONE("status", S_IRUGO, proc_pid_status),
3252 ONE("personality", S_IRUSR, proc_pid_personality),
3253 ONE("limits", S_IRUGO, proc_pid_limits),
3254 #ifdef CONFIG_SCHED_DEBUG
3255 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3256 #endif
3257 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3258 &proc_tid_comm_inode_operations,
3259 &proc_pid_set_comm_operations, {}),
3260 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3261 ONE("syscall", S_IRUSR, proc_pid_syscall),
3262 #endif
3263 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3264 ONE("stat", S_IRUGO, proc_tid_stat),
3265 ONE("statm", S_IRUGO, proc_pid_statm),
3266 REG("maps", S_IRUGO, proc_tid_maps_operations),
3267 #ifdef CONFIG_PROC_CHILDREN
3268 REG("children", S_IRUGO, proc_tid_children_operations),
3269 #endif
3270 #ifdef CONFIG_NUMA
3271 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3272 #endif
3273 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3274 LNK("cwd", proc_cwd_link),
3275 LNK("root", proc_root_link),
3276 LNK("exe", proc_exe_link),
3277 REG("mounts", S_IRUGO, proc_mounts_operations),
3278 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3279 #ifdef CONFIG_PROC_PAGE_MONITOR
3280 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3282 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3283 #endif
3284 #ifdef CONFIG_SECURITY
3285 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3286 #endif
3287 #ifdef CONFIG_KALLSYMS
3288 ONE("wchan", S_IRUGO, proc_pid_wchan),
3289 #endif
3290 #ifdef CONFIG_STACKTRACE
3291 ONE("stack", S_IRUSR, proc_pid_stack),
3292 #endif
3293 #ifdef CONFIG_SCHED_INFO
3294 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3295 #endif
3296 #ifdef CONFIG_LATENCYTOP
3297 REG("latency", S_IRUGO, proc_lstats_operations),
3298 #endif
3299 #ifdef CONFIG_PROC_PID_CPUSET
3300 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3301 #endif
3302 #ifdef CONFIG_CGROUPS
3303 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3304 #endif
3305 ONE("oom_score", S_IRUGO, proc_oom_score),
3306 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3307 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3308 #ifdef CONFIG_AUDITSYSCALL
3309 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3310 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3311 #endif
3312 #ifdef CONFIG_FAULT_INJECTION
3313 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3314 #endif
3315 #ifdef CONFIG_TASK_IO_ACCOUNTING
3316 ONE("io", S_IRUSR, proc_tid_io_accounting),
3317 #endif
3318 #ifdef CONFIG_HARDWALL
3319 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3320 #endif
3321 #ifdef CONFIG_USER_NS
3322 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3323 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3324 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3325 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3326 #endif
3327 #ifdef CONFIG_LIVEPATCH
3328 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3329 #endif
3330 };
3331
3332 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3333 {
3334 return proc_pident_readdir(file, ctx,
3335 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3336 }
3337
3338 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3339 {
3340 return proc_pident_lookup(dir, dentry,
3341 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3342 }
3343
3344 static const struct file_operations proc_tid_base_operations = {
3345 .read = generic_read_dir,
3346 .iterate_shared = proc_tid_base_readdir,
3347 .llseek = generic_file_llseek,
3348 };
3349
3350 static const struct inode_operations proc_tid_base_inode_operations = {
3351 .lookup = proc_tid_base_lookup,
3352 .getattr = pid_getattr,
3353 .setattr = proc_setattr,
3354 };
3355
3356 static int proc_task_instantiate(struct inode *dir,
3357 struct dentry *dentry, struct task_struct *task, const void *ptr)
3358 {
3359 struct inode *inode;
3360 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3361
3362 if (!inode)
3363 goto out;
3364 inode->i_op = &proc_tid_base_inode_operations;
3365 inode->i_fop = &proc_tid_base_operations;
3366 inode->i_flags|=S_IMMUTABLE;
3367
3368 set_nlink(inode, nlink_tid);
3369
3370 d_set_d_op(dentry, &pid_dentry_operations);
3371
3372 d_add(dentry, inode);
3373 /* Close the race of the process dying before we return the dentry */
3374 if (pid_revalidate(dentry, 0))
3375 return 0;
3376 out:
3377 return -ENOENT;
3378 }
3379
3380 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3381 {
3382 int result = -ENOENT;
3383 struct task_struct *task;
3384 struct task_struct *leader = get_proc_task(dir);
3385 unsigned tid;
3386 struct pid_namespace *ns;
3387
3388 if (!leader)
3389 goto out_no_task;
3390
3391 tid = name_to_int(&dentry->d_name);
3392 if (tid == ~0U)
3393 goto out;
3394
3395 ns = dentry->d_sb->s_fs_info;
3396 rcu_read_lock();
3397 task = find_task_by_pid_ns(tid, ns);
3398 if (task)
3399 get_task_struct(task);
3400 rcu_read_unlock();
3401 if (!task)
3402 goto out;
3403 if (!same_thread_group(leader, task))
3404 goto out_drop_task;
3405
3406 result = proc_task_instantiate(dir, dentry, task, NULL);
3407 out_drop_task:
3408 put_task_struct(task);
3409 out:
3410 put_task_struct(leader);
3411 out_no_task:
3412 return ERR_PTR(result);
3413 }
3414
3415 /*
3416 * Find the first tid of a thread group to return to user space.
3417 *
3418 * Usually this is just the thread group leader, but if the users
3419 * buffer was too small or there was a seek into the middle of the
3420 * directory we have more work todo.
3421 *
3422 * In the case of a short read we start with find_task_by_pid.
3423 *
3424 * In the case of a seek we start with the leader and walk nr
3425 * threads past it.
3426 */
3427 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3428 struct pid_namespace *ns)
3429 {
3430 struct task_struct *pos, *task;
3431 unsigned long nr = f_pos;
3432
3433 if (nr != f_pos) /* 32bit overflow? */
3434 return NULL;
3435
3436 rcu_read_lock();
3437 task = pid_task(pid, PIDTYPE_PID);
3438 if (!task)
3439 goto fail;
3440
3441 /* Attempt to start with the tid of a thread */
3442 if (tid && nr) {
3443 pos = find_task_by_pid_ns(tid, ns);
3444 if (pos && same_thread_group(pos, task))
3445 goto found;
3446 }
3447
3448 /* If nr exceeds the number of threads there is nothing todo */
3449 if (nr >= get_nr_threads(task))
3450 goto fail;
3451
3452 /* If we haven't found our starting place yet start
3453 * with the leader and walk nr threads forward.
3454 */
3455 pos = task = task->group_leader;
3456 do {
3457 if (!nr--)
3458 goto found;
3459 } while_each_thread(task, pos);
3460 fail:
3461 pos = NULL;
3462 goto out;
3463 found:
3464 get_task_struct(pos);
3465 out:
3466 rcu_read_unlock();
3467 return pos;
3468 }
3469
3470 /*
3471 * Find the next thread in the thread list.
3472 * Return NULL if there is an error or no next thread.
3473 *
3474 * The reference to the input task_struct is released.
3475 */
3476 static struct task_struct *next_tid(struct task_struct *start)
3477 {
3478 struct task_struct *pos = NULL;
3479 rcu_read_lock();
3480 if (pid_alive(start)) {
3481 pos = next_thread(start);
3482 if (thread_group_leader(pos))
3483 pos = NULL;
3484 else
3485 get_task_struct(pos);
3486 }
3487 rcu_read_unlock();
3488 put_task_struct(start);
3489 return pos;
3490 }
3491
3492 /* for the /proc/TGID/task/ directories */
3493 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3494 {
3495 struct inode *inode = file_inode(file);
3496 struct task_struct *task;
3497 struct pid_namespace *ns;
3498 int tid;
3499
3500 if (proc_inode_is_dead(inode))
3501 return -ENOENT;
3502
3503 if (!dir_emit_dots(file, ctx))
3504 return 0;
3505
3506 /* f_version caches the tgid value that the last readdir call couldn't
3507 * return. lseek aka telldir automagically resets f_version to 0.
3508 */
3509 ns = inode->i_sb->s_fs_info;
3510 tid = (int)file->f_version;
3511 file->f_version = 0;
3512 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3513 task;
3514 task = next_tid(task), ctx->pos++) {
3515 char name[PROC_NUMBUF];
3516 int len;
3517 tid = task_pid_nr_ns(task, ns);
3518 len = snprintf(name, sizeof(name), "%d", tid);
3519 if (!proc_fill_cache(file, ctx, name, len,
3520 proc_task_instantiate, task, NULL)) {
3521 /* returning this tgid failed, save it as the first
3522 * pid for the next readir call */
3523 file->f_version = (u64)tid;
3524 put_task_struct(task);
3525 break;
3526 }
3527 }
3528
3529 return 0;
3530 }
3531
3532 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3533 u32 request_mask, unsigned int query_flags)
3534 {
3535 struct inode *inode = d_inode(path->dentry);
3536 struct task_struct *p = get_proc_task(inode);
3537 generic_fillattr(inode, stat);
3538
3539 if (p) {
3540 stat->nlink += get_nr_threads(p);
3541 put_task_struct(p);
3542 }
3543
3544 return 0;
3545 }
3546
3547 static const struct inode_operations proc_task_inode_operations = {
3548 .lookup = proc_task_lookup,
3549 .getattr = proc_task_getattr,
3550 .setattr = proc_setattr,
3551 .permission = proc_pid_permission,
3552 };
3553
3554 static const struct file_operations proc_task_operations = {
3555 .read = generic_read_dir,
3556 .iterate_shared = proc_task_readdir,
3557 .llseek = generic_file_llseek,
3558 };
3559
3560 void __init set_proc_pid_nlink(void)
3561 {
3562 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3563 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3564 }