]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/reiserfs/stree.c
reiserfs: rename p_s_inode to inode
[mirror_ubuntu-bionic-kernel.git] / fs / reiserfs / stree.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11 /*
12 * This file contains functions dealing with S+tree
13 *
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
49 */
50
51 #include <linux/time.h>
52 #include <linux/string.h>
53 #include <linux/pagemap.h>
54 #include <linux/reiserfs_fs.h>
55 #include <linux/buffer_head.h>
56 #include <linux/quotaops.h>
57
58 /* Does the buffer contain a disk block which is in the tree. */
59 inline int B_IS_IN_TREE(const struct buffer_head *bh)
60 {
61
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64
65 return (B_LEVEL(bh) != FREE_LEVEL);
66 }
67
68 //
69 // to gets item head in le form
70 //
71 inline void copy_item_head(struct item_head *p_v_to,
72 const struct item_head *p_v_from)
73 {
74 memcpy(p_v_to, p_v_from, IH_SIZE);
75 }
76
77 /* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83 inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
85 {
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
98 }
99
100 /* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105 static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
107 {
108 int retval;
109
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
119
120 if (cpu_key->key_length == 3)
121 return 0;
122
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
127
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
131
132 return 0;
133 }
134
135 inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
137 {
138 __u32 *p_s_1_u32, *p_s_2_u32;
139 int n_key_length = REISERFS_SHORT_KEY_LEN;
140
141 p_s_1_u32 = (__u32 *) key1;
142 p_s_2_u32 = (__u32 *) key2;
143 for (; n_key_length--; ++p_s_1_u32, ++p_s_2_u32) {
144 if (le32_to_cpu(*p_s_1_u32) < le32_to_cpu(*p_s_2_u32))
145 return -1;
146 if (le32_to_cpu(*p_s_1_u32) > le32_to_cpu(*p_s_2_u32))
147 return 1;
148 }
149 return 0;
150 }
151
152 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153 {
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
163 }
164
165 // this does not say which one is bigger, it only returns 1 if keys
166 // are not equal, 0 otherwise
167 inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
169 {
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
171 }
172
173 /**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *p_n_pos = number of the searched element if found, else the *
178 * number of the first element that is larger than p_v_key. *
179 **************************************************************************/
180 /* For those not familiar with binary search: n_lbound is the leftmost item that it
181 could be, n_rbound the rightmost item that it could be. We examine the item
182 halfway between n_lbound and n_rbound, and that tells us either that we can increase
183 n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187 static inline int bin_search(const void *p_v_key, /* Key to search for. */
188 const void *p_v_base, /* First item in the array. */
189 int p_n_num, /* Number of items in the array. */
190 int p_n_width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, p_n_width
196 is actually the item header size not
197 the item size. */
198 int *p_n_pos /* Number of the searched for element. */
199 )
200 {
201 int n_rbound, n_lbound, n_j;
202
203 for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2;
204 n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)p_v_base +
207 n_j * p_n_width),
208 (struct cpu_key *)p_v_key)) {
209 case -1:
210 n_lbound = n_j + 1;
211 continue;
212 case 1:
213 n_rbound = n_j - 1;
214 continue;
215 case 0:
216 *p_n_pos = n_j;
217 return ITEM_FOUND; /* Key found in the array. */
218 }
219
220 /* bin_search did not find given key, it returns position of key,
221 that is minimal and greater than the given one. */
222 *p_n_pos = n_lbound;
223 return ITEM_NOT_FOUND;
224 }
225
226 #ifdef CONFIG_REISERFS_CHECK
227 extern struct tree_balance *cur_tb;
228 #endif
229
230 /* Minimal possible key. It is never in the tree. */
231 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
232
233 /* Maximal possible key. It is never in the tree. */
234 static const struct reiserfs_key MAX_KEY = {
235 __constant_cpu_to_le32(0xffffffff),
236 __constant_cpu_to_le32(0xffffffff),
237 {{__constant_cpu_to_le32(0xffffffff),
238 __constant_cpu_to_le32(0xffffffff)},}
239 };
240
241 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
242 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
243 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
244 case we return a special key, either MIN_KEY or MAX_KEY. */
245 static inline const struct reiserfs_key *get_lkey(const struct treepath
246 *p_s_chk_path,
247 const struct super_block
248 *sb)
249 {
250 int n_position, n_path_offset = p_s_chk_path->path_length;
251 struct buffer_head *p_s_parent;
252
253 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
254 "PAP-5010: invalid offset in the path");
255
256 /* While not higher in path than first element. */
257 while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
258
259 RFALSE(!buffer_uptodate
260 (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
261 "PAP-5020: parent is not uptodate");
262
263 /* Parent at the path is not in the tree now. */
264 if (!B_IS_IN_TREE
265 (p_s_parent =
266 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
267 return &MAX_KEY;
268 /* Check whether position in the parent is correct. */
269 if ((n_position =
270 PATH_OFFSET_POSITION(p_s_chk_path,
271 n_path_offset)) >
272 B_NR_ITEMS(p_s_parent))
273 return &MAX_KEY;
274 /* Check whether parent at the path really points to the child. */
275 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
276 PATH_OFFSET_PBUFFER(p_s_chk_path,
277 n_path_offset + 1)->b_blocknr)
278 return &MAX_KEY;
279 /* Return delimiting key if position in the parent is not equal to zero. */
280 if (n_position)
281 return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
282 }
283 /* Return MIN_KEY if we are in the root of the buffer tree. */
284 if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
285 b_blocknr == SB_ROOT_BLOCK(sb))
286 return &MIN_KEY;
287 return &MAX_KEY;
288 }
289
290 /* Get delimiting key of the buffer at the path and its right neighbor. */
291 inline const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
292 const struct super_block *sb)
293 {
294 int n_position, n_path_offset = p_s_chk_path->path_length;
295 struct buffer_head *p_s_parent;
296
297 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
298 "PAP-5030: invalid offset in the path");
299
300 while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
301
302 RFALSE(!buffer_uptodate
303 (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
304 "PAP-5040: parent is not uptodate");
305
306 /* Parent at the path is not in the tree now. */
307 if (!B_IS_IN_TREE
308 (p_s_parent =
309 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
310 return &MIN_KEY;
311 /* Check whether position in the parent is correct. */
312 if ((n_position =
313 PATH_OFFSET_POSITION(p_s_chk_path,
314 n_path_offset)) >
315 B_NR_ITEMS(p_s_parent))
316 return &MIN_KEY;
317 /* Check whether parent at the path really points to the child. */
318 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
319 PATH_OFFSET_PBUFFER(p_s_chk_path,
320 n_path_offset + 1)->b_blocknr)
321 return &MIN_KEY;
322 /* Return delimiting key if position in the parent is not the last one. */
323 if (n_position != B_NR_ITEMS(p_s_parent))
324 return B_N_PDELIM_KEY(p_s_parent, n_position);
325 }
326 /* Return MAX_KEY if we are in the root of the buffer tree. */
327 if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
328 b_blocknr == SB_ROOT_BLOCK(sb))
329 return &MAX_KEY;
330 return &MIN_KEY;
331 }
332
333 /* Check whether a key is contained in the tree rooted from a buffer at a path. */
334 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
335 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
336 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
337 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
338 static inline int key_in_buffer(struct treepath *p_s_chk_path, /* Path which should be checked. */
339 const struct cpu_key *p_s_key, /* Key which should be checked. */
340 struct super_block *sb /* Super block pointer. */
341 )
342 {
343
344 RFALSE(!p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
345 || p_s_chk_path->path_length > MAX_HEIGHT,
346 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
347 p_s_key, p_s_chk_path->path_length);
348 RFALSE(!PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
349 "PAP-5060: device must not be NODEV");
350
351 if (comp_keys(get_lkey(p_s_chk_path, sb), p_s_key) == 1)
352 /* left delimiting key is bigger, that the key we look for */
353 return 0;
354 // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, sb)) != -1 )
355 if (comp_keys(get_rkey(p_s_chk_path, sb), p_s_key) != 1)
356 /* p_s_key must be less than right delimitiing key */
357 return 0;
358 return 1;
359 }
360
361 int reiserfs_check_path(struct treepath *p)
362 {
363 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
364 "path not properly relsed");
365 return 0;
366 }
367
368 /* Drop the reference to each buffer in a path and restore
369 * dirty bits clean when preparing the buffer for the log.
370 * This version should only be called from fix_nodes() */
371 void pathrelse_and_restore(struct super_block *sb,
372 struct treepath *p_s_search_path)
373 {
374 int n_path_offset = p_s_search_path->path_length;
375
376 RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
377 "clm-4000: invalid path offset");
378
379 while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
380 struct buffer_head *bh;
381 bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
382 reiserfs_restore_prepared_buffer(sb, bh);
383 brelse(bh);
384 }
385 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
386 }
387
388 /* Drop the reference to each buffer in a path */
389 void pathrelse(struct treepath *p_s_search_path)
390 {
391 int n_path_offset = p_s_search_path->path_length;
392
393 RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
394 "PAP-5090: invalid path offset");
395
396 while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
397 brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
398
399 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
400 }
401
402 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
403 {
404 struct block_head *blkh;
405 struct item_head *ih;
406 int used_space;
407 int prev_location;
408 int i;
409 int nr;
410
411 blkh = (struct block_head *)buf;
412 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
413 reiserfs_warning(NULL, "reiserfs-5080",
414 "this should be caught earlier");
415 return 0;
416 }
417
418 nr = blkh_nr_item(blkh);
419 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
420 /* item number is too big or too small */
421 reiserfs_warning(NULL, "reiserfs-5081",
422 "nr_item seems wrong: %z", bh);
423 return 0;
424 }
425 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
426 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
427 if (used_space != blocksize - blkh_free_space(blkh)) {
428 /* free space does not match to calculated amount of use space */
429 reiserfs_warning(NULL, "reiserfs-5082",
430 "free space seems wrong: %z", bh);
431 return 0;
432 }
433 // FIXME: it is_leaf will hit performance too much - we may have
434 // return 1 here
435
436 /* check tables of item heads */
437 ih = (struct item_head *)(buf + BLKH_SIZE);
438 prev_location = blocksize;
439 for (i = 0; i < nr; i++, ih++) {
440 if (le_ih_k_type(ih) == TYPE_ANY) {
441 reiserfs_warning(NULL, "reiserfs-5083",
442 "wrong item type for item %h",
443 ih);
444 return 0;
445 }
446 if (ih_location(ih) >= blocksize
447 || ih_location(ih) < IH_SIZE * nr) {
448 reiserfs_warning(NULL, "reiserfs-5084",
449 "item location seems wrong: %h",
450 ih);
451 return 0;
452 }
453 if (ih_item_len(ih) < 1
454 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
455 reiserfs_warning(NULL, "reiserfs-5085",
456 "item length seems wrong: %h",
457 ih);
458 return 0;
459 }
460 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
461 reiserfs_warning(NULL, "reiserfs-5086",
462 "item location seems wrong "
463 "(second one): %h", ih);
464 return 0;
465 }
466 prev_location = ih_location(ih);
467 }
468
469 // one may imagine much more checks
470 return 1;
471 }
472
473 /* returns 1 if buf looks like an internal node, 0 otherwise */
474 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
475 {
476 struct block_head *blkh;
477 int nr;
478 int used_space;
479
480 blkh = (struct block_head *)buf;
481 nr = blkh_level(blkh);
482 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
483 /* this level is not possible for internal nodes */
484 reiserfs_warning(NULL, "reiserfs-5087",
485 "this should be caught earlier");
486 return 0;
487 }
488
489 nr = blkh_nr_item(blkh);
490 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
491 /* for internal which is not root we might check min number of keys */
492 reiserfs_warning(NULL, "reiserfs-5088",
493 "number of key seems wrong: %z", bh);
494 return 0;
495 }
496
497 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
498 if (used_space != blocksize - blkh_free_space(blkh)) {
499 reiserfs_warning(NULL, "reiserfs-5089",
500 "free space seems wrong: %z", bh);
501 return 0;
502 }
503 // one may imagine much more checks
504 return 1;
505 }
506
507 // make sure that bh contains formatted node of reiserfs tree of
508 // 'level'-th level
509 static int is_tree_node(struct buffer_head *bh, int level)
510 {
511 if (B_LEVEL(bh) != level) {
512 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
513 "not match to the expected one %d",
514 B_LEVEL(bh), level);
515 return 0;
516 }
517 if (level == DISK_LEAF_NODE_LEVEL)
518 return is_leaf(bh->b_data, bh->b_size, bh);
519
520 return is_internal(bh->b_data, bh->b_size, bh);
521 }
522
523 #define SEARCH_BY_KEY_READA 16
524
525 /* The function is NOT SCHEDULE-SAFE! */
526 static void search_by_key_reada(struct super_block *s,
527 struct buffer_head **bh,
528 b_blocknr_t *b, int num)
529 {
530 int i, j;
531
532 for (i = 0; i < num; i++) {
533 bh[i] = sb_getblk(s, b[i]);
534 }
535 for (j = 0; j < i; j++) {
536 /*
537 * note, this needs attention if we are getting rid of the BKL
538 * you have to make sure the prepared bit isn't set on this buffer
539 */
540 if (!buffer_uptodate(bh[j]))
541 ll_rw_block(READA, 1, bh + j);
542 brelse(bh[j]);
543 }
544 }
545
546 /**************************************************************************
547 * Algorithm SearchByKey *
548 * look for item in the Disk S+Tree by its key *
549 * Input: sb - super block *
550 * p_s_key - pointer to the key to search *
551 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
552 * p_s_search_path - path from the root to the needed leaf *
553 **************************************************************************/
554
555 /* This function fills up the path from the root to the leaf as it
556 descends the tree looking for the key. It uses reiserfs_bread to
557 try to find buffers in the cache given their block number. If it
558 does not find them in the cache it reads them from disk. For each
559 node search_by_key finds using reiserfs_bread it then uses
560 bin_search to look through that node. bin_search will find the
561 position of the block_number of the next node if it is looking
562 through an internal node. If it is looking through a leaf node
563 bin_search will find the position of the item which has key either
564 equal to given key, or which is the maximal key less than the given
565 key. search_by_key returns a path that must be checked for the
566 correctness of the top of the path but need not be checked for the
567 correctness of the bottom of the path */
568 /* The function is NOT SCHEDULE-SAFE! */
569 int search_by_key(struct super_block *sb, const struct cpu_key *p_s_key, /* Key to search. */
570 struct treepath *p_s_search_path,/* This structure was
571 allocated and initialized
572 by the calling
573 function. It is filled up
574 by this function. */
575 int n_stop_level /* How far down the tree to search. To
576 stop at leaf level - set to
577 DISK_LEAF_NODE_LEVEL */
578 )
579 {
580 b_blocknr_t n_block_number;
581 int expected_level;
582 struct buffer_head *bh;
583 struct path_element *p_s_last_element;
584 int n_node_level, n_retval;
585 int right_neighbor_of_leaf_node;
586 int fs_gen;
587 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
588 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
589 int reada_count = 0;
590
591 #ifdef CONFIG_REISERFS_CHECK
592 int n_repeat_counter = 0;
593 #endif
594
595 PROC_INFO_INC(sb, search_by_key);
596
597 /* As we add each node to a path we increase its count. This means that
598 we must be careful to release all nodes in a path before we either
599 discard the path struct or re-use the path struct, as we do here. */
600
601 pathrelse(p_s_search_path);
602
603 right_neighbor_of_leaf_node = 0;
604
605 /* With each iteration of this loop we search through the items in the
606 current node, and calculate the next current node(next path element)
607 for the next iteration of this loop.. */
608 n_block_number = SB_ROOT_BLOCK(sb);
609 expected_level = -1;
610 while (1) {
611
612 #ifdef CONFIG_REISERFS_CHECK
613 if (!(++n_repeat_counter % 50000))
614 reiserfs_warning(sb, "PAP-5100",
615 "%s: there were %d iterations of "
616 "while loop looking for key %K",
617 current->comm, n_repeat_counter,
618 p_s_key);
619 #endif
620
621 /* prep path to have another element added to it. */
622 p_s_last_element =
623 PATH_OFFSET_PELEMENT(p_s_search_path,
624 ++p_s_search_path->path_length);
625 fs_gen = get_generation(sb);
626
627 /* Read the next tree node, and set the last element in the path to
628 have a pointer to it. */
629 if ((bh = p_s_last_element->pe_buffer =
630 sb_getblk(sb, n_block_number))) {
631 if (!buffer_uptodate(bh) && reada_count > 1)
632 search_by_key_reada(sb, reada_bh,
633 reada_blocks, reada_count);
634 ll_rw_block(READ, 1, &bh);
635 wait_on_buffer(bh);
636 if (!buffer_uptodate(bh))
637 goto io_error;
638 } else {
639 io_error:
640 p_s_search_path->path_length--;
641 pathrelse(p_s_search_path);
642 return IO_ERROR;
643 }
644 reada_count = 0;
645 if (expected_level == -1)
646 expected_level = SB_TREE_HEIGHT(sb);
647 expected_level--;
648
649 /* It is possible that schedule occurred. We must check whether the key
650 to search is still in the tree rooted from the current buffer. If
651 not then repeat search from the root. */
652 if (fs_changed(fs_gen, sb) &&
653 (!B_IS_IN_TREE(bh) ||
654 B_LEVEL(bh) != expected_level ||
655 !key_in_buffer(p_s_search_path, p_s_key, sb))) {
656 PROC_INFO_INC(sb, search_by_key_fs_changed);
657 PROC_INFO_INC(sb, search_by_key_restarted);
658 PROC_INFO_INC(sb,
659 sbk_restarted[expected_level - 1]);
660 pathrelse(p_s_search_path);
661
662 /* Get the root block number so that we can repeat the search
663 starting from the root. */
664 n_block_number = SB_ROOT_BLOCK(sb);
665 expected_level = -1;
666 right_neighbor_of_leaf_node = 0;
667
668 /* repeat search from the root */
669 continue;
670 }
671
672 /* only check that the key is in the buffer if p_s_key is not
673 equal to the MAX_KEY. Latter case is only possible in
674 "finish_unfinished()" processing during mount. */
675 RFALSE(comp_keys(&MAX_KEY, p_s_key) &&
676 !key_in_buffer(p_s_search_path, p_s_key, sb),
677 "PAP-5130: key is not in the buffer");
678 #ifdef CONFIG_REISERFS_CHECK
679 if (cur_tb) {
680 print_cur_tb("5140");
681 reiserfs_panic(sb, "PAP-5140",
682 "schedule occurred in do_balance!");
683 }
684 #endif
685
686 // make sure, that the node contents look like a node of
687 // certain level
688 if (!is_tree_node(bh, expected_level)) {
689 reiserfs_error(sb, "vs-5150",
690 "invalid format found in block %ld. "
691 "Fsck?", bh->b_blocknr);
692 pathrelse(p_s_search_path);
693 return IO_ERROR;
694 }
695
696 /* ok, we have acquired next formatted node in the tree */
697 n_node_level = B_LEVEL(bh);
698
699 PROC_INFO_BH_STAT(sb, bh, n_node_level - 1);
700
701 RFALSE(n_node_level < n_stop_level,
702 "vs-5152: tree level (%d) is less than stop level (%d)",
703 n_node_level, n_stop_level);
704
705 n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(bh, 0),
706 B_NR_ITEMS(bh),
707 (n_node_level ==
708 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
709 KEY_SIZE,
710 &(p_s_last_element->pe_position));
711 if (n_node_level == n_stop_level) {
712 return n_retval;
713 }
714
715 /* we are not in the stop level */
716 if (n_retval == ITEM_FOUND)
717 /* item has been found, so we choose the pointer which is to the right of the found one */
718 p_s_last_element->pe_position++;
719
720 /* if item was not found we choose the position which is to
721 the left of the found item. This requires no code,
722 bin_search did it already. */
723
724 /* So we have chosen a position in the current node which is
725 an internal node. Now we calculate child block number by
726 position in the node. */
727 n_block_number =
728 B_N_CHILD_NUM(bh, p_s_last_element->pe_position);
729
730 /* if we are going to read leaf nodes, try for read ahead as well */
731 if ((p_s_search_path->reada & PATH_READA) &&
732 n_node_level == DISK_LEAF_NODE_LEVEL + 1) {
733 int pos = p_s_last_element->pe_position;
734 int limit = B_NR_ITEMS(bh);
735 struct reiserfs_key *le_key;
736
737 if (p_s_search_path->reada & PATH_READA_BACK)
738 limit = 0;
739 while (reada_count < SEARCH_BY_KEY_READA) {
740 if (pos == limit)
741 break;
742 reada_blocks[reada_count++] =
743 B_N_CHILD_NUM(bh, pos);
744 if (p_s_search_path->reada & PATH_READA_BACK)
745 pos--;
746 else
747 pos++;
748
749 /*
750 * check to make sure we're in the same object
751 */
752 le_key = B_N_PDELIM_KEY(bh, pos);
753 if (le32_to_cpu(le_key->k_objectid) !=
754 p_s_key->on_disk_key.k_objectid) {
755 break;
756 }
757 }
758 }
759 }
760 }
761
762 /* Form the path to an item and position in this item which contains
763 file byte defined by p_s_key. If there is no such item
764 corresponding to the key, we point the path to the item with
765 maximal key less than p_s_key, and *p_n_pos_in_item is set to one
766 past the last entry/byte in the item. If searching for entry in a
767 directory item, and it is not found, *p_n_pos_in_item is set to one
768 entry more than the entry with maximal key which is less than the
769 sought key.
770
771 Note that if there is no entry in this same node which is one more,
772 then we point to an imaginary entry. for direct items, the
773 position is in units of bytes, for indirect items the position is
774 in units of blocknr entries, for directory items the position is in
775 units of directory entries. */
776
777 /* The function is NOT SCHEDULE-SAFE! */
778 int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
779 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
780 struct treepath *p_s_search_path /* Filled up by this function. */
781 )
782 {
783 struct item_head *p_le_ih; /* pointer to on-disk structure */
784 int n_blk_size;
785 loff_t item_offset, offset;
786 struct reiserfs_dir_entry de;
787 int retval;
788
789 /* If searching for directory entry. */
790 if (is_direntry_cpu_key(p_cpu_key))
791 return search_by_entry_key(sb, p_cpu_key, p_s_search_path,
792 &de);
793
794 /* If not searching for directory entry. */
795
796 /* If item is found. */
797 retval = search_item(sb, p_cpu_key, p_s_search_path);
798 if (retval == IO_ERROR)
799 return retval;
800 if (retval == ITEM_FOUND) {
801
802 RFALSE(!ih_item_len
803 (B_N_PITEM_HEAD
804 (PATH_PLAST_BUFFER(p_s_search_path),
805 PATH_LAST_POSITION(p_s_search_path))),
806 "PAP-5165: item length equals zero");
807
808 pos_in_item(p_s_search_path) = 0;
809 return POSITION_FOUND;
810 }
811
812 RFALSE(!PATH_LAST_POSITION(p_s_search_path),
813 "PAP-5170: position equals zero");
814
815 /* Item is not found. Set path to the previous item. */
816 p_le_ih =
817 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
818 --PATH_LAST_POSITION(p_s_search_path));
819 n_blk_size = sb->s_blocksize;
820
821 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
822 return FILE_NOT_FOUND;
823 }
824 // FIXME: quite ugly this far
825
826 item_offset = le_ih_k_offset(p_le_ih);
827 offset = cpu_key_k_offset(p_cpu_key);
828
829 /* Needed byte is contained in the item pointed to by the path. */
830 if (item_offset <= offset &&
831 item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) {
832 pos_in_item(p_s_search_path) = offset - item_offset;
833 if (is_indirect_le_ih(p_le_ih)) {
834 pos_in_item(p_s_search_path) /= n_blk_size;
835 }
836 return POSITION_FOUND;
837 }
838
839 /* Needed byte is not contained in the item pointed to by the
840 path. Set pos_in_item out of the item. */
841 if (is_indirect_le_ih(p_le_ih))
842 pos_in_item(p_s_search_path) =
843 ih_item_len(p_le_ih) / UNFM_P_SIZE;
844 else
845 pos_in_item(p_s_search_path) = ih_item_len(p_le_ih);
846
847 return POSITION_NOT_FOUND;
848 }
849
850 /* Compare given item and item pointed to by the path. */
851 int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path)
852 {
853 struct buffer_head *bh = PATH_PLAST_BUFFER(p_s_path);
854 struct item_head *ih;
855
856 /* Last buffer at the path is not in the tree. */
857 if (!B_IS_IN_TREE(bh))
858 return 1;
859
860 /* Last path position is invalid. */
861 if (PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(bh))
862 return 1;
863
864 /* we need only to know, whether it is the same item */
865 ih = get_ih(p_s_path);
866 return memcmp(stored_ih, ih, IH_SIZE);
867 }
868
869 /* unformatted nodes are not logged anymore, ever. This is safe
870 ** now
871 */
872 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
873
874 // block can not be forgotten as it is in I/O or held by someone
875 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
876
877 // prepare for delete or cut of direct item
878 static inline int prepare_for_direct_item(struct treepath *path,
879 struct item_head *le_ih,
880 struct inode *inode,
881 loff_t new_file_length, int *cut_size)
882 {
883 loff_t round_len;
884
885 if (new_file_length == max_reiserfs_offset(inode)) {
886 /* item has to be deleted */
887 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
888 return M_DELETE;
889 }
890 // new file gets truncated
891 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
892 //
893 round_len = ROUND_UP(new_file_length);
894 /* this was n_new_file_length < le_ih ... */
895 if (round_len < le_ih_k_offset(le_ih)) {
896 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
897 return M_DELETE; /* Delete this item. */
898 }
899 /* Calculate first position and size for cutting from item. */
900 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
901 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
902
903 return M_CUT; /* Cut from this item. */
904 }
905
906 // old file: items may have any length
907
908 if (new_file_length < le_ih_k_offset(le_ih)) {
909 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
910 return M_DELETE; /* Delete this item. */
911 }
912 /* Calculate first position and size for cutting from item. */
913 *cut_size = -(ih_item_len(le_ih) -
914 (pos_in_item(path) =
915 new_file_length + 1 - le_ih_k_offset(le_ih)));
916 return M_CUT; /* Cut from this item. */
917 }
918
919 static inline int prepare_for_direntry_item(struct treepath *path,
920 struct item_head *le_ih,
921 struct inode *inode,
922 loff_t new_file_length,
923 int *cut_size)
924 {
925 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
926 new_file_length == max_reiserfs_offset(inode)) {
927 RFALSE(ih_entry_count(le_ih) != 2,
928 "PAP-5220: incorrect empty directory item (%h)", le_ih);
929 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
930 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
931 }
932
933 if (ih_entry_count(le_ih) == 1) {
934 /* Delete the directory item such as there is one record only
935 in this item */
936 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
937 return M_DELETE;
938 }
939
940 /* Cut one record from the directory item. */
941 *cut_size =
942 -(DEH_SIZE +
943 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
944 return M_CUT;
945 }
946
947 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
948
949 /* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
950 If the path points to an indirect item, remove some number of its unformatted nodes.
951 In case of file truncate calculate whether this item must be deleted/truncated or last
952 unformatted node of this item will be converted to a direct item.
953 This function returns a determination of what balance mode the calling function should employ. */
954 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *p_s_path, const struct cpu_key *p_s_item_key, int *p_n_removed, /* Number of unformatted nodes which were removed
955 from end of the file. */
956 int *p_n_cut_size, unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
957 )
958 {
959 struct super_block *sb = inode->i_sb;
960 struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_path);
961 struct buffer_head *bh = PATH_PLAST_BUFFER(p_s_path);
962
963 BUG_ON(!th->t_trans_id);
964
965 /* Stat_data item. */
966 if (is_statdata_le_ih(p_le_ih)) {
967
968 RFALSE(n_new_file_length != max_reiserfs_offset(inode),
969 "PAP-5210: mode must be M_DELETE");
970
971 *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
972 return M_DELETE;
973 }
974
975 /* Directory item. */
976 if (is_direntry_le_ih(p_le_ih))
977 return prepare_for_direntry_item(p_s_path, p_le_ih, inode,
978 n_new_file_length,
979 p_n_cut_size);
980
981 /* Direct item. */
982 if (is_direct_le_ih(p_le_ih))
983 return prepare_for_direct_item(p_s_path, p_le_ih, inode,
984 n_new_file_length, p_n_cut_size);
985
986 /* Case of an indirect item. */
987 {
988 int blk_size = sb->s_blocksize;
989 struct item_head s_ih;
990 int need_re_search;
991 int delete = 0;
992 int result = M_CUT;
993 int pos = 0;
994
995 if ( n_new_file_length == max_reiserfs_offset (inode) ) {
996 /* prepare_for_delete_or_cut() is called by
997 * reiserfs_delete_item() */
998 n_new_file_length = 0;
999 delete = 1;
1000 }
1001
1002 do {
1003 need_re_search = 0;
1004 *p_n_cut_size = 0;
1005 bh = PATH_PLAST_BUFFER(p_s_path);
1006 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1007 pos = I_UNFM_NUM(&s_ih);
1008
1009 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > n_new_file_length) {
1010 __le32 *unfm;
1011 __u32 block;
1012
1013 /* Each unformatted block deletion may involve one additional
1014 * bitmap block into the transaction, thereby the initial
1015 * journal space reservation might not be enough. */
1016 if (!delete && (*p_n_cut_size) != 0 &&
1017 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1018 break;
1019 }
1020
1021 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1022 block = get_block_num(unfm, 0);
1023
1024 if (block != 0) {
1025 reiserfs_prepare_for_journal(sb, bh, 1);
1026 put_block_num(unfm, 0, 0);
1027 journal_mark_dirty(th, sb, bh);
1028 reiserfs_free_block(th, inode, block, 1);
1029 }
1030
1031 cond_resched();
1032
1033 if (item_moved (&s_ih, p_s_path)) {
1034 need_re_search = 1;
1035 break;
1036 }
1037
1038 pos --;
1039 (*p_n_removed) ++;
1040 (*p_n_cut_size) -= UNFM_P_SIZE;
1041
1042 if (pos == 0) {
1043 (*p_n_cut_size) -= IH_SIZE;
1044 result = M_DELETE;
1045 break;
1046 }
1047 }
1048 /* a trick. If the buffer has been logged, this will do nothing. If
1049 ** we've broken the loop without logging it, it will restore the
1050 ** buffer */
1051 reiserfs_restore_prepared_buffer(sb, bh);
1052 } while (need_re_search &&
1053 search_for_position_by_key(sb, p_s_item_key, p_s_path) == POSITION_FOUND);
1054 pos_in_item(p_s_path) = pos * UNFM_P_SIZE;
1055
1056 if (*p_n_cut_size == 0) {
1057 /* Nothing were cut. maybe convert last unformatted node to the
1058 * direct item? */
1059 result = M_CONVERT;
1060 }
1061 return result;
1062 }
1063 }
1064
1065 /* Calculate number of bytes which will be deleted or cut during balance */
1066 static int calc_deleted_bytes_number(struct tree_balance *p_s_tb, char c_mode)
1067 {
1068 int n_del_size;
1069 struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);
1070
1071 if (is_statdata_le_ih(p_le_ih))
1072 return 0;
1073
1074 n_del_size =
1075 (c_mode ==
1076 M_DELETE) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];
1077 if (is_direntry_le_ih(p_le_ih)) {
1078 // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
1079 // we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1080 // empty size. ick. FIXME, is this right?
1081 //
1082 return n_del_size;
1083 }
1084
1085 if (is_indirect_le_ih(p_le_ih))
1086 n_del_size = (n_del_size / UNFM_P_SIZE) * (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size); // - get_ih_free_space (p_le_ih);
1087 return n_del_size;
1088 }
1089
1090 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1091 struct tree_balance *p_s_tb,
1092 struct super_block *sb,
1093 struct treepath *p_s_path, int n_size)
1094 {
1095
1096 BUG_ON(!th->t_trans_id);
1097
1098 memset(p_s_tb, '\0', sizeof(struct tree_balance));
1099 p_s_tb->transaction_handle = th;
1100 p_s_tb->tb_sb = sb;
1101 p_s_tb->tb_path = p_s_path;
1102 PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1103 PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1104 p_s_tb->insert_size[0] = n_size;
1105 }
1106
1107 void padd_item(char *item, int total_length, int length)
1108 {
1109 int i;
1110
1111 for (i = total_length; i > length;)
1112 item[--i] = 0;
1113 }
1114
1115 #ifdef REISERQUOTA_DEBUG
1116 char key2type(struct reiserfs_key *ih)
1117 {
1118 if (is_direntry_le_key(2, ih))
1119 return 'd';
1120 if (is_direct_le_key(2, ih))
1121 return 'D';
1122 if (is_indirect_le_key(2, ih))
1123 return 'i';
1124 if (is_statdata_le_key(2, ih))
1125 return 's';
1126 return 'u';
1127 }
1128
1129 char head2type(struct item_head *ih)
1130 {
1131 if (is_direntry_le_ih(ih))
1132 return 'd';
1133 if (is_direct_le_ih(ih))
1134 return 'D';
1135 if (is_indirect_le_ih(ih))
1136 return 'i';
1137 if (is_statdata_le_ih(ih))
1138 return 's';
1139 return 'u';
1140 }
1141 #endif
1142
1143 /* Delete object item. */
1144 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path, /* Path to the deleted item. */
1145 const struct cpu_key *p_s_item_key, /* Key to search for the deleted item. */
1146 struct inode *inode, /* inode is here just to update
1147 * i_blocks and quotas */
1148 struct buffer_head *p_s_un_bh)
1149 { /* NULL or unformatted node pointer. */
1150 struct super_block *sb = inode->i_sb;
1151 struct tree_balance s_del_balance;
1152 struct item_head s_ih;
1153 struct item_head *q_ih;
1154 int quota_cut_bytes;
1155 int n_ret_value, n_del_size, n_removed;
1156
1157 #ifdef CONFIG_REISERFS_CHECK
1158 char c_mode;
1159 int n_iter = 0;
1160 #endif
1161
1162 BUG_ON(!th->t_trans_id);
1163
1164 init_tb_struct(th, &s_del_balance, sb, p_s_path,
1165 0 /*size is unknown */ );
1166
1167 while (1) {
1168 n_removed = 0;
1169
1170 #ifdef CONFIG_REISERFS_CHECK
1171 n_iter++;
1172 c_mode =
1173 #endif
1174 prepare_for_delete_or_cut(th, inode, p_s_path,
1175 p_s_item_key, &n_removed,
1176 &n_del_size,
1177 max_reiserfs_offset(inode));
1178
1179 RFALSE(c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1180
1181 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1182 s_del_balance.insert_size[0] = n_del_size;
1183
1184 n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1185 if (n_ret_value != REPEAT_SEARCH)
1186 break;
1187
1188 PROC_INFO_INC(sb, delete_item_restarted);
1189
1190 // file system changed, repeat search
1191 n_ret_value =
1192 search_for_position_by_key(sb, p_s_item_key, p_s_path);
1193 if (n_ret_value == IO_ERROR)
1194 break;
1195 if (n_ret_value == FILE_NOT_FOUND) {
1196 reiserfs_warning(sb, "vs-5340",
1197 "no items of the file %K found",
1198 p_s_item_key);
1199 break;
1200 }
1201 } /* while (1) */
1202
1203 if (n_ret_value != CARRY_ON) {
1204 unfix_nodes(&s_del_balance);
1205 return 0;
1206 }
1207 // reiserfs_delete_item returns item length when success
1208 n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1209 q_ih = get_ih(p_s_path);
1210 quota_cut_bytes = ih_item_len(q_ih);
1211
1212 /* hack so the quota code doesn't have to guess if the file
1213 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1214 ** We test the offset because the tail might have been
1215 ** split into multiple items, and we only want to decrement for
1216 ** the unfm node once
1217 */
1218 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1219 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1220 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1221 } else {
1222 quota_cut_bytes = 0;
1223 }
1224 }
1225
1226 if (p_s_un_bh) {
1227 int off;
1228 char *data;
1229
1230 /* We are in direct2indirect conversion, so move tail contents
1231 to the unformatted node */
1232 /* note, we do the copy before preparing the buffer because we
1233 ** don't care about the contents of the unformatted node yet.
1234 ** the only thing we really care about is the direct item's data
1235 ** is in the unformatted node.
1236 **
1237 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1238 ** the unformatted node, which might schedule, meaning we'd have to
1239 ** loop all the way back up to the start of the while loop.
1240 **
1241 ** The unformatted node must be dirtied later on. We can't be
1242 ** sure here if the entire tail has been deleted yet.
1243 **
1244 ** p_s_un_bh is from the page cache (all unformatted nodes are
1245 ** from the page cache) and might be a highmem page. So, we
1246 ** can't use p_s_un_bh->b_data.
1247 ** -clm
1248 */
1249
1250 data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
1251 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1252 memcpy(data + off,
1253 B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih),
1254 n_ret_value);
1255 kunmap_atomic(data, KM_USER0);
1256 }
1257 /* Perform balancing after all resources have been collected at once. */
1258 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1259
1260 #ifdef REISERQUOTA_DEBUG
1261 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1262 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1263 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1264 #endif
1265 DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
1266
1267 /* Return deleted body length */
1268 return n_ret_value;
1269 }
1270
1271 /* Summary Of Mechanisms For Handling Collisions Between Processes:
1272
1273 deletion of the body of the object is performed by iput(), with the
1274 result that if multiple processes are operating on a file, the
1275 deletion of the body of the file is deferred until the last process
1276 that has an open inode performs its iput().
1277
1278 writes and truncates are protected from collisions by use of
1279 semaphores.
1280
1281 creates, linking, and mknod are protected from collisions with other
1282 processes by making the reiserfs_add_entry() the last step in the
1283 creation, and then rolling back all changes if there was a collision.
1284 - Hans
1285 */
1286
1287 /* this deletes item which never gets split */
1288 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1289 struct inode *inode, struct reiserfs_key *key)
1290 {
1291 struct tree_balance tb;
1292 INITIALIZE_PATH(path);
1293 int item_len = 0;
1294 int tb_init = 0;
1295 struct cpu_key cpu_key;
1296 int retval;
1297 int quota_cut_bytes = 0;
1298
1299 BUG_ON(!th->t_trans_id);
1300
1301 le_key2cpu_key(&cpu_key, key);
1302
1303 while (1) {
1304 retval = search_item(th->t_super, &cpu_key, &path);
1305 if (retval == IO_ERROR) {
1306 reiserfs_error(th->t_super, "vs-5350",
1307 "i/o failure occurred trying "
1308 "to delete %K", &cpu_key);
1309 break;
1310 }
1311 if (retval != ITEM_FOUND) {
1312 pathrelse(&path);
1313 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1314 if (!
1315 ((unsigned long long)
1316 GET_HASH_VALUE(le_key_k_offset
1317 (le_key_version(key), key)) == 0
1318 && (unsigned long long)
1319 GET_GENERATION_NUMBER(le_key_k_offset
1320 (le_key_version(key),
1321 key)) == 1))
1322 reiserfs_warning(th->t_super, "vs-5355",
1323 "%k not found", key);
1324 break;
1325 }
1326 if (!tb_init) {
1327 tb_init = 1;
1328 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1329 init_tb_struct(th, &tb, th->t_super, &path,
1330 -(IH_SIZE + item_len));
1331 }
1332 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1333
1334 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1335 if (retval == REPEAT_SEARCH) {
1336 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1337 continue;
1338 }
1339
1340 if (retval == CARRY_ON) {
1341 do_balance(&tb, NULL, NULL, M_DELETE);
1342 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1343 #ifdef REISERQUOTA_DEBUG
1344 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1345 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1346 quota_cut_bytes, inode->i_uid,
1347 key2type(key));
1348 #endif
1349 DQUOT_FREE_SPACE_NODIRTY(inode,
1350 quota_cut_bytes);
1351 }
1352 break;
1353 }
1354 // IO_ERROR, NO_DISK_SPACE, etc
1355 reiserfs_warning(th->t_super, "vs-5360",
1356 "could not delete %K due to fix_nodes failure",
1357 &cpu_key);
1358 unfix_nodes(&tb);
1359 break;
1360 }
1361
1362 reiserfs_check_path(&path);
1363 }
1364
1365 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1366 struct inode *inode)
1367 {
1368 int err;
1369 inode->i_size = 0;
1370 BUG_ON(!th->t_trans_id);
1371
1372 /* for directory this deletes item containing "." and ".." */
1373 err =
1374 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1375 if (err)
1376 return err;
1377
1378 #if defined( USE_INODE_GENERATION_COUNTER )
1379 if (!old_format_only(th->t_super)) {
1380 __le32 *inode_generation;
1381
1382 inode_generation =
1383 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1384 le32_add_cpu(inode_generation, 1);
1385 }
1386 /* USE_INODE_GENERATION_COUNTER */
1387 #endif
1388 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1389
1390 return err;
1391 }
1392
1393 static void unmap_buffers(struct page *page, loff_t pos)
1394 {
1395 struct buffer_head *bh;
1396 struct buffer_head *head;
1397 struct buffer_head *next;
1398 unsigned long tail_index;
1399 unsigned long cur_index;
1400
1401 if (page) {
1402 if (page_has_buffers(page)) {
1403 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1404 cur_index = 0;
1405 head = page_buffers(page);
1406 bh = head;
1407 do {
1408 next = bh->b_this_page;
1409
1410 /* we want to unmap the buffers that contain the tail, and
1411 ** all the buffers after it (since the tail must be at the
1412 ** end of the file). We don't want to unmap file data
1413 ** before the tail, since it might be dirty and waiting to
1414 ** reach disk
1415 */
1416 cur_index += bh->b_size;
1417 if (cur_index > tail_index) {
1418 reiserfs_unmap_buffer(bh);
1419 }
1420 bh = next;
1421 } while (bh != head);
1422 }
1423 }
1424 }
1425
1426 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1427 struct inode *inode,
1428 struct page *page,
1429 struct treepath *p_s_path,
1430 const struct cpu_key *p_s_item_key,
1431 loff_t n_new_file_size, char *p_c_mode)
1432 {
1433 struct super_block *sb = inode->i_sb;
1434 int n_block_size = sb->s_blocksize;
1435 int cut_bytes;
1436 BUG_ON(!th->t_trans_id);
1437 BUG_ON(n_new_file_size != inode->i_size);
1438
1439 /* the page being sent in could be NULL if there was an i/o error
1440 ** reading in the last block. The user will hit problems trying to
1441 ** read the file, but for now we just skip the indirect2direct
1442 */
1443 if (atomic_read(&inode->i_count) > 1 ||
1444 !tail_has_to_be_packed(inode) ||
1445 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1446 /* leave tail in an unformatted node */
1447 *p_c_mode = M_SKIP_BALANCING;
1448 cut_bytes =
1449 n_block_size - (n_new_file_size & (n_block_size - 1));
1450 pathrelse(p_s_path);
1451 return cut_bytes;
1452 }
1453 /* Permorm the conversion to a direct_item. */
1454 /* return indirect_to_direct(inode, p_s_path, p_s_item_key,
1455 n_new_file_size, p_c_mode); */
1456 return indirect2direct(th, inode, page, p_s_path, p_s_item_key,
1457 n_new_file_size, p_c_mode);
1458 }
1459
1460 /* we did indirect_to_direct conversion. And we have inserted direct
1461 item successesfully, but there were no disk space to cut unfm
1462 pointer being converted. Therefore we have to delete inserted
1463 direct item(s) */
1464 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1465 struct inode *inode, struct treepath *path)
1466 {
1467 struct cpu_key tail_key;
1468 int tail_len;
1469 int removed;
1470 BUG_ON(!th->t_trans_id);
1471
1472 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1473 tail_key.key_length = 4;
1474
1475 tail_len =
1476 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1477 while (tail_len) {
1478 /* look for the last byte of the tail */
1479 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1480 POSITION_NOT_FOUND)
1481 reiserfs_panic(inode->i_sb, "vs-5615",
1482 "found invalid item");
1483 RFALSE(path->pos_in_item !=
1484 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1485 "vs-5616: appended bytes found");
1486 PATH_LAST_POSITION(path)--;
1487
1488 removed =
1489 reiserfs_delete_item(th, path, &tail_key, inode,
1490 NULL /*unbh not needed */ );
1491 RFALSE(removed <= 0
1492 || removed > tail_len,
1493 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1494 tail_len, removed);
1495 tail_len -= removed;
1496 set_cpu_key_k_offset(&tail_key,
1497 cpu_key_k_offset(&tail_key) - removed);
1498 }
1499 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1500 "conversion has been rolled back due to "
1501 "lack of disk space");
1502 //mark_file_without_tail (inode);
1503 mark_inode_dirty(inode);
1504 }
1505
1506 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1507 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1508 struct treepath *p_s_path,
1509 struct cpu_key *p_s_item_key,
1510 struct inode *inode,
1511 struct page *page, loff_t n_new_file_size)
1512 {
1513 struct super_block *sb = inode->i_sb;
1514 /* Every function which is going to call do_balance must first
1515 create a tree_balance structure. Then it must fill up this
1516 structure by using the init_tb_struct and fix_nodes functions.
1517 After that we can make tree balancing. */
1518 struct tree_balance s_cut_balance;
1519 struct item_head *p_le_ih;
1520 int n_cut_size = 0, /* Amount to be cut. */
1521 n_ret_value = CARRY_ON, n_removed = 0, /* Number of the removed unformatted nodes. */
1522 n_is_inode_locked = 0;
1523 char c_mode; /* Mode of the balance. */
1524 int retval2 = -1;
1525 int quota_cut_bytes;
1526 loff_t tail_pos = 0;
1527
1528 BUG_ON(!th->t_trans_id);
1529
1530 init_tb_struct(th, &s_cut_balance, inode->i_sb, p_s_path,
1531 n_cut_size);
1532
1533 /* Repeat this loop until we either cut the item without needing
1534 to balance, or we fix_nodes without schedule occurring */
1535 while (1) {
1536 /* Determine the balance mode, position of the first byte to
1537 be cut, and size to be cut. In case of the indirect item
1538 free unformatted nodes which are pointed to by the cut
1539 pointers. */
1540
1541 c_mode =
1542 prepare_for_delete_or_cut(th, inode, p_s_path,
1543 p_s_item_key, &n_removed,
1544 &n_cut_size, n_new_file_size);
1545 if (c_mode == M_CONVERT) {
1546 /* convert last unformatted node to direct item or leave
1547 tail in the unformatted node */
1548 RFALSE(n_ret_value != CARRY_ON,
1549 "PAP-5570: can not convert twice");
1550
1551 n_ret_value =
1552 maybe_indirect_to_direct(th, inode, page,
1553 p_s_path, p_s_item_key,
1554 n_new_file_size, &c_mode);
1555 if (c_mode == M_SKIP_BALANCING)
1556 /* tail has been left in the unformatted node */
1557 return n_ret_value;
1558
1559 n_is_inode_locked = 1;
1560
1561 /* removing of last unformatted node will change value we
1562 have to return to truncate. Save it */
1563 retval2 = n_ret_value;
1564 /*retval2 = sb->s_blocksize - (n_new_file_size & (sb->s_blocksize - 1)); */
1565
1566 /* So, we have performed the first part of the conversion:
1567 inserting the new direct item. Now we are removing the
1568 last unformatted node pointer. Set key to search for
1569 it. */
1570 set_cpu_key_k_type(p_s_item_key, TYPE_INDIRECT);
1571 p_s_item_key->key_length = 4;
1572 n_new_file_size -=
1573 (n_new_file_size & (sb->s_blocksize - 1));
1574 tail_pos = n_new_file_size;
1575 set_cpu_key_k_offset(p_s_item_key, n_new_file_size + 1);
1576 if (search_for_position_by_key
1577 (sb, p_s_item_key,
1578 p_s_path) == POSITION_NOT_FOUND) {
1579 print_block(PATH_PLAST_BUFFER(p_s_path), 3,
1580 PATH_LAST_POSITION(p_s_path) - 1,
1581 PATH_LAST_POSITION(p_s_path) + 1);
1582 reiserfs_panic(sb, "PAP-5580", "item to "
1583 "convert does not exist (%K)",
1584 p_s_item_key);
1585 }
1586 continue;
1587 }
1588 if (n_cut_size == 0) {
1589 pathrelse(p_s_path);
1590 return 0;
1591 }
1592
1593 s_cut_balance.insert_size[0] = n_cut_size;
1594
1595 n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL);
1596 if (n_ret_value != REPEAT_SEARCH)
1597 break;
1598
1599 PROC_INFO_INC(sb, cut_from_item_restarted);
1600
1601 n_ret_value =
1602 search_for_position_by_key(sb, p_s_item_key, p_s_path);
1603 if (n_ret_value == POSITION_FOUND)
1604 continue;
1605
1606 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1607 p_s_item_key);
1608 unfix_nodes(&s_cut_balance);
1609 return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
1610 } /* while */
1611
1612 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1613 if (n_ret_value != CARRY_ON) {
1614 if (n_is_inode_locked) {
1615 // FIXME: this seems to be not needed: we are always able
1616 // to cut item
1617 indirect_to_direct_roll_back(th, inode, p_s_path);
1618 }
1619 if (n_ret_value == NO_DISK_SPACE)
1620 reiserfs_warning(sb, "reiserfs-5092",
1621 "NO_DISK_SPACE");
1622 unfix_nodes(&s_cut_balance);
1623 return -EIO;
1624 }
1625
1626 /* go ahead and perform balancing */
1627
1628 RFALSE(c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");
1629
1630 /* Calculate number of bytes that need to be cut from the item. */
1631 quota_cut_bytes =
1632 (c_mode ==
1633 M_DELETE) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.
1634 insert_size[0];
1635 if (retval2 == -1)
1636 n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
1637 else
1638 n_ret_value = retval2;
1639
1640 /* For direct items, we only change the quota when deleting the last
1641 ** item.
1642 */
1643 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1644 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1645 if (c_mode == M_DELETE &&
1646 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1647 1) {
1648 // FIXME: this is to keep 3.5 happy
1649 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1650 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1651 } else {
1652 quota_cut_bytes = 0;
1653 }
1654 }
1655 #ifdef CONFIG_REISERFS_CHECK
1656 if (n_is_inode_locked) {
1657 struct item_head *le_ih =
1658 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1659 /* we are going to complete indirect2direct conversion. Make
1660 sure, that we exactly remove last unformatted node pointer
1661 of the item */
1662 if (!is_indirect_le_ih(le_ih))
1663 reiserfs_panic(sb, "vs-5652",
1664 "item must be indirect %h", le_ih);
1665
1666 if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1667 reiserfs_panic(sb, "vs-5653", "completing "
1668 "indirect2direct conversion indirect "
1669 "item %h being deleted must be of "
1670 "4 byte long", le_ih);
1671
1672 if (c_mode == M_CUT
1673 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1674 reiserfs_panic(sb, "vs-5654", "can not complete "
1675 "indirect2direct conversion of %h "
1676 "(CUT, insert_size==%d)",
1677 le_ih, s_cut_balance.insert_size[0]);
1678 }
1679 /* it would be useful to make sure, that right neighboring
1680 item is direct item of this file */
1681 }
1682 #endif
1683
1684 do_balance(&s_cut_balance, NULL, NULL, c_mode);
1685 if (n_is_inode_locked) {
1686 /* we've done an indirect->direct conversion. when the data block
1687 ** was freed, it was removed from the list of blocks that must
1688 ** be flushed before the transaction commits, make sure to
1689 ** unmap and invalidate it
1690 */
1691 unmap_buffers(page, tail_pos);
1692 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1693 }
1694 #ifdef REISERQUOTA_DEBUG
1695 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1696 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1697 quota_cut_bytes, inode->i_uid, '?');
1698 #endif
1699 DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
1700 return n_ret_value;
1701 }
1702
1703 static void truncate_directory(struct reiserfs_transaction_handle *th,
1704 struct inode *inode)
1705 {
1706 BUG_ON(!th->t_trans_id);
1707 if (inode->i_nlink)
1708 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1709
1710 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1711 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1712 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1713 reiserfs_update_sd(th, inode);
1714 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1715 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1716 }
1717
1718 /* Truncate file to the new size. Note, this must be called with a transaction
1719 already started */
1720 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1721 struct inode *inode, /* ->i_size contains new size */
1722 struct page *page, /* up to date for last block */
1723 int update_timestamps /* when it is called by
1724 file_release to convert
1725 the tail - no timestamps
1726 should be updated */
1727 )
1728 {
1729 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1730 struct item_head *p_le_ih; /* Pointer to an item header. */
1731 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1732 loff_t n_file_size, /* Old file size. */
1733 n_new_file_size; /* New file size. */
1734 int n_deleted; /* Number of deleted or truncated bytes. */
1735 int retval;
1736 int err = 0;
1737
1738 BUG_ON(!th->t_trans_id);
1739 if (!
1740 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1741 || S_ISLNK(inode->i_mode)))
1742 return 0;
1743
1744 if (S_ISDIR(inode->i_mode)) {
1745 // deletion of directory - no need to update timestamps
1746 truncate_directory(th, inode);
1747 return 0;
1748 }
1749
1750 /* Get new file size. */
1751 n_new_file_size = inode->i_size;
1752
1753 // FIXME: note, that key type is unimportant here
1754 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1755 TYPE_DIRECT, 3);
1756
1757 retval =
1758 search_for_position_by_key(inode->i_sb, &s_item_key,
1759 &s_search_path);
1760 if (retval == IO_ERROR) {
1761 reiserfs_error(inode->i_sb, "vs-5657",
1762 "i/o failure occurred trying to truncate %K",
1763 &s_item_key);
1764 err = -EIO;
1765 goto out;
1766 }
1767 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1768 reiserfs_error(inode->i_sb, "PAP-5660",
1769 "wrong result %d of search for %K", retval,
1770 &s_item_key);
1771
1772 err = -EIO;
1773 goto out;
1774 }
1775
1776 s_search_path.pos_in_item--;
1777
1778 /* Get real file size (total length of all file items) */
1779 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1780 if (is_statdata_le_ih(p_le_ih))
1781 n_file_size = 0;
1782 else {
1783 loff_t offset = le_ih_k_offset(p_le_ih);
1784 int bytes =
1785 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1786
1787 /* this may mismatch with real file size: if last direct item
1788 had no padding zeros and last unformatted node had no free
1789 space, this file would have this file size */
1790 n_file_size = offset + bytes - 1;
1791 }
1792 /*
1793 * are we doing a full truncate or delete, if so
1794 * kick in the reada code
1795 */
1796 if (n_new_file_size == 0)
1797 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1798
1799 if (n_file_size == 0 || n_file_size < n_new_file_size) {
1800 goto update_and_out;
1801 }
1802
1803 /* Update key to search for the last file item. */
1804 set_cpu_key_k_offset(&s_item_key, n_file_size);
1805
1806 do {
1807 /* Cut or delete file item. */
1808 n_deleted =
1809 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1810 inode, page, n_new_file_size);
1811 if (n_deleted < 0) {
1812 reiserfs_warning(inode->i_sb, "vs-5665",
1813 "reiserfs_cut_from_item failed");
1814 reiserfs_check_path(&s_search_path);
1815 return 0;
1816 }
1817
1818 RFALSE(n_deleted > n_file_size,
1819 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1820 n_deleted, n_file_size, &s_item_key);
1821
1822 /* Change key to search the last file item. */
1823 n_file_size -= n_deleted;
1824
1825 set_cpu_key_k_offset(&s_item_key, n_file_size);
1826
1827 /* While there are bytes to truncate and previous file item is presented in the tree. */
1828
1829 /*
1830 ** This loop could take a really long time, and could log
1831 ** many more blocks than a transaction can hold. So, we do a polite
1832 ** journal end here, and if the transaction needs ending, we make
1833 ** sure the file is consistent before ending the current trans
1834 ** and starting a new one
1835 */
1836 if (journal_transaction_should_end(th, 0) ||
1837 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1838 int orig_len_alloc = th->t_blocks_allocated;
1839 pathrelse(&s_search_path);
1840
1841 if (update_timestamps) {
1842 inode->i_mtime = CURRENT_TIME_SEC;
1843 inode->i_ctime = CURRENT_TIME_SEC;
1844 }
1845 reiserfs_update_sd(th, inode);
1846
1847 err = journal_end(th, inode->i_sb, orig_len_alloc);
1848 if (err)
1849 goto out;
1850 err = journal_begin(th, inode->i_sb,
1851 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1852 if (err)
1853 goto out;
1854 reiserfs_update_inode_transaction(inode);
1855 }
1856 } while (n_file_size > ROUND_UP(n_new_file_size) &&
1857 search_for_position_by_key(inode->i_sb, &s_item_key,
1858 &s_search_path) == POSITION_FOUND);
1859
1860 RFALSE(n_file_size > ROUND_UP(n_new_file_size),
1861 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1862 n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);
1863
1864 update_and_out:
1865 if (update_timestamps) {
1866 // this is truncate, not file closing
1867 inode->i_mtime = CURRENT_TIME_SEC;
1868 inode->i_ctime = CURRENT_TIME_SEC;
1869 }
1870 reiserfs_update_sd(th, inode);
1871
1872 out:
1873 pathrelse(&s_search_path);
1874 return err;
1875 }
1876
1877 #ifdef CONFIG_REISERFS_CHECK
1878 // this makes sure, that we __append__, not overwrite or add holes
1879 static void check_research_for_paste(struct treepath *path,
1880 const struct cpu_key *p_s_key)
1881 {
1882 struct item_head *found_ih = get_ih(path);
1883
1884 if (is_direct_le_ih(found_ih)) {
1885 if (le_ih_k_offset(found_ih) +
1886 op_bytes_number(found_ih,
1887 get_last_bh(path)->b_size) !=
1888 cpu_key_k_offset(p_s_key)
1889 || op_bytes_number(found_ih,
1890 get_last_bh(path)->b_size) !=
1891 pos_in_item(path))
1892 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1893 "%h or position (%d) does not match "
1894 "to key %K", found_ih,
1895 pos_in_item(path), p_s_key);
1896 }
1897 if (is_indirect_le_ih(found_ih)) {
1898 if (le_ih_k_offset(found_ih) +
1899 op_bytes_number(found_ih,
1900 get_last_bh(path)->b_size) !=
1901 cpu_key_k_offset(p_s_key)
1902 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1903 || get_ih_free_space(found_ih) != 0)
1904 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1905 "item (%h) or position (%d) does not "
1906 "match to key (%K)",
1907 found_ih, pos_in_item(path), p_s_key);
1908 }
1909 }
1910 #endif /* config reiserfs check */
1911
1912 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1913 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_search_path, /* Path to the pasted item. */
1914 const struct cpu_key *p_s_key, /* Key to search for the needed item. */
1915 struct inode *inode, /* Inode item belongs to */
1916 const char *p_c_body, /* Pointer to the bytes to paste. */
1917 int n_pasted_size)
1918 { /* Size of pasted bytes. */
1919 struct tree_balance s_paste_balance;
1920 int retval;
1921 int fs_gen;
1922
1923 BUG_ON(!th->t_trans_id);
1924
1925 fs_gen = get_generation(inode->i_sb);
1926
1927 #ifdef REISERQUOTA_DEBUG
1928 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1929 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1930 n_pasted_size, inode->i_uid,
1931 key2type(&(p_s_key->on_disk_key)));
1932 #endif
1933
1934 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) {
1935 pathrelse(p_s_search_path);
1936 return -EDQUOT;
1937 }
1938 init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path,
1939 n_pasted_size);
1940 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1941 s_paste_balance.key = p_s_key->on_disk_key;
1942 #endif
1943
1944 /* DQUOT_* can schedule, must check before the fix_nodes */
1945 if (fs_changed(fs_gen, inode->i_sb)) {
1946 goto search_again;
1947 }
1948
1949 while ((retval =
1950 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1951 p_c_body)) == REPEAT_SEARCH) {
1952 search_again:
1953 /* file system changed while we were in the fix_nodes */
1954 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1955 retval =
1956 search_for_position_by_key(th->t_super, p_s_key,
1957 p_s_search_path);
1958 if (retval == IO_ERROR) {
1959 retval = -EIO;
1960 goto error_out;
1961 }
1962 if (retval == POSITION_FOUND) {
1963 reiserfs_warning(inode->i_sb, "PAP-5710",
1964 "entry or pasted byte (%K) exists",
1965 p_s_key);
1966 retval = -EEXIST;
1967 goto error_out;
1968 }
1969 #ifdef CONFIG_REISERFS_CHECK
1970 check_research_for_paste(p_s_search_path, p_s_key);
1971 #endif
1972 }
1973
1974 /* Perform balancing after all resources are collected by fix_nodes, and
1975 accessing them will not risk triggering schedule. */
1976 if (retval == CARRY_ON) {
1977 do_balance(&s_paste_balance, NULL /*ih */ , p_c_body, M_PASTE);
1978 return 0;
1979 }
1980 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
1981 error_out:
1982 /* this also releases the path */
1983 unfix_nodes(&s_paste_balance);
1984 #ifdef REISERQUOTA_DEBUG
1985 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1986 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
1987 n_pasted_size, inode->i_uid,
1988 key2type(&(p_s_key->on_disk_key)));
1989 #endif
1990 DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size);
1991 return retval;
1992 }
1993
1994 /* Insert new item into the buffer at the path. */
1995 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path, /* Path to the inserteded item. */
1996 const struct cpu_key *key, struct item_head *p_s_ih, /* Pointer to the item header to insert. */
1997 struct inode *inode, const char *p_c_body)
1998 { /* Pointer to the bytes to insert. */
1999 struct tree_balance s_ins_balance;
2000 int retval;
2001 int fs_gen = 0;
2002 int quota_bytes = 0;
2003
2004 BUG_ON(!th->t_trans_id);
2005
2006 if (inode) { /* Do we count quotas for item? */
2007 fs_gen = get_generation(inode->i_sb);
2008 quota_bytes = ih_item_len(p_s_ih);
2009
2010 /* hack so the quota code doesn't have to guess if the file has
2011 ** a tail, links are always tails, so there's no guessing needed
2012 */
2013 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_s_ih)) {
2014 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2015 }
2016 #ifdef REISERQUOTA_DEBUG
2017 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2018 "reiserquota insert_item(): allocating %u id=%u type=%c",
2019 quota_bytes, inode->i_uid, head2type(p_s_ih));
2020 #endif
2021 /* We can't dirty inode here. It would be immediately written but
2022 * appropriate stat item isn't inserted yet... */
2023 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
2024 pathrelse(p_s_path);
2025 return -EDQUOT;
2026 }
2027 }
2028 init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path,
2029 IH_SIZE + ih_item_len(p_s_ih));
2030 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2031 s_ins_balance.key = key->on_disk_key;
2032 #endif
2033 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2034 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2035 goto search_again;
2036 }
2037
2038 while ((retval =
2039 fix_nodes(M_INSERT, &s_ins_balance, p_s_ih,
2040 p_c_body)) == REPEAT_SEARCH) {
2041 search_again:
2042 /* file system changed while we were in the fix_nodes */
2043 PROC_INFO_INC(th->t_super, insert_item_restarted);
2044 retval = search_item(th->t_super, key, p_s_path);
2045 if (retval == IO_ERROR) {
2046 retval = -EIO;
2047 goto error_out;
2048 }
2049 if (retval == ITEM_FOUND) {
2050 reiserfs_warning(th->t_super, "PAP-5760",
2051 "key %K already exists in the tree",
2052 key);
2053 retval = -EEXIST;
2054 goto error_out;
2055 }
2056 }
2057
2058 /* make balancing after all resources will be collected at a time */
2059 if (retval == CARRY_ON) {
2060 do_balance(&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
2061 return 0;
2062 }
2063
2064 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2065 error_out:
2066 /* also releases the path */
2067 unfix_nodes(&s_ins_balance);
2068 #ifdef REISERQUOTA_DEBUG
2069 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2070 "reiserquota insert_item(): freeing %u id=%u type=%c",
2071 quota_bytes, inode->i_uid, head2type(p_s_ih));
2072 #endif
2073 if (inode)
2074 DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes);
2075 return retval;
2076 }