]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/base.c
Merge branch 'fixes-for-linus' of git://git.linaro.org/people/mszyprowski/linux-dma...
[mirror_ubuntu-artful-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93
94 /* NOTE:
95 * Implementing inode permission operations in /proc is almost
96 * certainly an error. Permission checks need to happen during
97 * each system call not at open time. The reason is that most of
98 * what we wish to check for permissions in /proc varies at runtime.
99 *
100 * The classic example of a problem is opening file descriptors
101 * in /proc for a task before it execs a suid executable.
102 */
103
104 struct pid_entry {
105 char *name;
106 int len;
107 umode_t mode;
108 const struct inode_operations *iop;
109 const struct file_operations *fop;
110 union proc_op op;
111 };
112
113 #define NOD(NAME, MODE, IOP, FOP, OP) { \
114 .name = (NAME), \
115 .len = sizeof(NAME) - 1, \
116 .mode = MODE, \
117 .iop = IOP, \
118 .fop = FOP, \
119 .op = OP, \
120 }
121
122 #define DIR(NAME, MODE, iops, fops) \
123 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
124 #define LNK(NAME, get_link) \
125 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
126 &proc_pid_link_inode_operations, NULL, \
127 { .proc_get_link = get_link } )
128 #define REG(NAME, MODE, fops) \
129 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
130 #define INF(NAME, MODE, read) \
131 NOD(NAME, (S_IFREG|(MODE)), \
132 NULL, &proc_info_file_operations, \
133 { .proc_read = read } )
134 #define ONE(NAME, MODE, show) \
135 NOD(NAME, (S_IFREG|(MODE)), \
136 NULL, &proc_single_file_operations, \
137 { .proc_show = show } )
138
139 static int proc_fd_permission(struct inode *inode, int mask);
140
141 /*
142 * Count the number of hardlinks for the pid_entry table, excluding the .
143 * and .. links.
144 */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 unsigned int n)
147 {
148 unsigned int i;
149 unsigned int count;
150
151 count = 0;
152 for (i = 0; i < n; ++i) {
153 if (S_ISDIR(entries[i].mode))
154 ++count;
155 }
156
157 return count;
158 }
159
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 int result = -ENOENT;
163
164 task_lock(task);
165 if (task->fs) {
166 get_fs_root(task->fs, root);
167 result = 0;
168 }
169 task_unlock(task);
170 return result;
171 }
172
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 struct task_struct *task = get_proc_task(dentry->d_inode);
176 int result = -ENOENT;
177
178 if (task) {
179 task_lock(task);
180 if (task->fs) {
181 get_fs_pwd(task->fs, path);
182 result = 0;
183 }
184 task_unlock(task);
185 put_task_struct(task);
186 }
187 return result;
188 }
189
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 struct task_struct *task = get_proc_task(dentry->d_inode);
193 int result = -ENOENT;
194
195 if (task) {
196 result = get_task_root(task, path);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 int res = 0;
205 unsigned int len;
206 struct mm_struct *mm = get_task_mm(task);
207 if (!mm)
208 goto out;
209 if (!mm->arg_end)
210 goto out_mm; /* Shh! No looking before we're done */
211
212 len = mm->arg_end - mm->arg_start;
213
214 if (len > PAGE_SIZE)
215 len = PAGE_SIZE;
216
217 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218
219 // If the nul at the end of args has been overwritten, then
220 // assume application is using setproctitle(3).
221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 len = strnlen(buffer, res);
223 if (len < res) {
224 res = len;
225 } else {
226 len = mm->env_end - mm->env_start;
227 if (len > PAGE_SIZE - res)
228 len = PAGE_SIZE - res;
229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 res = strnlen(buffer, res);
231 }
232 }
233 out_mm:
234 mmput(mm);
235 out:
236 return res;
237 }
238
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 int res = PTR_ERR(mm);
243 if (mm && !IS_ERR(mm)) {
244 unsigned int nwords = 0;
245 do {
246 nwords += 2;
247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 res = nwords * sizeof(mm->saved_auxv[0]);
249 if (res > PAGE_SIZE)
250 res = PAGE_SIZE;
251 memcpy(buffer, mm->saved_auxv, res);
252 mmput(mm);
253 }
254 return res;
255 }
256
257
258 #ifdef CONFIG_KALLSYMS
259 /*
260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261 * Returns the resolved symbol. If that fails, simply return the address.
262 */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 unsigned long wchan;
266 char symname[KSYM_NAME_LEN];
267
268 wchan = get_wchan(task);
269
270 if (lookup_symbol_name(wchan, symname) < 0)
271 if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 return 0;
273 else
274 return sprintf(buffer, "%lu", wchan);
275 else
276 return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279
280 static int lock_trace(struct task_struct *task)
281 {
282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 if (err)
284 return err;
285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 mutex_unlock(&task->signal->cred_guard_mutex);
287 return -EPERM;
288 }
289 return 0;
290 }
291
292 static void unlock_trace(struct task_struct *task)
293 {
294 mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296
297 #ifdef CONFIG_STACKTRACE
298
299 #define MAX_STACK_TRACE_DEPTH 64
300
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 struct pid *pid, struct task_struct *task)
303 {
304 struct stack_trace trace;
305 unsigned long *entries;
306 int err;
307 int i;
308
309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 if (!entries)
311 return -ENOMEM;
312
313 trace.nr_entries = 0;
314 trace.max_entries = MAX_STACK_TRACE_DEPTH;
315 trace.entries = entries;
316 trace.skip = 0;
317
318 err = lock_trace(task);
319 if (!err) {
320 save_stack_trace_tsk(task, &trace);
321
322 for (i = 0; i < trace.nr_entries; i++) {
323 seq_printf(m, "[<%pK>] %pS\n",
324 (void *)entries[i], (void *)entries[i]);
325 }
326 unlock_trace(task);
327 }
328 kfree(entries);
329
330 return err;
331 }
332 #endif
333
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336 * Provides /proc/PID/schedstat
337 */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 return sprintf(buffer, "%llu %llu %lu\n",
341 (unsigned long long)task->se.sum_exec_runtime,
342 (unsigned long long)task->sched_info.run_delay,
343 task->sched_info.pcount);
344 }
345 #endif
346
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 int i;
351 struct inode *inode = m->private;
352 struct task_struct *task = get_proc_task(inode);
353
354 if (!task)
355 return -ESRCH;
356 seq_puts(m, "Latency Top version : v0.1\n");
357 for (i = 0; i < 32; i++) {
358 struct latency_record *lr = &task->latency_record[i];
359 if (lr->backtrace[0]) {
360 int q;
361 seq_printf(m, "%i %li %li",
362 lr->count, lr->time, lr->max);
363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 unsigned long bt = lr->backtrace[q];
365 if (!bt)
366 break;
367 if (bt == ULONG_MAX)
368 break;
369 seq_printf(m, " %ps", (void *)bt);
370 }
371 seq_putc(m, '\n');
372 }
373
374 }
375 put_task_struct(task);
376 return 0;
377 }
378
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 return single_open(file, lstats_show_proc, inode);
382 }
383
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 size_t count, loff_t *offs)
386 {
387 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
388
389 if (!task)
390 return -ESRCH;
391 clear_all_latency_tracing(task);
392 put_task_struct(task);
393
394 return count;
395 }
396
397 static const struct file_operations proc_lstats_operations = {
398 .open = lstats_open,
399 .read = seq_read,
400 .write = lstats_write,
401 .llseek = seq_lseek,
402 .release = single_release,
403 };
404
405 #endif
406
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 unsigned long totalpages = totalram_pages + total_swap_pages;
410 unsigned long points = 0;
411
412 read_lock(&tasklist_lock);
413 if (pid_alive(task))
414 points = oom_badness(task, NULL, NULL, totalpages) *
415 1000 / totalpages;
416 read_unlock(&tasklist_lock);
417 return sprintf(buffer, "%lu\n", points);
418 }
419
420 struct limit_names {
421 char *name;
422 char *unit;
423 };
424
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 [RLIMIT_DATA] = {"Max data size", "bytes"},
429 [RLIMIT_STACK] = {"Max stack size", "bytes"},
430 [RLIMIT_CORE] = {"Max core file size", "bytes"},
431 [RLIMIT_RSS] = {"Max resident set", "bytes"},
432 [RLIMIT_NPROC] = {"Max processes", "processes"},
433 [RLIMIT_NOFILE] = {"Max open files", "files"},
434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 [RLIMIT_AS] = {"Max address space", "bytes"},
436 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 [RLIMIT_NICE] = {"Max nice priority", NULL},
440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 unsigned int i;
448 int count = 0;
449 unsigned long flags;
450 char *bufptr = buffer;
451
452 struct rlimit rlim[RLIM_NLIMITS];
453
454 if (!lock_task_sighand(task, &flags))
455 return 0;
456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 unlock_task_sighand(task, &flags);
458
459 /*
460 * print the file header
461 */
462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 "Limit", "Soft Limit", "Hard Limit", "Units");
464
465 for (i = 0; i < RLIM_NLIMITS; i++) {
466 if (rlim[i].rlim_cur == RLIM_INFINITY)
467 count += sprintf(&bufptr[count], "%-25s %-20s ",
468 lnames[i].name, "unlimited");
469 else
470 count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 lnames[i].name, rlim[i].rlim_cur);
472
473 if (rlim[i].rlim_max == RLIM_INFINITY)
474 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 else
476 count += sprintf(&bufptr[count], "%-20lu ",
477 rlim[i].rlim_max);
478
479 if (lnames[i].unit)
480 count += sprintf(&bufptr[count], "%-10s\n",
481 lnames[i].unit);
482 else
483 count += sprintf(&bufptr[count], "\n");
484 }
485
486 return count;
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 long nr;
493 unsigned long args[6], sp, pc;
494 int res = lock_trace(task);
495 if (res)
496 return res;
497
498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 res = sprintf(buffer, "running\n");
500 else if (nr < 0)
501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 else
503 res = sprintf(buffer,
504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 nr,
506 args[0], args[1], args[2], args[3], args[4], args[5],
507 sp, pc);
508 unlock_trace(task);
509 return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512
513 /************************************************************************/
514 /* Here the fs part begins */
515 /************************************************************************/
516
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 struct task_struct *task;
521 int allowed = 0;
522 /* Allow access to a task's file descriptors if it is us or we
523 * may use ptrace attach to the process and find out that
524 * information.
525 */
526 task = get_proc_task(inode);
527 if (task) {
528 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 put_task_struct(task);
530 }
531 return allowed;
532 }
533
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 int error;
537 struct inode *inode = dentry->d_inode;
538
539 if (attr->ia_valid & ATTR_MODE)
540 return -EPERM;
541
542 error = inode_change_ok(inode, attr);
543 if (error)
544 return error;
545
546 if ((attr->ia_valid & ATTR_SIZE) &&
547 attr->ia_size != i_size_read(inode)) {
548 error = vmtruncate(inode, attr->ia_size);
549 if (error)
550 return error;
551 }
552
553 setattr_copy(inode, attr);
554 mark_inode_dirty(inode);
555 return 0;
556 }
557
558 /*
559 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
560 * or euid/egid (for hide_pid_min=2)?
561 */
562 static bool has_pid_permissions(struct pid_namespace *pid,
563 struct task_struct *task,
564 int hide_pid_min)
565 {
566 if (pid->hide_pid < hide_pid_min)
567 return true;
568 if (in_group_p(pid->pid_gid))
569 return true;
570 return ptrace_may_access(task, PTRACE_MODE_READ);
571 }
572
573
574 static int proc_pid_permission(struct inode *inode, int mask)
575 {
576 struct pid_namespace *pid = inode->i_sb->s_fs_info;
577 struct task_struct *task;
578 bool has_perms;
579
580 task = get_proc_task(inode);
581 if (!task)
582 return -ESRCH;
583 has_perms = has_pid_permissions(pid, task, 1);
584 put_task_struct(task);
585
586 if (!has_perms) {
587 if (pid->hide_pid == 2) {
588 /*
589 * Let's make getdents(), stat(), and open()
590 * consistent with each other. If a process
591 * may not stat() a file, it shouldn't be seen
592 * in procfs at all.
593 */
594 return -ENOENT;
595 }
596
597 return -EPERM;
598 }
599 return generic_permission(inode, mask);
600 }
601
602
603
604 static const struct inode_operations proc_def_inode_operations = {
605 .setattr = proc_setattr,
606 };
607
608 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
609
610 static ssize_t proc_info_read(struct file * file, char __user * buf,
611 size_t count, loff_t *ppos)
612 {
613 struct inode * inode = file->f_path.dentry->d_inode;
614 unsigned long page;
615 ssize_t length;
616 struct task_struct *task = get_proc_task(inode);
617
618 length = -ESRCH;
619 if (!task)
620 goto out_no_task;
621
622 if (count > PROC_BLOCK_SIZE)
623 count = PROC_BLOCK_SIZE;
624
625 length = -ENOMEM;
626 if (!(page = __get_free_page(GFP_TEMPORARY)))
627 goto out;
628
629 length = PROC_I(inode)->op.proc_read(task, (char*)page);
630
631 if (length >= 0)
632 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
633 free_page(page);
634 out:
635 put_task_struct(task);
636 out_no_task:
637 return length;
638 }
639
640 static const struct file_operations proc_info_file_operations = {
641 .read = proc_info_read,
642 .llseek = generic_file_llseek,
643 };
644
645 static int proc_single_show(struct seq_file *m, void *v)
646 {
647 struct inode *inode = m->private;
648 struct pid_namespace *ns;
649 struct pid *pid;
650 struct task_struct *task;
651 int ret;
652
653 ns = inode->i_sb->s_fs_info;
654 pid = proc_pid(inode);
655 task = get_pid_task(pid, PIDTYPE_PID);
656 if (!task)
657 return -ESRCH;
658
659 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
660
661 put_task_struct(task);
662 return ret;
663 }
664
665 static int proc_single_open(struct inode *inode, struct file *filp)
666 {
667 return single_open(filp, proc_single_show, inode);
668 }
669
670 static const struct file_operations proc_single_file_operations = {
671 .open = proc_single_open,
672 .read = seq_read,
673 .llseek = seq_lseek,
674 .release = single_release,
675 };
676
677 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
678 {
679 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
680 struct mm_struct *mm;
681
682 if (!task)
683 return -ESRCH;
684
685 mm = mm_access(task, mode);
686 put_task_struct(task);
687
688 if (IS_ERR(mm))
689 return PTR_ERR(mm);
690
691 if (mm) {
692 /* ensure this mm_struct can't be freed */
693 atomic_inc(&mm->mm_count);
694 /* but do not pin its memory */
695 mmput(mm);
696 }
697
698 /* OK to pass negative loff_t, we can catch out-of-range */
699 file->f_mode |= FMODE_UNSIGNED_OFFSET;
700 file->private_data = mm;
701
702 return 0;
703 }
704
705 static int mem_open(struct inode *inode, struct file *file)
706 {
707 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
708 }
709
710 static ssize_t mem_rw(struct file *file, char __user *buf,
711 size_t count, loff_t *ppos, int write)
712 {
713 struct mm_struct *mm = file->private_data;
714 unsigned long addr = *ppos;
715 ssize_t copied;
716 char *page;
717
718 if (!mm)
719 return 0;
720
721 page = (char *)__get_free_page(GFP_TEMPORARY);
722 if (!page)
723 return -ENOMEM;
724
725 copied = 0;
726 if (!atomic_inc_not_zero(&mm->mm_users))
727 goto free;
728
729 while (count > 0) {
730 int this_len = min_t(int, count, PAGE_SIZE);
731
732 if (write && copy_from_user(page, buf, this_len)) {
733 copied = -EFAULT;
734 break;
735 }
736
737 this_len = access_remote_vm(mm, addr, page, this_len, write);
738 if (!this_len) {
739 if (!copied)
740 copied = -EIO;
741 break;
742 }
743
744 if (!write && copy_to_user(buf, page, this_len)) {
745 copied = -EFAULT;
746 break;
747 }
748
749 buf += this_len;
750 addr += this_len;
751 copied += this_len;
752 count -= this_len;
753 }
754 *ppos = addr;
755
756 mmput(mm);
757 free:
758 free_page((unsigned long) page);
759 return copied;
760 }
761
762 static ssize_t mem_read(struct file *file, char __user *buf,
763 size_t count, loff_t *ppos)
764 {
765 return mem_rw(file, buf, count, ppos, 0);
766 }
767
768 static ssize_t mem_write(struct file *file, const char __user *buf,
769 size_t count, loff_t *ppos)
770 {
771 return mem_rw(file, (char __user*)buf, count, ppos, 1);
772 }
773
774 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
775 {
776 switch (orig) {
777 case 0:
778 file->f_pos = offset;
779 break;
780 case 1:
781 file->f_pos += offset;
782 break;
783 default:
784 return -EINVAL;
785 }
786 force_successful_syscall_return();
787 return file->f_pos;
788 }
789
790 static int mem_release(struct inode *inode, struct file *file)
791 {
792 struct mm_struct *mm = file->private_data;
793 if (mm)
794 mmdrop(mm);
795 return 0;
796 }
797
798 static const struct file_operations proc_mem_operations = {
799 .llseek = mem_lseek,
800 .read = mem_read,
801 .write = mem_write,
802 .open = mem_open,
803 .release = mem_release,
804 };
805
806 static int environ_open(struct inode *inode, struct file *file)
807 {
808 return __mem_open(inode, file, PTRACE_MODE_READ);
809 }
810
811 static ssize_t environ_read(struct file *file, char __user *buf,
812 size_t count, loff_t *ppos)
813 {
814 char *page;
815 unsigned long src = *ppos;
816 int ret = 0;
817 struct mm_struct *mm = file->private_data;
818
819 if (!mm)
820 return 0;
821
822 page = (char *)__get_free_page(GFP_TEMPORARY);
823 if (!page)
824 return -ENOMEM;
825
826 ret = 0;
827 if (!atomic_inc_not_zero(&mm->mm_users))
828 goto free;
829 while (count > 0) {
830 int this_len, retval, max_len;
831
832 this_len = mm->env_end - (mm->env_start + src);
833
834 if (this_len <= 0)
835 break;
836
837 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
838 this_len = (this_len > max_len) ? max_len : this_len;
839
840 retval = access_remote_vm(mm, (mm->env_start + src),
841 page, this_len, 0);
842
843 if (retval <= 0) {
844 ret = retval;
845 break;
846 }
847
848 if (copy_to_user(buf, page, retval)) {
849 ret = -EFAULT;
850 break;
851 }
852
853 ret += retval;
854 src += retval;
855 buf += retval;
856 count -= retval;
857 }
858 *ppos = src;
859 mmput(mm);
860
861 free:
862 free_page((unsigned long) page);
863 return ret;
864 }
865
866 static const struct file_operations proc_environ_operations = {
867 .open = environ_open,
868 .read = environ_read,
869 .llseek = generic_file_llseek,
870 .release = mem_release,
871 };
872
873 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
874 size_t count, loff_t *ppos)
875 {
876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 char buffer[PROC_NUMBUF];
878 size_t len;
879 int oom_adjust = OOM_DISABLE;
880 unsigned long flags;
881
882 if (!task)
883 return -ESRCH;
884
885 if (lock_task_sighand(task, &flags)) {
886 oom_adjust = task->signal->oom_adj;
887 unlock_task_sighand(task, &flags);
888 }
889
890 put_task_struct(task);
891
892 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
893
894 return simple_read_from_buffer(buf, count, ppos, buffer, len);
895 }
896
897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
898 size_t count, loff_t *ppos)
899 {
900 struct task_struct *task;
901 char buffer[PROC_NUMBUF];
902 int oom_adjust;
903 unsigned long flags;
904 int err;
905
906 memset(buffer, 0, sizeof(buffer));
907 if (count > sizeof(buffer) - 1)
908 count = sizeof(buffer) - 1;
909 if (copy_from_user(buffer, buf, count)) {
910 err = -EFAULT;
911 goto out;
912 }
913
914 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
915 if (err)
916 goto out;
917 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
918 oom_adjust != OOM_DISABLE) {
919 err = -EINVAL;
920 goto out;
921 }
922
923 task = get_proc_task(file->f_path.dentry->d_inode);
924 if (!task) {
925 err = -ESRCH;
926 goto out;
927 }
928
929 task_lock(task);
930 if (!task->mm) {
931 err = -EINVAL;
932 goto err_task_lock;
933 }
934
935 if (!lock_task_sighand(task, &flags)) {
936 err = -ESRCH;
937 goto err_task_lock;
938 }
939
940 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
941 err = -EACCES;
942 goto err_sighand;
943 }
944
945 /*
946 * Warn that /proc/pid/oom_adj is deprecated, see
947 * Documentation/feature-removal-schedule.txt.
948 */
949 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
950 current->comm, task_pid_nr(current), task_pid_nr(task),
951 task_pid_nr(task));
952 task->signal->oom_adj = oom_adjust;
953 /*
954 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
955 * value is always attainable.
956 */
957 if (task->signal->oom_adj == OOM_ADJUST_MAX)
958 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
959 else
960 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
961 -OOM_DISABLE;
962 trace_oom_score_adj_update(task);
963 err_sighand:
964 unlock_task_sighand(task, &flags);
965 err_task_lock:
966 task_unlock(task);
967 put_task_struct(task);
968 out:
969 return err < 0 ? err : count;
970 }
971
972 static const struct file_operations proc_oom_adjust_operations = {
973 .read = oom_adjust_read,
974 .write = oom_adjust_write,
975 .llseek = generic_file_llseek,
976 };
977
978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
979 size_t count, loff_t *ppos)
980 {
981 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
982 char buffer[PROC_NUMBUF];
983 int oom_score_adj = OOM_SCORE_ADJ_MIN;
984 unsigned long flags;
985 size_t len;
986
987 if (!task)
988 return -ESRCH;
989 if (lock_task_sighand(task, &flags)) {
990 oom_score_adj = task->signal->oom_score_adj;
991 unlock_task_sighand(task, &flags);
992 }
993 put_task_struct(task);
994 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
995 return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997
998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
999 size_t count, loff_t *ppos)
1000 {
1001 struct task_struct *task;
1002 char buffer[PROC_NUMBUF];
1003 unsigned long flags;
1004 int oom_score_adj;
1005 int err;
1006
1007 memset(buffer, 0, sizeof(buffer));
1008 if (count > sizeof(buffer) - 1)
1009 count = sizeof(buffer) - 1;
1010 if (copy_from_user(buffer, buf, count)) {
1011 err = -EFAULT;
1012 goto out;
1013 }
1014
1015 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016 if (err)
1017 goto out;
1018 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 task = get_proc_task(file->f_path.dentry->d_inode);
1025 if (!task) {
1026 err = -ESRCH;
1027 goto out;
1028 }
1029
1030 task_lock(task);
1031 if (!task->mm) {
1032 err = -EINVAL;
1033 goto err_task_lock;
1034 }
1035
1036 if (!lock_task_sighand(task, &flags)) {
1037 err = -ESRCH;
1038 goto err_task_lock;
1039 }
1040
1041 if (oom_score_adj < task->signal->oom_score_adj_min &&
1042 !capable(CAP_SYS_RESOURCE)) {
1043 err = -EACCES;
1044 goto err_sighand;
1045 }
1046
1047 task->signal->oom_score_adj = oom_score_adj;
1048 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049 task->signal->oom_score_adj_min = oom_score_adj;
1050 trace_oom_score_adj_update(task);
1051 /*
1052 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053 * always attainable.
1054 */
1055 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056 task->signal->oom_adj = OOM_DISABLE;
1057 else
1058 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059 OOM_SCORE_ADJ_MAX;
1060 err_sighand:
1061 unlock_task_sighand(task, &flags);
1062 err_task_lock:
1063 task_unlock(task);
1064 put_task_struct(task);
1065 out:
1066 return err < 0 ? err : count;
1067 }
1068
1069 static const struct file_operations proc_oom_score_adj_operations = {
1070 .read = oom_score_adj_read,
1071 .write = oom_score_adj_write,
1072 .llseek = default_llseek,
1073 };
1074
1075 #ifdef CONFIG_AUDITSYSCALL
1076 #define TMPBUFLEN 21
1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078 size_t count, loff_t *ppos)
1079 {
1080 struct inode * inode = file->f_path.dentry->d_inode;
1081 struct task_struct *task = get_proc_task(inode);
1082 ssize_t length;
1083 char tmpbuf[TMPBUFLEN];
1084
1085 if (!task)
1086 return -ESRCH;
1087 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088 audit_get_loginuid(task));
1089 put_task_struct(task);
1090 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091 }
1092
1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094 size_t count, loff_t *ppos)
1095 {
1096 struct inode * inode = file->f_path.dentry->d_inode;
1097 char *page, *tmp;
1098 ssize_t length;
1099 uid_t loginuid;
1100
1101 rcu_read_lock();
1102 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103 rcu_read_unlock();
1104 return -EPERM;
1105 }
1106 rcu_read_unlock();
1107
1108 if (count >= PAGE_SIZE)
1109 count = PAGE_SIZE - 1;
1110
1111 if (*ppos != 0) {
1112 /* No partial writes. */
1113 return -EINVAL;
1114 }
1115 page = (char*)__get_free_page(GFP_TEMPORARY);
1116 if (!page)
1117 return -ENOMEM;
1118 length = -EFAULT;
1119 if (copy_from_user(page, buf, count))
1120 goto out_free_page;
1121
1122 page[count] = '\0';
1123 loginuid = simple_strtoul(page, &tmp, 10);
1124 if (tmp == page) {
1125 length = -EINVAL;
1126 goto out_free_page;
1127
1128 }
1129 length = audit_set_loginuid(loginuid);
1130 if (likely(length == 0))
1131 length = count;
1132
1133 out_free_page:
1134 free_page((unsigned long) page);
1135 return length;
1136 }
1137
1138 static const struct file_operations proc_loginuid_operations = {
1139 .read = proc_loginuid_read,
1140 .write = proc_loginuid_write,
1141 .llseek = generic_file_llseek,
1142 };
1143
1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145 size_t count, loff_t *ppos)
1146 {
1147 struct inode * inode = file->f_path.dentry->d_inode;
1148 struct task_struct *task = get_proc_task(inode);
1149 ssize_t length;
1150 char tmpbuf[TMPBUFLEN];
1151
1152 if (!task)
1153 return -ESRCH;
1154 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155 audit_get_sessionid(task));
1156 put_task_struct(task);
1157 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158 }
1159
1160 static const struct file_operations proc_sessionid_operations = {
1161 .read = proc_sessionid_read,
1162 .llseek = generic_file_llseek,
1163 };
1164 #endif
1165
1166 #ifdef CONFIG_FAULT_INJECTION
1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171 char buffer[PROC_NUMBUF];
1172 size_t len;
1173 int make_it_fail;
1174
1175 if (!task)
1176 return -ESRCH;
1177 make_it_fail = task->make_it_fail;
1178 put_task_struct(task);
1179
1180 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181
1182 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 }
1184
1185 static ssize_t proc_fault_inject_write(struct file * file,
1186 const char __user * buf, size_t count, loff_t *ppos)
1187 {
1188 struct task_struct *task;
1189 char buffer[PROC_NUMBUF], *end;
1190 int make_it_fail;
1191
1192 if (!capable(CAP_SYS_RESOURCE))
1193 return -EPERM;
1194 memset(buffer, 0, sizeof(buffer));
1195 if (count > sizeof(buffer) - 1)
1196 count = sizeof(buffer) - 1;
1197 if (copy_from_user(buffer, buf, count))
1198 return -EFAULT;
1199 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200 if (*end)
1201 return -EINVAL;
1202 task = get_proc_task(file->f_dentry->d_inode);
1203 if (!task)
1204 return -ESRCH;
1205 task->make_it_fail = make_it_fail;
1206 put_task_struct(task);
1207
1208 return count;
1209 }
1210
1211 static const struct file_operations proc_fault_inject_operations = {
1212 .read = proc_fault_inject_read,
1213 .write = proc_fault_inject_write,
1214 .llseek = generic_file_llseek,
1215 };
1216 #endif
1217
1218
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * Print out various scheduling related per-task fields:
1222 */
1223 static int sched_show(struct seq_file *m, void *v)
1224 {
1225 struct inode *inode = m->private;
1226 struct task_struct *p;
1227
1228 p = get_proc_task(inode);
1229 if (!p)
1230 return -ESRCH;
1231 proc_sched_show_task(p, m);
1232
1233 put_task_struct(p);
1234
1235 return 0;
1236 }
1237
1238 static ssize_t
1239 sched_write(struct file *file, const char __user *buf,
1240 size_t count, loff_t *offset)
1241 {
1242 struct inode *inode = file->f_path.dentry->d_inode;
1243 struct task_struct *p;
1244
1245 p = get_proc_task(inode);
1246 if (!p)
1247 return -ESRCH;
1248 proc_sched_set_task(p);
1249
1250 put_task_struct(p);
1251
1252 return count;
1253 }
1254
1255 static int sched_open(struct inode *inode, struct file *filp)
1256 {
1257 return single_open(filp, sched_show, inode);
1258 }
1259
1260 static const struct file_operations proc_pid_sched_operations = {
1261 .open = sched_open,
1262 .read = seq_read,
1263 .write = sched_write,
1264 .llseek = seq_lseek,
1265 .release = single_release,
1266 };
1267
1268 #endif
1269
1270 #ifdef CONFIG_SCHED_AUTOGROUP
1271 /*
1272 * Print out autogroup related information:
1273 */
1274 static int sched_autogroup_show(struct seq_file *m, void *v)
1275 {
1276 struct inode *inode = m->private;
1277 struct task_struct *p;
1278
1279 p = get_proc_task(inode);
1280 if (!p)
1281 return -ESRCH;
1282 proc_sched_autogroup_show_task(p, m);
1283
1284 put_task_struct(p);
1285
1286 return 0;
1287 }
1288
1289 static ssize_t
1290 sched_autogroup_write(struct file *file, const char __user *buf,
1291 size_t count, loff_t *offset)
1292 {
1293 struct inode *inode = file->f_path.dentry->d_inode;
1294 struct task_struct *p;
1295 char buffer[PROC_NUMBUF];
1296 int nice;
1297 int err;
1298
1299 memset(buffer, 0, sizeof(buffer));
1300 if (count > sizeof(buffer) - 1)
1301 count = sizeof(buffer) - 1;
1302 if (copy_from_user(buffer, buf, count))
1303 return -EFAULT;
1304
1305 err = kstrtoint(strstrip(buffer), 0, &nice);
1306 if (err < 0)
1307 return err;
1308
1309 p = get_proc_task(inode);
1310 if (!p)
1311 return -ESRCH;
1312
1313 err = proc_sched_autogroup_set_nice(p, nice);
1314 if (err)
1315 count = err;
1316
1317 put_task_struct(p);
1318
1319 return count;
1320 }
1321
1322 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323 {
1324 int ret;
1325
1326 ret = single_open(filp, sched_autogroup_show, NULL);
1327 if (!ret) {
1328 struct seq_file *m = filp->private_data;
1329
1330 m->private = inode;
1331 }
1332 return ret;
1333 }
1334
1335 static const struct file_operations proc_pid_sched_autogroup_operations = {
1336 .open = sched_autogroup_open,
1337 .read = seq_read,
1338 .write = sched_autogroup_write,
1339 .llseek = seq_lseek,
1340 .release = single_release,
1341 };
1342
1343 #endif /* CONFIG_SCHED_AUTOGROUP */
1344
1345 static ssize_t comm_write(struct file *file, const char __user *buf,
1346 size_t count, loff_t *offset)
1347 {
1348 struct inode *inode = file->f_path.dentry->d_inode;
1349 struct task_struct *p;
1350 char buffer[TASK_COMM_LEN];
1351
1352 memset(buffer, 0, sizeof(buffer));
1353 if (count > sizeof(buffer) - 1)
1354 count = sizeof(buffer) - 1;
1355 if (copy_from_user(buffer, buf, count))
1356 return -EFAULT;
1357
1358 p = get_proc_task(inode);
1359 if (!p)
1360 return -ESRCH;
1361
1362 if (same_thread_group(current, p))
1363 set_task_comm(p, buffer);
1364 else
1365 count = -EINVAL;
1366
1367 put_task_struct(p);
1368
1369 return count;
1370 }
1371
1372 static int comm_show(struct seq_file *m, void *v)
1373 {
1374 struct inode *inode = m->private;
1375 struct task_struct *p;
1376
1377 p = get_proc_task(inode);
1378 if (!p)
1379 return -ESRCH;
1380
1381 task_lock(p);
1382 seq_printf(m, "%s\n", p->comm);
1383 task_unlock(p);
1384
1385 put_task_struct(p);
1386
1387 return 0;
1388 }
1389
1390 static int comm_open(struct inode *inode, struct file *filp)
1391 {
1392 return single_open(filp, comm_show, inode);
1393 }
1394
1395 static const struct file_operations proc_pid_set_comm_operations = {
1396 .open = comm_open,
1397 .read = seq_read,
1398 .write = comm_write,
1399 .llseek = seq_lseek,
1400 .release = single_release,
1401 };
1402
1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404 {
1405 struct task_struct *task;
1406 struct mm_struct *mm;
1407 struct file *exe_file;
1408
1409 task = get_proc_task(dentry->d_inode);
1410 if (!task)
1411 return -ENOENT;
1412 mm = get_task_mm(task);
1413 put_task_struct(task);
1414 if (!mm)
1415 return -ENOENT;
1416 exe_file = get_mm_exe_file(mm);
1417 mmput(mm);
1418 if (exe_file) {
1419 *exe_path = exe_file->f_path;
1420 path_get(&exe_file->f_path);
1421 fput(exe_file);
1422 return 0;
1423 } else
1424 return -ENOENT;
1425 }
1426
1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1428 {
1429 struct inode *inode = dentry->d_inode;
1430 int error = -EACCES;
1431
1432 /* We don't need a base pointer in the /proc filesystem */
1433 path_put(&nd->path);
1434
1435 /* Are we allowed to snoop on the tasks file descriptors? */
1436 if (!proc_fd_access_allowed(inode))
1437 goto out;
1438
1439 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1440 out:
1441 return ERR_PTR(error);
1442 }
1443
1444 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1445 {
1446 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1447 char *pathname;
1448 int len;
1449
1450 if (!tmp)
1451 return -ENOMEM;
1452
1453 pathname = d_path(path, tmp, PAGE_SIZE);
1454 len = PTR_ERR(pathname);
1455 if (IS_ERR(pathname))
1456 goto out;
1457 len = tmp + PAGE_SIZE - 1 - pathname;
1458
1459 if (len > buflen)
1460 len = buflen;
1461 if (copy_to_user(buffer, pathname, len))
1462 len = -EFAULT;
1463 out:
1464 free_page((unsigned long)tmp);
1465 return len;
1466 }
1467
1468 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1469 {
1470 int error = -EACCES;
1471 struct inode *inode = dentry->d_inode;
1472 struct path path;
1473
1474 /* Are we allowed to snoop on the tasks file descriptors? */
1475 if (!proc_fd_access_allowed(inode))
1476 goto out;
1477
1478 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1479 if (error)
1480 goto out;
1481
1482 error = do_proc_readlink(&path, buffer, buflen);
1483 path_put(&path);
1484 out:
1485 return error;
1486 }
1487
1488 static const struct inode_operations proc_pid_link_inode_operations = {
1489 .readlink = proc_pid_readlink,
1490 .follow_link = proc_pid_follow_link,
1491 .setattr = proc_setattr,
1492 };
1493
1494
1495 /* building an inode */
1496
1497 static int task_dumpable(struct task_struct *task)
1498 {
1499 int dumpable = 0;
1500 struct mm_struct *mm;
1501
1502 task_lock(task);
1503 mm = task->mm;
1504 if (mm)
1505 dumpable = get_dumpable(mm);
1506 task_unlock(task);
1507 if(dumpable == 1)
1508 return 1;
1509 return 0;
1510 }
1511
1512 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1513 {
1514 struct inode * inode;
1515 struct proc_inode *ei;
1516 const struct cred *cred;
1517
1518 /* We need a new inode */
1519
1520 inode = new_inode(sb);
1521 if (!inode)
1522 goto out;
1523
1524 /* Common stuff */
1525 ei = PROC_I(inode);
1526 inode->i_ino = get_next_ino();
1527 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1528 inode->i_op = &proc_def_inode_operations;
1529
1530 /*
1531 * grab the reference to task.
1532 */
1533 ei->pid = get_task_pid(task, PIDTYPE_PID);
1534 if (!ei->pid)
1535 goto out_unlock;
1536
1537 if (task_dumpable(task)) {
1538 rcu_read_lock();
1539 cred = __task_cred(task);
1540 inode->i_uid = cred->euid;
1541 inode->i_gid = cred->egid;
1542 rcu_read_unlock();
1543 }
1544 security_task_to_inode(task, inode);
1545
1546 out:
1547 return inode;
1548
1549 out_unlock:
1550 iput(inode);
1551 return NULL;
1552 }
1553
1554 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1555 {
1556 struct inode *inode = dentry->d_inode;
1557 struct task_struct *task;
1558 const struct cred *cred;
1559 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1560
1561 generic_fillattr(inode, stat);
1562
1563 rcu_read_lock();
1564 stat->uid = GLOBAL_ROOT_UID;
1565 stat->gid = GLOBAL_ROOT_GID;
1566 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1567 if (task) {
1568 if (!has_pid_permissions(pid, task, 2)) {
1569 rcu_read_unlock();
1570 /*
1571 * This doesn't prevent learning whether PID exists,
1572 * it only makes getattr() consistent with readdir().
1573 */
1574 return -ENOENT;
1575 }
1576 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1577 task_dumpable(task)) {
1578 cred = __task_cred(task);
1579 stat->uid = cred->euid;
1580 stat->gid = cred->egid;
1581 }
1582 }
1583 rcu_read_unlock();
1584 return 0;
1585 }
1586
1587 /* dentry stuff */
1588
1589 /*
1590 * Exceptional case: normally we are not allowed to unhash a busy
1591 * directory. In this case, however, we can do it - no aliasing problems
1592 * due to the way we treat inodes.
1593 *
1594 * Rewrite the inode's ownerships here because the owning task may have
1595 * performed a setuid(), etc.
1596 *
1597 * Before the /proc/pid/status file was created the only way to read
1598 * the effective uid of a /process was to stat /proc/pid. Reading
1599 * /proc/pid/status is slow enough that procps and other packages
1600 * kept stating /proc/pid. To keep the rules in /proc simple I have
1601 * made this apply to all per process world readable and executable
1602 * directories.
1603 */
1604 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1605 {
1606 struct inode *inode;
1607 struct task_struct *task;
1608 const struct cred *cred;
1609
1610 if (nd && nd->flags & LOOKUP_RCU)
1611 return -ECHILD;
1612
1613 inode = dentry->d_inode;
1614 task = get_proc_task(inode);
1615
1616 if (task) {
1617 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1618 task_dumpable(task)) {
1619 rcu_read_lock();
1620 cred = __task_cred(task);
1621 inode->i_uid = cred->euid;
1622 inode->i_gid = cred->egid;
1623 rcu_read_unlock();
1624 } else {
1625 inode->i_uid = GLOBAL_ROOT_UID;
1626 inode->i_gid = GLOBAL_ROOT_GID;
1627 }
1628 inode->i_mode &= ~(S_ISUID | S_ISGID);
1629 security_task_to_inode(task, inode);
1630 put_task_struct(task);
1631 return 1;
1632 }
1633 d_drop(dentry);
1634 return 0;
1635 }
1636
1637 static int pid_delete_dentry(const struct dentry * dentry)
1638 {
1639 /* Is the task we represent dead?
1640 * If so, then don't put the dentry on the lru list,
1641 * kill it immediately.
1642 */
1643 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1644 }
1645
1646 const struct dentry_operations pid_dentry_operations =
1647 {
1648 .d_revalidate = pid_revalidate,
1649 .d_delete = pid_delete_dentry,
1650 };
1651
1652 /* Lookups */
1653
1654 /*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache. This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1667 const char *name, int len,
1668 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669 {
1670 struct dentry *child, *dir = filp->f_path.dentry;
1671 struct inode *inode;
1672 struct qstr qname;
1673 ino_t ino = 0;
1674 unsigned type = DT_UNKNOWN;
1675
1676 qname.name = name;
1677 qname.len = len;
1678 qname.hash = full_name_hash(name, len);
1679
1680 child = d_lookup(dir, &qname);
1681 if (!child) {
1682 struct dentry *new;
1683 new = d_alloc(dir, &qname);
1684 if (new) {
1685 child = instantiate(dir->d_inode, new, task, ptr);
1686 if (child)
1687 dput(new);
1688 else
1689 child = new;
1690 }
1691 }
1692 if (!child || IS_ERR(child) || !child->d_inode)
1693 goto end_instantiate;
1694 inode = child->d_inode;
1695 if (inode) {
1696 ino = inode->i_ino;
1697 type = inode->i_mode >> 12;
1698 }
1699 dput(child);
1700 end_instantiate:
1701 if (!ino)
1702 ino = find_inode_number(dir, &qname);
1703 if (!ino)
1704 ino = 1;
1705 return filldir(dirent, name, len, filp->f_pos, ino, type);
1706 }
1707
1708 static unsigned name_to_int(struct dentry *dentry)
1709 {
1710 const char *name = dentry->d_name.name;
1711 int len = dentry->d_name.len;
1712 unsigned n = 0;
1713
1714 if (len > 1 && *name == '0')
1715 goto out;
1716 while (len-- > 0) {
1717 unsigned c = *name++ - '0';
1718 if (c > 9)
1719 goto out;
1720 if (n >= (~0U-9)/10)
1721 goto out;
1722 n *= 10;
1723 n += c;
1724 }
1725 return n;
1726 out:
1727 return ~0U;
1728 }
1729
1730 #define PROC_FDINFO_MAX 64
1731
1732 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1733 {
1734 struct task_struct *task = get_proc_task(inode);
1735 struct files_struct *files = NULL;
1736 struct file *file;
1737 int fd = proc_fd(inode);
1738
1739 if (task) {
1740 files = get_files_struct(task);
1741 put_task_struct(task);
1742 }
1743 if (files) {
1744 /*
1745 * We are not taking a ref to the file structure, so we must
1746 * hold ->file_lock.
1747 */
1748 spin_lock(&files->file_lock);
1749 file = fcheck_files(files, fd);
1750 if (file) {
1751 unsigned int f_flags;
1752 struct fdtable *fdt;
1753
1754 fdt = files_fdtable(files);
1755 f_flags = file->f_flags & ~O_CLOEXEC;
1756 if (close_on_exec(fd, fdt))
1757 f_flags |= O_CLOEXEC;
1758
1759 if (path) {
1760 *path = file->f_path;
1761 path_get(&file->f_path);
1762 }
1763 if (info)
1764 snprintf(info, PROC_FDINFO_MAX,
1765 "pos:\t%lli\n"
1766 "flags:\t0%o\n",
1767 (long long) file->f_pos,
1768 f_flags);
1769 spin_unlock(&files->file_lock);
1770 put_files_struct(files);
1771 return 0;
1772 }
1773 spin_unlock(&files->file_lock);
1774 put_files_struct(files);
1775 }
1776 return -ENOENT;
1777 }
1778
1779 static int proc_fd_link(struct dentry *dentry, struct path *path)
1780 {
1781 return proc_fd_info(dentry->d_inode, path, NULL);
1782 }
1783
1784 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1785 {
1786 struct inode *inode;
1787 struct task_struct *task;
1788 int fd;
1789 struct files_struct *files;
1790 const struct cred *cred;
1791
1792 if (nd && nd->flags & LOOKUP_RCU)
1793 return -ECHILD;
1794
1795 inode = dentry->d_inode;
1796 task = get_proc_task(inode);
1797 fd = proc_fd(inode);
1798
1799 if (task) {
1800 files = get_files_struct(task);
1801 if (files) {
1802 struct file *file;
1803 rcu_read_lock();
1804 file = fcheck_files(files, fd);
1805 if (file) {
1806 unsigned f_mode = file->f_mode;
1807
1808 rcu_read_unlock();
1809 put_files_struct(files);
1810
1811 if (task_dumpable(task)) {
1812 rcu_read_lock();
1813 cred = __task_cred(task);
1814 inode->i_uid = cred->euid;
1815 inode->i_gid = cred->egid;
1816 rcu_read_unlock();
1817 } else {
1818 inode->i_uid = GLOBAL_ROOT_UID;
1819 inode->i_gid = GLOBAL_ROOT_GID;
1820 }
1821
1822 if (S_ISLNK(inode->i_mode)) {
1823 unsigned i_mode = S_IFLNK;
1824 if (f_mode & FMODE_READ)
1825 i_mode |= S_IRUSR | S_IXUSR;
1826 if (f_mode & FMODE_WRITE)
1827 i_mode |= S_IWUSR | S_IXUSR;
1828 inode->i_mode = i_mode;
1829 }
1830
1831 security_task_to_inode(task, inode);
1832 put_task_struct(task);
1833 return 1;
1834 }
1835 rcu_read_unlock();
1836 put_files_struct(files);
1837 }
1838 put_task_struct(task);
1839 }
1840 d_drop(dentry);
1841 return 0;
1842 }
1843
1844 static const struct dentry_operations tid_fd_dentry_operations =
1845 {
1846 .d_revalidate = tid_fd_revalidate,
1847 .d_delete = pid_delete_dentry,
1848 };
1849
1850 static struct dentry *proc_fd_instantiate(struct inode *dir,
1851 struct dentry *dentry, struct task_struct *task, const void *ptr)
1852 {
1853 unsigned fd = (unsigned long)ptr;
1854 struct inode *inode;
1855 struct proc_inode *ei;
1856 struct dentry *error = ERR_PTR(-ENOENT);
1857
1858 inode = proc_pid_make_inode(dir->i_sb, task);
1859 if (!inode)
1860 goto out;
1861 ei = PROC_I(inode);
1862 ei->fd = fd;
1863
1864 inode->i_mode = S_IFLNK;
1865 inode->i_op = &proc_pid_link_inode_operations;
1866 inode->i_size = 64;
1867 ei->op.proc_get_link = proc_fd_link;
1868 d_set_d_op(dentry, &tid_fd_dentry_operations);
1869 d_add(dentry, inode);
1870 /* Close the race of the process dying before we return the dentry */
1871 if (tid_fd_revalidate(dentry, NULL))
1872 error = NULL;
1873
1874 out:
1875 return error;
1876 }
1877
1878 static struct dentry *proc_lookupfd_common(struct inode *dir,
1879 struct dentry *dentry,
1880 instantiate_t instantiate)
1881 {
1882 struct task_struct *task = get_proc_task(dir);
1883 unsigned fd = name_to_int(dentry);
1884 struct dentry *result = ERR_PTR(-ENOENT);
1885
1886 if (!task)
1887 goto out_no_task;
1888 if (fd == ~0U)
1889 goto out;
1890
1891 result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1892 out:
1893 put_task_struct(task);
1894 out_no_task:
1895 return result;
1896 }
1897
1898 static int proc_readfd_common(struct file * filp, void * dirent,
1899 filldir_t filldir, instantiate_t instantiate)
1900 {
1901 struct dentry *dentry = filp->f_path.dentry;
1902 struct inode *inode = dentry->d_inode;
1903 struct task_struct *p = get_proc_task(inode);
1904 unsigned int fd, ino;
1905 int retval;
1906 struct files_struct * files;
1907
1908 retval = -ENOENT;
1909 if (!p)
1910 goto out_no_task;
1911 retval = 0;
1912
1913 fd = filp->f_pos;
1914 switch (fd) {
1915 case 0:
1916 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1917 goto out;
1918 filp->f_pos++;
1919 case 1:
1920 ino = parent_ino(dentry);
1921 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1922 goto out;
1923 filp->f_pos++;
1924 default:
1925 files = get_files_struct(p);
1926 if (!files)
1927 goto out;
1928 rcu_read_lock();
1929 for (fd = filp->f_pos-2;
1930 fd < files_fdtable(files)->max_fds;
1931 fd++, filp->f_pos++) {
1932 char name[PROC_NUMBUF];
1933 int len;
1934 int rv;
1935
1936 if (!fcheck_files(files, fd))
1937 continue;
1938 rcu_read_unlock();
1939
1940 len = snprintf(name, sizeof(name), "%d", fd);
1941 rv = proc_fill_cache(filp, dirent, filldir,
1942 name, len, instantiate, p,
1943 (void *)(unsigned long)fd);
1944 if (rv < 0)
1945 goto out_fd_loop;
1946 rcu_read_lock();
1947 }
1948 rcu_read_unlock();
1949 out_fd_loop:
1950 put_files_struct(files);
1951 }
1952 out:
1953 put_task_struct(p);
1954 out_no_task:
1955 return retval;
1956 }
1957
1958 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1959 struct nameidata *nd)
1960 {
1961 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1962 }
1963
1964 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1965 {
1966 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1967 }
1968
1969 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1970 size_t len, loff_t *ppos)
1971 {
1972 char tmp[PROC_FDINFO_MAX];
1973 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1974 if (!err)
1975 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1976 return err;
1977 }
1978
1979 static const struct file_operations proc_fdinfo_file_operations = {
1980 .open = nonseekable_open,
1981 .read = proc_fdinfo_read,
1982 .llseek = no_llseek,
1983 };
1984
1985 static const struct file_operations proc_fd_operations = {
1986 .read = generic_read_dir,
1987 .readdir = proc_readfd,
1988 .llseek = default_llseek,
1989 };
1990
1991 #ifdef CONFIG_CHECKPOINT_RESTORE
1992
1993 /*
1994 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1995 * which represent vma start and end addresses.
1996 */
1997 static int dname_to_vma_addr(struct dentry *dentry,
1998 unsigned long *start, unsigned long *end)
1999 {
2000 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2001 return -EINVAL;
2002
2003 return 0;
2004 }
2005
2006 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2007 {
2008 unsigned long vm_start, vm_end;
2009 bool exact_vma_exists = false;
2010 struct mm_struct *mm = NULL;
2011 struct task_struct *task;
2012 const struct cred *cred;
2013 struct inode *inode;
2014 int status = 0;
2015
2016 if (nd && nd->flags & LOOKUP_RCU)
2017 return -ECHILD;
2018
2019 if (!capable(CAP_SYS_ADMIN)) {
2020 status = -EACCES;
2021 goto out_notask;
2022 }
2023
2024 inode = dentry->d_inode;
2025 task = get_proc_task(inode);
2026 if (!task)
2027 goto out_notask;
2028
2029 mm = mm_access(task, PTRACE_MODE_READ);
2030 if (IS_ERR_OR_NULL(mm))
2031 goto out;
2032
2033 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2034 down_read(&mm->mmap_sem);
2035 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2036 up_read(&mm->mmap_sem);
2037 }
2038
2039 mmput(mm);
2040
2041 if (exact_vma_exists) {
2042 if (task_dumpable(task)) {
2043 rcu_read_lock();
2044 cred = __task_cred(task);
2045 inode->i_uid = cred->euid;
2046 inode->i_gid = cred->egid;
2047 rcu_read_unlock();
2048 } else {
2049 inode->i_uid = GLOBAL_ROOT_UID;
2050 inode->i_gid = GLOBAL_ROOT_GID;
2051 }
2052 security_task_to_inode(task, inode);
2053 status = 1;
2054 }
2055
2056 out:
2057 put_task_struct(task);
2058
2059 out_notask:
2060 if (status <= 0)
2061 d_drop(dentry);
2062
2063 return status;
2064 }
2065
2066 static const struct dentry_operations tid_map_files_dentry_operations = {
2067 .d_revalidate = map_files_d_revalidate,
2068 .d_delete = pid_delete_dentry,
2069 };
2070
2071 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2072 {
2073 unsigned long vm_start, vm_end;
2074 struct vm_area_struct *vma;
2075 struct task_struct *task;
2076 struct mm_struct *mm;
2077 int rc;
2078
2079 rc = -ENOENT;
2080 task = get_proc_task(dentry->d_inode);
2081 if (!task)
2082 goto out;
2083
2084 mm = get_task_mm(task);
2085 put_task_struct(task);
2086 if (!mm)
2087 goto out;
2088
2089 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2090 if (rc)
2091 goto out_mmput;
2092
2093 down_read(&mm->mmap_sem);
2094 vma = find_exact_vma(mm, vm_start, vm_end);
2095 if (vma && vma->vm_file) {
2096 *path = vma->vm_file->f_path;
2097 path_get(path);
2098 rc = 0;
2099 }
2100 up_read(&mm->mmap_sem);
2101
2102 out_mmput:
2103 mmput(mm);
2104 out:
2105 return rc;
2106 }
2107
2108 struct map_files_info {
2109 struct file *file;
2110 unsigned long len;
2111 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2112 };
2113
2114 static struct dentry *
2115 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2116 struct task_struct *task, const void *ptr)
2117 {
2118 const struct file *file = ptr;
2119 struct proc_inode *ei;
2120 struct inode *inode;
2121
2122 if (!file)
2123 return ERR_PTR(-ENOENT);
2124
2125 inode = proc_pid_make_inode(dir->i_sb, task);
2126 if (!inode)
2127 return ERR_PTR(-ENOENT);
2128
2129 ei = PROC_I(inode);
2130 ei->op.proc_get_link = proc_map_files_get_link;
2131
2132 inode->i_op = &proc_pid_link_inode_operations;
2133 inode->i_size = 64;
2134 inode->i_mode = S_IFLNK;
2135
2136 if (file->f_mode & FMODE_READ)
2137 inode->i_mode |= S_IRUSR;
2138 if (file->f_mode & FMODE_WRITE)
2139 inode->i_mode |= S_IWUSR;
2140
2141 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2142 d_add(dentry, inode);
2143
2144 return NULL;
2145 }
2146
2147 static struct dentry *proc_map_files_lookup(struct inode *dir,
2148 struct dentry *dentry, struct nameidata *nd)
2149 {
2150 unsigned long vm_start, vm_end;
2151 struct vm_area_struct *vma;
2152 struct task_struct *task;
2153 struct dentry *result;
2154 struct mm_struct *mm;
2155
2156 result = ERR_PTR(-EACCES);
2157 if (!capable(CAP_SYS_ADMIN))
2158 goto out;
2159
2160 result = ERR_PTR(-ENOENT);
2161 task = get_proc_task(dir);
2162 if (!task)
2163 goto out;
2164
2165 result = ERR_PTR(-EACCES);
2166 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2167 goto out_put_task;
2168
2169 result = ERR_PTR(-ENOENT);
2170 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2171 goto out_put_task;
2172
2173 mm = get_task_mm(task);
2174 if (!mm)
2175 goto out_put_task;
2176
2177 down_read(&mm->mmap_sem);
2178 vma = find_exact_vma(mm, vm_start, vm_end);
2179 if (!vma)
2180 goto out_no_vma;
2181
2182 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2183
2184 out_no_vma:
2185 up_read(&mm->mmap_sem);
2186 mmput(mm);
2187 out_put_task:
2188 put_task_struct(task);
2189 out:
2190 return result;
2191 }
2192
2193 static const struct inode_operations proc_map_files_inode_operations = {
2194 .lookup = proc_map_files_lookup,
2195 .permission = proc_fd_permission,
2196 .setattr = proc_setattr,
2197 };
2198
2199 static int
2200 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2201 {
2202 struct dentry *dentry = filp->f_path.dentry;
2203 struct inode *inode = dentry->d_inode;
2204 struct vm_area_struct *vma;
2205 struct task_struct *task;
2206 struct mm_struct *mm;
2207 ino_t ino;
2208 int ret;
2209
2210 ret = -EACCES;
2211 if (!capable(CAP_SYS_ADMIN))
2212 goto out;
2213
2214 ret = -ENOENT;
2215 task = get_proc_task(inode);
2216 if (!task)
2217 goto out;
2218
2219 ret = -EACCES;
2220 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2221 goto out_put_task;
2222
2223 ret = 0;
2224 switch (filp->f_pos) {
2225 case 0:
2226 ino = inode->i_ino;
2227 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2228 goto out_put_task;
2229 filp->f_pos++;
2230 case 1:
2231 ino = parent_ino(dentry);
2232 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2233 goto out_put_task;
2234 filp->f_pos++;
2235 default:
2236 {
2237 unsigned long nr_files, pos, i;
2238 struct flex_array *fa = NULL;
2239 struct map_files_info info;
2240 struct map_files_info *p;
2241
2242 mm = get_task_mm(task);
2243 if (!mm)
2244 goto out_put_task;
2245 down_read(&mm->mmap_sem);
2246
2247 nr_files = 0;
2248
2249 /*
2250 * We need two passes here:
2251 *
2252 * 1) Collect vmas of mapped files with mmap_sem taken
2253 * 2) Release mmap_sem and instantiate entries
2254 *
2255 * otherwise we get lockdep complained, since filldir()
2256 * routine might require mmap_sem taken in might_fault().
2257 */
2258
2259 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2260 if (vma->vm_file && ++pos > filp->f_pos)
2261 nr_files++;
2262 }
2263
2264 if (nr_files) {
2265 fa = flex_array_alloc(sizeof(info), nr_files,
2266 GFP_KERNEL);
2267 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2268 GFP_KERNEL)) {
2269 ret = -ENOMEM;
2270 if (fa)
2271 flex_array_free(fa);
2272 up_read(&mm->mmap_sem);
2273 mmput(mm);
2274 goto out_put_task;
2275 }
2276 for (i = 0, vma = mm->mmap, pos = 2; vma;
2277 vma = vma->vm_next) {
2278 if (!vma->vm_file)
2279 continue;
2280 if (++pos <= filp->f_pos)
2281 continue;
2282
2283 get_file(vma->vm_file);
2284 info.file = vma->vm_file;
2285 info.len = snprintf(info.name,
2286 sizeof(info.name), "%lx-%lx",
2287 vma->vm_start, vma->vm_end);
2288 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2289 BUG();
2290 }
2291 }
2292 up_read(&mm->mmap_sem);
2293
2294 for (i = 0; i < nr_files; i++) {
2295 p = flex_array_get(fa, i);
2296 ret = proc_fill_cache(filp, dirent, filldir,
2297 p->name, p->len,
2298 proc_map_files_instantiate,
2299 task, p->file);
2300 if (ret)
2301 break;
2302 filp->f_pos++;
2303 fput(p->file);
2304 }
2305 for (; i < nr_files; i++) {
2306 /*
2307 * In case of error don't forget
2308 * to put rest of file refs.
2309 */
2310 p = flex_array_get(fa, i);
2311 fput(p->file);
2312 }
2313 if (fa)
2314 flex_array_free(fa);
2315 mmput(mm);
2316 }
2317 }
2318
2319 out_put_task:
2320 put_task_struct(task);
2321 out:
2322 return ret;
2323 }
2324
2325 static const struct file_operations proc_map_files_operations = {
2326 .read = generic_read_dir,
2327 .readdir = proc_map_files_readdir,
2328 .llseek = default_llseek,
2329 };
2330
2331 #endif /* CONFIG_CHECKPOINT_RESTORE */
2332
2333 /*
2334 * /proc/pid/fd needs a special permission handler so that a process can still
2335 * access /proc/self/fd after it has executed a setuid().
2336 */
2337 static int proc_fd_permission(struct inode *inode, int mask)
2338 {
2339 int rv = generic_permission(inode, mask);
2340 if (rv == 0)
2341 return 0;
2342 if (task_pid(current) == proc_pid(inode))
2343 rv = 0;
2344 return rv;
2345 }
2346
2347 /*
2348 * proc directories can do almost nothing..
2349 */
2350 static const struct inode_operations proc_fd_inode_operations = {
2351 .lookup = proc_lookupfd,
2352 .permission = proc_fd_permission,
2353 .setattr = proc_setattr,
2354 };
2355
2356 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2357 struct dentry *dentry, struct task_struct *task, const void *ptr)
2358 {
2359 unsigned fd = (unsigned long)ptr;
2360 struct inode *inode;
2361 struct proc_inode *ei;
2362 struct dentry *error = ERR_PTR(-ENOENT);
2363
2364 inode = proc_pid_make_inode(dir->i_sb, task);
2365 if (!inode)
2366 goto out;
2367 ei = PROC_I(inode);
2368 ei->fd = fd;
2369 inode->i_mode = S_IFREG | S_IRUSR;
2370 inode->i_fop = &proc_fdinfo_file_operations;
2371 d_set_d_op(dentry, &tid_fd_dentry_operations);
2372 d_add(dentry, inode);
2373 /* Close the race of the process dying before we return the dentry */
2374 if (tid_fd_revalidate(dentry, NULL))
2375 error = NULL;
2376
2377 out:
2378 return error;
2379 }
2380
2381 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2382 struct dentry *dentry,
2383 struct nameidata *nd)
2384 {
2385 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2386 }
2387
2388 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2389 {
2390 return proc_readfd_common(filp, dirent, filldir,
2391 proc_fdinfo_instantiate);
2392 }
2393
2394 static const struct file_operations proc_fdinfo_operations = {
2395 .read = generic_read_dir,
2396 .readdir = proc_readfdinfo,
2397 .llseek = default_llseek,
2398 };
2399
2400 /*
2401 * proc directories can do almost nothing..
2402 */
2403 static const struct inode_operations proc_fdinfo_inode_operations = {
2404 .lookup = proc_lookupfdinfo,
2405 .setattr = proc_setattr,
2406 };
2407
2408
2409 static struct dentry *proc_pident_instantiate(struct inode *dir,
2410 struct dentry *dentry, struct task_struct *task, const void *ptr)
2411 {
2412 const struct pid_entry *p = ptr;
2413 struct inode *inode;
2414 struct proc_inode *ei;
2415 struct dentry *error = ERR_PTR(-ENOENT);
2416
2417 inode = proc_pid_make_inode(dir->i_sb, task);
2418 if (!inode)
2419 goto out;
2420
2421 ei = PROC_I(inode);
2422 inode->i_mode = p->mode;
2423 if (S_ISDIR(inode->i_mode))
2424 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2425 if (p->iop)
2426 inode->i_op = p->iop;
2427 if (p->fop)
2428 inode->i_fop = p->fop;
2429 ei->op = p->op;
2430 d_set_d_op(dentry, &pid_dentry_operations);
2431 d_add(dentry, inode);
2432 /* Close the race of the process dying before we return the dentry */
2433 if (pid_revalidate(dentry, NULL))
2434 error = NULL;
2435 out:
2436 return error;
2437 }
2438
2439 static struct dentry *proc_pident_lookup(struct inode *dir,
2440 struct dentry *dentry,
2441 const struct pid_entry *ents,
2442 unsigned int nents)
2443 {
2444 struct dentry *error;
2445 struct task_struct *task = get_proc_task(dir);
2446 const struct pid_entry *p, *last;
2447
2448 error = ERR_PTR(-ENOENT);
2449
2450 if (!task)
2451 goto out_no_task;
2452
2453 /*
2454 * Yes, it does not scale. And it should not. Don't add
2455 * new entries into /proc/<tgid>/ without very good reasons.
2456 */
2457 last = &ents[nents - 1];
2458 for (p = ents; p <= last; p++) {
2459 if (p->len != dentry->d_name.len)
2460 continue;
2461 if (!memcmp(dentry->d_name.name, p->name, p->len))
2462 break;
2463 }
2464 if (p > last)
2465 goto out;
2466
2467 error = proc_pident_instantiate(dir, dentry, task, p);
2468 out:
2469 put_task_struct(task);
2470 out_no_task:
2471 return error;
2472 }
2473
2474 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2475 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2476 {
2477 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2478 proc_pident_instantiate, task, p);
2479 }
2480
2481 static int proc_pident_readdir(struct file *filp,
2482 void *dirent, filldir_t filldir,
2483 const struct pid_entry *ents, unsigned int nents)
2484 {
2485 int i;
2486 struct dentry *dentry = filp->f_path.dentry;
2487 struct inode *inode = dentry->d_inode;
2488 struct task_struct *task = get_proc_task(inode);
2489 const struct pid_entry *p, *last;
2490 ino_t ino;
2491 int ret;
2492
2493 ret = -ENOENT;
2494 if (!task)
2495 goto out_no_task;
2496
2497 ret = 0;
2498 i = filp->f_pos;
2499 switch (i) {
2500 case 0:
2501 ino = inode->i_ino;
2502 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2503 goto out;
2504 i++;
2505 filp->f_pos++;
2506 /* fall through */
2507 case 1:
2508 ino = parent_ino(dentry);
2509 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2510 goto out;
2511 i++;
2512 filp->f_pos++;
2513 /* fall through */
2514 default:
2515 i -= 2;
2516 if (i >= nents) {
2517 ret = 1;
2518 goto out;
2519 }
2520 p = ents + i;
2521 last = &ents[nents - 1];
2522 while (p <= last) {
2523 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2524 goto out;
2525 filp->f_pos++;
2526 p++;
2527 }
2528 }
2529
2530 ret = 1;
2531 out:
2532 put_task_struct(task);
2533 out_no_task:
2534 return ret;
2535 }
2536
2537 #ifdef CONFIG_SECURITY
2538 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2539 size_t count, loff_t *ppos)
2540 {
2541 struct inode * inode = file->f_path.dentry->d_inode;
2542 char *p = NULL;
2543 ssize_t length;
2544 struct task_struct *task = get_proc_task(inode);
2545
2546 if (!task)
2547 return -ESRCH;
2548
2549 length = security_getprocattr(task,
2550 (char*)file->f_path.dentry->d_name.name,
2551 &p);
2552 put_task_struct(task);
2553 if (length > 0)
2554 length = simple_read_from_buffer(buf, count, ppos, p, length);
2555 kfree(p);
2556 return length;
2557 }
2558
2559 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2560 size_t count, loff_t *ppos)
2561 {
2562 struct inode * inode = file->f_path.dentry->d_inode;
2563 char *page;
2564 ssize_t length;
2565 struct task_struct *task = get_proc_task(inode);
2566
2567 length = -ESRCH;
2568 if (!task)
2569 goto out_no_task;
2570 if (count > PAGE_SIZE)
2571 count = PAGE_SIZE;
2572
2573 /* No partial writes. */
2574 length = -EINVAL;
2575 if (*ppos != 0)
2576 goto out;
2577
2578 length = -ENOMEM;
2579 page = (char*)__get_free_page(GFP_TEMPORARY);
2580 if (!page)
2581 goto out;
2582
2583 length = -EFAULT;
2584 if (copy_from_user(page, buf, count))
2585 goto out_free;
2586
2587 /* Guard against adverse ptrace interaction */
2588 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2589 if (length < 0)
2590 goto out_free;
2591
2592 length = security_setprocattr(task,
2593 (char*)file->f_path.dentry->d_name.name,
2594 (void*)page, count);
2595 mutex_unlock(&task->signal->cred_guard_mutex);
2596 out_free:
2597 free_page((unsigned long) page);
2598 out:
2599 put_task_struct(task);
2600 out_no_task:
2601 return length;
2602 }
2603
2604 static const struct file_operations proc_pid_attr_operations = {
2605 .read = proc_pid_attr_read,
2606 .write = proc_pid_attr_write,
2607 .llseek = generic_file_llseek,
2608 };
2609
2610 static const struct pid_entry attr_dir_stuff[] = {
2611 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2612 REG("prev", S_IRUGO, proc_pid_attr_operations),
2613 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2614 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2615 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2616 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2617 };
2618
2619 static int proc_attr_dir_readdir(struct file * filp,
2620 void * dirent, filldir_t filldir)
2621 {
2622 return proc_pident_readdir(filp,dirent,filldir,
2623 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2624 }
2625
2626 static const struct file_operations proc_attr_dir_operations = {
2627 .read = generic_read_dir,
2628 .readdir = proc_attr_dir_readdir,
2629 .llseek = default_llseek,
2630 };
2631
2632 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2633 struct dentry *dentry, struct nameidata *nd)
2634 {
2635 return proc_pident_lookup(dir, dentry,
2636 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2637 }
2638
2639 static const struct inode_operations proc_attr_dir_inode_operations = {
2640 .lookup = proc_attr_dir_lookup,
2641 .getattr = pid_getattr,
2642 .setattr = proc_setattr,
2643 };
2644
2645 #endif
2646
2647 #ifdef CONFIG_ELF_CORE
2648 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2649 size_t count, loff_t *ppos)
2650 {
2651 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2652 struct mm_struct *mm;
2653 char buffer[PROC_NUMBUF];
2654 size_t len;
2655 int ret;
2656
2657 if (!task)
2658 return -ESRCH;
2659
2660 ret = 0;
2661 mm = get_task_mm(task);
2662 if (mm) {
2663 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2664 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2665 MMF_DUMP_FILTER_SHIFT));
2666 mmput(mm);
2667 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2668 }
2669
2670 put_task_struct(task);
2671
2672 return ret;
2673 }
2674
2675 static ssize_t proc_coredump_filter_write(struct file *file,
2676 const char __user *buf,
2677 size_t count,
2678 loff_t *ppos)
2679 {
2680 struct task_struct *task;
2681 struct mm_struct *mm;
2682 char buffer[PROC_NUMBUF], *end;
2683 unsigned int val;
2684 int ret;
2685 int i;
2686 unsigned long mask;
2687
2688 ret = -EFAULT;
2689 memset(buffer, 0, sizeof(buffer));
2690 if (count > sizeof(buffer) - 1)
2691 count = sizeof(buffer) - 1;
2692 if (copy_from_user(buffer, buf, count))
2693 goto out_no_task;
2694
2695 ret = -EINVAL;
2696 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2697 if (*end == '\n')
2698 end++;
2699 if (end - buffer == 0)
2700 goto out_no_task;
2701
2702 ret = -ESRCH;
2703 task = get_proc_task(file->f_dentry->d_inode);
2704 if (!task)
2705 goto out_no_task;
2706
2707 ret = end - buffer;
2708 mm = get_task_mm(task);
2709 if (!mm)
2710 goto out_no_mm;
2711
2712 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2713 if (val & mask)
2714 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715 else
2716 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2717 }
2718
2719 mmput(mm);
2720 out_no_mm:
2721 put_task_struct(task);
2722 out_no_task:
2723 return ret;
2724 }
2725
2726 static const struct file_operations proc_coredump_filter_operations = {
2727 .read = proc_coredump_filter_read,
2728 .write = proc_coredump_filter_write,
2729 .llseek = generic_file_llseek,
2730 };
2731 #endif
2732
2733 /*
2734 * /proc/self:
2735 */
2736 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2737 int buflen)
2738 {
2739 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2740 pid_t tgid = task_tgid_nr_ns(current, ns);
2741 char tmp[PROC_NUMBUF];
2742 if (!tgid)
2743 return -ENOENT;
2744 sprintf(tmp, "%d", tgid);
2745 return vfs_readlink(dentry,buffer,buflen,tmp);
2746 }
2747
2748 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2749 {
2750 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2751 pid_t tgid = task_tgid_nr_ns(current, ns);
2752 char *name = ERR_PTR(-ENOENT);
2753 if (tgid) {
2754 name = __getname();
2755 if (!name)
2756 name = ERR_PTR(-ENOMEM);
2757 else
2758 sprintf(name, "%d", tgid);
2759 }
2760 nd_set_link(nd, name);
2761 return NULL;
2762 }
2763
2764 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2765 void *cookie)
2766 {
2767 char *s = nd_get_link(nd);
2768 if (!IS_ERR(s))
2769 __putname(s);
2770 }
2771
2772 static const struct inode_operations proc_self_inode_operations = {
2773 .readlink = proc_self_readlink,
2774 .follow_link = proc_self_follow_link,
2775 .put_link = proc_self_put_link,
2776 };
2777
2778 /*
2779 * proc base
2780 *
2781 * These are the directory entries in the root directory of /proc
2782 * that properly belong to the /proc filesystem, as they describe
2783 * describe something that is process related.
2784 */
2785 static const struct pid_entry proc_base_stuff[] = {
2786 NOD("self", S_IFLNK|S_IRWXUGO,
2787 &proc_self_inode_operations, NULL, {}),
2788 };
2789
2790 static struct dentry *proc_base_instantiate(struct inode *dir,
2791 struct dentry *dentry, struct task_struct *task, const void *ptr)
2792 {
2793 const struct pid_entry *p = ptr;
2794 struct inode *inode;
2795 struct proc_inode *ei;
2796 struct dentry *error;
2797
2798 /* Allocate the inode */
2799 error = ERR_PTR(-ENOMEM);
2800 inode = new_inode(dir->i_sb);
2801 if (!inode)
2802 goto out;
2803
2804 /* Initialize the inode */
2805 ei = PROC_I(inode);
2806 inode->i_ino = get_next_ino();
2807 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2808
2809 /*
2810 * grab the reference to the task.
2811 */
2812 ei->pid = get_task_pid(task, PIDTYPE_PID);
2813 if (!ei->pid)
2814 goto out_iput;
2815
2816 inode->i_mode = p->mode;
2817 if (S_ISDIR(inode->i_mode))
2818 set_nlink(inode, 2);
2819 if (S_ISLNK(inode->i_mode))
2820 inode->i_size = 64;
2821 if (p->iop)
2822 inode->i_op = p->iop;
2823 if (p->fop)
2824 inode->i_fop = p->fop;
2825 ei->op = p->op;
2826 d_add(dentry, inode);
2827 error = NULL;
2828 out:
2829 return error;
2830 out_iput:
2831 iput(inode);
2832 goto out;
2833 }
2834
2835 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2836 {
2837 struct dentry *error;
2838 struct task_struct *task = get_proc_task(dir);
2839 const struct pid_entry *p, *last;
2840
2841 error = ERR_PTR(-ENOENT);
2842
2843 if (!task)
2844 goto out_no_task;
2845
2846 /* Lookup the directory entry */
2847 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2848 for (p = proc_base_stuff; p <= last; p++) {
2849 if (p->len != dentry->d_name.len)
2850 continue;
2851 if (!memcmp(dentry->d_name.name, p->name, p->len))
2852 break;
2853 }
2854 if (p > last)
2855 goto out;
2856
2857 error = proc_base_instantiate(dir, dentry, task, p);
2858
2859 out:
2860 put_task_struct(task);
2861 out_no_task:
2862 return error;
2863 }
2864
2865 static int proc_base_fill_cache(struct file *filp, void *dirent,
2866 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2867 {
2868 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2869 proc_base_instantiate, task, p);
2870 }
2871
2872 #ifdef CONFIG_TASK_IO_ACCOUNTING
2873 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2874 {
2875 struct task_io_accounting acct = task->ioac;
2876 unsigned long flags;
2877 int result;
2878
2879 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2880 if (result)
2881 return result;
2882
2883 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2884 result = -EACCES;
2885 goto out_unlock;
2886 }
2887
2888 if (whole && lock_task_sighand(task, &flags)) {
2889 struct task_struct *t = task;
2890
2891 task_io_accounting_add(&acct, &task->signal->ioac);
2892 while_each_thread(task, t)
2893 task_io_accounting_add(&acct, &t->ioac);
2894
2895 unlock_task_sighand(task, &flags);
2896 }
2897 result = sprintf(buffer,
2898 "rchar: %llu\n"
2899 "wchar: %llu\n"
2900 "syscr: %llu\n"
2901 "syscw: %llu\n"
2902 "read_bytes: %llu\n"
2903 "write_bytes: %llu\n"
2904 "cancelled_write_bytes: %llu\n",
2905 (unsigned long long)acct.rchar,
2906 (unsigned long long)acct.wchar,
2907 (unsigned long long)acct.syscr,
2908 (unsigned long long)acct.syscw,
2909 (unsigned long long)acct.read_bytes,
2910 (unsigned long long)acct.write_bytes,
2911 (unsigned long long)acct.cancelled_write_bytes);
2912 out_unlock:
2913 mutex_unlock(&task->signal->cred_guard_mutex);
2914 return result;
2915 }
2916
2917 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2918 {
2919 return do_io_accounting(task, buffer, 0);
2920 }
2921
2922 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2923 {
2924 return do_io_accounting(task, buffer, 1);
2925 }
2926 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2927
2928 #ifdef CONFIG_USER_NS
2929 static int proc_id_map_open(struct inode *inode, struct file *file,
2930 struct seq_operations *seq_ops)
2931 {
2932 struct user_namespace *ns = NULL;
2933 struct task_struct *task;
2934 struct seq_file *seq;
2935 int ret = -EINVAL;
2936
2937 task = get_proc_task(inode);
2938 if (task) {
2939 rcu_read_lock();
2940 ns = get_user_ns(task_cred_xxx(task, user_ns));
2941 rcu_read_unlock();
2942 put_task_struct(task);
2943 }
2944 if (!ns)
2945 goto err;
2946
2947 ret = seq_open(file, seq_ops);
2948 if (ret)
2949 goto err_put_ns;
2950
2951 seq = file->private_data;
2952 seq->private = ns;
2953
2954 return 0;
2955 err_put_ns:
2956 put_user_ns(ns);
2957 err:
2958 return ret;
2959 }
2960
2961 static int proc_id_map_release(struct inode *inode, struct file *file)
2962 {
2963 struct seq_file *seq = file->private_data;
2964 struct user_namespace *ns = seq->private;
2965 put_user_ns(ns);
2966 return seq_release(inode, file);
2967 }
2968
2969 static int proc_uid_map_open(struct inode *inode, struct file *file)
2970 {
2971 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2972 }
2973
2974 static int proc_gid_map_open(struct inode *inode, struct file *file)
2975 {
2976 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2977 }
2978
2979 static const struct file_operations proc_uid_map_operations = {
2980 .open = proc_uid_map_open,
2981 .write = proc_uid_map_write,
2982 .read = seq_read,
2983 .llseek = seq_lseek,
2984 .release = proc_id_map_release,
2985 };
2986
2987 static const struct file_operations proc_gid_map_operations = {
2988 .open = proc_gid_map_open,
2989 .write = proc_gid_map_write,
2990 .read = seq_read,
2991 .llseek = seq_lseek,
2992 .release = proc_id_map_release,
2993 };
2994 #endif /* CONFIG_USER_NS */
2995
2996 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2997 struct pid *pid, struct task_struct *task)
2998 {
2999 int err = lock_trace(task);
3000 if (!err) {
3001 seq_printf(m, "%08x\n", task->personality);
3002 unlock_trace(task);
3003 }
3004 return err;
3005 }
3006
3007 /*
3008 * Thread groups
3009 */
3010 static const struct file_operations proc_task_operations;
3011 static const struct inode_operations proc_task_inode_operations;
3012
3013 static const struct pid_entry tgid_base_stuff[] = {
3014 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3015 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3016 #ifdef CONFIG_CHECKPOINT_RESTORE
3017 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3018 #endif
3019 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3020 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3021 #ifdef CONFIG_NET
3022 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3023 #endif
3024 REG("environ", S_IRUSR, proc_environ_operations),
3025 INF("auxv", S_IRUSR, proc_pid_auxv),
3026 ONE("status", S_IRUGO, proc_pid_status),
3027 ONE("personality", S_IRUGO, proc_pid_personality),
3028 INF("limits", S_IRUGO, proc_pid_limits),
3029 #ifdef CONFIG_SCHED_DEBUG
3030 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3031 #endif
3032 #ifdef CONFIG_SCHED_AUTOGROUP
3033 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3034 #endif
3035 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3036 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3037 INF("syscall", S_IRUGO, proc_pid_syscall),
3038 #endif
3039 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3040 ONE("stat", S_IRUGO, proc_tgid_stat),
3041 ONE("statm", S_IRUGO, proc_pid_statm),
3042 REG("maps", S_IRUGO, proc_pid_maps_operations),
3043 #ifdef CONFIG_NUMA
3044 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3045 #endif
3046 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3047 LNK("cwd", proc_cwd_link),
3048 LNK("root", proc_root_link),
3049 LNK("exe", proc_exe_link),
3050 REG("mounts", S_IRUGO, proc_mounts_operations),
3051 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3052 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3053 #ifdef CONFIG_PROC_PAGE_MONITOR
3054 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3055 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3056 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3057 #endif
3058 #ifdef CONFIG_SECURITY
3059 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3060 #endif
3061 #ifdef CONFIG_KALLSYMS
3062 INF("wchan", S_IRUGO, proc_pid_wchan),
3063 #endif
3064 #ifdef CONFIG_STACKTRACE
3065 ONE("stack", S_IRUGO, proc_pid_stack),
3066 #endif
3067 #ifdef CONFIG_SCHEDSTATS
3068 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3069 #endif
3070 #ifdef CONFIG_LATENCYTOP
3071 REG("latency", S_IRUGO, proc_lstats_operations),
3072 #endif
3073 #ifdef CONFIG_PROC_PID_CPUSET
3074 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3075 #endif
3076 #ifdef CONFIG_CGROUPS
3077 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3078 #endif
3079 INF("oom_score", S_IRUGO, proc_oom_score),
3080 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3081 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3082 #ifdef CONFIG_AUDITSYSCALL
3083 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3084 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3085 #endif
3086 #ifdef CONFIG_FAULT_INJECTION
3087 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3088 #endif
3089 #ifdef CONFIG_ELF_CORE
3090 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3091 #endif
3092 #ifdef CONFIG_TASK_IO_ACCOUNTING
3093 INF("io", S_IRUSR, proc_tgid_io_accounting),
3094 #endif
3095 #ifdef CONFIG_HARDWALL
3096 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3097 #endif
3098 #ifdef CONFIG_USER_NS
3099 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3100 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3101 #endif
3102 };
3103
3104 static int proc_tgid_base_readdir(struct file * filp,
3105 void * dirent, filldir_t filldir)
3106 {
3107 return proc_pident_readdir(filp,dirent,filldir,
3108 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3109 }
3110
3111 static const struct file_operations proc_tgid_base_operations = {
3112 .read = generic_read_dir,
3113 .readdir = proc_tgid_base_readdir,
3114 .llseek = default_llseek,
3115 };
3116
3117 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3118 return proc_pident_lookup(dir, dentry,
3119 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3120 }
3121
3122 static const struct inode_operations proc_tgid_base_inode_operations = {
3123 .lookup = proc_tgid_base_lookup,
3124 .getattr = pid_getattr,
3125 .setattr = proc_setattr,
3126 .permission = proc_pid_permission,
3127 };
3128
3129 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3130 {
3131 struct dentry *dentry, *leader, *dir;
3132 char buf[PROC_NUMBUF];
3133 struct qstr name;
3134
3135 name.name = buf;
3136 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3137 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3138 if (dentry) {
3139 shrink_dcache_parent(dentry);
3140 d_drop(dentry);
3141 dput(dentry);
3142 }
3143
3144 name.name = buf;
3145 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3146 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3147 if (!leader)
3148 goto out;
3149
3150 name.name = "task";
3151 name.len = strlen(name.name);
3152 dir = d_hash_and_lookup(leader, &name);
3153 if (!dir)
3154 goto out_put_leader;
3155
3156 name.name = buf;
3157 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3158 dentry = d_hash_and_lookup(dir, &name);
3159 if (dentry) {
3160 shrink_dcache_parent(dentry);
3161 d_drop(dentry);
3162 dput(dentry);
3163 }
3164
3165 dput(dir);
3166 out_put_leader:
3167 dput(leader);
3168 out:
3169 return;
3170 }
3171
3172 /**
3173 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3174 * @task: task that should be flushed.
3175 *
3176 * When flushing dentries from proc, one needs to flush them from global
3177 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3178 * in. This call is supposed to do all of this job.
3179 *
3180 * Looks in the dcache for
3181 * /proc/@pid
3182 * /proc/@tgid/task/@pid
3183 * if either directory is present flushes it and all of it'ts children
3184 * from the dcache.
3185 *
3186 * It is safe and reasonable to cache /proc entries for a task until
3187 * that task exits. After that they just clog up the dcache with
3188 * useless entries, possibly causing useful dcache entries to be
3189 * flushed instead. This routine is proved to flush those useless
3190 * dcache entries at process exit time.
3191 *
3192 * NOTE: This routine is just an optimization so it does not guarantee
3193 * that no dcache entries will exist at process exit time it
3194 * just makes it very unlikely that any will persist.
3195 */
3196
3197 void proc_flush_task(struct task_struct *task)
3198 {
3199 int i;
3200 struct pid *pid, *tgid;
3201 struct upid *upid;
3202
3203 pid = task_pid(task);
3204 tgid = task_tgid(task);
3205
3206 for (i = 0; i <= pid->level; i++) {
3207 upid = &pid->numbers[i];
3208 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3209 tgid->numbers[i].nr);
3210 }
3211
3212 upid = &pid->numbers[pid->level];
3213 if (upid->nr == 1)
3214 pid_ns_release_proc(upid->ns);
3215 }
3216
3217 static struct dentry *proc_pid_instantiate(struct inode *dir,
3218 struct dentry * dentry,
3219 struct task_struct *task, const void *ptr)
3220 {
3221 struct dentry *error = ERR_PTR(-ENOENT);
3222 struct inode *inode;
3223
3224 inode = proc_pid_make_inode(dir->i_sb, task);
3225 if (!inode)
3226 goto out;
3227
3228 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3229 inode->i_op = &proc_tgid_base_inode_operations;
3230 inode->i_fop = &proc_tgid_base_operations;
3231 inode->i_flags|=S_IMMUTABLE;
3232
3233 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3234 ARRAY_SIZE(tgid_base_stuff)));
3235
3236 d_set_d_op(dentry, &pid_dentry_operations);
3237
3238 d_add(dentry, inode);
3239 /* Close the race of the process dying before we return the dentry */
3240 if (pid_revalidate(dentry, NULL))
3241 error = NULL;
3242 out:
3243 return error;
3244 }
3245
3246 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3247 {
3248 struct dentry *result;
3249 struct task_struct *task;
3250 unsigned tgid;
3251 struct pid_namespace *ns;
3252
3253 result = proc_base_lookup(dir, dentry);
3254 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3255 goto out;
3256
3257 tgid = name_to_int(dentry);
3258 if (tgid == ~0U)
3259 goto out;
3260
3261 ns = dentry->d_sb->s_fs_info;
3262 rcu_read_lock();
3263 task = find_task_by_pid_ns(tgid, ns);
3264 if (task)
3265 get_task_struct(task);
3266 rcu_read_unlock();
3267 if (!task)
3268 goto out;
3269
3270 result = proc_pid_instantiate(dir, dentry, task, NULL);
3271 put_task_struct(task);
3272 out:
3273 return result;
3274 }
3275
3276 /*
3277 * Find the first task with tgid >= tgid
3278 *
3279 */
3280 struct tgid_iter {
3281 unsigned int tgid;
3282 struct task_struct *task;
3283 };
3284 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3285 {
3286 struct pid *pid;
3287
3288 if (iter.task)
3289 put_task_struct(iter.task);
3290 rcu_read_lock();
3291 retry:
3292 iter.task = NULL;
3293 pid = find_ge_pid(iter.tgid, ns);
3294 if (pid) {
3295 iter.tgid = pid_nr_ns(pid, ns);
3296 iter.task = pid_task(pid, PIDTYPE_PID);
3297 /* What we to know is if the pid we have find is the
3298 * pid of a thread_group_leader. Testing for task
3299 * being a thread_group_leader is the obvious thing
3300 * todo but there is a window when it fails, due to
3301 * the pid transfer logic in de_thread.
3302 *
3303 * So we perform the straight forward test of seeing
3304 * if the pid we have found is the pid of a thread
3305 * group leader, and don't worry if the task we have
3306 * found doesn't happen to be a thread group leader.
3307 * As we don't care in the case of readdir.
3308 */
3309 if (!iter.task || !has_group_leader_pid(iter.task)) {
3310 iter.tgid += 1;
3311 goto retry;
3312 }
3313 get_task_struct(iter.task);
3314 }
3315 rcu_read_unlock();
3316 return iter;
3317 }
3318
3319 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3320
3321 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3322 struct tgid_iter iter)
3323 {
3324 char name[PROC_NUMBUF];
3325 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3326 return proc_fill_cache(filp, dirent, filldir, name, len,
3327 proc_pid_instantiate, iter.task, NULL);
3328 }
3329
3330 static int fake_filldir(void *buf, const char *name, int namelen,
3331 loff_t offset, u64 ino, unsigned d_type)
3332 {
3333 return 0;
3334 }
3335
3336 /* for the /proc/ directory itself, after non-process stuff has been done */
3337 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3338 {
3339 unsigned int nr;
3340 struct task_struct *reaper;
3341 struct tgid_iter iter;
3342 struct pid_namespace *ns;
3343 filldir_t __filldir;
3344
3345 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3346 goto out_no_task;
3347 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3348
3349 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3350 if (!reaper)
3351 goto out_no_task;
3352
3353 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3354 const struct pid_entry *p = &proc_base_stuff[nr];
3355 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3356 goto out;
3357 }
3358
3359 ns = filp->f_dentry->d_sb->s_fs_info;
3360 iter.task = NULL;
3361 iter.tgid = filp->f_pos - TGID_OFFSET;
3362 for (iter = next_tgid(ns, iter);
3363 iter.task;
3364 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3365 if (has_pid_permissions(ns, iter.task, 2))
3366 __filldir = filldir;
3367 else
3368 __filldir = fake_filldir;
3369
3370 filp->f_pos = iter.tgid + TGID_OFFSET;
3371 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3372 put_task_struct(iter.task);
3373 goto out;
3374 }
3375 }
3376 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3377 out:
3378 put_task_struct(reaper);
3379 out_no_task:
3380 return 0;
3381 }
3382
3383 /*
3384 * Tasks
3385 */
3386 static const struct pid_entry tid_base_stuff[] = {
3387 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3388 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3389 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3390 REG("environ", S_IRUSR, proc_environ_operations),
3391 INF("auxv", S_IRUSR, proc_pid_auxv),
3392 ONE("status", S_IRUGO, proc_pid_status),
3393 ONE("personality", S_IRUGO, proc_pid_personality),
3394 INF("limits", S_IRUGO, proc_pid_limits),
3395 #ifdef CONFIG_SCHED_DEBUG
3396 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3397 #endif
3398 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3399 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3400 INF("syscall", S_IRUGO, proc_pid_syscall),
3401 #endif
3402 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3403 ONE("stat", S_IRUGO, proc_tid_stat),
3404 ONE("statm", S_IRUGO, proc_pid_statm),
3405 REG("maps", S_IRUGO, proc_tid_maps_operations),
3406 #ifdef CONFIG_CHECKPOINT_RESTORE
3407 REG("children", S_IRUGO, proc_tid_children_operations),
3408 #endif
3409 #ifdef CONFIG_NUMA
3410 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3411 #endif
3412 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3413 LNK("cwd", proc_cwd_link),
3414 LNK("root", proc_root_link),
3415 LNK("exe", proc_exe_link),
3416 REG("mounts", S_IRUGO, proc_mounts_operations),
3417 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3418 #ifdef CONFIG_PROC_PAGE_MONITOR
3419 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3420 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3421 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3422 #endif
3423 #ifdef CONFIG_SECURITY
3424 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3425 #endif
3426 #ifdef CONFIG_KALLSYMS
3427 INF("wchan", S_IRUGO, proc_pid_wchan),
3428 #endif
3429 #ifdef CONFIG_STACKTRACE
3430 ONE("stack", S_IRUGO, proc_pid_stack),
3431 #endif
3432 #ifdef CONFIG_SCHEDSTATS
3433 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3434 #endif
3435 #ifdef CONFIG_LATENCYTOP
3436 REG("latency", S_IRUGO, proc_lstats_operations),
3437 #endif
3438 #ifdef CONFIG_PROC_PID_CPUSET
3439 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3440 #endif
3441 #ifdef CONFIG_CGROUPS
3442 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3443 #endif
3444 INF("oom_score", S_IRUGO, proc_oom_score),
3445 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3446 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3447 #ifdef CONFIG_AUDITSYSCALL
3448 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3449 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3450 #endif
3451 #ifdef CONFIG_FAULT_INJECTION
3452 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3453 #endif
3454 #ifdef CONFIG_TASK_IO_ACCOUNTING
3455 INF("io", S_IRUSR, proc_tid_io_accounting),
3456 #endif
3457 #ifdef CONFIG_HARDWALL
3458 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3459 #endif
3460 #ifdef CONFIG_USER_NS
3461 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3462 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3463 #endif
3464 };
3465
3466 static int proc_tid_base_readdir(struct file * filp,
3467 void * dirent, filldir_t filldir)
3468 {
3469 return proc_pident_readdir(filp,dirent,filldir,
3470 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3471 }
3472
3473 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3474 return proc_pident_lookup(dir, dentry,
3475 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3476 }
3477
3478 static const struct file_operations proc_tid_base_operations = {
3479 .read = generic_read_dir,
3480 .readdir = proc_tid_base_readdir,
3481 .llseek = default_llseek,
3482 };
3483
3484 static const struct inode_operations proc_tid_base_inode_operations = {
3485 .lookup = proc_tid_base_lookup,
3486 .getattr = pid_getattr,
3487 .setattr = proc_setattr,
3488 };
3489
3490 static struct dentry *proc_task_instantiate(struct inode *dir,
3491 struct dentry *dentry, struct task_struct *task, const void *ptr)
3492 {
3493 struct dentry *error = ERR_PTR(-ENOENT);
3494 struct inode *inode;
3495 inode = proc_pid_make_inode(dir->i_sb, task);
3496
3497 if (!inode)
3498 goto out;
3499 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3500 inode->i_op = &proc_tid_base_inode_operations;
3501 inode->i_fop = &proc_tid_base_operations;
3502 inode->i_flags|=S_IMMUTABLE;
3503
3504 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3505 ARRAY_SIZE(tid_base_stuff)));
3506
3507 d_set_d_op(dentry, &pid_dentry_operations);
3508
3509 d_add(dentry, inode);
3510 /* Close the race of the process dying before we return the dentry */
3511 if (pid_revalidate(dentry, NULL))
3512 error = NULL;
3513 out:
3514 return error;
3515 }
3516
3517 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3518 {
3519 struct dentry *result = ERR_PTR(-ENOENT);
3520 struct task_struct *task;
3521 struct task_struct *leader = get_proc_task(dir);
3522 unsigned tid;
3523 struct pid_namespace *ns;
3524
3525 if (!leader)
3526 goto out_no_task;
3527
3528 tid = name_to_int(dentry);
3529 if (tid == ~0U)
3530 goto out;
3531
3532 ns = dentry->d_sb->s_fs_info;
3533 rcu_read_lock();
3534 task = find_task_by_pid_ns(tid, ns);
3535 if (task)
3536 get_task_struct(task);
3537 rcu_read_unlock();
3538 if (!task)
3539 goto out;
3540 if (!same_thread_group(leader, task))
3541 goto out_drop_task;
3542
3543 result = proc_task_instantiate(dir, dentry, task, NULL);
3544 out_drop_task:
3545 put_task_struct(task);
3546 out:
3547 put_task_struct(leader);
3548 out_no_task:
3549 return result;
3550 }
3551
3552 /*
3553 * Find the first tid of a thread group to return to user space.
3554 *
3555 * Usually this is just the thread group leader, but if the users
3556 * buffer was too small or there was a seek into the middle of the
3557 * directory we have more work todo.
3558 *
3559 * In the case of a short read we start with find_task_by_pid.
3560 *
3561 * In the case of a seek we start with the leader and walk nr
3562 * threads past it.
3563 */
3564 static struct task_struct *first_tid(struct task_struct *leader,
3565 int tid, int nr, struct pid_namespace *ns)
3566 {
3567 struct task_struct *pos;
3568
3569 rcu_read_lock();
3570 /* Attempt to start with the pid of a thread */
3571 if (tid && (nr > 0)) {
3572 pos = find_task_by_pid_ns(tid, ns);
3573 if (pos && (pos->group_leader == leader))
3574 goto found;
3575 }
3576
3577 /* If nr exceeds the number of threads there is nothing todo */
3578 pos = NULL;
3579 if (nr && nr >= get_nr_threads(leader))
3580 goto out;
3581
3582 /* If we haven't found our starting place yet start
3583 * with the leader and walk nr threads forward.
3584 */
3585 for (pos = leader; nr > 0; --nr) {
3586 pos = next_thread(pos);
3587 if (pos == leader) {
3588 pos = NULL;
3589 goto out;
3590 }
3591 }
3592 found:
3593 get_task_struct(pos);
3594 out:
3595 rcu_read_unlock();
3596 return pos;
3597 }
3598
3599 /*
3600 * Find the next thread in the thread list.
3601 * Return NULL if there is an error or no next thread.
3602 *
3603 * The reference to the input task_struct is released.
3604 */
3605 static struct task_struct *next_tid(struct task_struct *start)
3606 {
3607 struct task_struct *pos = NULL;
3608 rcu_read_lock();
3609 if (pid_alive(start)) {
3610 pos = next_thread(start);
3611 if (thread_group_leader(pos))
3612 pos = NULL;
3613 else
3614 get_task_struct(pos);
3615 }
3616 rcu_read_unlock();
3617 put_task_struct(start);
3618 return pos;
3619 }
3620
3621 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3622 struct task_struct *task, int tid)
3623 {
3624 char name[PROC_NUMBUF];
3625 int len = snprintf(name, sizeof(name), "%d", tid);
3626 return proc_fill_cache(filp, dirent, filldir, name, len,
3627 proc_task_instantiate, task, NULL);
3628 }
3629
3630 /* for the /proc/TGID/task/ directories */
3631 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3632 {
3633 struct dentry *dentry = filp->f_path.dentry;
3634 struct inode *inode = dentry->d_inode;
3635 struct task_struct *leader = NULL;
3636 struct task_struct *task;
3637 int retval = -ENOENT;
3638 ino_t ino;
3639 int tid;
3640 struct pid_namespace *ns;
3641
3642 task = get_proc_task(inode);
3643 if (!task)
3644 goto out_no_task;
3645 rcu_read_lock();
3646 if (pid_alive(task)) {
3647 leader = task->group_leader;
3648 get_task_struct(leader);
3649 }
3650 rcu_read_unlock();
3651 put_task_struct(task);
3652 if (!leader)
3653 goto out_no_task;
3654 retval = 0;
3655
3656 switch ((unsigned long)filp->f_pos) {
3657 case 0:
3658 ino = inode->i_ino;
3659 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3660 goto out;
3661 filp->f_pos++;
3662 /* fall through */
3663 case 1:
3664 ino = parent_ino(dentry);
3665 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3666 goto out;
3667 filp->f_pos++;
3668 /* fall through */
3669 }
3670
3671 /* f_version caches the tgid value that the last readdir call couldn't
3672 * return. lseek aka telldir automagically resets f_version to 0.
3673 */
3674 ns = filp->f_dentry->d_sb->s_fs_info;
3675 tid = (int)filp->f_version;
3676 filp->f_version = 0;
3677 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3678 task;
3679 task = next_tid(task), filp->f_pos++) {
3680 tid = task_pid_nr_ns(task, ns);
3681 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3682 /* returning this tgid failed, save it as the first
3683 * pid for the next readir call */
3684 filp->f_version = (u64)tid;
3685 put_task_struct(task);
3686 break;
3687 }
3688 }
3689 out:
3690 put_task_struct(leader);
3691 out_no_task:
3692 return retval;
3693 }
3694
3695 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3696 {
3697 struct inode *inode = dentry->d_inode;
3698 struct task_struct *p = get_proc_task(inode);
3699 generic_fillattr(inode, stat);
3700
3701 if (p) {
3702 stat->nlink += get_nr_threads(p);
3703 put_task_struct(p);
3704 }
3705
3706 return 0;
3707 }
3708
3709 static const struct inode_operations proc_task_inode_operations = {
3710 .lookup = proc_task_lookup,
3711 .getattr = proc_task_getattr,
3712 .setattr = proc_setattr,
3713 .permission = proc_pid_permission,
3714 };
3715
3716 static const struct file_operations proc_task_operations = {
3717 .read = generic_read_dir,
3718 .readdir = proc_task_readdir,
3719 .llseek = default_llseek,
3720 };