]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/task_mmu.c
smaps: break out smaps_pte_entry() from smaps_pte_range()
[mirror_ubuntu-bionic-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
17
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 {
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
22
23 /*
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
29 */
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
36
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
62 }
63
64 unsigned long task_vsize(struct mm_struct *mm)
65 {
66 return PAGE_SIZE * mm->total_vm;
67 }
68
69 unsigned long task_statm(struct mm_struct *mm,
70 unsigned long *shared, unsigned long *text,
71 unsigned long *data, unsigned long *resident)
72 {
73 *shared = get_mm_counter(mm, MM_FILEPAGES);
74 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
75 >> PAGE_SHIFT;
76 *data = mm->total_vm - mm->shared_vm;
77 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
78 return mm->total_vm;
79 }
80
81 static void pad_len_spaces(struct seq_file *m, int len)
82 {
83 len = 25 + sizeof(void*) * 6 - len;
84 if (len < 1)
85 len = 1;
86 seq_printf(m, "%*c", len, ' ');
87 }
88
89 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
90 {
91 if (vma && vma != priv->tail_vma) {
92 struct mm_struct *mm = vma->vm_mm;
93 up_read(&mm->mmap_sem);
94 mmput(mm);
95 }
96 }
97
98 static void *m_start(struct seq_file *m, loff_t *pos)
99 {
100 struct proc_maps_private *priv = m->private;
101 unsigned long last_addr = m->version;
102 struct mm_struct *mm;
103 struct vm_area_struct *vma, *tail_vma = NULL;
104 loff_t l = *pos;
105
106 /* Clear the per syscall fields in priv */
107 priv->task = NULL;
108 priv->tail_vma = NULL;
109
110 /*
111 * We remember last_addr rather than next_addr to hit with
112 * mmap_cache most of the time. We have zero last_addr at
113 * the beginning and also after lseek. We will have -1 last_addr
114 * after the end of the vmas.
115 */
116
117 if (last_addr == -1UL)
118 return NULL;
119
120 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
121 if (!priv->task)
122 return NULL;
123
124 mm = mm_for_maps(priv->task);
125 if (!mm)
126 return NULL;
127 down_read(&mm->mmap_sem);
128
129 tail_vma = get_gate_vma(priv->task);
130 priv->tail_vma = tail_vma;
131
132 /* Start with last addr hint */
133 vma = find_vma(mm, last_addr);
134 if (last_addr && vma) {
135 vma = vma->vm_next;
136 goto out;
137 }
138
139 /*
140 * Check the vma index is within the range and do
141 * sequential scan until m_index.
142 */
143 vma = NULL;
144 if ((unsigned long)l < mm->map_count) {
145 vma = mm->mmap;
146 while (l-- && vma)
147 vma = vma->vm_next;
148 goto out;
149 }
150
151 if (l != mm->map_count)
152 tail_vma = NULL; /* After gate vma */
153
154 out:
155 if (vma)
156 return vma;
157
158 /* End of vmas has been reached */
159 m->version = (tail_vma != NULL)? 0: -1UL;
160 up_read(&mm->mmap_sem);
161 mmput(mm);
162 return tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
166 {
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *vma = v;
169 struct vm_area_struct *tail_vma = priv->tail_vma;
170
171 (*pos)++;
172 if (vma && (vma != tail_vma) && vma->vm_next)
173 return vma->vm_next;
174 vma_stop(priv, vma);
175 return (vma != tail_vma)? tail_vma: NULL;
176 }
177
178 static void m_stop(struct seq_file *m, void *v)
179 {
180 struct proc_maps_private *priv = m->private;
181 struct vm_area_struct *vma = v;
182
183 vma_stop(priv, vma);
184 if (priv->task)
185 put_task_struct(priv->task);
186 }
187
188 static int do_maps_open(struct inode *inode, struct file *file,
189 const struct seq_operations *ops)
190 {
191 struct proc_maps_private *priv;
192 int ret = -ENOMEM;
193 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
194 if (priv) {
195 priv->pid = proc_pid(inode);
196 ret = seq_open(file, ops);
197 if (!ret) {
198 struct seq_file *m = file->private_data;
199 m->private = priv;
200 } else {
201 kfree(priv);
202 }
203 }
204 return ret;
205 }
206
207 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
208 {
209 struct mm_struct *mm = vma->vm_mm;
210 struct file *file = vma->vm_file;
211 int flags = vma->vm_flags;
212 unsigned long ino = 0;
213 unsigned long long pgoff = 0;
214 unsigned long start;
215 dev_t dev = 0;
216 int len;
217
218 if (file) {
219 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
220 dev = inode->i_sb->s_dev;
221 ino = inode->i_ino;
222 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
223 }
224
225 /* We don't show the stack guard page in /proc/maps */
226 start = vma->vm_start;
227 if (vma->vm_flags & VM_GROWSDOWN)
228 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
229 start += PAGE_SIZE;
230
231 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
232 start,
233 vma->vm_end,
234 flags & VM_READ ? 'r' : '-',
235 flags & VM_WRITE ? 'w' : '-',
236 flags & VM_EXEC ? 'x' : '-',
237 flags & VM_MAYSHARE ? 's' : 'p',
238 pgoff,
239 MAJOR(dev), MINOR(dev), ino, &len);
240
241 /*
242 * Print the dentry name for named mappings, and a
243 * special [heap] marker for the heap:
244 */
245 if (file) {
246 pad_len_spaces(m, len);
247 seq_path(m, &file->f_path, "\n");
248 } else {
249 const char *name = arch_vma_name(vma);
250 if (!name) {
251 if (mm) {
252 if (vma->vm_start <= mm->start_brk &&
253 vma->vm_end >= mm->brk) {
254 name = "[heap]";
255 } else if (vma->vm_start <= mm->start_stack &&
256 vma->vm_end >= mm->start_stack) {
257 name = "[stack]";
258 }
259 } else {
260 name = "[vdso]";
261 }
262 }
263 if (name) {
264 pad_len_spaces(m, len);
265 seq_puts(m, name);
266 }
267 }
268 seq_putc(m, '\n');
269 }
270
271 static int show_map(struct seq_file *m, void *v)
272 {
273 struct vm_area_struct *vma = v;
274 struct proc_maps_private *priv = m->private;
275 struct task_struct *task = priv->task;
276
277 show_map_vma(m, vma);
278
279 if (m->count < m->size) /* vma is copied successfully */
280 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
281 return 0;
282 }
283
284 static const struct seq_operations proc_pid_maps_op = {
285 .start = m_start,
286 .next = m_next,
287 .stop = m_stop,
288 .show = show_map
289 };
290
291 static int maps_open(struct inode *inode, struct file *file)
292 {
293 return do_maps_open(inode, file, &proc_pid_maps_op);
294 }
295
296 const struct file_operations proc_maps_operations = {
297 .open = maps_open,
298 .read = seq_read,
299 .llseek = seq_lseek,
300 .release = seq_release_private,
301 };
302
303 /*
304 * Proportional Set Size(PSS): my share of RSS.
305 *
306 * PSS of a process is the count of pages it has in memory, where each
307 * page is divided by the number of processes sharing it. So if a
308 * process has 1000 pages all to itself, and 1000 shared with one other
309 * process, its PSS will be 1500.
310 *
311 * To keep (accumulated) division errors low, we adopt a 64bit
312 * fixed-point pss counter to minimize division errors. So (pss >>
313 * PSS_SHIFT) would be the real byte count.
314 *
315 * A shift of 12 before division means (assuming 4K page size):
316 * - 1M 3-user-pages add up to 8KB errors;
317 * - supports mapcount up to 2^24, or 16M;
318 * - supports PSS up to 2^52 bytes, or 4PB.
319 */
320 #define PSS_SHIFT 12
321
322 #ifdef CONFIG_PROC_PAGE_MONITOR
323 struct mem_size_stats {
324 struct vm_area_struct *vma;
325 unsigned long resident;
326 unsigned long shared_clean;
327 unsigned long shared_dirty;
328 unsigned long private_clean;
329 unsigned long private_dirty;
330 unsigned long referenced;
331 unsigned long anonymous;
332 unsigned long swap;
333 u64 pss;
334 };
335
336
337 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
338 struct mm_walk *walk)
339 {
340 struct mem_size_stats *mss = walk->private;
341 struct vm_area_struct *vma = mss->vma;
342 struct page *page;
343 int mapcount;
344
345 if (is_swap_pte(ptent)) {
346 mss->swap += PAGE_SIZE;
347 return;
348 }
349
350 if (!pte_present(ptent))
351 return;
352
353 page = vm_normal_page(vma, addr, ptent);
354 if (!page)
355 return;
356
357 if (PageAnon(page))
358 mss->anonymous += PAGE_SIZE;
359
360 mss->resident += PAGE_SIZE;
361 /* Accumulate the size in pages that have been accessed. */
362 if (pte_young(ptent) || PageReferenced(page))
363 mss->referenced += PAGE_SIZE;
364 mapcount = page_mapcount(page);
365 if (mapcount >= 2) {
366 if (pte_dirty(ptent) || PageDirty(page))
367 mss->shared_dirty += PAGE_SIZE;
368 else
369 mss->shared_clean += PAGE_SIZE;
370 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
371 } else {
372 if (pte_dirty(ptent) || PageDirty(page))
373 mss->private_dirty += PAGE_SIZE;
374 else
375 mss->private_clean += PAGE_SIZE;
376 mss->pss += (PAGE_SIZE << PSS_SHIFT);
377 }
378 }
379
380 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
381 struct mm_walk *walk)
382 {
383 struct mem_size_stats *mss = walk->private;
384 struct vm_area_struct *vma = mss->vma;
385 pte_t *pte;
386 spinlock_t *ptl;
387
388 split_huge_page_pmd(walk->mm, pmd);
389
390 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
391 for (; addr != end; pte++, addr += PAGE_SIZE)
392 smaps_pte_entry(*pte, addr, walk);
393 pte_unmap_unlock(pte - 1, ptl);
394 cond_resched();
395 return 0;
396 }
397
398 static int show_smap(struct seq_file *m, void *v)
399 {
400 struct proc_maps_private *priv = m->private;
401 struct task_struct *task = priv->task;
402 struct vm_area_struct *vma = v;
403 struct mem_size_stats mss;
404 struct mm_walk smaps_walk = {
405 .pmd_entry = smaps_pte_range,
406 .mm = vma->vm_mm,
407 .private = &mss,
408 };
409
410 memset(&mss, 0, sizeof mss);
411 mss.vma = vma;
412 /* mmap_sem is held in m_start */
413 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
414 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
415
416 show_map_vma(m, vma);
417
418 seq_printf(m,
419 "Size: %8lu kB\n"
420 "Rss: %8lu kB\n"
421 "Pss: %8lu kB\n"
422 "Shared_Clean: %8lu kB\n"
423 "Shared_Dirty: %8lu kB\n"
424 "Private_Clean: %8lu kB\n"
425 "Private_Dirty: %8lu kB\n"
426 "Referenced: %8lu kB\n"
427 "Anonymous: %8lu kB\n"
428 "Swap: %8lu kB\n"
429 "KernelPageSize: %8lu kB\n"
430 "MMUPageSize: %8lu kB\n"
431 "Locked: %8lu kB\n",
432 (vma->vm_end - vma->vm_start) >> 10,
433 mss.resident >> 10,
434 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
435 mss.shared_clean >> 10,
436 mss.shared_dirty >> 10,
437 mss.private_clean >> 10,
438 mss.private_dirty >> 10,
439 mss.referenced >> 10,
440 mss.anonymous >> 10,
441 mss.swap >> 10,
442 vma_kernel_pagesize(vma) >> 10,
443 vma_mmu_pagesize(vma) >> 10,
444 (vma->vm_flags & VM_LOCKED) ?
445 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
446
447 if (m->count < m->size) /* vma is copied successfully */
448 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
449 return 0;
450 }
451
452 static const struct seq_operations proc_pid_smaps_op = {
453 .start = m_start,
454 .next = m_next,
455 .stop = m_stop,
456 .show = show_smap
457 };
458
459 static int smaps_open(struct inode *inode, struct file *file)
460 {
461 return do_maps_open(inode, file, &proc_pid_smaps_op);
462 }
463
464 const struct file_operations proc_smaps_operations = {
465 .open = smaps_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = seq_release_private,
469 };
470
471 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
472 unsigned long end, struct mm_walk *walk)
473 {
474 struct vm_area_struct *vma = walk->private;
475 pte_t *pte, ptent;
476 spinlock_t *ptl;
477 struct page *page;
478
479 split_huge_page_pmd(walk->mm, pmd);
480
481 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
482 for (; addr != end; pte++, addr += PAGE_SIZE) {
483 ptent = *pte;
484 if (!pte_present(ptent))
485 continue;
486
487 page = vm_normal_page(vma, addr, ptent);
488 if (!page)
489 continue;
490
491 /* Clear accessed and referenced bits. */
492 ptep_test_and_clear_young(vma, addr, pte);
493 ClearPageReferenced(page);
494 }
495 pte_unmap_unlock(pte - 1, ptl);
496 cond_resched();
497 return 0;
498 }
499
500 #define CLEAR_REFS_ALL 1
501 #define CLEAR_REFS_ANON 2
502 #define CLEAR_REFS_MAPPED 3
503
504 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
505 size_t count, loff_t *ppos)
506 {
507 struct task_struct *task;
508 char buffer[PROC_NUMBUF];
509 struct mm_struct *mm;
510 struct vm_area_struct *vma;
511 long type;
512
513 memset(buffer, 0, sizeof(buffer));
514 if (count > sizeof(buffer) - 1)
515 count = sizeof(buffer) - 1;
516 if (copy_from_user(buffer, buf, count))
517 return -EFAULT;
518 if (strict_strtol(strstrip(buffer), 10, &type))
519 return -EINVAL;
520 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
521 return -EINVAL;
522 task = get_proc_task(file->f_path.dentry->d_inode);
523 if (!task)
524 return -ESRCH;
525 mm = get_task_mm(task);
526 if (mm) {
527 struct mm_walk clear_refs_walk = {
528 .pmd_entry = clear_refs_pte_range,
529 .mm = mm,
530 };
531 down_read(&mm->mmap_sem);
532 for (vma = mm->mmap; vma; vma = vma->vm_next) {
533 clear_refs_walk.private = vma;
534 if (is_vm_hugetlb_page(vma))
535 continue;
536 /*
537 * Writing 1 to /proc/pid/clear_refs affects all pages.
538 *
539 * Writing 2 to /proc/pid/clear_refs only affects
540 * Anonymous pages.
541 *
542 * Writing 3 to /proc/pid/clear_refs only affects file
543 * mapped pages.
544 */
545 if (type == CLEAR_REFS_ANON && vma->vm_file)
546 continue;
547 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
548 continue;
549 walk_page_range(vma->vm_start, vma->vm_end,
550 &clear_refs_walk);
551 }
552 flush_tlb_mm(mm);
553 up_read(&mm->mmap_sem);
554 mmput(mm);
555 }
556 put_task_struct(task);
557
558 return count;
559 }
560
561 const struct file_operations proc_clear_refs_operations = {
562 .write = clear_refs_write,
563 .llseek = noop_llseek,
564 };
565
566 struct pagemapread {
567 int pos, len;
568 u64 *buffer;
569 };
570
571 #define PM_ENTRY_BYTES sizeof(u64)
572 #define PM_STATUS_BITS 3
573 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
574 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
575 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
576 #define PM_PSHIFT_BITS 6
577 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
578 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
579 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
580 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
581 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
582
583 #define PM_PRESENT PM_STATUS(4LL)
584 #define PM_SWAP PM_STATUS(2LL)
585 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
586 #define PM_END_OF_BUFFER 1
587
588 static int add_to_pagemap(unsigned long addr, u64 pfn,
589 struct pagemapread *pm)
590 {
591 pm->buffer[pm->pos++] = pfn;
592 if (pm->pos >= pm->len)
593 return PM_END_OF_BUFFER;
594 return 0;
595 }
596
597 static int pagemap_pte_hole(unsigned long start, unsigned long end,
598 struct mm_walk *walk)
599 {
600 struct pagemapread *pm = walk->private;
601 unsigned long addr;
602 int err = 0;
603 for (addr = start; addr < end; addr += PAGE_SIZE) {
604 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
605 if (err)
606 break;
607 }
608 return err;
609 }
610
611 static u64 swap_pte_to_pagemap_entry(pte_t pte)
612 {
613 swp_entry_t e = pte_to_swp_entry(pte);
614 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
615 }
616
617 static u64 pte_to_pagemap_entry(pte_t pte)
618 {
619 u64 pme = 0;
620 if (is_swap_pte(pte))
621 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
622 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
623 else if (pte_present(pte))
624 pme = PM_PFRAME(pte_pfn(pte))
625 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
626 return pme;
627 }
628
629 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
630 struct mm_walk *walk)
631 {
632 struct vm_area_struct *vma;
633 struct pagemapread *pm = walk->private;
634 pte_t *pte;
635 int err = 0;
636
637 split_huge_page_pmd(walk->mm, pmd);
638
639 /* find the first VMA at or above 'addr' */
640 vma = find_vma(walk->mm, addr);
641 for (; addr != end; addr += PAGE_SIZE) {
642 u64 pfn = PM_NOT_PRESENT;
643
644 /* check to see if we've left 'vma' behind
645 * and need a new, higher one */
646 if (vma && (addr >= vma->vm_end))
647 vma = find_vma(walk->mm, addr);
648
649 /* check that 'vma' actually covers this address,
650 * and that it isn't a huge page vma */
651 if (vma && (vma->vm_start <= addr) &&
652 !is_vm_hugetlb_page(vma)) {
653 pte = pte_offset_map(pmd, addr);
654 pfn = pte_to_pagemap_entry(*pte);
655 /* unmap before userspace copy */
656 pte_unmap(pte);
657 }
658 err = add_to_pagemap(addr, pfn, pm);
659 if (err)
660 return err;
661 }
662
663 cond_resched();
664
665 return err;
666 }
667
668 #ifdef CONFIG_HUGETLB_PAGE
669 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
670 {
671 u64 pme = 0;
672 if (pte_present(pte))
673 pme = PM_PFRAME(pte_pfn(pte) + offset)
674 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
675 return pme;
676 }
677
678 /* This function walks within one hugetlb entry in the single call */
679 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
680 unsigned long addr, unsigned long end,
681 struct mm_walk *walk)
682 {
683 struct pagemapread *pm = walk->private;
684 int err = 0;
685 u64 pfn;
686
687 for (; addr != end; addr += PAGE_SIZE) {
688 int offset = (addr & ~hmask) >> PAGE_SHIFT;
689 pfn = huge_pte_to_pagemap_entry(*pte, offset);
690 err = add_to_pagemap(addr, pfn, pm);
691 if (err)
692 return err;
693 }
694
695 cond_resched();
696
697 return err;
698 }
699 #endif /* HUGETLB_PAGE */
700
701 /*
702 * /proc/pid/pagemap - an array mapping virtual pages to pfns
703 *
704 * For each page in the address space, this file contains one 64-bit entry
705 * consisting of the following:
706 *
707 * Bits 0-55 page frame number (PFN) if present
708 * Bits 0-4 swap type if swapped
709 * Bits 5-55 swap offset if swapped
710 * Bits 55-60 page shift (page size = 1<<page shift)
711 * Bit 61 reserved for future use
712 * Bit 62 page swapped
713 * Bit 63 page present
714 *
715 * If the page is not present but in swap, then the PFN contains an
716 * encoding of the swap file number and the page's offset into the
717 * swap. Unmapped pages return a null PFN. This allows determining
718 * precisely which pages are mapped (or in swap) and comparing mapped
719 * pages between processes.
720 *
721 * Efficient users of this interface will use /proc/pid/maps to
722 * determine which areas of memory are actually mapped and llseek to
723 * skip over unmapped regions.
724 */
725 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
726 #define PAGEMAP_WALK_MASK (PMD_MASK)
727 static ssize_t pagemap_read(struct file *file, char __user *buf,
728 size_t count, loff_t *ppos)
729 {
730 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
731 struct mm_struct *mm;
732 struct pagemapread pm;
733 int ret = -ESRCH;
734 struct mm_walk pagemap_walk = {};
735 unsigned long src;
736 unsigned long svpfn;
737 unsigned long start_vaddr;
738 unsigned long end_vaddr;
739 int copied = 0;
740
741 if (!task)
742 goto out;
743
744 ret = -EACCES;
745 if (!ptrace_may_access(task, PTRACE_MODE_READ))
746 goto out_task;
747
748 ret = -EINVAL;
749 /* file position must be aligned */
750 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
751 goto out_task;
752
753 ret = 0;
754
755 if (!count)
756 goto out_task;
757
758 mm = get_task_mm(task);
759 if (!mm)
760 goto out_task;
761
762 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
763 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
764 ret = -ENOMEM;
765 if (!pm.buffer)
766 goto out_mm;
767
768 pagemap_walk.pmd_entry = pagemap_pte_range;
769 pagemap_walk.pte_hole = pagemap_pte_hole;
770 #ifdef CONFIG_HUGETLB_PAGE
771 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
772 #endif
773 pagemap_walk.mm = mm;
774 pagemap_walk.private = &pm;
775
776 src = *ppos;
777 svpfn = src / PM_ENTRY_BYTES;
778 start_vaddr = svpfn << PAGE_SHIFT;
779 end_vaddr = TASK_SIZE_OF(task);
780
781 /* watch out for wraparound */
782 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
783 start_vaddr = end_vaddr;
784
785 /*
786 * The odds are that this will stop walking way
787 * before end_vaddr, because the length of the
788 * user buffer is tracked in "pm", and the walk
789 * will stop when we hit the end of the buffer.
790 */
791 ret = 0;
792 while (count && (start_vaddr < end_vaddr)) {
793 int len;
794 unsigned long end;
795
796 pm.pos = 0;
797 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
798 /* overflow ? */
799 if (end < start_vaddr || end > end_vaddr)
800 end = end_vaddr;
801 down_read(&mm->mmap_sem);
802 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
803 up_read(&mm->mmap_sem);
804 start_vaddr = end;
805
806 len = min(count, PM_ENTRY_BYTES * pm.pos);
807 if (copy_to_user(buf, pm.buffer, len)) {
808 ret = -EFAULT;
809 goto out_free;
810 }
811 copied += len;
812 buf += len;
813 count -= len;
814 }
815 *ppos += copied;
816 if (!ret || ret == PM_END_OF_BUFFER)
817 ret = copied;
818
819 out_free:
820 kfree(pm.buffer);
821 out_mm:
822 mmput(mm);
823 out_task:
824 put_task_struct(task);
825 out:
826 return ret;
827 }
828
829 const struct file_operations proc_pagemap_operations = {
830 .llseek = mem_lseek, /* borrow this */
831 .read = pagemap_read,
832 };
833 #endif /* CONFIG_PROC_PAGE_MONITOR */
834
835 #ifdef CONFIG_NUMA
836 extern int show_numa_map(struct seq_file *m, void *v);
837
838 static const struct seq_operations proc_pid_numa_maps_op = {
839 .start = m_start,
840 .next = m_next,
841 .stop = m_stop,
842 .show = show_numa_map,
843 };
844
845 static int numa_maps_open(struct inode *inode, struct file *file)
846 {
847 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
848 }
849
850 const struct file_operations proc_numa_maps_operations = {
851 .open = numa_maps_open,
852 .read = seq_read,
853 .llseek = seq_lseek,
854 .release = seq_release_private,
855 };
856 #endif